

1 The mitochondrial *orf117Sha* gene desynchronizes pollen development and causes pollen abortion in
2 the *Arabidopsis* Sha CMS

3
4 Dehaene Noémie¹, Boussardon Clément^{1,§}, Andrey Philippe¹, Charif Delphine¹, Brandt Dennis²,
5 Gilouuppe Taillefer Clémence¹, Nietzel Thomas², Ricou Anthony¹, Simon Matthieu¹, Tran Joseph¹, Vezon
6 Daniel¹, Camilleri Christine¹, Arimura Shin-ichi³, Schwarzländer Markus², Budar Françoise¹.

7
8 1-Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles,
9 France.

10 2- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143
11 Münster, Germany.

12 3- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The
13 University of Tokyo, Tokyo, 113-8657, Japan.

14
15 § Current address: Department of Plant Physiology, Umeå Plant Science, Umeå University, S-90187
16 Umeå, Sweden

17
18 Running title:
19 Pollen abortion cause and process in *Arabidopsis* CMS

20

21 Highlight:
22 The *Arabidopsis* CMS-causing gene *orf117Sha* does not limit pollen ATP supply. Pollen-centered
23 approaches show desynchronization of development and mitochondrial swelling before pollen death,
24 which occurred at diverse stages.

25

26

27 Abstract:

28 Cytoplasmic male sterility (CMS) is of major agronomical relevance in hybrid breeding. In gametophytic
29 CMS, abortion of pollen is determined by the grain genotype, while in sporophytic CMS, it is
30 determined by the mother plant genotype. While several CMS mechanisms have been dissected at the
31 molecular level, gametophytic CMS has not been straightforwardly accessible. We used the
32 gametophytic Sha-CMS in *Arabidopsis* to characterize the cause and process of pollen abortion by
33 implementing *in vivo* biosensing in single pollen and mitoTALEN mutagenesis. We obtained conclusive
34 evidence that *orf117Sha* is the CMS-causing gene, despite distinct characteristics from other CMS-
35 genes. We measured the *in vivo* cytosolic ATP content in single pollen, followed pollen development
36 and analyzed pollen mitochondrial volume in two genotypes that differed only by the presence of the
37 *orf117Sha* locus. Our results show that the Sha-CMS is not triggered by ATP deficiency. Instead, we
38 observed desynchronization of a pollen developmental program. Pollen death occurred independently
39 in pollen grains at diverse stages and was preceded by mitochondrial swelling. We conclude that pollen
40 death is grain-autonomous in Sha-CMS and propose that mitochondrial permeability transition, which
41 was previously described as a hallmark of developmental and environmental-triggered cell death
42 programs, precedes pollen death in Sha-CMS.

43

44

45 keywords

46 ATP content, cytoplasmic male sterility, gametophytic, male germline, mitochondrial genome,
47 mitochondrial morphology, mitoTALEN mutagenesis, pollen development

48

49

50 Introduction

51 Cytoplasmic male sterility (CMS), a source of reproductive polymorphism in Angiosperms, is genetically

52 determined by both nuclear and maternally inherited mitochondrial factors (Chittenden and Pellew,

53 1927; Dufaÿ *et al.*, 2014). Mitochondria contain a CMS-causing gene, which prevents the plant from

54 producing functional pollen, unless its nuclear genome possesses restorer-of-fertility (Rf) gene(s). In

55 nature, the presence of a mitochondrial CMS gene in a population where Rf is absent or in segregation

56 with non-restorer allele(s) results in female (male sterile) individuals among hermaphrodite congeners,

57 a coexistence named gynodioecy (Darwin, 1877). When Rf genes are fixed, the CMS becomes cryptic:

58 male sterility is no longer phenotypically expressed, but can be observed again after introduction of

59 the cytoplasm into a non-restorer nuclear background.

60 CMS first attracted the interest of plant breeders in the 1940s, to facilitate the field-scale production

61 of hybrid seeds and exploit heterosis in elite varieties (Jones and Clarke, 1943). In the vast majority of

62 cases, CMSs used in agriculture rely on naturally occurring mitochondrial CMS genes, most often

63 cryptic in the species, subspecies, or cultivar of origin. Studies to identify CMS-causing genes and

64 understand the mechanism(s) of pollen abortion have been conducted mainly in cultivated plants, but

65 also in *Mimulus* (Case and Willis, 2008), *Silene* (Stone *et al.*, 2017), and wild beet (Meyer *et al.*, 2018).

66 Mitochondrial CMS genes have been identified in more than 30 CMSs in approximately 20 species

67 (reviewed by Chen & Liu (2014), Toriyama (2021), Xu *et al.* (2022)). Several features common to many,

68 but not all, identified CMS-genes were drawn from the comparison of these genes (Hanson and

69 Bentolila, 2004; Horn *et al.*, 2014; Chen *et al.*, 2017; Kitazaki *et al.*, 2023), and sometimes used to drive

70 the search for mitochondrial CMS-causing genes: a chimeric sequence comprising identifiable parts of

71 conserved mitochondrial genes and sequences of unknown origin; association and co-transcription

72 with a conserved mitochondrial gene; expression profile modified by the action of nuclear Rf, most

73 often at the RNA level; a predicted protein product containing hydrophobic transmembrane

74 domain(s). While mitochondrial-CMS genes were first thought to be unique to a species or population,

75 some were found to have evolved variants or related mitochondrial CMS genes within plant taxa,

76 mainly in the Brassicaceae family (L'Homme *et al.*, 1997; Yamagishi and Terachi, 2001; Yamagishi *et*

77 *al.*, 2021*b,a*) and the rice genus (He *et al.*, 2020; Zhang *et al.*, 2022).

78 Two genetic types of CMS and restoration have been distinguished since the early genetic studies of

79 CMS (Bucher, 1961; Duvick, 1965; Laughnan and Gabay-Laughnan, 1983). In gametophytic CMS, pollen

80 abortion is determined by the pollen grain genotype; in an individual heterozygous for the Rf, pollen

81 grains that carry the restorer Rf allele survive, while those carrying the non-restorer allele die. In

82 contrast, in sporophytic CMS, pollen abortion is determined by the mother plant genotype because

83 pollen abortion results from a default in the diploid maternal tissue of the anther, most often the

84 tapetal cell layer. Sporophytic Rf genes are usually dominant, and heterozygotes produce 100% viable
85 pollen. It seems reasonable to assume that tapetum and pollen abortions are triggered by different
86 mechanisms in sporophytic and gametophytic CMSs. Several studies support this hypothesis. In the
87 sporophytic *Brassica napus nap*-CMS, *orf222* expression blocks microsporangium development at an
88 early and specific stage, but in anther sites where sporogenesis does take place, once this stage is
89 passed, *orf222* expression does not impair male gametogenesis or the production of functional pollen
90 (Geddy *et al.*, 2005). In rice, the genetic feature (*i.e.* sporophytic or gametophytic) of each CMS was
91 conserved when the 35SCaMV promoter, expressed in many sporophytic organs but also in pollen in
92 this species, was successfully used to drive the expression of the sporophytic FA-CMS (Jiang *et al.*,
93 2022) or the gametophytic BT-CMS (Wang *et al.*, 2006) genes in transgenic plants.

94 Despite the number of identified CMS-genes, the mechanism by which the CMS-gene product triggers
95 pollen death has only been partially elucidated in a few cases, mainly in sporophytic CMSs. Several
96 causes were reported or proposed to trigger tapetum premature death: the CMS-protein forming a
97 pore in the mitochondrial membrane, as in the T-CMS of maize (Levings, 1993) or the Ogura CMS in
98 rapeseed (Duroc *et al.*, 2009); interaction of the WA-CMS protein with a subunit of mitochondrial
99 complex IV provoking a burst of reactive oxygen species (ROS) in rice; impairment of sufficient ATP
100 production by disturbing the activity of ATP synthase, as in PET1-CMS in sunflower (Sabar *et al.*, 2003),
101 C-CMS of maize (Yang *et al.*, 2022) and pepper CMS (Ji *et al.*, 2013; Li *et al.*, 2013). In contrast, in C5-
102 CMS cabbage, impaired ATP synthase activity and lower ATP content were associated with delayed
103 tapetum degeneration, also resulting in male sterility (Zhong *et al.*, 2022). However, it is still unclear
104 to what extent the different causes listed above trigger different physiological mechanisms to
105 eventually provoke pollen death and, in many cases, how these mechanisms are restricted to the
106 tapetal cells.

107 To our knowledge, the molecular mechanism of pollen abortion has been unveiled only in one CMS of
108 the gametophytic type, the HL-CMS of rice. In this case, ORFH79, the protein product of the
109 mitochondrial CMS-causing gene, was shown to interact with the P61 protein, a subunit of cytochrome
110 c reductase (complex III). ORFH79-P61 interaction would explain the decreased activity of the complex,
111 accompanied by a decrease in ATP content and an increase in ROS content, observed in mitochondrial
112 extracts from the sterile genotype compared to the fertile one (Wang *et al.*, 2013). The authors
113 proposed that limitations in ATP supply and ROS accumulation trigger retrograde signals that stop
114 pollen development at the G1/S stage of bicellular pollen in HL-CMS plants (Wang *et al.*, 2013).
115 In the model species *Arabidopsis thaliana*, we discovered a cryptic gametophytic CMS by crossing
116 distant natural variants (Gobron *et al.*, 2013; Simon *et al.*, 2016). All male-sterility inducing cytoplasms
117 were closely related to that of Shahdara (Sha), from Tajikistan. In contrast, the cytoplasm of Kz-9, from

118 Kazakhstan, which is closely related to that of Sha, did not induce male sterility (Gobron *et al.*, 2013;
119 Simon *et al.*, 2016). Based on restriction length polymorphisms and DNA hybridization comparing Sha
120 and Kz-9 mitochondrial genomes, we identified *orf117Sha*, a novel mitochondrial gene unique to CMS-
121 inducing cytoplasms, as a candidate for the CMS-causing gene. *orf117Sha* is not associated with any
122 essential mitochondrial gene but its 5' untranslated region is identical to that of the *cob* gene (Gobron
123 *et al.*, 2013; Durand *et al.*, 2021). The ORF117SHA protein contains no identifiable fragments of any
124 known protein necessary for the assembly or function of mitochondrial respiratory complexes, ATP
125 synthase, or any hydrophobic putative transmembrane region. Unexpectedly, the restoration of full
126 fertility, either by the presence of Sha Rf genes (*i.e.*, in the Sha genotype) or by inactivation of a gene
127 necessary for sterility, was not accompanied by a modification in the expression profile of *orf117Sha*
128 (Durand *et al.*, 2021). Nevertheless, *orf117Sha* encodes a protein 56 % identical to that encoded by
129 *orf108*, a mitochondrial gene from *Moricandia arvensis* that induces gametophytic CMS in *Brassica*
130 species and is co-transcribed with *atpA* (Ashutosh *et al.*, 2008; Kumar *et al.*, 2012). The Sha cytoplasm-
131 induced CMS (Sha-CMS) is phenotypically expressed when the cytoplasm of Sha is associated with the
132 nuclear genome of Cvi-0, from the Cape Verde Islands (Roux *et al.*, 2016; Durand *et al.*, 2021), a
133 genotype noted [Sha]Cvi.

134 In the present study, we aimed at understanding the cause and process of pollen abortion in the Sha-
135 CMS implementing up-to-date pollen centered approaches. We definitely demonstrate that *orf117Sha*
136 is the causative gene for Sha-CMS. We rule out that Sha-CMS is triggered by an insufficient ATP supply
137 by experimentally measuring the *in vivo* ATP content in developing pollen. We show that pollen
138 development is desynchronized and that death occurs independently in pollen grains, at diverse pollen
139 developmental stages. In addition, we report that pollen death is preceded by the swelling of
140 mitochondria reminiscent of the mitochondrial morphology transition observed in stress-induced cell
141 death and other cases of male sterility.

142

143

144 Material and Methods

145 **Plant material and growth conditions**

146 *Plant material*

147 All the genotypes used in this study (Table 1) are available on demand at the Versailles Arabidopsis

148 Stock Center (<https://publiclines.versailles.inrae.fr/>) which provided the natural variants for this work.

149 We use the following nomenclature: a plant carrying the cytoplasmic genomes from parent A and the

150 nuclear genome from parent B is designated [A]B.

151 The [Kz9]Cvi genotype was produced by recurrent paternal backcrosses of a F1 hybrid Kz-9 x Cvi-0. A

152 plant from the sixth backcross was sequenced on a HiSeq3000 at the Genotoul Platform in Toulouse

153 (France) and no residual zone of heterozygosity was detected. The [Sha]CviL3^S possesses the Sha

154 cytoplasm and the Cvi-0 nuclear genome except at the bottom of chromosome 3, from 21.8 Mb to

155 telomere, where it possesses the Sha alleles.

156 *Growth conditions*

157 Plants were routinely grown in a greenhouse in long-day conditions (16 h day, 8 h night) supplemented

158 with artificial light (105 µE/m²/s) when necessary. Before direct sowing on soil, seeds were stratified

159 in the dark at 4°C for three days in water with 0.1 % (w/v) agar. *In vitro* plantlets were grown in a

160 culture chamber under long day conditions (16 h day, 8 h night) at 20°C. Surface sterilized seeds were

161 sown on Arabidopsis medium (3.1 g/L Gamborg B5 medium with vitamins (DUCHEFA Biochemie), 0.08

162 % (w/v) bromocresol purple, 1 % sucrose (w/v), 0.7 % (w/v) agar, pH 6) supplemented, if needed, with

163 the appropriate chemical for selection. When needed, plantlets grown *in vitro* were transferred to soil

164 after two to three weeks and cultivated under the greenhouse conditions indicated above for further

165 analyses.

166

167 ***De novo* organelle genome sequencing, assembly and annotation**

168 *Preparation of samples*

169 Organelle-enriched pellets were obtained from floral buds (50-100g) following the procedure

170 described by Scotti et al (2001), frozen and kept at -80°C until DNA extraction.

171 For Illumina sequencing, DNA was extracted from the organelle-enriched pellets with the NucleoSpin

172 Plant II kit (Macherey Nagel) following manufacturer's instructions. For PacBio sequencing, DNA was

173 extracted according to Mayjonade et al's (2016) procedure.

174 *Assembly of chloroplast and mitochondrial genomes*

175 Illumina sequences were produced at The Genome Analysis Centre (UK). Libraries were sequenced

176 with 2 × 100 bp paired-end reads. As the coverage of the organelle genomes was very high (>2000x)

177 (Table S1), Illumina reads were sampled to keep one fourth of the reads. As reads were produced from

178 organelle-enriched DNA samples which contain nuclear, mitochondrial and chloroplast DNA we used
179 MetaVelvet (version 1.2; Namiki *et al.*, 2012), a robust assembly tool tailored for metagenomic
180 datasets. Two sets of parameters were required (i) the expected genomes coverage (sequencing
181 depth) and (ii) the insert-size length. We followed the guidelines provided at
182 <<http://metavelvet.dna.bio.keio.ac.jp/MV.html#advanced>> to estimate the first one (Table S1). The
183 second one (insert size) was obtained by mapping reads to the reference TAIR 10 *Arabidopsis thaliana*
184 genomes using bwa (Li and Durbin, 2009) (Table S1). Before assembly, nuclear sequences were filtered
185 out: khmer was used to remove reads with low abundance k-mers (Table S2). The shell mitology
186 pipeline (<https://github.com/jos4uke/mitology-pipeline.git>) was implemented to automatically
187 perform these steps for filtering and assembling short reads sequencing samples. Tables S2 and S3
188 give parameters used and results obtained with the mitology pipeline, respectively. As insert sizes of
189 Illumina libraries were short compared to the size of genomic repeats, this first assembly step
190 produced several contigs for each genome (Table S3). We then aligned raw reads back onto the contigs
191 to check for assembly inconsistencies. In order to scaffold contigs, the R package contigLink
192 (<https://github.com/jos4uke/contigLink>) was implemented to graphically explore these alignments:
193 inspect contig inconsistencies and exploit cross contig spanning paired-end reads information. This
194 strategy allowed full assembly of Sha and Kz-9 chloroplast genomes, while mitochondrial genomes
195 remained as unassembled scaffolds. In order to achieve mitochondrial genome assemblies, we used
196 PacBio long reads.

197 PacBio sequencing was carried out on a single SMRT cell utilizing PACBIO RSII sequencing technology
198 at the GeT-PlaGe sequencing platform (Toulouse). Library was constructed using SMRTbell Template
199 Prep Kit 3.0 and adapters were added using DNA/Polymerase Binding Kit P6 v2. CANU (v1.5; Koren *et*
200 *al.*, 2017) was used to assemble Sha and Kz9 organelle genomes (genomeSize=500k,
201 minReadLength=500, corOutCoverage=999). Assemblies were corrected using pilon (v1.22; Walker *et*
202 *al.*, 2014) using Illumina reads. The resulting contigs did not correspond to fully assembled
203 mitochondrial genome sequences. In addition, the total length of mitochondrial contigs for Sha was
204 small (212 kb, compared to 350 kb for Kz-9, Table S4) and several essential mitochondrial genes were
205 not detected in Sha contigs by BLAST search, while there were present in Kz-9 ones. Nevertheless, the
206 CANU contigs were used to drive the final assembly of Metavelvet scaffolds. After this final assembly
207 step, Sha and Kz-9 mitochondrial genome sequences were validated in two ways. Firstly, Illumina reads
208 were aligned on the final mitochondrial genomes and unexpected pair orientation or fragment size
209 were systematically examined using the Integrative Genomics Viewer tool (IGV_ 2.12.3)
210 (Thorvaldsdottir *et al.*, 2013). All were compatible with recombination events between copies of
211 repeated sequences > 350 pb present in the genomes (Table S5). IGV visualization of alignments also

212 revealed a few small regions that were not covered by Illumina reads, but present in PacBio reads. All
213 these regions were checked by direct sequencing of specifically designed PCR products (see Table S6
214 for primers). Secondly, we checked that the genome sequences were consistent with the RFLP results
215 previously produced to compare the two mitochondrial genomes (Gobron *et al.*, 2013) by predicting
216 in silico the RFLP results with InsilicoRFLP (available at <https://forgemia.inra.fr/ijpb-bioinfo/public/insilicorflp.git>).

217 *Annotation*

218 Chloroplast genome annotation was realized using GeSeq (Tillich *et al.*, 2017, last accessed 15th May
219 2023); the resulting annotated genomes were visualized with OGDRAW (Greiner *et al.*, 2019, last
220 accessed 21th July 2023). Mitochondrial genome annotation was realized using GeSeq, last accessed
221 28th February 2023. Annotation of trans-spliced genes was manually corrected. In addition, we used
222 the Getorf tool of the EMBOSS program (version 6.6.0) to predict open reading frames (orfs) potentially
223 encoding peptides at least 100 amino-acid long in Sha, Kz-9 and Col-0 (accession number: NC_037304).
224 After discarding orfs corresponding to already annotated genes with bedtools (version 2-2.29.0), the
225 remaining orfs were added to the annotation of Sha and Kz-9 mitochondrial genomes. We also
226 annotated repeated sequences above 100 base pairs (Table S5) using YASS tool on line
227 (<https://bioinfo.univ-lille.fr/yass/index.php>; Noé and Kucherov, 2005) for aligning each genome
228 against itself. The resulting annotated genomes were visualized with OGDRAW, last accessed 21th July
229 2023.

230

231 **232 Production and analyses of transgenic plants with nuclear expression of *orf117Sha***

233 In order to produce ORF117SHA and target it to the mitochondrial matrix of fertile plants, the
234 *orf117Sha* coding sequence was fused to the mitochondrial targeting sequence from *Nicotiana*
235 *plumbaginifolia* β-ATPase (Logan and Leaver, 2000), amplified from the mt-roGFP1 construct
236 (Schwarzlander *et al.*, 2008) (see Table S6 for primers) and introduced into the pUB-DEST Gateway
237 vector (Grefen *et al.*, 2010). In this construct the gene was under the control of the *UBQ10*
238 (AT4G05320) promoter, which is active in developing pollen from the bicellular stage (validated using
239 YFP fluorescence from the cATEam construct, Fig. S1). The construct was introduced into *Arabidopsis*
240 Cvi-0 plants by floral dipping. Transformants were selected on sand irrigated with water containing
241 Basta herbicide (7.5 mg.L⁻¹ phosphinotricin). T1 plants were transferred to soil, verified by genotyping
242 and grown until flowering.

243 Pollen viability of T1 plants was examined after Alexander staining (Alexander, 1969) of mature pollen
244 just before anther dehiscence. The percentage of viable pollen was visually inspected and scored by
245 allocating marks between 0 (all pollen dead) and 4 (all pollen viable). The mark for each plant was the

246 average of the anthers from two flowers. Seeds that developed after selfing were harvested from T1
247 plants and transmission of the transgene was analyzed in the T2 generation either by *in vitro* screening
248 of phosphinotricin (10 mg.L⁻¹) resistant plants or by PCR. Between 90 and 300 progenies were screened
249 for each T2 family and a Chi square test was applied to detect a bias in the transmission of the
250 transgene.

251

252 **Production and analyses of mitochondrial mutants by mitoTALEN**

253 *Generation of mitochondrial mutants*

254 Target sequences for mitoTALENs in the *orf117Sha* gene were selected by using TAL effector
255 nucleotide targeter 2 old version (<https://tale-nt.cac.cornell.edu/node/add/talen-old>). The 15bp apart
256 sequences GCCACCCCGTTGGACC, on plus strand, and CCCCGAGGATATCTTG, on minus strand, were
257 set as targets for the left and right of TALEN pair mTAL1, both of which were checked as unique
258 sequences in the mitochondrial genome of Sha. The sequences TACAAAACAACGCTAT, on plus strand,
259 and TGCAGTTTCATACACT, on minus strand, were set for mTAL2 (Fig. S2). The platinum TALEN ORFs
260 designed to recognize the target sequences were assembled by platinum gate assembly kit (Addgene)
261 (Sakuma *et al.*, 2013), and transferred into Ti plasmids by multisite Gateway LR reaction (Thermofisher)
262 for simultaneous expression of right and left platinum TALENs fused to the *Arabidopsis* delta prime
263 subunit mitochondrial presequence, under the control of the promoter of *Arabidopsis RPS5A* gene, as
264 described previously (Kazama *et al.*, 2019; Arimura *et al.*, 2020). All plasmids required for assembling
265 the tandem expression vectors for mitoTALENs in Ti plasmids are available from Addgene (Arimura,
266 2021). The Ti plasmid backbone is originally from a VIB Gateway vector, pK7WG2 (Karimi *et al.*, 2002),
267 which was modified to add the presequence of the *Arabidopsis* mitochondrial ATP synthase delta
268 prime subunit and the Oleosin-GFP construct for the selection of T1 seeds (Shimada *et al.*, 2010). Each
269 construct carrying one pair of mitoTALENs targeting *orf117Sha* was introduced into [Sha]CviL3^S plants
270 (Table 1) by floral dipping. Transformed T1 seeds were selected on the basis of GFP fluorescence. Ten
271 seeds that showed strong GFP signal were sown on soil in the greenhouse, and the presence of the
272 construct was verified by PCR on seedling total DNA (see Table S6 for primers). Families with a unique
273 T-DNA insertion locus were selected on the basis on a clear 1:1 segregation of seed GFP fluorescence
274 in the T1BC1 generation. T1BC1 hybrids, obtained after backcrossing T1 plants with Cvi-0, were
275 screened by PCR for the absence of the T-DNA and selfed. The selection of unmodified Cvi-0 nuclear
276 background (homozygote Cvi-0 at L3) was carried out by genotyping the L3 genomic region in the
277 T2BC1 generation (see Table S6 for primers).

278 At each generation, the fertility of plants was assessed in the greenhouse by visual examination of
279 siliques length, as a proxy for seed production by selfing. Their pollen viability was examined after
280 Alexander staining (Alexander, 1969).

281 *Analysis of mutated mitochondrial genomes*

282 Total genomic DNA was extracted from 1.5 g of frozen rosette tissue, pooled from 17-day-old plantlets
283 of the T3BC1 generation grown *in vitro*, using the NucleoSpinPlantII Maxi kit from Macherey Nagel
284 according to the supplier's instructions. Samples were commercially sequenced using Illumina
285 technology (Eurofins). Reads were aligned with the [Sha]Cvi genome, reconstituted with the Cvi-0
286 nuclear genome (Simon *et al.*, 2022) and Sha organelle genomes (this work). Alignments were
287 visualized with the Integrative Genomics Viewer tool (IGV_2.12.3, Thorvaldsdottir *et al.*, 2013). PCR
288 amplifications targeting specific regions of the mitochondrial genome were carried out using the
289 primers described in Table S6.

290

291 **Estimating the pollen development stage from the bud development stage**

292 Observation of nuclei is the usual procedure to assess the stage of development of pollen in a sample,
293 as pollen mitoses are the milestones of this development (Twell, 2011). However, a different indicator
294 to estimate the stage of pollen development is required when pollen mitoses cannot be directly
295 observed or are perturbed. We exploited the proportional behavior between pollen stage and pistil
296 size that was previously established in Col-0 (Fig. S3). After validation of this correspondence in Cvi-0,
297 we added observations on other floral organs (Table 2) to facilitate the sampling of buds containing
298 the appropriate pollen stage. As pollen development is not synchronized between long and short
299 stamens, the correlation was valid for long stamens only. Hence, only long stamens were sampled for
300 analyses at any specific pollen stage.

301

302 **Analyses of ATP content in plants expressing the ATP ratiometric sensor**

303 *Generation of plants expressing the ATP FRET biosensor*

304 We cloned the sequence for the MgATP²⁻-specific FRET-based biosensor ATeam1.03-nD/nA (De Col *et*
305 *al.*, 2017) into the pUBDEST vector, *i.e.* under the control of the promoter of *UBQ10*. The construct
306 was introduced into *Arabidopsis* Cvi-0 by floral dipping. Three out of a total of sixteen T1 individuals
307 that showed biosensor expression as apparent from their YFP fluorescence were chosen and T2
308 seedlings grown on agar plates were screened for bright fluorescence. One of those lines was used to
309 introduce the biosensor into the [Sha]Cvi and [Kz9]Cvi genotypes by crossing. Hybrid seeds were sown
310 *in vitro*. Six-day-old plantlets per genotype were observed to check the fluorescence and the brighter
311 ones were kept for observation and transferred in the greenhouse until flowering for pollen

312 observation. The long anthers were dissected from buds of the desired stage (Table 2), put in a water
313 drop and gently sectioned with a needle to let pollen grains disperse.

314 *Confocal imaging of pollen*

315 Confocal imaging was conducted using a Zeiss LSM780 microscope equipped with a $\times 40$ (C-
316 Apochromat, 1.20 N.A., water immersion) lens as described previously (Wagner *et al.*, 2015; De Col *et*
317 *al.*, 2017). ATeam1.03-nD/nA was excited at 458 nm, and the fluorescence signals of mseCFP and
318 cp173-mVenus were captured within the ranges of 475-500 nm and 525-550 nm, respectively, while
319 the pinhole was adjusted to 5.78 airy units. Carbonyl cyanide m-chlorophenyl hydrazone treatment on
320 pollen of fertile plants was used to verify that a depletion in ATP could be detected with lower
321 fluorescence ratios.

322 *Ratiometric analyses*

323 Images were processed as established previously (De Col *et al.*, 2017) using a custom MATLAB-based
324 software (Fricker, 2016), which involved x-y noise filtering, background subtraction and region-of-
325 interest analysis. Ratio images were calculated on a pixel-by-pixel basis. More precisely, in the case of
326 pollen grains, we set the linear ratio scale between 0.1 and 3.0 with a maximum intensity scale of 250
327 for the ATeam1.03-nD/nA probes. We corrected for background signal in the measured emission
328 channels by selecting one ROI in each image in the cytosol of a representative non-fluorescent pollen
329 grain. For the ratiometric analysis, 16-pixel large ROIs were selected for all fluorescent pollen grains in
330 one image, which approximately covered the cytosolic and nucleic area, but did not include areas of
331 the intine and exine. The ratiometric data were combined and the obtained measurement dataset was
332 imported within the R software (version 3.6.3) for graphical display and statistical analysis. For each
333 'developmental stage', fixed effect models were used to test the effect of the genotype by comparing
334 models with and without genotype as a fixed factor, with plant/image as nested random factors for
335 analysis. The R package lme4 (Bates *et al.*, 2015) was used for fitting random models to the data using
336 Maximum Likelihood estimation. Models were compared by performing a likelihood ratio test.

337

338 **Production and analysis of plants expressing the male germline marker**

339 *Production of sterile and fertile lines expressing the male germline marker*

340 The vector carrying the pTip5;1::H2B-GFP construct (Borg *et al.*, 2011) was kindly provided by David
341 Twell, from Leicester University. We introduced it into *Arabidopsis* Cvi-0 by floral dipping. We crossed
342 [Sha]Cvi and [Kz9]Cvi genotypes as female parents with a homozygous T2 plant for which the GFP
343 fluorescence of nuclei in the male germline was verified in 100% of pollen grains. We used three sterile
344 and two fertile plants and one to three buds per plant for each stage, based on to the bud
345 developmental stage (Table 2). The four long anthers of each bud were dissected and pollen grains

346 were gently dispersed out of the anthers with a needle in a drop of Citifluor AF1 (AgarScientific,
347 Stansted, United Kingdom).

348 *Confocal acquisitions and counting.*

349 Z-stacks of pollen grains were acquired using a Leica SP8 confocal microscope, using an argon laser line
350 for GFP excitation at 488 nm and detecting fluorescence between 510 and 530 nm. Pollen grains with
351 no, one or two fluorescent nuclei were counted to estimate the proportion of pollen grains expressing
352 the male germline marker. Pollen grains with abnormal shape were assumed to be dead and were not
353 taken into account.

354

355 **Monitoring of mitochondria morphology in pollen**

356 *Construction of the pMDC32-UBX1 vector for pollen specific expression of transgenes.*

357 We constructed a vector aiming for specific expression in pollen using the promoter of the *Brassica*
358 *napus* *UBX1* gene, shown to be specifically active in the male gametophyte (Gallois *et al.*, 2013). We
359 amplified a 603 bp fragment containing the promoter and the 5' UTR of the *BnUBX1* gene from
360 genomic DNA of the Brutor cultivar with primers adding *Hind*III and *Kpn*I restriction sites (Table S6).
361 This fragment was cloned into the pMDC32 vector (Curtis and Grossniklaus, 2003) in place of the 35S
362 promoter. The resulting vector, named pMDC32-UBX1 was used to express the matrix mitochondria-
363 targeted GFP, mt-GFP (Logan and Leaver, 2000) in Cvi-0 plants by floral dipping. Expression of the mt-
364 GFP gene was verified for all developmental stages of pollen in T1 plants using fluorescence microscopy
365 (Fig. S4).

366 *Generation of plant lines homozygous for a pollen mt-mCherry and the male germline GFP markers*

367 We cloned the coding sequence of the mCherry fluorescent protein, fused to the same mitochondrial
368 targeting sequence as above, into the pMDC32-UBX1 vector and transformed Cvi-0 plants. A
369 homozygous Cvi-0 T2 was crossed on a [Kz-9]Cvi plant carrying the pTip5;1:H2B-GFP construct. After
370 selfing, a plant homozygous for both markers was selected on the basis of mCherry and GFP
371 fluorescence in all the pollen grains. This genotype was used to cross [Sha]Cvi, and the cross was
372 repeated on the F1. Plants from the second generation were test-crossed with Col-0 and back-crossed
373 again with the [Kz-9]Cvi doubly marked line. Two [Sha]Cvi families homozygous for both markers were
374 identified on the basis of 100 % transmission of both markers, tested by PCR, to the progenies of the
375 test-cross (see Table S6 for primers).

376 *Confocal acquisitions*

377 Buds from 4- to 6-week-old plants were dissected to extract the long anthers at the desired stage of
378 development (Table 2). Pollen grains were dispersed out of the anthers with a needle in a drop of
379 Citifluor AF1 (AgarScientific, Stansted, United Kingdom). Confocal imaging was conducted on a Leica

380 SP8 microscope equipped with a 40x (Leica HC PL APO CS2, 1.30 numerical aperture, oil immersion)
381 lens. Samples were illuminated at 561 nm for mCherry excitation and at 488 nm for GFP. The mCherry
382 fluorescence signal was captured in the 590-630 nm range, while GFP was captured in the 498-520 nm
383 range. Z-stacks of pollen grains were acquired in bidirectional mode at 700 Hz, with the pinhole
384 adjusted at 0.5 airy unit, voxel size set at 75 nm x 75 nm x 230 nm (xyz) and grayscale resolution set at
385 16-bits.

386 *Image analysis*

387 The channels in the acquired TIF images were split and saved in distinct images. The autofluorescence
388 of pollen wall in the GFP channel was used for the segmentation of pollen grains. All operations for
389 segmenting pollen grains and mitochondria from the GFP and mCherry fluorescence channels were
390 performed using the Biological Image Processing (BIP) software (freely available at <https://free-d.versailles.inrae.fr/html/bip.html>). The BIP pipeline operator was used to apply at once the
391 segmentation workflows to the complete image dataset.

392 Images with autofluorescence signal were resampled into cubic voxels and downsampled by a factor of
393 0.3 along each dimension. Anisotropic diffusion followed by a median filter was applied to filter noise
394 and improve signals in the images, while preserving contrasts at grain boundaries. A Gaussian gradient
395 operator was then applied to highlight contour positions in the pollen grains. To avoid over-
396 segmentation, non-significant minima in the resulting image were filtered out before running the
397 watershed transform. Labels touching the border of the images, typically corresponding to grains that
398 were not completely included within the 3D field-of-view, were automatically removed. Post-
399 processing steps were applied to remove small objects, fill holes inside objects, and regularize object
400 contours. Merged objects were separated by running the watershed transform on an inverted distance
401 map between object and background voxels. The segmented grains were finally crop and their
402 individual masks stored separately in different images. The complete pipeline for segmenting grains is
403 available in the *segment-grains.pipeline* file that has been deposited at
404 <<https://doi.org/10.57745/56PALB>>. The individual cropped images of the GFP channel were used to
405 visually assess the presence of the generative nucleus in each analysed grain of the 'bicellular pollen'
406 stage.

407 For each grain, the same crop as above was applied to the channel with mCherry fluorescence
408 intensity. A difference-of-Gaussian filter was applied to enhance signals at mitochondria. Automated
409 binarization was performed using an in-house algorithm, where the selected threshold corresponds to
410 the maximization of object size homogeneity. Touching mitochondria were split using the procedure
411 described above for separating merged pollen grains. The binary mask of the pollen grain was used to

413 selectively retain the detected mitochondria in that grain. The complete pipeline for segmenting
414 mitochondria is available in the *segment-mitochondria.pipeline* file at <<https://doi.org/10.57745/56PALB>>.
415 Object measurements were performed using the image analysis operator available in BIP. The volume
416 of each segmented mitochondrion was estimated by multiplying its number of voxels by the individual
417 voxel volume. The obtained measurement table was imported into the R software (version 3.6.3) for
418 graphical display and statistical analysis. For each stage, mixed effect models were used to test the
419 effect of the genotype by comparing models with and without genotype as a fixed factor, with
420 date/bud as nested random factors. The R package lme4 (Bates *et al.*, 2015) was used for fitting models
421 to the data using Maximum Likelihood estimation. Models were compared by performing a likelihood
422 ratio test.

423

424

425

426 Results

427 ***orf117Sha* is the causal gene for Sha CMS**

428 The fertility phenotype of the [Kz9]Cvi genotype (Table 1), which is indistinguishable from that of Cvi-0,
429 confirmed that the Kz-9 cytoplasm is not a CMS inducer (Fig. 1). In a previous work, we identified
430 *orf117Sha* as a candidate gene causing cytoplasmic male sterility by comparing the mitochondrial
431 genomes of Sha and Kz-9 (Gobron *et al.*, 2013). Intriguingly, its RNA expression profile was not affected
432 in restored genotypes (Durand *et al.*, 2021). Since our initial comparison of Sha and Kz-9 mitochondrial
433 genomes did not completely cover the mitochondrial genome sequence, we could not exclude the
434 possibility that the causal gene for CMS remained undetected. To address this shortcoming, we
435 sequenced, *de novo* assembled and annotated the organellar genomes of these two genotypes. Their
436 chloroplast genomes are almost identical (Accession numbers: Kz-9, OY747152, Sha, OY747153; Fig.
437 S5). The Sha and Kz-9 mitochondrial genomes (Accession numbers: OY747154 and OY747151,
438 respectively; Fig. S6) are remarkably collinear (Fig. 2A). The major difference lies within a small region
439 (3.5 kb in Kz-9, 6 kb in Sha) that is not shared between the two genomes; in Sha, this specific region
440 carries *orf117Sha* (Fig. 2B). We did not detect any other open reading frame (orf) of at least 100 codons
441 specific to the Sha mitochondrial genome compared to Kz-9 and Col-0 (Table S9). Therefore, *orf117Sha*
442 remained the best candidate for causing Sha-CMS.

443 As the ORF117SHA sequence is similar to that of ORF108 (Gobron *et al.*, 2013), which has been
444 reported to induce sterility in *Arabidopsis* when produced in transgenic plants (Kumar *et al.*, 2012), we
445 attempted to phenocopy the CMS phenotype by transgenesis. The coding sequence of *orf117Sha* was
446 fused to a mitochondrial signal peptide, placed under the control of the UBQ10 promoter, which is
447 active in pollen (Fig. S1), and introduced into Cvi-0. As Sha-CMS is gametophytic (Simon *et al.*, 2016),
448 we expected ORF117SHA to cause 50% pollen death in T1 plants, and lead to 50% of transgenic plants
449 in the T2 generation. We analyzed pollen viability in 21 T1 plants: only one had approximately 50%
450 aborted pollen, one was completely sterile, and five additional T1s had between 25% and 50% dead
451 pollen. We analyzed the transmission of the T-DNA to the selfing progenies of these T1s, except for
452 the sterile one, and in four additional T2s whose mothers had few or no dead pollen (Table 3). The
453 progeny of the unique T1 with ~50% dead pollen displayed a strong segregation bias, with almost no
454 transmission of the transgene (four positives out of 306). Three other T2 plants presented a mild but
455 significant deficit in plants carrying the transgene, but with no apparent correlation with the amount
456 of dead pollen in the mother plant (Table 3). While these observations are compatible with a role of
457 *orf117Sha* in inducing male sterility, they were insufficient to reliably establish such a role.
458 Seeking decisive evidence, we targeted *orf117Sha* using mitoTALENs. This strategy has recently been
459 successfully used to reverse CMS phenotypes to fertility in rapeseed and rice by inducing deletions of

460 the mitochondrial CMS genes through the repair of mitoTALEN-induced DNA breaks (Kazama *et al.*,
461 2019). We used two pairs of mitoTALENS, designated mTAL1 and mTAL2 (Fig. S2), to target *orf117Sha*
462 in [Sha]CviL3^S plants (Table 1). These plants are partially restored because they possess a weak
463 restoring Sha allele on chromosome 3 (Durand *et al.*, 2021). They are clearly less fertile than Cvi-0 but
464 produce enough selfing seeds for floral dipping transformation (Fig. 3A, B). We selected ten and eight
465 independent transformants for mTAL1 and mTAL2 constructs, respectively. T1 plants obtained with
466 mTAL1 were as fertile as Cvi-0 (*e.g.* mTAL1#2), except one (mTAL1#1), which displayed a phenotype
467 similar to that of [Sha]CviL3^S (Fig. 3 C, D). Conversely, T1 plants obtained with mTAL2 were only partially
468 fertile (*e.g.* mTAL2#5), except for one (mTAL2#2) that was as fertile as Cvi-0 (Fig. 3 C, D). To obtain
469 plants with stable mutated mitochondrial genomes in a Cvi-0 nuclear background, we backcrossed all
470 T1s with Cvi-0. For further analysis, we selected T1BC1s without the mitoTALEN construct from T1s
471 with single T-DNA insertions (Fig. 4A). All T1BC1 plants from mTAL1 were fertile, whereas most T1BC1
472 plants from mTAL2 were sterile (Table S10). PCR amplification showed the presence of *orf117Sha* in
473 sterile or partially fertile plants, whereas it was not detected in fertile plants, excepted one (mTAL2#2-
474 3, Table S10). This suggests that the fertility phenotype of the plants was linked to the mitoTALEN-
475 induced loss of *orf117Sha*. After selfing of T1BC1 plants, we selected and observed 28 T2BC1 plants
476 that were homozygous for the Cvi-0 allele at the bottom of chromosome 3, thus possessing a Cvi-0
477 nuclear background (Fig. 4A). All were fertile, except for two partially sterile plants from the mTAL1#8-
478 3 family (Table S11). We produced genome-wide Illumina sequences from four T2BC1 plants from
479 distinct T1BC1 families (Fig. 4B, C) and the [Sha]Cvi control. Alignments of paired reads on the genome
480 of [Sha]Cvi revealed 2 to 12 kb deletions that included both *orf117Sha* and its neighbor *orf122c* in the
481 mitochondrial genome of the four mutants (Fig. 5A). *orf117Sha* and *orf122c* were undetectable or
482 detected at very low levels by PCR in all T2BC1 plants (Table S11, Fig. S7), indicating that both genes
483 were effectively removed from fertile mitochondrial mutants. Although different in the four samples,
484 the deletions shared the same left border, which was due to recombination between the copies of the
485 1 kb repeat (R_Sha_2) present upstream of *orf117Sha* and *cob* in Sha (Fig. 5B, C) and absent from Kz-
486 9 (Table S5). This was also the case in all fertile T2BC1s (Fig. S7 and Table S11). Interestingly, the *rpl5-*
487 *cob* region was also detected in fertile plants (Fig. 5C), indicating a duplication of the *cob* gene in these
488 plants, which is supported by the raise in coverage of Illumina reads for this gene and upstream
489 sequences (Fig. S8). By examining the clipped sequences of reads at the right borders of the deletions,
490 we found very short sequences (<50 bp) that were repeated elsewhere in the mitochondrial genome
491 (Table 4). We showed that these microhomologies had been used to repair the mitoTALEN DNA breaks
492 by detecting the expected recombined sequences by PCR (Fig. S9A) and we observed an abrupt
493 increase in read coverage at these positions in fertile samples (Fig. S9B), as for *cob*.

494 Considering the above results, the deletion of *orf117Sha* and *orf122c* is the only possible cause of
495 reversion to fertility in mitoTALEN-induced mutants. As *orf122c* is present not only in Sha but also in
496 Kz-9 and Col-0 (Table S9), which are not CMS-inducers, we conclude that *orf117Sha* is the causal gene
497 for Sha-CMS.

498

499 **Pollen abortion process in the Sha CMS**

500 We further investigated Sha-CMS by implementing pollen-centered approaches. From our analysis of
501 Sha and Kz-9 organelle genomes, we selected [Kz9]Cvi as the best fertile control to observe events
502 associated with *orf117Sha*-induced pollen abortion. In order to use equivalent developmental stages
503 in both genotypes for comparison, we used the bud developmental stage as a proxy to the pollen
504 developmental stage (Table 2). For clarity, the developmental stage will therein be between 'quotes'
505 when it refers to the stage inferred from the bud developmental stage.

506 *Pollen abortion is not accompanied by a deficit in ATP*

507 ATP limitation has often been assumed to be the immediate cause of pollen abortion in CMS (Hanson
508 and Bentolila, 2004; Chase, 2007; Yang *et al.*, 2022), including in the gametophytic HL-CMS of rice
509 (Wang *et al.*, 2013). However, this hypothesis has been questioned (Touzet and Meyer, 2014). We
510 harnessed the cytosolic ATeam1.03nD/nA protein (hereafter called cATeam), a fluorescent FRET-based
511 biosensor for Mg-ATP²⁻ concentration (De Col *et al.*, 2017), in order to experimentally address *in vivo*
512 whether a deficit in ATP could be the trigger of, or take part in, pollen abortion in the Sha-CMS. We
513 transformed Cvi-0 with the cATeam coding sequence under the control of the *UBQ10* promoter and
514 introduced the construct into the [Kz9]Cvi and [Sha]Cvi genotypes by crossing. We acquired images of
515 pollen at the 'bicellular pollen' stage and around the second pollen mitosis ('PMII'), based on bud
516 developmental stages (Table 2). The ratiometric analyses showed no significant difference between
517 the sterile and the fertile at both stages (Fig. 6). As more than 80% of the pollen is already dead in the
518 sterile at the 'PMII' stage (Durand *et al.*, 2021), it is likely that the abortion process was already
519 engaged in the rare pollen grains which could be imaged for this stage. Therefore, a deficit in ATP
520 content is very unlikely to trigger or participate in pollen abortion in [Sha]Cvi sterile plants, thus
521 suggesting a different, still unveiled, physiological cause for the triggering of pollen abortion. We then
522 focused on the events that occur in pollen during the abortion process.

523 *The pollen development is desynchronized and prematurely stopped in sterile plants*

524 We previously reported that pollen abortion in [Sha]Cvi occurred during the bicellular stage of pollen
525 development, from ~ 90 % of viable pollen just after the first pollen mitosis (PMI) to ~ 2% after PMII
526 (Durand *et al.*, 2021). As the PMI coincides with the establishment of the male germline (Twell, 2011),
527 we used the pTIP5;1::H2B-GFP construct, which specifically targets GFP to the nuclei of germinative

528 and sperm cells (Borg *et al.*, 2011), to track the male germline and follow the progress of the pollen
529 developmental program in sterile plants compared to fertile ones. We introduced this male germline
530 marker into [Kz9]Cvi and [Sha]Cvi by crossing both genotypes with a homozygous Cvi-0 plant
531 homozygous for the construct. In the resulting hybrids, half pollen grains are expected to carry and
532 express the male germline marker. We counted the proportion of pollen grains with GFP-marked nuclei
533 around PMI, at the ‘bicellular pollen’ stage and around PMII, using the developmental stage of the bud
534 as a proxy to the pollen expected developmental stage (Table 2). This proportion was consistently
535 lower in sterile [Sha]Cvi F1 plants compared to fertile [Kz9]Cvi F1 plants, which presented
536 approximately the expected proportion of GFP marked nuclei at both stages (Fig. 7). This indicated
537 that, in sterile plants, some pollen grains carrying the male germline marker did not express it: either
538 they did not enter into PMI, or they were already dead. Because they tend to agglomerate and could
539 not be numbered, shrunken dead pollen grains were not taken into account, but dead grains are likely
540 to lose the marker fluorescence before shrinking. However, because the proportion of dead pollen at
541 the ‘PMI’ stage was very low, we concluded that, in the sterile, a substantial proportion of the grains
542 that had no GFP-marked nucleus were alive but had not established the male germline. Remarkably,
543 in the following stages, the proportion of grains with one GFP-marked nucleus in the sterile did not
544 significantly change (Fig. 7). This suggests that approximately the same proportion of grains with and
545 without a generative cell died between the examined bud stages. It is also possible that more grains
546 with a generative cell than without one died between the ‘PMI’ and ‘bicellular pollen’ stages, and were
547 compensated by grains which executed PMI during the same period. At the ‘PMII’ stage, when more
548 than 80% of the grains are dead, very few grains had two GFP-marked sperm nuclei in the sterile,
549 whereas in the fertile their proportion was close to the expected 50%. In addition, in sterile plants,
550 grains with two GFP-marked spermatic nuclei co-existed with grains with one GFP-marked generative
551 nucleus, which was never observed in fertile plants (Fig. 7). Therefore, the pollen developmental
552 program was desynchronized in sterile plants. This resulted in the loss of the correspondence between
553 bud and pollen developments for a large proportion of the grains. In addition, our results strongly
554 suggest that pollen grains aborted at variable pollen developmental stages, from before PMI to after
555 PMII.

556 *Pollen mitochondria swell during the pollen death process*

557 As the genetic cause of pollen abortion resides in mitochondria, we observed mitochondria and pollen
558 germline nuclei in pollen grains of [Kz9]Cvi and [Sha]Cvi plants homozygous for both pBnUBX1::mt-
559 mCherry for mitochondria monitoring and pTIP5;1::H2B-GFP for detection of germline nuclei (Fig. 8A).
560 We imaged isolated pollen grains of the ‘uninucleate microspore’ and ‘bicellular pollen’ stages and
561 measured the average volume of mitochondria for each pollen grain. The results showed that

562 mitochondria of sterile plants were slightly but significantly bigger than those of fertile ones at the
563 ‘uninucleate microspore’ stage, with similar distributions in the two genotypes (Fig. 8B). In contrast,
564 at the ‘bicellular pollen’ stage, pollen grains from the sterile genotype presented a bimodal distribution
565 of the average mitochondrial volume per grain, indicating a swelling of mitochondria in a proportion
566 of the grains (Fig. 8C). As mitochondria swelling has been associated with cell death (Scott and Logan,
567 2008), we hypothesized that the grains presenting swollen mitochondria were those engaged in the
568 abortion process at the time of observation, which was consistent with the timing of pollen death. In
569 order to address whether mitochondrial swelling was correlated with the establishment of the male
570 germline, we plotted the average volume of mitochondria according to the detection of the generative
571 nucleus thanks to the GFP fluorescence of the male germline marker. The result clearly showed that
572 the swelling of mitochondria was independent from the establishment of the male germline in pollen
573 of the sterile genotype (Fig. 8D). This observation supports that the timing of mitochondria swelling,
574 hence pollen death, is not dependent on the grain developmental stage.

575
576

577 Discussion

578 Whereas *orf117Sha* did not present the known features often used to predict candidates for CMS

579 genes (Kitazaki *et al.*, 2023), it remained the best candidate after the assembly of Sha and Kz-9

580 mitochondrial genomic sequences. By producing and analyzing mitoTALEN-induced deletions in the

581 Sha mitochondrial genome, we confirmed that *orf117Sha* is indeed the Sha-CMS causal gene. The

582 mitochondrial deletions analyzed in mitoTALEN reverted plants resulted from recombination between

583 copies of repeated sequences and were accompanied by the duplication of a large region of the

584 mitochondrial genome which carried several conserved mitochondrial genes, including *cob*. These

585 results are coherent with previously reported plant mitochondrial genomes modified by mitoTALEN

586 (Kazama *et al.*, 2019) and with the model of plant mitochondrial genome evolution proposed by Small

587 and Leaver (1989).

588 The mitoTALEN-induced deletion approach is becoming the golden standard for the validation of CMS-

589 candidate genes (Kazama *et al.*, 2019; Omukai *et al.*, 2021; Takatsuka *et al.*, 2022; Kuwabara *et al.*,

590 2022). Until recently, the production of male sterile plants by nuclear expression of the CMS-candidate

591 gene fused to a mitochondrial-targeting sequence has been largely used to validate CMS-candidate

592 genes. However, this approach is not fully reliable to validate a candidate CMS-gene, see for example

593 the cases of T-CMS in maize (Chaumont *et al.*, 1995) or Ogura-CMS in rapeseed (Duroc *et al.*, 2006),

594 where the CMS-inducing proteins produced from transgenes were incorrectly imported or located in

595 the mitochondria. Still, provided that pollen death is robustly induced in transgenic plants by the same

596 mechanism as in CMS ones, it could open opportunities for structure-function studies of CMS-inducing

597 proteins. In the present study, only one out of 21 transgenic plants presented the expected pollen

598 phenotype (half dead pollen), but this plant hardly transmitted the transgene to its selfing progeny,

599 indicating a default in transmission through both the male and female germlines. As the *UBQ10*

600 promoter was recently reported to be active in the embryo sac (Hu *et al.*, 2023), this observation is

601 compatible with a toxic effect of the transgene in both male and female gametophytic tissues.

602 Noteworthily, this would imply that the toxicity of ORF117SHA is not efficient on sporophytic tissues,

603 since transgenic plants presented no apparent phenotypical modifications. Indeed, a lack of transgene

604 transmission was also reported for *Arabidopsis* plants with 50 % dead pollen, transformed with a

605 mitochondrion-targeted ORF108 protein, which shares 56% identity with ORF117SHA (Gobron *et al.*,

606 2013) and the authors concluded that ORF108 had a toxic activity in both male and female

607 gametophytes (Kumar *et al.*, 2012). In the present study, it is conceivable that the *UBQ10* promoter

608 activity, which was not detectable before the bicellular pollen stage (Figure S1), was not sufficient to

609 accumulate enough amount of ORF117SHA in the mitochondria of pollen at the proper stage to result

610 in the phenocopy of the Sha-CMS. In this case, the use of a promoter that would be strongly active in

611 the earliest stages of pollen development, yet to be identified, might be the key to obtaining a genuine
612 phenocopy of the Sha-CMS and opening a path towards a structure-function study of the ORF117SHA
613 protein.

614 Considering that CMS-induced pollen death is likely to rely on pollen-specific features, we focused our
615 investigations on pollen-centered approaches, implementing recently developed imaging tools.
616 Fluorescent microscopy of pollen expressing a nuclear-located GFP produced specifically in the male
617 germline (Borg *et al.*, 2011) allowed use to refine the developmental stage at which pollen death occurs
618 in Sha-CMS plants. Our results clearly showed that the development of pollen grains is highly
619 desynchronized in the sterile genotype. At least a part of the pollen grains was delayed in their
620 development, as illustrated by the cooccurrence of grains with one or two GFP-marked nuclei at the
621 'PMII' stage. In addition, the stage of development ultimately reached before abortion was different
622 amongst pollen grains. Therefore, oppositely to the HL-CMS of rice where the pollen cell cycle was
623 reported to be arrested before PMII (Wang *et al.*, 2013), in Sha-CMS pollen development does not stop
624 at a precise stage but, depending on each pollen grain, between the uninucleate microspore and the
625 trinucleate pollen stages. Grain-autonomy is the genetic rule in gametophytic CMS and it is consistent
626 that it also applies for the death process, although this was not described previously, to the best of our
627 knowledge.

628 We observed that as early as the 'uninucleate microspore' stage the average mitochondria volume of
629 pollen was slightly higher in sterile compared to fertile plants ($0.26 \mu\text{m}^3 +/- 0.09$ and $0.24 \mu\text{m}^3 +/- 0.09$,
630 respectively). Due to the similarity between the compared genotypes, it is likely that this observation
631 is linked to the presence of *orf117Sha*. Further investigations will be necessary to explore whether this
632 observation is due to an impaired functioning of mitochondria in the sterile, which could possibly
633 trigger the pollen death process. At the 'bicellular pollen' stage in sterile plants, the average volume
634 of the pollen mitochondria became very heterogenous, with a bimodal distribution, a proportion of
635 pollen grains showing mitochondria of average volume above $0.5 \mu\text{m}^3$. This spectacular morphologic
636 change evoked the mitochondrial morphology transition observed in stress conditions such as mild
637 heat shock or oxidative stress in protoplasts (Scott and Logan, 2008). The mitochondrial morphology
638 transition was shown to precede cell death and proposed to be an indicator of the mitochondrial
639 permeability transition (Scott and Logan, 2008). Mitochondrial permeability transition is an increased
640 permeability of the inner mitochondrial membrane which leads to mitochondrial swelling, and has
641 been described in plants, animals and microorganisms and associated with programmed cell death
642 (Logan, 2008; Zancani *et al.*, 2015; Ocampo-Hernández *et al.*, 2022; Bernardi *et al.*, 2023). It will be
643 interesting to further investigate whether the mitochondrial permeability transition is involved in the
644 swelling of mitochondria in the pollen of Sha-CMS plants. This will require the implementation of

645 approaches for the monitoring of membrane potential in individual pollen mitochondria and the
646 uptake into developing pollen of inhibitors/inducers of the mitochondrial permeability transition, such
647 as lanthanum chloride or Ca^{2+} . However, the coincidence between the heterogeneity of mitochondria
648 volumes with the pollen death heterogenous timing leads us to hypothesize that mitochondria swelling
649 likely reflects a late phase in the process of pollen abortion. No mitochondria swelling in pollen was
650 reported in the gametophytic S-CMS of maize after mitochondria-targeted GFP imaging (Chamusco *et*
651 *al.*, 2022), and mitochondrial morphology was not described in the HL-CMS of rice, to our knowledge.
652 However, changes in mitochondrial morphology were reported from electron microscopy
653 observations in the tapetal cells of sporophytic sunflower PET1-CMS (Horner, 1977), rapeseed Ogura
654 CMS (González-Melendi *et al.*, 2008), soybean CMS (Smith *et al.*, 2002), and of thermosensitive genic-
655 male sterility of rice (Ku *et al.*, 2003) and in pollen tubes experiencing the *Papaver rhoeas* self-
656 incompatibility response (Geitmann *et al.*, 2004), supporting the view that it is a convergent step in
657 diverse cell death processes.

658 Although we did not identify the physiological trigger by which ORF117SHA induces the pollen death
659 process, we were able to rule out that a deficit in ATP supply is the cause of pollen death by
660 experimentally measuring Mg-ATP^{2-} content in pollen from fertile and sterile plants. However, our
661 results do not rule out a role of the ATP synthase complex in the pollen death process. For example,
662 ATP synthase dimers are thought to participate in the formation of the mitochondrial permeability
663 transition pore (Zancani *et al.*, 2020), provoking the mitochondrial swelling that precedes pollen death
664 (Scott and Logan, 2008; Van Aken and Van Breusegem, 2015). Impairment of mitochondrial ATP
665 synthase function has been linked to male sterility in several sporophytic CMSs, notably in the
666 sunflower PET1-CMS (Sabar *et al.*, 2003) and in maize CMS-C (Yang *et al.*, 2022), where it involved the
667 production of aberrant variants of ATP synthase subunits. Although these studies report lower ATP
668 content in extracts from flower/anther tissues, we are not aware of a direct measure of ATP content
669 in the tapetum. Another possible trigger to be tested remains the accumulation of ROS, which could
670 induce an oxidative stress and lead to mitochondria swelling and pollen death, similarly to
671 experimentally ROS-induced cell death described by Scott and Logan (2008). Indeed, ROS accumulation
672 has been proposed to contribute in pollen death in the HL-CMS of rice (Wang *et al.*, 2013), as well as
673 in several sporophytic CMSs, such as cotton CMS (Jiang *et al.*, 2007), pepper CMS (Deng *et al.*, 2012),
674 or peach CMS (Cai *et al.*, 2021). Unfortunately, we could not address the accumulation of ROS in
675 developing *Arabidopsis* pollen, due to the unfavorable ratio between the fluorescence of the
676 ratiometric redox reporter roGFP2-GRX1 (Lukyanov and Belousov, 2014) and autofluorescence of the
677 pollen wall. This emphasizes the need for efficient promoters to drive strong expression of biosensors
678 in early developing pollen, for the imaging of pollen grains and proper analysis of the results.

679 The use of pollen-centered *in vivo* cytological approaches allowed us to unveil the grain-autonomous
680 pollen abortion process in Sha-CMS plants: pollen development pace slows down independently in
681 each pollen grain, probably as early as the uninucleate microspore stage; at one point, either before
682 or after PMI, and rarely after PMII, the swelling of mitochondria would mark the no-return death
683 process, either after the arrest of pollen development or causing it. Whether the early step of the
684 process is functionally linked to the slight enhanced volume of the mitochondria in sterile at the
685 uninucleate microspore stage remains to be investigated. Addressing the question of the triggering of
686 pollen death by ORF117SHA will undoubtedly be facilitated by newly developed approaches for
687 mitochondria purification from specific tissue/cell types, such as IMTACT (Boussardon *et al.*, 2020). It
688 will also require the enrichment of our toolbox with pollen-efficient promoters and with more markers
689 or biosensors for the measure of key metabolites and the exploration of physiological parameters at
690 the cell level. Furthermore, this will allow to address questions concerning the functional similarity
691 between evolutionary related CMS-causing proteins such as ORF117SHA and ORF108.

692

693 Supplementary data

694 The following supplementary data are available at JXB online.

695 *Table S1.* Illumina data statistics, mapping results and raw read accessions.

696 *Table S2.* Mitology pipeline parameters.

697 *Table S3.* Mitology pipeline results.

698 *Table S4.* PacBio data statistics, assembly results and contig accessions.

699 *Table S5.* Repeated sequences of at least 100 bp in Sha and Kz-9 mitochondrial genomes.

700 *Table S6.* Primers used.

701 *Table S7.* cATeam ratio data.

702 *Table S8.* Pollen mitochondrial volume data.

703 *Table S9.* Open reading frames \geq 100 codons in Col-0, Kz-9 and Sha mitochondrial genomes.

704 *Table S10.* Analysis of mitoTALEN modified T1BC1 plants.

705 *Table S11.* Analysis of mitoTALEN modified T2BC1 plants.

706 *Fig. S1.* Expression profile of the *UBQ10* promoter during pollen development.

707 *Fig. S2.* Target sequences of mitoTalens in the *orf117Sha* coding sequence.

708 *Fig. S3.* Assessment of pollen developmental stages from pistil size.

709 *Fig. S4.* Expression profile of the pBnUBX1 promoter during pollen development.

710 *Fig. S5.* Annotated maps of *de novo* assembled Kz-9 and Sha chloroplast genomes.

711 *Fig. S6.* Annotated maps of *de novo* assembled Kz-9 and Sha mitochondrial genomes.

712 *Fig. S7.* PCR analyses of mitoTALEN modified T2BC1 plants

713 *Fig. S8.* IGV visualization of read coverage in the *cob* region in the sterile control [Sha]Cvi and the

714 mitoTALEN revertants.

715 *Fig. S9.* Repair of mitoTALEN-induced DNA breaks through very short repeats.

716

717

718

719

720

721 **Acknowledgements**

722 We thank Pr David Twell (Leicester University) for the sharing of the Tip5;1::GFP construct, Dr Sandrine
723 Bonhomme and Dr Mathilde Grelon for their support and help during the preparation of the
724 manuscript, Mrs Katia Belcram and Mrs Gladys Cloarec from the IJPB cytology platform for their
725 valuable help in cytological approaches and confocal imaging, Mrs Nadia Bessoltane and Dr Fabienne
726 Granier from the IJPB bioinformatic team for their support, Mrs Yoshiko Tamura for her efficient
727 cloning of the mitoTALEN vectors and the internship students Mr Quentin Bodinier and Mr Victor Taieb
728 for their help in analysis of transgenic plants and Mrs Myriam Shafie and Mrs Alexandrina Bodrug for
729 their contribution to the development of the mitology pipeline. This work has benefited from the
730 support of IJPB's Plant Observatory technological platforms. We are grateful to the genotoul
731 bioinformatics platform Toulouse Occitanie (Bioinfo
732 Genotoul, <https://doi.org/10.15454/1.5572369328961167E12>) for providing computing and storage
733 resources.

734

735 **Author contributions**

736 ND, CB, MSc and FB: conceptualization; PA, DC, JT and FB: data curation; ND, CB, PA, DC, CGT, DB and
737 FB: formal analysis; SiA, MSc and FB: funding acquisition; ND, CB, CGT, TN, AR, MSi and DV:
738 investigation; PA, DC, TN and JT: methodology; FB: Project administration; AR, CC and SiA: resources;
739 PA, DC, JT: software; CB, DC, TN, AR, MSi, JT, CC, SiA, MSc and FB: supervision; ND, CB, DC, MSc and
740 FB: validation; ND, PA, DB, DV and FB: visualization; ND, PA, DC, DB and FB: writing original draft;
741 ND, CB, PA, DC, DB, MSi, JT, CC, SiA, MSc and FB: writing review and editing.

742

743 **Conflict of interest**

744 No conflict of interest declared

745

746 **Funding**

747 The IJPB benefits from the support of Saclay Plant Sciences-SPS [ANR-17-EUR-0007]. This work was
748 supported by the Agence Nationale de la Recherche under the BIOADAPT program [ANR-12_ADAP-
749 0004 to C.B. and F.B.]; INRAe Biology and Plant Breeding department under incentive programs
750 ['Footprint-CMS' and 'pollen' to F.B.]; the Deutsche Forschungsgemeinschaft (DFG) for funding
751 through the Emmy-Noether programme [SCHW1719/1-1 to M.S.], the infrastructure grant
752 INST211/903-1 FUGG, and a project grant [SCHW1719/5-3 to M.S.] as part of the package PAK918; the
753 German Academic Exchange Service (DAAD) [57128980 to M.S.] and the French Ministry of Foreign

754 Affairs under the Hubert Curien program [32992Z to F.B.] for mobility funding through the PROCOPE
755 scheme; the Japan Society for the Promotion of Science under the Core-to-Core program
756 [JPJSCCA20230008 to S.A].

757

758 **Data availability**

759 The sequencing data described in this article are available at the European Nucleotide Archive (ENA)
760 <<http://www.ebi.ac.uk/ena/data/view>> under the study PRJEB64929.

761 Bioinformatic codes developed in this work for sequence assemblies and validation are available at
762 <<https://github.com/jos4uke/mitology-pipeline.git>>, <<https://github.com/jos4uke/contigLink>>, and
763 <<https://forgemia.inra.fr/ijpb-bioinfo/public/insilicorflp.git>>.

764 The programs developed in this work for pollen and mitochondria segmentations are available at
765 <<https://doi.org/10.57745/56PALB>>.

766 All other supplementary data are available at JXB online.

References

Alexander MP. 1969. Differential Staining of Aborted and Nonaborted Pollen. *Stain Technology* **44**, 117–122.

Arimura S-I. 2021. Effects of mitoTALENs-Directed Double-Strand Breaks on Plant Mitochondrial Genomes. *Genes* **12**, 153.

Arimura S-I, Ayabe H, Sugaya H, et al. 2020. Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of *Arabidopsis thaliana* by mitoTALENs. *The Plant Journal* **104**, 1459–1471.

Ashutosh, Kumar P, Dinesh Kumar V, Sharma PC, Prakash S, Bhat SR. 2008. A novel orf108 co-transcribed with the *atpA* gene is associated with cytoplasmic male sterility in *Brassica juncea* carrying *Moricandia arvensis* cytoplasm. *Plant and Cell Physiology* **49**, 284–289.

Bates D, Bolker BM, Mächler M, Walker SC. 2015. Fitting Linear Mixed-Effects Models Using lme4. *Journal of Statistical Software* **67**, 1–48.

Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu S-S, Soukas AA. 2023. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. *Cell death and differentiation* **30**, 1869–1885.

Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D. 2011. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in *Arabidopsis*. *The Plant Cell* **23**, 534–549.

Boussardon C, Przybyla Toscano J, Carrie C, Keech O. 2020. Tissue-specific isolation of *Arabidopsis*/plant mitochondria - IMTACT (isolation of mitochondria tagged in specific cell types). *The Plant Journal* **103**, 459–473.

Bucher JG. 1961. THE STAGE OF THE GENOME-PLASMON INTERACTION IN THE RESTORATION OF FERTILITY TO CYTOPLASMICALLY POLLEN-STERILE MAIZE. *Proceedings of the National Academy of Sciences of the United States of America* **47**, 1436–1440.

Cai Y, Ma Z, Ogutu CO, Zhao L, Liao L, Zheng B, Zhang R, Wang L, Han Y. 2021. Potential Association of Reactive Oxygen Species With Male Sterility in Peach. *Frontiers in Plant Science* **12**, 653256.

Case AL, Willis JH. 2008. Hybrid male sterility in *Mimulus* (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement. *Evolution* **62**, 1026–1039.

Chamusco KC, Milazzo MN, Bhan KS, Kamps TL, Smith P, Durojaiye M, Moreira CD, Gallo M, Chase CD. 2022. Developmentally regulated mitochondrial biogenesis and cell death competence in maize pollen. *BMC Plant Biology*, 1–16.

Chase CD. 2007. Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. *Trends in genetics: TIG* **23**, 81–90.

Chaumont F, Bernier B, Buxant R, Williams ME, Levings CS, Boutilier M. 1995. Targeting the maize T-urf13 product into tobacco mitochondria confers methomyl sensitivity to mitochondrial respiration. *Proceedings of the National Academy of Sciences of the United States of America* **92**, 1167–1171.

Chen L, Liu Y-G. 2014. Male sterility and fertility restoration in crops. *Annual Review of Plant Biology* **65**, 579–606.

Chen Z, Zhao N, Li S, Grover CE, Nie H, Wendel JF, Hua J. 2017. Plant Mitochondrial Genome Evolution and Cytoplasmic Male Sterility. *Critical Reviews in Plant Sciences* **36**, 55–69.

Chittenden RJ, Pellew C. 1927. A suggested interpretation of certain cases of anisogeny. *Nature* **119**, 10–11.

Curtis MD, Grossniklaus U. 2003. A gateway cloning vector set for high-throughput functional analysis of genes in planta. *PLANT PHYSIOLOGY* **133**, 462–469.

Darwin C. 1877. The different forms of flowers on plants of the same species. John Murray. <http://darwin-online.org.uk/>

De Col V, Fuchs P, Nietzel T, et al. 2017. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. *eLife* **6**.

Deng M-H, Wen J-F, Huo J-L, Zhu H-S, Dai X-Z, Zhang Z-Q, Zhou H, Zou X-X. 2012. Relationship of metabolism of reactive oxygen species with cytoplasmic male sterility in pepper (*Capsicum annuum* L.). *Scientia Horticulturae* **134**, 232–236.

Dufaÿ M, Champelovier P, Kafer J, Henry JP, Mousset S, Marais GAB. 2014. An angiosperm-wide analysis of the gynodioecy-dioecy pathway. *Annals of Botany* **114**, 539–548.

Durand S, Ricou A, Simon M, Dehaene N, Budar F, Camilleri C. 2021. A restorer-of-fertility-like pentatricopeptide repeat protein promotes cytoplasmic male sterility in *Arabidopsis thaliana*. *The Plant Journal* **105**, 124–135.

Duroc Y, Gaillard C, Hiard S, Tinchant C, Berthome R, Pelletier G, Budar F. 2006. Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. *Plant Science* **170**, 755–767.

Duroc Y, Hiard S, Vrielynck N, Ragu S, Budar F. 2009. The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. *Plant Molecular Biology* **70**, 123–137.

Duvick DN. 1965. Cytoplasmic Pollen Sterility in Corn. *Advances in genetics* **13**, 1–56.

Fricker MD. 2016. Quantitative Redox Imaging Software. *Antioxidants & redox signaling* **24**, 752–762.

Gallois J-L, Drouaud J, Lecureuil A, Guyon-Debast A, Bonhomme S, Guerche P. 2013. Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in *Arabidopsis thaliana*. *Gene* **526**, 299–308.

Geddy R, Mahé L, Brown GG. 2005. Cell-specific regulation of a *Brassica napus* CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter. *The Plant Journal* **41**, 333–345.

Geitmann A, Franklin-Tong VE, Emons AC. 2004. The self-incompatibility response in *Papaver rhoeas* pollen causes early and striking alterations to organelles. *Cell death and differentiation* **11**, 812–822.

Gobron N, Waszczak C, Simon M, Hiard S, Boivin S, Charif D, Ducamp A, Wenes E, Budar F. 2013. A Cryptic Cytoplasmic Male Sterility Unveils a Possible Gynodioecious Past for *Arabidopsis thaliana*. *PLoS ONE* **8**, e62450.

González-Melendi P, Uyttewaal M, Morcillo CN, Hernandez Mora JR, Fajardo S, Budar F, Lucas MM. 2008. A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (*Brassica napus*). *Journal of Experimental Botany* **59**, 827–838.

Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. 2010. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. *The Plant Journal* **64**, 355–365.

Greiner S, Lehwerk P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. *Nucleic acids research* **47**, W59–W64.

Hanson MR, Bentolila S. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. *The Plant cell* **16 Suppl**, S154–69.

He W, Chen C, Adedze YMN, Dong X, Xi K, Sun Y, Dang T, Jin D. 2020. Multicentric origin and diversification of atp6-orf79-like structures reveal mitochondrial gene flows in *Oryza rufipogon* and *Oryza sativa*. *Evolutionary applications* **13**, 2284–2299.

Horn R, Gupta KJ, Colombo N. 2014. Mitochondrion role in molecular basis of cytoplasmic male sterility. *Mitochondrion* **19 Pt B**, 198–205.

Horner HJ. 1977. A Comparative Light- And Electron-Microscopic Study of Microsporogenesis in Male-Fertile and Cytoplasmic Male-Sterile Sunflower (*Helianthus Annuus*). *American Journal of Botany* **64**, 745–759.

Hu L-Q, Yu S-X, Xu W-Y, Zu S-H, Jiang Y-T, Shi H-T, Zhang Y-J, Xue H-W, Wang Y-X, Lin W-H. 2023. Spatiotemporal formation of the large vacuole regulated by the BIN2-VLG module is required for female gametophyte development in *Arabidopsis*. *The Plant Cell* **35**, 1241–1258.

Ji J, Huang W, Yin C, Gong Z. 2013. Mitochondrial Cytochrome c Oxidase and F1Fo-ATPase Dysfunction in Peppers (*Capsicum annuum L.*) with Cytoplasmic Male Sterility and Its Association with orf507 and Ψ atp6-2 Genes. *International journal of molecular sciences* **14**, 1050–1068.

Jiang H, Lu Q, Qiu S, et al. 2022. Fujian cytoplasmic male sterility and the fertility restorer gene OsRf19 provide a promising breeding system for hybrid rice. *Proceedings of the National Academy of Sciences of the United States of America* **119**, e2208759119.

Jiang P, Zhang X, Zhu Y, Zhu W, Xie H, Wang X. 2007. Metabolism of reactive oxygen species in cotton cytoplasmic male sterility and its restoration. *Plant Cell Reports* **26**, 1627–1634.

Jones HA, Clarke AE. 1943. Inheritance of male sterility in the onion and the production of hybrid seed. *Proc. Amer. Soc. Hort. Sci.* **43**, 189–194.

Karimi M, Inzé D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation. *Trends in Plant Science* **7**, 193–195.

Kazama T, Okuno M, Watari Y, et al. 2019. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. *Nature Plants* **5**, 722–730.

Kitazaki K, Oda K, Akazawa A, Iwahori R. 2023. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. *TAG Theoretical and applied genetics Theoretische und angewandte Genetik* **136**, 156.

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Research* **27**, 722–736.

Ku S, Yoon H, Suh HS, Chung Y-Y. 2003. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. *Planta* **217**, 559–565.

Kumar P, Vasupalli N, Srinivasan R, Bhat SR. 2012. An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of *Brassica juncea* and induces male sterility in transgenic *Arabidopsis thaliana*. *Journal of Experimental Botany* **63**, 2921–2932.

Kuwabara K, Arimura S-I, Shirasawa K, Ariizumi T. 2022. orf137 triggers cytoplasmic male sterility in tomato. *PLANT PHYSIOLOGY* **189**, 465–468.

L'Homme Y, Stahl RJ, Li X-Q, Hameed A, Brown GG. 1997. *Brassica nap* cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. *Current Genetics* **31**, 321–335.

Laughnan JR, Gabay-Laughnan S. 1983. Cytoplasmic male sterility in maize. *Annual Review of Genetics* **17**, 27–48.

Levings C. 1993. Thoughts on Cytoplasmic Male Sterility in cms-T Maize. *The Plant cell* **5**, 1285–1290.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754–1760.

Li J, Pandeya D, Jo YD, Liu WY, Kang B-C. 2013. Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper. *Planta* **237**, 1097–1109.

Logan DC, Leaver CJ. 2000. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. *Journal of Experimental Botany* **51**, 865–871.

Logan DC. 2008. Having a swell time--mitochondrial morphology and plant cell death programmes. *Journal of microscopy* **231**, 215–224.

Lukyanov KA, Belousov VV. 2014. Genetically encoded fluorescent redox sensors. *Biochimica et biophysica acta* **1840**, 745–756.

Mayjonade B, Gouzy J, Donnadieu C, Pouilly N, Marande W, Callot C, Langlade N, Muños S. 2016. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. *BioTechniques* **61**, 203–205.

Meyer EH, Lehmann C, Boivin S, Brings L, De Cauwer I, Bock R, Kühn K, Touzet P. 2018. CMS-G from *Beta vulgaris* ssp. *maritima* is maintained in natural populations despite containing an atypical cytochrome oxidase. *The Biochemical journal* **475**, 759–773.

Namiki T, Hachiya T, Tanaka H, Sakakibara Y. 2012. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. *Nucleic acids research* **40**, e155.

Noé L, Kucherov G. 2005. YASS: enhancing the sensitivity of DNA similarity search. *Nucleic acids research* **33**, W540–3.

Ocampo-Hernández B, Gutiérrez-Mireles ER, Gutiérrez-Aguilar M. 2022. Morphology and permeability transitions in plant mitochondria: Different aspects of the same event? *Biochimica et biophysica acta. Bioenergetics* **1863**, 148586.

Omukai S, Arimura S-I, Toriyama K, Kazama T. 2021. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. *PLANT PHYSIOLOGY* **187**, 236–246.

Roux F, Mary-Huard T, Barillot E, Wenes E, Botran L, Durand S, Villoutreix R, Martin-Magniette M-L, Camilleri C, Budar F. 2016. Cytonuclear interactions affect adaptive traits of the annual plant *Arabidopsis thaliana* in the field. *Proceedings of the National Academy of Sciences of the United States of America* **113**, 3687–3692.

Sabar M, Gagliardi D, Balk J, Leaver CJ. 2003. ORFB is a subunit of F1F(O)-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. *EMBO Reports* **4**, 381–386.

Sakuma T, Hosoi S, Woltjen K, et al. 2013. Efficient TALEN construction and evaluation methods for human cell and animal applications. *Genes to cells : devoted to molecular & cellular mechanisms* **18**, 315–326.

Schwarzlander M, Fricker MD, Muller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ. 2008. Confocal imaging of glutathione redox potential in living plant cells. *Journal of microscopy* **231**, 299–316.

Scott I, Logan DC. 2008. Mitochondrial morphology transition is an early indicator of subsequent cell death in *Arabidopsis*. *The New phytologist* **177**, 90–101.

Scotti N, Cardi T, Marechal-Drouard L. 2001. Mitochondrial DNA and RNA isolation from small amounts of potato tissue. *Plant Molecular Biology Reporter* **19**, 67–74.

Shimada TL, Shimada T, Hara-Nishimura I. 2010. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of *Arabidopsis thaliana*. *The Plant Journal* **61**, 519–528.

Simon M, Durand S, Pluta N, Gobron N, Botran L, Ricou A, Camilleri C, Budar F. 2016. Genomic Conflicts that Cause Pollen Mortality and Raise Reproductive Barriers in *Arabidopsis thaliana*. *Genetics* **203**, 1353–1367.

Simon M, Durand S, Ricou A, Vrielynck N, Mayjonade B, Gouzy J, Boyer R, Roux F, Camilleri C, Budar F. 2022. APOK3, a pollen killer antidote in *Arabidopsis thaliana*. *Genetics* **221**.

Small I, Suffolk R, Leaver CJ. 1989. Evolution of plant mitochondrial genomes via substoichiometric intermediates. *Cell* **58**, 69–76.

Smith MB, Palmer RG, Horner HT. 2002. MICROSCOPY OF A CYTOPLASMIC MALE-STERILE SOYBEAN FROM AN INTERSPECIFIC CROSS BETWEEN *GLYCINE MAX* AND *G. SOJA* (LEGUMINOSAE). *American Journal of Botany* **89**, 417–426.

Stone JD, Koloušková P, Sloan DB, Storchová H. 2017. Non-coding RNA may be associated with cytoplasmic male sterility in *Silene vulgaris*. *Journal of Experimental Botany* **68**, 1599–1612.

Takatsuka A, Kazama T, Arimura S-I, Toriyama K. 2022. TALEN-mediated depletion of the mitochondrial gene *orf312* proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. *The Plant Journal* **110**, 994–1004.

Thorvaldsdottir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Briefings in Bioinformatics* **14**, 178–192.

Tillich M, Lehwerk P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq - versatile and accurate annotation of organelle genomes. *Nucleic acids research* **45**, W6–W11.

Toriyama K. 2021. Molecular basis of cytoplasmic male sterility and fertility restoration in rice. *Plant Biotechnology* **38**, 285–295.

Touzet P, Meyer EH. 2014. Cytoplasmic male sterility and mitochondrial metabolism in plants. *Mitochondrion* **19 Pt B**, 166–171.

Twell D. 2011. Male gametogenesis and germline specification in flowering plants. *Sexual Plant Reproduction* **24**, 149–160.

Van Aken O, Van Breusegem F. 2015. Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death. *Trends in Plant Science* **20**, 754–766.

Wagner S, Behera S, De Bortoli S, et al. 2015. The EF-Hand Ca²⁺ Binding Protein MICU Choreographs Mitochondrial Ca²⁺ Dynamics in Arabidopsis. *The Plant Cell* **27**, 3190–3212.

Walker BJ, Abeel T, Shea T, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS ONE* **9**, e112963.

Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, Zhu Y, Li S. 2013. ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. *The New phytologist* **198**, 408–418.

Wang Z, Zou Y, Li X, et al. 2006. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. *The Plant cell* **18**, 676–687.

Xu F, Yang X, Zhao N, Hu Z, Mackenzie SA, Zhang M, Yang J. 2022. Exploiting sterility and fertility variation in cytoplasmic male sterile vegetable crops. *Horticulture Research* **9**.

Yamagishi H, Terachi T. 2001. Intra-and inter-specific variations in the mitochondrial gene orf138 of Ogura-type male-sterile cytoplasm from *Raphanus sativus* and *Raphanus raphanistrum*. *TAG Theoretical and applied genetics Theoretische und angewandte Genetik* **103**, 725–732.

Yamagishi H, Hashimoto A, Fukunaga A, Bang SW, Terachi T. 2021a. Intraspecific variations of the cytoplasmic male sterility genes orf108 and orf117 in *Brassica maurorum* and *Moricandia arvensis*, and the specificity of the mRNA processing. *Genome* **64**, 1081–1089.

Yamagishi H, Jikuya M, Okushiro K, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. 2021b. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. *MGG Molecular & General Genetics* **296**, 705–717.

Yang H, Xue Y, Li B, Lin Y, Li H, Guo Z, Li W, Fu Z, Ding D, Tang J. 2022. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex. *Molecular Plant* **15**, 872–886.

Zancani M, Braidot E, Filippi A, Lippe G. 2020. Structural and functional properties of plant mitochondrial F-ATP synthase. *Mitochondrion* **53**, 178–193.

Zancani M, Casolo V, Petrussa E, Peresson C, Patui S, Bertolini A, De Col V, Braidot E, Boscutti F, Vianello A. 2015. The Permeability Transition in Plant Mitochondria: The Missing Link. *Frontiers in Plant Science* **6**, 1176.

Zhang X, Chen S, Zhao Z, Zhao Y, Ma C, Liu Y. 2022. Origin of rice gametophytic cytoplasmic male sterility genes in Chinese populations of *Oryza rufipogon* through sequence features of B-atp6-orfH79. *Research Square*.

Zhong X, Yue X, Cui J, Han R, Gao Y, Kang J. 2022. Complete mitochondrial genome sequencing and identification of candidate genes responsible for C5-type cytoplasmic male sterility in cabbage (*B. oleracea* var. *capitata*). *Frontiers in Plant Science* **13**, 1019513.

Tables

Table 1: Genotypes used in this study

name	Cytoplasmic genomes	Nuclear background	Fertility phenotype	reference
Shahdara (Sha)	Sha	Sha	fertile	natural variant
Kz-9	Kz-9	Kz-9	fertile	natural variant
Cvi-0	Cvi-0	Cvi-0	fertile	natural variant
[Sha]Cvi	Shahdara	Cvi-0	sterile	Roux <i>et al.</i> , 2016
[Kz9]Cvi	Kz-9	Cvi-0	fertile	this work
[Sha]CviL3 ^s	Shahdara	Cvi-0 ^a	poorly fertile ^b	this work

^aSee material and methods for the [Sha]CviL3^s genotype.

^bSee Fig. 3.

Table 2: Correspondence between pollen and bud developmental stages in Cvi-0

stage of pollen ^a	abbreviation	pistil size (mm)	petal color and length
tetrad	Td	0.75	greenish petals shorter than stamens
uninucleate microspore	UNM	1	greenish petals shorter than stamens
first pollen mitosis	PMI	1.25	greenish petals and stamens of same length
bicellular pollen	BCP	1.25-1.5	greenish petals longer than stamens
second pollen mitosis	PMII	1.5	greenish petals longer than stamens
tricellular pollen	TCP	1.5-2	white petals longer than greenish to yellowish stamens
mature pollen	MP	2	white petals longer than yellow stamens

^ain long stamens.

Table 3: Analysis of transgene transmission in selected T1s with the *orf117Sha* construct

T1#	percentage of aborted pollen in T1 ^a	number of T2 with T-DNA	number of T2 without T-DNA	Chi square pvalue (3+/1-)	conclusion
					NS
2a	17.5	162	77	0.0169528	deficit in plants with T-DNA
4a	52.5	4	302	0	deficit in plants with T-DNA
5a	10	70	20	0.5261685	NS
1b	0	76	24	0.8148713	NS
4b	0	75	25	1	NS
5b	37.5	62	38	0.0074002	deficit in plants with T-DNA
7b	37.5	93	7	1.729E-12	excess in plants with T-DNA
8b	37.5	63	37	0.0129377	deficit in plants with T-DNA
18b	37.5	93	27	0.5119362	NS
19b	37.5	100	0	nd	excess in plants with T-DNA

^aestimated from visual notation of Alexander staining of the anthers of two flowers.

nd: not determined; NS: chi square pvalue > 0.05.

Table 4: Very short repeats (VSR) used for repair of mitoTALEN induced DNA breaks

repeat number	recombined in mutant	length of repeat	orientation of copies in the Sha genome	position downstream of <i>orf117Sha</i>	second position in Sha mitochondrial genome
VSR-1	mT1#2-2-14	13 bp	inverted	321,344-321,356	124,125-124,137
VSR-2	mT1#9-1-19	16 bp	direct	330,531-330,546	163,711-163,726
VSR-3	mT1#9-3-4	47 bp	direct	330,564-330,610	92,237-92,283
VSR-4	mT1#10-5-2	29 bp	inverted	328,353-328,381	56,793-56,821

Figure legends

Fig. 1. [Kz9]Cvi and Cvi-0 have undistinguishable pollen fertility phenotypes

A: [Kz9]Cvi, Cvi-0 and [Sha]Cvi plants 5 weeks after sowing. Arrows: siliques producing seeds; arrowheads: empty siliques. B: Alexander staining of pollen of the plants shown in A. Viable pollen grains are stained in red; dead ones appear in blue; scale bar: 200 μ m.

Fig. 2. Kz-9 and Sha mitochondrial genomes are almost identical

A: Dotplot alignment of Kz-9 and Sha mitochondrial sequences. The sequences have been assembled in opposite orientation. The main structural variation (red circle) corresponds to the *orf117Sha* region shown in B. B: Close up of the regions unshared by the two genotypes. The extent of specific sequence for each genotype is highlighted in red. Annotation has been simplified for clarity. Drawn with OGDraw.

Fig. 3. Fertility phenotypes of mitoTALEN T1 transformants and of the recipient genotype used for transformation.

A, B. Fertility phenotypes of [Sha]CviL3^S, the recipient genotype. C, D. Phenotypes of T1 plants. mTAL1#1: the only plant with the mTAL1 construct that was not fully fertile, mTAL1#2: typical T1 plant with mTAL1 construct, mTAL2#2: the most fertile plant with the mTAL2 construct, mTAL2#5: typical plant with the mTAL2 construct. A, C: Global seed fertility at the plant level. Arrows: siliques producing seeds; arrowheads: empty siliques. B, D: Alexander staining of pollen. Viable pollen grains are stained in red; dead ones appear in blue; scale bar: 200 μ m.

Fig. 4. Analysis of revertant mt mutants in the Cvi-0 nuclear background.

A. Recovery of mutated mitochondrial genomes in the Cvi-0 nuclear background without mitoTALEN construct. The * indicates that the Sha mitochondrial genome has been modified by mitoTALEN. B, C. Phenotypes of T2BC1 plants selected for genome wide sequencing. B. global plant phenotypes. C. Alexander staining of pollen. [Sha]Cvi and Cvi-0 are shown as sterile and fertile controls. Viable pollen grains are stained in red; dead ones appear in blue; scale bar: 200 μ m.

Fig. 5. Repair of mitoTALEN-induced DNA breaks in mitochondrial genomes of fertile plants.

A. IGV visualisation of read coverage for the *orf117Sha* region for [Sha]Cvi (sterile control) and the four sequenced mitochondrial mutants. B. Regions carrying the R_Sha_2 repeat. *orf117Sha* and *rpl5-cob* regions are present in the Sha mitochondrial genome and may recombine to give the recombined *cob* region; arrowheads (a, b, c and d) indicate the positions of primers used for PCR (Table S6). C. PCR

detection of the three environments of R_Sha_2 shown in B; non relevant lanes of the gel have been removed for clarity. T: no DNA. The expected amplification sizes are indicated on the side.

Figure 6. *In vivo* ATP sensing in pollen.

A. Representative micrograph of pollen grains in the 'bicellular pollen' stage of the fertile genotype expressing the FRET sensor ATeam1.03nD/nA in their cytosol. Note that the plant is heterozygous for the biosensor, resulting in grains showing sensor fluorescence (3 shown here) and grains with background fluorescence only. Brightfield (BF, grey), CFP (turquoise) and Venus (yellow) channels of CLSM images are shown above the merge CFP and Venus image and the ratiometric image of Venus/CFP (rainbow scale) after background subtraction and pixel-by-pixel ratio calculation. Depicted regions of interest (ROIs) were used for the measurement of FRET ratios as an indicator for pollen MgATP content. Scalebar: 50 μ m. B. Measures on pollen at the 'bicellular pollen' stage ('BCP') and around pollen mitosis II ('PMII') based on the bud developmental stage (Table 2). At least three buds were dissected for each stage. Each measurement point corresponds to an individual pollen grain. The complete dataset is listed in Table S7. The small sample size of sterile measurements for PMII is due to the scarcity of viable pollen with fluorescence at this stage. F: [Kz9]Cvi fertile genotype, S: [Sha]Cvi sterile genotype, N = number of measurement points. Statistical comparison between genotypes was performed for each stage by comparing mixed linear models with or without considering the genotype as a variable. ns: pvalue of the likelihood ratio test between models > 0.1.

Figure 7. Tracking of male germline during pollen development.

Proportions of pollen grains showing GFP fluorescence in one nucleus (generative cell) or two nuclei (spermatic cells) are plotted. Shrunken dead pollen grains were not taken into account in the sterile. The red dotted line indicates the expected value for plants heterozygous for the male germline marker (50%). F: [Kz9]Cvi, S: [Sha]Cvi, both genotypes heterozygous for the pTIP5;1::H2B-GFP construct. Error bars indicate the mean +/- standard deviation amongst buds. Total number of observed grains are indicated under the genotype for each stage. Pollen stages were estimated using bud developmental stage (Table2). The pvalue of Chi square tests performed on the numbers of grains with marked and unmarked nucleus for the 'PMI' and 'bicellular' stages, and on the numbers of grains with two and less than two marked nuclei for the 'PMII' stage are indicated above the bars.

Figure 8. Mitochondria swelling in the pollen of sterile plants.

A. Representative micrographs of pollen carrying the pBnUBX1::mtmCherry (magenta) and the pTIP5;1::H2B-GFP (green) markers in the two analyzed stages of fertile (F) and sterile (S) plants. The

images for the figure were produced by summing three slices of the original Z-stacks. Brightness and contrast were adjusted for visualization. Note that the pollen wall is visible due to autofluorescence. Scale bars: 10 μ m. B, C. Average volume of mitochondria in pollen, according to the bud developmental stage (Table 2). B: ‘uninucleate microspores’ stage, C: ‘bicellular pollen’ stage. Each measure corresponds to an individual pollen grain. The pvalue of the likelihood ratio test comparing mixed linear models with or without considering the genotype is given above. D. Average volume of mitochondria in grains of the ‘bicellular pollen’ stage, according to the presence (GFP+) or not (GFP-) of the generative nucleus, based on the fluorescence of the germline marker. The complete dataset is listed in Table S8. F: [Kz-9]Cvi, S: [Sha]Cvi. N = number of measures.

A

B

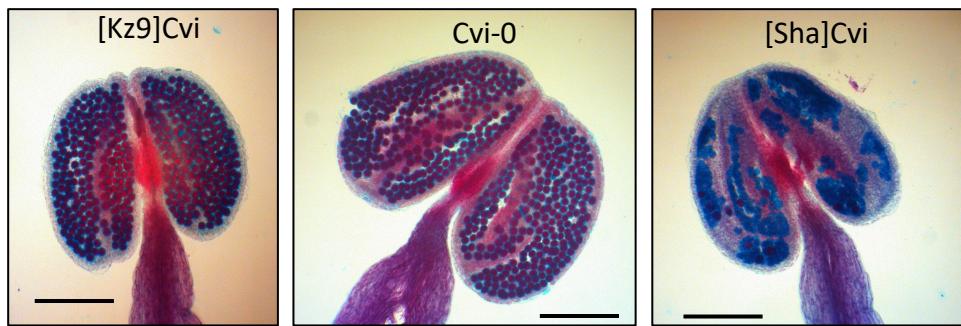
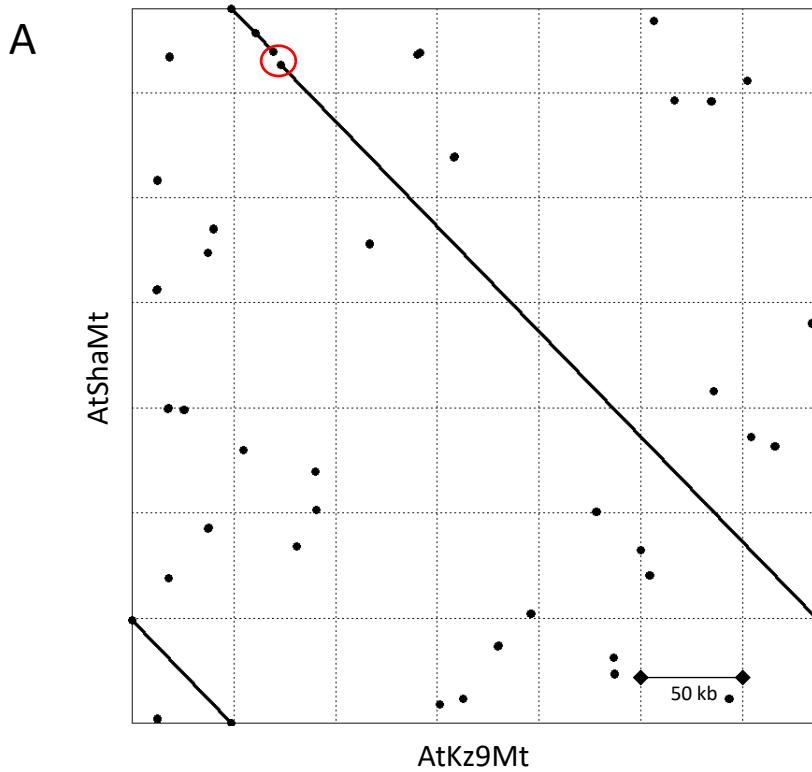



Fig. 1. [Kz9]Cvi and Cvi-0 have undistinguishable pollen fertility phenotypes
A: [Kz9]Cvi, Cvi-0 and [Sha]Cvi plants 5 weeks after sowing. Arrows: siliques producing seeds; arrowheads: empty siliques. B: Alexander staining of pollen of the plants shown in A. Viable pollen grains are stained in red; dead ones appear in blue; scale bar: 200 μ m.

B

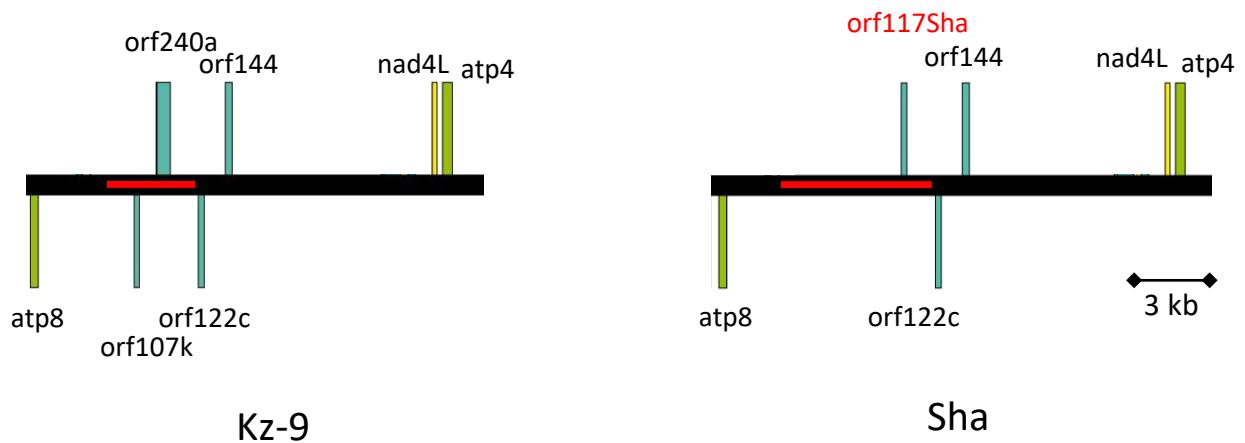


Fig. 2. Kz-9 and Sha mitochondrial genomes are almost identical

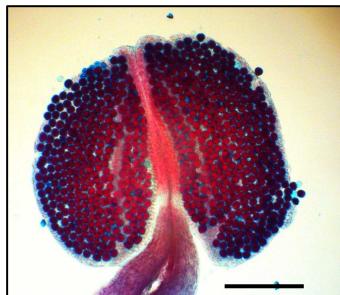
A: Dotplot alignment of Kz-9 and Sha mitochondrial sequences. The sequences have been assembled in opposite orientation. The main structural variation (red circle) corresponds to the *orf117Sha* region shown in B. B: Close up of the regions unshared by the two genotypes. The extent of specific sequence for each genotype is highlighted in red. Annotation has been simplified for clarity. Drawn with OGDraw.

Fig. 3. Fertility phenotypes of the recipient genotype and mitoTALEN T1 transformants.
 A, B. Fertility phenotypes of *[Sha]CviL3^S*, the recipient genotype. C, D. Phenotypes of T1 plants. mTAL1#1: the only plant with the mTAL1 construct that was not fully fertile, mTAL1#2: representative T1 plant with mTAL1 construct, mTAL2#2: the most fertile plant with the mTAL2 construct, mTAL2#5: representative plant with the mTAL2 construct. A, C: Global seed fertility at the plant level. Arrows: siliques producing seeds; arrowheads: empty siliques. B, D: Alexander staining of pollen. Viable pollen grains are stained in red; dead ones appear in blue; scale bar: 200 μ m.


A [Sha]^{*}CviL3^ST1 x Cvi-0

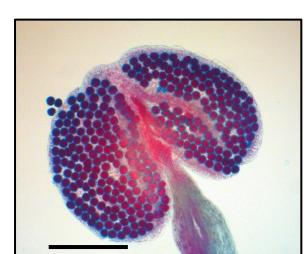
T1BC1
(wo mTAL construct)

selfing
↓
T2BC1
([Sha]^{*}Cvi)


C

[Sha]Cvi

Cvi-0


mTAL1#2-2-14

mTAL1#9-1-19

mTAL1#9-3-4

mTAL1#10-5-2

Fig. 4. Analysis of revertant mitochondrial mutants in the Cvi-0 nuclear background.

A. Recovery of mutated mitochondrial genomes in the Cvi-0 nuclear background without mitoTALEN construct. The * indicates that the Sha mitochondrial genome has been modified by mitoTALEN. B, C. fertility phenotypes of T2BC1 plants selected for genome wide sequencing. B. global plant phenotypes. C. Alexander stainings of pollen. [Sha]Cvi and Cvi-0 are shown as sterile and fertile controls. Viable pollen grains are stained in red; dead ones appear in blue; scale bar: 200 μ m.

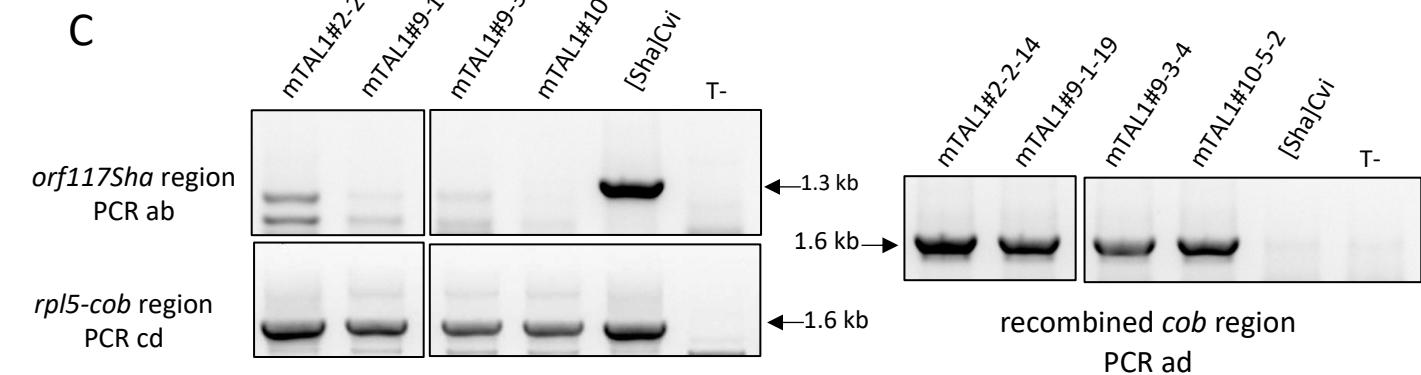
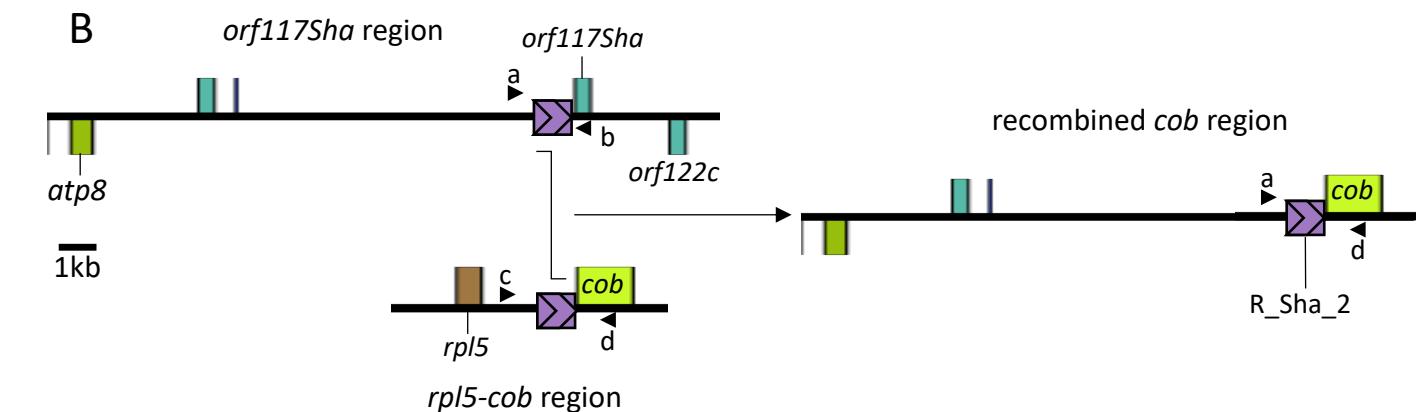
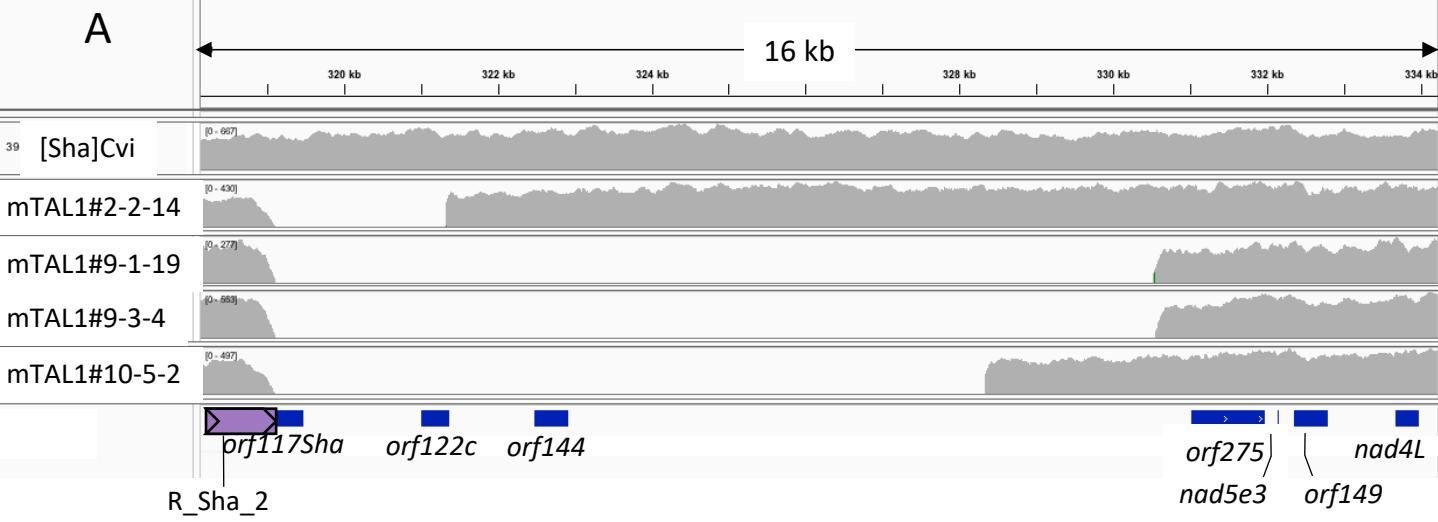




Fig. 5. Repair of mitoTALEN-induced DNA breaks in mitochondrial genomes of fertile plants.

A. IGV visualisation of read coverage for the *orf117Sha* region for [Sha]Cvi (sterile control) and the four sequenced mitochondrial mutants. B. Regions carrying the R_Sha_2 repeat. *orf117Sha* and *rpl5-cob* regions are present in the Sha mitochondrial genome and may recombine to give the recombined *cob* region; arrowheads (a, b, c and d) indicate the positions of primers used for PCR (Table S6). C. PCR detection of the three environments of R_Sha_2 shown in B; non relevant lanes of the gel have been removed for clarity. T-: no DNA. The expected amplification sizes are indicated on the side.

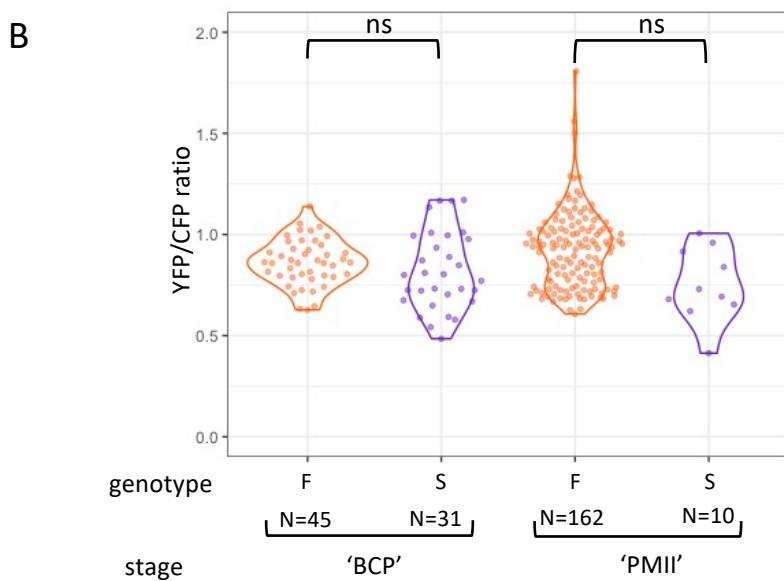
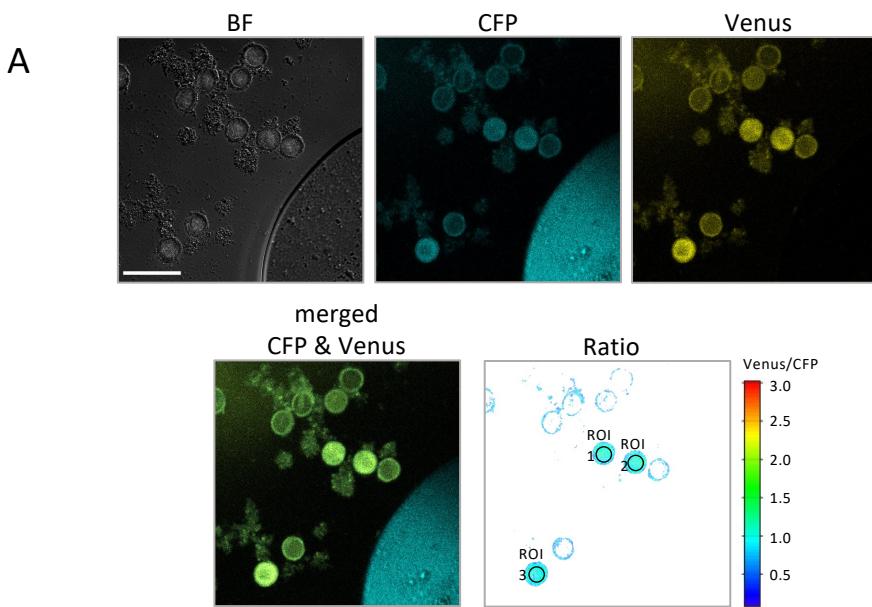



Figure 6. *In vivo* ATP sensing in pollen.

A. Representative micrograph of pollen grains in the 'bicellular pollen' stage of the fertile genotype expressing the FRET sensor ATeam1.03nD/nA in their cytosol. Note that the plant is heterozygous for the biosensor, resulting in grains showing sensor fluorescence (3 shown here) and grains with background fluorescence only. Brightfield (BF, grey), CFP (turquoise) and Venus (yellow) channels of CLSM images are shown above the merge CFP and Venus image and the ratiometric image of Venus/CFP (rainbow scale) after background subtraction and pixel-by-pixel ratio calculation. Depicted regions of interest (ROIs) were used for the measurement of FRET ratios as an indicator for pollen MgATP content. Scalebar: 50 μ m. B. Measures on pollen at the 'bicellular pollen' stage ('BCP') and around pollen mitosis II ('PMII') based on the bud developmental stage (Table 2). At least three buds were dissected for each stage. Each measurement point corresponds to an individual pollen grain. The complete dataset is listed in Table S7. The small sample size of sterile measurements for PMII is due to the scarcity of viable pollen with fluorescence at this stage. F: [Kz9]Cvi fertile genotype, S: [Sha]Cvi sterile genotype, N = number of measurement points. Statistical comparison between genotypes was performed for each stage by comparing mixed linear models with or without considering the genotype as a variable. ns: pvalue of the likelihood ratio test between models > 0.1 .

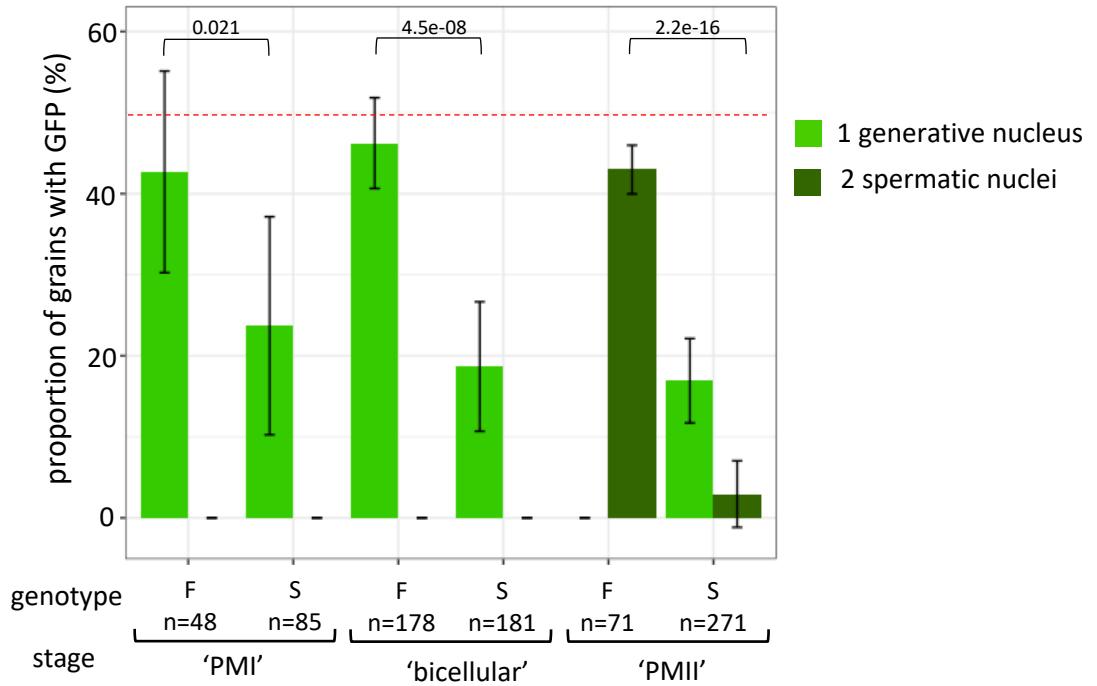


Figure 7: Tracking of male germline during pollen development.

Proportions of pollen grains showing GFP fluorescence in one nucleus (generative cell) or two nuclei (spermatic cells) are plotted. Shrunken dead pollen grains were not taken into account in the sterile. F: [Kz9]Cvi, S: [Sha]Cvi, both genotypes heterozygous for the pTIP5;1::H2B-GFP construct. The red dotted line indicates the expected value for plants heterozygous for the male germline marker (50%). Error bars indicate the mean +/- standard deviation amongst buds. Total number of observed grains are indicated under the genotype for each stage. Pollen stages were estimated using bud developmental stage (Table2). The pvalue of Chi square tests performed on the numbers of grains with marked and unmarked nucleus for the 'PMI' and 'bicellular' stages, and on the numbers of grains with two and less than two marked nuclei for the 'PMII' stage are indicated above the bars.

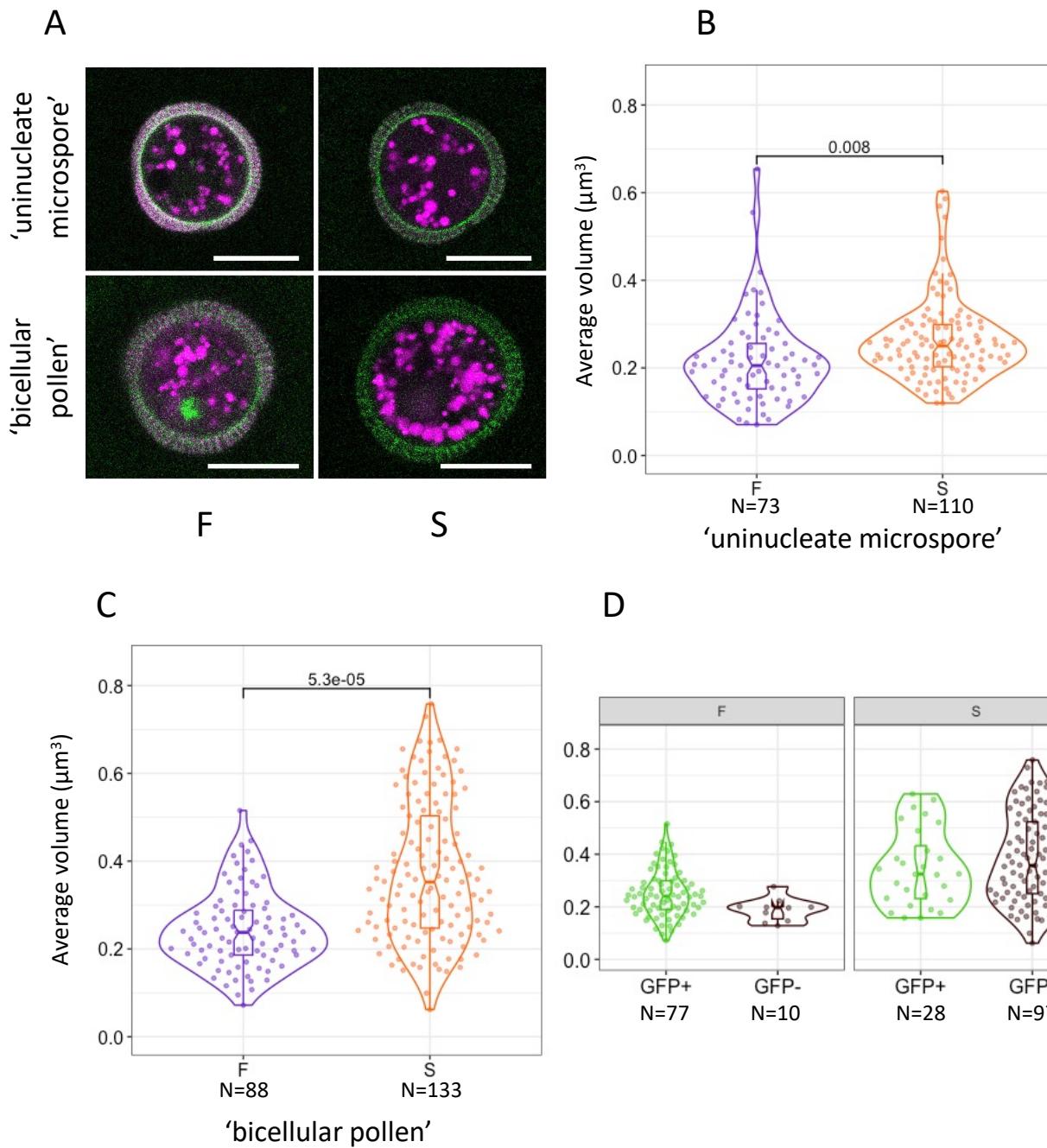


Figure 8. Mitochondria swelling in the pollen of sterile plants.

A. Representative micrographs of pollen carrying the pBnUBX1::mtmCherry (magenta) and the pTip5;1::H2B-GFP (green) markers in the two analyzed stages of fertile (F) and sterile (S) plants. The images for the figure were produced by summing three slices of the original Z-stacks. Brightness and contrast were adjusted for visualization. Note that the pollen wall is visible due to autofluorescence. Scale bars: 10 μm . B, C. Average volume of mitochondria in pollen, according to the bud developmental stage (Table 2). B: 'uninucleate microspore' stage, C: 'bicellular pollen' stage. Each measurement point corresponds to an individual pollen grain. The pvalue of the likelihood ratio test comparing mixed linear models with or without considering the genotype as a variable is given above. D. Average volume of mitochondria in grains of the 'bicellular pollen' stage, according to the presence (GFP+) or not (GFP-) of the generative nucleus, based on the fluorescence of the germline marker. The complete dataset is listed in Table S8. F: [Kz-9]Cvi, S: [Sha]Cvi. N = number of measurement points.