

Non-linear growth-temperature relationship leads to opposite responses to warming in cold versus warm populations

Max Lindmark^{1*}, Jan Ohlberger^{2,3*}, and Anna Gårdmark¹

¹Department of Aquatic Resources, Swedish University of Agricultural Sciences,
Uppsala, Sweden

²School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195,
USA

³Washington Department of Fish and Wildlife, 1111 Washington St. SE, Olympia, WA
98501, USA

Authorship: *Shared first-authorship, correspondence to max.lindmark@slu.se

Keywords: climate change, body growth, size, fish, non-linear, temperature-size rule, von Bertalanffy, Sharpe-Schoolfield, perch, spatiotemporal

Abstract

2 Body size is a key trait that has been declining in many biological assemblages, partly due to
within-species changes in individual growth rates and mean body size attributed to climate warming.
4 Yet, robust tests of warming-effects in natural populations are scarce due to a lack of long time
series with large temperature contrasts. We compiled length-at-age data for Eurasian perch (*Perca*
6 *fluviatilis*) from 10 populations along the Baltic Sea coast between 1953–2015 (23605 individuals).
By fitting von Bertalanffy growth curves to individual length-at-age trajectories, we estimated
8 growth-temperature relationships across large ranges of environmental temperature. We identify
a non-linear relationship between growth and temperature, but find little evidence for local
10 adaptation in thermal response curves. Cold populations show a positive response whereas warm
populations show a negative response to increasing temperatures. Understanding population-
12 specific effects of warming on growth and size is critical for predicting climate impacts to species
and ecosystems.

14

Introduction

16 Body growth is an individual-level trait that is relevant to ecology across all levels of biological
organisation (Barneche *et al.* 2019, Peters 1983). In aquatic systems in particular, body growth is
18 sensitive to environmental conditions, is related to individual fitness (Sibly *et al.* 2018), determines
species interactions and dictates how much energy is transferred between trophic levels (Lindeman
20 1942). It is also directly related to body size, which is a key ecological trait (Peters 1983) that is
correlated with diet, survival and reproductive success (Barneche *et al.* 2018) and largely shapes
22 size-dependent species interactions (Ursin 1973, Werner and Gilliam 1984).

24 In ectotherms such as fish, environmental temperature has a large influence on body growth
via the effects on metabolic rate (Jobling 1997, Brown *et al.* 2004). For species living at temperatures
cooler than that which maximizes growth, as commonly observed (Lindmark *et al.* 2022, Tewks-
26 bury *et al.* 2008), a slight increase in temperature is likely to be beneficial to growth. Body growth
or size-at-age of fish in natural environments, is commonly observed to correlate positively with
28 temperature, especially for small or young fish (Huss *et al.* 2019, Lindmark *et al.* 2023, Baudron
et al. 2014, Thresher *et al.* 2007, Oke *et al.* 2022). The effects on old fish, however, often are smaller
30 or negative (Ikpewe *et al.* 2020, Morrongiello *et al.* 2014, van Dorst *et al.* 2019), although there
are exceptions (Lindmark *et al.* 2023) and responses can vary within populations, e.g., with sex
32 (van Dorst *et al.* 2023). Experimental and modelling studies have pointed to that size-dependent
responses of growth and size could be due to optimum growth temperatures being lower for larger
34 fish (Lindmark *et al.* 2022), or that warming is linked to earlier maturation, after which energy is
increasingly allocated to reproduction over somatic growth (Wootton *et al.* 2022, Niu *et al.* 2023),
36 or both (Audzijonyte *et al.* 2022). In natural systems, other factors such as competition and food
limitation also influence growth directly (Ohlberger *et al.* 2023, Oke *et al.* 2020, Cline *et al.* 2019),
38 and indirectly by reducing the optimal growth temperatures (Brett 1971, Brett *et al.* 1969, Huey
and Kingsolver 2019). To understand fish responses to changing temperatures, it is therefore im-
40 portant to evaluate growth-temperature relationships in natural systems, and across gradients of
environmental temperature.

42 The ability to quantify the impacts of temperature change on growth and size, or other ecolog-
ical traits, is often limited by relatively short time series that contain small temperature contrasts
44 (White 2019, Freshwater *et al.* 2023). As an alternative, studies often use space-for-time approaches

(van Dorst *et al.* 2019, van Denderen *et al.* 2020, Morrongiello *et al.* 2014) to estimate the effects
46 of temperature on growth. However, it is difficult to know to what extent we can infer effects of
warming in a given location from the temperature effects estimated across locations over a limited
48 time (Perret *et al.* 2024). Both the estimates (van Denderen *et al.* 2020) and the form of the growth-
temperature relationship may differ. For example, responses to warming tend to be unimodal,
50 whereas they can be more linear or exponential across all populations of a species (van Denderen
et al. 2020). For projecting impacts of warming at the species level, another missing piece is to
52 understand the extent of local adaptation to the experienced thermal environments (Eliason *et al.*
2011). That is, to what extent populations conform to a global species-wide thermal performance
54 curve, versus having developed local thermal response curves with population-specific optima.
Testing this requires time series with large temperature contrasts both within and between mul-
56 tiple populations in the wild.

Here, we seek to understand how climate warming is affecting the growth of freshwater
58 fish, using *Perca fluviatilis*, hereafter perch, as a case study. Perch is a widely distributed, non-
commercially exploited fish with a stationary lifestyle that is common along the Swedish Baltic
60 Sea coast, which makes it an ideal species for analyzing effects of temperature change on growth
across environmental gradients. Specifically, we quantify growth-temperature relationships from
62 10 populations and evaluate if there is support for site-specific temperature-optima for growth, or
if all populations' response curves can be mapped onto a global growth-temperature relationship.
64 To address this question, we collated size-at-age data from back-calculated growth-trajectories for
23 605 individual fish over seven decades, and fit statistical models relating cohort-specific growth
66 estimates to reconstructed temperatures.

Methods

68 Data

We compiled individual-level size-at-age from perch and sea surface temperature data from 10 sites
70 along the Swedish Baltic Sea coast. The longest time series started in 1953 and the shortest in 1985,
and the average time series length was 34 years, which can be compared to an average generation
72 time of 6 years (Froese and Pauly 2010) (Fig. 1). The temperature contrast in this data set is

great both within each site and across sites (Fig. 2), due to long time series and a large latitudinal
74 gradient. Also contributing to the large temperature range is the inclusion of sites artificially
heated by warm water discharge from nearby nuclear power plants (sites (SI_HA and BT in Fig. 2).
76 The size-at-age data include information on age (at catch), total length (at catch, in millimetres),
sex, and back-calculated length-at-age (in millimetres). Back-calculated length-at-age was derived
78 from annuli rings on the operculum bones (part of the gill lid), with control counts of age done on
otoliths (ear stones). This method is common in fisheries (Essington *et al.* 2022, Morrongiello and
80 Thresher 2015), and is based on an assumed power-law relationship between the distance of annuli
rings and fish length (Thoreson 1996), which allows reconstruction of the individual's body length
82 at each age when annuli rings were formed. Individual-level data originate from different fish
monitoring programs using gill-nets. Individuals sampled for age and growth were selected from
84 the total catch from the gill net survey in each site using random or length-stratified sub-sampling
of the catch, but information on stratification method could not be retrieved for all data.

86 We reconstructed local temperatures at each fishing site using three types of temperature data:
automatic temperature loggers deployed near the fishing sites, manually measured temperatures
88 at the time of fishing, and extended reconstructed sea surface temperature, ERRST (Huang *et al.*
2017). We chose these three types because they are complementary. Logger data provide daily
90 temperatures during the ice-free season but do not go back as far in time as the growth data.
Temperatures at the fishing event give a snapshot temperature at the site, and go back as far in
92 time as we have fishing data. However, temperatures during fishing may not be representative
of the whole growth season, and since we work with back-calculated length-at-age, we also need
94 temperatures for years prior to fishing. Therefore, we also used modelled temperature time series
(ERRST), which both provide good seasonal coverage and extend far back in time, but have a much
96 coarser spatial resolution than the other sources. These three temperature data sources overlap in
time (Fig. S6), which allowed us to standardize the data using a statistical model (see next section).

98 Statistical analyses

To characterise individual growth rates, we fit von Bertalanffy growth equations (von Bertalanffy
100 1938) to the multiple observations of back-calculated length-at-age for each individual using non-

linear least squares:

$$L_t = L_\infty(1 - e^{-k \cdot age}), \quad (1)$$

102 where L_t is the size [mm] at age t [years], L_∞ the asymptotic size [mm], and k is the von Bertalanffy
103 “growth” coefficient [year⁻¹]. It describes the time it takes to reach the asymptotic size, and is
104 hence not a growth rate *per se* (which has unit size per time), but is often used as a proxy for it.
105 We only used length-at-age, meaning only length at a back calculated integer age (i.e., length at
106 the formation of the age-ring), because sampling has occurred in different times of the year. We
107 fit this model to every individual age 5 or older to ensure enough data points per individual to
108 reliably fit the model. The filtering resulted in 142 023 data points across 23 605 individuals. We
109 then calculated the median k by cohort and site across individuals (resulting in $n = 306$ k values)
110 (Fig. 1).

111 In order to relate the site- and cohort-specific growth coefficients to temperature over time,
112 we reconstructed average annual temperature sea surface temperature (sst) for each site using
113 generalized additive models assuming Student-t distributed residuals to account for extreme ob-
114 servations:

$$sst_i \sim \text{Student-t}(\mu_i, \phi, \nu) \quad (2)$$

$$\mu_i = \alpha_t + f(day) + source \quad (3)$$

115 where μ_i is the mean sst , ϕ is the scale and ν is the degrees of freedom parameter. ν was not es-
116 timated within the model, but found by iteratively testing different values and visually inspecting
117 QQ-plots to see how well the model could capture the heavy tails in the data. We used two sets
118 of values, $\nu = 6$ for sites BS (Brunskär), BT (Biotest), FB (Finbo), FM (Forsmark), MU (Muskö), RA
119 (Råneå) and SLEK (Simpevark Ekö) and $\nu = 10$ for HO (Holmön), JM (Kvädfjärden), and SLHA
120 (Simpevarp Hamnfjärden) (Fig. S7). The parameter α_t is the mean sst of year t (included as fac-
121 tor), $f(day)$ is a global smooth implemented as a penalized cyclic spline (i.e., the ends match—in
122 this case December 31st and January 1st) for the effect of day-of-the-year, and source is the mean
123 temperature for each temperature source. We fit the temperature models by site separately, be-
124 cause the presence of artificial heating from nuclear power plants warranted complicated inter-

actions between time, source and site in a global model, and those models did not converge. We
126 fit our models in R version 4.2.3 (R Core Team 2020) using the R package sdmTMB (Anderson *et al.*
2022, 2021) (version 0.3.0.9002), which uses mgcv (Wood 2017) to implement penalized smooths
128 as random effects, and TMB (Kristensen *et al.* 2016) to estimate parameters via maximum marginal
likelihood and the Laplace approximation to integrate over random effects.

130 We assessed convergence by confirming that the maximum absolute gradient with respect
to all fixed effects was < 0.001 and that the Hessian matrix was positive-definite. We evaluated
132 fit by visually inspecting QQ-plots (Fig. S7) of randomized quantile residuals based on MCMC
draws (Anderson *et al.* 2022, Rufener *et al.* 2021) (Fig. S7). From these models, we predicted daily
134 temperatures (Figs. S8, S9) (for the "logger" level) and then averaged these across year to acquire
a covariate to be used to the cohort-specific von Bertalanffy growth coefficients (Fig. 2).

136 To estimate how von Bertalanffy growth coefficients were related to temperature we used the
Sharpe-Schoolfield model (Schoolfield *et al.* 1981, Padfield *et al.* 2020), which can be viewed as an
138 extension of the Arrhenius equation to account also for deactivation of rates with temperature.
We used a mixed-effects version of it to allow site-specific parameters (as we were interested in
140 local temperature optima), assuming Student-t distributed residuals to account for extreme obser-
vations:

$$k_i \sim \text{Student-t}(\mu_{j[i]}, \phi, \nu) \quad (4)$$

$$\mu_i = \frac{k_{0j} e^{E_j (\frac{1}{kT_C} - \frac{1}{kT})}}{1 + e^{E_{hj} (\frac{1}{kT_{hj}} - \frac{1}{kT})}} \quad (5)$$

$$k_{0j} \sim \mathcal{N}(\mu_{k_{0j}}, \sigma_{k_{0j}}) \quad (6)$$

$$E_j \sim \mathcal{N}(\mu_{E_j}, \sigma_{E_j}) \quad (7)$$

$$E_{hj} \sim \mathcal{N}(\mu_{E_{hj}}, \sigma_{E_{hj}}) \quad (8)$$

$$T_{hj} \sim \mathcal{N}(\mu_{T_{hj}}, \sigma_{T_{hj}}) \quad (9)$$

142 where $\mu_{j[i]}$ is the mean for site j , ϕ is the scale and ν is the degrees of freedom parameter. In
equation 5, k_0 is the growth coefficient at the reference temperature T_C (here set to 8°C), E_j [eV]
144 is the activation energy, E_{hj} [eV] characterises the decline in the rate past the peak temperature,
and T_{hj} [°C] is the temperature at which the rate is reduced to half of the rate it would have in

146 the absence of deactivation due to high temperatures. We fit the model in a Bayesian framework.
148 This allows us to fit site-varying parameters, and to use informative priors. Since we use a mech-
150 anistic model describing the temperature dependence of biological rates, we defined priors based
152 on probable values of these parameters and their constraints. To ensure our priors were reason-
154 able, we conducted prior predictive checks (Fig. S1) (Wesner and Pomeranz 2021), which is the
prediction of the model using only the prior. We also evaluated prior versus posterior distribu-
156 tions and summaries of these (Fig. S2), and conducted sensitivity analyses with respect to our
choice of priors (Fig. S3). After this procedure, we ended up with the following normal priors:
158 $\mu_{k_0j} \sim N(0.3, 0.5)$, $\mu_{E_j} \sim N(0.8, 1)$, $\mu_{E_h} \sim N(2, 1)$, and $\mu_{T_{h_j}} \sim N(10, 5)$, for the population-level
160 parameters. The priors were truncated to be positive. All distributional parameters (σ) were given
162 the same Student-t(0, 2.5, 3) prior. To compare local, site-specific Sharpe-Schoolfield curves and
164 their optimum temperatures with a global curve, we also fitted a pooled Sharpe-Schoolfield model
where parameters did not vary by site. We used the same set of priors for the mixed (on the pop-
ulation level parameters) and the pooled model. This was done to evaluate whether the deviation
from the global optimum could be explained by temperature. The models were fit using the R
package brms (Bürkner 2018, 2017). We used 4000 iterations and 4 chains. Model convergence and
fit were assessed by ensuring potential scale reduction factors were close to 1, suggesting all four
chains converged to a common distribution (Gelman *et al.* 2003), as well as by visually inspecting
166 QQ-plots based on Bayesian probability residuals, calculated as in the tidybayes R package (Kay
2019) and posterior predictive checks (Fig. S4).

166 Results

We find large inter-annual fluctuations in annual average temperatures between sites, and increas-
168 ing trends over time in some sites (Fig. 2). Due to the spatial and temporal range of data, and the
170 artificial heating from nuclear power plant cooling water, we observe large contrasts in average
temperatures, which were not clearly related to latitude (Fig. 1). Across all sites, mean annual
average temperatures range from 4°C–16°C, and the largest range within a site (over time) is 6°C–
172 16°C (site BT). In some sites and years, this means temperatures exceeded the predicted optimum

growth temperature from the pooled model (Fig. 2). Individual growth trajectories of fish showed
174 large variation within and across sites (Fig. 3).

Our results show that site-specific Sharpe-Schoolfield curves align well with the pooled (global)
176 temperature-dependence curve (Fig. 4). This means that in general, populations in relatively cold
sites show positive relationships of body growth with temperature, whereas populations in rel-
178 atively warm sites show negative relationships with temperature, but all conform to an overall
"global" temperature-dependence. Furthermore, negative impacts of temperature on growth rate
180 are largely found as a result of artificial warming, although some sites with warming due to climate
change have the highest observed temperatures around the predicted optimum, suggesting that
182 further warming would no longer increase growth in these sites. The global predictions show that
the growth coefficients are similar at the coldest (4°C) and the warmest temperatures (16°C), with
184 an overall optimum around 9°C (Fig. 4). Hence, we observe only a minor asymmetry in the growth
curve, where the steepness of the curve is slightly larger at above- compared to below-optimum
186 temperatures.

We find that 6 of 10 sites have median temperature optima within the 95% credible intervals
188 of the pooled model, although all site-specific optimum temperatures overlap in their uncertainty
intervals with the pooled optimum temperature (Fig. 5). Importantly, while there is some variation
190 among sites in the estimated optimum growth temperature, this variation is not systematically
related to temperature (Fig. 5), as would have been the prediction if perch in the different sites had
192 adapted their growth rate to be maximized in the experienced environmental conditions.

Discussion

194 We show that population-specific growth-temperature curves map closely onto a pooled 'global'
growth-temperature curve across all populations, and that residual variation in estimated population-
196 specific thermal optima of body growth is not systematically related to local environmental tem-
peratures. We thus find no evidence for local adaptation of growth variation with temperature,
198 despite considerable differences in the average temperatures that these populations experience in
their natural environment. Our results instead suggest that populations in relatively cold environ-
200 ments will benefit from climate warming via increased body growth rates up to a certain 'global'

temperature optimum, whereas populations in relatively warm environments will experience reduced growth due to the negative effects of warming beyond their optimum growth temperature.

In line with our results, [Neuheimer *et al.* \(2011\)](#) found that for populations of banded morwong (*Cheilodactylus spectabilis*), increasing temperatures were associated with reduced growth rates for the population at the warm edge of the species' distribution (New Zealand) but higher growth rates for populations at the colder edge of the range (Tasmania). Similarly, [Morrongiello and Thresher \(2015\)](#) found that body growth of tiger flathead in populations off Southeast Australia increased with temperature but not in the warmest area. Analogously, [English *et al.* \(2022\)](#) found that groundfish in the Northeast Pacific often responded positively to warming if they were in cool locations, and negatively if they were in warm locations (where both biomass and temperature change were expressed as velocities). These and our findings illustrate the importance of testing for population-specific temperature-sensitivities when studying species responses to warming, and of accounting for both the rate of climate change and the baseline temperature conditions.

This growth-temperature pattern arises due to an absence of local thermal adaptation in growth. The ability to adapt to local environmental conditions allows populations to expand their range and better cope with spatially varying environmental conditions ([Kirkpatrick and Barton 1997](#)). Changes in trait-temperature relationships due to thermal adaptation in natural populations are expected in response to climate warming ([Angilletta 2009](#)), and previous studies have shown that local adaptation in physiological traits can facilitate different thermal optima among populations (e.g., Atlantic cod, [Righton *et al.* \(2010\)](#)). However, adaptive capacities and the pace of thermal adaptation differ among species ([Martin *et al.* 2023](#)) and depend on life-history trade-offs, heritability, underlying genetic variation, the potential for gene flow ([Kirkpatrick and Barton 1997](#)), and environmental conditions. The apparent lack of contemporary thermal adaptation in Baltic Sea perch, despite low gene flow between populations due to limited dispersal and movement ([Bergek and Björklund 2009](#)), indicates limitations in evolutionary changes to local temperature. This suggests that similar factors may also limit future thermal adaptation that would allow local populations to better withstand changing temperatures. A low adaptive capacity implies that body growth rates in populations already experiencing temperatures around or above their thermal optimum will decline with further warming. This will likely result in lower biomass production in

warm environments, as observed, for example, across spatial temperature gradients (van Dorst
232 *et al.* 2019).

Our study also illustrates the importance of accounting for unimodal temperature dependences.
234 Often simpler models like the exponential Arrhenius equation are used to model biological and ecological processes (e.g., Vasseur and McCann (2005), Savage *et al.* (2004), Lindmark *et al.* 236 (2018)), under the assumption that the 'biologically relevant temperature range' which species occupy is below their optimum. However, across all areas, we find that as many as 40% of all data 238 points (growth coefficients, k) are above the estimated site-specific optimum (35% if omitting sites with an artificially extended temperature range due to nuclear power plants). This echoes the 240 point raised many times (e.g., Englund *et al.* (2011)), that exponential temperature dependencies may be of limited use. Growth rates are only exponentially related to temperature even further 242 from the optimum, i.e., below the inflection point of the unimodal curve. We therefore recommend 244 researchers to consider that temperatures close to the optimum may in fact be biologically relevant, in which case models other than the Arrhenius equation are more appropriate.

There are a number of limitations to our analysis. For instance, growth in temperate regions 246 varies over the year and it is therefore difficult to know which temperature variable that is best to use to relate to cohort-specific growth coefficients. Given also that growing season lengths 248 differ in our data set due to different light conditions, we opted to use a simple annual average. Degree days (the integral of time above a certain temperature threshold) is an often recommended 250 metric (Neuheimer and Grønkjær 2012), but there is some uncertainty in temperatures below which 252 growth does not occur, even for a well studied species like perch (Karås and Thoresson 1992), and 254 whether or not that varies between sites. Lastly, it is not straightforward to formally test for differences in thermal optimum between populations, and we mainly base our interpretation on the lack of systematic variation in site-specific optimum temperatures for growth, which appear 256 to not be related to the average temperature at each site.

In summary, our findings suggest that annual mean temperatures are either approaching or 258 have surpassed optimum growth temperatures for the populations examined here (Figs. 2 and 5). Our ability to detect this pattern relies heavily on the length of the time series as well as the 260 unusually large temperature contrasts due to warm water pollution from nuclear power plants, which highlights the importance of long term environmental monitoring across environmental

gradients. Considering the lack of evidence for recent local adaptation to temperature, we expect
262 that adverse effects of continued warming on Baltic Sea perch will accumulate and decrease both
individual and population growth rates in these populations. Similar constraints on adaptive ca-
264 pacities in response to warming can be expected for other species of fish, and ectotherms more
generally.

266 Acknowledgements

We are very grateful to all the staff involved in data collection over the years and to the funding
268 bodies of the long-term monitoring. The study was financed by the Swedish Research Council
Formas (grant no. 2023-2026 to Max Lindmark) and SLU Quantitative Fish- and Fisheries Ecology.

270 Author contributions

All authors contributed to the manuscript. A.G. conceived the study, M.L. and A.G. prepared the
272 raw data and J.O. contributed to preparing temperature data. J.O. and M.L. led the design with
contributions from AG. M.L and J.O conducted the statistical analyses. All authors conceptualized
274 the results, contributed to revisions, and gave final approval for publication.

Data Availability Statement

276 All code and data to reproduce the results are available on GitHub (<https://github.com/maxlindmark/perch-growth>), and will be deposited on Zenodo before publication.

278 References

Anderson, S.C., Ward, E.J., English, P.A. and Barnett, L.A.K. (2022) sdmTMB: An R package for fast,
280 flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotem-
poral random fields. *bioRxiv* (<https://doi.org/10.1101/2022.03.24.485545>) , 2022.03.24.485545.

282 Anderson, S.C., Ward, E.J., Barnett, L.A.K. and English, P.A. (2021) sdmTMB: Spatiotemporal
species distribution GLMMs with ‘TMB’.

284 Angilletta, M.J. (2009) *Thermal Adaptation: A Theoretical and Empirical Synthesis*. Oxford University Press.

286 Audzijonyte, A., Jakubavičiūtė, E., Lindmark, M. and Richards, S.A. (2022) Mechanistic Temperature-Size Rule Explanation Should Reconcile Physiological and Mortality Responses 288 to Temperature. *The Biological Bulletin* **243**, 220–238.

290 Barneche, D.R., Jahn, M. and Seebacher, F. (2019) Warming increases the cost of growth in a model vertebrate. *Functional Ecology* **33**, 1256–1266.

292 Barneche, D.R., Robertson, D.R., White, C.R. and Marshall, D.J. (2018) Fish reproductive-energy output increases disproportionately with body size. *Science* **360**, 642–645.

294 Baudron, A.R., Needle, C.L., Rijnsdorp, A.D. and Marshall, C.T. (2014) Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. *Global Change Biology* **20**, 1023–1031.

296 Bergek, S. and Björklund, M. (2009) Genetic and morphological divergence reveals local subdivision of perch (*Perca fluviatilis* L.). *Biological Journal of the Linnean Society* **96**, 746–758. URL <https://doi.org/10.1111/j.1095-8312.2008.01149.x>.

300 Brett, J.R., Shelbourn, J.E. and Shoop, C.T. (1969) Growth rate and body composition of fingerling sockeye salmon, *Oncorhynchus nerka*, in relation to temperature and ration size. *Journal of the Fisheries Research Board of Canada* **26**, 2363–2394.

302 Brett, J.R. (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (*Oncorhynchus nerka*). *Integrative and Comparative Biology* **11**, 99–113.

306 Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004) Toward a metabolic theory of ecology. *Ecology* **85**, 1771–1789.

308 Bürkner, P.C. (2017) **Brms** : An R Package for Bayesian Multilevel Models Using *Stan*. *Journal of Statistical Software* **80**.

310 Bürkner, P.C. (2018) Advanced Bayesian Multilevel Modeling with the R Package brms. *The R Journal* **10**, 395–411.

312 Cline, T.J., Ohlberger, J. and Schindler, D.E. (2019) Effects of warming climate and competition in
the ocean for life-histories of Pacific salmon. *Nature Ecology & Evolution* **3**, 935–942.

314 Eliason, E.J., Clark, T.D., Hague, M.J., Hanson, L.M. *et al.* (2011) Differences in thermal tolerance
among sockeye salmon populations. *Science* **332**, 109–112.

316 English, P.A., Ward, E.J., Rooper, C.N., Forrest, R.E. *et al.* (2022) Contrasting climate velocity im-
pacts in warm and cool locations show that effects of marine warming are worse in already
warmer temperate waters. *Fish and Fisheries* **23**, 239–255.

318 Englund, G., Öhlund, G., Hein, C.L. and Diehl, S. (2011) Temperature dependence of the functional
response. *Ecology Letters* **14**, 914–921.

320 Essington, T.E., Matta, M.E., Black, B.A., Helser, T.E. and Spencer, P.D. (2022) Fitting growth models
to otolith increments to reveal time-varying growth. *Canadian Journal of Fisheries and Aquatic
Sciences* **79**, 159–167.

324 Freshwater, C., Duguid, W., Juanes, F. and McKinnell, S. (2023) A century-long time series reveals
large declines and greater synchrony in Nass River sockeye salmon size-at-age. *Canadian Jour-
nal of Fisheries and Aquatic Sciences* **80**, 1098–1109.

326 Froese, R. and Pauly, D. (2010) FishBase.

328 Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003) *Bayesian Data Analysis. 2nd Edition.*
Chapman and Hall/CRC, Boca Raton.

330 Huang, B., Thorne, P., Banzon, V.F., Boyer, T. *et al.* (2017) NOAA Extended Reconstructed Sea Sur-
face Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information.

332 Huey, R.B. and Kingsolver, J.G. (2019) Climate warming, resource availability, and the metabolic
meltdown of ectotherms. *The American Naturalist* **194**, E140–E150.

334 Huss, M., Lindmark, M., Jacobson, P., van Dorst, R.M. and Gårdmark, A. (2019) Experimental evi-
dence of gradual size-dependent shifts in body size and growth of fish in response to warming.
Global Change Biology **25**, 2285–2295.

336 Ikpewe, I.E., Baudron, A.R., Ponchon, A. and Fernandes, P.G. (2020) Bigger juveniles and smaller
adults: Changes in fish size correlate with warming seas. *Journal of Applied Ecology* **58**, 847–856.

338 Jobling, M. (1997) Temperature and growth: Modulation of growth rate via temperature change.
In: *Global Warming: Implications for Freshwater and Marine Fish*, volume 61 (eds. C.M. Wood and
340 D.G. McDonald). Cambridge University Press, Cambridge, pp. 225–254.

342 Karås, P. and Thoresson, G. (1992) An application of a bioenergetics model to Eurasian perch (*Perca*
fluviatilis L.). *Journal of Fish Biology* **41**, 217–230.

Kay, M. (2019) Tidybayes: Tidy Data and Geoms for Bayesian Models.

344 Kirkpatrick, M. and Barton, N.H. (1997) Evolution of a Species' Range. *The American Naturalist*
150, 1–23.

346 Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H. and Bell, B.M. (2016) TMB: Automatic Differentiation and Laplace Approximation. *Journal of Statistical Software* **70**, 1–21.

348 Lindeman, R.L. (1942) The Trophic-Dynamic Aspect of Ecology. *Ecology* **23**, 399–417.

350 Lindmark, M., Huss, M., Ohlberger, J. and Gårdmark, A. (2018) Temperature-dependent body size
effects determine population responses to climate warming. *Ecology Letters* **21**, 181–189.

352 Lindmark, M., Karlsson, M. and Gårdmark, A. (2023) Larger but younger fish when growth out-
paces mortality in heated ecosystem. *eLife* **12**, e82996.

354 Lindmark, M., Ohlberger, J. and Gårdmark, A. (2022) Optimum growth temperature declines with
body size within fish species. *Global Change Biology* **28**, 2259–2271.

356 Martin, R.A., da Silva, C.R.B., Moore, M.P. and Diamond, S.E. (2023) When will a changing climate
outpace adaptive evolution? *WIREs Climate Change* **14**, e852.

358 Morrongiello, J.R. and Thresher, R.E. (2015) A statistical framework to explore ontogenetic growth
variation among individuals and populations: A marine fish example. *Ecological Monographs*
85, 93–115.

360 Morrongiello, J.R., Walsh, C.T., Gray, C.A., Stocks, J.R. and Crook, D.A. (2014) Environmental
change drives long-term recruitment and growth variation in an estuarine fish. *Global Change
Biology* **20**, 1844–1860.

362
364 Neuheimer, A.B., Thresher, R.E., Lyle, J.M. and Semmens, J.M. (2011) Tolerance limit for fish growth
exceeded by warming waters. *Nature Climate Change* **1**, 110–113.

366 Neuheimer, A.B. and Grønkjær, P. (2012) Climate effects on size-at-age: Growth in warming waters
compensates for earlier maturity in an exploited marine fish. *Global Change Biology* **18**, 1812–
1822.

368 Niu, J., Huss, M., Vasemägi, A. and Gårdmark, A. (2023) Decades of warming alters maturation
and reproductive investment in fish. *Ecosphere* **14**, e4381.

370 Ohlberger, J., Cline, T.J., Schindler, D.E. and Lewis, B. (2023) Declines in body size of sockeye
salmon associated with increased competition in the ocean. *Proceedings of the Royal Society B:
Biological Sciences* **290**, 20222248.

372
374 Oke, Krista.B., Cunningham, C.J., Westley, P.a.H., Baskett, M.L. *et al.* (2020) Recent declines in
salmon body size impact ecosystems and fisheries. *Nature Communications* **11**, 4155.

376 Oke, K.B., Mueter, F.J. and Litzow, M.A. (2022) Warming leads to opposite patterns in weight-at-
age for young versus old age classes of Bering Sea walleye pollock. *Canadian Journal of Fisheries
and Aquatic Sciences* .

378 Padfield, D., Castledine, M. and Buckling, A. (2020) Temperature-dependent changes to
host–parasite interactions alter the thermal performance of a bacterial host. *The ISME Journal* **14**, 389–398.

380
382 Perret, D.L., Evans, M.E.K. and Sax, D.F. (2024) A species' response to spatial climatic variation
does not predict its response to climate change. *Proceedings of the National Academy of Sciences*
121, e2304404120.

384 Peters, R.H. (1983) *The Ecological Implications of Body Size*, volume 2. Cambridge University Press.

R Core Team (2020) *R: A Language and Environment for Statistical Computing*. Vienna, Austria.

386 Righton, D.A., Andersen, K.H., Neat, F., Thorsteinsson, V. *et al.* (2010) Thermal niche of Atlantic
cod *Gadus morhua*: Limits, tolerance and optima. *Marine Ecology Progress Series* **420**, 1–13.

388 Rufener, M.C., Kristensen, K., Nielsen, J.R. and Bastardie, F. (2021) Bridging the gap between com-
mercial fisheries and survey data to model the spatiotemporal dynamics of marine species. *Eco-
logical Applications* **31**, e02453.

390
392 Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B. and Charnov, E.L. (2004) Effects of Body Size
and Temperature on Population Growth. *The American Naturalist* **163**, 429–441.

394 Schoolfield, R.M., Sharpe, P.J.H. and Magnuson, C.E. (1981) Non-linear regression of biological
temperature-dependent rate models based on absolute reaction-rate theory. *Journal of Theoretical
Biology* **88**, 719–731.

396 Sibly, R.M., Kodric-Brown, A., Luna, S.M. and Brown, J.H. (2018) The shark-tuna dichotomy: Why
tuna lay tiny eggs but sharks produce large offspring. *Royal Society Open Science* **5**, 180453.

398 Tewksbury, J.J., Huey, R.B. and Deutsch, C.A. (2008) Putting the Heat on Tropical Animals. *Science*
320, 1296–1297.

400 Thoresson, G. (1996) Metoder för övervakning av kustfiskbestånd (in Swedish). Technical Report 3,
Kustlaboratoriet, Fiskeriverket, Öregrund.

402 Thresher, R.E., Koslow, J.A., Morison, A.K. and Smith, D.C. (2007) Depth-mediated reversal of the
effects of climate change on long-term growth rates of exploited marine fish. *Proceedings of the
National Academy of Sciences, USA* **104**, 7461–7465.

404
406 Ursin, E. (1973) On the prey size preferences of cod and dab. *Meddelelser fra Danmarks Fiskeri-og
Havun- derselser* **7:8598**.

408 van Denderen, D., Gislason, H., van den Heuvel, J. and Andersen, K.H. (2020) Global analysis of
fish growth rates shows weaker responses to temperature than metabolic predictions. *Global
Ecology and Biogeography* **29**, 2203–2213.

410 van Dorst, R.M., Gårdmark, A., Kahilainen, K.K., Nurminen, L. *et al.* (2023) Ecosystem heating
experiment reveals sex-specific growth responses in fish. *Canadian Journal of Fisheries and
Aquatic Sciences* .

van Dorst, R.M., Gårdmark, A., Svanbäck, R., Beier, U., Weyhenmeyer, G.A. and Huss, M. (2019)
414 Warmer and browner waters decrease fish biomass production. *Global Change Biology* **25**, 1395–
1408.

Vasseur, D.A. and McCann, K.S. (2005) A mechanistic approach for modelling temperature-
dependent consumer-resource dynamics. *The American Naturalist* **166**, 184–198.
416

von Bertalanffy, L. (1938) A quantitative theory of organic growth (inquiries on growth laws. II).
Human Biology **10**, 181–213.
418

Werner, E.E. and Gilliam, J.F. (1984) The ontogenetic niche and species interactions in size-
structured populations. *Annual Review of Ecology and Systematics* **15**, 393–425.
420

Wesner, J.S. and Pomeranz, J.P.F. (2021) Choosing priors in Bayesian ecological models by simu-
lating from the prior predictive distribution. *Ecosphere* **12**, e03739.
422

White, E.R. (2019) Minimum Time Required to Detect Population Trends: The Need for Long-Term
Monitoring Programs. *BioScience* **69**, 40–46.
424

Wood, N., S. (2017) *Generalized Additive Models: An Introduction with R*. 2nd edition. CRC/Taylor
& Francis.
426

Wootton, H.F., Morrongiello, J.R., Schmitt, T. and Audzijonyte, A. (2022) Smaller adult fish size in
warmer water is not explained by elevated metabolism. *Ecology Letters* **25**, 1177–1188.
428

Figures

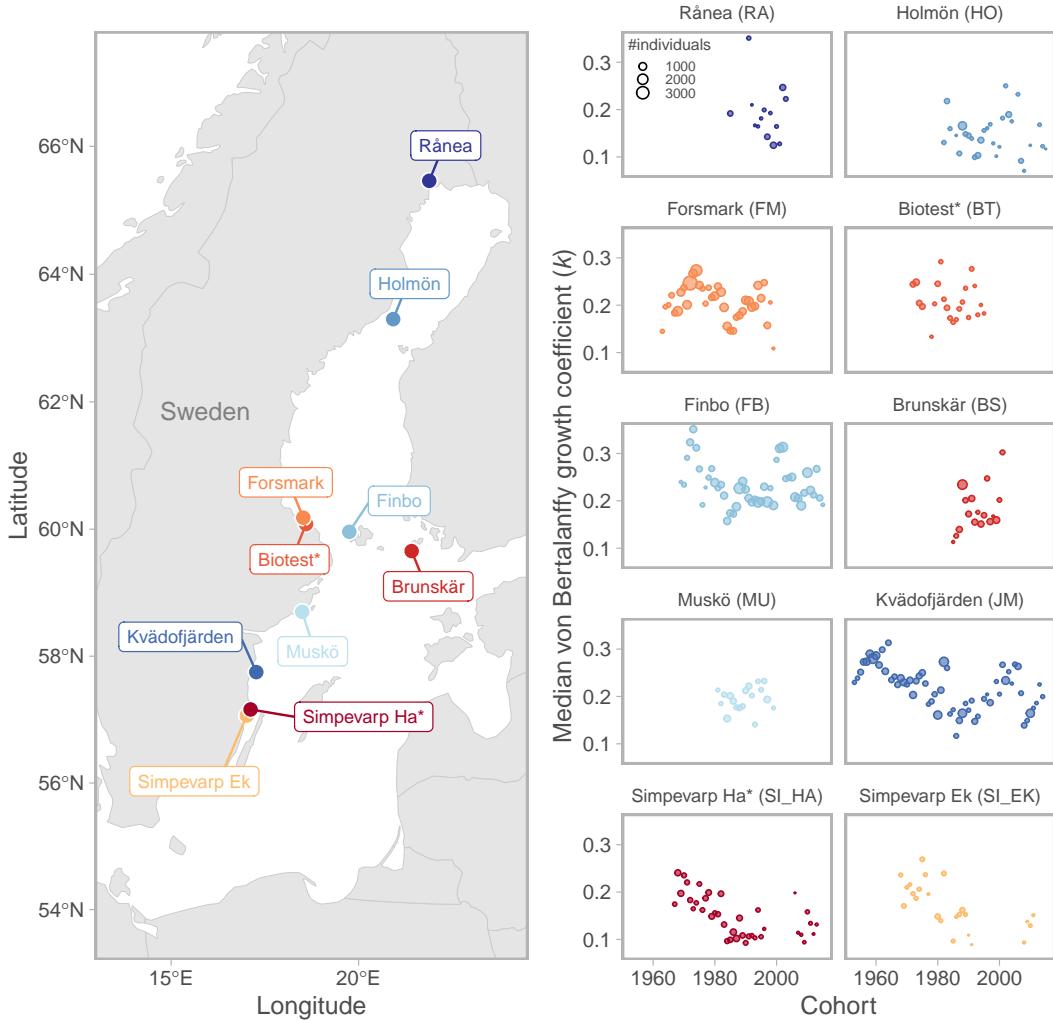


Figure 1: Map of sampling locations (left) and time series of the median von Bertalanffy growth coefficients by cohort (right), where colours are assigned based on the minimum temperature in the growth time series, ranging from blue (coldest) to red (warmest). Circle size corresponds to the number of individuals in that cohort and site.

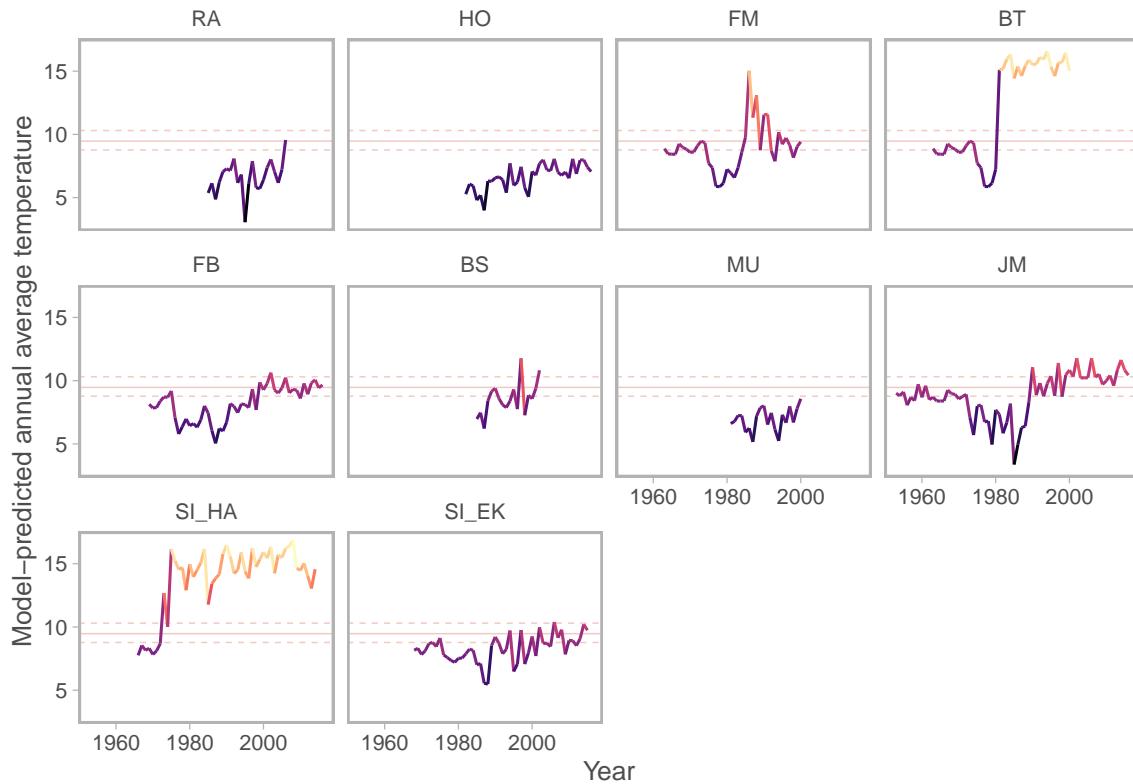


Figure 2: Annual average sea surface temperature as predicted by the GAM-model fitted to three temperature sources. Colour indicates temperature. The solid red horizontal line depicts the median optimum temperature, calculated from 10.000 draws from the expectation of the posterior predictive distribution from the Sharpe-Schoolfield model fitted to all sites pooled, and the dashed red horizontal lines depict the 5th and 95th percentile of the same distributions of optimum temperatures. Areas SI_HA and BT have been heated by warm water discharge from nuclear power plants since 1972 and 1980, respectively.

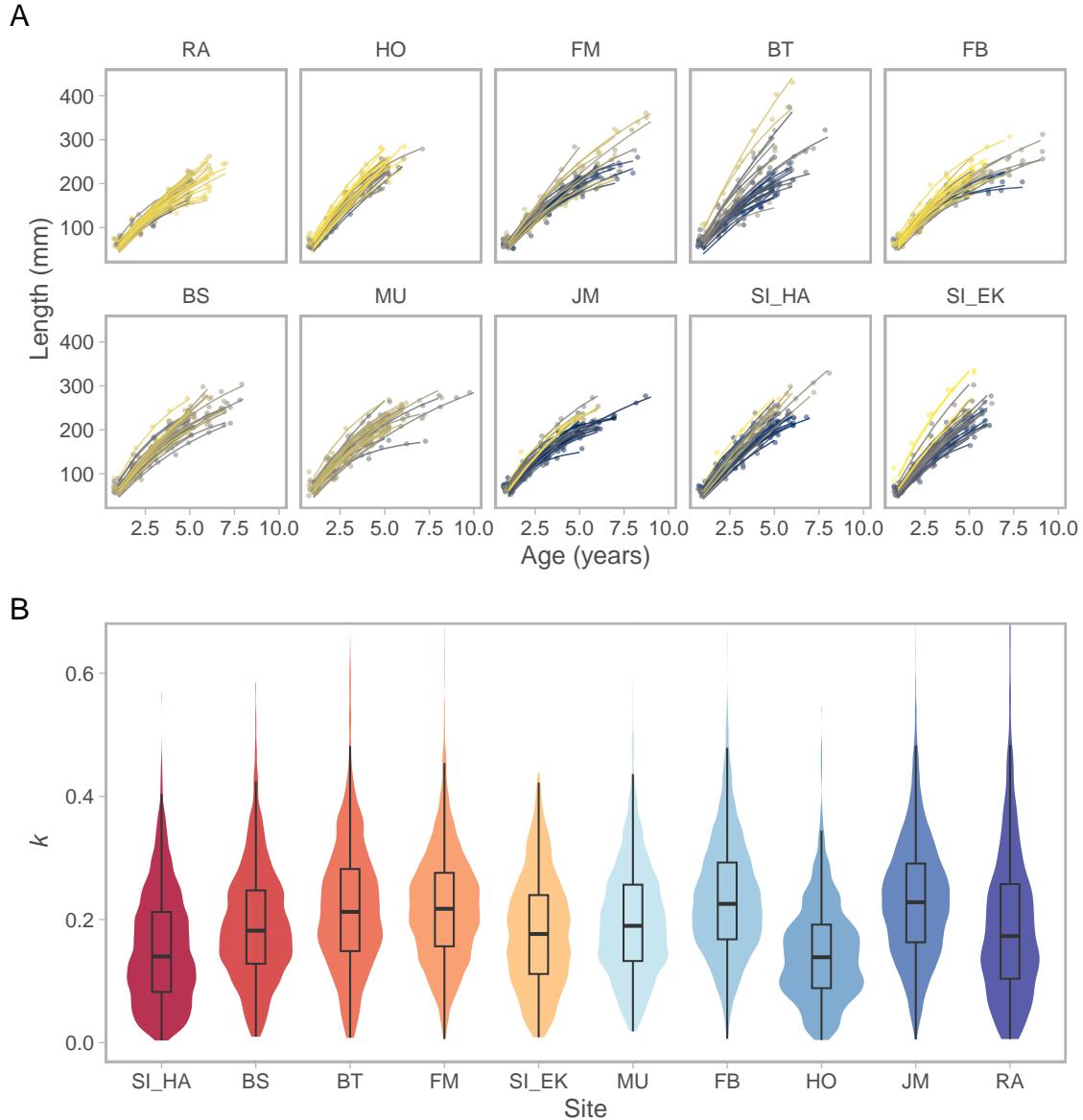


Figure 3: Length plotted against age for all sites (A). Points are data for 30 randomly selected individuals (indicated by colour) in each site, and lines are the predicted von Bertalanffy growth curve. Panel B depicts the distribution of von Bertalanffy growth coefficients k , where colours are based on the minimum temperature across all years, as violins, and quantiles depicted as boxplots.

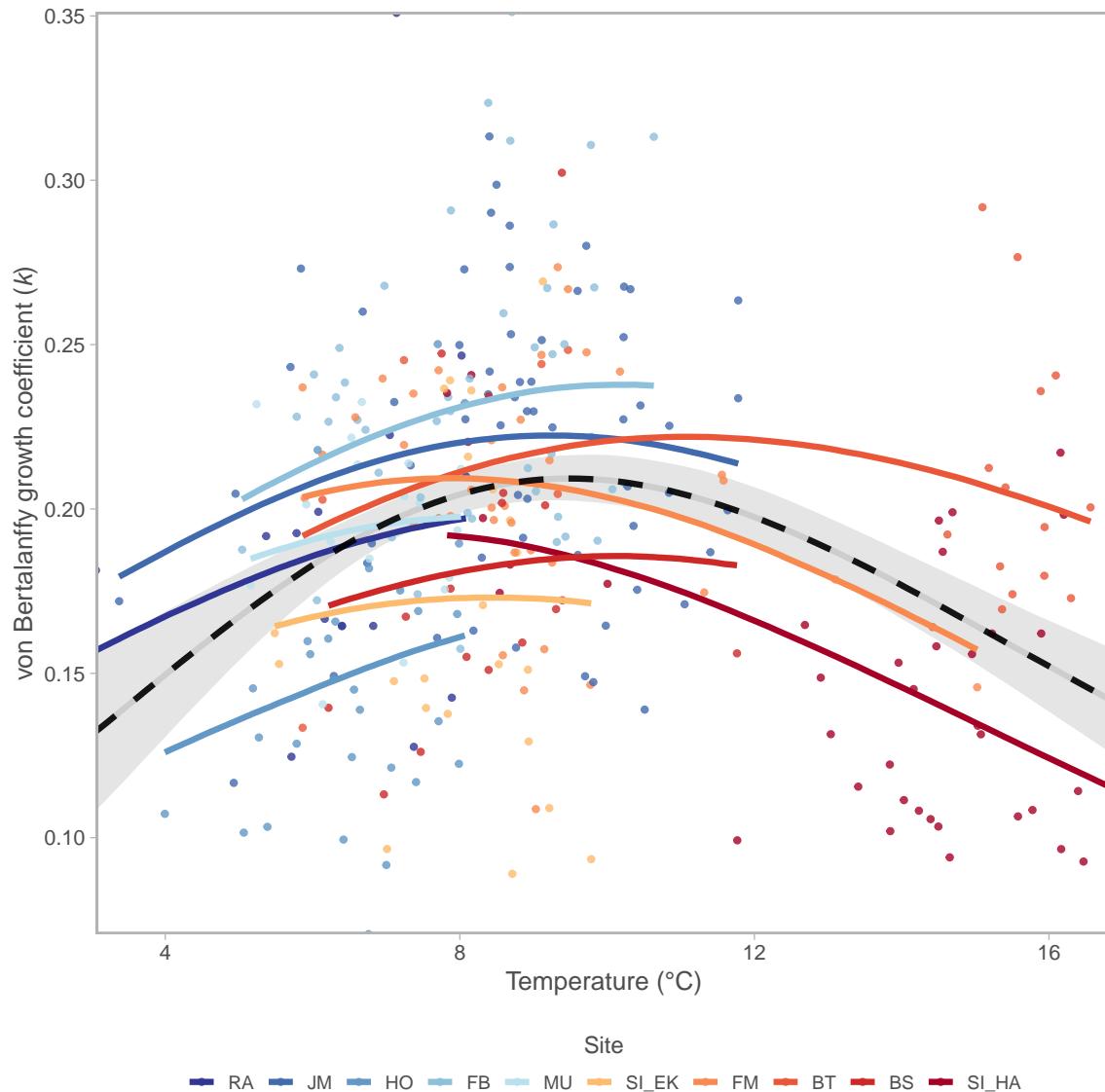


Figure 4: von Bertalanffy growth coefficients as a function of temperature. Each point depicts the median growth coefficient for a cohort and site, and the coloured lines depict the median of draws from the expectation of the posterior predictive distribution from the mixed effect Sharpe-Schoolfield model for each site. The black dashed lines depict the prediction from the pooled model. For uncertainty around site-specific predictions, see Fig. S5.

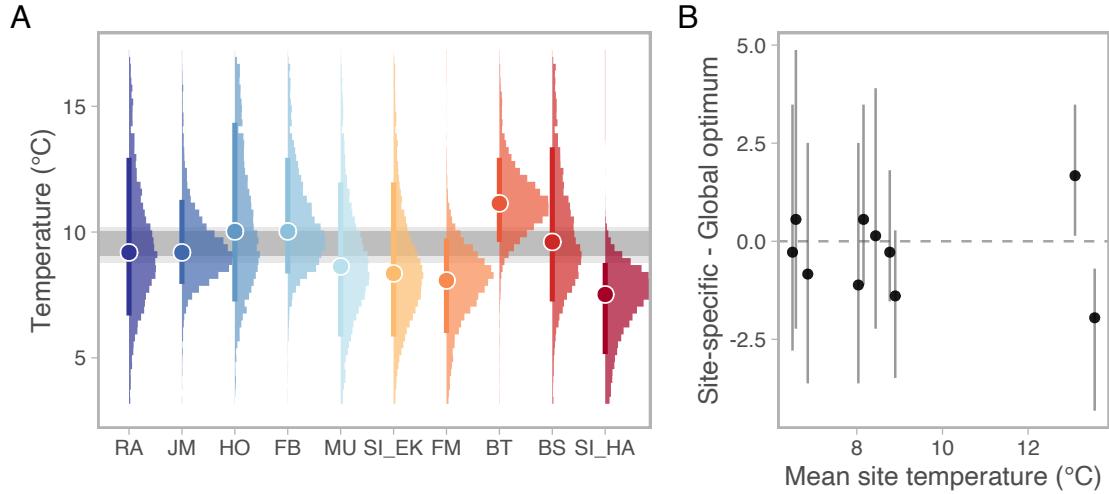


Figure 5: Ridgeplot depicting the distribution of site-specific optimum curves (temperature where the predicted growth coefficient is maximised) from the mixed effect Sharpe-Schoolfield model (A), and the deviation from the pooled optimum by site as a function of temperature (B). In panel A, the distributions of optimum temperatures are from 10.000 draws from the expectation of the posterior predictive distribution over the full temperature range. The horizontal dashed grey line depicts the optimum from the pooled Sharpe-Schoolfield model, and the grey rectangles indicate the 5th and 95th percentile (wide rectangle) and the 10th and 90th percentile (narrower rectangle) from the same distribution of draws. Points depict the median optimum temperature in that site, and the vertical lines are the 90% credible interval. Colours are based on the minimum temperature across all years. In panel B, the points indicate the difference between the median of the site-specific and the pooled model, and the vertical lines depict the difference between the 10th and 90th quantiles of site specific optima and the median of the pooled optimum.