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1Department of Aquatic Resources, Swedish University of Agricultural Sciences,

Uppsala, Sweden

2School of Aquatic and Fishery Sciences, University of Washington, Sea�le, WA 98195,

USA

3Washington Department of Fish and Wildlife, 1111 Washington St. SE, Olympia, WA

98501, USA

Authorship: *Shared �rst-authorship, correspondence to max.lindmark@slu.se

Keywords: climate change, body growth, size, �sh, non-linear, temperature-size rule, von Berta-

lan�y, Sharpe-School�eld, perch, spatiotemporal

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.17.575983doi: bioRxiv preprint 

mailto:max.lindmark@slu.se
https://doi.org/10.1101/2024.01.17.575983
http://creativecommons.org/licenses/by/4.0/


Abstract

Body size is a key trait that has been declining in many biological assemblages, partly due to2

within-species changes in individual growth rates and mean body size a�ributed to climate warm-

ing. Yet, robust tests of warming-e�ects in natural populations are scarce due to a lack of long time4

series with large temperature contrasts. We compiled length-at-age data for Eurasian perch (Perca

�uviatilis) from 10 populations along the Baltic Sea coast between 1953–2015 (23605 individuals).6

By ��ing von Bertalan�y growth curves to individual length-at-age trajectories, we estimated

growth-temperature relationships across large ranges of environmental temperature. We iden-8

tify a non-linear relationship between growth and temperature, but �nd li�le evidence for local

adaptation in thermal response curves. Cold populations show a positive response whereas warm10

populations show a negative response to increasing temperatures. Understanding population-

speci�c e�ects of warming on growth and size is critical for predicting climate impacts to species12

and ecosystems.
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Introduction

Body growth is an individual-level trait that is relevant to ecology across all levels of biological16

organisation (Barneche et al. 2019, Peters 1983). In aquatic systems in particular, body growth is

sensitive to environmental conditions, is related to individual �tness (Sibly et al. 2018), determines18

species interactions and dictates howmuch energy is transferred between trophic levels (Lindeman

1942). It is also directly related to body size, which is a key ecological trait (Peters 1983) that is20

correlated with diet, survival and reproductive success (Barneche et al. 2018) and largely shapes

size-dependent species interactions (Ursin 1973, Werner and Gilliam 1984).22

In ectotherms such as �sh, environmental temperature has a large in�uence on body growth

via the e�ects onmetabolic rate (Jobling 1997, Brown et al. 2004). For species living at temperatures24

cooler than that which maximizes growth, as commonly observed (Lindmark et al. 2022, Tewks-

bury et al. 2008), a slight increase in temperature is likely to be bene�cial to growth. Body growth26

or size-at-age of �sh in natural environments, is commonly observed to correlate positively with

temperature, especially for small or young �sh (Huss et al. 2019, Lindmark et al. 2023, Baudron28

et al. 2014, �resher et al. 2007, Oke et al. 2022). �e e�ects on old �sh, however, o�en are smaller

or negative (Ikpewe et al. 2020, Morrongiello et al. 2014, van Dorst et al. 2019), although there30

are exceptions (Lindmark et al. 2023) and responses can vary within populations, e.g., with sex

(van Dorst et al. 2023). Experimental and modelling studies have pointed to that size-dependent32

responses of growth and size could be due to optimum growth temperatures being lower for larger

�sh (Lindmark et al. 2022), or that warming is linked to earlier maturation, a�er which energy is34

increasingly allocated to reproduction over somatic growth (Woo�on et al. 2022, Niu et al. 2023),

or both (Audzijonyte et al. 2022). In natural systems, other factors such as competition and food36

limitation also in�uence growth directly (Ohlberger et al. 2023, Oke et al. 2020, Cline et al. 2019),

and indirectly by reducing the optimal growth temperatures (Bre� 1971, Bre� et al. 1969, Huey38

and Kingsolver 2019). To understand �sh responses to changing temperatures, it is therefore im-

portant to evaluate growth-temperature relationships in natural systems, and across gradients of40

environmental temperature.

�e ability to quantify the impacts of temperature change on growth and size, or other ecolog-42

ical traits, is o�en limited by relatively short time series that contain small temperature contrasts

(White 2019, Freshwater et al. 2023). As an alternative, studies o�en use space-for-time approaches44
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(van Dorst et al. 2019, van Denderen et al. 2020, Morrongiello et al. 2014) to estimate the e�ects

of temperature on growth. However, it is di�cult to know to what extent we can infer e�ects of46

warming in a given location from the temperature e�ects estimated across locations over a limited

time (Perret et al. 2024). Both the estimates (van Denderen et al. 2020) and the form of the growth-48

temperature relationship may di�er. For example, responses to warming tend to be unimodal,

whereas they can be more linear or exponential across all populations of a species (van Denderen50

et al. 2020). For projecting impacts of warming at the species level, another missing piece is to

understand the extent of local adaptation to the experienced thermal environments (Eliason et al.52

2011). �at is, to what extent populations conform to a global species-wide thermal performance

curve, versus having developed local thermal response curves with population-speci�c optima.54

Testing this requires time series with large temperature contrasts both within and between mul-

tiple populations in the wild.56

Here, we seek to understand how climate warming is a�ecting the growth of freshwater

�sh, using Perca �uviatilis, herea�er perch, as a case study. Perch is a widely distributed, non-58

commercially exploited �sh with a stationary lifestyle that is common along the Swedish Baltic

Sea coast, which makes it an ideal species for analyzing e�ects of temperature change on growth60

across environmental gradients. Speci�cally, we quantify growth-temperature relationships from

10 populations and evaluate if there is support for site-speci�c temperature-optima for growth, or62

if all populations’ response curves can be mapped onto a global growth-temperature relationship.

To address this question, we collated size-at-age data from back-calculated growth-trajectories for64

23 605 individual �sh over seven decades, and �t statistical models relating cohort-speci�c growth

estimates to reconstructed temperatures.66

Methods

Data68

We compiled individual-level size-at-age from perch and sea surface temperature data from 10 sites

along the Swedish Baltic Sea coast. �e longest time series started in 1953 and the shortest in 1985,70

and the average time series length was 34 years, which can be compared to an average generation

time of 6 years (Froese and Pauly 2010) (Fig. 1). �e temperature contrast in this data set is72
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great both within each site and across sites (Fig. 2), due to long time series and a large latitudinal

gradient. Also contributing to the large temperature range is the inclusion of sites arti�cially74

heated by warm water discharge from nearby nuclear power plants (sites (SI HA and BT in Fig. 2).

�e size-at-age data include information on age (at catch), total length (at catch, in millimetres),76

sex, and back-calculated length-at-age (in millimetres). Back-calculated length-at-age was derived

from annuli rings on the operculum bones (part of the gill lid), with control counts of age done on78

otoliths (ear stones). �is method is common in �sheries (Essington et al. 2022, Morrongiello and

�resher 2015), and is based on an assumed power-law relationship between the distance of annuli80

rings and �sh length (�oresson 1996), which allows reconstruction of the individual’s body length

at each age when annuli rings where formed. Individual-level data originate from di�erent �sh82

monitoring programs using gill-nets. Individuals sampled for age and growth were selected from

the total catch from the gill net survey in each site using random or length-strati�ed sub-sampling84

of the catch, but information on strati�cation method could not be retrieved for all data.

We reconstructed local temperatures at each �shing site using three types of temperature data:86

automatic temperature loggers deployed near the �shing sites, manually measured temperatures

at the time of �shing, and extended reconstructed sea surface temperature, ERRST (Huang et al.88

2017). We chose these three types because they are complementary. Logger data provide daily

temperatures during the ice-free season but do not go back as far in time as the growth data.90

Temperatures at the �shing event give a snapshot temperature at the site, and go back as far in

time as we have �shing data. However, temperatures during �shing may not be representative92

of the whole growth season, and since we work with back-calculated length-at-age, we also need

temperatures for years prior to �shing. �erefore, we also used modelled temperature time series94

(ERRST), which both provide good seasonal coverage and extend far back in time, but have a much

coarser spatial resolution than the other sources. �ese three temperature data sources overlap in96

time (Fig. S6), which allowed us to standardize the data using a statistical model (see next section).

Statistical analyses98

To characterise individual growth rates, we �t von Bertalan�y growth equations (von Bertalan�y

1938) to the multiple observations of back-calculated length-at-age for each individual using non-100
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linear least squares:

!Ī = !∞(1 − 4−ġ ·ėĝě), (1)

where !Ī is the size [mm] at age C [years], !∞ the asymptotic size [mm], and: is the von Bertalan�y102

“growth” coe�cient [year−1]. It describes the time it takes to reach the asymptotic size, and is

hence not a growth rate per se (which has unit size per time), but is o�en used as a proxy for it.104

We only used length-at-age, meaning only length at a back calculated integer age (i.e., length at

the formation of the age-ring), because sampling has occurred in di�erent times of the year. We106

�t this model to every individual age 5 or older to ensure enough data points per individual to

reliably �t the model. �e �ltering resulted in 142 023 data points across 23 605 individuals. We108

then calculated the median : by cohort and site across individuals (resulting in = = 306 : values)

(Fig. 1).110

In order to relate the site- and cohort-speci�c growth coe�cients to temperature over time,

we reconstructed average annual temperature sea surface temperature (BBC ) for each site using112

generalized additive models assuming Student-t distributed residuals to account for extreme ob-

servations:114

BBCğ ∼ Student-t(`ğ , q, a) (2)

`ğ = UĪ + 5 (30~) + B>DA24 (3)

where `ğ is the mean BBC , q is the scale and a is the degrees of freedom parameter. a was not es-

timated within the model, but found by iteratively testing di�erent values and visually inspecting116

QQ-plots to see how well the model could capture the heavy tails in the data. We used two sets

of values, a = 6 for sites BS (Brunskär), BT (Biotest), FB (Finbo), FM (Forsmark), MU (Muskö), RA118

(Råneå) and SI EK (Simpevark Ekö) and a = 10 for HO (Holmön), JM (Kvädö�ärden), and SI HA

(Simpevarp Hamne�ärden) (Fig. S7). �e parameter UĪ is the mean BBC of year C (included as fac-120

tor), 5 (30~) is a global smooth implemented as a penalized cyclic spline (i.e., the ends match—in

this case December 31st and January 1st) for the e�ect of day-of-the-year, and source is the mean122

temperature for each temperature source. We �t the temperature models by site separately, be-

cause the presence of arti�cial heating from nuclear power plants warranted complicated inter-124
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actions between time, source and site in a global model, and those models did not converge. We

�t our models in R version 4.2.3 (R Core Team 2020) using the R package sdmTMB (Anderson et al.126

2022, 2021) (version 0.3.0.9002), which uses mgcv (Wood 2017) to implement penalized smooths

as random e�ects, and TMB (Kristensen et al. 2016) to estimate parameters via maximum marginal128

likelihood and the Laplace approximation to integrate over random e�ects.

We assessed convergence by con�rming that the maximum absolute gradient with respect130

to all �xed e�ects was < 0.001 and that the Hessian matrix was positive-de�nite. We evaluated

�t by visually inspecting QQ-plots (Fig. S7) of randomized quantile residuals based on MCMC132

draws (Anderson et al. 2022, Rufener et al. 2021) (Fig. S7). From these models, we predicted daily

temperatures (Figs. S8, S9) (for the ”logger” level) and then averaged these across year to acquire134

a covariate to be used to the cohort-speci�c von Bertalan�y growth coe�cients (Fig. 2).

To estimate how von Bertalan�y growth coe�cients were related to temperature we used the136

Sharpe-School�eld model (School�eld et al. 1981, Pad�eld et al. 2020), which can be viewed as an

extension of the Arrhenius equation to account also for deactivation of rates with temperature.138

We used a mixed-e�ects version of it to allow site-speci�c parameters (as we were interested in

local temperature optima), assuming Student-t distributed residuals to account for extreme obser-140

vations:

:ğ ∼ Student-t(` Ġ [ğ ], q, a) (4)

`ğ =
:0Ġ4

ā Ġ (
1

ġĐę
− 1

ġĐ
)

1 + 4
āℎĠ

( 1

ġĐℎĠ
− 1

ġĐ
)

(5)

:0Ġ ∼ N(`ġ0Ġ , fġ0Ġ ) (6)

� Ġ ∼ N(`ā Ġ
, fā Ġ

) (7)

�ℎ ∼ N(`āℎ , fāℎ ) (8)

)ℎ Ġ
∼ N(`ĐℎĠ

, fĐℎĠ
) (9)

where ` Ġ [ğ ] is the mean for site 9 , q is the scale and a is the degrees of freedom parameter. In142

equation 5, :0 is the growth coe�cient at the reference temperature )ÿ (here set to 8°C), � Ġ [eV]

is the activation energy, �ℎ Ġ
[eV] characterises the decline in the rate past the peak temperature,144

and )ℎ Ġ
[°C] is the temperature at which the rate is reduced to half of the rate it would have in
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the absence of deactivation due to high temperatures. We �t the model in a Bayesian framework.146

�is allows us to �t site-varying parameters, and to use informative priors. Since we use a mech-

anistic model describing the temperature dependence of biological rates, we de�ned priors based148

on probable values of these parameters and their constraints. To ensure our priors were reason-

able, we conducted prior predictive checks (Fig. S1) (Wesner and Pomeranz 2021), which is the150

prediction of the model using only the prior. We also evaluated prior versus posterior distribu-

tions and summaries of these (Fig. S2), and conducted sensitivity analyses with respect to our152

choice of priors (Fig. S3). A�er this procedure, we ended up with the following normal priors:

`ġ0Ġ ∼ N(0.3, 0.5), `ā Ġ
∼ N(0.8, 1), `āℎ ∼ N(2, 1), and `ĐℎĠ

∼ N(10, 5), for the population-level154

parameters. �e priors were truncated to be positive. All distributional parameters (f) were given

the same Student-t(0, 2.5, 3) prior. To compare local, site-speci�c Sharpe-School�eld curves and156

their optimum temperatures with a global curve, we also ��ed a pooled Sharpe-School�eld model

where parameters did not vary by site. We used the same set of priors for the mixed (on the pop-158

ulation level parameters) and the pooled model. �is was done to evaluate whether the deviation

from the global optimum could be explained by temperature. �e models were �t using the R160

package brms (Bürkner 2018, 2017). We used 4000 iterations and 4 chains. Model convergence and

�t were assessed by ensuring potential scale reduction factors were close to 1, suggesting all four162

chains converged to a common distribution (Gelman et al. 2003), as well as by visually inspecting

QQ-plots based on Bayesian probability residuals, calculated as in the tidybayes R package (Kay164

2019) and posterior predictive checks (Fig. S4).

Results166

We �nd large inter-annual �uctuations in annual average temperatures between sites, and increas-

ing trends over time in some sites (Fig. 2). Due to the spatial and temporal range of data, and the168

arti�cial heating from nuclear power plant cooling water, we observe large contrasts in average

temperatures, which were not clearly related to latitude (Fig. 1). Across all sites, mean annual170

average temperatures range from 4°C–16°C, and the largest range within a site (over time) is 6°C–

16°C (site BT). In some sites and years, this means temperatures exceeded the predicted optimum172
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growth temperature from the pooled model (Fig. 2). Individual growth trajectories of �sh showed

large variation within and across sites (Fig. 3).174

Our results show that site-speci�c Sharpe-School�eld curves alignwell with the pooled (global)

temperature-dependence curve (Fig. 4). �is means that in general, populations in relatively cold176

sites show positive relationships of body growth with temperature, whereas populations in rel-

atively warm sites show negative relationships with temperature, but all conform to an overall178

”global” temperature-dependence. Furthermore, negative impacts of temperature on growth rate

are largely found as a result of arti�cial warming, although some sites with warming due to climate180

change have the highest observed temperatures around the predicted optimum, suggesting that

further warming would no longer increase growth in these sites. �e global predictions show that182

the growth coe�cients are similar at the coldest (4°C) and the warmest temperatures (16°C), with

an overall optimum around 9°C (Fig. 4). Hence, we observe only a minor asymmetry in the growth184

curve, where the steepness of the curve is slightly larger at above- compared to below-optimum

temperatures.186

We �nd that 6 of 10 sites have median temperature optima within the 95% credible intervals

of the pooled model, although all site-speci�c optimum temperatures overlap in their uncertainty188

intervals with the pooled optimum temperature (Fig. 5). Importantly, while there is some variation

among sites in the estimated optimum growth temperature, this variation is not systematically190

related to temperature (Fig. 5), as would have been the prediction if perch in the di�erent sites had

adapted their growth rate to be maximized in the experienced environmental conditions.192

Discussion

We show that population-speci�c growth-temperature curves map closely onto a pooled ’global’194

growth-temperature curve across all populations, and that residual variation in estimated population-

speci�c thermal optima of body growth is not systematically related to local environmental tem-196

peratures. We thus �nd no evidence for local adaptation of growth variation with temperature,

despite considerable di�erences in the average temperatures that these populations experience in198

their natural environment. Our results instead suggest that populations in relatively cold environ-

ments will bene�t from climate warming via increased body growth rates up to a certain ’global’200
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temperature optimum, whereas populations in relatively warm environments will experience re-

duced growth due to the negative e�ects of warming beyond their optimum growth temperature.202

In line with our results, Neuheimer et al. (2011) found that for populations of banded mor-

wong (Cheilodactylus spectabilis), increasing temperatures were associated with reduced growth204

rates for the population at the warm edge of the species’ distribution (New Zealand) but higher

growth rates for populations at the colder edge of the range (Tasmania). Similarly, Morrongiello206

and �resher (2015) found that body growth of tiger �athead in populations o� Southeast Aus-

tralia increased with temperature but not in the warmest area. Analogously, English et al. (2022)208

found that ground�sh in the Northeast Paci�c o�en responded positively to warming if they were

in cool locations, and negatively if they were in warm locations (where both biomass and tem-210

perature change were expressed as velocities). �ese and our �ndings illustrate the importance

of testing for population-speci�c temperature-sensitivities when studying species responses to212

warming, and of accounting for both the rate of climate change and the baseline temperature

conditions.214

�is growth-temperature pa�ern arises due to an absence of local thermal adaptation in growth.

�e ability to adapt to local environmental conditions allows populations to expand their range216

and be�er cope with spatially varying environmental conditions (Kirkpatrick and Barton 1997).

Changes in trait-temperature relationships due to thermal adaptation in natural populations are218

expected in response to climate warming (Angille�a 2009), and previous studies have shown that

local adaptation in physiological traits can facilitate di�erent thermal optima among populations220

(e.g., Atlantic cod, Righton et al. (2010)). However, adaptive capacities and the pace of thermal

adaptation di�er among species (Martin et al. 2023) and depend on life-history trade-o�s, heri-222

tability, underlying genetic variation, the potential for gene �ow (Kirkpatrick and Barton 1997),

and environmental conditions. �e apparent lack of contemporary thermal adaptation in Baltic224

Sea perch, despite low gene �ow between populations due to limited dispersal and movement

(Bergek and Björklund 2009), indicates limitations in evolutionary changes to local temperature.226

�is suggests that similar factors may also limit future thermal adaptation that would allow local

populations to be�er withstand changing temperatures. A low adaptive capacity implies that body228

growth rates in populations already experiencing temperatures around or above their thermal op-

timum will decline with further warming. �is will likely result in lower biomass production in230
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warm environments, as observed, for example, across spatial temperature gradients (van Dorst

et al. 2019).232

Our study also illustrates the importance of accounting for unimodal temperature dependen-

cies. O�en simpler models like the exponential Arrhenius equation are used to model biological234

and ecological processes (e.g., Vasseur and McCann (2005), Savage et al. (2004), Lindmark et al.

(2018)), under the assumption that the ’biologically relevant temperature range’ which species oc-236

cupy is below their optimum. However, across all areas, we �nd that as many as 40% of all data

points (growth coe�cients, :) are above the estimated site-speci�c optimum (35% if omi�ing sites238

with an arti�cially extended temperature range due to nuclear power plants). �is echoes the

point raised many times (e.g., Englund et al. (2011)), that exponential temperature dependencies240

may be of limited use. Growth rates are only exponentially related to temperature even further

from the optimum, i.e., below the in�ection point of the unimodal curve. We therefore recom-242

mend researchers to consider that temperatures close to the optimum may in fact be biologically

relevant, in which case models other than the Arrhenius equation are more appropriate.244

�ere are a number of limitations to our analysis. For instance, growth in temperate regions

varies over the year and it is therefore di�cult to know which temperature variable that is best246

to use to relate to cohort-speci�c growth coe�cients. Given also that growing season lengths

di�er in our data set due to di�erent light conditions, we opted to use a simple annual average.248

Degree days (the integral of time above a certain temperature threshold) is an o�en recommended

metric (Neuheimer andGrønkjær 2012), but there is some uncertainty in temperatures belowwhich250

growth does not occur, even for a well studied species like perch (Karås and �oresson 1992), and

whether or not that varies between sites. Lastly, it is not straightforward to formally test for252

di�erences in thermal optimum between populations, and we mainly base our interpretation on

the lack of systematic variation in site-speci�c optimum temperatures for growth, which appear254

to not be related to the average temperature at each site.

In summary, our �ndings suggest that annual mean temperatures are either approaching or256

have surpassed optimum growth temperatures for the populations examined here (Figs. 2 and

5). Our ability to detect this pa�ern relies heavily on the length of the time series as well as the258

unusually large temperature contrasts due to warm water pollution from nuclear power plants,

which highlights the importance of long term environmental monitoring across environmental260
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gradients. Considering the lack of evidence for recent local adaptation to temperature, we expect

that adverse e�ects of continued warming on Baltic Sea perch will accumulate and decrease both262

individual and population growth rates in these populations. Similar constraints on adaptive ca-

pacities in response to warming can be expected for other species of �sh, and ectotherms more264

generally.
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Figure 1: Map of sampling locations (le�) and time series of the median von Bertalan�y growth
coe�cients by cohort (right), where colours are assigned based on the minimum temperature in
the growth time series, ranging from blue (coldest) to red (warmest). Circle size corresponds to
the number of individuals in that cohort and site.
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Figure 2: Annual average sea surface temperature as predicted by the GAM-model ��ed to three
temperature sources. Colour indicates temperature. �e solid red horizontal line depicts the me-
dian optimum temperature, calculated from 10.000 draws from the expectation of the posterior
predictive distribution from the Sharpe-School�eld model ��ed to all sites pooled, and the dashed
red horizontal lines depict the 5th and 95th percentile of the same distributions of optimum tem-
peratures. Areas SI HA and BT have been heated by warm water discharge from nuclear power
plants since 1972 and 1980, respectively.
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Figure 3: Length plo�ed against age for all sites (A). Points are data for 30 randomly selected
individuals (indicated by colour) in each site, and lines are the predicted von Bertalan�y growth
curve. Panel B depicts the distribution of von Bertalan�y growth coe�cients : , where colours are
based on the minimum temperature across all years, as violins, and quantiles depicted as boxplots.
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Figure 4: von Bertalan�y growth coe�cients as a function of temperature. Each point depicts
the median growth coe�cient for a cohort and site, and the coloured lines depict the median of
draws from the expectation of the posterior predictive distribution from the mixed e�ect Sharpe-
School�eldmodel for each site. �e black dashed lines depict the prediction from the pooledmodel.
For uncertainty around site-speci�c predictions, see Fig. S5.
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Figure 5: Ridgeplot depicting the distribution of site-speci�c optimum curves (temperature where
the predicted growth coe�cient is maximised) from themixed e�ect Sharpe-School�eld model (A),
and the deviation from the pooled optimum by site as a function of temperature (B). In panel A, the
distributions of optimum temperatures are from 10.000 draws from the expectation of the posterior
predictive distribution over the full temperature range. �e horizontal dashed grey line depicts the
optimum from the pooled Sharpe-School�eld model, and the grey rectangles indicate the 5th and
95th percentile (wide rectangle) and the 10th and 90th percentile (narrower rectangle) from the
same distribution of draws. Points depict the median optimum temperature in that site, and the
vertical lines are the 90% credible interval. Colours are based on the minimum temperature across
all years. In panel B, the points indicate the di�erence between the median of the site-speci�c and
the pooled model, and the vertical lines depict the di�erence between the 10th and 90th quantiles
of site speci�c optima and the median of the pooled optimum.
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