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Abstract

Body size is a key trait that has been declining in many biological assemblages, partly due to
within-species changes in individual growth rates and mean body size attributed to climate warm-
ing. Yet, robust tests of warming-effects in natural populations are scarce due to a lack of long time
series with large temperature contrasts. We compiled length-at-age data for Eurasian perch (Perca
fluviatilis) from 10 populations along the Baltic Sea coast between 1953-2015 (23605 individuals).
By fitting von Bertalanffy growth curves to individual length-at-age trajectories, we estimated
growth-temperature relationships across large ranges of environmental temperature. We iden-
tify a non-linear relationship between growth and temperature, but find little evidence for local
adaptation in thermal response curves. Cold populations show a positive response whereas warm
populations show a negative response to increasing temperatures. Understanding population-
specific effects of warming on growth and size is critical for predicting climate impacts to species

and ecosystems.
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Introduction

Body growth is an individual-level trait that is relevant to ecology across all levels of biological
organisation (Barneche et al. 2019, Peters 1983). In aquatic systems in particular, body growth is
sensitive to environmental conditions, is related to individual fitness (Sibly et al. 2018), determines
species interactions and dictates how much energy is transferred between trophic levels (Lindeman
1942). It is also directly related to body size, which is a key ecological trait (Peters 1983) that is
correlated with diet, survival and reproductive success (Barneche et al. 2018) and largely shapes
size-dependent species interactions (Ursin 1973, Werner and Gilliam 1984).

In ectotherms such as fish, environmental temperature has a large influence on body growth
via the effects on metabolic rate (Jobling 1997, Brown et al. 2004). For species living at temperatures
cooler than that which maximizes growth, as commonly observed (Lindmark et al. 2022, Tewks-
bury et al. 2008), a slight increase in temperature is likely to be beneficial to growth. Body growth
or size-at-age of fish in natural environments, is commonly observed to correlate positively with
temperature, especially for small or young fish (Huss et al. 2019, Lindmark et al. 2023, Baudron
et al. 2014, Thresher et al. 2007, Oke et al. 2022). The effects on old fish, however, often are smaller
or negative (Ikpewe et al. 2020, Morrongiello et al. 2014, van Dorst et al. 2019), although there
are exceptions (Lindmark et al. 2023) and responses can vary within populations, e.g., with sex
(van Dorst et al. 2023). Experimental and modelling studies have pointed to that size-dependent
responses of growth and size could be due to optimum growth temperatures being lower for larger
fish (Lindmark et al. 2022), or that warming is linked to earlier maturation, after which energy is
increasingly allocated to reproduction over somatic growth (Wootton et al. 2022, Niu et al. 2023),
or both (Audzijonyte et al. 2022). In natural systems, other factors such as competition and food
limitation also influence growth directly (Ohlberger et al. 2023, Oke et al. 2020, Cline et al. 2019),
and indirectly by reducing the optimal growth temperatures (Brett 1971, Brett et al. 1969, Huey
and Kingsolver 2019). To understand fish responses to changing temperatures, it is therefore im-
portant to evaluate growth-temperature relationships in natural systems, and across gradients of
environmental temperature.

The ability to quantify the impacts of temperature change on growth and size, or other ecolog-
ical traits, is often limited by relatively short time series that contain small temperature contrasts

(White 2019, Freshwater et al. 2023). As an alternative, studies often use space-for-time approaches
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(van Dorst et al. 2019, van Denderen et al. 2020, Morrongiello et al. 2014) to estimate the effects
of temperature on growth. However, it is difficult to know to what extent we can infer effects of
warming in a given location from the temperature effects estimated across locations over a limited
time (Perret et al. 2024). Both the estimates (van Denderen et al. 2020) and the form of the growth-
temperature relationship may differ. For example, responses to warming tend to be unimodal,
whereas they can be more linear or exponential across all populations of a species (van Denderen
et al. 2020). For projecting impacts of warming at the species level, another missing piece is to
understand the extent of local adaptation to the experienced thermal environments (Eliason et al.
2011). That is, to what extent populations conform to a global species-wide thermal performance
curve, versus having developed local thermal response curves with population-specific optima.
Testing this requires time series with large temperature contrasts both within and between mul-
tiple populations in the wild.

Here, we seek to understand how climate warming is affecting the growth of freshwater
fish, using Perca fluviatilis, hereafter perch, as a case study. Perch is a widely distributed, non-
commercially exploited fish with a stationary lifestyle that is common along the Swedish Baltic
Sea coast, which makes it an ideal species for analyzing effects of temperature change on growth
across environmental gradients. Specifically, we quantify growth-temperature relationships from
10 populations and evaluate if there is support for site-specific temperature-optima for growth, or
if all populations’ response curves can be mapped onto a global growth-temperature relationship.
To address this question, we collated size-at-age data from back-calculated growth-trajectories for
23 605 individual fish over seven decades, and fit statistical models relating cohort-specific growth

estimates to reconstructed temperatures.

Methods

Data

We compiled individual-level size-at-age from perch and sea surface temperature data from 10 sites
along the Swedish Baltic Sea coast. The longest time series started in 1953 and the shortest in 1985,
and the average time series length was 34 years, which can be compared to an average generation

time of 6 years (Froese and Pauly 2010) (Fig. 1). The temperature contrast in this data set is
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great both within each site and across sites (Fig. 2), due to long time series and a large latitudinal
gradient. Also contributing to the large temperature range is the inclusion of sites artificially
heated by warm water discharge from nearby nuclear power plants (sites (SI.HA and BT in Fig. 2).
The size-at-age data include information on age (at catch), total length (at catch, in millimetres),
sex, and back-calculated length-at-age (in millimetres). Back-calculated length-at-age was derived
from annuli rings on the operculum bones (part of the gill lid), with control counts of age done on
otoliths (ear stones). This method is common in fisheries (Essington et al. 2022, Morrongiello and
Thresher 2015), and is based on an assumed power-law relationship between the distance of annuli
rings and fish length (Thoresson 1996), which allows reconstruction of the individual’s body length
at each age when annuli rings where formed. Individual-level data originate from different fish
monitoring programs using gill-nets. Individuals sampled for age and growth were selected from
the total catch from the gill net survey in each site using random or length-stratified sub-sampling
of the catch, but information on stratification method could not be retrieved for all data.

We reconstructed local temperatures at each fishing site using three types of temperature data:
automatic temperature loggers deployed near the fishing sites, manually measured temperatures
at the time of fishing, and extended reconstructed sea surface temperature, ERRST (Huang et al.
2017). We chose these three types because they are complementary. Logger data provide daily
temperatures during the ice-free season but do not go back as far in time as the growth data.
Temperatures at the fishing event give a snapshot temperature at the site, and go back as far in
time as we have fishing data. However, temperatures during fishing may not be representative
of the whole growth season, and since we work with back-calculated length-at-age, we also need
temperatures for years prior to fishing. Therefore, we also used modelled temperature time series
(ERRST), which both provide good seasonal coverage and extend far back in time, but have a much
coarser spatial resolution than the other sources. These three temperature data sources overlap in

time (Fig. S6), which allowed us to standardize the data using a statistical model (see next section).

Statistical analyses

To characterise individual growth rates, we fit von Bertalanffy growth equations (von Bertalanffy

1938) to the multiple observations of back-calculated length-at-age for each individual using non-
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linear least squares:

L; = Loo(1 — e7F99¢), (1)

where L; is the size [mm)] at age ¢ [years], Lo, the asymptotic size [mm], and k is the von Bertalanfty
“growth” coefficient [year™']. It describes the time it takes to reach the asymptotic size, and is
hence not a growth rate per se (which has unit size per time), but is often used as a proxy for it.
We only used length-at-age, meaning only length at a back calculated integer age (i.e., length at
the formation of the age-ring), because sampling has occurred in different times of the year. We
fit this model to every individual age 5 or older to ensure enough data points per individual to
reliably fit the model. The filtering resulted in 142 023 data points across 23 605 individuals. We
then calculated the median k by cohort and site across individuals (resulting in n = 306 k values)
(Fig. 1).

In order to relate the site- and cohort-specific growth coefficients to temperature over time,
we reconstructed average annual temperature sea surface temperature (sst) for each site using
generalized additive models assuming Student-t distributed residuals to account for extreme ob-

servations:

sst; ~ Student-t(y;, ¢, v) (2)

Ui = ap + f(day) + source (3)

where y; is the mean sst, ¢ is the scale and v is the degrees of freedom parameter. v was not es-
timated within the model, but found by iteratively testing different values and visually inspecting
QQ-plots to see how well the model could capture the heavy tails in the data. We used two sets
of values, v = 6 for sites BS (Brunskar), BT (Biotest), FB (Finbo), FM (Forsmark), MU (Musko), RA
(Ranea) and SI_EK (Simpevark Eko) and v = 10 for HO (Holmén), JM (Kvadofjarden), and ST HA
(Simpevarp Hamnefjarden) (Fig. S7). The parameter «; is the mean sst of year ¢ (included as fac-
tor), f(day) is a global smooth implemented as a penalized cyclic spline (i.e., the ends match—in
this case December 31°' and January 1*') for the effect of day-of-the-year, and source is the mean
temperature for each temperature source. We fit the temperature models by site separately, be-

cause the presence of artificial heating from nuclear power plants warranted complicated inter-
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actions between time, source and site in a global model, and those models did not converge. We
fit our models in R version 4.2.3 (R Core Team 2020) using the R package sdmTMB (Anderson ef al.
2022, 2021) (version 0.3.0.9002), which uses mgcv (Wood 2017) to implement penalized smooths
as random effects, and TMB (Kristensen et al. 2016) to estimate parameters via maximum marginal
likelihood and the Laplace approximation to integrate over random effects.

We assessed convergence by confirming that the maximum absolute gradient with respect
to all fixed effects was < 0.001 and that the Hessian matrix was positive-definite. We evaluated
fit by visually inspecting QQ-plots (Fig. S7) of randomized quantile residuals based on MCMC
draws (Anderson ef al. 2022, Rufener et al. 2021) (Fig. S7). From these models, we predicted daily
temperatures (Figs. S8, S9) (for the "logger” level) and then averaged these across year to acquire
a covariate to be used to the cohort-specific von Bertalanffy growth coefficients (Fig. 2).

To estimate how von Bertalanffy growth coefficients were related to temperature we used the
Sharpe-Schoolfield model (Schoolfield et al. 1981, Padfield et al. 2020), which can be viewed as an
extension of the Arrhenius equation to account also for deactivation of rates with temperature.
We used a mixed-effects version of it to allow site-specific parameters (as we were interested in
local temperature optima), assuming Student-t distributed residuals to account for extreme obser-

vations:

ki ~ Student-t(y;(;), ¢, v) (4)
kojeEj(ﬁ_ﬁ)

Hi = Eh.(#—i) (5)
1+e j kThj kT

kOj NN(ﬂkoj’o'koj) (6)

Ej ~ N(pg;, ox;) (7)

Eh ~ N(,uEha O.Eh) (8)

Ty ~ N(uz, > om,,) (9)

where pj(;] is the mean for site j, ¢ is the scale and v is the degrees of freedom parameter. In
equation 5, ko is the growth coefficient at the reference temperature Tc (here set to 8°C), E; [eV]
is the activation energy, Ej; [eV] characterises the decline in the rate past the peak temperature,

and Ty, [°C] is the temperature at which the rate is reduced to half of the rate it would have in
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the absence of deactivation due to high temperatures. We fit the model in a Bayesian framework.
This allows us to fit site-varying parameters, and to use informative priors. Since we use a mech-
anistic model describing the temperature dependence of biological rates, we defined priors based
on probable values of these parameters and their constraints. To ensure our priors were reason-
able, we conducted prior predictive checks (Fig. S1) (Wesner and Pomeranz 2021), which is the
prediction of the model using only the prior. We also evaluated prior versus posterior distribu-
tions and summaries of these (Fig. S2), and conducted sensitivity analyses with respect to our
choice of priors (Fig. S3). After this procedure, we ended up with the following normal priors:
Hry, ~ N(0.3,0.5), HE; ~ N(0.8,1), pg, ~ N(2,1), and b, ~ N(10,5), for the population-level
parameters. The priors were truncated to be positive. All distributional parameters (o) were given
the same Student-t(0, 2.5, 3) prior. To compare local, site-specific Sharpe-Schoolfield curves and
their optimum temperatures with a global curve, we also fitted a pooled Sharpe-Schoolfield model
where parameters did not vary by site. We used the same set of priors for the mixed (on the pop-
ulation level parameters) and the pooled model. This was done to evaluate whether the deviation
from the global optimum could be explained by temperature. The models were fit using the R
package brms (Biirkner 2018, 2017). We used 4000 iterations and 4 chains. Model convergence and
fit were assessed by ensuring potential scale reduction factors were close to 1, suggesting all four
chains converged to a common distribution (Gelman et al. 2003), as well as by visually inspecting
QQ-plots based on Bayesian probability residuals, calculated as in the tidybayes R package (Kay

2019) and posterior predictive checks (Fig. S4).

Results

We find large inter-annual fluctuations in annual average temperatures between sites, and increas-
ing trends over time in some sites (Fig. 2). Due to the spatial and temporal range of data, and the
artificial heating from nuclear power plant cooling water, we observe large contrasts in average
temperatures, which were not clearly related to latitude (Fig. 1). Across all sites, mean annual
average temperatures range from 4°C-16°C, and the largest range within a site (over time) is 6°C-

16°C (site BT). In some sites and years, this means temperatures exceeded the predicted optimum


https://doi.org/10.1101/2024.01.17.575983
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.17.575983; this version posted January 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

growth temperature from the pooled model (Fig. 2). Individual growth trajectories of fish showed
large variation within and across sites (Fig. 3).

Our results show that site-specific Sharpe-Schoolfield curves align well with the pooled (global)
temperature-dependence curve (Fig. 4). This means that in general, populations in relatively cold
sites show positive relationships of body growth with temperature, whereas populations in rel-
atively warm sites show negative relationships with temperature, but all conform to an overall
“global” temperature-dependence. Furthermore, negative impacts of temperature on growth rate
are largely found as a result of artificial warming, although some sites with warming due to climate
change have the highest observed temperatures around the predicted optimum, suggesting that
further warming would no longer increase growth in these sites. The global predictions show that
the growth coefficients are similar at the coldest (4°C) and the warmest temperatures (16°C), with
an overall optimum around 9°C (Fig. 4). Hence, we observe only a minor asymmetry in the growth
curve, where the steepness of the curve is slightly larger at above- compared to below-optimum
temperatures.

We find that 6 of 10 sites have median temperature optima within the 95% credible intervals
of the pooled model, although all site-specific optimum temperatures overlap in their uncertainty
intervals with the pooled optimum temperature (Fig. 5). Importantly, while there is some variation
among sites in the estimated optimum growth temperature, this variation is not systematically
related to temperature (Fig. 5), as would have been the prediction if perch in the different sites had

adapted their growth rate to be maximized in the experienced environmental conditions.

Discussion

We show that population-specific growth-temperature curves map closely onto a pooled ’global’
growth-temperature curve across all populations, and that residual variation in estimated population-
specific thermal optima of body growth is not systematically related to local environmental tem-
peratures. We thus find no evidence for local adaptation of growth variation with temperature,
despite considerable differences in the average temperatures that these populations experience in
their natural environment. Our results instead suggest that populations in relatively cold environ-

ments will benefit from climate warming via increased body growth rates up to a certain ’global’
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temperature optimum, whereas populations in relatively warm environments will experience re-
duced growth due to the negative effects of warming beyond their optimum growth temperature.

In line with our results, Neuheimer et al. (2011) found that for populations of banded mor-
wong (Cheilodactylus spectabilis), increasing temperatures were associated with reduced growth
rates for the population at the warm edge of the species’ distribution (New Zealand) but higher
growth rates for populations at the colder edge of the range (Tasmania). Similarly, Morrongiello
and Thresher (2015) found that body growth of tiger flathead in populations off Southeast Aus-
tralia increased with temperature but not in the warmest area. Analogously, English et al. (2022)
found that groundfish in the Northeast Pacific often responded positively to warming if they were
in cool locations, and negatively if they were in warm locations (where both biomass and tem-
perature change were expressed as velocities). These and our findings illustrate the importance
of testing for population-specific temperature-sensitivities when studying species responses to
warming, and of accounting for both the rate of climate change and the baseline temperature
conditions.

This growth-temperature pattern arises due to an absence of local thermal adaptation in growth.
The ability to adapt to local environmental conditions allows populations to expand their range
and better cope with spatially varying environmental conditions (Kirkpatrick and Barton 1997).
Changes in trait-temperature relationships due to thermal adaptation in natural populations are
expected in response to climate warming (Angilletta 2009), and previous studies have shown that
local adaptation in physiological traits can facilitate different thermal optima among populations
(e.g., Atlantic cod, Righton et al. (2010)). However, adaptive capacities and the pace of thermal
adaptation differ among species (Martin et al. 2023) and depend on life-history trade-offs, heri-
tability, underlying genetic variation, the potential for gene flow (Kirkpatrick and Barton 1997),
and environmental conditions. The apparent lack of contemporary thermal adaptation in Baltic
Sea perch, despite low gene flow between populations due to limited dispersal and movement
(Bergek and Bjorklund 2009), indicates limitations in evolutionary changes to local temperature.
This suggests that similar factors may also limit future thermal adaptation that would allow local
populations to better withstand changing temperatures. A low adaptive capacity implies that body
growth rates in populations already experiencing temperatures around or above their thermal op-

timum will decline with further warming. This will likely result in lower biomass production in
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warm environments, as observed, for example, across spatial temperature gradients (van Dorst
et al. 2019).

Our study also illustrates the importance of accounting for unimodal temperature dependen-
cies. Often simpler models like the exponential Arrhenius equation are used to model biological
and ecological processes (e.g., Vasseur and McCann (2005), Savage et al. (2004), Lindmark et al.
(2018)), under the assumption that the *biologically relevant temperature range’ which species oc-
cupy is below their optimum. However, across all areas, we find that as many as 40% of all data
points (growth coefficients, k) are above the estimated site-specific optimum (35% if omitting sites
with an artificially extended temperature range due to nuclear power plants). This echoes the
point raised many times (e.g., Englund et al. (2011)), that exponential temperature dependencies
may be of limited use. Growth rates are only exponentially related to temperature even further
from the optimum, i.e., below the inflection point of the unimodal curve. We therefore recom-
mend researchers to consider that temperatures close to the optimum may in fact be biologically
relevant, in which case models other than the Arrhenius equation are more appropriate.

There are a number of limitations to our analysis. For instance, growth in temperate regions
varies over the year and it is therefore difficult to know which temperature variable that is best
to use to relate to cohort-specific growth coefficients. Given also that growing season lengths
differ in our data set due to different light conditions, we opted to use a simple annual average.
Degree days (the integral of time above a certain temperature threshold) is an often recommended
metric (Neuheimer and Grenkjeer 2012), but there is some uncertainty in temperatures below which
growth does not occur, even for a well studied species like perch (Karas and Thoresson 1992), and
whether or not that varies between sites. Lastly, it is not straightforward to formally test for
differences in thermal optimum between populations, and we mainly base our interpretation on
the lack of systematic variation in site-specific optimum temperatures for growth, which appear
to not be related to the average temperature at each site.

In summary, our findings suggest that annual mean temperatures are either approaching or
have surpassed optimum growth temperatures for the populations examined here (Figs. 2 and
5). Our ability to detect this pattern relies heavily on the length of the time series as well as the
unusually large temperature contrasts due to warm water pollution from nuclear power plants,

which highlights the importance of long term environmental monitoring across environmental
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gradients. Considering the lack of evidence for recent local adaptation to temperature, we expect
that adverse effects of continued warming on Baltic Sea perch will accumulate and decrease both
individual and population growth rates in these populations. Similar constraints on adaptive ca-
pacities in response to warming can be expected for other species of fish, and ectotherms more

generally.
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Figure 1: Map of sampling locations (left) and time series of the median von Bertalanfty growth
coeflicients by cohort (right), where colours are assigned based on the minimum temperature in
the growth time series, ranging from blue (coldest) to red (warmest). Circle size corresponds to
the number of individuals in that cohort and site.
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Figure 2: Annual average sea surface temperature as predicted by the GAM-model fitted to three
temperature sources. Colour indicates temperature. The solid red horizontal line depicts the me-
dian optimum temperature, calculated from 10.000 draws from the expectation of the posterior
predictive distribution from the Sharpe-Schoolfield model fitted to all sites pooled, and the dashed
red horizontal lines depict the 5™ and 95™ percentile of the same distributions of optimum tem-
peratures. Areas SI_.HA and BT have been heated by warm water discharge from nuclear power
plants since 1972 and 1980, respectively.
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Figure 3: Length plotted against age for all sites (A). Points are data for 30 randomly selected
individuals (indicated by colour) in each site, and lines are the predicted von Bertalanffy growth
curve. Panel B depicts the distribution of von Bertalanfty growth coefficients k, where colours are
based on the minimum temperature across all years, as violins, and quantiles depicted as boxplots.
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Figure 4: von Bertalanffy growth coefficients as a function of temperature. Each point depicts
the median growth coefficient for a cohort and site, and the coloured lines depict the median of
draws from the expectation of the posterior predictive distribution from the mixed effect Sharpe-
Schoolfield model for each site. The black dashed lines depict the prediction from the pooled model.
For uncertainty around site-specific predictions, see Fig. Ss.
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Figure 5: Ridgeplot depicting the distribution of site-specific optimum curves (temperature where
the predicted growth coefficient is maximised) from the mixed effect Sharpe-Schoolfield model (A),
and the deviation from the pooled optimum by site as a function of temperature (B). In panel A, the
distributions of optimum temperatures are from 10.000 draws from the expectation of the posterior
predictive distribution over the full temperature range. The horizontal dashed grey line depicts the
optimum from the pooled Sharpe-Schoolfield model, and the grey rectangles indicate the 5™ and
95" percentile (wide rectangle) and the 10™ and 9o percentile (narrower rectangle) from the
same distribution of draws. Points depict the median optimum temperature in that site, and the
vertical lines are the 9o% credible interval. Colours are based on the minimum temperature across
all years. In panel B, the points indicate the difference between the median of the site-specific and
the pooled model, and the vertical lines depict the difference between the 10" and go'® quantiles
of site specific optima and the median of the pooled optimum.
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