

1 Signatures of adaptation at key insecticide resistance loci in *Anopheles gambiae* in Southern
2 Ghana revealed by low-coverage WGS.

3
4 Tristan P.W. Dennis^{1,2*}✉, John Essandoh^{1,3*}, Barbara K. Mable², Mafalda S. Viana², Alexander
5 E. Yawson⁴, David. Weetman¹
6

7 ¹Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
8

9 ²School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow,
UK

10 ³Department of Conservation Biology and Entomology, School of Biological Sciences,
11 University of Cape Coast, Cape Coast, Ghana

12 ⁴Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape
13 Coast, Cape Coast, Ghana
14

15 * Equal author contribution

16 ✉ Corresponding author; tristanpwdennis@gmail.com
17

18 **Abstract**

19 Resistance to insecticides and adaptation to a diverse range of environments present
20 challenges to *Anopheles gambiae* s.l. mosquito control efforts in sub-Saharan Africa. Whole-
21 genome-sequencing is often employed for identifying the genomic basis underlying adaptation
22 in *Anopheles*, but remains expensive for large-scale surveys. Low-coverage whole-genome-
23 sequencing (lcWGS) can identify regions of the genome involved in adaptation at a lower cost,
24 but is currently untested in *Anopheles* mosquitoes. Here, we use lcWGS to investigate
25 population genetic structure and identify signatures of local adaptation in *Anopheles* mosquitoes
26 across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion,
27 with *Anopheles coluzzii* and *Anopheles gambiae* populations largely displaying the hallmarks of
28 large, unstructured populations. However, we find signatures of selection at insecticide
29 resistance (IR) loci that appear ubiquitous across ecoregions in *An. coluzzii*, and strongest in
30 forest ecoregions in *An. gambiae*. In the IR gene *Cyp9k1*, we find species-specific alleles under
31 selection, suggesting interspecific variation in the precise mechanism of resistance conferred by
32 *Cyp9k1*. Our study highlights resistance candidate genes in this region, and validates lcWGS,
33 potentially to very low coverage levels, for population genomics and exploratory surveys for
34 adaptation in *Anopheles* taxa.

35

36 **Introduction**

37 The *Anopheles gambiae* species complex is marked by incredible genetic diversity^{1,2}
38 that has likely contributed to its adaptation to a diverse range of naturally-occurring and
39 anthropogenic ecologies across sub-Saharan Africa. For example, *An. coluzzii* often breed in
40 water sources associated with human activity (e.g. irrigation ditches, reservoirs, rice fields), and
41 can have elevated pollution-tolerance^{3–5}. By contrast, *An. gambiae* prefer humid environments,
42 are highly anthropophilic, and tend to breed in transient, rain-dependent habitats⁶. Even within
43 species of the *An. gambiae* complex, local genetic and ecological adaptation^{7,8} and subsequent

44 variation in epidemiologically important traits, such as, resilience to aridity^{7,9–11}, host preference
45 and resting behaviour¹², seasonality and preference of breeding site^{6,7} all have important
46 implications for the design and implementation of vector surveillance and control programmes¹³.
47 Moreover, knowledge of how environmental and geographic factors constrain gene flow can
48 help to predict the spread of insecticide resistance (IR)^{14,15} or genetic control (e.g. gene drives)
49 through a population¹⁶.

50
51 Genomic signatures of local adaptation often manifest as regions of the genome or
52 polymorphisms displaying elevated genetic differentiation (*Fst*) among populations¹⁷. Whole-
53 genome-sequencing (WGS) enables identification of *Fst* outlier regions in genome scans¹⁸
54 which, in *Anopheles spp.*, have been instrumental in identifying the genomic determinants of
55 epidemiologically critical traits such as insecticide resistance¹⁹, introgression at IR loci between
56 *Anopheles* taxa^{15,20}, environmental adaptation^{9,21}, and cryptic speciation^{22,23}. However, broad-
57 range surveys indicate that *Anopheles* populations, particularly those in West Africa, are
58 exceptionally diverse and exhibit little structure over vast spatial scales^{1,2}, suggesting that
59 inference of population genetic structure over fine scales will be difficult. As such, it is possible
60 that with sample sizes sufficiently large to capture representative allele frequencies of massive,
61 diverse, populations, the expense of WGS may often be prohibitive. Low-coverage WGS
62 (lcWGS) is an approach that, by reducing per-individual sequencing coverage, enables
63 sequencing of more individuals and therefore capture of more accurate population-level allele
64 frequencies^{24,25}, while retaining individual information for many analyses that can use genotype
65 information inferred from likelihood-based methods^{26–28} (e.g. PCA, ADMIXTURE, relatedness,
66 inference of inbreeding). lcWGS offers promise especially for analyses relying on allele-
67 frequency estimation - for example, in the exploratory analysis of population structure, and
68 identification of regions of the genome under selection^{29,30} (e.g. in response to insecticide
69 selection pressures, or local adaptation to environment) as a prelude to further investigation of
70 specific genotypes and populations using deeper WGS. For example, lcWGS was used to
71 identify rapid adaptation in response to fisheries-induced size selection in Atlantic silversides³¹,
72 and environmental local adaptation at polymorphic inversions in the seaweed fly³². To date,
73 however, this approach has remained untested in *Anopheles* populations.

74
75 Local adaptation and ecological divergence are often associated with transitions
76 between biomes and environmental heterogeneity in *Anopheles gambiae*^{5,21,33–35}, as well as
77 other mosquitoes. For example in *An. funestus*, local adaptation to breeding in irrigated rice
78 fields vs natural swamps is concentrated in chromosomal inversions³⁸, as is adaptation to aridity
79 in *An. gambiae*^{9,10,21}. Insecticide pressures specific to certain habitats (e.g. land-use) may also
80 confer habitat-specific signals of local adaptation that are related to ecology^{4,5}. For example,
81 different agricultural practices are associated with variations in the frequencies of resistance
82 mechanisms in *An. gambiae* s.l. in Côte d'Ivoire³⁹. In southern Ghana, differentiation at
83 microsatellite loci between the four main ecozones in the region⁴⁰: mangrove, savannah, and
84 deciduous and rainforest ecoregions has been reported³³, suggesting that local adaptation to
85 ecology may be occurring in this region, though whether this is due to adaptation to the
86 environment, or to selection pressures associated with differential pesticide use, is currently
87 unknown.

88

89 Here, we conduct a IcWGS study of *Anopheles coluzzii* and *Anopheles gambiae*
90 samples collected from the four main ecoregions in southern Ghana⁴⁰ to answer the questions:
91 1) are there genomic signatures of adaptation to specific ecoregions? 2) Do insecticide
92 resistance loci show signs of structuring by ecoregion? 3) And does IcWGS represent a viable
93 option toward reduced-cost vector WGS studies?

94

95 Results

96

97 Population structure

98 A total of 314 *An. gambiae* s.l. larvae were sampled from across the four main
99 ecoregions of southern Ghana⁴⁰, (Figure 1): Rainforest (RF), Deciduous Forest (DF), Coastal
100 Savannah (CS) and Mangrove Swamp (MS). (N.B. due to a lack of *An. gambiae* samples from
101 MS, *An. gambiae* analyses were restricted to CS, DF and RF). Samples were whole-genome-
102 sequenced to a target depth-of-coverage of ~10X. Species PCR (see **Materials and Methods**)
103 identified 159 *Anopheles coluzzii* individuals and 155 *Anopheles gambiae* individuals
104 (**Supplementary Table 1**). Sample counts per-species and per-ecoregion are detailed in **Table**
105 **1**. To explore population structure and possible correspondence to ecoregion within the two
106 species, we ran PCA and ADMIXTURE on *An. coluzzii* (Figure 2A-C) and *An. gambiae* (Figure
107 2D-F) samples. *Anopheles coluzzii* exhibited a single large cluster corresponding to the majority
108 of the samples from all 4 ecoregions. PC1 and PC2, and PC3 and PC4, show outlier individuals
109 and small subclusters, the most divergent of which came from the DF zone (Figure 2A and
110 2B). ADMIXTURE analysis of chromosome arm 3L GLs from *An. coluzzii* supported the
111 presence of one major and one minor cluster, with no apparent clustering pattern by ecoregion
112 (Figure 2C), and only 5 individuals predominantly belonging to Cluster 2, corresponding to the
113 DF outgroup samples in 2A and 2B. PCA of *An. gambiae* 3L GLs showed most individuals
114 belonging to one large cluster, with outlying subclusters again corresponding to samples from
115 the DF zone (Figure 2D and E). ADMIXTURE analysis of chromosome arm 3L GLs from *An.*
116 *gambiae* supported the presence of one major and two minor clusters, with no apparent
117 clustering pattern by ecoregion. Unlike *An. coluzzii*, the minor admixture clusters did not
118 correspond to outlying subgroups in the PCA. (Figure 2F)

119

120

121 Diversity and differentiation by ecology and species

122 We characterised genomewide differentiation (*Fst*) within *An. coluzzii* and *An. gambiae*
123 between ecological zones. (Tables 2A-2B). Each pairwise *Fst* between *An. gambiae*
124 ecoregions was higher than those in *An. coluzzii* (Table 2). In *An. coluzzii*, *Fst* between forest
125 ecoregions (DF:RF - 0.002) and non-forest ecoregions (CS:MS - 0.002) were lower than
126 between forest and nonforest ecoregions (CS:RF - 0.004, MS:RF - 0.004, CS:DF - 0.003,
127 MS:DF - 0.004) (Table 2A). Similarly in *An. gambiae* (though there was only one nonforest
128 ecoregion: CS), *Fst* between forest (RF:DF 0.005) was lower than forest:nonforest (CS:RF -
129 0.041, CS:DF - 0.008). We calculated the mean genomewide Tajima's D and π , along with
130 estimated N_e , which are shown in Table 1. Values of mean π varied between 0.021 (*An.*
131 *gambiae* DF) and 0.017 (*An. coluzzii* DF), and those for mean Tajima's D between -1.067 (*An.*

132 *coluzzii* MS) and -1.247 (*An. coluzzii* RF). Estimates of mean *Ne* varied between approximately
133 1.7 million (*An. coluzzii* MS) and 2.4 million (*An. gambiae* CS). *An. coluzzii* π and *Ne* were
134 consistently lower than *An. gambiae*, and Tajima's D consistently less negative across
135 comparable ecoregions. (**Table 1**).

136
137 We identified a total of 7877 genes located in outlier regions of relatively increased *Fst*
138 (**see Materials and Methods**) between ecoregions in *An. coluzzii* and *An. gambiae* combined
139 (**Supplementary Table 2**). The majority (4827 - 61.27%) of these genes were located as part
140 of a general elevation of *Fst* in the 2La inversion, making it difficult to identify specific genes
141 therein which are potentially under selection. We identified numerous peaks centred on, or close
142 to, genes implicated in insecticide resistance. Though windows in peaks with the highest *Fst*
143 were not always those containing IR genes, which were sometimes close or adjacent, we
144 considered it likely that the IR genes might typically be targets of selection (See **Materials and**
145 **Methods**). On *An. gambiae* chromosome 2R, we observed a sharp outlier peak centred on the
146 *Ace1* locus in all 3 ecoregions, particularly striking for the RF comparisons, and at the *Cyp6P*
147 complex of genes, between all 3 ecoregions and highest for CS comparisons (**Figure 3**). We
148 were unable to identify any specific genes underlying the peak between DF:CS at ~40Mb on
149 chromosome 2R, or in the pericentromeric region between ~46-60Mb. On *An. gambiae*
150 chromosome 2L, the signal was dominated by the 2La inversion with the highest *Fst* between
151 CS and RF, suggesting strong contrast in inversion polymorphism frequencies. On 2L, we noted
152 other striking peaks, centred on the *Vgsc* gene at approximately 2Mb, and at genes of unknown
153 function (AGAP005300 and AGAP005787) in the comparisons between forest and non-forest
154 regions. On chromosome 3R an outlier *Fst* peak - at approximately 28Mb - contained a number
155 of genes of unknown function but is located approximately 20kb from the epsilon *Gst* cluster
156 containing *Gste2*. (**Figure 3**). Additional peaks between RF and non-RF zones on chromosome
157 arm 3R are located in the pericentromeric region that contain a range of genes, including
158 potential IR candidates *acyl-coA synthetase* and *Cyp303a1*. Clear peaks were less evident on
159 chromosome arm 3L but on chromosome X, two major peaks were obvious, one centred on the
160 *diacylglycerol kinase (ATP-dependent)* gene at approx 9Mb, and the other outlier *Fst* peak
161 centred on the *Cyp9k1* gene at approx 15Mb (**Figure 3**). This was the highest region of
162 differentiation genomewide for any of the three ecoregion comparisons in *An. gambiae*.
163

164 For *Anopheles coluzzii*, (**Figure 4**) there were fewer *Fst* peaks between ecoregions than
165 in *An. gambiae*. Generally, there appeared to be very peaks of differentiation between forest
166 (DF:RF) ecoregions. (**Figure 4**). On chromosome 2R, there were consistent peaks at approx
167 28Mb around the *Cyp6*-complex containing region, and less consistently a peak at ~3.4Mb
168 around the *Ace1* locus (**Figure 4**). On chromosome 2L, we found a striking peak on 2L between
169 CS and non-CS zones centred on a window containing the *Pyruvate dehydrogenase E1*
170 *component subunit alpha* and *alpha-tocopherol transfer protein-like* genes (**Figure 4**). Against a
171 backdrop of generally higher *Fst* between CS:RF and other ecoregion comparisons, we found
172 relatively small peaks along 2L, including *Vgsc* and, notably, no 2La differentiation. In addition to
173 the *Vgsc* peak, we also saw a small peak between MS and CS at approx ~38Mb at the
174 *AGAP029693* and *amiloride-sensitive sodium channel* genes. There were very few *Fst* outlier
175 peaks on 3R and 3L, with outlier regions mainly concentrated in broad peaks in the

176 pericentromeric regions (**Figure 4**). The most distinct peak on 3R was a peak at approximately
177 32Mb that contained a number of odorant receptor (Or18-53) genes, as well as a small peak at
178 ~4.3Mb that contained a complex of *Cyp12F* genes) - this peak appeared between CS and non-
179 CS zones in *An. coluzzii* but was not designated as an outlier in other comparisons outwith
180 CS:RF (**Figure 4**). The most notable *Fst* outlier peaks were consistently between forest (DF/RF)
181 and nonforest (MS/CS) ecoregions at the *Cyp9k1* locus, with much lower peaks between DF
182 and RF or MS and CS.

183

184 **Selection**

185 *Fst* can identify signatures of selection by looking between populations. We further
186 investigated genomic selection *within* populations by using H123 scans of per-species and per-
187 ecoregion phased GLs (**See Materials and Methods**). In *Anopheles coluzzii*, elevated H123
188 was apparent in the *Cyp6*-containing region on chromosome arm 2R, at the *Vgsc* and *Rdl* -
189 containing regions on chromosome arm 2L, in the epsilon *Gst* cluster containing *Gste2*, on 3R,
190 and the *Cyp9k1* - containing region on chromosome X (**Figure 5A**). In H123 scans of *An.*
191 *gambiae*, (**Figure 5B**) notable peaks included the windows containing the *Cyp6* cluster on
192 chromosome 2R, *Vgsc*, *Rdl* and *Coeaef* on chromosome 2L, the *Gst*-epsilon containing region
193 on chromosome 3R, and the *Cyp9k1* and the *diacylglycerol kinase (ATP-dependent)* genes on
194 chromosome X. Whilst signatures of elevated H123 largely recapitulated the *Fst* results from
195 **Figures 3 and 4**, peak sizes were more consistent across the ecoregions, than when comparing
196 between ecoregion types with *Fst*, e.g. at the *Cyp9k1* locus.

197

198 **Variation at the *Cyp9k1* locus**

199 The strongest signals of selection were present at the *Cyp9k1* gene. Upon further
200 investigation, we found 19 possible polymorphic sites spanning the locus in *An. coluzzi* (**Table**
201 **S3**), and 16 in *An. gambiae* (**Table S4**). These were a mix of 3'UTR, 5'UTR, synonymous,
202 intronic variants, with a single missense variant, present only in *An. gambiae* (p.Asn224Ile)
203 (**Table S3**). This variant, p.Asn224Ile was highest in frequency in CS (0.61), followed by DF
204 (0.47), then CS (0.31) (**Table S3**).
205

206

Geographic population structure

207 We attempted to identify signatures of geographic population structure through the
208 decay in between-sample kinship with geographic distance (isolation-by-distance). (**Figure S1**).
209 The estimated KING kinship coefficient between samples varied between -2.066 and 0.293, with
210 a median of -0.250, for *An. coluzzii*, and -1.067 and 0.370 with a median of -0.265 for *An.*
211 *gambiae*. We identified 9 full-sib pairs (see **Materials and Methods**) in *An. coluzzii* and 16 full-
212 sib pairs in *An. gambiae*. We identified only one full-sib pair from the same site in *An. coluzzii*,
213 and none in *An. gambiae*. Mantel tests for isolation-by-distance showed no statistically
214 significant signal of isolation-by-distance for *An coluzzi* ($r=0.009$ $p=0.49$) or *An gambiae* ($r=-0.05$
215 $p=0.90$). In addition, we attempted to identify isolation-by-distance using between-site *Fst*
216 (**Figure 6A**), and found that, like relatedness, Mantel tests for isolation-by-distance were
217 insignificant in *An. coluzzii* ($r=0.0008$, $p=0.485$) and *An. gambiae* ($r=-0.05$, $p=0.898$). However,
218 in Mantel correlograms showing correlation between genetic and geographic distance classes

219 (Figure 6B), we found evidence of significant isolation-by-distance in *An. coluzzii* at a distance
220 class between 50 and 100km ($r=0.14$, $p=0.02$), but none in *An. gambiae*. (Figure 6C).

221
222 **Downsampling analysis**

223 We determined the extent to which signatures of population structure, genetic
224 differentiation, relatedness, and selection in *Anopheles gambiae* s.l. may be robust to low
225 sequencing depth-of-coverage (DOC) by performing a set of analyses on a restricted set of
226 samples with a DOC of 10X or over, *in silico* downsampled to 10, 7.5, 5, 2.5, 1 and 0.5X.
227 (Figure 7) In relatedness analyses of downsampled individuals (Figure 7A), we found that, for
228 pairs of individuals with detectable relatedness, estimates of the kinship coefficient R_{xy} reduced
229 on average with every stepdown of DOC, with the largest reductions being between 5, 2.5 and
230 1X (N.B. 0.5X was not included in this analysis as kinship for almost all samples reduced to zero
231 at this DOC level). The major grouping patterns in PCA were robust to a DOC as low as 1X,
232 though at 0.5X, the major signals of differentiation appeared to be disrupted. (Figure 7B). In
233 genome scans of F_{ST} between *An. coluzzii* and *An. gambiae* chromosome X (Figure 7C) F_{ST}
234 changed little when DOC was reduced to as low as 1X, whereas at 0.5X, F_{ST} appeared to
235 increase in general along the chromosome. In H123 scans incorporating phased genotype-
236 likelihoods, the signal of selection (i.e. elevated H123) on *An. coluzzii* chromosome X appeared
237 similar between coverages of 10X - 7.5X, raised slightly at 5X-2.5X, and lower or absent at 1
238 and 0.5X (Figure 7D). The concordance of downsampled sets of phased *An. coluzzii* GLs
239 appeared to be very sensitive to DOC, with marked increases in discordance rate between the
240 full- and reduced-DOC GL set, with every stepdown of DOC, until 1-0.5X where similarly poor
241 concordance was seen (Supp Figure 3).

242
243 **Discussion**

244 The results presented in this study suggest that irrespective of ecoregion there are high
245 levels of gene flow and genetic diversity among relatively unstructured populations of *An.*
246 *gambiae* and *An. coluzzii* across southern Ghana. Isolation by distance was almost absent, with
247 the only significant result coming from comparisons in the 50-100km bracket in *An. coluzzii*, and
248 no relationship between kinship and distance in either species. Selection at IR loci appears
249 ubiquitous across all four ecoregions in both species. Observed values of π and Tajima's D, as
250 well as an apparent lack of genetic structure at a cross-country-wide spatial scale, are
251 consistent with previous WGS data from West African *Anopheles gambiae* species complex.^{1,2}
252 However, some previous studies indicated much stronger differentiation between ecoregions in
253 the *An. gambiae* species pair - for example between mangrove and non-mangrove in Ghana³³
254 and between forest and savannah in *An. coluzzii*² and *An. gambiae*³⁴. We find that genomewide
255 differentiation between ecoregions (including between the mangrove swamp ecoregion and
256 other areas) is on the whole low, with differentiation concentrated in specific genomic regions.

257
258 We observed numerous signatures of selection localised in specific genomic regions,
259 often linked to genes involved in IR. Most of the outlier F_{ST} -associated genes were concentrated
260 in inversion 2La - a genomic region frequently implicated in environmental adaptation in
261 *Anopheles gambiae* s.l.^{10,21} and in other *Anopheles* taxa³⁸. Aside from this, the notable F_{ST}
262 outlier regions were detected in comparisons between multiple ecoregions in *An. coluzzii* and

263 included outlier windows in peaks at the *Vgsc* between all ecoregions, the *Cyp9k1* locus -
264 particularly striking between forest and non-forest ecoregions, and the *Cyp6* region on
265 chromosome 2R (that was present between all ecoregions in *An. coluzzii*, but particularly in
266 comparisons involving Coastal Savannah). Peaks in H123 were present around other IR loci
267 (e.g. *Gste2*). In contrast to the ecoregion-specific outlier peaks; at these loci, the H123 scans
268 showed signatures of selection at *Vgsc*, *Cyp6*, *Cyp9k1* and *Gst-epsilon* (consistent with other
269 studies in West Africa^{15,19,20,41,42}) across all four ecoregions in *An. coluzzii*, suggesting that
270 different alleles of these genes may be selected in different ecoregions. In *Anopheles gambiae*,
271 genomewide differentiation was higher in comparisons involving rainforest, most notably CS:
272 RF, consistent with at least some structure between forest and savannah as suggested in
273 previous analyses^{2,9,34}. Interestingly, whilst genomewide mean *Fst* was similar between RF and
274 CS or MS in *An. coluzzii*, genomewide outlier profiles showed many more peaks in both species
275 in the CS: RF comparison in both species suggesting possible commonality of selection
276 pressures. RF:non-RF differentiation was particularly marked at the 2La inversion in *An.*
277 *gambiae*, as well as at the *Cyp9k1* and *Ace1* containing regions. The cause of these
278 differences in IR allele frequencies by environment is unknown, but it is noteworthy that the
279 possible selection pressure responsible would likely need to be strong enough to counter the
280 homogenising effect of high gene flow. In the absence of an IRS program, selection on markers
281 responsible for carbamate or organophosphate resistance, notably *Ace1*, may indicate
282 ecoregion- or geographically-specific selection pressures in response to agricultural usage of
283 pesticides. In both species, the most striking signal was an elevation in *Fst* between forest and
284 non-forest ecoregion populations, and in all samples for H123, in the genomic region containing
285 the *Cyp9k1* locus - a gene under selection in West African *Anopheles*, implicated in resistance
286 to pyrethroid insecticides.^{2,12,19,22,41,42}, having undergone extensive copy number variation⁴³. The
287 data we present here suggest that although differentiation between ecoregions varies at *Cyp9k1*
288 in both species, this region appears to be undergoing a selective sweep in all populations and
289 species. The presence of a missense variant in *An. gambiae*, compared to synonymous and
290 3'/5'-UTR variants in *An. coluzzii*, suggests that *Cyp9k1* may confer resistance with species-
291 specific mechanisms. The reason for this is unclear. The selection pressure conferred by
292 insecticide resistance is often strong enough for introgression to occur in IR genes (e.g. *Ace1*,
293 *Vgsc*), even in genomic regions highly differentiated between members of the *An. gambiae*
294 species complex⁴⁴⁻⁴⁶. The proximity of *Cyp9k1* to the pericentromeric region of the X
295 chromosome, which is often highly differentiated between *An. gambiae* taxa, combined with a
296 mechanism of action that may rely on copy-number variation (and therefore is less dependent
297 on the effect of a single mutation⁴³), may account for the species-specificity of this locus.
298

299 Further systematic studies incorporating more per-site samples across different
300 ecoregions (the per-site number of samples was generally quite low, between 1-10, making
301 accurate sitewise SFS estimation difficult), will enable identification of specific sites where
302 selection pressures may be acting, and studies employing sequencing modalities that enable
303 the resolution of individual genotypes (as opposed to genotype-likelihoods and allele
304 frequencies) will facilitate genotype-environment associations as well as resolution of specific
305 haplotypes involved in IR at loci that appear to be under selection in this study. Low sequencing
306 coverage in this study (~10X per-sample) prevented us from calling individual genotypes with

307 confidence ^{24,47}. Nevertheless, we found that, consistent with simulation based analyses ^{24–26},
308 sequencing coverages as low as 1X return similar results for PCA and *Fst* (estimated from the
309 SFS). Estimation of kinship, a key metric for assessing vector dispersal distance through close-
310 kin mark-recapture in *Aedes* ^{48,49}, is more affected by coverage, though the decrease in *Rxy*
311 between the same pairs of individuals appears relatively slight. However, a lack of robustly
312 called genotypes precluded us from investigating the frequency and environmental association
313 of specific genotypes in regions that appeared to be under selection. The genotype-likelihood
314 phasing we performed in this analysis appeared to be highly sensitive to coverage, suggesting
315 our analysis of individual haplotype effects should be considered suggestive rather than
316 definitive, until further confirmation can be performed. However, the H123 scans appeared
317 relatively more robust to lower coverage than the genotype concordance between downsampled
318 individuals, perhaps because these rely on calculating frequencies of phased GLs as opposed
319 to analysing individual geno- and haplotypes.

320

321 The IcWGS approach employed here is promising for future analyses of vector
322 population genomics where individual genotypes are of less interest. Examples of these may
323 include: the identification of vector dispersal distance with close-kin-mark-recapture and other
324 SFS-based approaches such as population demographic history with coalescent modelling²;
325 interrogation of changes in diversity, population size and selection during vector control⁵⁰; and
326 exploratory surveys of vector population structure over space and time as a prelude to more in-
327 depth sequencing studies that interrogate genomic regions under apparent selection. This is
328 particularly pertinent given the growing role of genome sequencing in vector surveillance both
329 for discovery of population structure and dynamics, and for control impact and insecticide
330 resistance^{2,15,19,51}.

331

332 Materials and Methods

333

334 Sampling and sequencing

335 Mosquito larvae were collected using dippers from 34 study sites spanning the four
336 major agro-climatic zones in southern Ghana⁴⁰ (**Supp Table 1, Figure 1**). The sampled larvae
337 were collected between April 2016 and October 2017 and raised to adults in an insectary.
338 Genomic DNA was extracted individually from each mosquito using Nexttec kits following the
339 manufacturer's (nexttecTM) protocol. Species characterizations into *An. gambiae* complexes
340 were performed using the PCR protocol described by Scott et al., (1993) and further
341 characterized into *An. coluzzii* and *An. gambiae* using protocols described by Santolamazza et
342 al., (2008). The PCR products were visualised under ultraviolet light after electrophoresis using
343 2% agarose gel stained with Peqgreen dye manufactured by Peqlab Biotechnologie. Eight
344 mosquito samples - of known species - were picked from each site, and in study sites where
345 both *An. coluzzii* and *An. gambiae* were found, 16 samples (comprising eight of each species)
346 were chosen. Genomic DNA was submitted for library preparation and WGS at SNPsaurus,
347 Oregon, USA.

348

349 GL calling and bioinformatics

350 Data analyses were performed in *R*⁵² [R Core Team], incorporating the *ggplot2*, and
351 *geosphere* libraries^{53,54}. Read trimming and mapping for all 384 sequenced samples were
352 implemented in *nextflow*⁵⁵. Reads were trimmed with *fastp*⁵⁶, aligned to the AgamP3 PEST
353 reference genome⁵⁷ using *bwa-mem*⁵⁸, and *samtools*⁵⁹ commands *sort*, *markdup*, *index*.
354 ANGSD⁶⁰ was used to infer genotype likelihoods (GLs) with the *samtools* genotype likelihood
355 model *-GL 1* and the filters *-maxDepth 6000 -minQ 30 -minInd 0.25*, removing sites with a
356 total depth of $> 6000X$, a phred-scaled quality score of < 30 , and sitewise missingness of > 0.25 ,
357 the SNP p-value of > 0.05 (indicating probable lack of polymorphism), and a minor allele
358 frequency of < 0.05 . For π and Tajima's D estimation, the above parameters were used but
359 without filters for polymorphism (i.e. monomorphic sites were included), depth, or minor allele
360 frequency. GL calling and filtering was performed by species and ecoregion for each of the 5
361 main chromosomes (2L, 2R, 3L, 3R and X). 70 individuals missing more than 25% of genotype-
362 likelihoods were removed from subsequent analyses, leaving 314 individuals from both species.
363

364 **Analysis of population structure, differentiation, and diversity**

365 GLs from chromosome 3L were used as input for *pcangsd*²⁶, which calculates
366 covariance matrices and most likely individual admixture proportions. The covariance matrix
367 was used for principal component analysis (PCA) with the *eigen* function in R.
368

369 Per-subpopulation (e.g. by species and ecoregion) site allele frequencies (saf) were
370 used to calculate folded joint site-frequency spectra (SFS) in *realSFS*⁶⁰, with pairwise
371 comparisons between each species and ecoregion per-species to calculate the *Fst* in 10000bp
372 sliding windows with a 5000bp step. One-dimensional (1d) SFS were calculated from the
373 unfiltered GLs for each species and ecoregion using *realSFS*. Nucleotide diversity (π), theta (for
374 *Ne* estimation), and Tajima's D were inferred using the *dothetas* option. For the relatedness
375 analysis, whole-genome GLs, (with genomic regions containing inversion polymorphisms
376 masked, as these can lead to spurious estimates of relatedness¹⁹), were used as input for
377 *NGSRelate*²⁸. A pairwise relatedness (KING)⁶¹ matrix was extracted and compared with a
378 pairwise geographic distance matrix (inferred with the *distGeo* function from the *geosphere*
379 package in a Mantel test for isolation by distance with *vegan*⁶².
380

381 **Identification of outlier genes**

382 We identified genomic windows of potential selection by searching genome-scans of *Fst*
383 for regions of greater than expected differentiation¹⁸. Outlier windows were designated
384 according to the approach described here¹⁹, but briefly, for each ecoregion:ecoregion
385 comparison, we took the difference between the smallest *Fst* value, and the modal *Fst*, and
386 designated as outliers any window with an *Fst* more than three times this distance away from
387 the mode on the right hand side of the *Fst* distribution. We then intersected outlier
388 windows with the AgamP4 PEST annotation track^{57,63}. We reported IR genes located at, or
389 close to, the window of highest *Fst* contained in an outlier peak. Windows with the highest *Fst* in
390 peaks were not always those containing IR genes but, as selection on these genes in response
391 to insecticide pressures is ubiquitous in the region, and occasionally genomic window analysis
392 misses these genes despite their association with resistance phenotypes¹⁹, we considered it

393 most likely that these are the genes responsible for the peak and reported them as such. A full
394 list of genes is available at **Supplementary Table 2**.

395

396 **Selection and haplotype analysis**

397 Genotype-likelihoods for each species and downsampling condition (see **GL calling** and
398 **Downsampling analysis**) were phased using BEAGLE v4⁶⁴. The resulting phased GLs were
399 used to calculate Garud's H123⁶⁵ in *scikit-allel*⁶⁶. Phased GLs from the region containing the
400 *Cyp9k1* gene on the X chromosome (AgamP4_X:15,240,572 - 15,242,864) were analysed for
401 potential functional effects using *SNPEff v.4.1*⁶⁷, and frequencies of each variant and ecoregion
402 calculated using *scikit-allel*.

403

404 **Downsampling analysis**

405 Samples with a mean sequencing depth of coverage (DOC) of > 10 (n=214) were
406 randomly subsampled to 10X, 7.5X, 5X, 2.5X and 1X using *samtools view*. *pcangsd*, *ngsRelate*,
407 and *realSFS* were used to generate PCA/admixture proportions, pairwise relatedness between
408 samples, and between-species *Fst* estimates, respectively, in addition to phased GL sets (see
409 **Above**). Genotype concordance between downsampled phased GL sets was calculated using
410 *bcftools stats*⁵⁹.

411

412 **Funding statement**

413 J.E. was supported by a Wellcome Trust Training Fellowship to J.E (Grant No. 110236/Z/15/Z).
414 M.V. and T.D. were supported by the European Research Council under the European Union's
415 Horizon 2020 Research and Innovation Programme, grant no 852957.

416

417 **Acknowledgements**

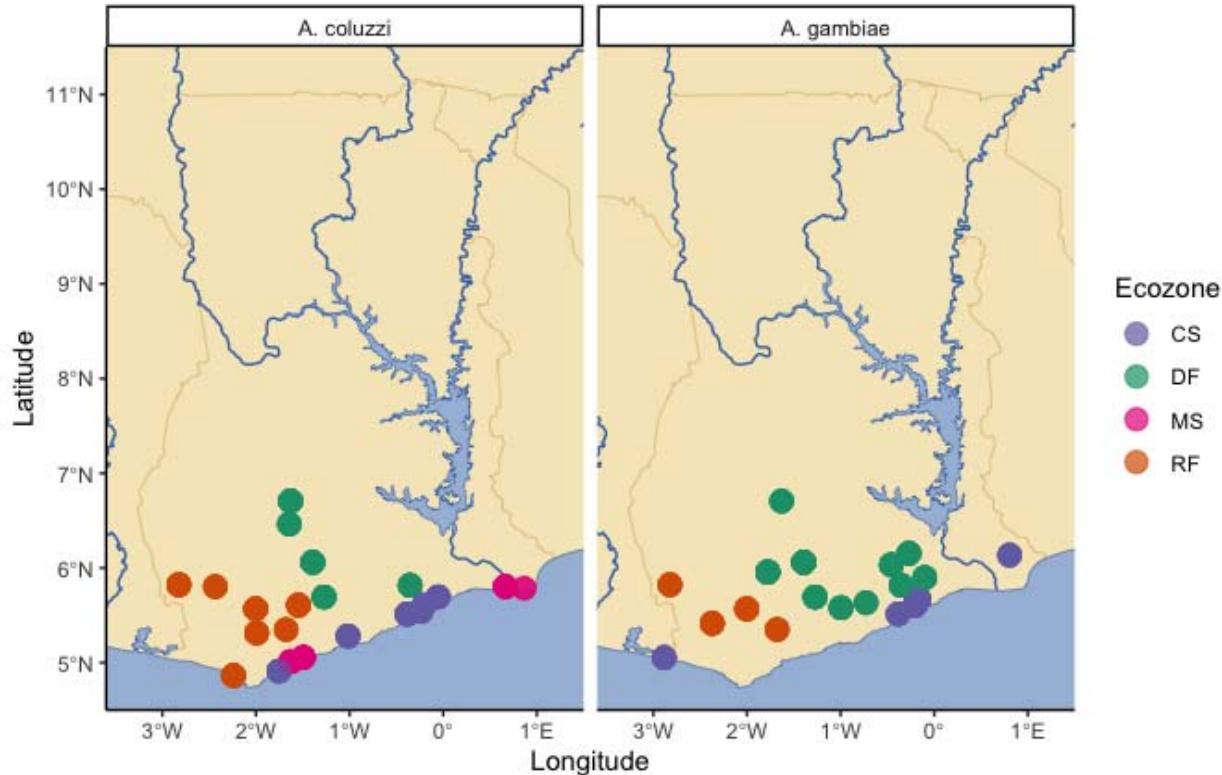
418 We are grateful to Emily Rippon and Dimitra Pipini for laboratory technical support.

419

420 **Author Contributions**

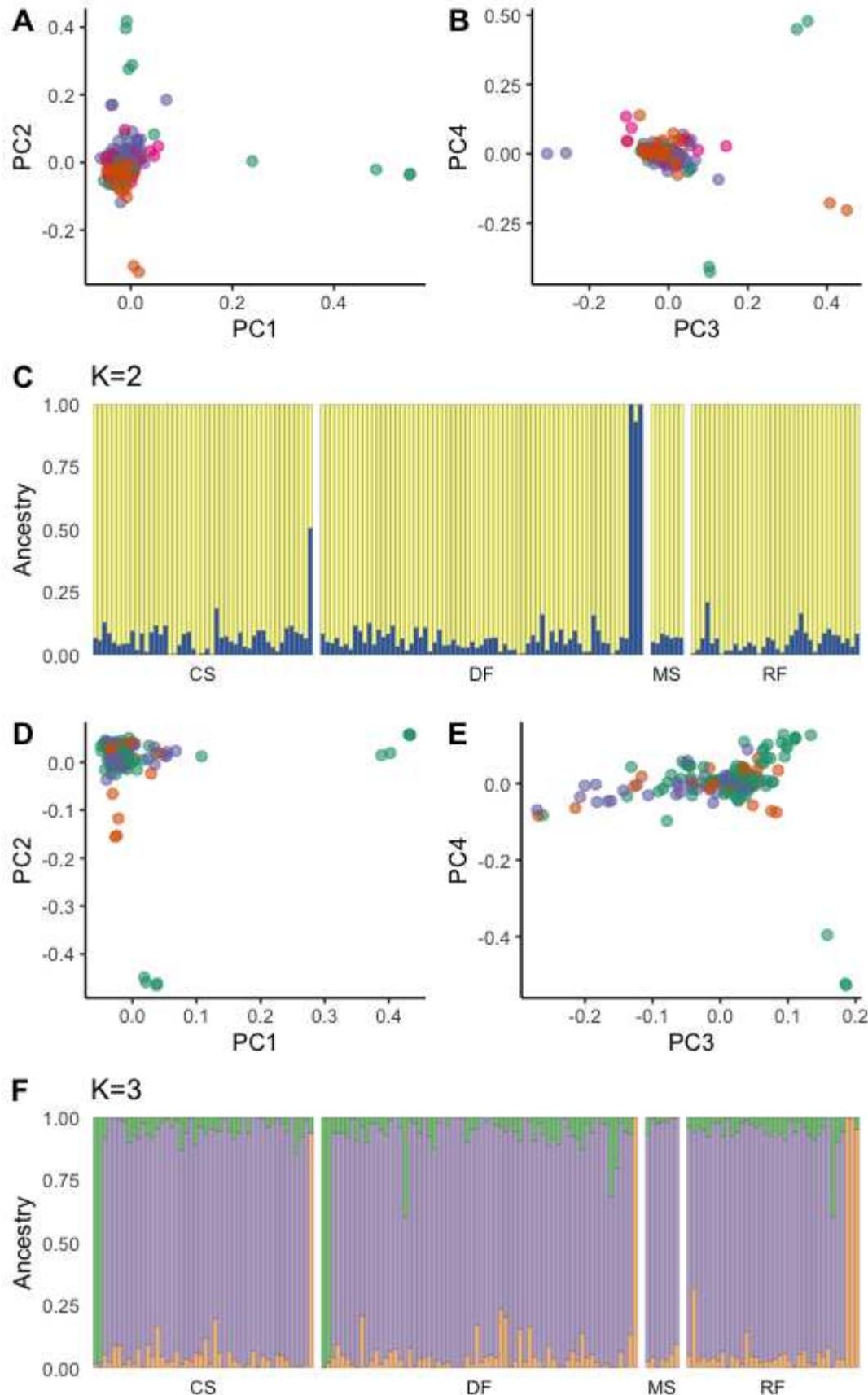
421 J.E., A.E.Y and D.W. designed the study, J.E. collected the samples, T.D., J.E. and D.W.
422 analysed the data, T.D., J.E., B.K.M., M.V. and D.W. interpreted the data, T.D. and J.E. wrote
423 the manuscript. M.V., B.K.M and D.W. supervised the project. All authors reviewed the
424 manuscript.

425


426 **Data availability**

427 The Docker container and Conda env containing all dependencies and versions for read
428 trimming, mapping, and QC are located at <https://github.com/tristanpwdennis/basicwgs>. Scripts
429 for GL calling, SFS estimation and all subsequent analyses are available at:
430 https://github.com/tristanpwdennis/td_je_angam_2022. Raw reads are deposited in the
431 European Nucleotide Archive under project accession number PRJEB71887.

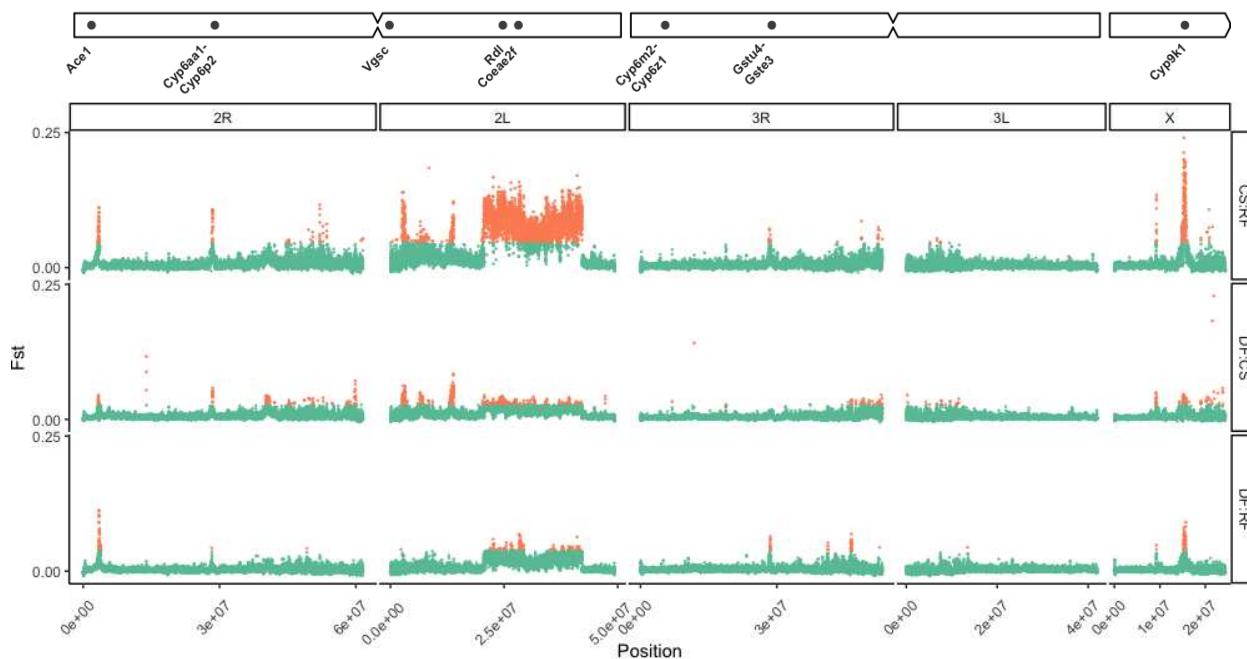
432


433 **Figures**

434

435
436 **Figure 1:** Sample collection scheme for *Anopheles coluzzii* (LH Panel) and *Anopheles gambiae*
437 (RH panel) in Southern Ghana. X axis indicates longitude, y axis indicates latitude, scale bar
438 indicates 200km distance. Point colour stands for ecoregion (CS: coastal savannah, DF:
439 deciduous forest, MS: mangrove swamp and RF: rainforest, respectively).

440
441
442
443
444
445
446



448 **Figure 2: Panels A-C** denote population structure of *An. coluzzii* in Southern Ghana. Principal
449 component analysis (PCA) plots for principal components (PCs) 1 vs 2 (**A**) and 3 vs 4 (**B**), with
450 points coloured by sample ecoregion. Panel **C** depicts the most likely value of *K* in an
451 ADMIXTURE analysis; the Y axis is the admixture proportion of a given cluster (colour) for a
452 single individual (X axis), from one of the four ecoregions sampled (defined in Fig 1). **Panels D-F**
453 indicate Population structure of *An. gambiae* in Southern Ghana. Principal component
454 analysis (PCA) plots for principal components (PCs) 1 vs 2 (**C**) and 3 vs 4 (**D**), with points
455 coloured by sample ecoregion. Panel **E** depicts the most likely value of *K* in an ADMIXTURE
456 analysis, whereby the Y axis is the admixture proportion of a given cluster (colour) for a single
457 individual (X axis), from one of the four ecoregions sampled.

458

459

460

461

462

463

464 **Figure 3: *Fst* genome scan (10kb windows with 5kb step) between *An. gambiae* larvae from**

465 deciduous forest (DF), coastal savannah (CS), and rainforest (RF) from southern Ghana. The x-

466 axis indicates chromosomal position (bp). The y-axis indicates *Fst*, orange point colour indicates

467 that a given window was designated as an outlier. A chromosome ideogram with IR gene

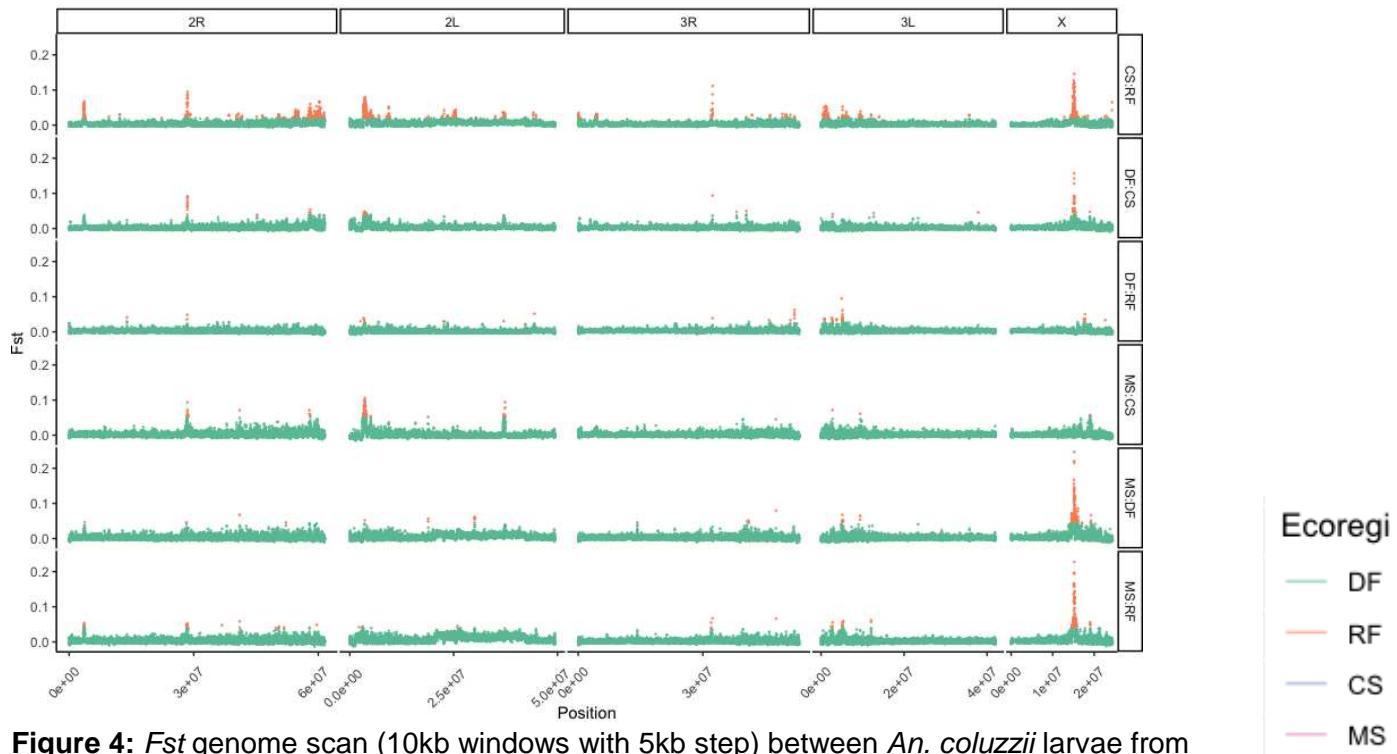
468 positions is plotted at the top.

469

470

471

472


473

474

475

476

477

478

479 **Figure 4:** F_{ST} genome scan (10kb windows with 5kb step) between *An. coluzzii* larvae from
480 deciduous forest (DF), coastal savannah (CS), mangrove swamp (MS), and rainforest (RF) from
481 southern Ghana. The x-axis indicates chromosomal position (bp). The y-axis indicates F_{ST} ,
482 orange point colour indicates that a given window was designated as an outlier. A chromosome
483 ideogram with IR gene positions is plotted at the top.

484

485

486

487

488

489

490

491

492

493

494

495

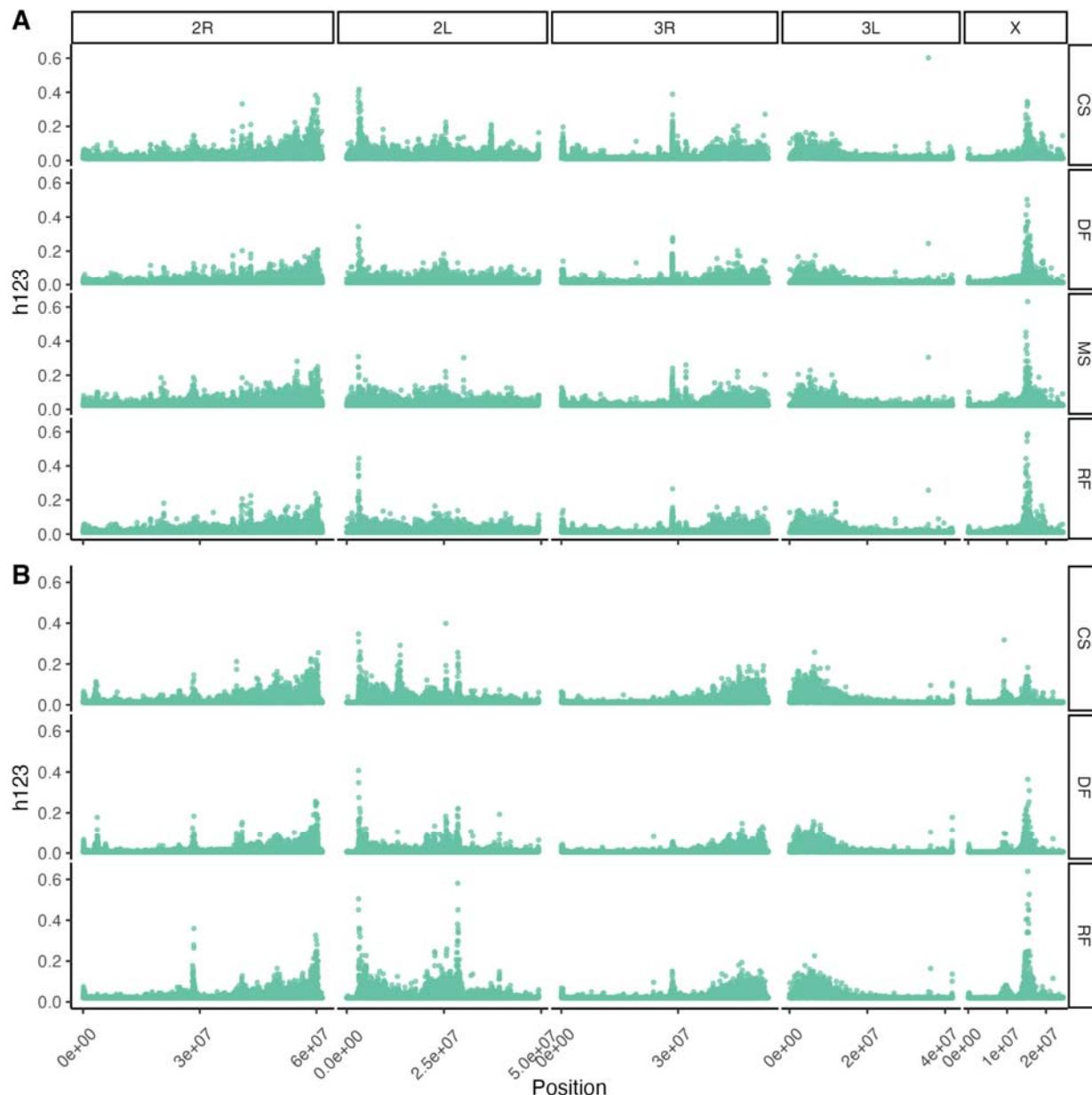
496

497

498

499

500

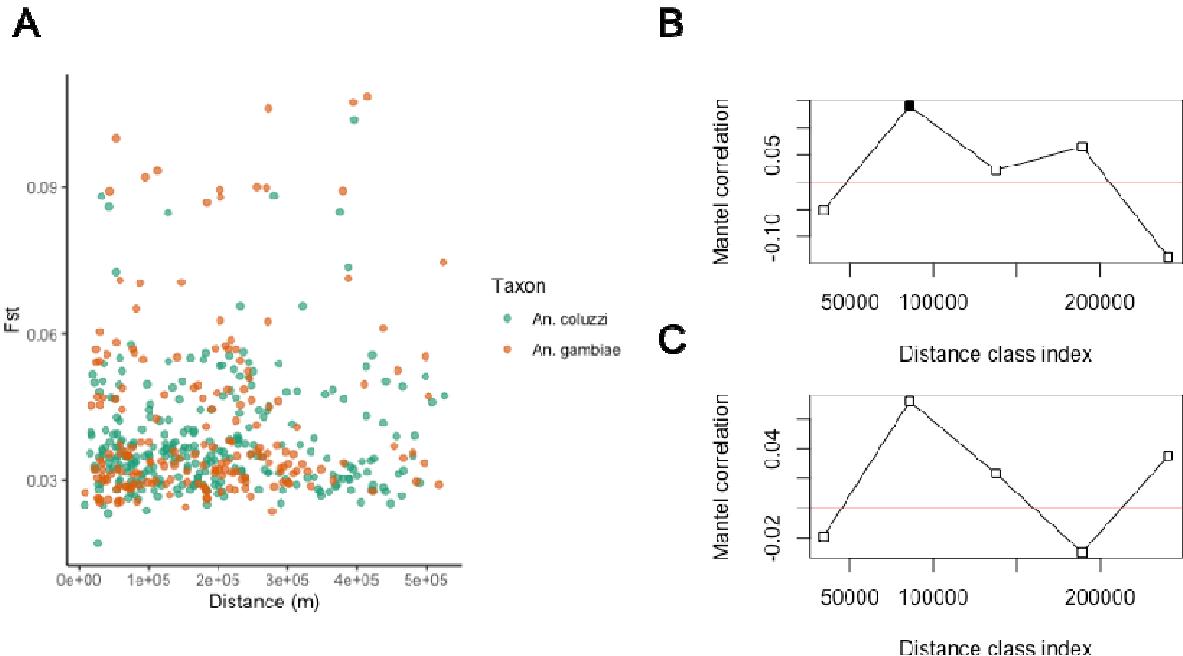

501

502

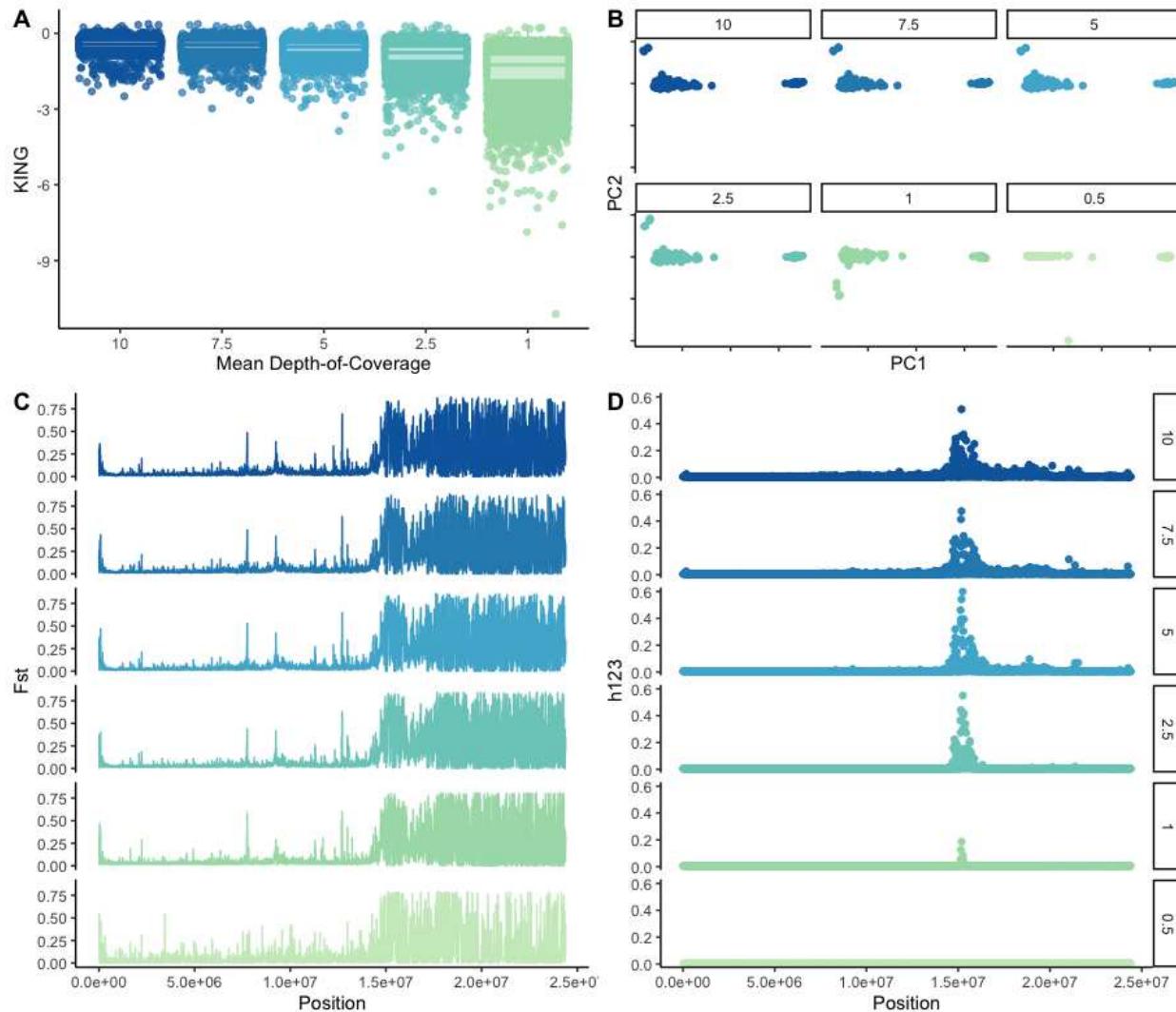
503

504

505


506

507 **Figure 5:** Garud's H12 scans (in windows of 100 phased GLs) in (A) *An. coluzzii* and *An.*
508 *gambiae* (B) larvae from deciduous forest (DF), coastal savannah (CS), mangrove swamp (MS),
509 and rainforest (RF) (row wise panels) from southern Ghana. The x-axis indicates chromosomal
510 position (bp). The y-axis indicates Garud's H123. A chromosome ideogram with IR gene
511 positions is plotted at the top.


512

513

514

515
516 **Figure 6. (A)** F_{ST} plotted against geographic distance between sites for *An. gambiae* (blue) and
517 *An. coluzzii* (red). Mantel correlograms showing spatial correlation values over spatial distance
518 classes for *An. coluzzii* (**B**) and *An. gambiae* (**C**).
519
520

521
522

523 **Figure 7: *In silico* downsampling results:** 219 samples > 10X were *in silico* downsampled
524 from 10X to 0.5X (labelled). **(A)** Pairwise kinship coefficients R_{xy} , inferred between 219 pairs of
525 *An. gambiae* s.l. from Southern Ghana. The y-Axis indicates inferred kinship coefficient; the x-
526 axis indicates *in-silico* downsampled depth-of-coverage. **(B)** PCA results by downsampled
527 coverage **(C)** F_{ST} genome scan (2kb windows) of X chromosome between 219 *An. gambiae*
528 and *An. coluzzii* larvae, sequenced to at least 10X, from southern Ghana. The x-axis indicates
529 chromosomal position (bp), with chromosome arm labelled below; the y-axis indicates F_{ST} . **(D)**
530 Garud's h_{123} selection scan of the X chromosome in *An. coluzzii* larvae, sequenced to at least
531 10X, from Southern Ghana. The x-axis indicates genomic position; the y-axis indicates h_{123} .
532 Subpanels in **C** and **D** show downsampled DOC (as indicated to the right of **D**).
533
534
535
536
537

538 **Table 1:** Number of samples sequenced, and genomewide mean values of π , Tajima's D and
539 Ne per species and ecoregion.

	No. Samples	π	Tajima's D	Ne
<i>An. coluzzi</i>				
CS	42	0.017	-1.122	1,752,254
DF	44	0.017	-1.147	1,797,605
MS	24	0.017	-1.067	1,726,719
RF	49	0.019	-1.247	1,960,241
<i>An. gambiae s.s.</i>				
CS	43	0.021	-1.186	2,371,286
DF	85	0.018	-1.203	1,929,214
RF	27	0.019	-1.220	2,011,853

540
541 **Table 2:** Mean genomewide F_{ST} between major ecoregions in southern Ghana for (A)
542 *Anopheles coluzzii* and (B) *An. gambiae* samples.
543

A	CS	DF	MS
RF	0.0039	0.0023	0.0042
CS		0.0027	0.0017
DF			0.0037

B	CS	DF
RF	0.0145	0.0054
CS		0.0076

544
545
546
547
548
549
550
551
552

553 **References**

- 554
- 555
- 556 1. Consortium, T. A. *gambiae* 1000 G. *et al.* Genome variation and population structure among
557 1142 mosquitoes of the African malaria vector species *Anopheles gambiae* and *Anopheles*
558 *coluzzii*. *Genome Res.* **30**, 1533–1546 (2020).
- 559 2. Miles, A. *et al.* Genetic diversity of the African malaria vector *Anopheles gambiae*. *Nature*
560 **552**, 96–100 (2017).
- 561 3. Kudom, A. A. Larval ecology of *Anopheles coluzzii* in Cape Coast, Ghana: water quality,
562 nature of habitat and implication for larval control. *Malar. J.* **14**, 447 (2015).
- 563 4. Kamdem, C. *et al.* Anthropogenic Habitat Disturbance and Ecological Divergence between
564 Incipient Species of the Malaria Mosquito *Anopheles gambiae*. *PLOS ONE* **7**, e39453 (2012).
- 565 5. Kamdem, C., Fouet, C., Gamez, S. & White, B. J. Pollutants and Insecticides Drive Local
566 Adaptation in African Malaria Mosquitoes. *Mol. Biol. Evol.* **34**, 1261–1275 (2017).
- 567 6. Coetzee, M. *et al.* *Anopheles coluzzii* and *Anopheles amharicus*, new members of the
568 *Anopheles gambiae* complex. *Zootaxa* **3619**, 246–274 (2013).
- 569 7. Coluzzi, M., Sabatini, A., Petrarca, V. & Di Deco, M. A. Chromosomal differentiation and
570 adaptation to human environments in the *Anopheles gambiae* complex. *Trans. R. Soc. Trop.*
571 *Med. Hyg.* **73**, 483–497 (1979).
- 572 8. Ayala, D. *et al.* Chromosome inversions and ecological plasticity in the main African malaria
573 mosquitoes. *Evol. Int. J. Org. Evol.* **71**, 686–701 (2017).
- 574 9. Cheng, C. *et al.* Ecological Genomics of *Anopheles gambiae* Along a Latitudinal Cline: A
575 Population-Resequencing Approach. *Genetics* **190**, 1417–1432 (2012).
- 576 10. Cheng, C., Tan, J. C., Hahn, M. W. & Besansky, N. J. Systems genetic analysis of
577 inversion polymorphisms in the malaria mosquito *Anopheles gambiae*. *Proc. Natl. Acad. Sci.*
578 **115**, E7005–E7014 (2018).
- 579 11. Weetman, D. *et al.* Candidate-gene based GWAS identifies reproducible DNA markers
580 for metabolic pyrethroid resistance from standing genetic variation in East African *Anopheles*
581 *gambiae*. *Sci. Rep.* **8**, 2920 (2018).
- 582 12. Main, B. J. *et al.* The Genetic Basis of Host Preference and Resting Behavior in the
583 Major African Malaria Vector, *Anopheles arabiensis*. *PLOS Genet.* **12**, e1006303 (2016).
- 584 13. Ferguson, H. M. *et al.* Ecology: A Prerequisite for Malaria Elimination and Eradication.
585 *PLOS Med.* **7**, e1000303 (2010).
- 586 14. Ismail, B. A. *et al.* Temporal and spatial trends in insecticide resistance in *Anopheles*
587 *arabiensis* in Sudan: outcomes from an evaluation of implications of insecticide resistance for
588 malaria vector control. *Parasit. Vectors* **11**, 122 (2018).
- 589 15. Clarkson, C. S. *et al.* The genetic architecture of target-site resistance to pyrethroid
590 insecticides in the African malaria vectors *Anopheles gambiae* and *Anopheles coluzzii*. *Mol.*
591 *Ecol.* **30**, 5303–5317 (2021).
- 592 16. Lukindu, M. *et al.* Spatio-temporal genetic structure of *Anopheles gambiae* in the
593 Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria
594 endemic regions. *Parasit. Vectors* **11**, 246 (2018).
- 595 17. Lewontin, R. C. & Krakauer, J. Distribution of Gene Frequency as a Test of the Theory of
596 the Selective Neutrality of Polymorphisms. *Genetics* **74**, 175–195 (1973).

- 597 18. Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local
598 adaptation depends on sampling design and statistical method. *Mol. Ecol.* **24**, 1031–1046
599 (2015).
- 600 19. Lucas, E. R. *et al.* Genome-wide association studies reveal novel loci associated with
601 pyrethroid and organophosphate resistance in *Anopheles gambiae* and *Anopheles coluzzii*.
602 *Nat. Commun.* **14**, 4946 (2023).
- 603 20. Grau-Bové, X. *et al.* Evolution of the Insecticide Target Rdl in African *Anopheles* Is
604 Driven by Interspecific and Interkaryotypic Introgression. *Mol. Biol. Evol.* **37**, 2900–2917
605 (2020).
- 606 21. Love, R. R. *et al.* Chromosomal inversions and ecotypic differentiation in *Anopheles*
607 *gambiae*: the perspective from whole-genome sequencing. *Mol. Ecol.* **25**, 5889–5906
608 (2016).
- 609 22. Tennessen, J. A. *et al.* A population genomic unveiling of a new cryptic mosquito taxon
610 within the malaria-transmitting *Anopheles gambiae* complex. *Mol. Ecol.* **30**, 775–790 (2021).
- 611 23. Crawford, J. E. *et al.* Evolution of GOUNDRY, a cryptic subgroup of *Anopheles gambiae*
612 s.l., and its impact on susceptibility to *Plasmodium* infection. *Mol. Ecol.* **25**, 1494–1510
613 (2016).
- 614 24. Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from
615 next-generation sequencing data. *Nat. Rev. Genet.* **12**, 443–451 (2011).
- 616 25. Lou, R. N., Jacobs, A., Wilder, A. P. & Therkildsen, N. O. A beginner’s guide to low-
617 coverage whole genome sequencing for population genomics. *Mol. Ecol.* **30**, 5966–5993
618 (2021).
- 619 26. Meisner, J. & Albrechtsen, A. Inferring Population Structure and Admixture Proportions
620 in Low-Depth NGS Data. *Genetics* **210**, 719–731 (2018).
- 621 27. Vieira, F. G., Fumagalli, M., Albrechtsen, A. & Nielsen, R. Estimating inbreeding
622 coefficients from NGS data: Impact on genotype calling and allele frequency estimation.
623 *Genome Res.* **23**, 1852–1861 (2013).
- 624 28. Hanghøj, K., Moltke, I., Andersen, P. A., Manica, A. & Korneliussen, T. S. Fast and
625 accurate relatedness estimation from high-throughput sequencing data in the presence of
626 inbreeding. *GigaScience* **8**, (2019).
- 627 29. Andrews, K. R. *et al.* Whole genome resequencing identifies local adaptation associated
628 with environmental variation for redband trout. *Mol. Ecol.* **32**, 800–818 (2023).
- 629 30. Wilder, A. P., Palumbi, S. R., Conover, D. O. & Therkildsen, N. O. Footprints of local
630 adaptation span hundreds of linked genes in the Atlantic silverside genome. *Evol. Lett.* **4**,
631 430–443 (2020).
- 632 31. Therkildsen, N. O. *et al.* Contrasting genomic shifts underlie parallel phenotypic
633 evolution in response to fishing. *Science* **365**, 487–490 (2019).
- 634 32. Mérot, C. *et al.* Locally Adaptive Inversions Modulate Genetic Variation at Different
635 Geographic Scales in a Seaweed Fly. *Mol. Biol. Evol.* **38**, 3953–3971 (2021).
- 636 33. Yawson, A. E., Weetman, D., Wilson, M. D. & Donnelly, M. J. Ecological Zones Rather
637 Than Molecular Forms Predict Genetic Differentiation in the Malaria Vector *Anopheles*
638 *gambiae* s.s. in Ghana. *Genetics* **175**, 751–761 (2007).
- 639 34. J, P. *et al.* Geographic population structure of the African malaria vector *Anopheles*
640 *gambiae* suggests a role for the forest-savannah biome transition as a barrier to gene flow.

- 641 *Evol. Appl.* **6**, 910–924 (2013).
- 642 35. Hemming-Schroeder, E. *et al.* Ecological drivers of genetic connectivity for African
643 malaria vectors *Anopheles gambiae* and *An. arabiensis*. *Sci. Rep.* **10**, 19946 (2020).
- 644 36. Guelbeogo, W. M., Sagnon, N., Liu, F., Besansky, N. J. & Costantini, C. Behavioural
645 divergence of sympatric *Anopheles funestus* populations in Burkina Faso. *Malar. J.* **13**, 65
646 (2014).
- 647 37. Hoban, S. *et al.* Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical
648 Solutions, and Future Directions. *Am. Nat.* **188**, 379–397 (2016).
- 649 38. Standing genetic variation and chromosome differences drove rapid ecotype formation in
650 a major malaria mosquito | PNAS. <https://www.pnas.org/doi/10.1073/pnas.2219835120>.
- 651 39. Kouadio, F.-P. A. *et al.* Relationship between insecticide resistance profiles in *Anopheles*
652 *gambiae* sensu lato and agricultural practices in Côte d'Ivoire. *Parasit. Vectors* **16**, 270
653 (2023).
- 654 40. Rhebergen, T. *et al.* Climate, soil and land-use based land suitability evaluation for oil
655 palm production in Ghana. *Eur. J. Agron.* **81**, 1–14 (2016).
- 656 41. Hearn, J. *et al.* Multi-omics analysis identifies a CYP9K1 haplotype conferring pyrethroid
657 resistance in the malaria vector *Anopheles funestus* in East Africa. *Mol. Ecol.* **31**, 3642–3657
658 (2022).
- 659 42. Vontas, J. *et al.* Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by
660 operational malaria control activities. *Proc. Natl. Acad. Sci.* **115**, 4619–4624 (2018).
- 661 43. Lucas, E. R. *et al.* Whole-genome sequencing reveals high complexity of copy number
662 variation at insecticide resistance loci in malaria mosquitoes. *Genome Res.* **29**, 1250–1261
663 (2019).
- 664 44. Clarkson, C. S. *et al.* Adaptive introgression between *Anopheles* sibling species
665 eliminates a major genomic island but not reproductive isolation. *Nat. Commun.* **5**, 4248
666 (2014).
- 667 45. Djogbénou, L. *et al.* Evidence of Introgression of the ace-1R Mutation and of the ace-1
668 Duplication in West African *Anopheles gambiae* s. s. *PLoS ONE* **3**, e2172 (2008).
- 669 46. Weill, M. *et al.* The kdr mutation occurs in the Mofti form of *Anopheles gambiae* s.s.
670 through introgression. *Insect Mol. Biol.* **9**, 451–455 (2000).
- 671 47. Bentley, D. R. *et al.* Accurate whole human genome sequencing using reversible
672 terminator chemistry. *Nature* **456**, 53–59 (2008).
- 673 48. Jasper, M. E., Hoffmann, A. A. & Schmidt, T. L. Estimating dispersal using close kin
674 dyads: The kindisperse R package. *Mol. Ecol. Resour.* **22**, 1200–1212 (2022).
- 675 49. Filipović, I. *et al.* Using spatial genetics to quantify mosquito dispersal for control
676 programs. *BMC Biol.* **18**, 104 (2020).
- 677 50. Athrey, G. *et al.* The Effective Population Size of Malaria Mosquitoes: Large Impact of
678 Vector Control. *PLOS Genet.* **8**, e1003097 (2012).
- 679 51. Lynd, A. *et al.* LLIN Evaluation in Uganda Project (LLINEUP) – Plasmodium infection
680 prevalence and genotypic markers of insecticide resistance in *Anopheles* vectors from 48
681 districts of Uganda. *medRxiv* doi:10.1101/2023.07.31.23293323.
- 682 52. R Core Team. R: A language and environment for statistical computing. R Foundation
683 for Statistical Computing, Vienna, Austria. <https://www.eea.europa.eu/data-and->
684 [maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006](https://indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006).

- 685 53. Wickham, H. *Create Elegant Data Visualisations Using the Grammar of Graphics*.
686 (Springer-Verlag New York, 2016).
- 687 54. Hijmans, R. J. *geosphere: Spherical Trigonometry*. (2022).
- 688 55. Di Tommaso, P. *et al.* Nextflow enables reproducible computational workflows. *Nat. Biotechnol.* **35**, 316–319 (2017).
- 690 56. Chen, S., Zhou, Y., Chen, Y. & Gu, J. *fastp: an ultra-fast all-in-one FASTQ preprocessor*.
691 *Bioinformatics* **34**, i884–i890 (2018).
- 692 57. Holt, R. A. *et al.* The Genome Sequence of the Malaria Mosquito *Anopheles gambiae*.
693 *Science* **298**, 129–149 (2002).
- 694 58. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler
695 transform. *Bioinformatics* **25**, 1754–1760 (2009).
- 696 59. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *GigaScience* **10**, giab008
697 (2021).
- 698 60. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation
699 Sequencing Data. *BMC Bioinformatics* **15**, 356 (2014).
- 700 61. Manichaikul, A. *et al.* Robust relationship inference in genome-wide association studies.
701 *Bioinformatics* **26**, 2867–2873 (2010).
- 702 62. Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos
703 P, Stevens M, Szoecs E, Wagner, H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho
704 G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B,
705 Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, & Stier A, Ter
706 Braak C, Weedon J. *vegan: Community Ecology Package*. (2022).
- 707 63. Giraldo-Calderón, G. I. *et al.* VectorBase: an updated bioinformatics resource for
708 invertebrate vectors and other organisms related with human diseases. *Nucleic Acids Res.*
709 **43**, D707–D713 (2015).
- 710 64. Browning, S. R. & Browning, B. L. Rapid and Accurate Haplotype Phasing and Missing-
711 Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype
712 Clustering. *Am. J. Hum. Genet.* **81**, 1084–1097 (2007).
- 713 65. Garud, N. R., Messer, P. W., Buzbas, E. O. & Petrov, D. A. Recent Selective Sweeps in
714 North American *Drosophila melanogaster* Show Signatures of Soft Sweeps. *PLOS Genet.*
715 **11**, e1005004 (2015).
- 716 66. Miles, A. *et al.* *cggh/scikit-allel*: v1.3.7. doi:10.5281/zenodo.8326460.
- 717 67. Cingolani, P. *et al.* A program for annotating and predicting the effects of single
718 nucleotide polymorphisms, *SnpEff*. *Fly (Austin)* **6**, 80–92 (2012).
- 719
- 720
- 721
- 722
- 723