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Abstract 
Memory consolidation can be enhanced during sleep using targeted memory reactivation (TMR) and 

closed-loop (CL) acoustic stimulation on the up-phase of slow oscillations (SOs). Here, we tested 

whether applying TMR at specific phases of the SOs (up vs. down vs. no reactivation) could influence 

the behavioral and neural correlates of motor memory consolidation in healthy young adults. Results 

showed that up- (as compared to down-) state cueing resulted in greater performance improvement. 

Sleep electrophysiological data indicated that up-stimulated SOs exhibited higher amplitude and greater 

peak-nested sigma power. Task-related functional magnetic resonance images revealed that up-state 

cueing strengthened activity in - and segregation of - striato-motor and hippocampal networks; and that 

these modulations were related to the beneficial effect of TMR on sleep features and performance. 

Overall, these findings highlight the potential of CL-TMR to induce phase-specific modulations of motor 

performance, sleep oscillations and brain responses during motor memory consolidation. 
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1. Main 
Memory consolidation is the process occurring offline, between practice sessions, by which labile 

memory traces become more robust 1. Seminal rodent work suggests that consolidation relies on the 

strengthening of the mnemonic representations by the spontaneous reoccurrence - during post-

learning offline periods - of hippocampal firing patterns associated with the initial encoding 2–4. This 

reactivation process has been particularly studied during post-learning sleep and there is consistent 

evidence that Non-Rapid Eye Movement sleep (NREM) oscillations such as slow oscillations (SO - high 

amplitude oscillations in the 0.5–2 Hz frequency band) and spindles (short burst of oscillatory activity in 

the 12–16 Hz sigma band) orchestrate the spontaneous occurrence of these hippocampal reactivations 
1,5. Spontaneous reactivations of task-related brain patterns have since been observed during post-

learning sleep in humans after both declarative and motor learning (see 6 for a review). The field has 

recently seen a surge of research examining whether experimental interventions can induce these 

reactivations in the human brain and eventually enhance the memory consolidation process 7,8.  

An experimental intervention that has shown promise to enhance memory consolidation is Targeted 

Memory Reactivation (TMR) 9. TMR is a non-invasive procedure which consists of replaying, offline, 

sensory stimuli that were previously associated to the task during initial memory encoding 9,10
. Auditory 

TMR applied during post-learning NREM sleep has been consistently shown to boost both declarative 

and motor memory consolidation in healthy young adults e.g., 11–15 and this process is thought to be 

mediated by the modulation of SO 14 and spindle 12,16 characteristics as well as their coupling 14. Inspired 

by studies showing that auditory clicks delivered in a closed-loop (CL) fashion at the up-state of the SO 

can optimize declarative memory consolidation e.g., 17, recent studies have applied TMR at different 

phases of the SO (e.g., up- vs. down-stimulation) in an attempt to further optimize consolidation. Such 

CL-TMR interventions have been shown to increase SO and sigma band power following cues presented 

at the up- as compared to the down-phase of the SO 18,19 or as compared to a control night without 

stimulation 20. These studies show an overall memory advantage following up-state TMR 18–20, albeit 

performance does not always differ from all other stimulation conditions (e.g., from down- 18 or no-

stimulation 19). Altogether, studies causally liking the specific SO phase of the reactivation to memory 

consolidation are sparse in the declarative memory domain and are non-existent in the motor memory 

domain. Additionally, the effect of slow-oscillation CL-TMR on the neurophysiological processes 

underlying memory reactivation and memory retention are poorly understood in both memory 

domains. 

In this pre-registered study (https://osf.io/dpu6z)1, we used functional magnetic resonance imaging 

(fMRI) during task practice and electro-encephalography (EEG) during post-learning sleep to address 

these knowledge gaps and provide a comprehensive characterization of the neurophysiological 

processes supporting the effect of slow-oscillation CL-TMR on motor memory consolidation. Briefly, in 

a within-subject design, 31 young healthy participants learned 3 different motor sequences that were 

each associated to one specific sound during learning while their brain activity was recorded with fMRI 

(Pre-night, Figure 1a). During the subsequent post-learning night of sleep that was monitored with EEG 

(Night, Figure 1a), SOs were detected in real-time during NREM sleep and auditory cues that were 

associated to the motor learning task were delivered to specific phases of the SO reflecting either high 

or low brain excitability. Specifically, one sound was played at the peak of the SO (up-reactivated 

condition), another sound was played at the trough of the SO (down-reactivated condition), while the 

                                                           
1 Note that whenever an analysis presented in the current paper was not pre-registered, it is referred to as 

exploratory. Additionally, any deviation from the pre-registration is marked in the methods section with a (#) 

symbol and listed in Table S4 of the supplemental information together with a justification for the change. 
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last sound was not replayed (not-reactivated, control, condition). To assess consolidation, motor task 

performance was retested on the three different conditions in the fMRI scanner the next morning (Post-

night, Figure 1a). Our main results confirmed the pre-registered hypotheses as consolidation 18, SO 

amplitude 17,19,21, sigma band power 17,19 and task-related brain responses in hippocampo- and striato-

cortical networks 12,22 were specifically boosted by SO-up-phase TMR.  
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Figure 1: Experimental protocol. a. General design. Following a habituation night that was completed approximately 

one week prior to the experiment, 31 participants underwent a pre-night motor task session in the scanner, a full 

night of sleep in the sleep lab monitored with polysomnography during which slow-oscillation closed-loop targeted 

memory reactivation (CL-TMR) was applied, and a post-night retest session in the scanner. During the motor task 

(pre-night and post-night sessions), three movement sequences were performed (sequences A, B and C whereby 1 

and 8 correspond to the right and left little fingers, respectively) and were cued by three different 100-ms auditory 

tones. For each movement sequence, the respective auditory tone was presented prior to each sequence execution. 

Two of these sounds were replayed during the post-learning sleep episode at specific phases of SO (up vs. down, 

see panel B for details) while the third sound was a control condition which was not replayed during the night. Note 

that the sequence / sound / condition combinations were randomized across individuals (see methods). b. 

Stimulation protocol. Sleep was recorded with EEG all night but recordings were monitored online for stimulation 

purposes during the first three hours of the night. The online SO detection algorithm was launched whenever the 

participant reached NREM2-3 stage. Three-min long up- and down-stimulation intervals alternated and were 

separated by 1-min no-stimulation intervals. The sounds associated to the up(or down)-reactivated sequence were 

then played on the peak(or trough) of the SOs within these alternating blocks. The algorithm performed the online 

detection on FPz. For down detection, a fast-moving average filter was employed with a window of 50 samples and 

a trough was detected when the signal went below a specific threshold adapted for biological sex 23 of -41µV in 

females and -39.5µV in males. For up-detection, the peak of a SO was identified when, in addition to the criterion 

described for trough detection above, peak-to-peak signal amplitude reached 77 µV in females and 74 µV in males 

(See methods for details). During up-stimulation intervals, the up-reactivated sequence sound (magenta dots) was 

played at the peak of each detected SO (up-stimulated SO / up-reactivated sequence) and during down-stimulation 

intervals, the down-reactivated sequence sound (blue dots) was played at the trough of each detected SO (down-

stimulated SO / down-reactivated sequence). The third sound was not presented during the post-learning night (not-

reactivated sequence). The colored oscillations in each panel represent the results of the offline SO detection 

algorithm that was used to compute, a posteriori, the accuracy of the online detection procedure and to detect SOs 

during rest intervals for further analyses (see methods). The online detection algorithm was manually stopped when 

the experimenter detected REM sleep, NREM1 or wakefulness and thus no stimulation was sent.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


2. Results 

2.1. The effect of TMR on motor performance depends on the phase of the 

stimulated SO  

We tested whether the stimulation conditions (up-, down- and not-reactivated) influenced the 

behavioral index of motor memory consolidation, i.e., the offline changes in performance observed 

between the pre-night test session and the beginning of the post-night training session (see Figure 2a). 

Results show that offline changes in performance differed depending on the phase of the stimulated SO 

(Condition effect (F (2,54) = 3.9, p = 0.027 (0.034 sphericity corrected), η² = 0.13; Figure 2b, n = 28). 

Specifically, offline changes in performance were greater for both the up- and not-reactivated 

sequences as compared to the down-reactivated sequence (up vs. down: t = 2.32, p-value = 0.014 (0.035 

FDR-corrected), Cohen’s d = 0.44; up vs not: t = -0.24, p-value = 0.59 (0.59 FDR-corrected), Cohen’s d 

=0.045; down vs. not: t = -2.09, p-value = 0.023 (0.035 FDR-corrected), Cohen’s d = 0.39). These 

behavioral results indicate that TMR differently altered the fate of the motor memory traces depending 

on the phase of SO during which reactivation was applied. Unexpectedly though, only performance on 

the down-reactivated sequences differ from the not-reactivated ones. 

Figure 2: Behavioral results. a. Performance speed. Grand average across participants (n = 28) of median 

reaction time in ms plotted as a function of blocks of practice during the pre- and post-night sessions (+/- 

standard error in shaded regions) for the up-reactivated (magenta circles), the down-reactivated (blue empty 

circles), and the not-reactivated (green diamonds) sequences and for the random serial reaction time task 

performed at the start and end of the experiment (black overlay, the random task assessed baseline 

performance and sequence-specific learning, see methods and supplements for corresponding results). Note 

that a short break is introduced between the training and test runs during the pre-night session in order to 

minimize the confounding effect of fatigue on end-of-training performance (see methods). The three motor 

sequences were learned to a similar extent during the pre-night session (see supplemental results). b. Offline 

changes in performance speed (% change between the average of the three blocks of pre-night test and the first 

three blocks of post-night training) averaged across participants for the up-reactivated (magenta), the down-

reactivated (blue) and the not-reactivated (green) sequences. Results show a main effect of Condition (*: p-

value < 0.05) whereby offline changes in performance were greater for the up- and not-reactivated as 

compared to the down-reactivated sequence (note that improvement in performance from pre- to post-night 

sessions is reflected by a positive change). Violin plots: median (horizontal bar), mean (diamond), the shape of 

the violin plots depicts the kernel density estimate of the data. Colored points represent individual data, jittered 

in arbitrary distances on the x-axis within the respective violin plot to increase perceptibility. For each individual, 

performance on the different conditions are connected with a line between violin plots. n.s: non-significant. 
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2.2. SO-up-phase TMR enhances both SO amplitude and sigma oscillations  

EEG data collected during the TMR episode were analyzed to test whether (the phase of the) stimulation 

modulated the characteristics of the SOs and spindle/sigma oscillations, two electrophysiological 

markers critically involved in motor memory consolidation 24 and reactivation 14 during sleep.  

To examine the effect of stimulation on SO characteristics, we computed - for each of the 6 EEG channels 

(Fz, Cz, Pz, Oz, C3, C4) - event-related potentials locked to the trough of the (i) up-stimulated SOs 

(detected online on Fpz during up-stimulation intervals), (ii) down-stimulated SOs (detected online on 

Fpz during down-stimulation intervals) and (iii) not-stimulated SOs (detected offline on Fpz during 

epochs free of stimulation, see Figure 1b for a depiction of stimulation epochs and Figure S1a in 

supplemental information for channel level data). In this analysis, cluster-based permutations identified 

clusters on the basis of temporal and spatial (channel) adjacency (see methods). Results indicated two 

significant spatio-temporal clusters in which the phase of the stimulation specifically influenced SO 

amplitude. Specifically, up-stimulated – as compared to down-stimulated - SOs showed (i) greater 

amplitude around the peak of the SO in a spatial cluster including all electrodes except Oz and (ii) deeper 

deflection post-peak in a spatial cluster including frontal and central electrodes (up vs. down, Figure 3a).  

Figure 3a-1 depicts the grand-average of the SOs (superimposed on a time frequency representation of 

the difference in power modulation, see below) for up and down conditions in which the horizontal 

black lines represent the significant temporal cluster (see Figure 3a-3 for zoomed inset; Figure 3a-4: 

positive cluster p-value = 0.0040; Cohen’s d = 0.67 and its topography also showing the spatial 

dimension of the cluster, i.e., electrodes included in the significant cluster (*); Figure 3a-5: negative 

cluster p-value = 0.0040; Cohen’s d = -0.60 and its topography also showing electrodes included in the 

cluster (*)). 

Similar results - albeit on larger time windows - were observed when comparing both up- and down- 

stimulated versus not-stimulated SOs (up vs. not, Figure 3b-1, horizontal black lines and Figure 3b-3 for 

zoomed inset; Figure 3b-4: positive cluster p-value = 0.0020, Cohen’s d = 1.12 and its topography; Figure 

3b-5; negative cluster p-value = 0.0060, Cohen’s d = -0.70, its topography and electrodes included in 

cluster; down vs. not, Figure 3c-1, horizontal black lines and Figure 3c-3 for zoomed inset; Figure 3c-4: 

positive cluster p-value = 0.0020, Cohen’s d = 1.20, its topography and electrodes included in cluster; 

Figure 3c-5: negative cluster p-value = 0.0040, Cohen’s d = -0.57 and its topography) but that these 

effects were more pronounced during up- as compared to down-stimulation as shown in Figure 3a.  

Note that analogous results were also observed using SO density metrics extracted from the stimulated 

and not-stimulated blocks (see Figure S2a in supplemental information showing greater density during 

up-stimulated intervals as compared to down-stimulated and not-stimulated intervals).  

To investigate the effect of stimulation on oscillatory brain activity (and sigma oscillations in particular), 

we performed time-frequency analyses locked to the trough of the stimulated and not-stimulated SOs 

on each EEG channel. Here, cluster-based permutation analyses identified clusters on the basis of 

temporal, frequency and spatial adjacency (see methods). Results indicated one significant spatio-

temporal-frequency cluster in which sigma power was greater in the ascending phase of the up-

stimulated SOs as compared to the down-stimulated SOs on all electrodes (up vs. down: cluster p-value 

= 0.0080; Cohen’s d = 0.66; Figure 3a-1 for time-frequency representation and a-2 for a display of the 

topography of this difference and of the electrodes included in the cluster (*)). Note that oscillatory 

activity in the 5-18 Hz frequency range was lower in the descending phase of both up- and down-
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stimulated – as compared to not-stimulated – SOs on all electrodes (up vs. not: cluster p-value = 0.002, 

Cohen’s d = -1.30, Figure 3b-1 and b-2 for topography; down vs. not: cluster p-value = 0.002, Cohen’s d 

=-0.94, Figure 3c-1 and c-2 for topography). Power in lower frequencies (5-10 Hz) was greater for the 

down, compared to the not, -stimulated conditions from 0.8 to 1.5 s post SO trough in a cluster including 

all electrodes (down vs. not: cluster p-value = 0.0020; Cohen’s d = 0.90; Figure 3c-1 and c-2).  

Analyses based on sleep spindle events detected from the stimulated and not-stimulated blocks show 

that spindle frequency and amplitude were unaffected by the stimulation while spindle density was 

lower during both up- and down-stimulated as compared to not-stimulated blocks, irrespective of the 

stimulation condition (see Figure S2b-d in supplemental information).  

Altogether, these results indicate that up-phase, as compared to down-phase, CL-TMR resulted in 

enhanced SO density and amplitude as well as a stronger sigma power during the ascending phase of 

the SO. In contrast, oscillatory activity including the sigma band was decreased during the descending 

phase of the up- and down-stimulated, as compared to the not-stimulated, SOs and overall spindle 

density was lower under stimulation, irrespective of its phase.  
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Figure 3: Electrophysiological results. Participants’ sleep was recorded using a 6-channel EEG montage during the night following 

learning. a. Up- vs down-stimulated contrasts. a-1. Time-frequency representation (TFR) of the difference in power modulation 

illustrated at Cz around the trough of the up- and down-stimulated SOs on which the grand-average of the SOs illustrated on Fz is 

super-imposed (magenta(blue): up(down)-stimulated SO). Black lines represent the adjacent time points of the significant spatio-

temporal clusters showing a difference in SO amplitude between the two trough-locked ERPs (see a-4 and a-5 for the spatial dimension 

of the clusters and Figure S1b in supplemental information for channel level cluster depiction). Results show that the up-stimulated 

SO presented greater amplitude at their peak (from 0.33 to 0.64 sec post-trough) followed by a deeper deflection (from 0.78 to 1.03 

sec post-trough). Further, the area highlighted in the TFR represents the adjacent time-frequency points of the significant spatio-

temporal-frequency cluster showing a difference in power between conditions. Sigma power nested in the ascending phase of the up-

stimulated SOs was greater than for the down-stimulated SOs (from 0.25 to 0.4 sec post-trough and from 12 to 17 Hz; and see a2 for 

the spatial dimension of the cluster as well as Figure S1b in supplemental information for channel level cluster depiction). a-2. 

Topography of the significant sigma power modulation. (*) represents the electrodes included in the significant spatio-temporal-

frequency cluster. a-3. Zoom on the trough-locked SO peak and deflection at Fz (same color code as a-1) showing the significant 

differences in amplitude between up and down conditions (see text). a-4 and a-5. Topography of the significant differences in 

amplitude at the trough-locked SO peak (a-4) and deflection (a-5). (*) represents the electrodes included in the significant spatio-

temporal clusters. b. Up- vs not-stimulated contrasts. b-1. Same as a-1 for the up- and the not-stimulated trough-locked SO ERP 

(magenta and green, respectively) and power modulation. Results show that the amplitude of the up-stimulated SOs was greater than 

the not-stimulated SOs from -0.61 to 0.61 sec while it reversed from 0.72 to 1.14 sec relative to the trough onset. Power in the 5-17.5 

Hz frequency range was lower in the up- as compared to the not-stimulated condition in the descending phase of the SOs (from -0.45 

to 0.24 sec relative to the SO trough). b-2. Topography of the significant cluster (between 7-12 Hz and -0.15-0 s time-frequency range) 

showing that the significant cluster includes all electrodes (*). b-3. Zoom on the trough-locked SO peak and deflection showing the 

significant differences in amplitude between up and not conditions (see text). b-4 and b-5. Topography of the significant differences in 

SO amplitude in the peak and deflection time-window defined by the significant clusters highlighted in the up- vs down-stimulated 

contrast. (*) represents the electrodes included in the significant cluster. c. Down- vs not-stimulated contrasts. c-1. Same as a-1 for the 

down- and the not-stimulated trough-locked SO ERP (blue and green, respectively) and power modulation. Results show that the 

amplitude of the down-stimulated SOs was greater than the not-stimulated SOs from -0.60 to 0.42 sec while it reversed from 1.18 to 

1.50 sec relative to the trough onset. Power was lower in the 5-18 Hz frequency range in the down- as compared to the not-stimulated 

condition during the descending phase of SOs (from -0.49 to 0.24 sec relative to the SO trough) and greater in the 5-10 Hz from 0.76 

to 1.50 s. c-2. Topography of the negative significant cluster (7-12 Hz and -0.15-0.08 s time-frequency range) and the positive 

significant cluster (5-8 Hz and 0.8-1.25 s time-frequency range). The significant cluster includes all electrodes (*). c-4 and c-5. 

Topography of the significant differences in SO amplitude in the peak time-window defined by the significant cluster highlighted in the 

up- vs down-stimulated contrast and the deflection time-window defined by the significant cluster (1.18-1.50 s post-trough). The 

significant cluster includes all electrodes except Oz and Pz (*). 
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2.3. Phase-specific modulations of task-related hippocampal and striatal activity 

are related to the effect of TMR on motor performance  

Brain imaging data were acquired during task practice before and after the night of stimulation (see 

Table S1 and Figure S3 for brain activity elicited by task practice during initial learning). We first 

examined whether task-related brain activity increased from the pre-night to the post-night practice 

sessions within each condition. Results showed, for all conditions, a strong overnight increase in task-

related brain activity in a set of striato-cortical regions including the putamen and the primary motor 

cortex (Figure 4a and see Table S2-1 for a complete list of activations). Interestingly, the overnight 

increase in striatal activity was greater for the up-reactivated sequence as compared to the down-

reactivated sequence, which in turn was greater than for the not-reactivated sequence (Figure 4b; see 

Table S2-2 of the supplemental information for details).  

Importantly, the between-session increase in striato-motor activity reported above was correlated with 

the TMR index (i.e., the difference in offline changes in performance between the reactivated vs. the 

not-reactivated sequences) for both the up- and down-reactivated sequences (Figure 4c; see Table S2-

3). We also performed exploratory analyses to probe the link between the sleep EEG features showing 

the phase-specific modulation described above (i.e., SO amplitude and sigma power at the peak of the 

SO) and the between-session changes in brain activity. These analyses did not reveal any correlation 

between brain activity and sigma power but they showed that the overnight increase in activity in the 

basal-ganglia and the motor cortex was related to greater SO peak amplitude in the up and down 

conditions (Figure 4d; see Table S2-4 of the supplemental information). Altogether, the regression 

analyses indicate that greater overnight increase in striato-motor activity is related to both greater SO 

amplitude during the post-learning night and greater overnight gains in motor performance in both up 

and down conditions. Interestingly, despite condition differences in overnight changes in brain activity 

(Figure 4b), SO amplitude (Figure 3a) and motor performance (Figure 2), the phase of the stimulation 

did not alter the relationship between these differences. 

Next, we examined whether task-related brain activity decreased between the pre- and post-night 

practice sessions. Results showed that hippocampal activity decreased overnight for both the down- 

and the not-reactivated sequences while no significant changes were observed in the up condition 

(Figure 5a; see Table S2-1 of the supplemental information). The decrease in hippocampal activity 

observed for the not-reactivated sequence was greater than for the up-reactivated sequence (Figure 

5b; see Table S2-2 of the supplemental information). Importantly, the between-session changes in 

hippocampal activity reported above were correlated with the TMR index for both the up- and down-

reactivated sequences such that greater overnight decrease in activity was related to poorer 

performance (Figure 5c; see Table S2-3 of the supplemental information). Finally, we did not observe 

any relationships between EEG features and changes in hippocampal activity. Overall, these results 

suggest that up-stimulation prevented the overnight decrease in hippocampal activity observed in the 

other conditions, the amplitude of which is related to poorer performance.  

Altogether, these results show that the amplitude of the changes in brain activity occurring in striato-

hippocampo-motor areas as a result of the consolidation process were modulated by the phase of the 

SO during which TMR was applied. Importantly, the magnitude of these changes was related to SO 

characteristics and changes in motor performance, both metrics that also showed a phase-specific 

modulation of amplitude. 
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Figure 4: Phase-specific modulation of task-related cortico-striatal activity. a. Overnight increase in activity within condition. Brain activity 

increased overnight in a set of cortico-striatal regions for up- (Left M1: x = - 38, y = -20, z = 52, pSVC <0.001; right putamen: x = 24, y = 

18, z = -10, pSVC < 0.001), down- (Left M1: x = -38, y = -24, z = 54, pSVC <0.001 ; right putamen: x = 26, y = -8, z = -4, pSVC = 0.001), and not-

reactivated sequences (Left M1: x = -38, y = -26, z =56, pSVC = 0.004; right putamen: x =28, y = -12, z = -6, pSVC = 0.002). Violin plots 

represent BOLD responses extracted from clusters overlapping between conditions (1. Right putamen: x = 26, y = -8, z = -4; 2. Left M1: x 

= -38, y = -20, z = 52). b. Overnight increase in activity between conditions. The overnight increase in striatal (right caudate) activity was 

greater for the up- as compared to the down-reactivated sequence, which in turn was greater than for the not-reactivated sequence. 

Violin plots represent the difference in BOLD responses extracted from the activation peaks in the post- versus pre-night sessions (1. up 

vs. down: x = 20, y = 18, z = 12, pSVC = 0.009; 2. up vs. not: x = 18, y = 28, z =4, pSVC = 0.02; 3. down vs. not: x = 16, y = -2, z = 26, pSVC = 

0.016). c. Brain activity-behavior regressions. The overnight increase in striato-motor activity was positively related to the TMR index for 

both the up- (right caudate: x = 20, y = 18, z = 12, pSVC = 0.005) and down-reactivated sequences (right caudate: x = 16, y = -2, z = 26, 

pSVC = 0.024) such that the greater the increase in brain activity (i.e., the more positive value on the y-axis), the greater the performance 

improvement on the reactivated as compared to the not-reactivated sequence (i.e., the more positive TMR index on the x-axis). d. Brain 

activity-EEG regressions. The overnight increase in activity in the motor cortex (top panel) and the basal ganglia (bottom panel) was 

related to the SO peak amplitude in the up- (left M1: x = -46, y = -16, z = 48, pSVC = 0.055; right pallidum: x = 20, y = -2, z = -6, pSVC = 0.045) 

and down-stimulated (left M1: x = -44, y = -16, z = 52, pSVC = 0.012) conditions such that the greater the SO peak amplitude during the 

night (x-axis), the greater the overnight increase in activity in these regions (y-axis). *: significant after small volume correction (SVC) 

correction. Activations maps are displayed on a T1-weighted template image with a threshold of p < 0.005 uncorrected. a.u.: arbitrary 

units. Violin plots: median (horizontal bar), mean (diamond), the shape of the violin plots depicts the kernel density estimate of the data. 

M1: primary motor cortex. 
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2.4. Phase-specific modulations of connectivity in striato-hippocampo-motor 

networks are related to the effect of TMR on motor performance 

We examined whether stimulation modulated task-related connectivity patterns in the brain regions 

showing phase-specific modulation of activity described above (i.e., the hippocampus and the striatum, 

see methods and Table S3).  

We observed an overnight decrease in hippocampo-motor connectivity for the up-reactivated sequence 

which was greater than for the not-reactivated sequence (Figure 6a and 6b, see Tables S3-1.3.1 and -

2.3.2 of the supplemental information). Moreover, an overnight decrease in striato-cortical (Figure S4a, 

right panel and Tables S3-3.2.1 of the supplemental information) and striato-hippocampal connectivity 

was related to a greater TMR index for the up-reactivated sequence (Figure 6c, see Tables S3-3.3.1 of 

the supplemental information). This suggests that the beneficial effect of up-stimulation on 

performance was paralleled by more segregation of task-relevant brain regions within their functional 

network, i.e., by a decrease in connectivity between these brain areas (which was also paralleled by an 

overall increase in activity within these brain regions, see above). 

Figure 5: Phase-specific modulation of task-related hippocampal activity. a. Overnight decrease in activity within condition. Brain 

activity decreased overnight in the hippocampus for both down- (right hippocampus: x = 32, y = -38, z = -6, pSVC = 0.044) and not-

stimulated sequences (right hippocampus: x = 34, y = -38, z = -6, pSVC = 0.005). Violin plots represent BOLD responses extracted 

from clusters overlapping between conditions (x = 32, y = -38, z = -6). b. Overnight decrease in activity between conditions. The 

overnight decrease in hippocampal activity was greater for the not-reactivated sequence as compared to the up-reactivated 

sequence (right hippocampus: x = 36, y = -36, z = -4, pSVC = 0.028). Violin plots represent the difference in BOLD responses extracted 

from the activation peaks in the post- versus pre-night sessions. c. Brain activity-behavior regressions. The overnight increase in 

hippocampal activity was positively related to the TMR index for both up- (right hippocampus: x = 36, y = -38, z = -8, pSVC = 0.005) 

and down-reactivated sequences (right hippocampus: x = 20, y = -34, z = 4, pSVC = 0.041) such that the lower the increase in brain 

activity (y-axis), the lower the performance improvement on the reactivated as compared to the not-reactivated sequence (x-

axis). *: significant after SVC correction. Activations maps are displayed on a T1-weighted template image with a threshold of p 

< 0.005 uncorrected. a.u.: arbitrary units. Violin plots: median (horizontal bar), mean (diamond), the shape of the violin plots 

depicts the kernel density estimate of the data. 
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In the down-reactivated condition, there was an overnight increase in striato-motor connectivity (Figure 

7a; see Tables S3-1.2.2 of the supplemental information) that was greater than for the up-reactivated 

sequence (Figure 7b; see Tables S3-2.2.1 of the supplemental information). Interestingly, we observed 

an overall negative relationship between overnight increases in connectivity in hippocampo-striato-

motor networks and sleep features such that lower SO amplitude and sigma power were related to 

greater overnight increases in connectivity (striato-hippocampal connectivity-sigma power: see Figure 

7c, left panel and Tables S3-4.1.2; striato-motor connectivity-SO amplitude: see Figure 7c, right panel; 

and Tables S3-4.4.2 and 4.5.2; hippo-motor connectivity-SO amplitude: see Figure S4b and Tables S3-

4.6.2; and striato-hippocampal connectivity-SO amplitude: see Figure S4c; and Tables S3-4.6.2). These 

results suggest that the reduced amplitude of sleep features observed under down- (as compared to 

up-) stimulation was presumably related to compensatory overnight increases in connectivity in 

hippocampo-striato-motor networks. Importantly, these overnight increases in connectivity were 

differently related to behavior depending on the networks examined. Specifically, the overnight 

Figure 6: Phase-specific modulation of task-related striato-hippocampo-cortical connectivity. a. Overnight decrease in hippocampo-

motor connectivity within condition. Hippocampo-motor connectivity decreased from pre- to post-night sessions for the up-reactivated 

condition (hippocampus-right PMC: x = 46, y = -8, z = 54, pSVC = 0.035). Violin plots represent BOLD responses extracted from this 

cluster. b. Overnight decrease in hippocampo-motor connectivity between conditions. The hippocampo-motor connectivity overnight 

decrease was greater in the up- (hippocampus-right M1: x = 58, y = -22, z = 46, pSVC = 0.033) and the down-reactivated sequences 

(hippocampus-right M1: x = 54, y = -22, z = 46, pSVC = 0.046) as compared to the not-reactivated sequence. Violin plots represent BOLD 

responses around a common significant voxel (x = 52, y = -24, z = 40). c. Brain connectivity-behavior regressions. The overnight 

decrease in striato-hippocampal (hippocampus-right putamen: x = 32, y = -8, z = 4, pSVC = 0.027) connectivity was negatively correlated 

with the TMR index such that the greater the decrease in connectivity (y-axis), the greater the performance improvement on the up-

reactivated as compared to the not-reactivated sequence (x-axis). M1: primary motor cortex. *: significant after SVC correction). 

Activations maps are displayed on a T1-weighted template image with a threshold of p < 0.005 uncorrected. a.u.: arbitrary units. 

Violin plots: median (horizontal bar), mean (diamond), the shape of the violin plots depicts the kernel density estimate of the data. 
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increase in striato-motor connectivity was related to poorer TMR index (Figure 7d, left panel; see Tables 

S3-3.2.2 of the supplemental information) while the increase in striato-hippocampal connectivity was 

related to greater TMR index (Figure 7d, right panel, see Tables S3-3.1.2 of the supplemental 

information). These findings suggest that increases in connectivity in striato-motor networks were 

ineffective to compensate for the negative effect of down-stimulation on performance while increases 

in connectivity between the striatum and the hippocampus were related to greater performance 

improvement.  

In sum, the connectivity results indicate an overall decrease in hippocampal and striatal connectivity 

after up-stimulation that was related to better performance. In contrast, down-stimulation resulted in 

an overall increase in connectivity in hippocampo-striato-motor networks that was related to the lower 

amplitude of sleep features during down-stimulation. Interestingly, these overnight increases in 

connectivity were differently related to performance improvement suggesting that different networks 

may play distinct roles to compensate for the reduced plasticity induced by down-stimulation during 

sleep. 
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Figure 7: Down-stimulation modulation of striato-hippocampo-cortical connectivity. a. Overnight increase in striato-motor 

connectivity. Striato-motor connectivity increased from pre- to post-night session for the down-reactivated condition (Putamen-

right M1: x = 28, y = -8, z = 44, pSVC = 0.038). Violin plots represent BOLD responses extracted from the cluster.  b. Overnight increase 

in striato-motor connectivity between conditions. The overnight increase in striato-motor connectivity was greater in the down- as 

compared to the up-reactivated sequence (Putamen-left M1: x = -32, y = -20, z = 50, pSVC = 0.02). Violin plots represent BOLD 

responses extracted from the cluster. c. Brain connectivity-EEG regressions. The overnight decrease in striato-hippocampal (left 

panel, Caudate-left hippocampus (pale blue): x = -24, y = -14, z = -8, pSVC = 0.005; Putamen-left hippocampus (dark blue): x = -18, y 

= -10, z = -8, pSVC = 0.017) and striato-motor (right panel, Caudate-left aSPL (pale blue): x = -44, y = -44, z = 38, pSVC = 0.003 ; Putamen-

left aSPL (dark blue): x = -38, y = -42, z = 36, pSVC < 0.001) connectivity were correlated with the sigma power and SO peak amplitude 

respectively such that the lower the SO peak amplitude and sigma power during the night (y-axis), the greater the overnight increase 

in connectivity (x-axis). d. Brain connectivity-behavior regressions. The overnight increase in striato-motor connectivity was related 

to the TMR index (left panel, Putamen-right M1: x = 26, y = -8, z = 44, pSVC = 0.025) such that the greater the increase in brain 

connectivity (y-axis), the lower the performance improvement on the down-reactivated as compared to the not-reactivated 

sequence (x-axis). In contrast, the overnight increase in striato-hippocampal connectivity was positively related to the TMR index 

(right panel, caudate-left hippocampus: x = -16, y = -40, z = 6, pSVC = 0.014) such that the greater the increase in brain connectivity 

(y-axis), the greater the performance improvement on the down-reactivated as compared to the not-reactivated sequence (x-axis). 

M1: primary motor cortex; *: significant after SVC correction. Activations maps are displayed on a T1-weighted template image 

with a threshold of p < 0.005 uncorrected. a.u.: arbitrary units. Violin plots: median (horizontal bar), mean (diamond), the shape of 

the violin plots depicts the kernel density estimate of the data.  
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3. Discussion 
The goal of this pre-registered study was to combine targeted memory reactivation (TMR) and closed-

loop (CL) stimulation approaches to (i) test whether reactivating motor memories at the up (as 

compared to the down)-phase of slow oscillations (SOs) during post-learning sleep could enhance motor 

memory consolidation; and to (ii) provide a comprehensive characterization of the underlying 

neurophysiological processes using sleep EEG and task-related fMRI. As hypothesized, overnight 

changes in performance were greater for motor sequences reactivated at the up-, as compared to the 

down-phase of the SO. Unexpectedly though, only performance on the down-reactivated sequence 

differ from the not-reactivated one. Electrophysiological data showed that up-stimulated SOs were of 

higher amplitude and presented greater peak-nested sigma power (spindle frequency band) than down-

stimulated SOs. Brain imaging data collected during task practice indicated that the practice of up-, as 

compared to down-reactivated sequences, resulted in greater activity in striato-motor areas, greater 

maintenance in hippocampal activity, and decreased connectivity in these networks. Importantly, these 

modulations in brain responses were related to the up-TMR-induced increase in SO amplitude and 

improvement in performance. In contrast, down-stimulation resulted in a lower increase in striato-

motor activity that was paralleled by significant increases in connectivity in striato-hippocampo-motor 

networks, and both were related to the lower amplitude of sleep features during down-stimulation. 

Interestingly, the overnight increases in connectivity observed after down-stimulation were related to 

better (striato-hippocampus) or worse (striato-motor) performance on the down-reactivated sequence. 

Our behavioral results indicate that TMR applied at the up-phase of the SO resulted in greater gains in 

motor performance than when administered at the down-phase of the SO. These phase-specific effects 

are in line with previous studies in which acoustic stimulations delivered in a closed-loop fashion at the 

up-phase (or during the down-to-up transition) of the SO have been shown to enhance declarative 

memory consolidation 17,20,21,25–27 (but see 26,28 for null effects). We are only aware of one study using 

closed-loop acoustic stimulation in the motor memory domain and results showed no benefit of SO up-

stimulation on motor performance 29. The discrepancy between this recent research and our findings is 

unclear but we speculate that methodological differences between studies, such as time afforded in 

NREM sleep (nap vs. night paradigm) or stimulation phase (380ms post-trough vs. peak), might have 

contributed to these inconsistencies. Another notable difference is that the sounds used in the current 

research were memory cues. In line with the current findings, the few studies using SO-closed-loop 

stimulation with memory cues (i.e., CL-TMR) show an up-phase stimulation benefit on declarative 

memory consolidation as compared to no-reactivation 18 or down-stimulation 19. Overall, our results 

concord with this earlier research and suggest that reactivating motor memories at the up-, as 

compared to the down-phase, of the slow oscillations during post-learning sleep benefits motor 

memory consolidation. Interestingly, our results also indicate that down-reactivated sequences 

presented significantly worse performance as compared to both up- and not-reactivated sequences. 

One could therefore argue that down-stimulation actively disrupted the motor memory consolidation 

process. These findings contradict earlier studies showing no specific effect of down-, as compared to 

no-stimulation, on memory 17–19. Based on this earlier research and evidence that down-phases of SOs 

are silent phases of neuronal inactivity 30, we speculate that our results are driven by the nature of our 

paradigm rather than by an active disruptive effect of down-stimulation on memory consolidation. 

Specifically, it is possible that, due to our within-subject design, overall acoustic stimulation during post-

learning sleep might also have boosted performance on the control (not-reactivated) condition. This 

could also explain the lack of difference between up and not conditions in the current study. While this 
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is hypothetical, it is in line with previous work using similar within-subject design showing no difference 

in performance between the up- and not-reactivated conditions 19.   

Our electrophysiological data show phase-specific modulations of sleep oscillations such that up-

stimulated SOs exhibited higher amplitude and presented greater sigma power nested at their peak as 

compared to down-stimulated SOs. Together with sleep spindles and sharp wave ripples, slow 

oscillations are part of the three cardinal NREM sleep oscillations playing a critical role in memory 

consolidation during sleep 1,6,31. SO up-states have received particular attention as they are known to 

host heightened excitability 30 It is thought that prolonging SO up-phase with stimulation increases the 

probability of neuronal ensembles to fire together and strengthen the memory traces encoded in these 

networks 32. Accordingly, prior research has used experimental interventions to target plasticity 

processes during this window and, in turn, influence memory consolidation during sleep. In line with 

our findings, this earlier research has collectively shown that stimulating SO at the up-phase of the slow-

oscillation enhanced the amplitude of ongoing SOs 17–21,25–27,29,33,  sigma oscillation power during the 

ascending phase of the SO 18–20 and memory consolidation 17–21,26,27.  Interestingly, the time-locking of 

the sigma burst to the up-phase of the SO has been shown to predict a positive outcome of consolidation 
14,34. Altogether, our findings generally concord with earlier experimental work and with models 

suggesting that the synchronous neural firing orchestrated by the SOs leads to a higher probability of 

downstream synchronous neural firing favoring the occurrence of higher frequency oscillation bursts 

such as sleep spindles that are beneficial for memory consolidation 35. 

Our brain imaging data indicate that up-stimulation resulted in an overnight increase in task-related 

striato-motor activity and a maintenance of hippocampal activity as compared to the down- and no-

stimulation conditions. The involvement of striato- and hippocampo-cortical networks in motor 

sequence learning and memory consolidation is well documented. Specifically, task-related striato-

motor activity generally increases with consolidation and during later stages of learning e.g.,22,36. 

Hippocampal activity during both learning and delayed retests has also been associated to successful 

(sleep-related) motor memory consolidation 24,37–40. The present data therefore suggest that up-

stimulation further strengthened the modulation of brain activity that is usually observed as a result of 

the spontaneous motor memory consolidation process. Interestingly, our results also show that the 

modulations of hippocampal and striato-motor activity reported above were related to both the 

overnight performance improvement and the enhancement of sleep features. These findings generally 

concord with a series of earlier correlational studies. First, they are in line with an acoustic stimulation 

study showing that up-phase stimulation-induced increases in SO amplitude were correlated with 

greater hippocampal activity during subsequent (post-sleep) declarative learning 33. They also concur 

with earlier studies in the motor memory domain showing a positive relationship between spindle-

locked striatal and hippocampal reactivations during post-learning sleep and offline gains in motor 

performance 41. They are also consistent with the findings of a previous TMR study showing that the 

increased striatal and hippocampal activity observed for reactivated (as compared to not-reactivated) 

motor sequences was related to the time spent in NREM sleep (during which TMR was applied) 12. Based 

on the evidence reviewed above and the current data, we suggest that the up-stimulation-induced 

increase in SO amplitude and sigma power during post-learning sleep facilitated hippocampal and 

striatal reactivations which in turn resulted in greater activity in these networks during retest and better 

motor performance. It is worth noting that similar modulations of brain activity - albeit of lower 

amplitude - were observed for down-reactivated sequences. Interestingly, the relationship between the 

modulation in brain responses in the down condition and both performance and sleep features was 
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similar as for the up condition but scaled down in terms of amplitude (i.e., lower changes in brain 

activity, lower performance gains and lower amplitude of sleep features). These results suggest that 

plasticity processes induced by down-stimulation during sleep were presumably reduced as compared 

to up-stimulation and therefore less favorable for reactivation processes to take place during post-

learning sleep. This is in line with previous research suggesting that the efficacy of TMR follows a (down-

to-up) gradient rather than an “all-or-none principle” 19. Here, we speculate that such reduced plasticity 

resulted in lower activity in hippocampal and striatal areas during retest and poorer motor performance. 

Altogether, these brain imaging results further corroborate the hypothesis that down-stimulation did 

not actively disrupt motor memory consolidation but rather failed to potentiate ongoing consolidation 

processes.   

Our brain connectivity analyses revealed an overnight decrease in hippocampo-striato-cortical 

connectivity in the up-condition which was related to better performance. These observations stand in 

contrast with earlier reports of increased connectivity within striato-motor networks 42 and between 

the striatum and the hippocampus 24,43 as a result of spontaneous motor memory consolidation. They 

are also inconsistent with earlier TMR studies showing greater connectivity in these networks during 

the practice of reactivated as compared to not-reactivated motor sequences 12,44. We speculate that the 

decrease in connectivity observed after up stimulation reflects an advanced stage of consolidation in 

which brain regions are more segregated within their functional networks due to a decreased need for 

long-range integration as a result of consolidation 1,32,45,46. In contrast to these observations, connectivity 

analyses in the down condition revealed an overnight increase in connectivity in these networks which 

was negatively correlated to sleep features such that lower SO amplitude and sigma oscillation power 

were related to greater connectivity increase. Together with the brain activation results showing lower 

modulation of brain activity after down-stimulation, it is tempting to speculate that these large increases 

in connectivity reflect compensatory processes. Importantly, the increases in connectivity observed for 

the down-reactivated sequences were differently related to changes in performance depending on the 

network involved. Specifically, the overnight increase in striato-hippocampal connectivity was 

associated to better performance while increases in striato-motor connectivity were related to worse 

performance. We speculate that connectivity within these different networks reflects different 

processes. On the one hand, connectivity between the striatum and the hippocampus during initial 

motor learning has been proposed to reflect the integration of different tasks components (motor vs. 

spatial) that is necessary  to optimize motor behavior  22,24.  On the other hand, increases in striato-

motor connectivity occur at later stages of learning for the automatization of the motoric component 

of the task  36,47. We argue that the sub-optimal plasticity process under down-stimulation slowed down 

consolidation such that greater interaction between the striatal and hippocampal systems - usually 

observed during initial learning - was beneficial for performance at retest while greater connectivity in 

non-optimally consolidated motor networks failed to optimize behavior. This remains, however, 

speculative. 

In summary, this study showed that motor memories reactivated during the up-phase of slow 

oscillations exhibited superior consolidation compared to memories reactivated at the down-phase. Our 

results suggest that the phase-specific beneficial effect of slow-oscillation closed-loop TMR on 

consolidation was related to phase-specific modulations of activity and connectivity in task-relevant 

networks including the striatum, the hippocampus and the motor cortex which were also associated to 

phase-specific alterations of the characteristics of sleep EEG features involved in plasticity processes. 

Altogether, this study not only highlights the promise of up-phase CL-TMR to impact motor memory 
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consolidation but also sheds light on the complex interplay between sleep oscillations, task-related brain 

activity and connectivity patterns, and motor performance.  
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4. Material and Methods 
This study was pre-registered in the Open Science Framework (https://osf.io/). Our pre-registration 

document outlined our hypotheses and intended analysis plan as well as the statistical models used to 

test our a priori hypotheses (available at https://osf.io/dpu6z). Whenever an analysis presented in the 

current paper was not pre-registered, it is referred to as exploratory. Additionally, to increase 

transparency, any deviation from the pre-registration is marked in the methods section with a (#) 

symbol and listed in Table S4 of the supplemental information together with a justification for the 

change. 

4.1. Participants 

Young healthy volunteers (23.7 yo ranging from 18 to 30) were recruited to participate in the proposed 

research project and received a monetary compensation for their time and effort. Every participant gave 

written informed consent before participating in this research protocol, which was approved by the 

local Ethics Committee (B322201525025) and was conducted according to the declaration of Helsinki 

(2013). Inclusion criteria were: 1) no previous extensive training of dexterous finger movements via 

playing a musical instrument or as a professional typist, 2) free of medical, neurological, psychological, 

or psychiatric conditions, including depression 48 and anxiety 49, 3) no indications of self-reported 

abnormal sleep 50, 4) free of psychoactive and sleep-influencing medications, 5) eligible for MR 

measurements, and 6) right-handed 51. None of the participants were shift-workers or did a trans-

meridian trip in the month preceding the study. 

We performed a power analysis based on our previous study investigating auditory TMR in an open-

loop paradigm 14. This power analysis was performed with the G*Power software 52. The partial η² was 
calculated based on our behavioral main effect showing a significant effect of condition (reactivated vs. 

control) on offline changes in performance speed and was transformed to an effect size f (η² = 0.15; f = 
0.42). The correlation coefficient calculated between the offline changes in performance speed in the 

reactivated and the control conditions was 0.66, but due to the different nature of the design (e.g., 3 

sequences instead of 2, 5-element sequences instead of 8), we set the average correlation coefficient 

between repeated measures at r = 0.5 for a more conservative power calculation. Finally, the sphericity 

correction was set to 0.5 since the primary factors of interest in our design had 3 levels (up-reactivated, 

down-reactivated and not-reactivated). The primary contrast of interest is a reactivation condition main 

effect on offline changes in performance speed tested with a one-way rmANOVA. The required sample 

size for a 95% power is 27 at an alpha error probability of 0.05. In total, 34 (age range 18 – 30 yo) 

participants completed the study. Two participants were excluded for experimental error (i.e., one 

participant because they were erroneously enrolled despite being left handed and the other one 

because of technical errors at the scanner) and one for excessive movement in the scanner (see MRI 

section below). The remaining 31 participants were included in closed-loop stimulation analyses (i.e., 

detection accuracy) but only 27 participants presented a complete dataset (behavior, sleep EEG and 

MRI data). In three participants, only the sleep EEG data was analyzed as behavioral and MRI data of the 

post-night session was corrupted due to experimental error (sleep EEG analyses, N = 30). For one 

participant, only MRI and behavioral data were analyzed due to an EEG recording default (Behavioral 

and MRI analyses, N = 28). Also note that for five participants, the pre-night Psychomotor Vigilance Task 

data was overwritten due to experimental error. Participant’s characteristics are reported in Table S5 in 

the supplemental information.  
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4.2. General design 

In this full within-subject design presented in Figure 1, participants were first invited, in the evening, for 

a habituation night during which they completed a full night of sleep monitored with polysomnography 

(PSG). Roughly a week later, participants returned to complete the experimental session. Between these 

two visits, each participant followed a constant sleep/wake schedule (according to their own rhythm +/- 

1h) during at least 3 days before the experimental session (compliance assessed with sleep diaries and 

wrist actigraphy, ActiGraph wGT3X-BT, Pensacola, FL). Sleep quality and quantity for the night preceding 

the experiment was assessed with the St. Mary’s sleep questionnaire 53 (sleep data are presented in 

Table S5). 

During the experiment, volunteers participated in two fMRI sessions referred to as pre-night (around 9 

pm) and post-night (around 8.30 am) sessions which took place at the MRI facility as well as an 

experimental night (EEG) session which took place in the sleep lab between the two fMRI sessions 

(between 11pm-7am). At the beginning of each fMRI session, vigilance was measured objectively and 

subjectively using the Psychomotor Vigilance Task (PVT) 54 and Stanford Sleepiness Scale (SSS) 55, 

respectively (vigilance data are reported in Table S5). The pre-night MRI session started with a resting 

state scan (RS1). Then participants performed two motor tasks: (i) the random version of the serial 

reaction time task (SRTT, see below for details) to measure baseline performance / general motor 

execution (not scanned) and (ii) the training and a short post-training test on the sequential SRTT 

probing motor sequence learning (both scanned). During the sequential SRTT, participants learned to 

perform three different motor sequences. Each sequence was associated to a different sound. Two of 

the three sounds associated to the learned material were replayed - using auditory closed-loop 

stimulation - on the peak (up-state) or the trough (down-state) of slow oscillations detected online 

during the subsequent sleep episode (see Polysomnography and TMR section for detection algorithm 

details). The other sequence served as a no-reactivation control condition. The combination between 

the 3 reactivation conditions (referred to as up-reactivated, down-reactivated and not-reactivated 

conditions), the 3 sounds and the 3 sequences was randomized across participants. After task 

completion, a post-task RS scan (RS2) and a structural scan were acquired. Following this first MRI 

session, participants were transferred to the sleep lab. During the experimental night, participants’ brain 

activity was recorded with PSG and CL-TMR was applied during the NREM2-3 stages of the first 3 hours 

of sleep (i.e. 3 hours from the first stimulation). The post-night session took place at the MRI facility and 

started with a RS (RS3) that was followed by the retest on the sequential SRTT. The session was 

concluded with the last RS (RS4) and the random SRTT (not scanned). Note that the RS data are not 

reported in the present manuscript. 

 

4.3. Stimuli and tasks 

4.3.1. Motor Task 

A bimanual serial reaction time task (SRTT) 56,57 was implemented in Matlab Psychophysics Toolbox 

version 3 58. During the task, eight squares were presented on the screen, each corresponding to one of 

the eight keys on a specialized MR-compatible keyboard and to one of the 8 fingers of both hands 

excluding the thumbs. The color of the outline of the squares alternated between red and green, 

indicating rest and practice blocks, respectively. During the practice block, participants had to press as 

quickly as possible the key corresponding to the location of a green filled square that appeared on the 

screen. After a response, the next square changed to green following either a pseudo-random (see 
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below for details) or sequential order depending on the task variant. After 20 presses, the practice block 

automatically turned into a rest block and the outline of the squares changed from green to red. The 

rest interval was 10s.  

In the sequential version of the SRTT, participants learned 3 different 5-element sequences (sequence 

A: 4 7 2 8 3, sequence B: 1 6 3 5 2, and sequence C: 7 3 8 4 6, where 1 is the left little finger and 8 is the 

right little finger) that were pseudo-randomly assigned to the three conditions. Sequence practice was 

organized by block (one sequence practiced per block) and each sequence was repeated 4 times per 

block (20 key presses per block). The order of the sequences was fixed within participants but pseudo-

randomized across participants. The participants were explicitly instructed that the visual cues would 

appear following a sequential pattern and that there would be three different motor sequences to 

perform. The pre-night training session consisted of 63 practice blocks (21 blocks per sequence) 

immediately followed by a post-training test of 9 practice blocks (3 blocks per sequence). This test was 

performed in order to minimize the confounding effect of fatigue on end-of-training performance 59. 

The post-night session consisted of 63 practice blocks (21 blocks per sequence). During all task practice 

sessions, three different 100-ms auditory cues (see below) pseudo-randomly assigned to sequences A, 

B, or C were played before the beginning of each sequence.  

For the pseudo-random version of the SRTT, four blocks composed of 12 sequences were created by 

randomly selecting 5 keys out of 8 at each iteration (60 key presses per block). For both version of the 

SRTT, participants were instructed to keep their fingers still and look at the squares on the screen during 

the rest blocks and to respond as quickly and as accurately as possible to the visual cues during the 

practice blocks. 

4.3.2. Acoustic stimulation 

The same three different 100-ms sounds used our previous research 14,60 were pseudo-randomly 

assigned to the three conditions (up-reactivated, down-reactivated, and not-reactivated), for each 

participant. The three synthesized sounds consisted of (1) a tonal harmonic complex created by 

summing a sinusoidal wave with a fundamental frequency of 543 Hz and 11 harmonics with linearly 

decreasing amplitude (i.e. the amplitude of successive harmonics is multiplied by values spaced evenly 

between 1 and 0.1); (2) a white noise band-passed between 100-1000 Hz; and (3) a tonal harmonic 

complex created with a fundamental frequency of 1480 Hz and 11 harmonics with linearly increasing 

amplitude (i.e. the amplitude of successive harmonics is multiplied by values spaced evenly between 

0.1 and 1). A 10-ms linear ramp was applied to the onset and offset of the sound files so as to avoid 

earphone clicks. Before the start of the training session, a dummy MRI acquisition was launched to 

adjust the volume of the three different sounds. Sounds were played via MR-compatible, electrostatic 

headphones (MR-Confon, Magdeburg, Germany). An experimenter adjusted the volume of the sounds 

until the participant reported they could hear it above and beyond the scanner noise but still 

comfortably. The sound level determined for each of the three sounds was then used during task 

practice. During the reactivation session taking place during the experimental night in the sleep lab, 

sounds were played via ER3C air tube insert earphones (Etymotic Research). Before turning the light 

offs for the night, auditory detection thresholds were determined by performing a transformed 1-down 

1-up procedure 61,62 separately for each of the three sounds. Subsequently, the sound pressure level 

was set to 2db above the individual auditory threshold, thus limiting the risk of awakening during the 

night. The three sounds were then presented to the participants at the intensity mentioned above to 
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confirm that they could hear them distinctively. Before the start of the night episode, participants were 

instructed that they may or may not receive auditory stimulations during the night.  

4.4. EEG data acquisition and closed-loop TMR 

Both habituation and experimental nights were monitored with a digital sleep recorder (V-Amp, Brain 

Products, Gilching, Germany; bandwidth: DC to Nyquist frequency) and were digitized at a sampling rate 

of 1000 Hz. Standard electroencephalographic (EEG) recordings were made from Fz, C3, Cz, C4, Pz, Oz, 

A1 and A2 according to the international 10-20 system (note that Fz, Pz and Oz were omitted during 

habituation). A2 was used as the recording reference and A1 as a supplemental individual EEG channel. 

An electrode placed on the middle of the forehead was used as the recording ground. Bipolar vertical 

and horizontal eye movements (electrooculogram: EOG) were recorded from electrodes placed above 

and below the right eye and on the outer canthus of both eyes, respectively. Bipolar submental 

electromyogram (EMG) recordings were made from the chin. Electrical noise was filtered using a 50 Hz 
notch.  

The CL-TMR device required another set of electrodes for which the signal was recorded from FPz 

(ground and reference electrodes placed behind the right ear). During the experimental night, an 

experienced researcher performed online visual scoring of the polysomnography (PSG) data in order to 

detect NREM2-3 sleep. When these stages were reached, the phase detection algorithm was launched 

(see below). The auditory stimulation was presented in a blocked design with 3-min long intervals that 

alternated between up- and down-SO detection/stimulation. Each stimulation block was separated by 

a 1-minute silent period (Figure 1B). The stimulation was manually stopped when the experimenter 

detected REM sleep, NREM1 or wakefulness. The CL-TMR ended 3 hours after the first stimulation was 

sent (about 2 sleep cycles). The sounds associated to the up(down)-reactivated sequence was then 

played on the peak(trough) of the SOs within these alternating blocks. The algorithm for online SO 

detection consisted of a two-step process for trough and peak detection. For down-detection, a fast-

moving average filter was employed with a window of 50 samples and a trough was detected when 

signal went below a specific threshold adapted for biological sex according to 23  and of -41µV in females 

and 39.5µV in males. For up-detection, the peak of a SO was identified when, in addition to the criterion 

described for trough detection above, peak-to-peak signal amplitude reached 77 µV in females and 74 

µV in males. Importantly, as the trough detection relied on less criteria than peak detection, the 

likelihood to detect trough was higher than the one for peak. To address this issue, a secondary filter 

was implemented to look backwards and validate the initial detections. This algorithm assessed whether 

the detected events corresponded to true slow oscillations. By tracking the true positive count for both 

conditions, the algorithm dynamically adjusted its detection strategy. If the count indicated an 

imbalance, with more down- than up-detections, the algorithm temporarily paused during down-

detection intervals, allowing up-detection to catch up. The ultimate goal was to achieve balanced 

stimulation between conditions (Table S5 in supplemental information). 

4.5. fMRI data acquisition 

MRI data were acquired on a Philips Achieva 3.0T MRI system equipped with a 32-channel head coil. 

Task-related fMRI data were acquired during the training and overnight retest sessions using an 

ascending gradient EPI pulse sequence for T2*-weighted images (TR = 2000 ms; TE = 29.8 ms; multiband 

factor 2; flip angle = 90°; 54 transverse slices; slice thickness = 2.5 mm; interslice gap = 0.2 mm; voxel 

size = 2.5 × 2.5 × 2.5 mm3; field of view = 210 × 210 × 145.6 mm3; matrix = 84 × 82) for each participant 

(max. 1200 dynamic scans). Resting-state fMRI data were also collected prior and immediately after the 
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training and overnight retest sessions with the same EPI sequence as above (data not reported here). 

Additionally, field maps (TR = 1500 ms; TE = 3.5 ms; flip angle = 90°; 42 transverse slices; slice thickness 

= 3.75 mm; interslice gap = 0 mm; voxel size = 3.75 × 3.75 × 3.75 mm3; field of view = 240 × 240 × 157.5 

mm3; matrix = 64 × 64) were collected immediately before the SRTT Training and Retest together with  

three sets of EPI images using reversed phase-encoding polarity (TR = 2000 ms; TE = 29.8 ms; multiband 

factor 2; flip angle = 90°; 54 transverse slices; slice thickness = 2.5 mm; interslice gap = 0.2 mm; voxel 

size = 2.5 × 2.5 × 2.5 mm3; field of view = 210 × 210 × 145.6 mm3; matrix = 84 × 82, 6 dynamic scans). 

Note that these sequences were not included in the final analysis pipeline# (see #1 in Table S4 of the 

supplemental information). High-resolution T1-weighted structural images were acquired with a 

MPRAGE sequence (TR = 9.5 ms, TE = 4.6 ms, TI = 858.1 ms, FA = 9°, 160 slices, FoV = 250 × 250 mm2, 

matrix size = 256 × 256 × 160, voxel size = 0.98 × 0.98 × 1.20 mm3) for each participant. 

4.6. Analyses 

4.6.1. Behavioral data  

4.6.1.1. Preprocessing 

Motor performance on both the random and sequential SRTT was measured in terms of speed (median 

of correct response time RT, in ms) and accuracy (% of correct responses, with a trial classified as 

“correct” if the key pressed by the participants matches the visual cue) for each block of practice. Note 

that correct trials were excluded from the analyses if they were outlier trials based on John Tukey’s 

method of leveraging the Interquartile Range# (5.1% of the correct trials were outliers, see #2 in Table 

S4 of the supplemental information). Consistent with our pre-registration, our primary analyses focused 

on performance speed (but see Figure S5 in the supplemental information for results related to the 

accuracy).  

The offline changes in performance on the sequential SRTT were computed as the relative change in 

speed between the end of the training of the pre-night session (namely during the 3 blocks of the pre-

night test) and the beginning of the post-night session (3 first blocks of practice) separately for the up-

reactivated, the down-reactivated, and the not-reactivated sequences. A positive offline change in 

performance therefore reflects an increase of absolute performance from the pre-night test to the post-

night test. Additionally, we computed a TMR index which consisted of the difference in offline gains in 

performance between up-reactivated and not-reactivated sequences (TMR indexup) and down-

reactivated and not-reactivated sequences (TMR indexdown), separately. A positive TMR index reflects 

higher offline changes in performance for the reactivated sequences as compared to the not-

reactivated, control, one.  

4.6.1.2. Statistics 

Behavioral statistical analyses were performed with the open-source software R 64,65. Statistical tests 

were considered significant for p < 0.05. When necessary, corrections for multiple comparisons were 

conducted with the False Discovery Rate 66 (FDR) procedure within each family of hypothesis tests. 

Greenhouse-Geisser corrections was applied in the event of the violation of sphericity. F and t statistics 

and corrected p-values were therefore reported for ANOVAs and student tests, respectively. Effect sizes 

are reported using Cohen’s d for Student t-tests and η² for rmANOVAs using G*power 52.  

We describe in the supplemental information the negative control analyses that were collectively 

designed to verify that the pattern of behavioral results emerged from our experimental manipulation 
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on motor memory consolidation processes rather than from the various potential confounding factors 

listed below. First, we tested whether vigilance during each behavioral session was similar using a one-

way rmANOVAs on both the median RTs of the PVT and the Stanford Sleepiness Scale scores with 

Session as two-level factor (pre- and post-night, see Table S5). Second, we tested whether the three 

movement sequences were learned to the same extent during the pre-night session using two-way 

rmANOVAs on performance speed and accuracy measures with sequence (A vs. B vs. C) and blocks (21 

for training and 3 for post-training test) as within-subject factors (Figure S6 in the supplemental 

information). Third, we performed the same analysis using condition (up-reactivated vs. down-

reactivated vs. not-reactivated) – as opposed to sequence (A, B and C) - and blocks (21 for training and 

3 for post-training test) as within-subject factors (Figure 2a). Last, to highlight that improvement in 

movement speed was specific to the learned sequences as opposed to general improvement of motor 

execution, we computed the overall performance change for both the sequential SRTT (first 4 blocks of 

the pre-night training vs. 4 last blocks of post-night training collapsed across sequences) and the pseudo-

random version of the SRTT (4 blocks pre-night session vs. 4 blocks post-night session).  

In our confirmatory analysis, we tested whether offline changes in performance on the sequential SRTT 

differed between reactivation conditions after a night of sleep. To do so, a one-way rmANOVA was 

performed on the offline changes in performance speed (main text) and accuracy (supplemental 

information and Figure S5) with Condition (up- vs. down- vs. not-reactivated) as within-subject factor. 

Post-hoc analysis on the 3 possible pair comparisons were performed using Student t tests and FDR 

correction was applied 66. 

4.6.2. Electrophysiological data  

4.6.2.1. Offline sleep scoring 

Offline sleep scoring was performed by a certified sleep technologist - blind to the stimulation periods - 

according to criteria defined in the guidelines from the American Academy of Sleep Medicine 67,68 using 

the software SleepWorks (version 9.1.0 Build 3042, Natus Medical Incorporated, Ontario, Canada). Data 

were visually scored in 30 s epochs and band pass filters were applied between 0.3 and 35 Hz for EEG 

signals, 0.3 and 30 Hz for EOG, and 10 and 100 Hz for EMG. A 50 Hz notch filter was also used. Sleep 

characteristics resulting from the offline sleep scoring as well as the distribution of auditory cues across 

sleep stages and SO phases are shown in Table S5 of the supplemental information. Briefly, results 

indicate that participants slept 7.5 hours on average (sleep efficiency: 83.3 %) and that cues were 

accurately presented in NREM sleep (stimulation accuracy mean: 98.5% (95CI: 97.6 - 99.3); up-

reactivated cues: 98.8 % (95CI: 98.1 - 99.4); down-reactivated cues: 98.2% (95CI: 97.2 - 99.3) and at the 

correct phase (true positive mean: 82.2 % (95CI: 79.6 – 84.8); up-reactivated: 89.5 % (95CI: 87.8 - 91.2); 

down-reactivated: 74.9 % (95CI: 71.7 - 78.1); see Figure S7 of the supplemental information). 

4.6.2.2. Preprocessing 

EEG data preprocessing was carried out using functions supplied by the fieldtrip toolbox 69. EEG was re-

referenced to an average of A1 and A2 and filtered between 0.1-30 Hz. Specifically, data were cleaned 

by manually screening each 30-sec epoch. Data segments contaminated with muscular activity or eye 

movements were excluded. Independent component analysis was used to remove cardiac artifacts. We 

then offline detected the SOs on the FPz channel use for online detection with criteria published in 

previous research and similar to our online detection 23,70. The trough time-sample of each offline-

detected and stimulated SO (referred to as true positive in Table S5) was extracted from the reactivation 
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period (i.e. the first three hours of the night) for both the up- and down-stimulation blocks. We also 

extracted the trough time-sample of each offline-detected SO occurring during the silent intervals 

(referred to as not-stimulated SO). 

4.6.2.3. Event-related analyses 

Event-related data analyses included trough-locked potentials and oscillatory activity and were 

performed with down sampled data (100Hz). Trough-locked responses were obtained by segmenting 

the data into epochs time-locked to the trough of the SOs offline-detected on FPz (from -2 to 2 sec) for 

the up-, the down- and the not-stimulated SO and averaged across all trials # (see #3 in Table S4 of the 

supplemental information) in each condition separately. The average number of artifact-free trials by 

condition was of 622.9 [95% CI: 495.1 – 750.6] for the up-, 599.7 [95% CI: 482.4 – 717.1] for the down-

, and 664.3 [95% CI: 528.6 – 800.0] for the not-stimulated conditions. To analyze oscillatory activity, we 

computed Time-Frequency Representations (TFRs) of the power spectra per experimental condition and 

per channel. To this end, we used an adaptive sliding time window of five cycles length per frequency 

(Δt = 5/f; 20-ms step size), and estimated power using the Hanning taper/FFT approach between 5 and 

30 Hz. Individual TFRs were converted into change of power relative to the entire period around the SO 

trough (from -2s to 2s relative to trough) # (see #3 in Table S4 of the supplemental information). Note 

that statistical analyses were performed on a more conservative 1.5s to 1.5s relative to SO-trough to 

avoid border effects. Nonparametric CBP tests 71 implemented in fieldtrip toolbox were used for both 

ERP and TF analyses. For both analyses, we used paired t-test between conditions and cluster-based 

correction (Maris and Oostenveld, 2007) to account for multiple comparisons across time and space for 

the ERP analyses, and time, frequency and space for the TF analyses. All time-space (ERP analyses) and 

time-frequency-space (TF analyses) samples whose t values exceeded a threshold of alpha cluster of 

0.01 were considered as candidate members of clusters, i.e. samples clustered in connected sets on the 

basis of time and space adjacencies for ERP analyses and on the basis of time, frequency and space 

adjacencies for the TF analyses. The sum of t-values within every cluster, that is, the ‘cluster size’, was 

calculated as test statistics. These cluster sizes were then tested against the distribution of cluster sizes 

obtained for 500 partitions with randomly assigned conditions within each individual. The clusters were 

considered significant at p < 0.05. For CBP contrast analyses, Cohen’s d is reported. Corrections for three 

comparisons, i.e., p < 0.0083, was conducted with Bonferonni procedure within each family of 

hypothesis tests# (see #4 in Table S4 of the supplemental information). 

Note that event-related phase amplitude coupling analyses were also pre-registered but eventually not 

performed as redundant with SO-trough locked analyses# (see #5 in Table S4 of the supplemental 

information). 

4.6.2.4. Sleep events detection 

Induced sleep spindles and SOs were detected on all EEG channels automatically a posteriori in NREM 

sleep epochs during the reactivation period by using the YASA open-source Python toolbox 72. This 

analysis on induced events included all detected sleep events in blocks of stimulated and not-stimulated 

intervals. Preprocessed cleaned data were down-sampled to 500 Hz and were transferred to the python 

environment. Concerning the spindle detection, the algorithm is inspired from the A7 algorithm 

described in Lacourse et al. 73. The relative power in the spindle frequency band (12–16 Hz) with respect 

to the total power in the broad-band frequency (1–30 Hz) is estimated based on Short-Time Fourier 

Transforms with 2-s windows and a 200-ms overlap. Next, the algorithm uses a 300ms window with a 
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step size of 100 ms to compute the moving root mean squared (RMS) of the filtered EEG data in the 

sigma band. A moving correlation between the broadband signal (1–30 Hz) and the EEG signal filtered 

in the spindle band is then computed. Sleep spindles are detected when the three following thresholds 

are reached simultaneously: (i) the relative power in the sigma band (with respect to total power) is 

above 0.2 (ii) the moving RMS crosses the RMSmean + 1.5 RMSSD threshold and (iii) the moving correlation 

described is above 0.65. Additionally, detected spindles shorter than 0.5 s or longer than 2 s were 

discarded. Spindles occurring in different channels within 500ms of each other were assumed to reflect 

the same spindle. In these cases, the spindles are merged together. Concerning the SO detection, the 

algorithm used is a custom adaptation from 70,74. Specifically, data were filtered between 0.3 and 2 Hz 

with a FIR filter using a 0.2 Hz transition resulting in a –6 dB points at 0.2 and 2.1 Hz. Then all the negative 

peaks with an amplitude between –40 and –200 μV and the positive peaks with an amplitude comprised 

between 10–150 μV are detected in the filtered signal. After sorting identified negative peaks with 
subsequent positive peaks, a set of logical thresholds are applied to identify the true slow oscillations: 

(1) duration of the negative peak between 0.3 and 1.5 sec; (2) duration of the positive peak between 

0.1 and 1 sec; (3) amplitude of the negative peak between 40 and 300 µV; (4) amplitude of the positive 

peak between 10 and 200 µV and (5) PTP amplitude between 75 and 500 µV. 

We extracted the frequency and the amplitude of spindles as well as the density of both spindles and 

SO. On these variables of interest, we performed one-way rmANOVAs with condition (events occurring 

during up- vs. down- vs. not-stimulated intervals) as within-subject factor using the software R 64,65 and 

Greenhouse-Geisser corrections was applied in the event of the violation of sphericity. Statistical tests 

were considered significant for p < 0.05. When a condition effect was detected, post-hoc analysis on 

the 3 possible pair comparisons were performed using Student t-test and FDR correction was applied 
66. 

4.6.3. fMRI data 

Statistical parametric mapping (SPM12; Welcome Department of Imaging Neuroscience, London, UK) 

was used for the preprocessing of the functional images and the statistical analyses of BOLD data.  

4.6.3.1. Preprocessing 

Preprocessing included the realignment of the functional time series using rigid body transformations, 

iteratively optimized to minimize the residual sum of squares between each functional image and the 

first image of each session separately in a first step and with the across-session mean functional image 

in a second step (mean of maximum movement in the three dimensions: 1.49 mm (95CI: 0.91 – 2.07) 

for the pre-night training session and 0.96 mm (95CI: 0.73 – 1.18) for the post-night training session). 

Movement was considered as excessive when exceeding more than 2 voxels mm in either or the three 

dimensions for both the pre- and post-night sessions (one individual was excluded from data analyses 

because of such excessive movement). The pre-processed functional images were then co-registered to 

the structural T1-image using rigid body transformation optimized to maximize the normalized mutual 

information between the two images. The anatomical image was segmented into gray matter, white 

matter, cerebrospinal fluid (CSF), bone, soft tissue and background and the individuals’ forward 

deformation fields were used for the normalization step. All functional and anatomical images were 

normalized to the MNI template (resampling size of 2 x 2 x 2 mm). Functional images were spatially 

smoothed using an isotropic 8 mm fullwidth at half-maximum [FWHM] Gaussian kernel.  

4.6.3.2. Activation-based analyses 
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The analysis of the task-based fMRI data, based on a summary statistics approach, was conducted in 

two serial steps accounting for intra-individual (fixed effects) and inter-individual (random effects) 

variance, respectively. Changes in brain regional responses was estimated for each participant with a 

model including responses to the three motor sequences (up- vs. down- vs. not-reactivated) and their 

linear modulation by performance speed (median RT on correct key presses per block) for each task run 

(pre-night training, pre-night test, post-night training). The rest blocks occurring between each block of 

motor practice served as the baseline condition modeled implicitly in the block design. These regressors 

consisted of boxcars convolved with the canonical hemodynamic response function. Movement 

parameters derived from realignment as well as erroneous key presses were included as covariates of 

no interest. High-pass filtering was implemented in the design matrix using a cutoff period of 128 s to 

remove slow drifts from the time series. Serial correlations in the fMRI signal was estimated using an 

autoregressive (order 1) plus white noise model and a restricted maximum likelihood (ReML) algorithm. 

Linear contrasts were generated at the individual level to test for (1) the main effect of practice (across 

sequences) and its linear modulation by performance, (2) the main effect of practice for each sequence 

(up-, down-, and not-reactivated) and (3) the difference in brain responses between sequences 

(reactivated-up vs. reactivated-down vs. not-reactivated). These contrasts were written within each of 

the two training runs (pre-night and post-night training) # (see #6 in Table S4 of the supplemental 

information for justification) as well as between these runs. The resulting contrast images were further 

spatially smoothed (Gaussian kernel 6 mm Full Width at Half Maximum (FWHM)). The resulting contrast 

images were entered in a second level analysis for statistical inference at the group level (one sample t-

tests), corresponding to a random effects model accounting for inter-subject variance. 

 

4.6.3.3. Connectivity-based analyses 

Task-related functional connectivity was examined using psychophysiological interaction (PPI) analyses. 

Specifically, we assessed connectivity of three seed regions (right caudate (x = 10, y = 14, z = 12), right 

putamen (x = 18, y = 12, z = -2), and right hippocampus (x = 32, y = -38, z = -6)) revealed by the univariate 

analyses and showing a main effect of session across multiple conditions (see Figure S8 in supplemental 

information). In order to limit the number of PPI analyses, we opted to use right (instead of both right 

and left) seeds as they showed preferential phase-dependent modulation of activity (see results 

presented in Table S2-2). For each individual, the first eigenvariate of the signal was extracted using 

Singular Value Decomposition of the time series across the voxels included in a 10 mm-radius sphere 

centered on these coordinates. Linear models were generated, at the individual level, with a first 

regressor representing the practice of the motor sequence (pre- and post-night sessions in each of the 

three reactivation conditions), a second regressor corresponding to the BOLD signal in the seed and a 

third regressor representing the interaction between the first (psychological) and second (physiological) 

regressors. To build this regressor, the underlying neuronal activity was first estimated by a parametric 

empirical Bayes formulation, combined with the psychological factor, and subsequently convolved with 

the hemodynamic response function 75. The individual linear contrasts testing for the interaction 

between the psychological and physiological regressors within and between the different runs 

mentioned above were then further spatially smoothed (Gaussian kernel 6 mm FWHM). The resulting 

contrast images were entered in a second level analysis for statistical inference at the group level (one 

sample t-tests), corresponding to a random effects model accounting for inter-subject variance. 

4.6.3.4. Regression analyses 
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We performed regression analysis between the individuals’ brain maps showing between session 

changes in activity/connectivity within each condition and the individuals’ TMR index (for each condition 

separately, i.e. TMRindexup and TMRindexdown). These regressions were performed in a second level 

analysis for statistical interference at the group level (one sample t-test), corresponding to a random 

effects model accounting for inter-subject variance. Finally, we performed exploratory regression 

analyses between the individuals’ brain maps showing between session changes in activity/connectivity 

within each condition and the EEG sigma power as well as the peak amplitude of the SOs. For these 

analyses, the significant clusters from the event-related potentials and the oscillatory activity analyses 

of the up- vs down-stimulated contrasts were used (see Figure 2 in the main manuscript and Figure S1b 

in the supplemental information). The amplitude and power for each individual were averaged across 

all channels between 0.32-0.64 sec post-trough (peak amplitude) and between 0.25-0.4 sec post-trough 

and 12-17 Hz (sigma power). 

 

4.6.3.5. Statistics 

The set of voxel values resulting from each second level analysis described above (activation, functional 

connectivity and regression analyses) constituted maps of the t statistic [SPM(T)], thresholded at p < 

0.005 (uncorrected for multiple comparisons). The goal of the fMRI analyses was to examine brain 

patterns elicited in specific regions of interest (ROIs). The following (bilateral) ROIs were selected a priori 

based on previous literature describing their critical involvement in motor sequence learning processes 
22,76,77: the primary motor cortex (M1), the supplementary motor cortex (SMA), the premotor cortex 

(PMC), the anterior part of the superior parietal lobule (aSPL), the hippocampus, the putamen and the 

caudate nucleus. These ROIs were defined with the brainnetome atlas as follows. M1 contained the 

upper limb and hand function regions of Brodmann area (BA) 4. The premotor cortex (PMC) was defined 

as the dorsal (A6cdl; dorsal PMC) and ventral (A6cvl; ventral PMC) part of BA 6. aSPL was defined to 

include the rostrocaudal areas of inferior parietal lobel (39rd and 40rd), as well as the intraparietal area 

7 (A7ip) and the lateral area 5 of the superior parietal lobe (A5l). The SMA was defined as part A6m of 

the superior frontal gyris and area 4 of the paracentral lobule (a4ll). The probability maps of these 

cortical areas were thesholded at 50% for binarization. The hippocampus mask included both rostral 

and caudal parts of the hippocampus. The caudate mask included both dorsal and ventral parts of the 

caudate. The putamen mask included both ventromedial and dorsololateral part of the putamen. The 

probability maps of these subcortical areas were thesholded at 5% for binarization. 

Statistical inferences were performed at a threshold of p < 0.05 after family-wise error (FWE) correction 

for multiple comparisons over small volume (SVC, 10 mm radius) located in the structures of interest 

reported by published work (see Table S6 in supplemental information). All results reported and 

discussed in the main text survived SVC.  

 

 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


References 
1. Born, J. & Wilhelm, I. System consolidation of memory during sleep. Psychological Research 76, 

192–203 (2012). 

2. Ribeiro, S. et al. Long-Lasting Novelty-Induced Neuronal Reverberation during Slow-Wave Sleep in 

Multiple Forebrain Areas. PLoS Biol 2, e24 (2004). 

3. Sutherland, G. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. 

Current Opinion in Neurobiology 10, 180–186 (2000). 

4. Wilson, M. A. & McNaughton, B. L. Reactivation of Hippocampal Ensemble Memories During Sleep. 

Science 265, 676–679 (1994). 

5. Feld, G. B. & Born, J. Neurochemical mechanisms for memory processing during sleep: basic findings 

in humans and neuropsychiatric implications. Neuropsychopharmacol. 45, 31–44 (2020). 

6. Schreiner, T. & Staudigl, T. Electrophysiological signatures of memory reactivation in humans. Phil. 

Trans. R. Soc. B 375, 20190293 (2020). 

7. Bendor, D. & Wilson, M. A. Biasing the content of hippocampal replay during sleep. Nat Neurosci 

15, 1439–1444 (2012). 

8. Schreiner, T., Doeller, C. F., Jensen, O., Rasch, B. & Staudigl, T. Theta Phase-Coordinated Memory 

Reactivation Reoccurs in a Slow-Oscillatory Rhythm during NREM Sleep. Cell Reports 25, 296–301 

(2018). 

9. Hu, X., Cheng, L. Y., Chiu, M. H. & Paller, K. A. Promoting memory consolidation during sleep: A 

meta-analysis of targeted memory reactivation. Psychological Bulletin 146, 218–244 (2020). 

10. Rudoy, J. D., Voss, J. L., Westerberg, C. E. & Paller, K. A. Strengthening Individual Memories by 

Reactivating Them During Sleep. Science 326, 1079–1079 (2009). 

11. Schreiner, T. & Rasch, B. Boosting Vocabulary Learning by Verbal Cueing During Sleep. Cerebral 

Cortex 25, 4169–4179 (2015). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


12. Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N. & Lewis, P. A. Cued Reactivation of Motor 

Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity. 

PLOS Biology 14, e1002451 (2016). 

13. Schönauer, M., Geisler, T. & Gais, S. Strengthening Procedural Memories by Reactivation in Sleep. 

Journal of Cognitive Neuroscience 26, 143–153 (2014). 

14. Nicolas, J. et al. Sigma oscillations protect or reinstate motor memory depending on their temporal 

coordination with slow waves. eLife 11, e73930 (2022). 

15. Cairney, S. A., Guttesen, A. á V., El Marj, N. & Staresina, B. P. Memory Consolidation Is Linked to 

Spindle-Mediated Information Processing during Sleep. Current Biology 28, 948-954.e4 (2018). 

16. Laventure, S. et al. Motor memory consolidation potentiated by exposition to a conditioned 

stimulus in stage 2 sleep. in poster (2013). 

17. Ngo, H.-V. V., Martinetz, T., Born, J. & Mölle, M. Auditory Closed-Loop Stimulation of the Sleep Slow 

Oscillation Enhances Memory. Neuron 78, 545–553 (2013). 

18. Göldi, M., van Poppel, E. A. M., Rasch, B. & Schreiner, T. Increased neuronal signatures of targeted 

memory reactivation during slow-wave up states. Sci Rep 9, 2715 (2019). 

19. Ngo, H.-V. V. & Staresina, B. P. Shaping overnight consolidation via slow-oscillation closed-loop 

targeted memory reactivation. Proc. Natl. Acad. Sci. U.S.A. 119, e2123428119 (2022). 

20. Shimizu, R. E. et al. Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial 

Navigation. Front. Hum. Neurosci. 12, 28 (2018). 

21. Ngo, H.-V. V. et al. Driving Sleep Slow Oscillations by Auditory Closed-Loop Stimulation--A Self-

Limiting Process. Journal of Neuroscience 35, 6630–6638 (2015). 

22. Albouy, G., King, B. R., Maquet, P. & Doyon, J. Hippocampus and striatum: Dynamics and interaction 

during acquisition and sleep-related motor sequence memory consolidation: Hippocampus and 

Striatum and Procedural Memory Consolidation. Hippocampus 23, 985–1004 (2013). 

23. Rosinvil, T. et al. Are age and sex effects on sleep slow waves only a matter of electroencephalogram 

amplitude? Sleep zsaa186 (2020) doi:10.1093/sleep/zsaa186. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


24. Albouy, G. et al. Both the Hippocampus and Striatum Are Involved in Consolidation of Motor 

Sequence Memory. Neuron 58, 261–272 (2008). 

25. Leminen, M. M. et al. Enhanced Memory Consolidation Via Automatic Sound Stimulation During 

Non-REM Sleep. Sleep 40, (2017). 

26. Ong, J. L. et al. Effects of phase-locked acoustic stimulation during a nap on EEG spectra and 

declarative memory consolidation. Sleep Medicine 20, 88–97 (2016). 

27. Papalambros, N. A. et al. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant 

Memory Improvement in Older Adults. Front. Hum. Neurosci. 11, (2017). 

28. Henin, S. et al. Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory 

Performance. eNeuro 6, ENEURO.0306-19.2019 (2019). 

29. Baxter, B. S. et al. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in 

relation to motor procedural memory consolidation. SLEEP 46, zsad206 (2023). 

30. Steriade, M., Nunez, A. & Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: 

depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993). 

31. Antony, J. W., Schönauer, M., Staresina, B. P. & Cairney, S. A. Sleep Spindles and Memory 

Reprocessing. Trends in Neurosciences 42, 1–3 (2019). 

32. Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. 

Nat Neurosci 22, 1598–1610 (2019). 

33. Ong, J. L. et al. Auditory stimulation of sleep slow oscillations modulates subsequent memory 

encoding through altered hippocampal function. Sleep 41, (2018). 

34. Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T. & Walker, M. P. Old Brains Come Uncoupled 

in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron 97, 221-230.e4 

(2018). 

35. Mölle, M. & Born, J. Slow oscillations orchestrating fast oscillations and memory consolidation. in 

Progress in Brain Research vol. 193 93–110 (Elsevier, 2011). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


36. Doyon, J. et al. Contributions of the basal ganglia and functionally related brain structures to motor 

learning. Behavioural Brain Research 199, 61–75 (2009). 

37. Walker, M. P., Stickgold, R., Alsop, D., Gaab, N. & Schlaug, G. Sleep-dependent motor memory 

plasticity in the human brain. Neuroscience 133, 911–917 (2005). 

38. Albouy, G. et al. Interaction between Hippocampal and Striatal Systems Predicts Subsequent 

Consolidation of Motor Sequence Memory. PLoS ONE 8, e59490 (2013). 

39. Fogel, S. M. et al. fMRI and sleep correlates of the age-related impairment in motor memory 

consolidation: Age-Related Sleep-Dependent Impaired Memory. Human Brain Mapping 35, 3625–

3645 (2014). 

40. King, B. R., Hoedlmoser, K., Hirschauer, F., Dolfen, N. & Albouy, G. Sleeping on the motor engram: 

The multifaceted nature of sleep-related motor memory consolidation. Neuroscience & 

Biobehavioral Reviews 80, 1–22 (2017). 

41. Fogel, S. et al. Reactivation or transformation? Motor memory consolidation associated with 

cerebral activation time-locked to sleep spindles. PLOS ONE 12, e0174755 (2017). 

42. Debas, K. et al. Off-line consolidation of motor sequence learning results in greater integration 

within a cortico-striatal functional network. NeuroImage 99, 50–58 (2014). 

43. Boutin, A. et al. Transient synchronization of hippocampo-striato-thalamo-cortical networks during 

sleep spindle oscillations induces motor memory consolidation. NeuroImage 169, 419–430 (2018). 

44. Veldman, M. P. et al. Somatosensory targeted memory reactivation enhances motor performance 

via hippocampal-mediated plasticity. Cerebral Cortex 33, 3734–3749 (2023). 

45. Rasch, B. & Born, J. About Sleep’s Role in Memory. Physiological Reviews 93, 681–766 (2013). 

46. Antony, J. W., Ferreira, C. S., Norman, K. A. & Wimber, M. Retrieval as a Fast Route to Memory 

Consolidation. Trends in Cognitive Sciences 21, 573–576 (2017). 

47. Hikosaka, O., Nakamura, K., Sakai, K. & Nakahara, H. Central mechanisms of motor skill learning. 

Current Opinion in Neurobiology 12, 217–222 (2002). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


48. Beck, A. T., Steer, R. A., Ball, R. & Ranieri, W. F. Comparison of Beck Depression Inventories-IA and-

II in Psychiatric Outpatients. Journal of Personality Assessment 67, 588–597 (1996). 

49. Beck, A. T., Epstein, N., Brown, G. & Steer, R. A. An inventory for measuring clinical anxiety: 

Psychometric properties. Journal of Consulting and Clinical Psychology 56, 893–897 (1988). 

50. Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh sleep quality 

index: A new instrument for psychiatric practice and research. Psychiatry Research 28, 193–213 

(1989). 

51. Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. 

Neuropsychologia 9, 97–113 (1971). 

52. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G* Power 3: A flexible statistical power analysis 

program for the social, behavioral, and biomedical sciences. Behavior research methods 39, 175–

191 (2007). 

53. Ellis, B. W. et al. The St. Mary’s Hospital Sleep Questionnaire: A Study of Reliability. Sleep 4, 93–97 

(1981). 

54. Dinges, D. F. & Powell, J. W. Microcomputer analyses of performance on a portable, simple visual 

RT task during sustained operations. Behavior Research Methods, Instruments, & Computers 17, 

652–655 (1985). 

55. Hoddes, E., Dement, W. & Zarcone, V. Development and use of Stanford Sleepiness Scale (SSS). vol. 

9 (1972). 

56. Nissen, M. J. & Bullemer, P. Attentional requirements of learning: Evidence from performance 

measures. Cognitive Psychology 19, 1–32 (1987). 

57. King, B. R. et al. Schema and Motor-Memory Consolidation. Psychol Sci 30, 963–978 (2019). 

58. Kleiner, M., Brainard, D. & Pelli, D. What’s new in Psychtoolbox-3? Pion Ltd. 89 (2007). 

59. Pan, S. C. & Rickard, T. C. Sleep and motor learning: Is there room for consolidation? Psychological 

Bulletin 141, 812–834 (2015). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


60. Nicolas, J. et al. Targeted memory reactivation during post-learning sleep does not enhance motor 

memory consolidation in older adults. Journal of Sleep Research e14027 (2023) 

doi:10.1111/jsr.14027. 

61. Levitt, H. Transformed Up-Down Methods in Psychoacoustics. The Journal of the Acoustical Society 

of America 49, 467–477 (1971). 

62. Leek, M. R. Adaptive procedures in psychophysical research. Perception & psychophysics 63, 1279–

1292 (2001). 

63. Sterpenich, V. et al. Memory Reactivation during Rapid Eye Movement Sleep Promotes Its 

Generalization and Integration in Cortical Stores. Sleep 37, 1061–1075 (2014). 

64. R Core Team. R: A language and environment for statistical computing. (2020). 

65. RStudio Team. RStudio: Integrated Development for R. (2020). 

66. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 

289–300 (1995). 

67. Berry. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and 

Technical Specifications. Version 2.5. (2018). 

68. Berry, R. B. et al. AASM Scoring Manual Version 2.2 Updates: New Chapters for Scoring Infant Sleep 

Staging and Home Sleep Apnea Testing. Journal of Clinical Sleep Medicine 11, 1253–1254 (2015). 

69. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced 

Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and 

Neuroscience 2011, 1–9 (2011). 

70. Carrier, J. et al. Sleep slow wave changes during the middle years of life: Changes in slow waves with 

age. European Journal of Neuroscience 33, 758–766 (2011). 

71. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. Journal of 

Neuroscience Methods 164, 177–190 (2007). 

72. Vallat, R. raphaelvallat/yasa: v0.1.9. (2020) doi:10.5281/ZENODO.3646596. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/


73. Lacourse, K., Delfrate, J., Beaudry, J., Peppard, P. & Warby, S. C. A sleep spindle detection algorithm 

that emulates human expert spindle scoring. Journal of Neuroscience Methods 316, 3–11 (2019). 

74. Massimini, M. The Sleep Slow Oscillation as a Traveling Wave. Journal of Neuroscience 24, 6862–

6870 (2004). 

75. Gitelman, D. R., Penny, W. D., Ashburner, J. & Friston, K. J. Modeling regional and psychophysiologic 

interactions in fMRI: the importance of hemodynamic deconvolution. NeuroImage 19, 200–207 

(2003). 

76. Berlot, E., Popp, N. J. & Diedrichsen, J. A critical re-evaluation of fMRI signatures of motor sequence 

learning. eLife 9, e55241 (2020). 

77. Doyon, J., Penhune, V. & Ungerleider, L. G. Distinct contribution of the cortico-striatal and cortico-

cerebellar systems to motor skill learning. Neuropsychologia 41, 252–262 (2003). 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575884doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/

	Title
	Authors and affiliations
	Abstract
	1. Main
	2. Results
	2.1. The effect of TMR on motor performance depends on the phase of the stimulated SO
	2.2. SO-up-phase TMR enhances both SO amplitude and sigma oscillations
	2.3. Phase-specific modulations of task-related hippocampal and striatal activity are related to the effect of TMR on motor performance
	2.4. Phase-specific modulations of connectivity in striato-hippocampo-motor networks are related to the effect of TMR on motor performance

	3. Discussion
	4. Material and Methods
	4.1. Participants
	4.2. General design
	4.3. Stimuli and tasks
	4.3.1. Motor Task
	4.3.2. Acoustic stimulation

	4.4. EEG data acquisition and closed-loop TMR
	4.5. fMRI data acquisition
	4.6. Analyses
	4.6.1. Behavioral data
	4.6.1.1. Preprocessing
	4.6.1.2. Statistics

	4.6.2. Electrophysiological data
	4.6.2.1. Offline sleep scoring
	4.6.2.2. Preprocessing
	4.6.2.3. Event-related analyses
	4.6.2.4. Sleep events detection

	4.6.3. fMRI data
	4.6.3.1. Preprocessing
	4.6.3.2. Activation-based analyses
	4.6.3.3. Connectivity-based analyses
	4.6.3.4. Regression analyses
	4.6.3.5. Statistics

	References



