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Abstract

Memory consolidation can be enhanced during sleep using targeted memory reactivation (TMR) and
closed-loop (CL) acoustic stimulation on the up-phase of slow oscillations (SOs). Here, we tested
whether applying TMR at specific phases of the SOs (up vs. down vs. no reactivation) could influence
the behavioral and neural correlates of motor memory consolidation in healthy young adults. Results
showed that up- (as compared to down-) state cueing resulted in greater performance improvement.
Sleep electrophysiological data indicated that up-stimulated SOs exhibited higher amplitude and greater
peak-nested sigma power. Task-related functional magnetic resonance images revealed that up-state
cueing strengthened activity in - and segregation of - striato-motor and hippocampal networks; and that
these modulations were related to the beneficial effect of TMR on sleep features and performance.
Overall, these findings highlight the potential of CL-TMR to induce phase-specific modulations of motor
performance, sleep oscillations and brain responses during motor memory consolidation.
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1. Main

Memory consolidation is the process occurring offline, between practice sessions, by which labile
memory traces become more robust . Seminal rodent work suggests that consolidation relies on the
strengthening of the mnemonic representations by the spontaneous reoccurrence - during post-
learning offline periods - of hippocampal firing patterns associated with the initial encoding 2™*. This
reactivation process has been particularly studied during post-learning sleep and there is consistent
evidence that Non-Rapid Eye Movement sleep (NREM) oscillations such as slow oscillations (SO - high
amplitude oscillations in the 0.5-2 Hz frequency band) and spindles (short burst of oscillatory activity in
the 12-16 Hz sigma band) orchestrate the spontaneous occurrence of these hippocampal reactivations
L5 Spontaneous reactivations of task-related brain patterns have since been observed during post-
learning sleep in humans after both declarative and motor learning (see ® for a review). The field has
recently seen a surge of research examining whether experimental interventions can induce these
reactivations in the human brain and eventually enhance the memory consolidation process "

An experimental intervention that has shown promise to enhance memory consolidation is Targeted
Memory Reactivation (TMR) °. TMR is a non-invasive procedure which consists of replaying, offline,
sensory stimuli that were previously associated to the task during initial memory encoding *°. Auditory
TMR applied during post-learning NREM sleep has been consistently shown to boost both declarative
and motor memory consolidation in healthy young adults ®& 71> and this process is thought to be
mediated by the modulation of SO ** and spindle 1> characteristics as well as their coupling **. Inspired
by studies showing that auditory clicks delivered in a closed-loop (CL) fashion at the up-state of the SO
can optimize declarative memory consolidation & 17, recent studies have applied TMR at different
phases of the SO (e.g., up- vs. down-stimulation) in an attempt to further optimize consolidation. Such
CL-TMR interventions have been shown to increase SO and sigma band power following cues presented
at the up- as compared to the down-phase of the SO ¥ or as compared to a control night without
stimulation %°. These studies show an overall memory advantage following up-state TMR 20, albeit
performance does not always differ from all other stimulation conditions (e.g., from down- * or no-
stimulation ). Altogether, studies causally liking the specific SO phase of the reactivation to memory
consolidation are sparse in the declarative memory domain and are non-existent in the motor memory
domain. Additionally, the effect of slow-oscillation CL-TMR on the neurophysiological processes
underlying memory reactivation and memory retention are poorly understood in both memory
domains.

In this pre-registered study (https://osf.io/dpu6z)?, we used functional magnetic resonance imaging
(fMRI) during task practice and electro-encephalography (EEG) during post-learning sleep to address
these knowledge gaps and provide a comprehensive characterization of the neurophysiological
processes supporting the effect of slow-oscillation CL-TMR on motor memory consolidation. Briefly, in
a within-subject design, 31 young healthy participants learned 3 different motor sequences that were
each associated to one specific sound during learning while their brain activity was recorded with fMRI
(Pre-night, Figure 1a). During the subsequent post-learning night of sleep that was monitored with EEG
(Night, Figure 1a), SOs were detected in real-time during NREM sleep and auditory cues that were
associated to the motor learning task were delivered to specific phases of the SO reflecting either high
or low brain excitability. Specifically, one sound was played at the peak of the SO (up-reactivated
condition), another sound was played at the trough of the SO (down-reactivated condition), while the

! Note that whenever an analysis presented in the current paper was not pre-registered, it is referred to as
exploratory. Additionally, any deviation from the pre-registration is marked in the methods section with a (#)
symbol and listed in Table S4 of the supplemental information together with a justification for the change.
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last sound was not replayed (not-reactivated, control, condition). To assess consolidation, motor task
performance was retested on the three different conditions in the fMRI scanner the next morning (Post-
night, Figure 1a). Our main results confirmed the pre-registered hypotheses as consolidation 8, SO
amplitude %21 sigma band power ¥ and task-related brain responses in hippocampo- and striato-

cortical networks 222 were specifically boosted by SO-up-phase TMR.
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Figure 1: Experimental protocol. a. General design. Following a habituation night that was completed approximately
one week prior to the experiment, 31 participants underwent a pre-night motor task session in the scanner, a full
night of sleep in the sleep lab monitored with polysomnography during which slow-oscillation closed-loop targeted
memory reactivation (CL-TMR) was applied, and a post-night retest session in the scanner. During the motor task
(pre-night and post-night sessions), three movement sequences were performed (sequences A, B and C whereby 1
and 8 correspond to the right and left little fingers, respectively) and were cued by three different 100-ms auditory
tones. For each movement sequence, the respective auditory tone was presented prior to each sequence execution.
Two of these sounds were replayed during the post-learning sleep episode at specific phases of SO (up vs. down,
see panel B for details) while the third sound was a control condition which was not replayed during the night. Note
that the sequence / sound / condition combinations were randomized across individuals (see methods). b.
Stimulation protocol. Sleep was recorded with EEG all night but recordings were monitored online for stimulation
purposes during the first three hours of the night. The online SO detection algorithm was launched whenever the
participant reached NREM2-3 stage. Three-min long up- and down-stimulation intervals alternated and were
separated by 1-min no-stimulation intervals. The sounds associated to the up(or down)-reactivated sequence were
then played on the peak(or trough) of the SOs within these alternating blocks. The algorithm performed the online
detection on FPz. For down detection, a fast-moving average filter was employed with a window of 50 samples and
a trough was detected when the signal went below a specific threshold adapted for biological sex 23 of -41uV in
females and -39.5uV in males. For up-detection, the peak of a SO was identified when, in addition to the criterion
described for trough detection above, peak-to-peak signal amplitude reached 77 uV in females and 74 uV in males
(See methods for details). During up-stimulation intervals, the up-reactivated sequence sound (magenta dots) was
played at the peak of each detected SO (up-stimulated SO / up-reactivated sequence) and during down-stimulation
intervals, the down-reactivated sequence sound (blue dots) was played at the trough of each detected SO (down-
stimulated SO / down-reactivated sequence). The third sound was not presented during the post-learning night (not-
reactivated sequence). The colored oscillations in each panel represent the results of the offline SO detection
algorithm that was used to compute, a posteriori, the accuracy of the online detection procedure and to detect SOs
during rest intervals for further analyses (see methods). The online detection algorithm was manually stopped when
the experimenter detected REM sleep, NREM 1 or wakefulness and thus no stimulation was sent.
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2. Results

2.1. The effect of TMR on motor performance depends on the phase of the

stimulated SO

We tested whether the stimulation conditions (up-, down- and not-reactivated) influenced the
behavioral index of motor memory consolidation, i.e., the offline changes in performance observed
between the pre-night test session and the beginning of the post-night training session (see Figure 2a).
Results show that offline changes in performance differed depending on the phase of the stimulated SO
(Condition effect (F (2,54) = 3.9, p = 0.027 (0.034 sphericity corrected), n? = 0.13; Figure 2b, n = 28).
Specifically, offline changes in performance were greater for both the up- and not-reactivated
seqguences as compared to the down-reactivated sequence (up vs. down: t=2.32, p-value =0.014 (0.035
FDR-corrected), Cohen’s d = 0.44; up vs not: t = -0.24, p-value = 0.59 (0.59 FDR-corrected), Cohen’s d
=0.045; down vs. not: t = -2.09, p-value = 0.023 (0.035 FDR-corrected), Cohen’s d = 0.39). These
behavioral results indicate that TMR differently altered the fate of the motor memory traces depending
on the phase of SO during which reactivation was applied. Unexpectedly though, only performance on
the down-reactivated sequences differ from the not-reactivated ones.

Pre-night Post-night b
da. =
\.’. Training Test Training e Do (Nt
50% + * *
600+ & —_—
.;- ®oe® n.s.
; Random
. S . [+ 25+
% 500+ ¥.t‘ E Not-reactivated ¢
] ]
E i’: E Down-reactivated &
= e S0 4
L ea® 7 i o
= : ...R*‘ & E Up-reactivated I
@ *5 *9q =
g 400+ o b ks G
Bag i
N g e
Sheete o H5 o
- 9% S
o L2 T'YY
300+
50 +
1 5 10 15 20 25 30 35 40 45 E
Blocks

Figure 2: Behavioral results. a. Performance speed. Grand average across participants (n = 28) of median
reaction time in ms plotted as a function of blocks of practice during the pre- and post-night sessions (+/-
standard error in shaded regions) for the up-reactivated (magenta circles), the down-reactivated (blue empty
circles), and the not-reactivated (green diamonds) sequences and for the random serial reaction time task
performed at the start and end of the experiment (black overlay, the random task assessed baseline
performance and sequence-specific learning, see methods and supplements for corresponding results). Note
that a short break is introduced between the training and test runs during the pre-night session in order to
minimize the confounding effect of fatigue on end-of-training performance (see methods). The three motor
sequences were learned to a similar extent during the pre-night session (see supplemental results). b. Offline
changes in performance speed (% change between the average of the three blocks of pre-night test and the first
three blocks of post-night training) averaged across participants for the up-reactivated (magenta), the down-
reactivated (blue) and the not-reactivated (green) sequences. Results show a main effect of Condition (*: p-
value < 0.05) whereby offline changes in performance were greater for the up- and not-reactivated as
compared to the down-reactivated sequence (note that improvement in performance from pre- to post-night
sessions is reflected by a positive change). Violin plots: median (horizontal bar), mean (diamond), the shape of
the violin plots depicts the kernel density estimate of the data. Colored points represent individual data, jittered
in arbitrary distances on the x-axis within the respective violin plot to increase perceptibility. For each individual,
performance on the different conditions are connected with a line between violin plots. n.s: non-significant.
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2.2.  SO-up-phase TMR enhances both SO amplitude and sigma oscillations
EEG data collected during the TMR episode were analyzed to test whether (the phase of the) stimulation
modulated the characteristics of the SOs and spindle/sigma oscillations, two electrophysiological
markers critically involved in motor memory consolidation 2* and reactivation * during sleep.

To examine the effect of stimulation on SO characteristics, we computed - for each of the 6 EEG channels
(Fz, Cz, Pz, Oz, C3, C4) - event-related potentials locked to the trough of the (i) up-stimulated SOs
(detected online on Fpz during up-stimulation intervals), (ii) down-stimulated SOs (detected online on
Fpz during down-stimulation intervals) and (iii) not-stimulated SOs (detected offline on Fpz during
epochs free of stimulation, see Figure 1b for a depiction of stimulation epochs and Figure Sla in
supplemental information for channel level data). In this analysis, cluster-based permutations identified
clusters on the basis of temporal and spatial (channel) adjacency (see methods). Results indicated two
significant spatio-temporal clusters in which the phase of the stimulation specifically influenced SO
amplitude. Specifically, up-stimulated — as compared to down-stimulated - SOs showed (i) greater
amplitude around the peak of the SO in a spatial cluster including all electrodes except Oz and (ii) deeper
deflection post-peak in a spatial cluster including frontal and central electrodes (up vs. down, Figure 3a).
Figure 3a-1 depicts the grand-average of the SOs (superimposed on a time frequency representation of
the difference in power modulation, see below) for up and down conditions in which the horizontal
black lines represent the significant temporal cluster (see Figure 3a-3 for zoomed inset; Figure 3a-4:
positive cluster p-value = 0.0040; Cohen’s d = 0.67 and its topography also showing the spatial
dimension of the cluster, i.e., electrodes included in the significant cluster (*); Figure 3a-5: negative
cluster p-value = 0.0040; Cohen’s d = -0.60 and its topography also showing electrodes included in the
cluster (*)).

Similar results - albeit on larger time windows - were observed when comparing both up- and down-
stimulated versus not-stimulated SOs (up vs. not, Figure 3b-1, horizontal black lines and Figure 3b-3 for
zoomed inset; Figure 3b-4: positive cluster p-value = 0.0020, Cohen’sd = 1.12 and its topography; Figure
3b-5; negative cluster p-value = 0.0060, Cohen’s d = -0.70, its topography and electrodes included in
cluster; down vs. not, Figure 3c-1, horizontal black lines and Figure 3c-3 for zoomed inset; Figure 3c-4:
positive cluster p-value = 0.0020, Cohen’s d = 1.20, its topography and electrodes included in cluster;
Figure 3c-5: negative cluster p-value = 0.0040, Cohen’s d = -0.57 and its topography) but that these
effects were more pronounced during up- as compared to down-stimulation as shown in Figure 3a.

Note that analogous results were also observed using SO density metrics extracted from the stimulated
and not-stimulated blocks (see Figure S2a in supplemental information showing greater density during
up-stimulated intervals as compared to down-stimulated and not-stimulated intervals).

To investigate the effect of stimulation on oscillatory brain activity (and sigma oscillations in particular),
we performed time-frequency analyses locked to the trough of the stimulated and not-stimulated SOs
on each EEG channel. Here, cluster-based permutation analyses identified clusters on the basis of
temporal, frequency and spatial adjacency (see methods). Results indicated one significant spatio-
temporal-frequency cluster in which sigma power was greater in the ascending phase of the up-
stimulated SOs as compared to the down-stimulated SOs on all electrodes (up vs. down: cluster p-value
= 0.0080; Cohen’s d = 0.66; Figure 3a-1 for time-frequency representation and a-2 for a display of the
topography of this difference and of the electrodes included in the cluster (*)). Note that oscillatory
activity in the 5-18 Hz frequency range was lower in the descending phase of both up- and down-
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stimulated — as compared to not-stimulated — SOs on all electrodes (up vs. not: cluster p-value = 0.002,
Cohen’s d = -1.30, Figure 3b-1 and b-2 for topography; down vs. not: cluster p-value = 0.002, Cohen’s d
=-0.94, Figure 3c-1 and c-2 for topography). Power in lower frequencies (5-10 Hz) was greater for the
down, compared to the not, -stimulated conditions from 0.8 to 1.5 s post SO trough in a cluster including
all electrodes (down vs. not: cluster p-value = 0.0020; Cohen’s d = 0.90; Figure 3c-1 and c-2).

Analyses based on sleep spindle events detected from the stimulated and not-stimulated blocks show
that spindle frequency and amplitude were unaffected by the stimulation while spindle density was
lower during both up- and down-stimulated as compared to not-stimulated blocks, irrespective of the
stimulation condition (see Figure S2b-d in supplemental information).

Altogether, these results indicate that up-phase, as compared to down-phase, CL-TMR resulted in
enhanced SO density and amplitude as well as a stronger sigma power during the ascending phase of
the SO. In contrast, oscillatory activity including the sigma band was decreased during the descending
phase of the up- and down-stimulated, as compared to the not-stimulated, SOs and overall spindle
density was lower under stimulation, irrespective of its phase.
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Figure 3: Electrophysiological results. Participants’ sleep was recorded using a 6-channel EEG montage during the night following
learning. a. Up- vs down-stimulated contrasts. a-1. Time-frequency representation (TFR) of the difference in power modulation
illustrated at Cz around the trough of the up- and down-stimulated SOs on which the grand-average of the SOs illustrated on Fz is
super-imposed (magenta(blue): up(down)-stimulated SO). Black lines represent the adjacent time points of the significant spatio-
temporal clusters showing a difference in SO amplitude between the two trough-locked ERPs (see a-4 and a-5 for the spatial dimension
of the clusters and Figure S1b in supplemental information for channel level cluster depiction). Results show that the up-stimulated
SO presented greater amplitude at their peak (from 0.33 to 0.64 sec post-trough) followed by a deeper deflection (from 0.78 to 1.03
sec post-trough). Further, the area highlighted in the TFR represents the adjacent time-frequency points of the significant spatio-
temporal-frequency cluster showing a difference in power between conditions. Sigma power nested in the ascending phase of the up-
stimulated SOs was greater than for the down-stimulated SOs (from 0.25 to 0.4 sec post-trough and from 12 to 17 Hz; and see a2 for
the spatial dimension of the cluster as well as Figure S1b in supplemental information for channel level cluster depiction). a-2.
Topography of the significant sigma power modulation. (*) represents the electrodes included in the significant spatio-temporal-
frequency cluster. a-3. Zoom on the trough-locked SO peak and deflection at Fz (same color code as a-1) showing the significant
differences in amplitude between up and down conditions (see text). a-4 and a-5. Topography of the significant differences in
amplitude at the trough-locked SO peak (a-4) and deflection (a-5). (*) represents the electrodes included in the significant spatio-
temporal clusters. b. Up- vs not-stimulated contrasts. b-1. Same as a-1 for the up- and the not-stimulated trough-locked SO ERP
(magenta and green, respectively) and power modulation. Results show that the amplitude of the up-stimulated SOs was greater than
the not-stimulated SOs from -0.61 to 0.61 sec while it reversed from 0.72 to 1.14 sec relative to the trough onset. Power in the 5-17.5
Hz frequency range was lower in the up- as compared to the not-stimulated condition in the descending phase of the SOs (from -0.45
to 0.24 sec relative to the SO trough). b-2. Topography of the significant cluster (between 7-12 Hz and -0.15-0 s time-frequency range)
showing that the significant cluster includes all electrodes (*). b-3. Zoom on the trough-locked SO peak and deflection showing the
significant differences in amplitude between up and not conditions (see text). b-4 and b-5. Topography of the significant differences in
SO amplitude in the peak and deflection time-window defined by the significant clusters highlighted in the up- vs down-stimulated
contrast. (*) represents the electrodes included in the significant cluster. c¢. Down- vs not-stimulated contrasts. c-1. Same as a-1 for the
down- and the not-stimulated trough-locked SO ERP (blue and green, respectively) and power modulation. Results show that the
amplitude of the down-stimulated SOs was greater than the not-stimulated SOs from -0.60 to 0.42 sec while it reversed from 1.18 to
1.50 sec relative to the trough onset. Power was lower in the 5-18 Hz frequency range in the down- as compared to the not-stimulated
condition during the descending phase of SOs (from -0.49 to 0.24 sec relative to the SO trough) and greater in the 5-10 Hz from 0.76
to 1.50 s. ¢-2 Topography of the negative significant cluster (7-12 Hz and -0.15-0.08 s time-frequency range) and the positive
significant cluster (5-8 Hz and 0.8-1.25 s time-frequency range). The significant cluster includes all electrodes (*). c-4 and c-5.
Topography of the significant differences in SO amplitude in the peak time-window defined by the significant cluster highlighted in the
up- vs down-stimulated contrast and the deflection time-window defined by the significant cluster (1.18-1.50 s post-trough). The
significant cluster includes all electrodes except Oz and Pz (*).
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2.3.  Phase-specific modulations of task-related hippocampal and striatal activity

are related to the effect of TMR on motor performance

Brain imaging data were acquired during task practice before and after the night of stimulation (see
Table S1 and Figure S3 for brain activity elicited by task practice during initial learning). We first
examined whether task-related brain activity increased from the pre-night to the post-night practice
sessions within each condition. Results showed, for all conditions, a strong overnight increase in task-
related brain activity in a set of striato-cortical regions including the putamen and the primary motor
cortex (Figure 4a and see Table S2-1 for a complete list of activations). Interestingly, the overnight
increase in striatal activity was greater for the up-reactivated sequence as compared to the down-
reactivated sequence, which in turn was greater than for the not-reactivated sequence (Figure 4b; see
Table S2-2 of the supplemental information for details).

Importantly, the between-session increase in striato-motor activity reported above was correlated with
the TMR index (i.e., the difference in offline changes in performance between the reactivated vs. the
not-reactivated sequences) for both the up- and down-reactivated sequences (Figure 4c; see Table S2-
3). We also performed exploratory analyses to probe the link between the sleep EEG features showing
the phase-specific modulation described above (i.e., SO amplitude and sigma power at the peak of the
SO) and the between-session changes in brain activity. These analyses did not reveal any correlation
between brain activity and sigma power but they showed that the overnight increase in activity in the
basal-ganglia and the motor cortex was related to greater SO peak amplitude in the up and down
conditions (Figure 4d; see Table S2-4 of the supplemental information). Altogether, the regression
analyses indicate that greater overnight increase in striato-motor activity is related to both greater SO
amplitude during the post-learning night and greater overnight gains in motor performance in both up
and down conditions. Interestingly, despite condition differences in overnight changes in brain activity
(Figure 4b), SO amplitude (Figure 3a) and motor performance (Figure 2), the phase of the stimulation
did not alter the relationship between these differences.

Next, we examined whether task-related brain activity decreased between the pre- and post-night
practice sessions. Results showed that hippocampal activity decreased overnight for both the down-
and the not-reactivated sequences while no significant changes were observed in the up condition
(Figure 5a; see Table S2-1 of the supplemental information). The decrease in hippocampal activity
observed for the not-reactivated sequence was greater than for the up-reactivated sequence (Figure
5b; see Table S2-2 of the supplemental information). Importantly, the between-session changes in
hippocampal activity reported above were correlated with the TMR index for both the up- and down-
reactivated sequences such that greater overnight decrease in activity was related to poorer
performance (Figure 5c¢; see Table S2-3 of the supplemental information). Finally, we did not observe
any relationships between EEG features and changes in hippocampal activity. Overall, these results
suggest that up-stimulation prevented the overnight decrease in hippocampal activity observed in the
other conditions, the amplitude of which is related to poorer performance.

Altogether, these results show that the amplitude of the changes in brain activity occurring in striato-
hippocampo-motor areas as a result of the consolidation process were modulated by the phase of the
SO during which TMR was applied. Importantly, the magnitude of these changes was related to SO
characteristics and changes in motor performance, both metrics that also showed a phase-specific
modulation of amplitude.
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Figure 4: Phase-specific modulation of task-related cortico-striatal activity. a. Overnight increase in activity within condition. Brain activity
increased overnight in a set of cortico-striatal regions for up- (Left M1: x =- 38, y =-20, z = 52, psvc<0.001; right putamen: x = 24, y =
18, z=-10, psvc< 0.001), down- (Left M1: x =-38, y =-24, z = 54, psvc<0.001 ; right putamen: x = 26, y = -8, z = -4, psvc= 0.001), and not-
reactivated sequences (Left M1: x = -38, y = -26, z =56, psvc = 0.004, right putamen: x =28, y = -12, z = -6, psvc = 0.002). Violin plots
represent BOLD responses extracted from clusters overlapping between conditions (1. Right putamen: x =26, y =-8, z =-4; 2. Left M1: x
=-38 y=-20,z=52). b. Overnight increase in activity between conditions. The overnight increase in striatal (right caudate) activity was
greater for the up- as compared to the down-reactivated sequence, which in turn was greater than for the not-reactivated sequence.
Violin plots represent the difference in BOLD responses extracted from the activation peaks in the post- versus pre-night sessions (1. up
vs. down: x =20,y =18, z=12, psvc=0.009; 2. up vs. not: x =18, y = 28, z =4, psvc= 0.02; 3. down vs. not: x =16, y =-2, z = 26, psvc=
0.016). c. Brain activity-behavior regressions. The overnight increase in striato-motor activity was positively related to the TMR index for
both the up- (right caudate: x = 20, y = 18, z = 12, psvc = 0.005) and down-reactivated sequences (right caudate: x = 16, y = -2, z = 26,
psvc=0.024) such that the greater the increase in brain activity (i.e., the more positive value on the y-axis), the greater the performance
improvement on the reactivated as compared to the not-reactivated sequence (i.e., the more positive TMR index on the x-axis). d. Brain
activity-EEG regressions. The overnight increase in activity in the motor cortex (top panel) and the basal ganglia (bottom panel) was
related to the SO peak amplitude in the up- (left M1: x =-46, y =-16, z = 48, psvc= 0.055; right pallidum: x = 20, y = -2, z = -6, psvc= 0.045)
and down-stimulated (left M1: x = -44, y = -16, z = 52, psvc = 0.012) conditions such that the greater the SO peak amplitude during the
night (x-axis), the greater the overnight increase in activity in these regions (y-axis). *: significant after small volume correction (SVC)
correction. Activations maps are displayed on a T1-weighted template image with a threshold of p < 0.005 uncorrected. a.u.: arbitrary
units. Violin plots: median (horizontal bar), mean (diamond), the shape of the violin plots depicts the kernel density estimate of the data.
M1: primary motor cortex.
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Figure 5: Phase-specific modulation of task-related hippocampal activity. a. Overnight decrease in activity within condition. Brain
activity decreased overnight in the hippocampus for both down- (right hippocampus: x =32, y = -38, z = -6, psvc= 0.044) and not-
stimulated sequences (right hippocampus: x = 34, y = -38, z = -6, psvc = 0.005). Violin plots represent BOLD responses extracted
from clusters overlapping between conditions (x = 32, y = -38, z = -6). b. Overnjght decrease in activity between condlitions. The
overnight decrease in hippocampal activity was greater for the not-reactivated sequence as compared to the up-reactivated
sequence (right hippocampus: x = 36, y =-36, z = -4, psvc= 0.028). Violin plots represent the difference in BOLD responses extracted
from the activation peaks in the post- versus pre-night sessions. ¢. Brain activity-behavior regressions. The overnight increase in
hippocampal activity was positively related to the TMR index for both up- (right hippocampus: x = 36, y =-38, z = -8, psvc= 0.005)
and down-reactivated sequences (right hippocampus: x = 20, y = -34, z = 4, psvc= 0.041) such that the lower the increase in brain
activity (y-axis), the lower the performance improvement on the reactivated as compared to the not-reactivated sequence (x-
axis). *: significant after SVC correction. Activations maps are displayed on a T1-weighted template image with a threshold of p
< 0.005 uncorrected. a.u.: arbitrary units. Violin plots: median (horizontal bar), mean (diamond), the shape of the violin plots
depicts the kernel density estimate of the data.

2.4. Phase-specific modulations of connectivity in striato-hippocampo-motor

networks are related to the effect of TMR on motor performance
We examined whether stimulation modulated task-related connectivity patterns in the brain regions
showing phase-specific modulation of activity described above (i.e., the hippocampus and the striatum,
see methods and Table S3).

We observed an overnight decrease in hippocampo-motor connectivity for the up-reactivated sequence
which was greater than for the not-reactivated sequence (Figure 6a and 6b, see Tables $3-1.3.1 and -
2.3.2 of the supplemental information). Moreover, an overnight decrease in striato-cortical (Figure S4a,
right panel and Tables S3-3.2.1 of the supplemental information) and striato-hippocampal connectivity
was related to a greater TMR index for the up-reactivated sequence (Figure 6¢c, see Tables S3-3.3.1 of
the supplemental information). This suggests that the beneficial effect of up-stimulation on
performance was paralleled by more segregation of task-relevant brain regions within their functional
network, i.e., by a decrease in connectivity between these brain areas (which was also paralleled by an
overall increase in activity within these brain regions, see above).
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Figure 6: Phase-specific modulation of task-related striato-hjppocampo-cortical connectivity. a. Overnight decrease in hjppocampo-
motor connectivity within condiition. Hippocampo-motor connectivity decreased from pre- to post-night sessions for the up-reactivated
condition (hippocampus-right PMC: x = 46, y = -8, z = 54, psvc = 0.035). Violin plots represent BOLD responses extracted from this
cluster. b. Overnight decrease in hippocampo-motor connectivity between condiitions. The hippocampo-motor connectivity overnight
decrease was greater in the up- (hippocampus-right M1: x =58, y = -22, z = 46, psvc = 0.033) and the down-reactivated sequences
(hippocampus-right M1: x =54,y =-22, z = 46, psvc= 0.046) as compared to the not-reactivated sequence. Violin plots represent BOLD
responses around a common significant voxel (x = 52, y = -24, z = 40). c. Brain connectivity-behavior regressions. The overnight
decrease in striato-hippocampal (hippocampus-right putamen: x =32, y =-8, z =4, psvc= 0.027) connectivity was negatively correlated
with the TMR index such that the greater the decrease in connectivity (y-axis), the greater the performance improvement on the up-
reactivated as compared to the not-reactivated sequence (x-axis). M1: primary motor cortex. *: significant after SVC correction).
Activations maps are displayed on a T1-weighted template image with a threshold of p < 0.005 uncorrected. a.u.: arbitrary units.
Violin plots: median (horizontal bar), mean (diamond), the shape of the violin plots depicts the kernel density estimate of the data.

In the down-reactivated condition, there was an overnight increase in striato-motor connectivity (Figure
7a; see Tables S3-1.2.2 of the supplemental information) that was greater than for the up-reactivated
sequence (Figure 7b; see Tables S3-2.2.1 of the supplemental information). Interestingly, we observed
an overall negative relationship between overnight increases in connectivity in hippocampo-striato-
motor networks and sleep features such that lower SO amplitude and sigma power were related to
greater overnight increases in connectivity (striato-hippocampal connectivity-sigma power: see Figure
7c, left panel and Tables S3-4.1.2; striato-motor connectivity-SO amplitude: see Figure 7c, right panel;
and Tables S3-4.4.2 and 4.5.2; hippo-motor connectivity-SO amplitude: see Figure S4b and Tables S3-
4.6.2; and striato-hippocampal connectivity-SO amplitude: see Figure S4c; and Tables S3-4.6.2). These
results suggest that the reduced amplitude of sleep features observed under down- (as compared to
up-) stimulation was presumably related to compensatory overnight increases in connectivity in
hippocampo-striato-motor networks. Importantly, these overnight increases in connectivity were
differently related to behavior depending on the networks examined. Specifically, the overnight
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increase in striato-motor connectivity was related to poorer TMR index (Figure 7d, left panel; see Tables
S3-3.2.2 of the supplemental information) while the increase in striato-hippocampal connectivity was
related to greater TMR index (Figure 7d, right panel, see Tables S3-3.1.2 of the supplemental
information). These findings suggest that increases in connectivity in striato-motor networks were
ineffective to compensate for the negative effect of down-stimulation on performance while increases
in connectivity between the striatum and the hippocampus were related to greater performance
improvement.

In sum, the connectivity results indicate an overall decrease in hippocampal and striatal connectivity
after up-stimulation that was related to better performance. In contrast, down-stimulation resulted in
an overall increase in connectivity in hippocampo-striato-motor networks that was related to the lower
amplitude of sleep features during down-stimulation. Interestingly, these overnight increases in
connectivity were differently related to performance improvement suggesting that different networks
may play distinct roles to compensate for the reduced plasticity induced by down-stimulation during
sleep.
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Figure 7: Down-stimulation modulation of striato-hippocampo-cortical connectivity. a. Overnight increase in striato-motor
connectivity. Striato-motor connectivity increased from pre- to post-night session for the down-reactivated condition (Putamen-
right M1: x =28,y =-8, z =44, psvc= 0.038). Violin plots represent BOLD responses extracted from the cluster. b. Overnight increase
In striato-motor connectivity between conditions. The overnight increase in striato-motor connectivity was greater in the down- as
compared to the up-reactivated sequence (Putamen-left M1: x = -32, y = -20, z = 50, psvc = 0.02). Violin plots represent BOLD
responses extracted from the cluster. c. Brain connectivity-EEG regressions. The overnight decrease in striato-hippocampal (left
panel, Caudate-left hippocampus (pale blue): X = -24, y = -14, z = -8, psvc= 0.005,; Putamen-left hippocampus (dark blue): x = -18, y
=-10, z=-8, psvc=0.017) and striato-motor (right panel, Caudate-left aSPL (pale blue): x =-44, y =-44, 7 = 38, psvc=0.003 ; Putamen-
left aSPL (dark blue): x =-38, y =-42, z = 36, psvc< 0.001) connectivity were correlated with the sigma power and SO peak amplitude
respectively such that the lower the SO peak amplitude and sigma power during the night (y-axis), the greater the overnight increase
in connectivity (x-axis). d. Brain connectivity-behavior regressions. The overnight increase in striato-motor connectivity was related
to the TMR index (left panel Putamen-right M1: x = 26, y = -8, z = 44, psvc = 0.025) such that the greater the increase in brain
connectivity (y-axis), the lower the performance improvement on the down-reactivated as compared to the not-reactivated
sequence (x-axis). In contrast, the overnight increase in striato-hippocampal connectivity was positively related to the TMR index
(right panel, caudate-left hippocampus: x =-16, y =-40, z = 6, psvc= 0.014) such that the greater the increase in brain connectivity
(v-axis), the greater the performance improvement on the down-reactivated as compared to the not-reactivated sequence (x-axis).
M1: primary motor cortex; *: significant after SVC correction. Activations maps are displayed on a T1-weighted template image
with a threshold of p < 0.005 uncorrected. a.u.: arbitrary units. Violin plots: median (horizontal bar), mean (diamond), the shape of
the violin plots depicts the kernel density estimate of the data.
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3. Discussion

The goal of this pre-registered study was to combine targeted memory reactivation (TMR) and closed-
loop (CL) stimulation approaches to (i) test whether reactivating motor memories at the up (as
compared to the down)-phase of slow oscillations (SOs) during post-learning sleep could enhance motor
memory consolidation; and to (ii) provide a comprehensive characterization of the underlying
neurophysiological processes using sleep EEG and task-related fMRI. As hypothesized, overnight
changes in performance were greater for motor sequences reactivated at the up-, as compared to the
down-phase of the SO. Unexpectedly though, only performance on the down-reactivated sequence
differ from the not-reactivated one. Electrophysiological data showed that up-stimulated SOs were of
higher amplitude and presented greater peak-nested sigma power (spindle frequency band) than down-
stimulated SOs. Brain imaging data collected during task practice indicated that the practice of up-, as
compared to down-reactivated sequences, resulted in greater activity in striato-motor areas, greater
maintenance in hippocampal activity, and decreased connectivity in these networks. Importantly, these
modulations in brain responses were related to the up-TMR-induced increase in SO amplitude and
improvement in performance. In contrast, down-stimulation resulted in a lower increase in striato-
motor activity that was paralleled by significant increases in connectivity in striato-hippocampo-motor
networks, and both were related to the lower amplitude of sleep features during down-stimulation.
Interestingly, the overnight increases in connectivity observed after down-stimulation were related to
better (striato-hippocampus) or worse (striato-motor) performance on the down-reactivated sequence.

Our behavioral results indicate that TMR applied at the up-phase of the SO resulted in greater gains in
motor performance than when administered at the down-phase of the SO. These phase-specific effects
are in line with previous studies in which acoustic stimulations delivered in a closed-loop fashion at the
up-phase (or during the down-to-up transition) of the SO have been shown to enhance declarative
memory consolidation 17292525727 (buyt see 2428 for null effects). We are only aware of one study using
closed-loop acoustic stimulation in the motor memory domain and results showed no benefit of SO up-
stimulation on motor performance #°. The discrepancy between this recent research and our findings is
unclear but we speculate that methodological differences between studies, such as time afforded in
NREM sleep (nap vs. night paradigm) or stimulation phase (380ms post-trough vs. peak), might have
contributed to these inconsistencies. Another notable difference is that the sounds used in the current
research were memory cues. In line with the current findings, the few studies using SO-closed-loop
stimulation with memory cues (i.e., CL-TMR) show an up-phase stimulation benefit on declarative
memory consolidation as compared to no-reactivation 8 or down-stimulation *°. Overall, our results
concord with this earlier research and suggest that reactivating motor memories at the up-, as
compared to the down-phase, of the slow oscillations during post-learning sleep benefits motor
memory consolidation. Interestingly, our results also indicate that down-reactivated sequences
presented significantly worse performance as compared to both up- and not-reactivated sequences.
One could therefore argue that down-stimulation actively disrupted the motor memory consolidation
process. These findings contradict earlier studies showing no specific effect of down-, as compared to
no-stimulation, on memory 7. Based on this earlier research and evidence that down-phases of SOs
are silent phases of neuronal inactivity 3, we speculate that our results are driven by the nature of our
paradigm rather than by an active disruptive effect of down-stimulation on memory consolidation.
Specifically, it is possible that, due to our within-subject design, overall acoustic stimulation during post-
learning sleep might also have boosted performance on the control (not-reactivated) condition. This
could also explain the lack of difference between up and not conditions in the current study. While this
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is hypothetical, it is in line with previous work using similar within-subject design showing no difference
in performance between the up- and not-reactivated conditions °.

Our electrophysiological data show phase-specific modulations of sleep oscillations such that up-
stimulated SOs exhibited higher amplitude and presented greater sigma power nested at their peak as
compared to down-stimulated SOs. Together with sleep spindles and sharp wave ripples, slow
oscillations are part of the three cardinal NREM sleep oscillations playing a critical role in memory
consolidation during sleep 31, SO up-states have received particular attention as they are known to
host heightened excitability 3° It is thought that prolonging SO up-phase with stimulation increases the
probability of neuronal ensembles to fire together and strengthen the memory traces encoded in these

networks 3?

. Accordingly, prior research has used experimental interventions to target plasticity
processes during this window and, in turn, influence memory consolidation during sleep. In line with
our findings, this earlier research has collectively shown that stimulating SO at the up-phase of the slow-
oscillation enhanced the amplitude of ongoing SOs 172125272933 <jema oscillation power during the

0 ¥2° and memory consolidation 7212627 |nterestingly, the time-locking of

ascending phase of the S
the sigma burst to the up-phase of the SO has been shown to predict a positive outcome of consolidation
1434 Altogether, our findings generally concord with earlier experimental work and with models
suggesting that the synchronous neural firing orchestrated by the SOs leads to a higher probability of
downstream synchronous neural firing favoring the occurrence of higher frequency oscillation bursts

such as sleep spindles that are beneficial for memory consolidation 3°.

Our brain imaging data indicate that up-stimulation resulted in an overnight increase in task-related
striato-motor activity and a maintenance of hippocampal activity as compared to the down- and no-
stimulation conditions. The involvement of striato- and hippocampo-cortical networks in motor
sequence learning and memory consolidation is well documented. Specifically, task-related striato-
motor activity generally increases with consolidation and during later stages of learning 82236,
Hippocampal activity during both learning and delayed retests has also been associated to successful
(sleep-related) motor memory consolidation ?#3"7°. The present data therefore suggest that up-
stimulation further strengthened the modulation of brain activity that is usually observed as a result of
the spontaneous motor memory consolidation process. Interestingly, our results also show that the
modulations of hippocampal and striato-motor activity reported above were related to both the
overnight performance improvement and the enhancement of sleep features. These findings generally
concord with a series of earlier correlational studies. First, they are in line with an acoustic stimulation
study showing that up-phase stimulation-induced increases in SO amplitude were correlated with
greater hippocampal activity during subsequent (post-sleep) declarative learning 33. They also concur
with earlier studies in the motor memory domain showing a positive relationship between spindle-
locked striatal and hippocampal reactivations during post-learning sleep and offline gains in motor
performance .. They are also consistent with the findings of a previous TMR study showing that the
increased striatal and hippocampal activity observed for reactivated (as compared to not-reactivated)
motor sequences was related to the time spent in NREM sleep (during which TMR was applied) 2. Based
on the evidence reviewed above and the current data, we suggest that the up-stimulation-induced
increase in SO amplitude and sigma power during post-learning sleep facilitated hippocampal and
striatal reactivations which in turn resulted in greater activity in these networks during retest and better
motor performance. It is worth noting that similar modulations of brain activity - albeit of lower
amplitude - were observed for down-reactivated sequences. Interestingly, the relationship between the
modulation in brain responses in the down condition and both performance and sleep features was
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similar as for the up condition but scaled down in terms of amplitude (i.e., lower changes in brain
activity, lower performance gains and lower amplitude of sleep features). These results suggest that
plasticity processes induced by down-stimulation during sleep were presumably reduced as compared
to up-stimulation and therefore less favorable for reactivation processes to take place during post-
learning sleep. This is in line with previous research suggesting that the efficacy of TMR follows a (down-
to-up) gradient rather than an “all-or-none principle” °. Here, we speculate that such reduced plasticity
resulted in lower activity in hippocampal and striatal areas during retest and poorer motor performance.
Altogether, these brain imaging results further corroborate the hypothesis that down-stimulation did
not actively disrupt motor memory consolidation but rather failed to potentiate ongoing consolidation
processes.

Our brain connectivity analyses revealed an overnight decrease in hippocampo-striato-cortical
connectivity in the up-condition which was related to better performance. These observations stand in
contrast with earlier reports of increased connectivity within striato-motor networks > and between

the striatum and the hippocampus 2#43

as a result of spontaneous motor memory consolidation. They
are also inconsistent with earlier TMR studies showing greater connectivity in these networks during
the practice of reactivated as compared to not-reactivated motor sequences ***. We speculate that the
decrease in connectivity observed after up stimulation reflects an advanced stage of consolidation in
which brain regions are more segregated within their functional networks due to a decreased need for
long-range integration as a result of consolidation ¥34>4¢_|n contrast to these observations, connectivity
analyses in the down condition revealed an overnight increase in connectivity in these networks which
was negatively correlated to sleep features such that lower SO amplitude and sigma oscillation power
were related to greater connectivity increase. Together with the brain activation results showing lower
modulation of brain activity after down-stimulation, it is tempting to speculate that these large increases
in connectivity reflect compensatory processes. Importantly, the increases in connectivity observed for
the down-reactivated sequences were differently related to changes in performance depending on the
network involved. Specifically, the overnight increase in striato-hippocampal connectivity was
associated to better performance while increases in striato-motor connectivity were related to worse
performance. We speculate that connectivity within these different networks reflects different
processes. On the one hand, connectivity between the striatum and the hippocampus during initial
motor learning has been proposed to reflect the integration of different tasks components (motor vs.

2224 0On the other hand, increases in striato-

spatial) that is necessary to optimize motor behavior
motor connectivity occur at later stages of learning for the automatization of the motoric component
of the task 3%*7. We argue that the sub-optimal plasticity process under down-stimulation slowed down
consolidation such that greater interaction between the striatal and hippocampal systems - usually
observed during initial learning - was beneficial for performance at retest while greater connectivity in
non-optimally consolidated motor networks failed to optimize behavior. This remains, however,
speculative.

In summary, this study showed that motor memories reactivated during the up-phase of slow
oscillations exhibited superior consolidation compared to memories reactivated at the down-phase. Our
results suggest that the phase-specific beneficial effect of slow-oscillation closed-loop TMR on
consolidation was related to phase-specific modulations of activity and connectivity in task-relevant
networks including the striatum, the hippocampus and the motor cortex which were also associated to
phase-specific alterations of the characteristics of sleep EEG features involved in plasticity processes.
Altogether, this study not only highlights the promise of up-phase CL-TMR to impact motor memory
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consolidation but also sheds light on the complex interplay between sleep oscillations, task-related brain
activity and connectivity patterns, and motor performance.
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4. Material and Methods

This study was pre-registered in the Open Science Framework (https://osf.io/). Our pre-registration
document outlined our hypotheses and intended analysis plan as well as the statistical models used to
test our a priori hypotheses (available at https://osf.io/dpu6z). Whenever an analysis presented in the
current paper was not pre-registered, it is referred to as exploratory. Additionally, to increase
transparency, any deviation from the pre-registration is marked in the methods section with a (#)
symbol and listed in Table S4 of the supplemental information together with a justification for the
change.

4.1.  Participants
Young healthy volunteers (23.7 yo ranging from 18 to 30) were recruited to participate in the proposed
research project and received a monetary compensation for their time and effort. Every participant gave
written informed consent before participating in this research protocol, which was approved by the
local Ethics Committee (B322201525025) and was conducted according to the declaration of Helsinki
(2013). Inclusion criteria were: 1) no previous extensive training of dexterous finger movements via
playing a musical instrument or as a professional typist, 2) free of medical, neurological, psychological,

% and anxiety *°, 3) no indications of self-reported

or psychiatric conditions, including depression
abnormal sleep *°, 4) free of psychoactive and sleep-influencing medications, 5) eligible for MR
measurements, and 6) right-handed °%. None of the participants were shift-workers or did a trans-

meridian trip in the month preceding the study.

We performed a power analysis based on our previous study investigating auditory TMR in an open-
loop paradigm . This power analysis was performed with the G*Power software 2. The partial n? was
calculated based on our behavioral main effect showing a significant effect of condition (reactivated vs.
control) on offline changes in performance speed and was transformed to an effect size f (n? = 0.15; f =
0.42). The correlation coefficient calculated between the offline changes in performance speed in the
reactivated and the control conditions was 0.66, but due to the different nature of the design (e.g., 3
sequences instead of 2, 5-element sequences instead of 8), we set the average correlation coefficient
between repeated measures at r = 0.5 for a more conservative power calculation. Finally, the sphericity
correction was set to 0.5 since the primary factors of interest in our design had 3 levels (up-reactivated,
down-reactivated and not-reactivated). The primary contrast of interest is a reactivation condition main
effect on offline changes in performance speed tested with a one-way rmANOVA. The required sample
size for a 95% power is 27 at an alpha error probability of 0.05. In total, 34 (age range 18 — 30 yo)
participants completed the study. Two participants were excluded for experimental error (i.e., one
participant because they were erroneously enrolled despite being left handed and the other one
because of technical errors at the scanner) and one for excessive movement in the scanner (see MR
section below). The remaining 31 participants were included in closed-loop stimulation analyses (i.e.,
detection accuracy) but only 27 participants presented a complete dataset (behavior, sleep EEG and
MRI data). In three participants, only the sleep EEG data was analyzed as behavioral and MRI data of the
post-night session was corrupted due to experimental error (sleep EEG analyses, N = 30). For one
participant, only MRI and behavioral data were analyzed due to an EEG recording default (Behavioral
and MRl analyses, N = 28). Also note that for five participants, the pre-night Psychomotor Vigilance Task
data was overwritten due to experimental error. Participant’s characteristics are reported in Table S5 in
the supplemental information.
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4.2. General design

In this full within-subject design presented in Figure 1, participants were first invited, in the evening, for
a habituation night during which they completed a full night of sleep monitored with polysomnography
(PSG). Roughly a week later, participants returned to complete the experimental session. Between these
two visits, each participant followed a constant sleep/wake schedule (according to their own rhythm +/-
1h) during at least 3 days before the experimental session (compliance assessed with sleep diaries and
wrist actigraphy, ActiGraph wGT3X-BT, Pensacola, FL). Sleep quality and quantity for the night preceding
the experiment was assessed with the St. Mary’s sleep questionnaire >3 (sleep data are presented in
Table S5).

During the experiment, volunteers participated in two fMRI sessions referred to as pre-night (around 9
pm) and post-night (around 8.30 am) sessions which took place at the MRI facility as well as an
experimental night (EEG) session which took place in the sleep lab between the two fMRI sessions
(between 11pm-7am). At the beginning of each fMRI session, vigilance was measured objectively and
subjectively using the Psychomotor Vigilance Task (PVT) >* and Stanford Sleepiness Scale (SSS) *°,
respectively (vigilance data are reported in Table S5). The pre-night MRI session started with a resting
state scan (RS1). Then participants performed two motor tasks: (i) the random version of the serial
reaction time task (SRTT, see below for details) to measure baseline performance / general motor
execution (not scanned) and (ii) the training and a short post-training test on the sequential SRTT
probing motor sequence learning (both scanned). During the sequential SRTT, participants learned to
perform three different motor sequences. Each sequence was associated to a different sound. Two of
the three sounds associated to the learned material were replayed - using auditory closed-loop
stimulation - on the peak (up-state) or the trough (down-state) of slow oscillations detected online
during the subsequent sleep episode (see Polysomnography and TMR section for detection algorithm
details). The other sequence served as a no-reactivation control condition. The combination between
the 3 reactivation conditions (referred to as up-reactivated, down-reactivated and not-reactivated
conditions), the 3 sounds and the 3 sequences was randomized across participants. After task
completion, a post-task RS scan (RS2) and a structural scan were acquired. Following this first MRI
session, participants were transferred to the sleep lab. During the experimental night, participants’ brain
activity was recorded with PSG and CL-TMR was applied during the NREM2-3 stages of the first 3 hours
of sleep (i.e. 3 hours from the first stimulation). The post-night session took place at the MRl facility and
started with a RS (RS3) that was followed by the retest on the sequential SRTT. The session was
concluded with the last RS (RS4) and the random SRTT (not scanned). Note that the RS data are not
reported in the present manuscript.

4.3.  Stimuli and tasks

4.3.1. Motor Task

A bimanual serial reaction time task (SRTT) %7

was implemented in Matlab Psychophysics Toolbox
version 3 %8 During the task, eight squares were presented on the screen, each corresponding to one of
the eight keys on a specialized MR-compatible keyboard and to one of the 8 fingers of both hands
excluding the thumbs. The color of the outline of the squares alternated between red and green,
indicating rest and practice blocks, respectively. During the practice block, participants had to press as
quickly as possible the key corresponding to the location of a green filled square that appeared on the
screen. After a response, the next square changed to green following either a pseudo-random (see
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below for details) or sequential order depending on the task variant. After 20 presses, the practice block
automatically turned into a rest block and the outline of the squares changed from green to red. The
rest interval was 10s.

In the sequential version of the SRTT, participants learned 3 different 5-element sequences (sequence
A:47283,sequence B: 16352, andsequence C: 73 846, where 1is the left little finger and 8 is the
right little finger) that were pseudo-randomly assigned to the three conditions. Sequence practice was
organized by block (one sequence practiced per block) and each sequence was repeated 4 times per
block (20 key presses per block). The order of the sequences was fixed within participants but pseudo-
randomized across participants. The participants were explicitly instructed that the visual cues would
appear following a sequential pattern and that there would be three different motor sequences to
perform. The pre-night training session consisted of 63 practice blocks (21 blocks per sequence)
immediately followed by a post-training test of 9 practice blocks (3 blocks per sequence). This test was
performed in order to minimize the confounding effect of fatigue on end-of-training performance *°.
The post-night session consisted of 63 practice blocks (21 blocks per sequence). During all task practice
sessions, three different 100-ms auditory cues (see below) pseudo-randomly assigned to sequences A,
B, or C were played before the beginning of each sequence.

For the pseudo-random version of the SRTT, four blocks composed of 12 sequences were created by
randomly selecting 5 keys out of 8 at each iteration (60 key presses per block). For both version of the
SRTT, participants were instructed to keep their fingers still and look at the squares on the screen during
the rest blocks and to respond as quickly and as accurately as possible to the visual cues during the
practice blocks.

4.3.2. Acoustic stimulation
The same three different 100-ms sounds used our previous research *%0 were pseudo-randomly
assigned to the three conditions (up-reactivated, down-reactivated, and not-reactivated), for each
participant. The three synthesized sounds consisted of (1) a tonal harmonic complex created by
summing a sinusoidal wave with a fundamental frequency of 543 Hz and 11 harmonics with linearly
decreasing amplitude (i.e. the amplitude of successive harmonics is multiplied by values spaced evenly
between 1 and 0.1); (2) a white noise band-passed between 100-1000 Hz; and (3) a tonal harmonic
complex created with a fundamental frequency of 1480 Hz and 11 harmonics with linearly increasing
amplitude (i.e. the amplitude of successive harmonics is multiplied by values spaced evenly between
0.1 and 1). A 10-ms linear ramp was applied to the onset and offset of the sound files so as to avoid
earphone clicks. Before the start of the training session, a dummy MRI acquisition was launched to
adjust the volume of the three different sounds. Sounds were played via MR-compatible, electrostatic
headphones (MR-Confon, Magdeburg, Germany). An experimenter adjusted the volume of the sounds
until the participant reported they could hear it above and beyond the scanner noise but still
comfortably. The sound level determined for each of the three sounds was then used during task
practice. During the reactivation session taking place during the experimental night in the sleep lab,
sounds were played via ER3C air tube insert earphones (Etymotic Research). Before turning the light
offs for the night, auditory detection thresholds were determined by performing a transformed 1-down
1-up procedure %2 separately for each of the three sounds. Subsequently, the sound pressure level
was set to 2db above the individual auditory threshold, thus limiting the risk of awakening during the
night. The three sounds were then presented to the participants at the intensity mentioned above to


https://doi.org/10.1101/2024.01.16.575884
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.16.575884; this version posted January 20, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

confirm that they could hear them distinctively. Before the start of the night episode, participants were
instructed that they may or may not receive auditory stimulations during the night.

4.4. EEG data acquisition and closed-loop TMR

Both habituation and experimental nights were monitored with a digital sleep recorder (V-Amp, Brain
Products, Gilching, Germany; bandwidth: DC to Nyquist frequency) and were digitized at a sampling rate
of 1000Hz. Standard electroencephalographic (EEG) recordings were made from Fz, C3, Cz, C4, Pz, Oz,
Al and A2 according to the international 10-20 system (note that Fz, Pz and Oz were omitted during
habituation). A2 was used as the recording reference and A1l as a supplemental individual EEG channel.
An electrode placed on the middle of the forehead was used as the recording ground. Bipolar vertical
and horizontal eye movements (electrooculogram: EOG) were recorded from electrodes placed above
and below the right eye and on the outer canthus of both eyes, respectively. Bipolar submental
electromyogram (EMG) recordings were made from the chin. Electrical noise was filtered using a 50Hz
notch.

The CL-TMR device required another set of electrodes for which the signal was recorded from FPz
(ground and reference electrodes placed behind the right ear). During the experimental night, an
experienced researcher performed online visual scoring of the polysomnography (PSG) data in order to
detect NREM2-3 sleep. When these stages were reached, the phase detection algorithm was launched
(see below). The auditory stimulation was presented in a blocked design with 3-min long intervals that
alternated between up- and down-SO detection/stimulation. Each stimulation block was separated by
a 1-minute silent period (Figure 1B). The stimulation was manually stopped when the experimenter
detected REM sleep, NREM1 or wakefulness. The CL-TMR ended 3 hours after the first stimulation was
sent (about 2 sleep cycles). The sounds associated to the up(down)-reactivated sequence was then
played on the peak(trough) of the SOs within these alternating blocks. The algorithm for online SO
detection consisted of a two-step process for trough and peak detection. For down-detection, a fast-
moving average filter was employed with a window of 50 samples and a trough was detected when
signal went below a specific threshold adapted for biological sex according to 2 and of -41uV in females
and 39.5uV in males. For up-detection, the peak of a SO was identified when, in addition to the criterion
described for trough detection above, peak-to-peak signal amplitude reached 77 pV in females and 74
LV in males. Importantly, as the trough detection relied on less criteria than peak detection, the
likelihood to detect trough was higher than the one for peak. To address this issue, a secondary filter
was implemented to look backwards and validate the initial detections. This algorithm assessed whether
the detected events corresponded to true slow oscillations. By tracking the true positive count for both
conditions, the algorithm dynamically adjusted its detection strategy. If the count indicated an
imbalance, with more down- than up-detections, the algorithm temporarily paused during down-
detection intervals, allowing up-detection to catch up. The ultimate goal was to achieve balanced
stimulation between conditions (Table S5 in supplemental information).

4.5.  fMRI data acquisition
MRI data were acquired on a Philips Achieva 3.0T MRI system equipped with a 32-channel head coil.
Task-related fMRI data were acquired during the training and overnight retest sessions using an
ascending gradient EPI pulse sequence for T2*-weighted images (TR = 2000 ms; TE = 29.8 ms; multiband
factor 2; flip angle = 90°; 54 transverse slices; slice thickness = 2.5 mm; interslice gap = 0.2 mm; voxel
size = 2.5 x 2.5 x 2.5 mm?; field of view = 210 x 210 x 145.6 mm?3; matrix = 84 x 82) for each participant
(max. 1200 dynamic scans). Resting-state fMRI data were also collected prior and immediately after the
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training and overnight retest sessions with the same EPI sequence as above (data not reported here).
Additionally, field maps (TR = 1500 ms; TE = 3.5 ms; flip angle = 90°; 42 transverse slices; slice thickness
=3.75 mm; interslice gap = 0 mm; voxel size = 3.75 x 3.75 x 3.75 mm?; field of view = 240 x 240 x 157.5
mm?3; matrix = 64 x 64) were collected immediately before the SRTT Training and Retest together with
three sets of EPl images using reversed phase-encoding polarity (TR = 2000 ms; TE = 29.8 ms; multiband
factor 2; flip angle = 90°; 54 transverse slices; slice thickness = 2.5 mm; interslice gap = 0.2 mm; voxel
size =2.5x 2.5 x 2.5 mm3; field of view = 210 x 210 x 145.6 mm?>; matrix = 84 x 82, 6 dynamic scans).
Note that these sequences were not included in the final analysis pipeline” (see #1 in Table S4 of the
supplemental information). High-resolution T1-weighted structural images were acquired with a
MPRAGE sequence (TR =9.5ms, TE =4.6 ms, Tl = 858.1 ms, FA = 9°, 160 slices, FoV = 250 x 250 mm?2,
matrix size = 256 x 256 x 160, voxel size = 0.98 x 0.98 x 1.20 mm3) for each participant.

4.6. Analyses

4.6.1. Behavioral data
46.1.1. Preprocessing

Motor performance on both the random and sequential SRTT was measured in terms of speed (median
of correct response time RT, in ms) and accuracy (% of correct responses, with a trial classified as
“correct” if the key pressed by the participants matches the visual cue) for each block of practice. Note
that correct trials were excluded from the analyses if they were outlier trials based on John Tukey’s
method of leveraging the Interquartile Range* (5.1% of the correct trials were outliers, see #2 in Table
S4 of the supplemental information). Consistent with our pre-registration, our primary analyses focused
on performance speed (but see Figure S5 in the supplemental information for results related to the
accuracy).

The offline changes in performance on the sequential SRTT were computed as the relative change in
speed between the end of the training of the pre-night session (namely during the 3 blocks of the pre-
night test) and the beginning of the post-night session (3 first blocks of practice) separately for the up-
reactivated, the down-reactivated, and the not-reactivated sequences. A positive offline change in
performance therefore reflects an increase of absolute performance from the pre-night test to the post-
night test. Additionally, we computed a TMR index which consisted of the difference in offline gains in
performance between up-reactivated and not-reactivated sequences (TMR index,) and down-
reactivated and not-reactivated sequences (TMR indexqown), Separately. A positive TMR index reflects
higher offline changes in performance for the reactivated sequences as compared to the not-
reactivated, control, one.

46.1.2. Statistics

Behavioral statistical analyses were performed with the open-source software R 4%, Statistical tests
were considered significant for p < 0.05. When necessary, corrections for multiple comparisons were
conducted with the False Discovery Rate ® (FDR) procedure within each family of hypothesis tests.
Greenhouse-Geisser corrections was applied in the event of the violation of sphericity. F and t statistics
and corrected p-values were therefore reported for ANOVAs and student tests, respectively. Effect sizes
are reported using Cohen’s d for Student t-tests and n? for rmANOVAs using G*power °2.

We describe in the supplemental information the negative control analyses that were collectively
designed to verify that the pattern of behavioral results emerged from our experimental manipulation
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on motor memory consolidation processes rather than from the various potential confounding factors
listed below. First, we tested whether vigilance during each behavioral session was similar using a one-
way rmANOVAs on both the median RTs of the PVT and the Stanford Sleepiness Scale scores with
Session as two-level factor (pre- and post-night, see Table S5). Second, we tested whether the three
movement sequences were learned to the same extent during the pre-night session using two-way
rmANOVAs on performance speed and accuracy measures with sequence (A vs. B vs. C) and blocks (21
for training and 3 for post-training test) as within-subject factors (Figure S6 in the supplemental
information). Third, we performed the same analysis using condition (up-reactivated vs. down-
reactivated vs. not-reactivated) — as opposed to sequence (A, B and C) - and blocks (21 for training and
3 for post-training test) as within-subject factors (Figure 2a). Last, to highlight that improvement in
movement speed was specific to the learned sequences as opposed to general improvement of motor
execution, we computed the overall performance change for both the sequential SRTT (first 4 blocks of
the pre-night training vs. 4 last blocks of post-night training collapsed across sequences) and the pseudo-
random version of the SRTT (4 blocks pre-night session vs. 4 blocks post-night session).

In our confirmatory analysis, we tested whether offline changes in performance on the sequential SRTT
differed between reactivation conditions after a night of sleep. To do so, a one-way rmANOVA was
performed on the offline changes in performance speed (main text) and accuracy (supplemental
information and Figure S5) with Condition (up- vs. down- vs. not-reactivated) as within-subject factor.
Post-hoc analysis on the 3 possible pair comparisons were performed using Student t tests and FDR
correction was applied .

4.6.2. Electrophysiological data
4.6.2.1. Offline sleep scoring

Offline sleep scoring was performed by a certified sleep technologist - blind to the stimulation periods -

according to criteria defined in the guidelines from the American Academy of Sleep Medicine 768

using
the software SleepWorks (version 9.1.0 Build 3042, Natus Medical Incorporated, Ontario, Canada). Data
were visually scored in 30 s epochs and band pass filters were applied between 0.3 and 35 Hz for EEG
signals, 0.3 and 30 Hz for EOG, and 10 and 100 Hz for EMG. A 50 Hz notch filter was also used. Sleep
characteristics resulting from the offline sleep scoring as well as the distribution of auditory cues across
sleep stages and SO phases are shown in Table S5 of the supplemental information. Briefly, results
indicate that participants slept 7.5 hours on average (sleep efficiency: 83.3 %) and that cues were
accurately presented in NREM sleep (stimulation accuracy mean: 98.5% (95Cl: 97.6 - 99.3); up-
reactivated cues: 98.8 % (95Cl: 98.1 - 99.4); down-reactivated cues: 98.2% (95Cl: 97.2 - 99.3) and at the
correct phase (true positive mean: 82.2 % (95Cl: 79.6 — 84.8); up-reactivated: 89.5 % (95CI: 87.8 - 91.2);

down-reactivated: 74.9 % (95Cl: 71.7 - 78.1); see Figure S7 of the supplemental information).
4.6.2.2. Preprocessing

EEG data preprocessing was carried out using functions supplied by the fieldtrip toolbox %°. EEG was re-
referenced to an average of Al and A2 and filtered between 0.1-30 Hz. Specifically, data were cleaned
by manually screening each 30-sec epoch. Data segments contaminated with muscular activity or eye
movements were excluded. Independent component analysis was used to remove cardiac artifacts. We
then offline detected the SOs on the FPz channel use for online detection with criteria published in
previous research and similar to our online detection 2>7°. The trough time-sample of each offline-
detected and stimulated SO (referred to as true positive in Table S5) was extracted from the reactivation
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period (i.e. the first three hours of the night) for both the up- and down-stimulation blocks. We also
extracted the trough time-sample of each offline-detected SO occurring during the silent intervals
(referred to as not-stimulated SO).

4.6.2.3. Event-related analyses

Event-related data analyses included trough-locked potentials and oscillatory activity and were
performed with down sampled data (100Hz). Trough-locked responses were obtained by segmenting
the data into epochs time-locked to the trough of the SOs offline-detected on FPz (from -2 to 2 sec) for
the up-, the down- and the not-stimulated SO and averaged across all trials # (see #3 in Table S4 of the
supplemental information) in each condition separately. The average number of artifact-free trials by
condition was of 622.9 [95% Cl: 495.1 — 750.6] for the up-, 599.7 [95% Cl: 482.4 — 717.1] for the down-
, and 664.3 [95% Cl: 528.6 — 800.0] for the not-stimulated conditions. To analyze oscillatory activity, we
computed Time-Frequency Representations (TFRs) of the power spectra per experimental condition and
per channel. To this end, we used an adaptive sliding time window of five cycles length per frequency
(At = 5/f; 20-ms step size), and estimated power using the Hanning taper/FFT approach between 5 and
30 Hz. Individual TFRs were converted into change of power relative to the entire period around the SO
trough (from -2s to 2s relative to trough) * (see #3 in Table S4 of the supplemental information). Note
that statistical analyses were performed on a more conservative 1.5s to 1.5s relative to SO-trough to
avoid border effects. Nonparametric CBP tests /* implemented in fieldtrip toolbox were used for both
ERP and TF analyses. For both analyses, we used paired t-test between conditions and cluster-based
correction (Maris and Oostenveld, 2007) to account for multiple comparisons across time and space for
the ERP analyses, and time, frequency and space for the TF analyses. All time-space (ERP analyses) and
time-frequency-space (TF analyses) samples whose t values exceeded a threshold of alpha cluster of
0.01 were considered as candidate members of clusters, i.e. samples clustered in connected sets on the
basis of time and space adjacencies for ERP analyses and on the basis of time, frequency and space
adjacencies for the TF analyses. The sum of t-values within every cluster, that is, the ‘cluster size’, was
calculated as test statistics. These cluster sizes were then tested against the distribution of cluster sizes
obtained for 500 partitions with randomly assigned conditions within each individual. The clusters were
considered significant at p <0.05. For CBP contrast analyses, Cohen’s d is reported. Corrections for three
comparisons, i.e., p < 0.0083, was conducted with Bonferonni procedure within each family of
hypothesis tests” (see #4 in Table S4 of the supplemental information).

Note that event-related phase amplitude coupling analyses were also pre-registered but eventually not
performed as redundant with SO-trough locked analyses” (see #5 in Table S4 of the supplemental
information).

4.6.2.4. Sleep events detection

Induced sleep spindles and SOs were detected on all EEG channels automatically a posteriori in NREM
sleep epochs during the reactivation period by using the YASA open-source Python toolbox 72. This
analysis on induced events included all detected sleep events in blocks of stimulated and not-stimulated
intervals. Preprocessed cleaned data were down-sampled to 500 Hz and were transferred to the python
environment. Concerning the spindle detection, the algorithm is inspired from the A7 algorithm
described in Lacourse et al. 3. The relative power in the spindle frequency band (12—16 Hz) with respect
to the total power in the broad-band frequency (1-30 Hz) is estimated based on Short-Time Fourier
Transforms with 2-s windows and a 200-ms overlap. Next, the algorithm uses a 300ms window with a
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step size of 100 ms to compute the moving root mean squared (RMS) of the filtered EEG data in the
sigma band. A moving correlation between the broadband signal (1-30 Hz) and the EEG signal filtered
in the spindle band is then computed. Sleep spindles are detected when the three following thresholds
are reached simultaneously: (i) the relative power in the sigma band (with respect to total power) is
above 0.2 (ii) the moving RMS crosses the RMSmean + 1.5 RMssp threshold and (iii) the moving correlation
described is above 0.65. Additionally, detected spindles shorter than 0.5 s or longer than 2 s were
discarded. Spindles occurring in different channels within 500ms of each other were assumed to reflect
the same spindle. In these cases, the spindles are merged together. Concerning the SO detection, the
algorithm used is a custom adaptation from 774, Specifically, data were filtered between 0.3 and 2 Hz
with a FIR filter using a 0.2 Hz transition resulting in a—6 dB points at 0.2 and 2.1 Hz. Then all the negative
peaks with an amplitude between —40 and —200 uV and the positive peaks with an amplitude comprised
between 10-150 pV are detected in the filtered signal. After sorting identified negative peaks with
subsequent positive peaks, a set of logical thresholds are applied to identify the true slow oscillations:
(1) duration of the negative peak between 0.3 and 1.5 sec; (2) duration of the positive peak between
0.1 and 1 sec; (3) amplitude of the negative peak between 40 and 300 uV; (4) amplitude of the positive
peak between 10 and 200 pV and (5) PTP amplitude between 75 and 500 pV.

We extracted the frequency and the amplitude of spindles as well as the density of both spindles and
SO. On these variables of interest, we performed one-way rmANOVAs with condition (events occurring
during up- vs. down- vs. not-stimulated intervals) as within-subject factor using the software R %% and
Greenhouse-Geisser corrections was applied in the event of the violation of sphericity. Statistical tests
were considered significant for p < 0.05. When a condition effect was detected, post-hoc analysis on

the 3 possible pair comparisons were performed using Student t-test and FDR correction was applied
66

4.6.3. fMRI data
Statistical parametric mapping (SPM12; Welcome Department of Imaging Neuroscience, London, UK)
was used for the preprocessing of the functional images and the statistical analyses of BOLD data.

4.6.3.1. Preprocessing

Preprocessing included the realignment of the functional time series using rigid body transformations,
iteratively optimized to minimize the residual sum of squares between each functional image and the
first image of each session separately in a first step and with the across-session mean functional image
in a second step (mean of maximum movement in the three dimensions: 1.49 mm (95Cl: 0.91 — 2.07)
for the pre-night training session and 0.96 mm (95Cl: 0.73 — 1.18) for the post-night training session).
Movement was considered as excessive when exceeding more than 2 voxels mm in either or the three
dimensions for both the pre- and post-night sessions (one individual was excluded from data analyses
because of such excessive movement). The pre-processed functional images were then co-registered to
the structural T1-image using rigid body transformation optimized to maximize the normalized mutual
information between the two images. The anatomical image was segmented into gray matter, white
matter, cerebrospinal fluid (CSF), bone, soft tissue and background and the individuals’ forward
deformation fields were used for the normalization step. All functional and anatomical images were
normalized to the MNI template (resampling size of 2 x 2 x 2 mm). Functional images were spatially
smoothed using an isotropic 8 mm fullwidth at half-maximum [FWHM] Gaussian kernel.

4.6.3.2. Activation-based analyses
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The analysis of the task-based fMRI data, based on a summary statistics approach, was conducted in
two serial steps accounting for intra-individual (fixed effects) and inter-individual (random effects)
variance, respectively. Changes in brain regional responses was estimated for each participant with a
model including responses to the three motor sequences (up- vs. down- vs. not-reactivated) and their
linear modulation by performance speed (median RT on correct key presses per block) for each task run
(pre-night training, pre-night test, post-night training). The rest blocks occurring between each block of
motor practice served as the baseline condition modeled implicitly in the block design. These regressors
consisted of boxcars convolved with the canonical hemodynamic response function. Movement
parameters derived from realignment as well as erroneous key presses were included as covariates of
no interest. High-pass filtering was implemented in the design matrix using a cutoff period of 128 s to
remove slow drifts from the time series. Serial correlations in the fMRI signal was estimated using an
autoregressive (order 1) plus white noise model and a restricted maximum likelihood (ReML) algorithm.
Linear contrasts were generated at the individual level to test for (1) the main effect of practice (across
sequences) and its linear modulation by performance, (2) the main effect of practice for each sequence
(up-, down-, and not-reactivated) and (3) the difference in brain responses between sequences
(reactivated-up vs. reactivated-down vs. not-reactivated). These contrasts were written within each of
the two training runs (pre-night and post-night training) # (see #6 in Table S4 of the supplemental
information for justification) as well as between these runs. The resulting contrast images were further
spatially smoothed (Gaussian kernel 6 mm Full Width at Half Maximum (FWHM)). The resulting contrast
images were entered in a second level analysis for statistical inference at the group level (one sample t-
tests), corresponding to a random effects model accounting for inter-subject variance.

4.6.3.3. Connectivity-based analyses

Task-related functional connectivity was examined using psychophysiological interaction (PPI) analyses.
Specifically, we assessed connectivity of three seed regions (right caudate (x = 10, y = 14, z = 12), right
putamen (x =18,y =12, z=-2), and right hippocampus (x =32, y =-38, z =-6)) revealed by the univariate
analyses and showing a main effect of session across multiple conditions (see Figure S8 in supplemental
information). In order to limit the number of PPl analyses, we opted to use right (instead of both right
and left) seeds as they showed preferential phase-dependent modulation of activity (see results
presented in Table S2-2). For each individual, the first eigenvariate of the signal was extracted using
Singular Value Decomposition of the time series across the voxels included in a 10 mm-radius sphere
centered on these coordinates. Linear models were generated, at the individual level, with a first
regressor representing the practice of the motor sequence (pre- and post-night sessions in each of the
three reactivation conditions), a second regressor corresponding to the BOLD signal in the seed and a
third regressor representing the interaction between the first (psychological) and second (physiological)
regressors. To build this regressor, the underlying neuronal activity was first estimated by a parametric
empirical Bayes formulation, combined with the psychological factor, and subsequently convolved with
the hemodynamic response function 7. The individual linear contrasts testing for the interaction
between the psychological and physiological regressors within and between the different runs
mentioned above were then further spatially smoothed (Gaussian kernel 6 mm FWHM). The resulting
contrast images were entered in a second level analysis for statistical inference at the group level (one
sample t-tests), corresponding to a random effects model accounting for inter-subject variance.

4.6.3.4. Regression analyses
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We performed regression analysis between the individuals’ brain maps showing between session
changes in activity/connectivity within each condition and the individuals’ TMR index (for each condition
separately, i.e. TMRindex,, and TMRindeXgqown). These regressions were performed in a second level
analysis for statistical interference at the group level (one sample t-test), corresponding to a random
effects model accounting for inter-subject variance. Finally, we performed exploratory regression
analyses between the individuals’ brain maps showing between session changes in activity/connectivity
within each condition and the EEG sigma power as well as the peak amplitude of the SOs. For these
analyses, the significant clusters from the event-related potentials and the oscillatory activity analyses
of the up- vs down-stimulated contrasts were used (see Figure 2 in the main manuscript and Figure S1b
in the supplemental information). The amplitude and power for each individual were averaged across
all channels between 0.32-0.64 sec post-trough (peak amplitude) and between 0.25-0.4 sec post-trough
and 12-17 Hz (sigma power).

4.6.3.5. Statistics

The set of voxel values resulting from each second level analysis described above (activation, functional
connectivity and regression analyses) constituted maps of the t statistic [SPM(T)], thresholded at p <
0.005 (uncorrected for multiple comparisons). The goal of the fMRI analyses was to examine brain
patterns elicited in specific regions of interest (ROIs). The following (bilateral) ROls were selected a priori
based on previous literature describing their critical involvement in motor sequence learning processes
227677: the primary motor cortex (M1), the supplementary motor cortex (SMA), the premotor cortex
(PMC), the anterior part of the superior parietal lobule (aSPL), the hippocampus, the putamen and the
caudate nucleus. These ROIs were defined with the brainnetome atlas as follows. M1 contained the
upper limb and hand function regions of Brodmann area (BA) 4. The premotor cortex (PMC) was defined
as the dorsal (A6bcdl; dorsal PMC) and ventral (A6cvl; ventral PMC) part of BA 6. aSPL was defined to
include the rostrocaudal areas of inferior parietal lobel (39rd and 40rd), as well as the intraparietal area
7 (A7ip) and the lateral area 5 of the superior parietal lobe (A5l). The SMA was defined as part A6m of
the superior frontal gyris and area 4 of the paracentral lobule (a4ll). The probability maps of these
cortical areas were thesholded at 50% for binarization. The hippocampus mask included both rostral
and caudal parts of the hippocampus. The caudate mask included both dorsal and ventral parts of the
caudate. The putamen mask included both ventromedial and dorsololateral part of the putamen. The
probability maps of these subcortical areas were thesholded at 5% for binarization.

Statistical inferences were performed at a threshold of p < 0.05 after family-wise error (FWE) correction
for multiple comparisons over small volume (SVC, 10 mm radius) located in the structures of interest
reported by published work (see Table S6 in supplemental information). All results reported and
discussed in the main text survived SVC.
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