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Abstract

The tumor stroma is a tissue composed primarily of extracellular matrix, fibroblasts, immune cells, and vascula-

ture. Its structure and functions, such as nutrient support and waste removal, are altered during malignancy. Tumor

cells transform the fibroblasts into cancer-associated fibroblasts, which have an important immunosuppressive ac-

tivity, on which growth, invasion and metastasis depend. These activated fibroblasts appear to prevent immune cell

infiltration into the tumor nest, thereby promoting cancer progression and inhibiting T-cell-based immunotherapy.

To better understand the biophysics of the tumor stroma and predict the evolution of cancer cells, we measure

the density of differenT-cell types in the stroma using immunohistochemistry stained tumor samples from lung

cancer patients. We then incorporate these data, as well as known information on cell proliferation rates and rele-

vant biochemical interactions, into a minimal biomechanical model. We quantify the complex dynamics between

species as a function of the system properties, highlighting the inefficiency of immune cells and the fundamental

role of activated fibroblasts. A spatio-temporal approach of the inhomogeneous environment and non-uniform cell

distributions explains the fate of lung carcinomas. The model reproduces that, while cancer-associated fibroblasts

act as a barrier to tumor growth, they also reduce the efficiency of the immune response. Our conclusion is that

number of outcomes exist as a result of the competition between the characteristic times of cancer cell growth and

the activity rates of the other species. For example, simulations reveal scenarios where tumor nests persist despite

the presence of an efficient immune response.

1. Introduction

Cancer results from the malignant transforma-

tion of cells due to genetic changes or damage that

causes cells to grow and spread in an abnormal and

uncontrolled way. Mutated cells can form solid tumor

tissue at specific sites and spread to distant regions

of the body through a process known as metastasis.

The growth, development and response to drugs and

therapies of tumor masses are highly dependent on

biophysical environmental conditions. These involve

a not fully understood crosstalk between cancer

cells and the surrounding stroma, which consists of

cancer-associated fibroblasts, vessels and immune

cells embedded in the extracellular matrix. Indeed,

the tumor-stroma ratio turns out to be an independent

prognostic factor, with a large proportion of stroma

leading to a worse prognosis [1]. In this paper,

we focus on modeling tumor-stroma interactions in

lung cancer which is one of the most common and

deadly cancers, with more than 2.2 million new cases

diagnosed and 1.8 million deaths worldwide in 2020,

and more specifically in non-small cell lung carcinoma

(NSCLC) which accounts for the vast majority of

lung cancers (85%) [2]. The majority of cells that

make up the stroma are fibroblasts and macrophages.

Both types are affected and reprogrammed by cancer

cells and have been shown to act as tumor promoters

and tumor suppressors, depending on the stage of

tumor progression and of its mutational status [3, 4].

As cancer progresses, tumor cells often transform

surrounding healthy fibroblasts into cancer-associated

fibroblasts (CAFs) which, similar to a wound healing

context, produce higher levels of extracellular matrix

(ECM) as well as growth factors and cytokines

that affect the recruitment of immune, vascular and

epithelial/cancer cells [5].

Experimental observations and evidence of the

mutual interactions between cancer cells, the immune

response and cancer-associated fibroblasts suggest

that a multi-physical model of the tumor microen-
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vironment (TME), including molecular and spatial

dynamics, could be highly beneficial in understanding

and predicting the complex evolution of tumor growth

and progression, and thus represent a critical step in

improving T-cell-based therapies. A recent paper by

Mukherjee et al. analyzed the spatial dynamics of

infiltrating splenocytes in an aggregate of cancerous

melanocytes using experimental data obtained in vitro

[6]. Their conclusion is that a strong persistent random

walk and contact energies are important for the ability

of T-cells to infiltrate the tumor. However, to the

best of our knowledge, there are no approaches in the

current literature to model the dynamics behind human

lung tumor proliferation due to the role of CAFs in

excluding T-cells from the nest. Here, we propose a

model for NSCLC tumors to describe the dynamic

interplay between cancer cells, T-cells and fibroblasts

in their resting and activated states, incorporating the

most relevant interactions within the human tumor

microenvironment.

To this end, we briefly review the literature on the

interactions between different tumor components, in-

cluding quantitative information on their composition.

In particular, we base our model on data extracted

from tumor microenvironment immunohistochemistry

(IHC) staining performed on a large cohort of human

NSCLC tumor samples, which allowed us to calibrate

our model and make it consistent with actual data [7]

(Section 2). We then build the theoretical description

in two steps. In a first step, we ignore any spatial

organization and model the proliferation and activation

phenomena alone, while introducing a pressure-like

term to avoid excessive proliferation and jamming

insistent with the actual evidence. This leads to a

nonlinear dynamical system for the cell concentrations

(Section 3). Careful analysis of this dynamical system

yields a stable steady state in which T-cells become

inefficient against tumor survival for a given set of

parameters. In a second step, we enrich the model by

considering the spatio-temporal evolution of tumor

growth through a continuum mathematical variational

approach for cell mixtures based on the Rayleighian

principle. Finite element-based simulations in two-

dimensional space demonstrate the ambiguous activity

of cancer-associated fibroblasts (CAFs) in regulating

cancer cell proliferation and invasion (Section 4).

In the Appendix, further details about the results of

numerical simulations are provided to show how the

proposed dynamical system is able to capture different

evolutionary and tumor fates depending on the role

played by the species, their initial conditions, as well

as the shapes and distributions of the regions occupied

by cells.

2. Lung Cancer Microenvironment

Modeling the tumor environment requires a deep

understanding of the interactions between the various

components, such as cells of different types, soft

materials and fibers, as well as fluids and diffusing

molecules. These interactions are summarized in sec-

tion 2.1. Next, in section 2.2, we present data on the

density of the differenT-cell types in the TME. Indeed,

our continuous approach requires biological data in

vivo, variable between different patients and different

tumor areas, and also evolving over time within the

tumor. Therefore, after a review of the available

values found in the literature, we performed direct

measurements from samples stained by multiplex IHC

to study the composition of fibroblasts and distribution

of T-cells in human NSCLC tumors in situ [7].

2.1. Interactions Between TME Components

Almost all tissues contain a population of fibrob-

lasts that provide the tissue architecture, and serve as

sentinels for tissue dysfunction. When a solid tumor

grows, quiescent or progenitor lung fibroblasts activate

an initial wound healing response with increased ECM

and growth factors (cytokine) production and upregu-

lation of activation markers such as FAP [8]. Due to

mechanotransduction and/or biochemical signals from

tumor or immune cells, CAFs often increase their level

of contractility, which affects the maintenance of the

tumor stroma [9]. CAFs are characterized by their in-

creased mobility, proliferation, and ECM remodeling

and, unlike wound-associated fibroblasts, they seem to

undergo poorly reversible activation in absence of an

appropriate therapy [10–13]. The diversity of this pop-

ulation, resulting from phenotypic modifications, ex-

plains their diverse functions and localizations in the

stroma, close or distant from the tumor nest [7, 14].

Activated fibroblasts produce fibers that act as

a mechanical barrier around the tumor, impeding

the movement of immune cells and limiting the

interaction between cytotoxic T-cells and cancer cells

[15, 16]. However, by creating such a barrier around

tumors, CAFs may also prevent the spread of cancer,

as mechanical stress can reduce cell spreading and

promote cell apoptosis [17, 18]. In addition, biochem-

ical factors expressed by CAFs also help to modify

the phenotype of T-cells or inactivate their cytotoxic

capacity [19, 20]. Thus, CAFs have an ambiguous role

as tumor promoters, inhibiting T-cell invasion into the

nest, and as tumor suppressors, limiting the cancer

growth and giving rise to an immune-excluded tumor

(Fig. 1B), that is less proliferative than a free-growing

tumor (Fig. 1A). Failure to confine the tumor induces

high levels of cytotoxic T-cell infiltration, creating a

hot tumor (Fig. 1C). Therefore, one aim of this study

will be to predict susceptibility of a tumor to T-cell

infiltration according to the scheme given in (Fig. 1).

In the context of non-small cell lung carcinoma

(NSCLC), the recruitment of CD8+ T-cells seems to

be modulated by a specific tumor-associated antigen

present on the surface of the cancer cells [21]. In

particular, in the family of inflammatory proteins, also
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Figure 1: Major T-cell infiltration patterns observed in solid tumors. A: Lack of tumor antigen, inadequate priming, defects in antigen

presentation and/or lack of presentation, and/or lack of T-cell-attracting chemokines result in the absence of T-cells in the tumor. B: Presence

of T-cells in invasive margins but absent in the tumor bed. Immune evasion may be due to stromal barriers, lack of chemokines, aberrant

vasculature, or hypoxia. C: High degree of T-cell infiltration forms a hot tumor.

called cytokines, Interlukin-6 (IL6) seems to stimulate

the infiltration of CD8+ [22]. The origin of CD8+

T-cells that infiltrate the tumor are diverse, as they

differentiate from both circulating and tissue-resident

precursors [23]. However, infiltration does not imply

that the immune response is efficient. In fact, an

immunotherapy such as anti-PD1/PDL1 antibodies is

often needed to boost the response of these T-cells.

Chemical factors also play an important role in attract-

ing T-cells via chemotaxis such as the chemokines

produced by dendritic cells or cancer cells [24]. The

absence of such chemicals leads to the formation of

the so-called immune-desert tumor (Fig. 1A).

2.2. Lung TME Composition

For a quantitative modeling, it is crucial to use

biologically well-identified data on the composition

of both the tumor and the stroma. Therefore, we

survey the literature to build a quantitative view for

the composition of the TME. We recapitulate these

values in Table. 1. However, human data show a

great diversity depending on many factors such as

tumor edge, patient age, non-cancer health status,

but also on the method of analysis. The fibroblast

population in the stroma, which is very heterogeneous

and not easy to identify, is the best example. In

particular, although fibroblasts are often considered

to be a major component of the stroma, they are only

found in small proportions in scRNA-seq with 10X

single-cell systems, which may be rather surprising.

This situation is well known and may be due to tissue

digestion processes, to the fact that part of the stroma

is not extracted with the tumor nodule, and to a lower

efficiency of 10X single-cell systems for fibroblasts.

Another caveat is that identifying the surface fraction

of cells by staining can be very different from counting

individual cells. In fact, cell types can vary greatly in

size. For example, lung cancer cells can be between

13-18 µm [36], fibroblasts ∼ 16 µm [37], and T-cells

between 5-10 µm [38], resulting in volumes and

projected areas that can be 10 times smaller for T-cells

compared to fibroblasts and cancer cells. Moreover, in

some studies, authors look at well-characterized zones

of enrichment for the different species (tumor nest, fi-

brotic areas), and do not consider each cell type per se

[25, 26]. Despite these remarks, cancer cells, T-cells,

and macrophages (fibroblasts are underestimated as

mentioned above) appear to be a significant part of the

TME. The limitations of using data coming from the

literature led us to perform our own measurements.

In this study, we analyzed data from 13 patients

with lung squamous cell carcinoma (LUSC) and 22

patients with lung adenocarcinoma (LUAD), based on

a recent publication by some of the present authors

[7]. In this previous study, different fibroblast types

were identified using multiplex IHC imaging. Tumor

islets were stained with keratin, T-cells with CD3

and fibroblasts with ³SMA, FAP and ADH1B. The

coverage was evaluated for each fibroblast type and

the total fibroblast coverage corresponds to the sum

of these different coverages. Here, in the case of

LUSC, we found that fibroblasts (composed of 6%

ADH1B, 37% FAP+³SMA−, 25% FAP+³SMA+, 31%

FAP−³SMA+) occupy 35% of the stroma with a TSR

of 1.29. In LUAD, these proportions were partly mod-

ified: fibroblasts (composed of 48% ADH1B, 18%

FAP+³SMA−, 7% FAP+³SMA+, 26% FAP−³SMA+)

occupy 31% of the stroma, with a TSR of 1.07.

The fibroblasts most responsible for T-cell exclusion

are shown to be FAP+ ³SMA+ [7]. In Fig. 2.2, we

compare two LUSC microenvironments. In the top

one, FAP+³SMA+ are lining the tumor (Fig. 2(a),2(c),

2(d)), and T-cells are excluded from it (Fig. 2(b)).

On the contrary, in cases where no FAP+³SMA+ are

observed, fibroblasts are homogeneously distributed in

the stroma (Fig. 2(e),2(g), 2(h)), and T-cells infiltrate

the tumor (Fig. 2(f)).
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Ref Method Sample Cancer cells T-cells Fibroblasts Macrophages TSR

[25] Staining LUAD >25 >20 0.3

[26] Staining LUAD 67 >6.5 2.6

[27] scRNA-seq NSCLC 55 (S) 4 (S) 15 (S)

[28] scRNA-seq SCLC 76

[29] scRNA-seq LUAD 33 19.5 ∼ 6 20.4

[30] scRNA-seq LUAD <12 42.6 ∼ 1 12.2

[31] scRNA-seq NSCLC <22.7 16 8 23

[32] scRNA-seq mixed types 19.9 28.1 ∼ 2 27.5

[33] scRNA-seq LUAD 16.4 30 ∼2 18.4

[34] scRNA-seq LUAD 12 7.5

[5] Staining NSCLC 75 (S), ∼0 (TN)

Present Staining LUAD 47±13 31±17 (S), ∼0 (T) 1.07±0.68

Present Staining LUSC 54±9 35±12 (S), ∼0 (T) 1.29±0.51

Table 1: scRNA-seq: single-cell RNA seq. (CS): Cell Suspension, (SCLC): Small Cell Lung Cancer, (NSCLC): Non Small Cell Lung Cancer,

(LUAD): Adenocarcinoma, (SSN): Sub-Solid Nodule. (S): stroma region. (T): tumour nest region. (ST): Stroma+tumour nest region. (TSR):

tumour stroma ratio. Data for ref.[28–32] were extracted from [35].

3. Dynamic Modeling in the Lung Cancer TME

Our theoretical and numerical analyses consist of

two steps. In a first analysis, we examine only the

dynamics of an ecological system in interaction in or-

der to evaluate the physical parameters that quantify

these interactions and how the dynamics depend on

them. Spatial constraints are represented by a pressure

term avoiding overcrowding. We present this approach

step by step in order to set the parameters one by one,

highlighting the physical importance of each choice

through stability analyzes of the system. The second

step is the spatial description of the tumor growth in

Section 4.

3.1. Dynamical System for Immune and Cancer Cells

in Interaction

As we saw in the previous section, the complexity

of the microenvironment makes the role of the immune

system unpredictable and likely highly dependent on

the tumor being studied. In the case of lung tumors, the

immune system is triggered as the carcinoma expands,

but T-cells may be excluded from the tumor nest by ac-

tivated fibroblasts. Therefore, the goal of this work is

to physically and quantitatively understand the process

of T-cell exclusion from the tumor mass in the simplest

way possible, and to explore different possible scenar-

ios.

We focus on the interaction between differenT-cell

types in the case of the NSCLC. We consider a

closed system including the cancer cells, T-cells,

non-activated fibroblasts (NAFs), cancer-associated

fibroblasts (CAFs) and healthy cells with the extra-

cellular medium. Diffusive signaling molecules are

not explicitly introduced: their production by one cell

type and their effect on another cell type is modeled

as a direct interaction between the two. For example,

the attraction of T-cells to cancer cells by chemotaxis

is introduced as a source term proportional to the

product of the two concentrations T and C in the T-cell

equation (see below Eq. 2). We also hypothesize that

the main difference between the NAFs and the CAFs

is the fiber production of the latter, which prevents

T-cells from infiltrating the tumor. Furthermore, we

do not consider in our model that the transformation

of NAFs into CAFs by cancer cells is reversible.

All these cells have the same mass density and the

sum of their mass fraction satisfies the relationship

S = C + T + FNA + FA = 1 − N, where the mass

fraction of NSCLC cells is represented by C, T-cells

by T , quiescent or non-activated fibroblasts NAFs by

FNA, activated fibroblasts CAFs by FA and normal

healthy cells associated with the extracellular medium

by N. Note that N, as the intercellular fluid, are not

active components and therefore do not appear in

the following equations. We do not model here the

recruitment of macrophages to better highlight the

competing mechanisms related to the sole role of

T-cells and CAFs in the tumor mass development.

With this in mind, we write an evolution equation

for each component of the system: dX/dt = ΓX ,

where ΓX corresponds to a source term modeling the

proliferation, death, differentiation, or fluxes into/out

of the system under study. The source terms for each

species are described in detail below.

The dynamics of the cancer cells is driven by their

proliferation, controlled by a growth rate coefficient

³C , and limited by a death rate ¶̃C . It takes into ac-

count the population pressure caused by self-inhibition

as well as by the inhibition of the other species. In the

following, we will choose ³−1
C

as the unit of time, and

all coefficients introduced in the following will be pure

constants without unit, so that ¶̃C = ³C¶C . In addi-

tion, cytotoxic T-cells, eliminate cancer cells if their

anti-tumor activity is not inhibited by the activated fi-

broblasts (although they do not remove T-cells from

the mixture). This process is quantified by the cyto-

toxic coefficient ¶CT , and by the coefficient of T-cell

inhibition by CAFs ¶T F . With these assumptions, the
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(a) Scheme of the section for CD3

excluded patients

(b) Keratin, CD3 (c) Keratin, FAP, ³SMA (d) Keratin, FAP, ³SMA, CD3

(e) Scheme of the section for CD3

infiltrated patients

(f) Keratin, CD3 (g) Keratin, FAP, ³SMA (h) Keratin, FAP, ³SMA, CD3

Figure 2: Staining was performed by multiplex IHC. FFPE NSCLC sections were stained for Keratin (gray), CD3 (yellow) and fibroblast

markers ³SMA (green), FAP (red). 2(a)-2(d): CD3 excluded patient showing CD3+ cell exclusion from tumor nests, CD3+ cells are localized

in the center of the stroma (2(b)) and dense ³SMA staining at the tumor border are associated with a decrease of CD3+ cell abundance (2(c)).

The green arrow highlights border regions with contractile fibroblast barrier ³SMA+FAP+ and low CD3+ cells. 2(e)-2(h): CD3 infiltrated

patient showing CD3+ infiltration in the tumoror islets (2(f)) and FAP+ staining throughout the stroma (2(g)). The green arrow shows ³SMA+

staining on vessels.

dynamics of the cancer cell population can be read:

dC

dt
= C − ¶CT CT

1 + ¶T F FA

− ¶CCS, (1)

Although proliferation of cytotoxic T-cells has been

observed, we do not consider proliferation in our

study as we focus on their ability to infiltrate the

tumor. Therefore, their only source comes from their

attraction towards cancer cells, which occurs at a

recruitment rate of ³TCC, while species inhibition

limits their development:

dT

dt
= ³TCC − ¶T TS. (2)

Fibroblasts are the key regulators of tumor immunity

and progression. Their dynamics involve a recruitment

of non-activated fibroblasts ³NA whose role is to main-

tain an adequate supply given by ³NA/¶NA in healthy

tissue, i.e. in the absence of cancer cells, and a death

rate due to the pressure exerted by the cells and con-

trolled by ¶NA. NAFs are attracted to the tumor nest

at a rate ³NA,CC by the cancer cells that activate them

to become CAFs. This process is accounted by intro-

ducing a specific transformation rate controlled by the

plasticity coefficient KA, so that the dynamic equation

for NAFs reads:

dFNA

dt
= ³NA+³NA,CC−KAFNAC−¶NAFNAS. (3)

Thus, the dynamics of the CAFs is purely determined

by the transformation of the NAFs and by the pressure

through ¶A, which leads to:

dFA

dt
= KAFNAC − ¶AFAS. (4)

Therefore, the role of fibroblasts in human lung carci-

noma can be investigated by studying the interplay be-

tween cancer cells and the TME. The interactions dis-

cussed above are described by 11 parameters and lead

to a system of 4 coupled nonlinear differential equa-

tions concerning 4 unknowns. Within this framework,

we proceed to the estimation of the parameters and the

steady states of the system.

3.2. Model Parameters and Fixed Point Analysis

When all the parameters vary, the steady states or

the equilibrium points of the dynamics can be quite

impractical, so we start by assuming that all the coef-

ficients at the origin of a pressure are equivalent: ¶ =

¶C = ¶T = ¶A = ¶NA > 0. This reduces the number

of independent parameters to 7. Fixed points are ob-

tained by setting the time derivatives in Eqs. (1)-(4) to

0 which gives the long term behavior when the system

reaches equilibrium.

In order evaluate the values of the parameters in

Eqs. (1)-(4), we study different simplified situations

that can be reproduced in experiments in vitro or
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in controlled experiments in vivo. We will start by

analyzing the case of cancer cells alone and we will

successively add all the other cell types with fractions

C,T, FNA, FA.

3.2.1. Cancer and T-cells

The dynamic evolution of cancer cells alone is lim-

ited to: dC/dt = C − ¶C2. This equation leads to two

equilibrium fixed points: C = 0 and C = ¶−1 and only

the second one C = ¶−1 is stable. For the mass fraction

C to be in the interval [0, 1], it is ¶ g 1. When can-

cer cells are isolated from other active cellular compo-

nents, they are expected to invade the system or to be

its major component, leading to a cancer death rate of

¶ ∼ 1. Note that this case is well adapted to lung tumor

nests.

We now examine the interaction between T and

cancer cells in the nest in the absence of fibroblasts

(so FNA = FA = 0) and the relevant parameters scaled

by ¶ are ¶CT and ³TC . Then, we study the equilibrium

regime:















dC
dt
= 0 = C − ¶CT CT − ¶C(C + T ),

dT
dt
= 0 = ³TCC − ¶T (C + T ).

(5)

There are three equilibrium solution pairs {C,T }, in-

cluding the trivial one: {0, 0}. To analyze whether the

solutions found are physically relevant (0 f C,T f
1) and dynamically stable, we estimate possible scal-

ings for the two parameters, focusing on an effective

immune response against cancer. For efficient elimi-

nation of cancer cells by T-cells, the killing rate ¶CT

must be much larger than the natural death rate ¶, so

we introduce a small parameter 0 < ϵ < 1, so that

¶CT = ¶ϵ
−1. We also assume that the T-cell recruitment

is slow compared to cancer cells, which means that

³TC = a0ϵ, where a0 being of order one. So the only

stable solution is thus {C+,T+} = {ϵ/((a0 − 1)¶), ϵ/¶}
where a0 > 1. So, even if the inflammation level is

low, resulting in a small number of T-cells, the immune

action on the cancer cells remains efficient.

3.2.2. Role of activated fibroblasts on T-cells

Fibroblasts play an active role in the exclusion of

the T-cells from the tumor nest. Therefore, we consider

fixed points corresponding to an ensemble {C,T, 0, FA}
in order to obtain a good estimate for the killing rate

¶T F , responsible for the marginalization of the T-cells

and subsequently of the increase of cancer cells at a

fixed volume fraction of fibroblasts. For simplicity, we

first assume that FA is constant, which leads to the dy-

namical system:















dC
dt
= 0 = f0C − ∆CT CT − ¶C(C + T ),

dT
dt
= 0 = ³TCC − ∆FT − ¶T (C + T ),

where f0 = 1 − ¶FA, ∆CT = ¶CT (1 + ¶T F FA)−1 and

∆F = ¶FA. There are four solution pairs. We use

the scaling of the two parameters already established

in the previous paragraph: ¶CT = ¶ϵ
−1, ³TC = a0ϵ.

We also assume that the inhibition of the T-cells may

counteract their cytotoxic effect on cancer cells, i.e.

(1+¶T F FA)−1 ∼ ϵ, when activated fibroblasts are abun-

dant FA = ¶
−1 fa. This results in ¶T F = d0¶ϵ

−1. The

only stable equilibrium solution is (C+,T+) = ( f0¶
−1 +

O(ϵ),O(ϵ)), where the notation O(ϵ) denotes a quantity

whose order of magnitude is ϵ. Hence, our model con-

firms that when the fibroblasts inactivate the T-cells,

they favor the cancer cell population.

3.2.3. Residual Fibroblasts in Healthy Tissue

In healthy tissue, most of the fibroblasts are in a

quiescent state and are not activated in the absence

of pathologies such as wounds, allergic reactions or

cancer cells. Therefore, in such tissues, for a quies-

cent fibroblast population, the density of FNA is the

equilibrium solution of the equation dFNA/dt = 0 =

³NA − ¶FNA
2. The parameter ³NA represents the net

influx of fibroblasts into the tissue. If the fraction of

non-activated fibroblasts decreases over time ϵ2, then

³NA ∼ ¶ϵ4 can be inferred with a value of the order of

10−4.

3.2.4. Fibroblast Plasticity

Fibroblast elasticity is the phenotypic change re-

sponsible for T-cell inhibition and for more active fiber

production. Cancer cells drive this transformation of

the current population FNA into FA. This process is

quantified by the constant KA. We first estimate that

the fibroblast population is comparable to the cancer

cell population when they are alone, which leads to:

FNA = fn¶
−1. Replacing: ¶CT = ¶ϵ

−1, ³TC = a0ϵ,

¶T F = d0¶ϵ
−1, it reads:



























dC
dt
= C − ¶ϵ−1CT

1+d0¶ϵ−1 FA
− ¶CS,

dT
dt
= a0ϵC − ¶TS,

dFA

dt
= KA fnC/¶ − ¶S.

(6)

Because of the effect of the fibroblasts on the T-cells,

they have little effect on the cancer cells, so that can-

cer cell proliferation is little affected. At equilibrium,

with FNA = fn/¶, this leads to C ∼ ¶−1, T ∼ ϵ¶−1. The

equation for T gives FA ∼ a0¶
−1/d0. This means that

the activated fibroblasts must be relatively abundant to

fully inhibit the activity of the T-cells. It follows that

the plasticity parameter in ϵ is of low order, since the

non-activated fibroblasts are maintained at a high den-

sity: KA ∼ ¶.

3.2.5. Tumor Fibroblast Attraction

In this last step, we want to determine the parame-

ter that controls the attraction of the fibroblasts to the

tumor. To do this, we write K = k¶ in the entire sys-

tem of equations, which we rewrite according to the
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previous findings:






































dC
dt
= C − ¶ϵ−1CT

(1+d0¶ FA)−1 − ¶CS,
dT
dt
= a0ϵC − ¶TS,

dFNA

dt
= ¶ϵ4 + ³NA,CC − k¶FNAC − ¶FNA S,

dFA

dt
= k¶FNAC − ¶FAS.

(7)

Then, we look for solutions of the type: {C,T, FNA, FA} =
¶−1{c0, t0ϵ

2, fNA, fA}. The order of magnitude of the

attraction parameter is then ³NA,C ∼ 1.

In the next section, we summarize all the scaling

laws, according to the obtained results and present dif-

ferent scenarios related to the definition of the tumors,

given in Fig.1.

3.2.6. Numerical study of cell population dynamics

The dynamics of each cellular component of the

mixture can be systematically studied according to the

full set of parameters summarized in Table 2, with the

corresponding orders of magnitude. Some of them can

be considered as fixed in the system, i.e. they do not

vary significantly between the different tumors in the

phenomena studied. This category includes ¶−1, the in-

verse of the free tumor cell density, and ³NA, the NAF

attraction parameter to healthy tissue. The other pa-

rameters can be studied as control parameters.

The simulated time-dependent densities of each

cell type are displayed in Fig. 3 for different sets of

parameters in the system of equations in Eqs. (1)-(4).

At time t = 0 h, we assume small mass fractions of

cancer cells, T-cells, activated and quiescent fibrob-

lasts. Over time, the particular choice of a quadratic

model allows the dynamics to reach a plateau for each

cell type, confirming the stability of the fixed points

found in Section 3.2.

In the case of an immune-desert tumor, i.e. when

T-cells are not attracted to the tumor nest or are unable

to penetrate it(Fig. 3(a),3(c)), cancer cell growth is not

limited by the immune response. However, this growth

saturates when it reaches a steady state controlled by ¶.

If the T-cells are efficient, the tumor is said to

be immune-inflamed and several scenarios can be

discussed. Their response is triggered by the pro-

liferation of cancer cells. Thus, in the absence of

CAF inhibition, T-cells slow tumor growth, without

however killing all cancer cells (Fig. 3(d),3(e),3(f)).

In contrast, in the immmune-excluded tumor, CAFs

impede the T-cell response and thus indirectly promote

cancer cell growth, as observed in Fig. 3(b).

In conclusion, the dynamic equation system, lim-

ited to 4 cell types, recapitulates the different possible

scenarios that could evolve according to the interaction

between cancer cell growth, T-cells and fibroblasts in

lung adenocarcinoma. However, it does not provide

information about the morphology of the tumor and

of the local composition of its microenvironment. In

addition, it poorly represents the structure of the tu-

mor, which is divided into a nest, a cancer-associated

stroma, and a healthy stroma.

For these reasons, we now extend our model and

present the spatio-dynamical model that we use to

study the different cases mentioned above in more

detail.

4. Spatio-Temporal Behavior of Tumor Growth

Spatial study is an important tool in cancer diagno-

sis and the shape of tumors reveals the aggressiveness

of cancer cells and the role of their microenvironment

[39–44]. Similarly, the localization of immune cells in

the tumor environment [6], as well as proliferating and

pre-metastatic cells often found in niches, are active ar-

eas of research in oncology and a valuable support for

clinical prognosis [45–47].

In the previous section, we described our cell mix-

ing through the global time evolution given by a dy-

namical system. Here, we aim to complete the mod-

eling by considering the spatial heterogeneity of the

interplay between fibroblasts, T-cells and cancer cells

and its consequences for tumor cell localization and

proliferation. We first present the mixture model [43,

48], which is able to incorporate the spatial distribution

and evolution of active cells leading to a set of partial

differential equations that we solve with the finite el-

ement (FEM) software COMSOL Multiphysics [49].

As in the previous section, we consider 4 differenT-cell

types namely cancer cells, T-cells, activated and non-

activated fibroblasts, with different attraction proper-

ties. A component that does not play an active role in

the mixture is also added via an inactive N fraction. It

concerns the intercellular fluid, the healthy cells and

the dead cells. This last component is also a source

of material, for the proliferation of cancer cells. Each

component is described by a local mass fraction ϕi, a

velocity vi, and a proliferation/death term Γi. With ϕ

and Γ denoting generic quantities that are now space

and time dependent. More specifically, ϕi corresponds

to the local value of C,T, FA, FNA introduced in the

previous sections and ϕ0 = 1 − ∑i,0 ϕi represents N.

Γi is the growth rate of each component, which is now

space and time dependent (see Eqs. (1)-(4)). CAFs

produce a significant amount of fibers, resulting in a

higher friction between different species, chosen to be

proportional to the local amount of CAFs. High val-

ues of friction around the tumor nest prevent T-cells

for penetrating the tumor in the spatial model.

The sample also contains diffusive signaling

molecules that are at the origin of the immune activity.

In the previous section, chemicals were not introduced,

although they were associated with some coefficients

of the dynamical system. Here, the chemicals that

determine the cell behavior, are represented by a

concentration c j [50, 51]. Note that these chemicals

have no mass and diffuse through the mixture with

the diffusion coefficient Dc. For simplicity, we restrict

ourselves to a single chemical of concentration c, that

mediates both chemotaxis and activation of fibroblasts.
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¶CT ³TC ¶T F ³NA,C KA

Control of:
Killing C-c

by T-c

Attraction of

T-c by C-c

Inhibition of

T-c by F-c

Attraction of

F-c to C-c
Activation of F-c

Efficient T-cells (T-c) but

no attraction by (C-c)

¶ϵ−1

∼ 10

ϵ2

∼ 0.01
No role No role No role

Efficient T-cells but

inhibited by (F-c)

¶ϵ−1

∼ 10

ϵ

∼ 0.1

¶ϵ−1

∼ 10

1

∼ 1

¶

∼ 1

Inefficient T-cells

no need of fibroblasts

¶

f 1

ϵ

∼ 0.1
No role No role No role

Efficient T-cells not

inhibited by fibroblasts

¶ϵ−1

∼ 10

ϵ

∼ 0.1

¶

∼ 1

1

∼ 1

¶

∼ 1

Efficient T-cells and

fibroblasts not attracted

¶ϵ−1

∼ 10

ϵ

∼ 0.1

¶ϵ−1

∼ 10

ϵ

∼ 0.1

¶

∼ 1

Efficient T-cells

fibroblasts not activated

¶ϵ−1

∼ 10

ϵ

∼ 0.1

¶ϵ−1

∼ 10

ϵ

∼ 0.1

¶ϵ

∼ 0.1

Table 2: Scaling variation and estimation of the numerical values for the coefficients entering in the model according to the different scenarios

described in Section 3.2 and shown in Fig. 3. The coefficients above are those introduced in Eqs. (1)-(4). The left column summarizes the

different roles that T-cells can play in a cell mixture and the values of the coefficients of the mixture are listed in the following horizontal line

of the table. The scaling of ¶ is always 1, and ³NA ∼ ¶ϵ4.

The balance between its production and degradation

rate writes Ä−1
cC
ϕC − ¶cc, since it is produced by

cancer cells and naturally degraded. Within these

considerations, we study the case where the tumor is

well supplied with nutrients, which are therefore not

explicitly mentioned, and write a set of conservation

equations for each component of the mixture::















∂tϕi + ∇.(ϕivi) = Γi,

∂tc = Dc∇2c + Ä−1
cC
ϕC − ¶cc.

(8)

We now present a derivation for the average local ve-

locity vi of each species by deriving its momentum

equation and the expressions for the various source

terms.

4.1. Momentum and Free Energy Derivation

Considering that the dynamics is very slow and

completely controlled by dissipation, the Onsager vari-

ational principle of least dissipation [52] yields the set

of partial differential equations coupling the densities

to the velocities in the mixture [48]. This principle, in-

troduced by Lord Rayleigh and further developed by

Onsager [53–56], is widely used in soft matter [57], in

the biophysical context [43, 48, 52, 58, 59] as well as

other areas of physics [60]. First we define a free en-

ergy F from a free energy density F and the associated

chemical potentials µi, and a dissipation functionW:















F =
∫

dr F({ϕi}, c) ; µi =
¶F
¶ϕi
,

W =
∫

∑

i, j
Ài jϕiϕ j

2

(

vi − v j

)2
dΩ ,

where the Ài j are the relative friction coefficients be-

tween components i and j, and vi and vj are the ve-

locities of the differenT-cell types. The Rayleighian is

then defined as the sum of the dissipation functionW
and the rate of change of the free energy function F .

Within this framework, the final equations for the local

velocities are obtained by minimizing the Rayleighian

with respect to each velocity vi:

R = dF
dt
+W, ¶R

¶vi

= 0⇒
∑

j

Ai jv j = −∇µi ,

where Ai j is the friction matrix and µi are the chemical

potentials. Defining: ϕ̃i = ϕiϕ
−1
0

,the friction matrix

reads:



























Aii =
∑

j,i,0(Ài j + À j0ϕ̃i)ϕ j + Ài0(1 + ϕ̃i)
2 ,

Ai j = ϕ j(−Ài j + Ài0(1 + ϕ̃i) + À j0(1 + ϕ̃ j)

+
∑

k,i, j,0 Àk0ϕ̃k).

Importantly, in our model we assume that all

frictions Ài j are equal, except for the friction with the

CAFs. In fact, the mass fraction of CAFs is assumed

to reflect the amount of matrix produced by the fibrob-

lasts, resulting in a very high friction in the medium.

Therefore, we write: Ài j = À0, ÀiCAF = À0 + À1ϕCAF .

After deriving the momentum equations, we con-

struct the free energy density. Following [48] and in-

spired by the Cahn-Hilliard approach, we define a free

energy density F as a sum of the interaction potential f

and of the cost induced by the mass fractions gradients

»(∇ϕi)
2/2. We also assume for f the Flory-Huggins

free energy density of mixing and depends on the local

mass fractions (or equivalently the volume fractions)

of each component ϕi and on the concentration of the

chemical c [61, 62]:















F = f +
∑

i, j
»
2
(∇ϕi)

2; µi = ∂ f /∂ϕi − »∇2ϕi ,

f =
∑

i Diϕi log(ϕi) −
∑

i, j ³i jϕiϕ j −
∑

i ´iϕic .
(9)

The terms Diϕi log(ϕi) control both the diffu-

sion and volume exclusion, the quadratic expansion

−³i jϕiϕ j controls the attraction or repulsion between

species, while the last term −´iϕic is a chemo-

attraction (or a chemo-repulsion) quantity mediated by
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(a) Efficient T-cells not attracted by the tumor (b) Efficient T-cells but inhibited by fibrob-

lasts

(c) Inefficient T-cells

(d) Efficient T-cells not inhibited by fibrob-

lasts

(e) Efficient T-cells and no fibroblasts (f) Efficient T-cells fibroblasts not activated

Figure 3: With respect with the three scenarios shown in Fig. 1, different profiles are obtained from Eqs. (1)-(4) according to the derived set

of parameters in Table. 2. a,c: Immune-desert tumor. Cancer cells proliferate when the immune response is inefficient or not attracted to the

tumor. b: Immune-excluded tumor. CAFs barrier which inhibits T-cell infiltration, which promotes tumor growth. d, e, f: Immune-inflammed

tumor. T-cell infiltration limits cancer cell growth.

the chemical c in the direction towards (or away from)

the tumor nest.

In the following, we explain in more detail the ef-

fective free energy density of our system, as well as the

expression of the different proliferation rates, and the

values of the parameters, focusing on the attraction/re-

pulsion and the chemotactic terms.

4.2. Effective Free Energy Density and Source Terms

We now apply the general formalism presented in

the previous section to the cancer cell mixture using

the same notation as Section 3 for C,T, FNA, FA. How-

ever, whereas in the first section these quantities repre-

sented averaged mass fractions over the whole tumor,

here they are local mass fractions averaged over a small

volume of the tumor but larger than the cell size. We

now detail the effective free energy, focusing first on

the interaction potential f defined in Eq. 9.

The attraction between cancer cells is represented

by −¼CCC2, between cancer cells and T-cells by

−¼CT CT , and between all types of fibroblasts and

cancer cells by −¼CFC(FNA + FA), where the ¼ coef-

ficients are positive. These interactions are accounted

for the free energy density that reads:

f = DCC log(C) + DT T log(T ) + DCAF FA log(FA)

+ DNAFNA log(FNAF) + D0ϕ0 log(ϕ0)

− ¼CCC2 − ¼CT CT − ¼CFC(FNA + FA) .

Finally, we focus on the proliferation rates to complete

the system Eq. 8. Note that we must distinguish the

cells produced in situ, such as the cancer cells C and

the activated fibroblasts FA, from the cells attracted to

the tumor nest (T and FNA) by the chemicals c. We

keep the growth rate of cancer cells ΓC given by Eq. 1

with ¶T F = 0 because the inhibition of T-cells by fi-

broblasts is treated by increasing the friction created

by the fiber barrier. T-cells and NAFs do not prolif-

erate and are not derived from precursors at the tumor

site, but are instead generated far away from the tumor

and are attracted to it by chemotaxis. Thus, at the ∂Ω

boundaries, their source rate is driven by an incoming

flux due to the chemical c. For the NAFs, the volume

term ΓNA|Ω does not include the source term ³NA,C (see

Eq. 3) which is provided by the boundaries, and ³NA is

neglected:














ΓT |∂Ω = c(1−S)

ÄT
and ΓT |Ω = −¶TN ,

ΓNA|∂Ω = c(1−S)

ÄF
and ΓNA|Ω = −KAFNAC − ¶FNAS.

On the other hand, the production of CAFs is not

changed and ΓA defined in Eq. 4 is still relevant.
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The parameter values are chosen so that the sim-

ulations mimic the different scenarios for the TME in

vivo. We scale the different physical quantities in Ta-

ble. 5. The spatial structure of the TME gives the dif-

ferent values for the free energy parameters. The dy-

namic parameters are related to those in the first part.

For example, the tumor nest is a dense phase of can-

cer cells with mass fraction C = 0.8, but in the di-

lute phase C ∼ 0, with an interface of size of order

d ∼ 10 µm. This choice imposes the relative values of

DC ,D0, ¼CC , ». Similarly, we assume a weak infiltra-

tion of T-cells and fibroblasts into the nest, resulting in

low values for the attraction parameters ¼CT , ¼CF when

compared to ¼CC . Since DNAF ,DCAF ,DT control the

diffusion of the fibroblasts and T-cells, whose source is

located at the boundaries, their values are determined

by their density gradients between the boundaries and

the tumor nest. At the same time, the time scale re-

quired for T-cells to kill the tumor nest is given by ¶CT ,

and the time scales for the arrival of the T-cells and

NAFs into the domain, as well as their average mass

fractions, are governed by ÄT , ÄF . The NAFs transform

into CAFs in a time controlled by K. Scales for the

values adopted in the model are based on values found

in the literature and given in Table. 3 while the exact

parameters introduced in the simulations are given in

Table. 5. We use the letter d as time unit. One day is a

typical division rate for cancer cells and for the eradi-

cation of tumor cells in vitro [63–65]. But the effective

doubling times in vivo are longer [66]. In Table. 4, we

present the parameters that we vary in the simulations

shown in Fig. 4.

In the following, we will show that, once activated

by tumor cells, fibroblasts can inhibit tumor growth

through a confinement effect but also limit the cyto-

toxic role of T-cells or simply prevent their infiltration

into the tumor.

4.3. Ambiguous Role of Fibroblasts in Tumorigenesis

To illustrate the ambiguous role of fibroblasts in

tumor progression, we explore different scenarios

through a 2-dimensional numerical study. This allows

us to compare a fibrotic and a non-fibrotic tumor in the

presence or absence of an immune response. Thus, the

different growth cases we present are: a tumor without

CAFs and T-cells, a tumor with both CAFs and T-cells,

a tumor with T-cells but with a low level of CAFs,

and a case with CAFs but no efficient T-cells. In the

Appendix, we present other scenarios of free growth:

a TME in the presence of only NAFs and inefficient

T-cells (Fig. 1B), in presence of NAFs (Fig. 1C), and a

TME in which only cancer cells are present (Fig. 1C).

We first consider a single tumor nest before analyzing

the case of two adjacent nests. Therefore, there is only

one tumor nest at time t = 0 (Fig. 4A).

As shown in Fig. 4E,H (blue curve), in the case

of a free-growing tumor, i.e. in the presence of NAFs

and inactive T-cells, cancer cell growth is not hindered

by any obstacles, so this is the most severe situation.

However, the tumor provokes the formation of a stroma

composed of the NAFs and inefficient T-cells. The

presence of a stroma plays a role in the cancer cell

growth described in Eq. 1 and leads to a growth that

would be less important than in a case without stroma

or composed only of NAFs (Fig. 1A→G). In fact, the

pressure exerted by the stroma increases the mass frac-

tion of cancer cells in the core of the nest, as well as

the total mass fraction N at the stroma-nest interface.

In the case of a free cancer growth without stroma, the

tumor nest rapidly invades the environment and its sur-

face fraction in the simulation window is almost 40%

after 35 days, with a trend that is not yet saturated and

an average mass fraction of cancer cells of 25%.

When fibroblasts are activated, they make the en-

vironment around the tumor nest fibrotic (Fig. 4B,C),

with a mass fraction around the nest reaching 20-30%.

As explained earlier in Section 4.1, the fibers in our

model are introduced by an increase of the friction co-

efficient between the different species and the activated

fibroblasts, which is directly related to the fiber con-

centration. The tumor cells are then trapped behind

a barrier with a very high friction which prevents the

nest from expanding, and the surface area of the tumor

nest decreases to 25% after 35 days, with a fibrotic area

reaching 70%, while the average cancer cell decreases

to 17% (Fig. 4E-F-G cyan curve). The fibroblast pop-

ulation is composed of 30% NAFs and 70% CAFs, as

the average fibroblast mass fraction is 26% (Fig. 4I-K

cyan curve).

At the same time, even in a situation where T-cells

are efficient, the barrier precludes T-cells from the tu-

mor (Fig. 4C). In the latter case, tumor integrity is

maintained and CAFs play a tumor-promoting role, in-

hibiting the immune response and stabilizing the tumor

nest at 7.5% of the domain, with a fibrotic zone of 50%

(Fig. 4E-F-H,green curve). In this scenario, the aver-

age mass fractions are 5% for cancer cells, 10% for

CAFs, 10% for NAFs (so 20% for the fibroblast pop-

ulation) and 20% for T-cells. It is interesting to note

that this scenario quickly leads to a stable steady state.

In contrast, the other simulations take longer times to

reach a steady state. This could be due to the fact that

the stroma builds up quickly compared to cell death

when the cell population is not renewed, and that the

steady state corresponds to a small nest that is reached

after a short period of growth.

When T-cells are introduced without transforma-

tion from NAFs to CAFs (Fig. 4I-red curve), the tumor

dies as cancer cells are eliminated and the compact nest

disappears (Fig. 4E-red curve). As the stroma initially

builds up due to the presence of a tumor, the fibroblast

and T-cell populations slowly relax. However, the tu-

mor stroma takes a long time to retract. This suggests

that even if the cancer is cured, the effects on the tis-

sue can be long-lasting. In this case of non-activation

of NAFs, T-cells infiltrate the core of the nest thanks
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Parameter meaning value Ref

Ä typical timescale 1 d [63]

L alveola typical size 102 µm [7]

À friction 104 kg.µm−3.d−1 [48]

f0 energy density 106 kg.µm−1.d−2 [48]√
»/ f0 interface size 10 µm [48]

Table 3: Different scaling in the spatial model

Parameter free-growth immune desert immune excludedimmune inflamed

¶CT 5 × 10−3 d−1 5 × 10−3 d−1 5 d−1 5 d−1

K 10−2 d−1 10 d−1 10 d−1 10−2 d−1

Table 4: Values of the parameters varying according to the different scenarios for

tumor infiltration

Parameter value

D0 106 kg.µm−1.d−2

DC 1 × 105 kg.µm−1.d−2

DT ,DNAF ,DCAF 2.5 × 105 kg.µm−1.d−2

¼CC 1.25 × 106 kg.µm−1.d−2

¼CT 7.5 × 105 kg.µm−1.d−2

¼CF 0 kg.µm−1.d−2

» 3.6 × 107 kg.µm.d−2

¶ 1.18 d−1

¶CT 5 d−1

ÄT , ÄNA 2.5 × 10−3 µm.d−1

K 10 d−1

À0 3 × 102 kg.µm−3.d−1

À1 3 × 105 kg.µm−3.d−1

Table 5: Selected values of the parameters in the

spatial model

to the attraction of cancer cells (through the parameter

¼CT ) and allows tumor reduction (Fig. 4D). Therefore,

their invasion is efficient only in the absence of fibers.

(Fig. 4G-red curve).

There are many mechanisms able to inhibit the im-

mune system. In addition to the exclusion of T-cells

from the tumor and the absence of active feedback, low

attractiveness can also reduce the immune response.

Indeed, when T-cells are less attracted, for example be-

cause chemotaxis is not efficient enough, the tumor is

free to expand. In Fig. 4B, the cytotoxicity of T-cells

is impaired, but their chemotaxis from the boundaries

of the domains is not. This leads to an accumulation of

inefficient T-cells around the tumor nest.

Next, we analyze the case where two tumor nests

are nucleated and their mutual interactions. We

assume that that they have the same initial size and

mass fraction of cancer cells. In the absence of CAFs,

an immune response is triggered and T-cell infiltration

can occur. As expected, in the immune-inflamed

tumor, the activity of T-cells reduces the ability of

the two nests to coalesce by also reducing their mass

fraction, leading to very low values of cancer cells

(see Fig. 5A). When T-cell activity is marginalized by

the presence of CAFs, the two nests slowly coalesce

to form a single solid tumor nest (see Fig. 5B). In

this case, growth is actually limited by the tumor-

promoting function of CAFs. Although, fibroblasts

surround the tumor, but they do not inhibit its growth

which is enhanced due to the lack of immune cells

inside the nuclei. On the contrary, in the absence of

T-cells chemotaxis, the tumor growth is unrestricted

and the nests create a larger tumor by also increasing

their mass fraction (see Fig. 5C). In the latter cases,

coalescence leads to anisotropic shapes of the tumor.

Although relaxation in our model eventually leads to a

round shape, this relaxation is slower for large tumors

and even more for fibrotic tumors where friction sig-

nificantly slows down this process. Patterns associated

with coalescence may thus provide insight into the

interpretation of anisotropic patterns in tumors. These

are also related to the particular geometry of the

system, such as the shape of the organ and the location

of various blood vessels (see Appendix).

5. Conclusions

Our work provides a physical model to quantify

the role of the immune system in human lung tumors.

The focus is on early tumor growth prior to angionesis

and the development of its stroma rich in T-cells and

fibroblasts, the activation of non-activated fibroblasts

into cancer-associated fibroblasts and the marginaliza-

tion of T-cells from the tumor nest. Other immune

cells, such as macrophages, could complete this study

in a further study.

After analyzing the data from the literature and

from patients with LUSC or LUAD pathologies,

we proposed a physical model, both theoretical and

numerical, for the interactions between cancer cells,

T-cells and fibroblasts during tumor progression and

their different roles. In particular, fibroblasts are

introduced in the model in their inactive and active

states (NAFs and CAFs). The modeling involves two

steps: firstly, a dynamic study aimed at elucidating

the key factors that can characterize the properties

of the microenvironment on which the ability of

T-cells to inhibit tumor growth depends. Scenarios

scaled by only two parameters control the dynamics

and evaluate the aggressiveness of the tumor. In

particular, we established the spatial organization of

the differenT-cell types inside and outside the tumor

core. The model was based on the continuous mixture

model derived from Onsager’s variational principle.

Simulations were performed with the FEM software

COMSOL Multiphysics in a two-dimensional frame-

work. This provided a complete description of the

tumor morphology and composition. In fact, we

explored different scenarios to fully appreciate the role

of all cell types involved. The results confirmed the

experimental evidence that CAFs play a dual role in

promoting and suppressing cancer cell proliferation.

First, they alter the tumor microenvironment with a

fiber barrier that reduces the motility and activity of

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.16.575824doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575824
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Small solid tumor growth. We refer here to different tumor phenotypes in Fig.1. A: Mass fraction of cancer cells at time t = 0

days and profile of different mass fractions on a section of the tumor. B-C-D: Mass fraction of cancer cells at time t = 35 days and profile

of mass fraction in immunodeficient tumor (B), when immune infiltration is inhibited by CAFs (C), and in immune-inflamed tumor (D).

E-F-G: We show the development of different zones. E: Surface fraction profile of the tumor nest for different scenarios, calculated as

S/S total =
∫

dr¶(C > 0.1)/S total. F: Fibrotic surface fraction profile for different scenarios, calculated as S/S total =
∫

dr¶(CAF > 0.1)/S total.

G: T-cell rich area fraction profile for different scenarios, calculated as S =
∫

dr¶(T > 0.1)/S total. H: Cancer cell average mass fractions. I:

CAFs average mass fractions. J: T-cell average mass fractions. K: Nafs average mass fractions.

T-cells, thereby promoting cancer cell growth. At the

same time, this growth is limited and lower than in the

absence of active fibroblasts. Moreover, we have also

shown that although the different parameters can take

a wide range of values and continuously change the

results of the numerical study, different scenarios can

be drawn by looking only at the orders of magnitude.

In this study, we did not consider the fibers of the

extracellular matrix as a component per se, but we con-

sidered them through the friction increase. An exten-

sion of this modeling would be to include anisotropic

friction due to a nematic field, as done in Ref. [67],

where the nematic fields, the fibroblasts and the fi-

bronectin cause anisotropic friction.

Our physical model aims to limit the number of

parameters as much as possible. This may seem far-

fetched given the complexity of the biological system,

especially in vivo. However, there are several reasons

for this limitation. First, determining the range of val-

ues for these parameters is a complex task in the ab-

sence of direct measurement. The strategy we used

in Section. 3 is to isolate each process corresponding

to each parameter and thus construct the model step

by step. In Section. 4.1 we used both this latter strat-

egy and the spatial structure of the mixing. In addi-

tion, the different combination of the parameters’ val-

ues provide a wide variety of scenarios and it would be

sufficient to modify these values to model new chem-

ical entering the system. Limiting the complexity of

the different processes allows us to focus on other as-

pects of the problem, such as the time evolution and

the spatial structure, as well as a more precise quantita-

tive study. In the same spirit, we numerically report in

Section. 4.1 a 2-dimensional system without substrate,

which yields results that we can consider similar as a

3-dimensional system with an invariance in the third

dimension.

In conclusion, this numerical investigation may

help to understand the limitations of the immune sys-

tem in the face of solid tumor growth. Understanding
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Figure 5: Growth process of two small solid tumors: density plots showing cancer cell population. We start with two tumor nests placed at

the same distance from the center of the domain (30µm), sharing the same mass fraction of cancer cells and we present different scenarios. A:

Nests in immune-inflamed tumor. B: Nests interacting in immune-excluded tumor, with chemotactic T-cells and CAFs. C: Nests coalescencing

in immune-desert tumor, i.e. in the presence of inefficient T-cells.

how immune cells are excluded from the tumor nest

may be helpful in the drug design of T-cell-based

therapies. Conversely, the numerical reproduction

of various processes that can be observed in vivo

is an important step in the context of personalized

medicine. A next step in the theoretical and numerical

investigation would therefore be to introduce drug

molecules into the framework we have presented.

Finally, it would be interesting to extend our model to

follow the tumor from the alveolar stage of the lung

within a 3-dimensional description.

Appendix

In this appendix, we show cases of free growth but

in simpler stroma: the case of a stroma composed by

NAFs and inefficient T-cells (Fig. Sup. 1-B), a stroma

composed by NAFs only (Fig. Sup. 1-C), and the case

without stroma (Fig. Sup. 1-D), the tumor nest surface

fraction in the simulation window for the different sce-

narios (Fig. Sup 1-E), and the average mass fraction of

the cancer cells and the NAFs (Fig. Sup 1-F,G). The

values of the parameters depending on the scenario are

shown in Table. Sup 1.

Besides, we show the evolution of the tumor in

the case with efficient T-cells and NAFs without CAFs

(Fig. Sup 1-H).

We also obtain different configurations by assum-

ing deformed domains in order to study the anisotropic

Parameter ÄT (µm.d−1) ÄNAF (µm.d−1)

C-c+NAFs+inefficient T-cells 2.5 × 10−3 2.5 × 10−3

C-c+NAFs 2.5 × 10−6 2.5 × 10−3

C-c 2.5 × 10−6 2.5 × 10−6

Table. Sup 1: Parameter values varying depending on the scenario

response of the tumor stroma (Fig. Sup. 2-A-B). In

particular, the results obtained differ from those pre-

sented above by introducing T-cells and NAFs only

from the upper side of the boundaries, this assuming

the possibility that T-cells are able to reach the nest

from different parts. Finally, different regions have

been highlighted: in light blue the cancer cells nest,

in red the barrier of activated fibroblasts and in green

the healthy stroma composed of NAFs and T-cells.
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Figure. Sup 1: A-G: Cancer population density plots for different scenarios: Cancer cells (C-c)+NAFs+Inefficient T-cells, Cancer

cells+NAFs,Cancer cells alone. A: Mass fraction of cancer cells at time t = 0 days and profile of different mass fractions on a section of

the tumor. B: Mass fraction of cancer cells at time t = 35 days and mass fraction profile for a case of a stroma composed by C-c, NAFs, and

inefficient T-cells. C: Mass fraction of cancer cells at time t = 35 days and profile of the different mass fractions on a cut of the tumor for a

case of a stroma composed by C-c and NAFs. D: Mass fraction of cancer cells at time t = 35 days and mass fraction profile for a case with no

stroma in the tumor microenvironment. E: Surface fraction of the tumor nest in the different scenarios. F: Average mass fraction of the cancer

cells in the different scenarios. G: Average mass fraction of the NAFs in the different scenarios. H: Time evolution of the mass fraction profile

of the cut of the simulation window in the case of a tumor in the presence of efficient T-cells and NAFs only, without T-cells.

Figure. Sup 2: Different tumor phenotypes in non-spherical domains. Deformed shapes result in anisotropic configurations by forcing NAFs

and T-cells to enter the domain from only one side of the boundary. Different colors indicate separated regions where the nest (in light blue) is

confined by the boundary of CAFs (in red) within a healthy stroma (in green). A: Immune-inflamed case leads to disappearance cancer cells

in 5 days. B: Elliptical area leads to slower dynamics.
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