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Abstract  17 

Antibiotics that inhibit peptidoglycan synthesis trigger the activation of both specific and 18 

general protective responses. σM
 responds to diverse antibiotics that inhibit cell wall synthesis. 19 

Here, we demonstrate that cell wall inhibiting drugs, such as bacitracin and cefuroxime, induce 20 

the σM
-dependent ytpAB operon. YtpA is a predicted hydrolase previously proposed to generate 21 

the putative lysophospholipid antibiotic bacilysocin (lysophosphatidylglycerol), and YtpB is the 22 

branchpoint enzyme for the synthesis of membrane-localized C35 terpenoids. Using targeted 23 

lipidomics we reveal that YtpA is not required for the production of lysophosphatidylglycerol. 24 

Nevertheless, ytpA was critical for growth in a mutant strain defective for homeoviscous 25 

adaptation due to a lack of genes for the synthesis of branched chain fatty acids and the Des 26 

phospholipid desaturase. Consistently, overexpression of ytpA increased membrane fluidity as 27 

monitored by fluorescence anisotropy. The ytpA gene contributes to bacitracin resistance in 28 

mutants additionally lacking the bceAB or bcrC genes, which directly mediate bacitracin 29 

resistance. These epistatic interactions support a model in which σM
-dependent induction of the 30 

ytpAB operon helps cells tolerate bacitracin stress, either by facilitating the flipping of the 31 

undecaprenyl-phosphate carrier lipid or by impacting the assembly or function of membrane-32 

associated complexes proteins involved in cell wall homeostasis. 33 

 34 

Importance 35 

Peptidoglycan synthesis inhibitors include some of our most important antibiotics. In 36 

Bacillus subtilis, peptidoglycan synthesis inhibitors induce the σM 
regulon, which is critical for 37 

intrinsic antibiotic resistance. The σM
-dependent ytpAB operon encodes a predicted hydrolase 38 

(YtpA) and the enzyme that initiates the synthesis of C35 terpenoids (YtpB). Our results suggest 39 

that YtpA is critical in cells defective in homeoviscous adaptation. Further, we find that YtpA 40 
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functions cooperatively with the BceAB and BcrC proteins in conferring intrinsic resistance to 41 

bacitracin, a peptide antibiotic that binds tightly to the UPP lipid carrier that sustains 42 

peptidoglycan synthesis.  43 

 44 

Introduction 45 

The bacterial cell envelope, minimally consisting of a plasma membrane and a 46 

peptidoglycan cell wall, is the major barrier between the cell interior and the extracellular 47 

environment (1). Peptidoglycan is a rigid and highly cross-linked structure that confers cell shape 48 

and resists turgor pressure to prevent lysis. It is also the target of some of the most clinically 49 

relevant antibiotics (2). When exposed to changing environmental conditions, including 50 

antibiotics, bacteria respond through dedicated cell envelope stress response (CESR) pathways 51 

and modulate gene expression to protect the integrity of the cell envelope (3, 4). 52 

 Following exposure to a cell envelope stress, an extracellular signal must be 53 

communicated across the cell envelope to mediate a transcriptional response. Bacterial CESRs 54 

are commonly controlled by two component system (TCS) regulatory networks or by alternative 55 

σ factors (often members of the extracytoplasmic function or ECF σ family) which are in turn 56 

regulated by stress-responsive anti-σ factors (4-6). For example, the Bacillus subtilis BceRS TCS 57 

responds selectively to the peptide antibiotic bacitracin that binds to undecaprenyl-58 

pyrophosphate (UPP) and inhibits the recycling of lipid II (7, 8). Activation of the BceRS system 59 

upregulates BceAB, an ABC transporter and a primary determinant of intrinsic bacitracin 60 

resistance (8). BceAB acts through a target protection mechanism to release bacitracin from 61 

inhibited UPP:bacitracin complexes (9). The BceAB complex also collaborates with the BceS 62 

sensor kinase to respond to bacitracin stress in a flux-sensing mechanism (10, 11).  63 
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In addition to TCSs, ECF σ factors play a prominent role in the regulation of CESRs (4, 64 

6, 12). Upon sensing a cell envelope stress, the membrane-embedded anti-σ factor is inactivated 65 

(often by proteolytic cleavage) to release the active σ factor (13-16). One such ECF σ, σM
, is 66 

activated by cell wall targeting antimicrobials (17-20), although the precise σM
 activating 67 

stimulus is unclear. The activation of σM
 induces the expression of nearly 100 genes, many of 68 

which are involved in peptidoglycan synthesis, cell shape determination, and cell division (6, 69 

18). Consistently, deletion of sigM sensitizes the cell to β-lactams (21), moenomycin (20), 70 

bacitracin (17), and other antibiotics that target peptidoglycan synthesis (22).  71 

The large σM
 regulon includes several operons with poorly characterized roles in 72 

responding to envelope stress (18). The ytpAB operon is one such example. Previously, the ytpA 73 

gene product was assigned as a class A2-phospholipase that cleaves the sn2 acyl chain from 74 

phosphatidylglycerol (PG) to produce a discrete lysophospholipid (1-(12-methyltetradecanoyl)-75 

3-phosphoglyceroglycerol). This lysophospholipid has been named bacilysocin, and was 76 

suggested to function as an antibiotic to inhibit growth of neighboring microorganisms (23). 77 

However, purified bacilysocin has weak antibiotic activity with an MIC for Saccharomyces 78 

cerevisiae of 5 µg/ml and 25 µg/ml for Staphylococcus aureus (23), and there is no evidence that 79 

it is released into the media at levels sufficient to demonstrate antibiotic activity.  80 

The second gene in the operon, ytpB, encodes an enzyme required for sesquarterpenoid 81 

synthesis (tetraprenyl-β-curcumene synthase) (24, 25). Sesquarterpenoids are 35 carbon (C35) 82 

cyclic compounds derived from heptaprenyl-pyrophosphate (HPP) and have a multi-ring 83 

structure similar to C30 hopanoids, which are derived from squalene (26). The major 84 

sesquarterpenoid made by B. subtilis is designated baciterpenol A (24), which can be further 85 

modified by autooxidation and dehydration (under non-physiological isolation conditions) to 86 
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generate baciterpenol B and sporulenes (27). Deletion of ytpB leads to a modest increase in cell 87 

sensitivity towards bacitracin (28). Our previous findings revealed that this effect results from 88 

increased accumulation of the YtpB substrate, HPP (28). The linear C35 HPP isoprenoid is a 89 

structural analog of the longer C55 isoprenoid, UPP, and both contain a membrane-proximal 90 

pyrophosphate moiety, which is the ligand for bacitracin (29).    91 

Here, we have explored the role of YtpA, a putative phospholipase, on membrane 92 

properties and bacitracin sensitivity. Overexpression of ytpA increased membrane fluidity, but in 93 

contrast with a prior report (23), YtpA was not required for lysophosphatidylglycerol (LPG) 94 

production. Genetic studies reveal that ytpA is critical for the fitness of cells defective in 95 

homeoviscous adaptation. Moreover, YtpA contributes to bacitracin resistance in parallel with 96 

the BceAB and BcrC resistance systems. We propose that YtpA may support peptidoglycan 97 

synthesis by modulating membrane properties to enhance the function of the synthetic machinery 98 

and perhaps to facilitate the transmembrane flipping of the UP carrier lipids (30). 99 

 100 

Results 101 

Overexpression of YtpA increases membrane fluidity 102 

In previous studies, YtpA was identified as a lysophospholipase responsible for synthesis 103 

of bacilysocin (1-(12-methyltetradecanoyl)-3-phosphoglycerol (1-15-LPG)), a lysophospholipid 104 

derived from phosphatidylglycerol with a 15 carbon anteiso branched chain fatty acid (23). In 105 

eukaryotes, lysophospholipids participate in membrane remodeling via the Lands’ cycle in which 106 

phospholipids can be deacylated and then reacylated with chemically distinct fatty acids (31). 107 

However, the presence of this type of membrane remodeling pathway in bacteria has yet to be 108 

established (32). If lysophospholipids persist within the membrane bilayer, they may alter local 109 
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membrane curvature, permeability, and fluidity (33-35).  110 

To determine if YtpA impacts membrane fluidity we used the membrane intercalating 111 

dye 1,6-diphenyl-1,3,5-hexatriene (DPH) to perform fluorescence anisotropy (FA) (36). The 112 

rotational freedom of DPH in the membrane serves as an indicator of membrane fluidity. There 113 

was no significant difference in FA between the B. subtilis 168 (trpC2) wild-type strain (WT) 114 

and an isogenic ytpA null strain (ΔytpA) (Figure 1). However, since the ytpAB operon is known 115 

to be stress-inducible (18) this may simply mean that ytpA is poorly expressed under these 116 

growth conditions. Therefore, we tested the effect of YtpA overexpression using an IPTG-117 

inducible promoter. Indeed, expression of ytpA led to a decrease in FA compared to the WT and 118 

ΔytpA strain (Figure 1). This suggests an increase in rotational freedom, which is indicative of an 119 

increase in membrane fluidity (36). In a previous study, DPH measurements of FA in vesicles 120 

made from B. subtilis membrane lipids revealed a near linear decrease in FA (an increase in 121 

fluidity) over the temperature range from 10 ˚C to 45 ˚C (37). The change observed here between 122 

WT cells and those with induction of ytpA is comparable to vesicles incubated at temperatures 123 

differing by 15-20 ˚C (37). Further, a similar magnitude of change was seen in B. subtilis cells 124 

with and without induction of the W
-dependent membrane stress response, which significantly 125 

protects cells against detergents and other agents that increase fluidity (38). Thus, the effect seen 126 

here is likely to be physiologically significant. 127 

 128 

Induction of ytpA rescues growth of cells defective in homeoviscous adaptation 129 

To test if the membrane fluidizing effect noted upon induction of ytpA is physiologically 130 

relevant, we took advantage of a reporter strain with an artificially rigid membrane (39). This 131 

strain, designated Δbkd, is defective in homeoviscous adaptation to conditions of low fluidity due 132 
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to deletions of the bkd operon and the des gene. These mutations prevent the synthesis of 133 

branched chain fatty acids (BCFA) and the desaturation of acyl chains by the Des desaturase, 134 

respectively (39). Approximately 90% of the B. subtilis membrane is composed of BCFAs that 135 

help confer an optimal fluidity necessary for the maintenance of the electron transport chain (40). 136 

As a result, the Δbkd strain requires supplementation with precursors to BCFAs for normal 137 

growth. For example, supplementing with 2-methylbutyric acid (MB) restores the ability to 138 

synthesize anteiso BCFAs and rescues growth in minimal medium (39).   139 

The Δbkd strain has a minor growth defect compared to WT when grown on LB medium 140 

at 27 °C, 37 °C and 45 °C. However, on deletion of ytpA (Δbkd ΔytpA), fitness was dramatically 141 

reduced. The colony size of the Δbkd ΔytpA strain was very small compared to both the WT and 142 

Δbkd strain under all the temperatures tested (Figure 2A). As previously reported, the Δbkd strain 143 

is inviable at 22 °C on minimal medium lacking BCFA precursors (Figure 2B). Remarkably, 144 

Δbkd with a copy of ytpA expressed from the spac(Hy) promoter is able to grow at 22 °C, and if 145 

MB is additionally present this strain grows as well as WT (Figure 2B). The rescue of growth by 146 

YtpA is observed both with and without addition of the inducer IPTG, consistent with the known 147 

leaky expression of the spac(Hy) promoter (41). Using real time PCR we estimate that the leaky 148 

expression from this promoter leads to a two-fold increase in gene expression compared to its 149 

native expression in the WT cells. These results suggest that ytpA expression is critical to 150 

compensate for the growth-limiting defects that define the Δbkd strain.  151 

We next used FA to test if induction of YtpA increases membrane fluidity of the Δbkd 152 

strain (Figure 2C). As reported previously (39), the Δbkd strain shows an increase in FA 153 

compared to WT. Induction of ytpA in the Δbkd strain led to a significant decrease in FA, 154 

although not a complete restoration back to the levels of WT cells (Figure 2C). This is consistent 155 
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with the partial rescue of growth by induction of ytpA in the Δbkd strain at 22 
˚
C in the absence 156 

of MB (Figure 2B). We conclude that expression of YtpA increases membrane fluidity and 157 

restores growth of a strain defective in biochemical pathways that normally serve to increase 158 

membrane fluidity. 159 

 160 

YtpA is not the major phospholipase in vivo  161 

YtpA was proposed to be a phospholipase A2 responsible for the release of 1-(12-162 

methyltetradecanoyl)-3-phosphoglycerol (1-15-LPG) into the medium (23). Because 163 

lysophospholipids may impact membrane biology, we performed a targeted lipidomic analysis to 164 

determine if deletion of ytpA altered the phospholipid and lysophospholipid content of the cell. 165 

In both the WT and ytpA mutant strain (ΔytpA), the major phosphatidylglycerol (PG) and 166 

phosphatidylethanolamine (PE) species were the same, with the most abundant species having a 167 

total of 30, 31, or 32 carbons in the acyl chains, with a C15 fatty acid in the 2-position. The minor 168 

28-PG/PE and the 29-PG/PE peaks have a C13 or C14 acyl chain in the 2-position, respectively 169 

(Supplementary Figure 1A and 1B).  170 

Next, we analyzed the lysophosphatidyglycerol (LPG) and lysophosphatidylethanolamine 171 

(LPE) composition of cells (Figure 3 and Supplementary Figure 1C, 1D, 2). For quantitation, the 172 

signals arising from the 1- and 2-acyl-lysophospholipids with the same carbon number were 173 

combined. Note that bacilysocin, the previously described C15 1-acyl-lysophospholipid (23), 174 

most likely results from the action of an unidentified A1 phospholipase (producing a 2-acyl-175 

lysophospholipid as the product) followed by fatty acyl chain migration (Supplementary Figure 176 

1), which reaches ~90% at the 1-position at equilibrium (42-44). Similar acyl chain migration 177 

was seen in recent studies monitoring lysophospholipid production in Staphylococcus aureus 178 
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(45).  179 

In growing cells and in the medium, the dominant lysophospholipid was 15-LPG (Figure 180 

3A, 3B), with minor amounts of 13- and 14-LPG in cells (Figure 3A). 15-LPE was also a major 181 

species in both cells (Figure 3C) and media (Figure 3D) in late-log phase. There was a modest, 182 

but statistically significant, reduction in lysophospholipids in the ΔytpA strain in growing cells 183 

(Figure 3A, 3C). There was little if any effect noted in stationary phase cells (Supplementary 184 

Figure 2A, 2C). One notable change in the stationary phase cultures was that the amount of 185 

lysophospholipids in the medium was significantly elevated (10-fold) compared to samples taken 186 

in late-log phase (Supplementary Figure 2B, 2D). The presence of lysophospholipids in the 187 

cellular fraction of the ΔytpA strain suggests that YtpA is not responsible for the bulk of 188 

lysophospholipid synthesis in B. subtilis. Consistently, induction of ytpA with IPTG did not 189 

result in an increase in lysophospholipids compared to either the uninduced condition or WT 190 

(Supplementary Figure 3).  191 

YtpA is a member of a large superfamily of serine-dependent hydrolases (alpha-beta 192 

hydrolases) with a wide variety of substrates. Bioinformatic searches indicate that YtpA is likely 193 

a cytosolic-facing, membrane-associated protein. Sequence homology searches consistently yield 194 

sequence and domain similarities between YtpA and other phospholipases, including PldB, a 195 

poorly characterized phospholipase and the namesake of the COG2267 superfamily. Because 196 

traditional homology searches are limited to sequence similarity, we additionally used the YtpA 197 

AlphaFold2-generated structure to search protein structure databases using FoldSeek (46-48). 198 

Amongst the many proteins with similar predicted structures, biochemical information is 199 

available for only a handful. For example, YtpA has 30% identity to a secreted monoacylglycerol 200 

hydrolase from Mycobacterium tuberculosis (UNIPROT 007427) that hydrolyses glycerol 201 
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monoesters of long-chain fatty acids (49, 50). The lack of a clear functional role for YtpA 202 

highlights a recurring problem for this large family of alpha/beta hydrolases, enzymes that often 203 

still have enigmatic functions (51).  204 

 205 

Cell envelope active antibiotics induce expression of ytpAB in a σM
-dependent manner 206 

Next, we evaluated the regulation of ytpA in conditions that lead to cell envelope stress. 207 

The ytpAB operon is regulated by σM
, an alternative ECF sigma factor that is activated in 208 

response to various peptidoglycan synthesis inhibitors and other cell wall stressors (6). Early 209 

genome-wide transcriptome studies have revealed that ytpAB is most strongly induced by 210 

inhibitors of the membrane-associated steps of peptidoglycan biosynthesis, and in particular by 211 

those compounds that interfere with the lipid II cycle such as bacitracin and vancomycin (18, 212 

52). This pattern of response is consistent with a recent comprehensive profiling study using both 213 

RNA-seq and tiling array methodologies in which bacitracin and vancomycin were the strongest 214 

inducers, followed by tunicamycin, moenomycin, and lysozyme (53). 215 

We constructed a luciferase transcriptional reporter to monitor the expression of the 216 

ytpAB operon in response to cell envelope stresses. Consistent with expectation, the ytpAB 217 

reporter fusion was strongly induced by high levels of bacitracin (31.25 ¼g/ml), and this 218 

induction was lost if either the σM
 promoter site or the sigM gene was deleted (Figure 4). The 219 

reporter fusion was also induced by cefuroxime (0.16 ¼g/ml), a drug that inhibits the activity of 220 

enzymes involved in peptidoglycan synthesis. Using real-time PCR, we observed a four-fold 221 

induction of ytpA after 15 min of treatment with 31.25 ¼g/ml of bacitracin, and a two-fold 222 

increase when cells were grown to mid-log phase in the presence of the same concentration of 223 

bacitracin.  224 
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Deletion of bacitracin resistance genes (bcrC, bceAB) significantly sensitizes the cell to 225 

bacitracin and is known to alter the expression of bacitracin-responsive genes (7). While a WT 226 

cell had a bacitracin MIC of 125 µg/ml, deletion of the intrinsic bacitracin resistance 227 

determinants bceAB or bcrC significantly reduced the MIC. In a bceAB or bcrC deletion 228 

background, ytpAB expression was induced by concentrations of bacitracin as low as 1.25 µg/ml, 229 

(Supplementary Figure 4). The observation that ytpA expression is induced in response to cell 230 

wall acting drugs is suggestive of a role in intrinsic drug resistance.  231 

 232 

The ytpAB operon confers bacitracin resistance 233 

Next, we sought to determine if the ytpAB operon contributes to bacitracin resistance. 234 

The individual deletions of ytpA (ΔytpA) or ytpB (ΔytpB) did not have a significant effect on the 235 

growth of the cells with 62.5 µg/ml bacitracin (0.5x MIC). However, the ytpAB double mutant 236 

(ΔytpAB) had a notable growth lag (Figure 5). An effect of YtpB on bacitracin resistance was 237 

noted previously in studies in Mueller-Hinton medium, and was ascribed to the accumulation of 238 

the YtpB substrate heptaprenyl-pyrophosphate (HPP), a close chemical analog of UPP (28). HPP 239 

likely complexes with bacitracin and may reduce the efficiency of BceAB-dependent 240 

detoxification by competition for the active site of the BceAB resistance protein (9). HPP might 241 

also serve as a competitive substrate for the BcrC-dependent phosphatase (28). Although ΔytpB 242 

did not affect bacitracin resistance under the conditions we tested (LB medium), ytpA or ytpB 243 

together clearly contribute to bacitracin resistance.  244 

 245 

Loss of YtpA increases bacitracin sensitivity in strains lacking BcrC or BceAB  246 

We reasoned that if YtpA were contributing to bacitracin resistance by increasing 247 
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membrane fluidity, one mechanism might be through facilitation of UP (or UPP) flipping across 248 

the membrane. To explore this, we monitored the bacitracin sensitivity of strains defective in 249 

recycling of the undecaprenyl carrier lipid due to lack of a UPP phosphatase (BcrC or UppP). 250 

The BcrC and UppP phosphatases are individually dispensable, but the double mutant is not 251 

viable (54, 55). In the presence of low levels of bacitracin (5 g/ml) neither the ΔbcrC nor the 252 

ΔytpA mutants displayed much of a growth lag. However, the ΔytpA ΔbcrC double mutant was 253 

greatly inhibited with a >4 hr growth lag (Figure 6A). In contrast, there is very little additivity 254 

between ΔytpA and ΔuppP, even with high bacitracin levels (62.5 g/ml) (Figure 6B).  255 

Next, we explored the role of YtpA in strains lacking the BceAB resistance pathway. The 256 

BceAB proteins function in the dissociation of UPP:bacitracin complexes in a target protection 257 

mechanism of resistance (9). Consistent with prior work (9), ΔbceAB was highly sensitive to 258 

bacitracin with decreased growth observed at 5 ¼g/ml. At this concentration, the ΔytpA strain 259 

was unaffected, wherease the ΔytpA ΔbceAB double mutant was unable to grow (Figure 6C). The 260 

additivity of YtpA with both BcrC and BceAB, the two major players of bacitracin resistance 261 

network, suggest a role for YtpA in bacitracin resistance. By increasing membrane fluidity, YtpA 262 

may reduce UPP levels on the outer leaflet of the membrane, perhaps by allowing it to flip 263 

inside.  264 

 265 

Loss of YtpA has only a small effect in strains lacking the UptA UP flippase  266 

Following the transglycosylation reaction, the UPP lipid carrier is dephosphorylated on 267 

the outer leaflet of the membrane. Then, the transmembrane flipping of the UP product is 268 

facilitated by DedA family membrane proteins (22, 56). In B. subtilis, the σM
-regulated uptA 269 

(formerly yngC gene) encodes one such protein (22). A null mutant of uptA (ΔuptA) has no overt 270 
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growth defect but displays an increased sensitivity to MX-2401 (22), an antibiotic that binds 271 

selectively to UP exposed on the outer leaflet of the membrane (57).  272 

We speculated that YtpA-dependent membrane changes might also help to support the 273 

flipping of UP. However, deletion of ytpA did not increase the sensitivity of the uptA strain 274 

(ΔytpA ΔuptA) to the sub-MIC level of 0.6 μg/ml MX-2401 (Figure 7A). Consistent with the 275 

notion that UptA mediates flipping of UP but not UPP, the uptA deletion (ΔuptA) had little effect 276 

on bacitracin sensitivity (Figure 7B), as shown previously (22). Moreover, the ytpA and uptA 277 

mutations did not exhibit an additive effect on bacitracin sensitivity (Figure 7B). The absence of 278 

additivity with UptA on sensitivity to MX-2401 suggests that YtpA has no significant role in 279 

modulating UP levels on the outside of the membrane. 280 

 281 

Discussion 282 

Antibiotics that interfere with peptidoglycan synthesis activate a large regulon of genes 283 

associated with σM
-dependent promoters that collectively function to sustain cell wall synthesis 284 

even if one or more steps are inhibited (6, 18). The σM
 stress response is triggered when the 285 

membrane-localized anti-σM
 complex (YhdK/YhdL) is inactivated by a still unknown 286 

mechanism (13). Induction is amplified by a very strong positive autoregulation that leads to 287 

high level but transient expression from an autoregulatory promoter for the sigM-yhdL-yhdK 288 

operon (58). Prolonged and un-regulated induction of the σM
 regulon is lethal due, in part, to 289 

toxicity from high level production of numerous integral membrane proteins (59). The transient 290 

induction of the σM
 stress response can counteract the action of many cell wall-acting antibiotics, 291 

and sigM mutants display heightened sensitivity to moenomycin, bacitracin, β -lactams, and 292 

other peptidoglycan synthesis inhibitors (20, 21).    293 
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To define the roles of σM
-activated operons in protection against cell envelope stress we 294 

and others have sought to identify σM
 target genes and their functions. This task is complex due 295 

to the large number of σM
-activated operons (18) and the overlapping regulation with other ECF 296 

σ-dependent regulons (19-21, 60). In addition, many stress-induced operons, including those for 297 

essential genes, are expressed independent of σM
 and then further upregulated in times of stress.  298 

The role of σM
 in protecting against peptidoglycan synthesis inhibitors can be attributed, 299 

at least in part, to the upregulation of genes for peptidoglycan synthesis. The σM
 regulon includes 300 

genes for both cytosolic steps of peptidoglycan biosynthesis (Ddl, MurB, MurF) and membrane-301 

associated steps, including the alternate lipid II flippase (Amj), components of the Rod complex 302 

for peptidoglycan assembly (RodA, MreBCD), and a class A PBP (PBP1) (18, 61-63). In the 303 

specific case of moenomycin, σM
 regulation of the RodA transglycosylase is sufficient for 304 

resistance (61, 63). Other σM
-activated functions include enzymes for UPP synthesis (IspD, IspF) 305 

(64), the BcrC UPP-phosphatase (18, 60, 65), and the UptA UPP flippase (22), which can all 306 

function to help sustain sufficient levels of the undecaprenyl-phosphate lipid carrier (7, 64). In 307 

addition, σM
 increases synthesis of stress-induced isozymes for synthesis of lipoteichoic acid 308 

(LtaSa; (66)) and wall teichoic acid (TagT;(67)). Finally, σM
 activates genes that control 309 

secondary stress responses. The latter include genes encoding the SasA(YwaC) small alarmone 310 

synthase responsible for generation of (p)ppGpp, pGpp, ppApp, and AppppA (68), the DisA 311 

synthase for cyclic-di-AMP, and Spx, a transcription factor that controls a large regulon that 312 

contributes to protection from oxidative stress (69).   313 

Although the roles of many σM
-regulated operons have now been defined, there are still 314 

others with poorly understood functions. Here, we demonstrate that the ytpAB operon contributes 315 

to the high level of intrinsic bacitracin resistance characteristic of B. subtilis. Bacitracin is a 316 
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cyclic dodecapeptide metalloantibiotic produced by some B. licheniformis and B. subtilis species 317 

(70). Bacitracin binds together with a Zn
2+

 ion to sequester the pyrophosphate moiety and first 318 

prenyl group of the UPP carrier lipid released on the outer leaflet of the membrane following the 319 

transglycosylation reaction (29). To sustain the lipid II cycle the UPP carrier must be 320 

dephosphorylated to the undecaprenyl phosphate (UP), which is required by the MraY enzyme 321 

for the synthesis of lipid I. 322 

Consistent with its close genetic relationship to known producer species, B. subtilis 323 

expresses a robust intrinsic resistance to bacitracin (7, 64). The first line of defense is the BceAB 324 

ABC transporter, which dissociates the bacitracin:UPP complex in a target protection mechanism 325 

(9). The BceAB transporter is specifically induced by bacitracin through the action of the BceRS 326 

two-component system (10). The BceS sensor kinase forms a complex with the BceAB proteins 327 

to allow for a flux-sensing regulation mechanism (10, 11). The second line of defense is BcrC, a 328 

σM
-dependent UPP phosphatase (7). By dephosphorylating UPP to UP, BcrC converts the 329 

bacitracin target to a form no longer recognized by this antibiotic (65). However, UP is the target 330 

for amphomycin antibiotics, including the semi-synthetic derivative MX-2401 (57). Here, we 331 

identify the ytpAB operon as an additional contributor to intrinsic resistance to bacitracin.  332 

YtpA is annotated as a phospholipase responsible for removal of a fatty acyl chain from 333 

phosphatidylglycerol to generate a lysophospholid species (bacilysocin) reported to have weak 334 

antibiotic activity (23). We have confirmed that B. subtilis does produce lysophospholipids, 335 

including LPG, detectable both in the supernatant and membrane fractions. However, YtpA is 336 

not required for LPG production (Figure 3), nor are lysophospholipid levels enhanced in a strain 337 

in which ytpA is induced (Supplementary Figure 3). The enzyme, presumably an A1 338 

phospholipase, that is responsible for forming these species remains to be determined, and the 339 
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product(s) that result from YtpA activity are also still unclear. 340 

The ytpAB operon additionally encodes YtpB, an enzyme that converts heptaprenyl 341 

pyrophosphate (HPP) into the monocyclic tetraprenyl-β-curcumene in the committed step in the 342 

synthesis of the C35 terpenoid designated baciterpenol A (24, 25). Baciterpenol A presumably 343 

modulates membrane properties and may thereby contribute to stress resistance, but its 344 

physiological role remains poorly characterized. A ytpB mutant strain was previously reported to 345 

be sensitized to bacitracin, an effect was attributed to an increased accumulation of the substrate, 346 

HPP, rather than the absence of product (28). The co-regulation of YtpA and YtpB is consistent 347 

with a model in which they both function to modulate membrane properties in response to stress. 348 

We here present evidence that ytpA affects membrane fluidity and interacts genetically 349 

with proteins that function in homeoviscous adaptation. Specifically, we observed a striking 350 

growth defect in Δbkd ΔytpA cells lacking the ability make BCFAs and desaturated 351 

phospholipids and also missing YtpA (Figure 2). This indicates that YtpA modulates membrane 352 

properties. Whether these effects are due to the modest impact that YtpA has on 353 

lysophospholipid synthesis (Figure 3), or by some other mechanism, is still unknown.  354 

YtpA also contributes to intrinsic bacitracin resistance as revealed in cells defective in 355 

other intrinsic resistance mechanisms (Figure 6). The known mechanisms of bacitracin resistance 356 

all affect the availability of the bacitracin target UPP (BcrC) or the stability of its complex with 357 

bacitracin (BceAB) (Figure 8). In B. subtilis, there are two UPP phosphatases, UppP and BcrC, 358 

and at least one is required for viability (54, 55). Circumstantial evidence suggests that BcrC 359 

may be the major UPP phosphatase active on the outer leaflet of the membrane. Specifically, loss 360 

of BcrC leads to a significant increase in sensitivity to bacitracin, whereas there is no effect seen 361 

with a strain lacking uppP, the second UPP phosphatase. The strong additive effect on bacitracin 362 
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sensitivity between bcrC (which increases UPP levels in the outer leaflet) and ytpA (Figure 6) 363 

suggests that increased membrane fluidity may facilitate UPP flipping, possibly through a 364 

spontaneous reaction or one involving an unidentified protein partner (Figure 8). In addition, 365 

YtpA may alter membrane properties that affect the function of membrane-anchored enzymes 366 

involved in cell wall synthesis.      367 

 368 

Materials and Methods 369 

Growth conditions, bacterial strains, and plasmids 370 

All strains were cultured in lysogeny broth (LB) medium at 37 °C and aerated on an 371 

orbital shaker at 300 RPM. Before each experiment, glycerol stocks were streaked onto fresh LB 372 

agar plates and grown overnight at 37 °C. Antibiotics were used as required at the following 373 

concentrations: 100 µg/ml ampicillin; 10 µg/ml chloramphenicol; MLS (1 µg/ml erythromycin 374 

and 2.5 µg/ml lincomycin); 10 µg/ml kanamycin. Bacterial strains used in this study are listed in 375 

Table 1. Bacitracin was used as the biologically active Zn-salt (Zn bacitracin; Sigma #B5150), 376 

unless otherwise indicated. Deletion strains were created utilizing the BKK/BKE genomic library 377 

available at the Bacillus Genome Stock Center (BGSC) (71). Taking advantage of the natural 378 

competence of B. subtilis, all gene deletions with either a kanamycin or an erythromycin cassette 379 

were moved into the WT B. subtilis 168 strain. For transformation, B. subtilis was grown in 380 

modified competence media (MC) to stationary phase ~0.8-1.0 OD600nm, incubated with desired 381 

DNA for 1-2 hours, and plated on appropriate antibiotics. Null mutations were created by 382 

removing the antibiotic resistance cassette to create clean, in-frame deletion mutants using the 383 

pDR244 plasmid, as described (71). All gene deletions were confirmed via colony PCR using 384 

designated check primers (Table S1).  Genes were overexpressed ectopically at the amyE locus 385 
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using the pPL82 plasmid (72). Ectopic overexpression from the Pspac(hy) promoter was induced 386 

with 1 mM IPTG. Long-flanking homology PCR was used to construct operon deletions using 387 

primers as shown in Table S1. The Δbkd strain contains a deletion of the entire bkd operon (ptb, 388 

bcd, ipdV, bkdAA, bkdAB, and bkdB), in addition to a des deletion (39).  389 

 390 

Fluorescence Anisotropy 391 

Fluorescence anisotropy was performed as described with modification (73). Briefly, 5 392 

ml of cells were grown in LB medium at 37 °C with shaking to an OD600nm ~1.0 with or without 393 

1 mM IPTG induction, where applicable. Cells were harvested and centrifuged at 2500 x g for 3 394 

minutes. Cell pellets were washed twice and then resuspended in phosphate buffer (100 mM, pH 395 

7.0) to OD600nm 0.15. Cells were treated with 1,6-diphenyl-1,3,5-hexatriene (DPH) (Sigma) to a 396 

final concentration of 3.2 µM. An unlabeled control was also prepared. Cells were incubated in 397 

the dark in a 30 °C water bath for 30 minutes. Fluorescence anisotropy was performed with a 398 

PerkinElmer LS55 luminescence spectrometer (»ex = 358 nm, slit width = 10 nm; »em = 428 nm, 399 

slit width = 15 nm). A correction for the fluorescence intensity of unlabeled cells was performed 400 

as described (74). Data averages and standard deviations of 3 biological replicates are shown.  401 

 402 

Spot dilution assay 403 

 Cells were streaked onto LB agar plates and grown overnight at 37 °C. From a colony, 5 404 

mL cells were grown in LB till ~ 0.4 OD600nm. Ten-fold serial dilutions were prepared and 5 uL 405 

of the cells were plated on LB medium. Plates were allowed to air dry for 20 minutes and then 406 

incubated at 27, 37, and 42 °C. Images were captured after two days for plates incubated at 27 °C 407 

and 1 day for plates incubated at 37 and 42 °C. For the cold sensitivity assay, cells were streaked 408 
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onto LB agar plates supplemented with 100 µM 2-methylbutyric acid (MB) (Sigma), and grown 409 

at 37 °C.  5 ml of cells were grown from an isolated colony in LB medium in the absence of 2-410 

methylbutyric acid at 37 °C to ~1.0 OD600nm. Cells were harvested and centrifuged at 2500 x g 411 

for 5 minutes, and the pellets were washed with an equal volume of standard lab minimal media 412 

(15 mM (NH4)2SO4, 0.8 mM MgSO4 7H2O, 3.4 mM sodium citrate dihydrate, 2 mM KPO4, 4.2 413 

mM potassium glutamate, 40 mM morpholinepropanesulfonic acid (MOPS), pH 7.4, 0.25 mM 414 

tryptophan, 5 µM FeSO4, 5 µM MnCl2, 2 % glucose). Ten-fold serial dilutions were performed 415 

in minimal medium, and 10 µL of cells were spotted onto minimal medium plates. Plates were 416 

allowed to air dry for 20 minutes and then incubated at 22 °C temperatures. Minimal media agar 417 

plates were either unsupplemented, supplemented with 100 µM MB, or supplemented with 1 418 

mM IPTG. Spot dilutions were photographed every 24 hours to monitor growth. N = 3. A 419 

representative image is shown.  420 

 421 

LPG/LPE mass spectrometry 422 

WT and ytpA deletion strains were grown in LB media till late-log phase and over-night 423 

for stationary phase cultures. For the strains harboring IPTG-inducible ytpA, cells were grown 424 

with or without 1 mM IPTG till late-log phase. LPG/LPE were extracted from 5 mL of cells or 425 

1 mL of supernatant from 0.2 ¼m filtered media. The cells were resuspended in 0.5 mL water and 426 

0.5 mL of cold methanol containing 1% acetic acid was added. To the 1 mL of filtered media, 427 

1 mL of cold methanol containing 1% acetic acid was added. Samples were incubated on ice for 428 

10 min and centrifuged at 20,000 × g for 20 min. Supernatants were dried in a speed vac 429 

concentrator and resuspended in 80% methanol containing 100 ng/mL of [d5]17-LPG.   430 

LPG and LPE were analyzed using a Shimadzu Prominence UFLC attached to a QTrap 431 
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4500 equipped with a Turbo V ion source (Sciex). Samples were injected onto an Acquity UPLC 432 

HSS C18, 2.5mm, 3.0 x 150 mm column at 30°C (Waters) using a flow rate of 0.2 mL/min. 433 

Solvent A was 5 mM ammonium acetate + 1% formic acid, and Solvent B was 95% methanol + 434 

5 mM ammonium acetate + 1% formic acid. The HPLC program was the following: starting 435 

solvent mixture of 35% A/65% B, 0 to 1 min isocratic with 65% B; 1 to 3 min linear gradient to 436 

100% B; 3 to 30 min isocratic with 100% B; 30 to 32 min linear gradient to 65% B; 32 to 35 min 437 

isocratic with 65% B. The QTrap 4500 was operated in the negative mode, and the ion source 438 

parameters were: ion spray voltage, -4500 V; curtain gas, 30 psi; temperature, 500°C; collision 439 

gas, medium; ion source gas 1, 20 psi; ion source gas 2, 35 psi; declustering potential, -80 V; and 440 

collision energy, -30 V. The multiple reaction monitoring (MRM) transitions for LPG and LPE 441 

species are listed in Table S2. [d5]17-LPG was used as the internal standard. The system was 442 

controlled by the Analyst software (Sciex) and analyzed with MultiQuant 3.0.2 software (Sciex).  443 

Peaks corresponding to individual LPG species were quantified relative to the internal standard. 444 

 445 

Phosphatidylglycerol (PG) mass spectrometry 446 

WT and ytpA deletion strains were grown in LB media till late-log phase.  Lipids were 447 

extracted from 5 mL of culture by the Bligh and Dyer method. Lipid extracts were resuspended 448 

in chloroform/methanol (1:1).  PG was analyzed using a Shimadzu Prominence UFLC system 449 

attached to a QTrap 4500 equipped with a Turbo V ion source (Sciex).  Samples were injected 450 

onto an Acquity UPLC BEH HILIC, 1.7 µm, 2.1 × 150 mm column (Waters) at 45 °C with a 451 

flow rate of 0.2 mL/min.  Solvent A was acetonitrile, and solvent B was 15 mM ammonium 452 

formate, pH 3.  The HPLC program was the following: starting solvent mixture of 96% A/4% B; 453 

0 to 2 min, isocratic with 4% B; 2 to 20 min, linear gradient to 80% B; 20 to 23 min, isocratic 454 
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with 80% B; 23 to 25 min, linear gradient to 4% B; 25 to 30 min, and isocratic with 4% B.  The 455 

QTrap 4500 was operated in the Q1 negative mode.  The ion source parameters for Q1 were as 456 

follows: ion spray voltage, 24500 V; curtain gas, 25 psi; temperature, 350 °C; ion source gas 1, 457 

40 psi; ion source gas 2, 60 psi; and declustering potential, 240 V.  The system was controlled 458 

and analyzed by the Analyst software (Sciex). 459 

The samples were introduced to the QTrap 4500 by direct injection to perform product 460 

scans to verify the fatty acids present in a particular PG molecular species along with the 461 

positional distribution of the fatty acids. The ion source parameters for negative mode product 462 

scan were as follows: ion spray voltage, 24500 V; curtain gas, 10 psi; collision gas, medium; 463 

temperature, 270 °C; ion source gas 1, 10 psi; ion source gas 2, 15 psi; declustering potential, 464 

240 V; and collision energy, 250 V. 465 

 466 

Luciferase reporter construction and measurement 467 

Luciferase reporters were constructed by inserting designated promoters into the multiple 468 

cloning site of pBS3Elux, or pBS3Klux (75) and transformed into B. subtilis using natural 469 

competence as described above. For luciferase measurements, strains were grown in LB medium 470 

at 37 °C to ~0.4 OD600nm. 2 ¼l of culture was inoculated into 99 µl of fresh LB medium in a 96 471 

well plate. Where applicable, cultures were treated with 0.005 µg/ml cefuroxime. The 472 

concentration of bacitracin used varied depending on the strains and has been mentioned in the 473 

figure legend. The plate was incubated at 37 °C with orbital shaking in a Synergy H1 plate reader 474 

(BioTek Instruments, Inc,) and OD600nm and luminescence was measured every 6 minutes. 475 

Relative light units (RLU) for promoter activity were determined by luciferase intensity 476 

normalized for cell density (OD600nm). Data shown is the representative average and standard 477 
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deviations of 3 biological replicates.    478 

 479 

Growth kinetics assay 480 

From a single colony, cells were grown in 5 ml LB medium at 37 °C with shaking to 481 

OD600nm ~ 0.4-0.5. 1 ¼L of culture was added to 199 ¼L of fresh LB medium in a 100-well 482 

Honeycomb plates (Steri). Where applicable, cells were treated with sub-lethal concentrations of 483 

bacitracin as determined by the relative bacitracin sensitivity of each strain. The OD600nm of each 484 

well was measured at 37°C with shaking in a Bioscreen C Pro growth analyzer (Growth Curves 485 

USA, NJ) every 30 minutes for 24 hours. Data shown are representative plots and standard 486 

deviations are from three biological replicates. 487 

 488 

Real-time PCR 489 

 Gene expression was determined by real-time PCR using primers mentioned in Table S1. 490 

Cultures were grown up to an OD600nm of ~0.4. RNA was purified from 1.5 mL of cells using the 491 

RNeasy kit from Qiagen as per the manufacturer’s instructions. The isolated RNA was then 492 

given a DNase treatment with a Turbo DNA-free kit (Invitrogen, AM1907). Approximately 493 

15 ¼g of RNA was incubated with 2 ¼L of DNase and 2 ¼L of buffer at 37°C for 15 min, 494 

followed by a 5-min incubation with the DNase-inactivating agent. The samples were then 495 

centrifuged at 8,000 rpm for 3 min, and the supernatant was collected in a fresh microcentrifuge 496 

tube. cDNA was prepared with 2 ¼g of the treated RNA in 20 ¼L total volume of reaction mix 497 

using a high-capacity cDNA reverse transcription kit from Applied Biosystems (4368814). The 498 

cDNA was further diluted 1:10 to obtain a final concentration of 10 ng/¼L. Gene expression 499 
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levels were measured using 10 ng of cDNA, 0.5 ¼M gene specific primers, and 1× SYBR green 500 

master mix (Applied Biosystems, A25742). The gyrA gene was used as an internal control. 501 
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 724 

Table 1. Strains used in this study 
  

    
Strain 

Number 
Genotype Construction Reference 

168 trpC2 Lab strain Lab stock 

HB27141 trpC2 ytpA::erm BGSC  168 Lab stock 

HB27232 trpC2 ytpA null pDR244  HB27141 This study 

HB27450 trpC2 amyE::pSpac(hy)-ytpA pPL82-ytpA  168 This study 

HB27142 trpC2 des::kan BGSC  168 This study 

HB27373 trpC2 des::kan bkd::erm  (bkd) 
gDNA bkd::erm (see primers)  

HB27142 
This study 

HB27384 
trpC2 des::kan bkd::erm amyE:: pSpac(hy)-

ytpA 
pPL82-ytpA  HB27373 This study 

HB27482 trpC2 ytpA null des::kan bkd::erm  
gDNA bkd::erm (see primers)  

HB27232 
This study 

HB27246 trpC2 sacA::PytpAB-luxABCDE-erm pBS3E-lux-PytpAB  168 This study 

HB27247 trpC2 sacA::PytpAB reduced-luxABCDE-erm pBS3E-lux-PytpAB reduced  168 This study 

HB27260 trpC2 sigM::erm BGSC  168 Lab stock 

HB27287 
trpC2 sigM::erm sacA::PytpAB-luxABCDE-

erm 
pBS3K-lux-PytpAB  HB27260 This study 

HB27272 trpC2 bcrC::erm BGSC  168 Lab stock 

HB27277 trpC2 bcrC null pDR244  HB27272  This study 

HB27291 
trpC2 bcrC null sacA::PytpAB-luxABCDE-

erm 
pBS3K-lux-PytpAB  HB27277 This study 

HB27271 trpC2 bceAB::kan HB0928 Lab stock 

HB27289 trpC2 bceAB::kan sacA::PytpAB-luxABCDE pBS3E-lux-PytpAB  HB27271  This study 

HB27249 trpC2 ytpB::erm BGSC  168 Lab stock 

HB27253 trpC2 ytpB null pDR244  HB27249 This study 

HB27407 trpC2 ytpAB::erm See primers This study 

HB27275 trpC2 ytpA null bcrC::erm gDNA HB27272  HB27232 This study 

HB27360 trpC2 ytpA null bcrC null pDR244  HB27275 This study 

HB27442 trpC2 uppP::erm BGSC  168 Lab stock 

HB27446 trpC2 uppP null pDR244  HB27442 This study 

HB27443 trpC2 ytpA null uppP::erm gDNA HB27442  HB27232 This study 

HB27447 trpC2 ytpA null uppP null pDR244  HB27443 This study 

HB27344 trpC2 uptA::erm BGSC  168 Lab stock 

HB27393 trpC2 uptA null pDR244  HB27344 This study 

HB27351 trpC2 ytpA null uptA::erm gDNA HB27344  HB27232 This study 

HB27362 trpC2 ytpA null uptA null pDR244  HB27351 This study 

HB27273 trpC2 ytpA null bceAB::kan gDNA HB27271  HB27232 This study 

HB27490 trpC2 ytpA uptA bceAB::kan gDNA HB27271  HB27362 This study 

 725 

 726 
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Figure legends 727 

 728 

Figure 1. Induction of ytpA increases membrane fluidity. Overexpression of ytpA using the 729 

spac(Hy) promoter (HB27450) with 1 mM IPTG yields statistically significant differences in 730 

anisotropy compared to the WT and ytpA knockout (ΔytpA, HB27232) strains. N = 3 biological 731 

replicates. A one-way ANOVA with a Tukey test for multiple comparisons was performed. 732 

Columns labeled with different letters are statistically distinct from each other; with a P value 733 

cutoff < 0.05. 734 

 735 

Figure 2. YtpA is physiologically important in cells with defects in membrane fluidity (A). A 736 

clean, unmarked deletion of ytpA (ΔytpA) in the Δbkd strain (HB27482), reduces the growth of 737 

the cells at the permissive temperatures of 27°C, 37 °C and 45 °C on LB medium. The colony 738 

size of the Δbkd ΔytpA strain is significantly smaller than the Δbkd strain (HB27373).  (B) 739 

Overexpression of ytpA in Δbkd cells (HB27384) restores viability on minimal media when 740 

grown at non-permissive low temperature (22 °C). A representative image is shown (N = 3). 741 

Untreated column represents cells plated on minimal media without any supplementation. IPTG 742 

column represents cells plated on minimal media supplemented with 1 mM IPTG and MB 743 

column represents cells plated on minimal media supplemented with 100 ¼M 2-methylbutyric 744 

acid. (C) Induction of ytpA from the IPTG-inducible spac(Hy) promoter partially restores fluidity 745 

in a Δbkd strain. The data presented is the average of three biological replicates where errors bars 746 

represent the standard deviation. A one-way ANOVA with a Tukey test for multiple comparisons 747 

was performed. Columns labeled with different letters are statistically distinct from each other 748 

with a P value cutoff of < 0.05.  749 
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Figure 3. Lysophospholipid content of cells and media in WT and ΔytpA strain (HB27232). 750 

Strains were grown in LB to late-log phase, the cells or media were extracted with methanol and 751 

the LPG/LPE molecular species determined by LC-MS/MS.  The LPG/LPE abundances were 752 

determined relative to a [d5]17-LPG internal standard.  WT (red); ΔytpA (blue).  (A) cellular 753 

LPG, (B) media LPG, (C) cellular LPE, (D) media LPE. Student t-test was done to compare the 754 

values of WT and ytpA samples for each molecular species separately. * indicates P value < 755 

0.05.  756 

 757 

Figure 4. Induction of the ytpAB operon is σM
 dependent. Induction of PytpAB-lux (HB27246) is 758 

lost following bacitracin treatment in the absence of sigM (HB27287) and the M
-specific 759 

consensus sequence at the ytpAB promoter (HB27247). N = 3 biological replicates; error bars 760 

represent standard deviation. 761 

 762 

Figure 5. Effects of ΔytpA and ΔytpB (unmarked, in-frame deletions) on bacitracin sensitivity. 763 

Individual deletions of ytpA (HB27232) or ytpB (HB27253) do not have a significant effect on 764 

bacitracin (BAC) sensitivity compared to the WT cells. The ytpAB operon deletion (HB27407) 765 

has an increased lag in the presence of 62.5 ¼g/mL bacitracin compared to either single mutant. 766 

N =6; standard deviation in the growth of each strain has been shown by shading.   767 

 768 

Figure 6.  Loss of YtpA increases bacitracin (BAC) sensitivity in genetically sensitized strains. 769 

(A) Deletion of ytpA (HB27360) increases the sensitivity of the bacitracin-sensitive bcrC mutant 770 

(HB27277) as measured with 5 g/ml bacitracin (B) Neither the loss of ytpA (HB27232) or uppP 771 

(HB27446) alone, nor the combination (HB27447), has a major impact on bacitracin sensitivity 772 
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as measured with 62.5 g/ml bacitracin. (C) Deletion of ytpA (HB27273) increases the 773 

sensitivity of the bacitracin-sensitive bceAB mutant (HB27271) as measured with 5 g/ml 774 

bacitracin. N = 5 biological replicates; standard deviation in the growth of each strain has been 775 

shown by shading. 776 

 777 

Figure 7.  Epistasis of ytpA and uptA as measured by the growth of the ytpA (HB27232), uptA 778 

(HB27393) mutants alone and in combination (HB27362) on treatment with (A) 0.6 g/ml MX-779 

2401 and (B) 62.5 g/ml bacitracin. N = 5 biological replicates; standard deviation in the growth 780 

of each strain has been shown by shading. 781 

 782 

Figure 8. Model for lipid II recycling. Lipid-II consists of the peptidoglycan precursors bound to 783 

undecaprenyl pyrophosphate (UPP) moiety and is synthesized in the inner leaflet of the 784 

membrane. Flippases MurJ/Amj flip it to the outer leaflet where PBPs incorporate the precursors 785 

into the peptidoglycan meshwork. Subsequently, UPP is dephosphorylated to UP, and UptA (or 786 

other unidentified proteins) flips UP back to the inner membrane, where MraY initiates the 787 

incorporation of peptidoglycan precursors. Bacitracin binds to UPP in the outer membrane, 788 

inhibiting its recycling and limiting cell wall synthesis. In response to bacitracin treatment, 789 

BceAB is upregulated to remove bacitracin from UPP, and BcrC is upregulated to 790 

dephosphorylate UPP into UP, thereby eliminating the bacitracin target. In addition, YtpA, 791 

which increases membrane fluidity by an unknown mechanism, may contributes to bacitracin 792 

resistance. We speculate that YtpA may aid in flipping of UPP from the outer to the inner leaflet 793 

of the membrane.     794 
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