

1 Exposure of gut bacterial isolates to the anthelminthic drugs, ivermectin and moxidectin,
2 leads to antibiotic-like phenotypes of growth inhibition and adaptation.

3

4

5 Julian Dommann^{a,b}, Jennifer Keiser^{a,b}, Julian Garneau^c, Alison Gadelin^c, Carlo Casanova^d,
6 Peter M. Keller^e, Somphou Sayasone^{a,b,f}, Pascale Vonaesch^c, Pierre H. H. Schneeberger^{a,b,*}

7

8

9 ^aSwiss Tropical and Public Health Institute, Department of Medical Parasitology and
10 Infection Biology, Allschwil, Switzerland.

11 ^bUniversity of Basel, Basel, Switzerland.

12 ^cDepartment of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.

13 ^dInstitute for Infectious Diseases, University of Bern, Bern, Switzerland

14 ^eClinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland

15 ^fLao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao People's
16 Democratic Republic

17

18 # Correspondence to Pierre H. H. Schneeberger, pierre.schneeberger@swisstph.ch.

19

20 **Keywords:** soil-transmitted helminthiasis, ivermectin, moxidectin, gut-microbiome,
21 macrolide, antimicrobial resistance, xenobiotics, pharmacomicrobiomic interactions.

22 **Abstract**

23 Due to their broad-spectrum activities, ivermectin and moxidectin are widely used
24 anthelmintics in veterinary and human medicine. However, ivermectin has recently been
25 shown to perturbate gut-microbial growth. Given the macrolide-like structure of both
26 ivermectin and moxidectin, there is a need to characterize the antibiotic spectrum of these
27 anthelmintic drugs and their potential implications in the development of cross-resistance to
28 macrolides and other families of antibiotics. Here, we incubated 59 bacterial isolates
29 representing different clades frequently found in the gut with ivermectin and moxidectin at
30 different concentrations for 16-72h. Further, we challenged 10 bacterial isolates with repeated
31 and gradually increasing concentrations of these two anthelmintics and subsequently
32 characterized their sensitivity to different antibiotics as well as ascending anthelmintic
33 concentrations. We found, that antibacterial activity of the two anthelmintics is comparable
34 to a selection of tested antibiotics, as observed by potency and dose dependence. Bacterial
35 anthelmintic challenging *in vitro* resulted in decreased anthelmintic sensitivity. Further,
36 adaptation to anthelmintics is associated with decreased antibiotic sensitivity towards three
37 macrolides, a lincosamide, a fluoroquinolone, a tetracycline and two carbapenems. The
38 observed change in bacterial sensitivity profiles is associated with - and likely caused by -
39 repeated anthelmintic exposure. Hence, current and future large-scale administration of
40 ivermectin and moxidectin, respectively, for the control of helminths and malaria raises
41 serious concerns - and hence potential off-target effects should be carefully monitored.

42

43

44

45

46 **Background**

47 Soil-transmitted helminths (STHs) are a multi-species group of parasitic, eukaryotic worms
48 residing in species-specific niches within the host's gastrointestinal (GI) tract. Amongst all
49 neglected tropical diseases listed by the World Health Organization (WHO), STH infections
50 dominate in terms of prevalence (over 1.5 billion) and disease burden [1, 2], mainly affecting
51 pre-school and school-aged children and potentially leading to serious long-term health
52 conditions, such as impairment in cognitive and physical development. While the
53 improvement of water quality, sanitation and hygiene represents a long-term countermeasure,
54 the short-term remedy relies on anthelmintic drugs to reduce morbidity [3-5]. The current
55 frontline treatment encompasses the two benzimidazoles mebendazole and albendazole
56 (ALB) [6]. However, cure rates vary in a species-specific manner [7, 8], with single-dose
57 regimens of both drugs yielding poor cure rates in *Trichuris trichiura* infections [7, 9, 10]. As
58 the pipeline for new drugs remains scarcely populated, the focus currently lies on repurposed
59 veterinary drugs [11] and combination therapies [7, 8].

60 Ivermectin (IV) and moxidectin (MX) are two prime examples of such repurposed drugs. A
61 16-membered macrocyclic lactone ring, the chemical structure that represents the group of
62 macrolide antibiotics, characterizes both IV and MX. Macrolide antibiotics such as
63 erythromycin (EM), clarithromycin (CH) or azithromycin (AZ) interfere with bacterial
64 protein synthesis [12] and are typically used in treatment of gram-positive bacterial
65 infections. In contrast, IV and MX possess a broad activity spectrum against numerous
66 parasites and are thus frequently administered as antiparasitic agents. MX was recently
67 approved to treat human onchocerciasis [13] and was shown to have a good efficacy against
68 *Strongyloides stercoralis* [14, 15] - and in combination with ALB - against *T. trichiura* [16].
69 IV on the other hand, is a widely used anthelmintic for filarial infections and used in
70 combination therapy paired with ALB to increase treatment efficacy against *T. trichiura*

71 infections [17], an indication recently added the WHO's Model List of Essential Medicine
72 [18].

73 As orally administered drugs pass through the small and large intestine, they are subject to
74 interactions with numerous microbes before being absorbed, making the gut microbiome a
75 relevant site for first-pass metabolism [19]. The pan-genome of gut microbes encompasses
76 150-fold more genes compared to their host, resulting in outstanding genetic diversity and
77 therefore considerable possibilities of direct and indirect interactions that may influence
78 bioavailability and efficacy of an administered compound [20].

79 *Vice versa*, drugs or their metabolites could also promote or inhibit bacterial growth, since
80 antibacterial properties are not limited to antibiotic drugs [21]. Hence, orally administered
81 non-antibiotic drugs could perturbate gut-microbial growth [21] and thus disrupt gut
82 microbiome homeostasis. Due to the molecular structure of IV and MX, we hypothesize that
83 various gut bacterial isolates could be sensitive to these drugs. Indeed, a recent study found
84 an association between pre-treatment gut microbial composition and treatment outcome in
85 participants receiving an IV-ALB combination therapy against *T. trichiura* infections [22].
86 Treatment failure was associated with gut bacterial species, such as *Prevotella copri*,
87 *Streptococcus salivarius* and *Faecalibacterium prausnitzii* – among others [22]. Moreover,
88 repeated IV or MX exposure could influence bacterial sensitivity profiles, which potentially
89 leads to cross-resistant gut bacterial isolates or interferes with IV/MX treatment efficacy –
90 depending on the underlying adaptation mechanism.

91 To our knowledge, only limited data regarding antibacterial activity of IV and MX against
92 gut bacterial isolates have been published to date [21, 23]. A causal relationship between
93 bacterial sensitivity profiles and IV or MX treatment would raise serious concerns in light of
94 the extensive use of IV and MX in the livestock industry and the increase in distribution and

95 administration for helminth infections and malaria transmission control [24-26]. Thus, it is
96 crucial to anticipate potential off-target effects of these two anthelmintics. We therefore
97 aimed to characterize antibacterial properties of these two widely used anthelmintics in-
98 depth against a broad range of gut bacterial isolates *in vitro*, especially in the context of
99 cross-reaction with other antibiotics.

100 **Results**

101 **IV/MX inhibit *in vitro* growth of a broad range of gut bacterial isolates:** To explore
102 whether and to what extent IV/MX inhibit growth of gut bacteria, we conducted a series of *in*
103 *vitro* experiments, incubating a broad taxonomic range of gut bacterial isolates in different
104 concentrations of IV/MX. Specifically, we worked with 59 aerobically and anaerobically
105 grown bacterial species (**Supplementary Tables 1-3**) across 10 genera (*Actinomyces*,
106 *Bacteroides*, *Blautia*, *Clostridium*, *Dorea*, *Enterococcus*, *Escherichia*, *Lactobacillus*,
107 *Staphylococcus*, *Streptococcus*). A detailed rationale covering the selection of isolates can be
108 found in the **Methods** section. After oral administration, IV/MX immediately reach the target
109 tissue for helminth infections – the gut lining –, resulting in estimated physiological
110 concentration levels of approximately 5 μ M in the intestine [21]. We therefore incubated
111 isolates with IV and MX at 1 μ M, 5 μ M and 10 μ M (**Supplementary Figures 1 – 10**). To
112 compare growth curves across isolates and individual assays, we adapted the concept of area
113 under the curve (AUC) ratios, as published by Gencay *et al.* [27]. Namely, we divided the
114 AUC in presence of IV or MX at a given concentration, by the AUC of the corresponding
115 control curve.

116 Overall, a drug concentration of 1 μ M IV/MX does not appear to have a negative impact on
117 growth of any of the bacteria tested (**Figures 1A and 1B**). Inter-species comparison amongst
118 aerobically incubated isolates reveals that isolates of the genus *Enterococcus* do not display

119 delayed growth in presence of IV and MX across all tested concentrations (**Figure 1A**). In
120 contrast, isolates belonging to the genera *Actinomyces* and *Streptococcus* are sensitive to the
121 presence of IV and MX at 5 and 10 μ M. Anaerobically, the tested isolates amongst the
122 genera *Bacteroides*, *Lactobacillus* and *Staphylococcus* are not affected by the presence of
123 either IV or MX (**Figure 1B**). In the contrary, we observed decreased AUC ratios amongst
124 the genera *Blautia*, *Clostridium*, *Dorea* and *Streptococcus*. *Streptococcus salivarius* (01) and
125 *Streptococcus parasanguinis* (01) were incubated both aerobically and anaerobically and
126 were sensitive to IV/MX in both cases. Intra-species comparison amongst aerobically
127 incubated isolates reveals drug dependent sensitivity. For instance, *S. pneumoniae* (02)
128 displays lower sensitivity to IV or MX ($AUC_{IV10\mu M}$: 0.84; $AUC_{MX10\mu M}$: 0.47), compared *S.*
129 *pneumoniae* (01) and *S. pneumoniae* (03) ($AUC_{IV10\mu M}$: 0.47; $AUC_{MX10\mu M}$: 0.1; $AUC_{IV10\mu M}$:
130 0.1; $AUC_{MX10\mu M}$: 0.1). Anaerobically, we also observed differences in intra-species
131 sensitivity. In fact, 1/3 *Dorea* isolates (*D. longicatena* (01); $AUC_{IV5\mu M}$: < 0.1) and 1/5
132 *Clostridium* isolates (*C. baratii* (02); $AUC_{MX10\mu M}$: < 0.1) were inhibited by either IV or MX.

133 To transition from quantitative values (AUC ratio) to qualitative values in Figure 1C and 1D
134 (“sensitive”; “not sensitive”) we employed a tentative AUC ratio cut-off of 0.8 to stratify
135 isolates into “sensitive” and “not sensitive”. Pairwise comparison of isolates across the three
136 concentrations resulted in an inverse relationship between drug dose and AUC ratio (dose
137 dependence; **Tables 1- 2**).

138

139

140

141

142 **Table 1. Dose dependence in IV incubations: P- values of pairwise Wicoxon rank sum tests (W) and kruskal-wallis (KW)**
143 *test performed on AUC ratios of IV-sensitive bacterial isolates for the incubation concentrations 1 μ M, 5 μ M and 10 μ M (IV =*
144 *ivermectin).*

	IV			
Concentrations	1 μ M vs. 5 μ M (W)	5 μ M vs. 10 μ M (W)	1 μ M vs. 10 μ M (W)	1 μ M vs. 5 μ M vs. 10 μ M (KW)
p-value	5.40E-05	1.30E-01	3.20E-09	4.08E-07

145

146 **Table 2. Dose dependence in MX incubations: P- values of pairwise Wicoxon rank sum tests (W) and kruskal-wallis (KW)**
147 *test performed on AUC ratios of MX-sensitive bacterial isolates for the incubation concentrations 1 μ M, 5 μ M and 10 μ M*
148 *(MX = moxidectin).*

	MX			
Concentrations	1 μ M vs. 5 μ M (W)	5 μ M vs. 10 μ M (W)	1 μ M vs. 10 μ M (W)	1 μ M vs. 5 μ M vs. 10 μ M (KW)
p-value	2.10E-08	6.00E-04	4.70E-14	2.86E-11

149

150 According to the tentative cut-off, 25/59 isolates were considered sensitive towards MX and
151 19/59 towards IV. Although there is a general trend of lower AUC ratios with higher drug
152 concentrations for both IV and MX, AUC ratios vary substantially across genera and species
153 in presence of 5 μ M or 10 μ M IV or MX. Lastly, we also observed a phenotype consisting of a
154 drug-specific response in several isolates. For instance, incubation of *S. anginosus* (01) and *S.*
155 *dysgalactiae* (01) (**Figure 1A and 1E**) with MX results in lower AUC ratios, compared with
156 IV at the same concentration. In contrast *A. odontolyticus* (01), *A. odontolyticus* (02) and *D.*
157 *longicatena* (01) seem to have a higher sensitivity towards IV. Within our set of tested
158 species, more isolates appear to be sensitive towards MX (**Figure 1E and 1F**) and at equal
159 concentrations of IV or MX, MX results in lower AUC ratios (**Figure 1A and 1B**).

160

161

162 ***In vitro* potency of IV/MX is comparable to a selection of antibiotics:** We next sought to
163 compare the potency of the two anthelmintic drugs to that of antibiotic compounds *in vitro*.
164 Since IV and MX belong to the macrocyclic lactone drug class, we included the three
165 macrolide antibiotics EM, CH and AZ in the comparison. Clindamycin (CL) represents a
166 lincosamide antibiotic, which shares the mode of action (MOA) with macrolide antibiotics.
167 We further included the fluoroquinolone ciprofloxacin (CX), tetracycline (TC) and the two
168 carbapenems, meropenem (MP) and imipenem (IP), as they possess completely different
169 modes of action. Therefore, we incubated a subset of anthelmintic-susceptible bacterial
170 isolates, comprised of 8 *Streptococcus* spp. and 3 *Actinomyces* spp. identified in our primary
171 screen, with a selection of antibiotics (EM, CH, AZ, CL, CX, TC, MP, IP) at concentrations
172 of 1 μ M, 5 μ M and 10 μ M to simulate the magnitude as in incubations with IV/MX. In contrast
173 to IV and MX, the tested antibiotics cause a reduction in AUC ratios at 1 μ M
174 (**Supplementary Figure 1**, KW; p = 1.186e-08). However, incubations with IV/MX at 5 μ M
175 or 10 μ M result in AUC ratios in a comparable range as the tested antibiotics (KW; p =
176 0.03708 and KW; p = 0.8284). *S. dysgalactiae* (01) represents an exception at 5 μ M, as it
177 displays high AUC ratios for both IV and MX (**Supplementary Figure 2**, $AUC_{IV5\mu M}$: 1.06;
178 $AUC_{MX5\mu M}$: 0.95). Similarly, solely *S. dysgalactiae* (01) displays a high AUC ratio for IV at a
179 concentration of 10 μ M (**Figure 2**, $AUC_{IV10\mu M}$: 0.96). In the case of *S. oralis* (02) and *S.*
180 *pneumoniae* (03), IV and MX at 10 μ M achieved the lowest AUC ratios across all tested
181 drugs ($AUC_{IV10\mu M}$: 0.07; $AUC_{MX10\mu M}$: 0.07 and $AUC_{IV10\mu M}$: 0.06; $AUC_{MX10\mu M}$: 0.06). Results
182 of a pairwise Wilcoxon rank sum test between all compounds can be found in
183 **Supplementary Tables 5-7**. Furthermore, we performed a Pearson correlation
184 (**Supplementary Tables 8-13**) based on AUC ratios of the 11 isolates in presence of all
185 macrolide (IV, MX, EM, CH, AZ) and lincosamide (CL) compounds for each tested
186 concentration. There, we could observe pairwise correlation within macrolide antibiotics

187 (EM, CH, AZ) for all tested concentrations, but not between anthelmintics (IV, MX) and
188 macrolide (EM, CH, AZ) or lincosamide (CL) antibiotics.

189 **Bacterial isolates display adaptation to IV/MX and a selection of antibiotics after**
190 **anthelminthic challenging experiments:** Since IV and MX inhibit bacterial growth in a
191 broad range of isolates, we aimed to test whether sensitive bacterial isolates can adapt to
192 repeated sub-inhibitory exposure of IV and MX and whether this adaptation changes the
193 antibiotic susceptibility profiles of these isolates. Five bacterial isolates, namely *S. salivarius*
194 (*01*), *S. parasanguinis* (*01*), *S. pneumoniae* (*02*), *S. mitis* (*01*) and *S. dysgalactiae* (*01*), and
195 their challenged counterparts (appendices “-IVc” or “-MXc”) were incubated with IV/MX
196 and antibiotics as described before (**Supplementary Figures 13-17**). As the primary focus of
197 these incubations was to solely demonstrate the effect of pre-challenging on antibiotic
198 sensitivity, we opted for sub-lethal doses (i.e. 0.1 μ M or 0.01 μ M) if no growth could be
199 measured at concentrations of $\geq 1\mu$ M.

200 Comparing the IV and MX AUC ratios of the original to the challenged isolates, we observed
201 three phenotypes (**Figure 3**). First, we documented increased AUC ratios for both IV and MX
202 in response to anthelminthic challenging with either drug. For instance, for *S. salivarius* (*01-*
203 *IVc*) (AUC_{IV10 μ M}: 0.73; AUC_{MX10 μ M}: 0.60) compared to *S. salivarius* (*01*) (AUC_{IV10 μ M}: 0.68;
204 AUC_{MX10 μ M}: 0.51). We also noted different AUC ratios in the presence of either
205 anthelminthic at 10 μ M for *S. salivarius* (*01-MXc*) (AUC_{IV10 μ M}: 0.77; AUC_{MX10 μ M}: 0.91)
206 compared to *S. salivarius* (*01*). This phenotype is shared with *S. pneumoniae* (*02-IVc*) and *S.*
207 *pneumoniae* (*02-MXc*), *S. mitis* (*01-IVc*), and *S. mitis* (*01-MXc*) and lastly *S. dysgalactiae*
208 (*01-IVc*) compared to their respective unchallenged original isolate. In contrast we observed a
209 different phenotype in *S. parasanguinis* (*01*), namely that AUC ratios only increase when re-
210 challenged with the same anthelminthic. For instance, *S. parasanguinis* (*01-IVc*) (AUC_{IV10 μ M}:
211 0.96; AUC_{MX10 μ M}: 0.25) possesses a higher AUC ratio in presence of IV compared to *S.*

212 *parasanguinis* (01) (AUC_{IV10 μ M}: 0.79; AUC_{MX10 μ M}: 0.26), but a lower AUC ratio in presence
213 of MX. Similarly, *S. parasanguinis* (01-MXc) (AUC_{IV10 μ M}: 0.75; AUC_{MX10 μ M}: 0.74) displays
214 higher AUC ratios compared to *S. parasanguinis* (01) in the presence of MX, compared to
215 lower ratios in presence of IV. Lastly, *S. dysgalactiae* (01-MXc) (AUC_{IV10 μ M}: 0.84;
216 AUC_{MX10 μ M}: 0.19) exhibits a third and unique phenotype displaying lower AUC ratios
217 compared to *S. dysgalactiae* (01) for both IV and MX incubations.

218 To compare the effects of anthelmintic-challenging on antibiotic sensitivity, we used the
219 fold-change (FC) of AUC ratios of the original isolate divided by the AUC ratio of the
220 challenged isolate, for each compound individually. We considered that antibiotic sensitivity
221 was affected when $(1-FC) \geq 0.1$. Following exposure to MX, we observed a change in
222 sensitivity towards MP and IP in *S. salivarius* (01) and the highest fold-change for IP ($|1-FC_{IP1\mu M}| = 0.20$). These changes were not observed following exposure to IV, except for CL
223 ($|1-FC_{CL0.01\mu M}| = 0.10$). For *S. parasanguinis* (01-IVc), we observed a change in sensitivity in
224 presence of CH, AZ and CX. For *S. parasanguinis* (01-MXc) we observed an equal pattern
225 with the addition of CL. We observed the highest fold-change for *S. parasanguinis* (01-IVc)
226 and *S. parasanguinis* (01-MXc) in presence of CH ($|1-FC_{CH0.01\mu M}| = 0.18$ and 0.21). Prolonged
227 exposure to MX in our tested *S. pneumoniae* isolate was associated with a decrease in
228 sensitivity to all tested antibiotics (range of (highest fold change: $|1-FC_{IP1\mu M}| = 0.89$). We
229 observed a similar result following exposure to IV, except for the antibiotic CX to which
230 sensitivity of the challenged isolate was like that of the unchallenged isolate (highest fold
231 change: $|1-FC_{IP1\mu M}| = 0.82$). In the case of *S. mitis* (01-IVc), sensitivity towards all antibiotics
232 except CX and TC decreased, and this decrease was the highest for MP ($|1-FC_{MP1\mu M}| = 0.82$)
233 resulting in almost uninhibited growth of the challenged isolate. For *S. mitis* (01-MXc),
234 antibiotic sensitivity was found to be the lowest for CH ($|1-FC_{CH10\mu M}| = 0.78$) but did not
235 change for EM and TC. For *S. dysgalactiae* (01), some of the changes observed post-

237 exposure were inverted, meaning that the unchallenged isolate was less sensitive to another
238 antibiotic than the anthelmintic-challenged one. For instance, MX-challenging was associated
239 with increased sensitivity to the three macrolide antibiotics (EM, CH, AZ) and CL (highest
240 fold change: $|1-FC_{CH5\mu M}| = 0.75$). This was not the case for the isolate that was challenged
241 with IV (highest fold change: $|1-FC_{TC10\mu M}| = 0.45$), suggesting different adaptation
242 mechanisms in this isolate. Sensitivity was found to be higher against CX and TC but
243 remained unchanged for MP and IP, irrespective of the anthelmintic drug used for
244 challenging.

245 **Discussion**

246 A handful of studies have described some antibacterial properties of IV [28-30]. In this study,
247 we systematically tested antibacterial properties of IV - and the closely related compound
248 MX - against 59 (gut) bacterial isolates spanning across 10 genera and originating from both
249 clinical and commercial sources. We included lincosamide and macrolide resistant clinical
250 isolates (20/59) to test whether macrolide or lincosamide resistance is coupled to sensitivity
251 to IV/MX. We further included clinical isolates (27/59) enriched from stool samples obtained
252 in a study in Lao PDR, due to their extensive clinical background. Lastly, we included several
253 commercial strains (12/59) to broaden the taxonomic range of our results. We found that both
254 IV and MX inhibit growth of a broad range of bacterial isolates *in vitro* in a dose dependent
255 manner with comparable potency. Macrolide and lincosamide antibiotics achieve their
256 bacteriostatic or bactericidal activity against gram-positives by binding to the 50S subunit of
257 the bacterial ribosome. For IV and MX no MOA against bacteria has been identified yet.
258 Given our data however, we can speculate that the MOA of IV and MX seems to be different
259 from macrolide or lincosamide antibiotics, as, first, we observed different sensitivity profiles
260 of bacterial isolates in response to the macrolides EM, CH and AZ and the lincosamide CL
261 compared to IV and MX (**Supplementary Tables 8-13**). Secondly, we observed changes in

262 the bacterial sensitivity profile of the macrolide or lincosamide resistant isolates *S.*
263 *pneumoniae* (02), *S. dysgalactiae* (01) and *S. mitis* (01) after anthelminthic challenging,
264 indicating a further adaptation (different MOA), opposed to a redundant one (same MOA).

265 We demonstrated adaptation to IV and MX, associated with decreased sensitivity *in vitro*. A
266 possible shortcoming of our study is that aggressive *in vitro* challenging might not be
267 comparable to real-world applications of IV and MX. To control STH infections, MDA is
268 usually conducted once to twice a year. According to Maier *et al.*, 8mg of MX and 200 μ g/kg
269 IV (i.e., the standard dose used for helminth infections) result in estimated intestinal
270 concentrations of 4.2 or 4.6 μ M, respectively [21]. However, IV was recently considered as a
271 vector control drug against female *Anopheles spp.* mosquitos, potentially introducing more
272 frequent and higher doses [25, 31]. Furthermore, the recent MORDOR trial demonstrated
273 increased macrolide resistance within the gut microbiome already after administration of the
274 macrolide antibiotic AZ twice a year for 2 years [32, 33].

275 We observed broad adaptation phenotypes for *S. salivarius* (01), *S. pneumoniae* (02) and *S.*
276 *mitis* (01), as challenging with anthelminthics resulted in decreased sensitivity against both
277 anthelminthics. In contrast, anthelminthic challenging of *S. parasanguinis* (01) resulted in
278 decreased sensitivity only against the corresponding anthelminthic, suggesting a drug-specific
279 mechanism, opposed to a potentially broad mechanism as adopted by *S. salivarius* (01), *S.*
280 *pneumoniae* (02) and *S. mitis* (01). Interestingly, in the macrolide and lincosamide resistant
281 isolate *S. pneumoniae* (02), anthelminthic challenging seemed to exert a broad-spectrum
282 effect as both, IV- and MX-challenged isolates displayed decreased sensitivity towards all
283 antibiotic classes it was tested against (macrolides, lincosamide, tetracycline,
284 fluoroquinolone, and carbapenem). In addition, this broad-spectrum interaction between
285 anthelminthic and macrolide or lincosamide resistance was also observed in *S. mitis* (01-IVc),
286 *S. mitis* (01-MXc) and *S. dysgalactiae* (01-IVc). Hence, further characterization of resistance

287 mechanisms is crucial to understand the development and maintenance of AMR in clinically
288 relevant species. This is specifically true for *S. pneumoniae* which is one of the six leading
289 pathogens causing lethal lower respiratory infections [34]. *S. pneumoniae* is primarily found
290 in the upper respiratory tract, therefore, in its primary niche, contact with high concentrations
291 of IV or MX is unlikely. However, dynamic transfer of resistance genes across the
292 microbiome was recently demonstrated [35] and would a possible scenario in the case of
293 IV/MX MDA. It is also critical to investigate this interaction in other commensal species as
294 they might act as reservoir for AMR genes and thus contribute to the persistence of AMR in
295 the human body. Populations at risk for helminth infections and other infectious diseases
296 often overlap in the Global South. For instance, sub-Saharan Africa currently is attributable
297 to most deaths related to AMR [34]. There, anthelminthics could further contribute to the
298 AMR in bacteria. Additionally, both Southeast Asia and India represent hotspots of helminth
299 prevalence [36] and antibiotic use [37] – providing a potential environment for the described
300 dynamics between antibiotic and resistant bacteria. Therefore, this broad-spectrum effect
301 anthelminthic challenging in antibiotic resistant bacteria is not to be neglected and should be
302 investigated in further studies.

303 Our study presents few limitations. Firstly, it does not uncover the mode of action of IV and
304 MX in bacteria and corresponding adaptation mechanisms on a molecular level. In further
305 studies, we aim to conduct genomic and transcriptomic analyses to fill this gap. Moreover,
306 our experiments did not test for long-term adaptation. Thus, the described adaptation could be
307 transient. This shortcoming should also be addressed in further experiments.

308 In conclusion, our study yielded three key novel findings: i) exposure to IV and MX causes
309 phenotypical adaptation, ii) adaptation mechanisms are likely diverse, encompassing both
310 drug-specific and broad-spectrum mechanisms, and iii) adaptation to IV/MX also imparts
311 varying degrees of decreased sensitivity to other antibiotics. Both IV and MX remain crucial

312 compounds to combat several infectious diseases. However, in the context of the uprising of
313 IV and MX, this raises serious concerns, as repeated anthelmintic exposure of gut-bacterial
314 isolates may trigger broad cross-resistant phenotypes, potentially interfering with vital
315 antibiotic treatments.

316 **Methods**

317 **Origin of bacterial isolates:** 20/59 bacterial isolates are macrolide or lincosamide resistant
318 and were obtained via the Institute for Infectious Diseases (Berne, Switzerland). As
319 lincosamides share the mode of action with macrolides, resistance mechanisms often overlap
320 [38]. We therefore included these isolates to test whether macrolide or lincosamide resistance
321 is further coupled to sensitivity to IV/MX. The lincosamide resistant strains were comprised
322 of 5 *Streptococcus* spp. and 3 *Actinomyces* spp. *Streptococcus* species are frequent, gram-
323 positive commensals in the oral microbiota, but are especially abundant in the small intestine
324 [39]. However, several mechanisms of macrolide resistance have been identified among
325 *Streptococcus* species, including mainly drug efflux, target alteration, and drug inactivation
326 [40-42]. Moreover, *Streptococcus salivarius* – amongst others – was associated with ALB-IV
327 combination treatment failure in a recent study [22]. *Actinomyces* spp. on the other hand are
328 close relatives to avermectin producing bacteria (*Streptomyces avermitilis*). They therefore
329 likely possessed unique co-incubation phenotypes with derivatives such as IV or MX. The
330 macrolide resistant isolates were comprised solely of *S. pneumoniae* isolates (n = 12). *S.*
331 *pneumoniae* is primarily found in the lungs but also commonly found throughout the upper
332 and lower GI tract, and is one of the six leading pathogens causing lethal lower respiratory
333 infections [34]. We included 27/59 bacterial isolates from clinical stool samples from a recent
334 study conducted in Lao PDR (NCT03527732). As Lao PDR represents a prime site of clinical
335 trials involving both IV and MX and lies in midst of a hotspot of helminth prevalence, the
336 corresponding bacterial isolates likely reflect an extensive clinical background. Bacterial

337 isolation from stool samples was either conducted at Swiss TPH in Allschwil, Switzerland
338 (18/59 bacterial isolates) or by Dr. Julian Garneau and Alison Gadelin at the University of
339 Lausanne in Lausanne, Switzerland (9/59 bacterial isolates). Enriched clinical isolates were
340 comprised of the genera *Blautia*, *Clostridium*, *Dorea*, *Enterococcus*, *Escherichia* and
341 *Streptococcus*. It is critical to investigate this interaction with IV/MX in several commensal
342 species as they might act as reservoir for AMR genes and thus contribute to the persistence of
343 AMR in the human body. Therefore, we included 12/59 commercial isolates (*Bacteroides*,
344 *Blautia*, *Dorea*, *Lactobacillus*, *Staphylococcus*, *Streptococcus*), to further broaden taxonomic
345 range of our results. The commercial isolates were purchased from the German Collection of
346 Microorganisms and Cell Cultures (<https://www.dsmz.de/>). We additionally generated 10
347 anthelmintic challenged isolates through a procedure described later. We opted for
348 *Streptococcus* species due to reasons mentioned above. Moreover, we included lincosamide
349 resistant (*S. mitis*, *S. dysgalactiae*), macrolide resistant (*S. pneumoniae*) and commercial
350 strains (*S. salivarius*, *S. parasanguinis*) to characterize the phenotype of anthelmintic
351 challenging in these differing genotypes. An overview of the challenged bacterial isolates is
352 given in **Supplementary Table 4**.

353 **Enrichment and identification of clinical isolates:** Clinical stool samples were obtained
354 from a recent study in Lao PDR (NCT03527732) [40]. For each sample, 50-100mg of stool
355 were homogenized in 500µl BHI + 5% yeast in a safety cabinet (aerobic conditions). After
356 centrifugation (1min, 15000rcf), 80µl of the supernatant was added to 10ml of the
357 corresponding enrichment medium (see **Supplementary Table 2**) and left overnight in a 5%
358 CO₂ incubator at 37°C. The following culture media were used: Brain heart infusion broth
359 (BHI; Thermo Fisher Scientific, CM1135), yeast extract (Thermo Fisher Scientific,
360 LP0021B), inulin (Thermo Fisher Scientific, 457100250), dehydrated Todd-Hewitt broth
361 (TH; Thermo Fisher Scientific, CM0189), modified gifu anaerobe medium (mGAM;

362 HyServe, 05433), dehydrated Schaedler broth (Thermo Fisher Scientific, CM0497B) and
363 Lennox broth (LB; Thermo Fisher Scientific, 12780052). The next day, each culture was
364 diluted 1:1000 in BHI + 5% yeast and 10µl were streaked on a BHI + 5% yeast agar (Thermo
365 Fisher Scientific, CM1136) plate. The streaked agar plates were left overnight in a 5% CO₂
366 incubator at 37°C. The following day, individual colonies were randomly picked and re-
367 inoculated in fresh BHI + 5% yeast. Again, cultures were left to grow overnight in a 5% CO₂
368 incubator at 37°C. Finally, 20% glycerol stocks were prepared of each isolate and stored at -
369 80°C. To identify the isolated bacteria, Columbia agar plates with 5% sheep blood (Thermo
370 Fisher Scientific, PB5039A) were streaked with the corresponding glycerol stocks. Colonies
371 were left to grow overnight in a 5% CO₂ incubator at 37°C. The next day, MALDI-TOF
372 analysis was performed by the Institute of Medical Microbiology (University of Zürich,
373 Switzerland) to identify the isolates. In brief, single colonies are loaded onto a MALDI-TOF
374 steel target plate using a sterile toothpick. Each colony on the plate is treated with 1µl of 25%
375 formic acid and subsequently with 1µl of α-Cyano-4-hydroxycinnamic (CHAC) matrix. After
376 sample preparation, the plate is loaded into a Microflex MALDI-TOF instrument for spectra
377 measurement (Bruker Daltonics) and subsequent identification [43].

378 **Cultivation of bacterial isolates:** Bacterial glycerol stocks were stored at -80°C. To cultivate
379 an isolate, the glycerol stock was first thawed on ice. Subsequently, 10µl of the thawed
380 glycerol stock was used to start a culture in 10ml of culture medium and left to grow at 37°C.
381 BHI + 5% yeast was used exclusively to cultivate all bacterial isolates. The incubation period
382 for all isolates was between 24h – 72h. Anaerobic cultivation was performed in a vinyl
383 anaerobic chamber (Coy Laboratory Products, Michigan, United States) with a gas mix
384 composed of 85% N₂, 10% CO₂ and 5% H₂. Inoculated isolates were grown in the integrated
385 anaerobic incubator at 37°C. Aerobic inoculations were performed in a safety cabinet (SKAN
386 Berner, Elmshorn, Germany). Inoculated aerobic isolates were grown in a 5% CO₂ incubator

387 (Binder, Tuttlingen, Germany) at 37°C. To preserve bacterial cultures after cultivation, 100µl
388 of culture was added to 100µl of 40% glycerol solution (Thermo Fisher Scientific, 17904) in
389 purified water. The resulting 20% bacterial glycerol stocks were frozen and stored at -80°C
390 until further use.

391 **Bacterial anthelmintic challenging experiments:** Five bacterial isolates - originally *S.*
392 *salivarius* (01), *S. parasanguinis* (01), *S. pneumoniae* (02), *S. mitis* (01) and *S. dysgalactiae*
393 (01) - were challenged with increasing concentrations of anthelmintics (IV, MX) up to a
394 final concentration of 20µM, resulting in IV or MX challenged isolates *S. salivarius* (01-IVc),
395 *S. salivarius* (01-MXc), *S. parasanguinis* (01-IVc), *S. parasanguinis* (01-MXc), *S.*
396 *pneumoniae* (02-IVc), *S. pneumoniae* (02-MXc), *S. mitis* (01-IVc), *S. mitis* (01-MXc), *S.*
397 *dysgalactiae* (01-IVc) and *S. dysgalactiae* (01-MXc) (**Supplementary Table 4**). In brief, each
398 isolate was initially cultured in liquid growth media (BHI + 5% Yeast) supplemented with
399 5µM IV or MX for 24h. After 24h, 100µl of the grown culture was passaged to fresh growth
400 medium supplemented with 2-fold higher anthelmintic concentration (i.e. 10µM) and
401 incubated again for 24h. This cycle was continued repeatedly until a final challenging
402 concentration of 20µM is reached (3 cycles). If an isolate failed to grow, it was left for
403 another 24h (total incubation time = 48h). This was the case for *S. dysgalactiae* (01) in 20µM
404 MX and acti_odo_02 in 20µM IV. For *S. pneumoniae* (02) and *S. mitis* (01) the only a final
405 MX concentration of 10µM was reachable (2 cycles). 20% glycerol stocks were prepared for
406 all isolates and each round of a cycle. The glycerol stocks were stored at -80°C until further
407 use. To confirm identity of the isolate and exclude contamination, potentially introduced by
408 long incubation periods, the final challenged isolates underwent 16S rRNA gene sequencing
409 on the ONT MinION platform using the ONT Native Barcoding Kit (SQK-NBD114.24) on a
410 Flongle Flow Cell (FLO-FLG114). The resulting sequences were identified using Emu [44]
411 equipped with its full-length 16S database.

412 ***In vitro* incubation assays with anthelminthic or antibiotic drugs:** Throughout this study,
413 bacterial isolates were incubated with a variety of anthelminthics (IV, MX) or antibiotics,
414 namely erythromycin (EM; Lubio, ORB322468), clarithromycin (CH; Lubio, HY-17508),
415 azithromycin (AZ; Lubio, ORB322360), clindamycin (CL; Lubio, HY-B0408A), tetracycline
416 (TC; Lubio, HY-B0474), ciprofloxacin (CX; Lubio, HY-B0356A), meropenem (MP; Lubio,
417 A5124) and imipenem (IP; Lubio, ORB1308410). Incubations were carried out in a 96-well
418 plate format to facilitate optical density measurements (at $\lambda = 600\text{nm}$; OD600) using a Hidex
419 Sense plate reader (Hidex Oy, Turku, Finland). OD600 was measured every 30-60min at
420 37°C for 16-72h. Drug solutions were prepared as follows: First, the corresponding drug
421 amounts were weighed $\pm 0.1\text{mg}$ on an Ohaus Adventurer AX124 analytical scale (Ohaus,
422 Nänikon, Switzerland) and dissolved in the according volume of solvent to generate a
423 5000 μM working solution (WS). We used UltraPure™ DNase/RNase-free distilled water
424 (Thermo Fisher Scientific, 10977-035) to dissolve CL, CX, TC and IP. Dimethylsulfoxide
425 (DMSO; Sigma-Aldrich, 41640) was used to dissolve IV, MX, EM, CH, AZ and MP.
426 2500 μM and 500 μM WS were obtained by diluting the 5000 μM WS. Working solutions
427 were prepared fresh each week and kept at -20°C while limiting the amount of freeze and
428 thaw cycles. WS only represent an intermediate step and had to be diluted in BHI + 5% yeast
429 to 1.25x of the desired final assay concentration (12.5 μM , 6.25 μM , 1.25 μM). Prior to the
430 incubation, the bacterial isolates were cultivated as described before. In the case of
431 challenged isolates, 20 μM of either IV or MX - or 10 μM in the case of *S. pneumoniae* (02-
432 MXc) and *S. mitis* (01-MXc) - was added, to replicate the former cultivation environment.
433 Grown bacterial cultures were diluted 1:200 in BHI + 5% yeast, before combining them with
434 the corresponding 1.25x drug solutions. In the case of challenged isolate cultures, the dilution
435 was 1:20'000. Each well of a plate contained a ratio of bacterial culture : 1.25x drug solution
436 of 1 : 4. The final 1x drug concentration was therefore reached and DMSO concentration was

437 constant at 0.2%. During each incubation, we added two control per isolate: As some drugs
438 needed to be dissolved in DMSO – which is known to inhibit bacterial growth in higher
439 concentrations [45] - a DMSO control (isolate in 0.2% DMSO) was added to each plate. A
440 second control represented a positive control (PC), meaning the isolate was added to growth
441 medium only. We incubated 28/59 isolates under anaerobic conditions as they either did not
442 tolerate oxygen (strict anaerobes) or were enriched under anaerobic conditions. Likewise,
443 29/59 isolates were incubated under aerobic conditions. The remaining 2/59 isolates (*S.*
444 *salivarius*, *S. parasanguinis*) we incubated in both conditions, to test whether the resulting
445 phenotypes would differ.

446 **Bacterial DNA extraction:** To extract bacterial DNA from liquid cultures, we used the
447 DNeasy PowerSoil Pro kit (QIAGEN, 47016) and followed the manufacturer's standard
448 protocol included in the kit using 100 μ l of the bacterial culture. Final DNA concentrations
449 were determined using a QuBitTM 4 fluorometer (Thermo Fisher Scientific, Q33238) with the
450 1x dsDNA HS Assay kit (Thermo Fisher Scientific, Q33231). Eluates were stored at -20°C
451 until further use.

452 **Library preparation for bacterial 16S rRNA sequencing:** Bacterial 16S rRNA sequencing
453 was performed on the MinION Mk1C platform (Oxford Nanopore Technologies, United
454 Kingdom of Great Britain). All samples were processed according to the manufacturer's
455 instructions provided with the 1-24 16S barcoding kit (Oxford Nanopore Technologies, SQK-
456 16S024). In brief, the DNA concentration of all samples was measured using a QuBitTM 4
457 fluorometer (Thermo Fisher Scientific, Q33238) and the 1x dsDNA HS Assay kit (Thermo
458 Fisher Scientific, Q33231). Samples were diluted using UltraPureTM DNase/RNase-free
459 distilled water (Thermo Fisher Scientific, 10977-035) to reach a final input of 25ng DNA.
460 Next, the samples were barcoded and amplified on a CFX Opus 384 Real-Time PCR system
461 (Biorad, Cressier, Switzerland). Subsequently, the barcoded amplicons were cleaned up in

462 multiple steps using the AMPure XP reagent (Beckman Coulter, A63881) in combination
463 with the DynaMag™-2 magnetic tube stand (Thermo Fisher Scientific, 12321D) and a
464 HulaMixer™ (Thermo Fisher Scientific, 15920D). Finally, the sequencing libraries were
465 pooled and sequenced using a flongle flow cell (Oxford Nanopore Technologies, FLG-001).
466 Sequencing was performed for approximately 24h.

467 **Agarose gel electrophoresis:** After the amplification step within the 1-24 16S barcoding kit
468 protocol, gel electrophoresis was performed to visualize successful 16S rRNA gene
469 amplification. A 1% agarose solution in 1x Tris-acetate-EDTA (Thermo Fisher Scientific,
470 B49) was prepared using analytical grade agarose powder (Promega, V3121). The GeneRuler
471 1kb Plus DNA Ladder (Thermo Fisher Scientific, SM1331) and samples were combined with
472 6x DNA Loading Dye (Thermo Fisher Scientific, R0611) in a 5:1 ratio (sample:dye). Gel
473 electrophoresis was running in 1x TAE for 25min at 100V. For final staining, the gel was
474 bathed in a GelRed® nucleic acid gel stain solution (Biotium, 41003) for 20min. UV imaging
475 was performed using a Lourmat Quantum ST5 Imager (Vilber, Collégien, France). Images
476 were taken using the VisionCapt software (v15.0) with an exposure time of 2-3s.

477 **Data Analysis:** Data of bacterial growth curves, as well as area under the curve (AUC) ratios
478 were curated in Microsoft Excel 2016 and plotted using OriginPro 2022b (OriginLab
479 Corporation, Northhampton MA, United States). To calculate AUC ratios the R package
480 growthcurver [42] (v0.3.1) was used in RStudio equipped with R 4.1.3. All original growth
481 curves that were used for AUC ratio calculation can be found in the Supplementary Material.

482 **Statistics:** To test for dose dependence in IV/MX incubations, we applied a pairwise
483 Wilcoxon rank sum exact test (to test AUC ratio pairs for two concentrations; p-value
484 adjustment method = BH) and a kruskal wallis test (to test corresponding AUC ratios across
485 three concentrations; degrees of freedom = 2) in RStudio equipped with R 4.1.3 to the AUC

486 ratio values of IV/MX-sensitive isolates (**Tables 1-2**). To test, for each incubation
487 concentration, whether potency of the anthelmintics is comparable to antibiotics, we utilized
488 a kruskal wallis test (degrees of freedom = 1) with the data of 11 bacterial isolates (**Figure 2**,
489 **Supplementary Figures 1-2**). P-values for pairwise comparisons of anthelminthic and
490 antibiotic compounds (**Supplementary Tables 5-7**) were obtained via a Wilcoxon rank sum
491 exact test (p-value adjustment method = BH). The Pearson correlation matrix and p-values
492 for AUC ratios of 11 bacterial isolates in presence of IV/MX or macrolides/lincosamide
493 antibiotics were calculated in Microsoft Excel 2016.

494 **Acknowledgements**

495 We thank the Lao TPHI team, local authority, field research team and study participants for
496 facilitating the clinical trial NCT03527732. We are thankful to Diana Albertos Torres
497 (Institute of Medical Microbiology, University of Zürich, Switzerland), who kindly agreed to
498 identify 18 bacterial colonies isolated from stool by MALDI-TOF-MS. We are grateful to the
499 European Research Council (No. 101019223) for financial support.

500 **Data Availability**

501 The sequencing data (16S rRNA gene sequencing) generated in this study have been
502 deposited in the NCBI Short Read Archive under the accession PRJNA1053597.

503 **Author contributions**

504 J.D.: study design, research design, project supervision, experimental work, statistical
505 analyses, figure generation, writing of the initial paper, and paper editing. J.K.: study design,
506 research design, project supervision, funding acquisition and paper editing. S.S: study design,
507 research design, project supervision, field implementation. J.G. and A.G.: experimental work
508 (enrichment of clinical isolates), paper editing. C.C., P.M.K. and P.V.: paper editing.
509 P.H.H.S.: study design, research design, project supervision, and paper editing.

510 **Competing interests**

511 The authors declare no competing interests.

512 **References**

- 513 1. Jourdan, P.M., et al., *Soil-transmitted helminth infections*. Lancet, 2018. **391**(10117): p. 252-265.
- 515 2. Keiser, J. and J. Utzinger, *Community-wide soil-transmitted helminth treatment is equity-effective*. The Lancet, 2019. **393**(10185): p. 2011-2012.
- 517 3. Albonico, M., et al., *Rate of reinfection with intestinal nematodes after treatment of children with mebendazole or albendazole in a highly endemic area*. Trans R Soc Trop Med Hyg, 1995. **89**(5): p. 538-41.
- 520 4. Appleton, C.C., et al., *Geohelminth infection and re-infection after chemotherapy among slum-dwelling children in Durban, South Africa*. Ann Trop Med Parasitol, 2009. **103**(3): p. 249-61.
- 522 5. Jia, T.W., et al., *Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis*. PLoS Negl Trop Dis, 2012. **6**(5): p. e1621.
- 524 6. Hotez, P.J., et al., *Eliminating the Neglected Tropical Diseases: Translational Science and New Technologies*. PLOS Neglected Tropical Diseases, 2016. **10**(3): p. e0003895.
- 526 7. Moser, W., C. Schindler, and J. Keiser, *Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis*. Bmj, 2017. **358**: p. j4307.
- 528 8. Moser, W., C. Schindler, and J. Keiser, *Drug Combinations Against Soil-Transmitted Helminth Infections*. Adv Parasitol, 2019. **103**: p. 91-115.
- 530 9. Keiser, J. and J. Utzinger, *Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis*. Jama, 2008. **299**(16): p. 1937-48.

532 10. Palmeirim, M.S., et al., *Efficacy and Safety of a Single Dose versus a Multiple Dose Regimen*
533 *of Mebendazole against Hookworm Infections in Children: A Randomised, Double-blind Trial.*
534 *EClinicalMedicine*, 2018. **1**: p. 7-13.

535 11. Olliaro, P., et al., *Potential drug development candidates for human soil-transmitted*
536 *helminthiases*. *PLoS Negl Trop Dis*, 2011. **5**(6): p. e1138.

537 12. Vázquez-Laslop, N. and A.S. Mankin, *How Macrolide Antibiotics Work*. *Trends Biochem*
538 *Sci*, 2018. **43**(9): p. 668-684.

539 13. Milton, P., et al., *Moxidectin: an oral treatment for human onchocerciasis*. *Expert Rev Anti*
540 *Infect Ther*, 2020. **18**(11): p. 1067-1081.

541 14. Hofmann, D., et al., *Efficacy and safety of ascending doses of moxidectin against*
542 *Strongyloides stercoralis infections in adults: a randomised, parallel-group, single-blinded, placebo-*
543 *controlled, dose-ranging, phase 2a trial*. *Lancet Infect Dis*, 2021. **21**(8): p. 1151-1160.

544 15. Sprecher, V.P., et al., *Efficacy and safety of moxidectin compared with ivermectin against*
545 *Strongyloides stercoralis infection in adults in Laos and Cambodia: a randomised,*
546 *double-blind, non-inferiority, phase 2b/3 trial*. *The Lancet Infectious Diseases*.

547 16. Keller, L., et al., *Efficacy and Safety of Ascending Dosages of Moxidectin and Moxidectin-*
548 *albendazole Against Trichuris trichiura in Adolescents: A Randomized Controlled Trial*. *Clin Infect*
549 *Dis*, 2020. **70**(6): p. 1193-1201.

550 17. Knopp, S., et al., *Albendazole and Mebendazole Administered Alone or in Combination with*
551 *Ivermectin against Trichuris trichiura: A Randomized Controlled Trial*. *Clinical Infectious Diseases*,
552 2010. **51**(12): p. 1420-1428.

553 18. Organization, W.H., *Assessing the efficacy of antihelminthic drugs against schistosomiasis*
554 *597 and soil-transmitted helminthiases*. 2013.

555 19. Spanogiannopoulos, P., et al., *The microbial pharmacists within us: a metagenomic view of*
556 *xenobiotic metabolism*. *Nat Rev Microbiol*, 2016. **14**(5): p. 273-87.

557 20. Zimmermann, M., et al., *Towards a mechanistic understanding of reciprocal drug–*
558 *microbiome interactions*. Molecular Systems Biology, 2021. **17**(3): p. e10116.

559 21. Maier, L., et al., *Extensive impact of non-antibiotic drugs on human gut bacteria*. Nature,
560 2018. **555**(7698): p. 623–628.

561 22. Schneeberger, P.H.H., et al., *Different gut microbial communities correlate with efficacy of*
562 *albendazole-ivermectin against soil-transmitted helminthiases*. Nature Communications, 2022. **13**(1):
563 p. 1063.

564 23. Ashraf, S., et al., *In vitro activity of ivermectin against *Staphylococcus aureus* clinical*
565 *isolates*. Antimicrob Resist Infect Control, 2018. **7**: p. 27.

566 24. Dabira, E.D., et al., *Mass Drug Administration With High-Dose Ivermectin and*
567 *Dihydroartemisinin-Piperaquine for Malaria Elimination in an Area of Low Transmission With High*
568 *Coverage of Malaria Control Interventions: Protocol for the MASSIV Cluster Randomized Clinical*
569 *Trial*. JMIR Res Protoc, 2020. **9**(11): p. e20904.

570 25. Smit, M.R., et al., *Efficacy and Safety of High-Dose Ivermectin for Reducing Malaria*
571 *Transmission (IVERMAL): Protocol for a Double-Blind, Randomized, Placebo-Controlled, Dose-*
572 *Finding Trial in Western Kenya*. JMIR Res Protoc, 2016. **5**(4): p. e213.

573 26. Soumare, H.M., et al., *Entomological impact of mass administration of ivermectin and*
574 *dihydroartemisinin-piperaquine in The Gambia: a cluster-randomized controlled trial*. Parasit
575 Vectors, 2022. **15**(1): p. 435.

576 27. Gencay, Y.E., et al., *Engineered phage with antibacterial CRISPR–Cas selectively reduce *E.**

577 *coli* burden in mice. Nature Biotechnology, 2023.

578 28. Lim, L.E., et al., *Anthelmintic avermectins kill *Mycobacterium tuberculosis*, including*
579 *multidrug-resistant clinical strains*. Antimicrob Agents Chemother, 2013. **57**(2): p. 1040–6.

580 29. Omansen, T.F., et al., *In-vitro Activity of Avermectins against *Mycobacterium ulcerans**.
581 PLOS Neglected Tropical Diseases, 2015. **9**(3): p. e0003549.

582 30. Tan, X., et al., *A Novel Ivermectin-Derived Compound D4 and Its Antimicrobial/Biofilm*
583 *Properties against MRSA*. *Antibiotics (Basel)*, 2021. **10**(2).

584 31. Guzzo, C.A., et al., *Safety, tolerability, and pharmacokinetics of escalating high doses of*
585 *ivermectin in healthy adult subjects*. *J Clin Pharmacol*, 2002. **42**(10): p. 1122-33.

586 32. Doan, T., et al., *Macrolide Resistance in MORDOR I - A Cluster-Randomized Trial in Niger*.
587 *N Engl J Med*, 2019. **380**(23): p. 2271-2273.

588 33. Doan, T., et al., *Gut microbiome alteration in MORDOR I: a community-randomized trial of*
589 *mass azithromycin distribution*. *Nat Med*, 2019. **25**(9): p. 1370-1376.

590 34. Murray, C.J.L., et al., *Global burden of bacterial antimicrobial resistance in 2019: a*
591 *systematic analysis*. *The Lancet*, 2022. **399**(10325): p. 629-655.

592 35. Doan, T., et al., *Macrolide Resistance in MORDOR I—A Cluster-Randomized Trial in Niger*.
593 *New England Journal of Medicine*, 2019. **380**(23): p. 2271-2273.

594 36. Pullan, R.L., et al., *Global numbers of infection and disease burden of soil transmitted*
595 *helminth infections in 2010*. *Parasites & Vectors*, 2014. **7**(1): p. 37.

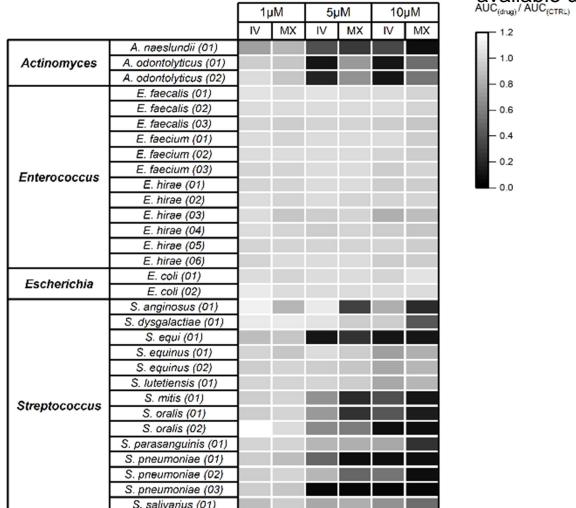
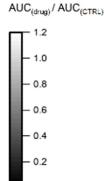
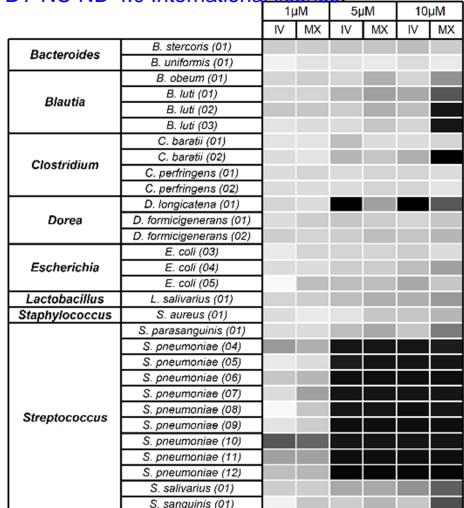
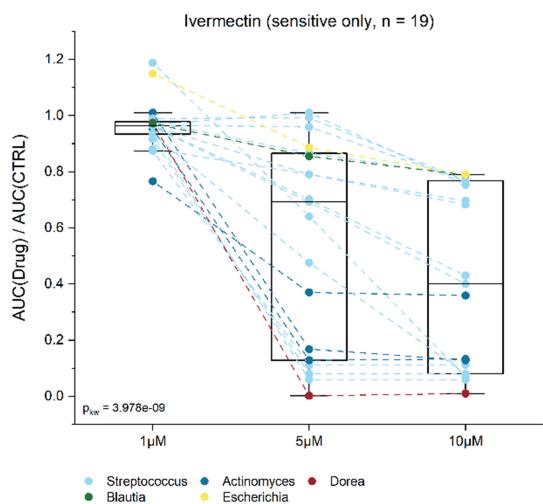
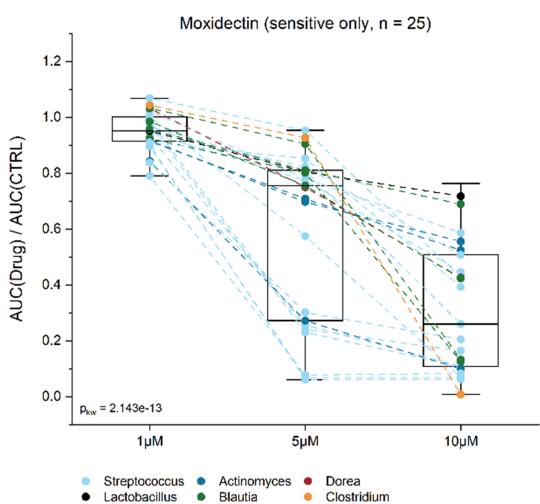
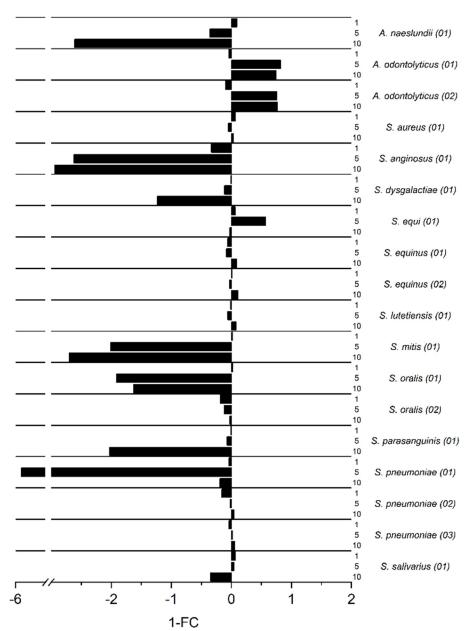
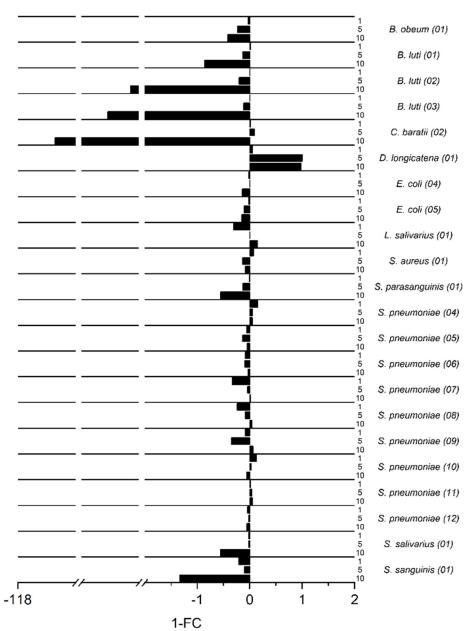
596 37. Browne, A.J., et al., *Global antibiotic consumption and usage in humans, 2000-18: a spatial*
597 *modelling study*. *Lancet Planet Health*, 2021. **5**(12): p. e893-e904.

598 38. Leclercq, R., *Mechanisms of Resistance to Macrolides and Lincosamides: Nature of the*
599 *Resistance Elements and Their Clinical Implications*. *Clinical Infectious Diseases*, 2002. **34**(4): p.
600 482-492.

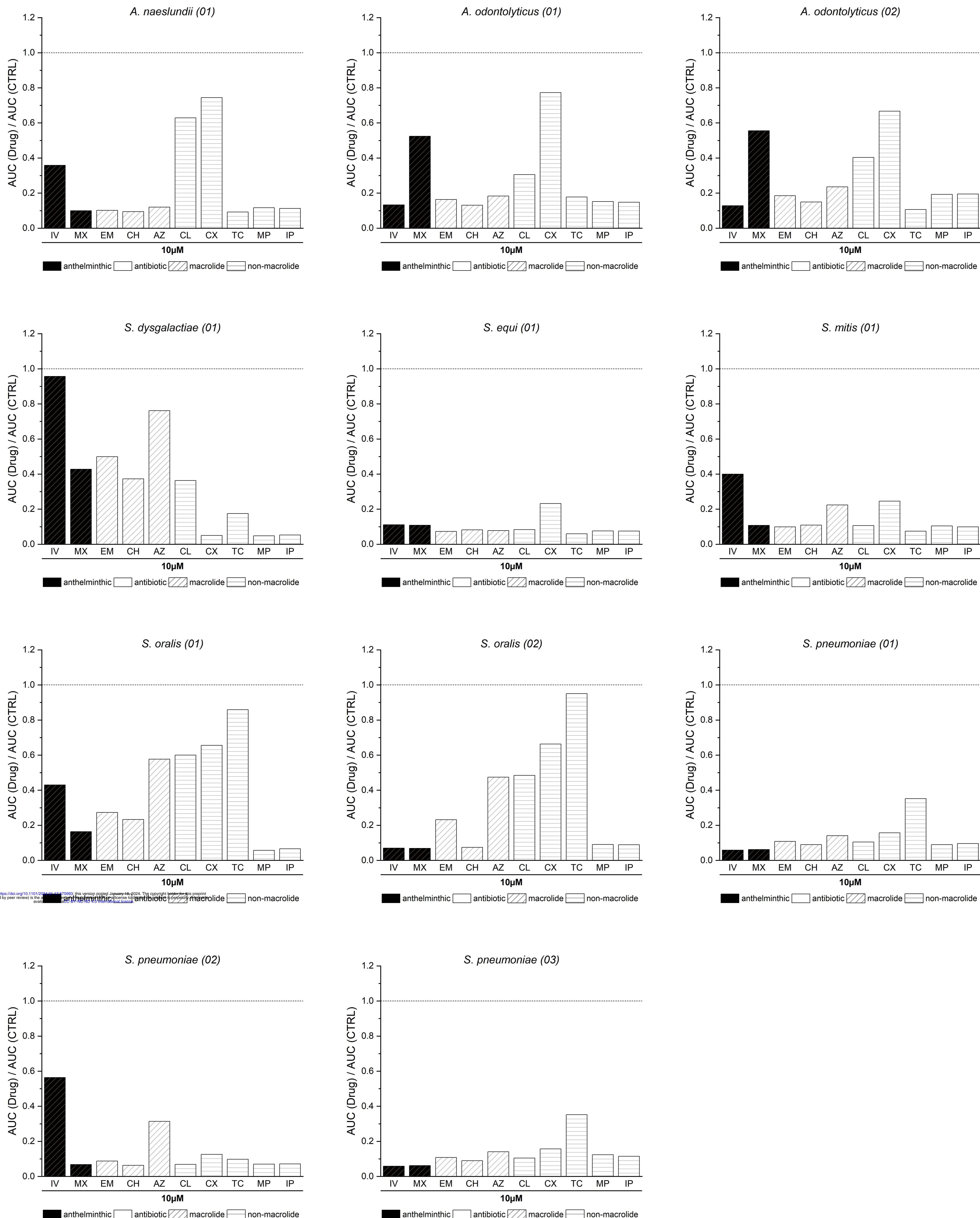
601 39. Ruan, W., et al., *Healthy Human Gastrointestinal Microbiome: Composition and Function*
602 *After a Decade of Exploration*. *Digestive Diseases and Sciences*, 2020. **65**(3): p. 695-705.

603 40. Fyfe, C., et al., *Resistance to Macrolide Antibiotics in Public Health Pathogens*. *Cold Spring*
604 *Harbor Perspectives in Medicine*, 2016. **6**(10).

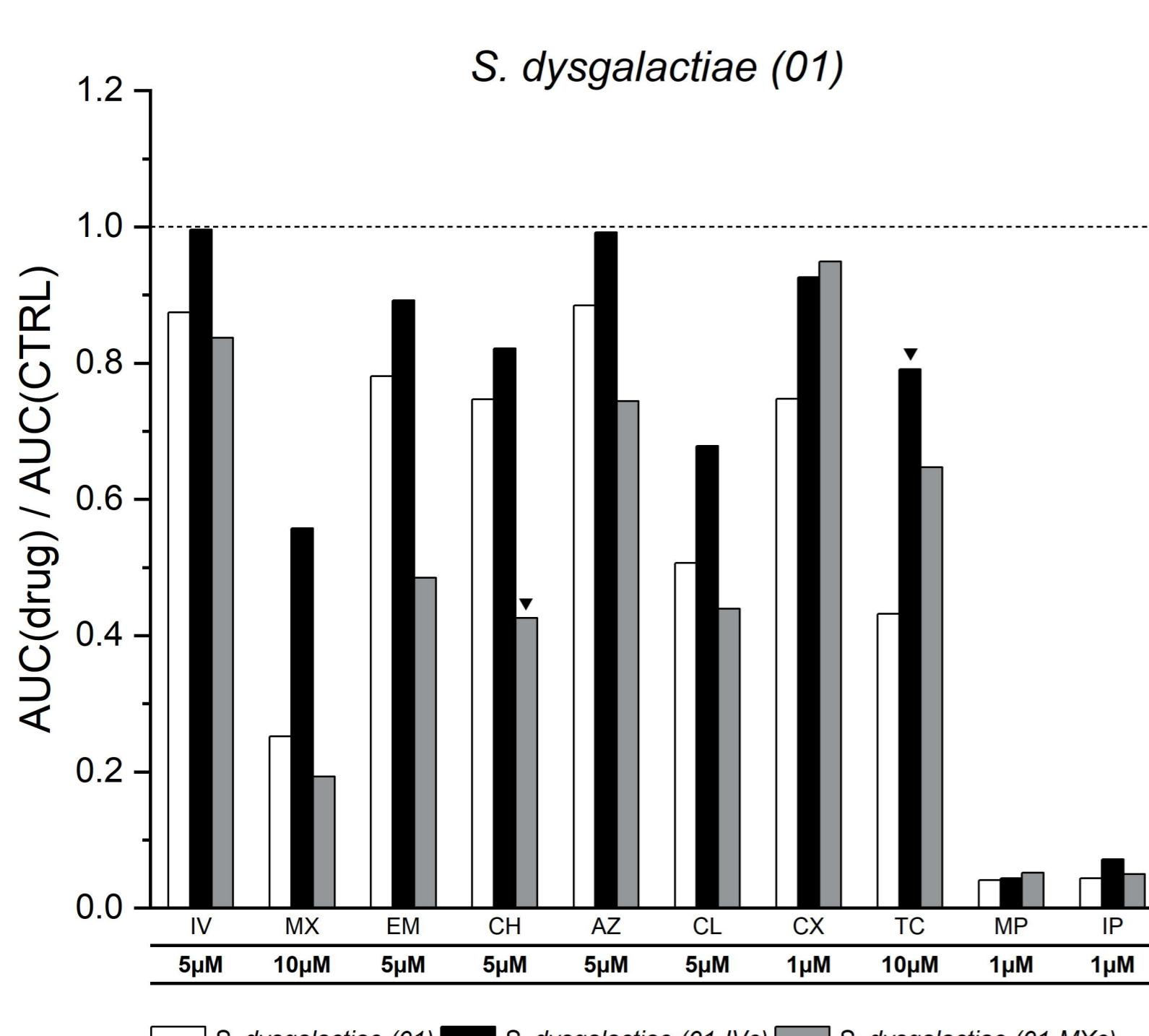
605 41. Roberts, M.C., *Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone*
606 *resistance genes*. FEMS Microbiology Letters, 2008. **282**(2): p. 147-159.

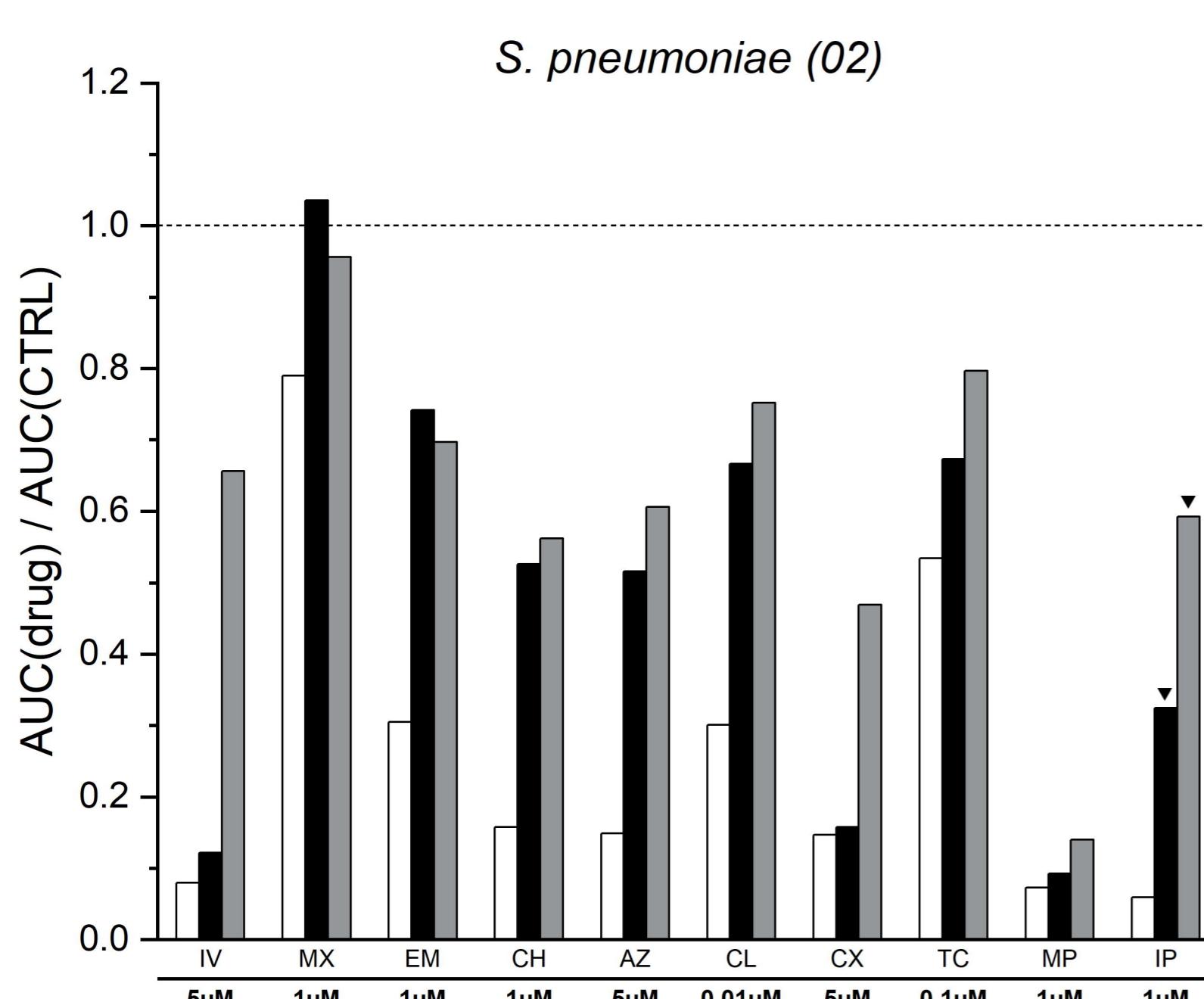
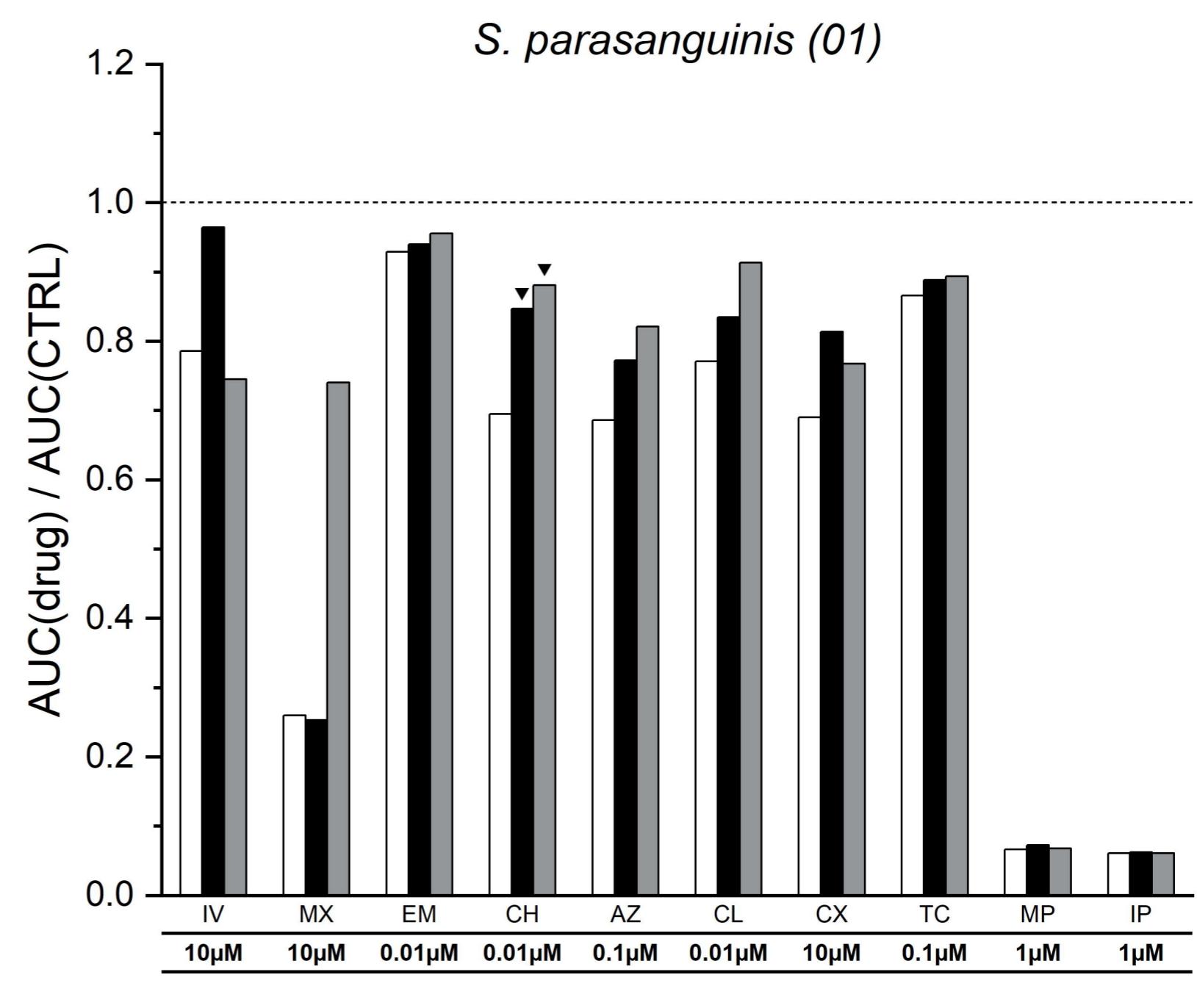
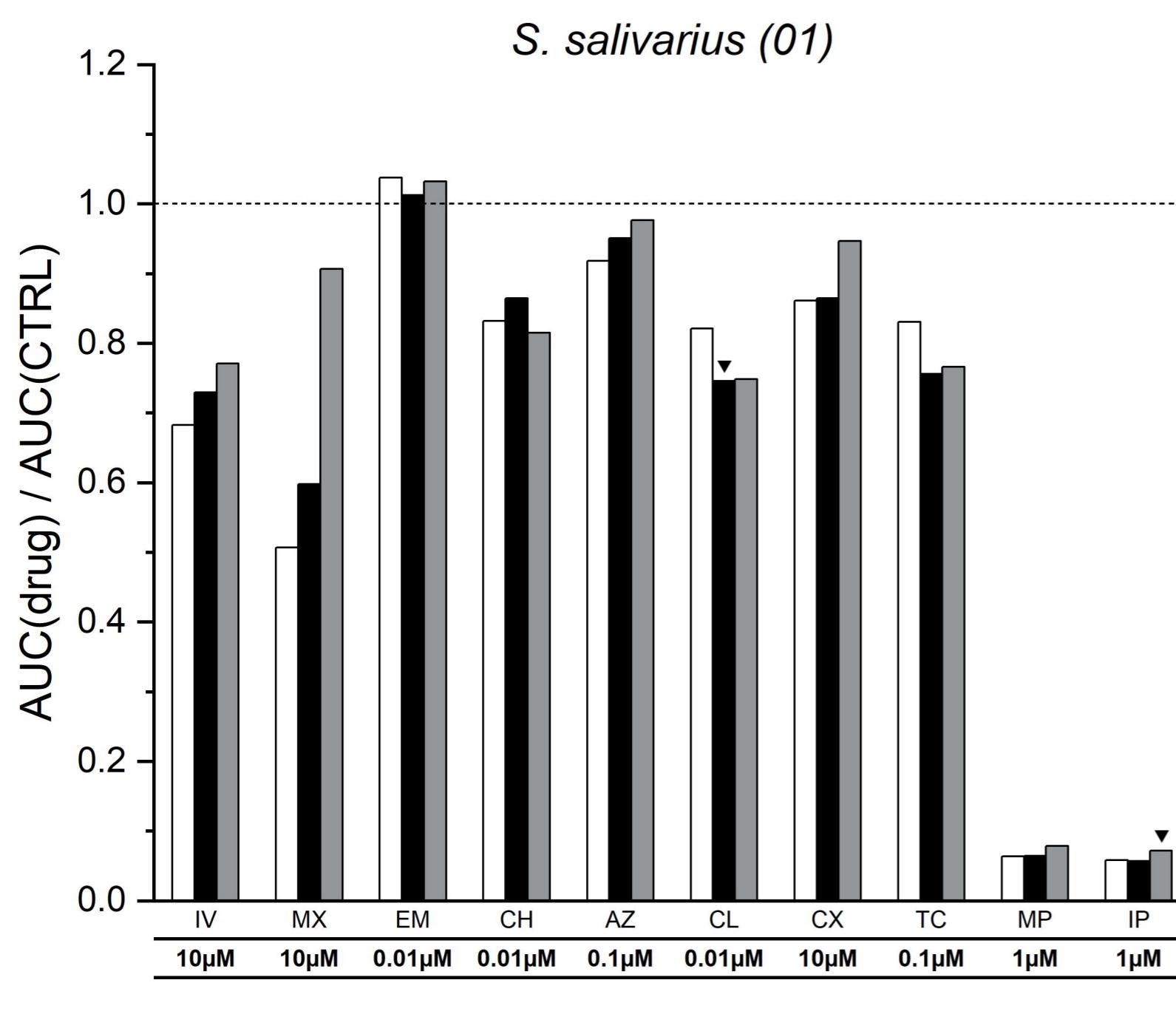







607 42. Shortridge, V.D., et al., *Novel mechanism of macrolide resistance in Streptococcus*
608 *pneumoniae*. Diagnostic Microbiology and Infectious Disease, 1996. **26**(2): p. 73-78.

609 43. Asare, P.T., et al., *A MALDI-TOF MS library for rapid identification of human commensal*
610 *gut bacteria from the class Clostridia*. Front Microbiol, 2023. **14**: p. 1104707.


611 44. Curry, K.D., et al., *Emu: species-level microbial community profiling of full-length 16S rRNA*
612 *Oxford Nanopore sequencing data*. Nat Methods, 2022. **19**(7): p. 845-853.

613 45. Modrzyński, J.J., J.H. Christensen, and K.K. Brandt, *Evaluation of dimethyl sulfoxide*
614 *(DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds*. Ecotoxicology, 2019.
615 **28**(9): p. 1136-1141.






616

Aavailable under a [a **CC-BY-NC-ND 4.0 International license**](#).**C****D****E****F**

Figure 1. Sensitivity of gut bacterial isolates against ivermectin (IV) and moxidectin (MX): (A) AUC ratios of aerobically incubated isolates for IV and MX at concentrations of 1 μM, 5 μM and 10 μM. (B) AUC ratios of anaerobically incubated isolates for IV and MX at concentrations of 1 μM, 5 μM and 10 μM. (C) AUC ratios of 25 MX-sensitive isolates visualized across three concentrations (1 μM, 5 μM, 10 μM). Values belonging to the same isolate are connected with a dotted line. Coloring was chosen according to the isolate genus. The boxplot whiskers indicate the 95% CI. (D) AUC ratios of 19 IV-sensitive isolates visualized across three concentrations (1 μM, 5 μM, 10 μM). Values belonging to the same isolate are connected with a dotted line. Coloring was chosen according to the isolate genus. The boxplot whiskers indicate the 95% CI. (E, F) Fold change (FC) ratio for sensitive isolates. FC was calculated as $1 - (AUC_{IV} / AUC_{MX})$. $1 - FC > 0$ indicates a higher sensitivity towards IV, $1 - FC < 0$ indicates higher sensitivity towards MX. The figure is stratified by aerobic (E) and anaerobic (F) incubations.

Figure 2. In vitro potency of ivermectin (IV) and moxidectin (MX): AUC ratios of 11 bacterial isolates in presence of IV, MX, EM, CH, AZ, CL, CX, TC, MP or IP at 10 μM. The dotted line marks theoretical uninhibited growth of the isolate (AUC ratio = 1). Bar colors correspond to the primary usecase of the compound. Black = anthelmintic, white = antibiotic.

Figure 3. Adaptation of bacterial isolates in response to anthelminthic challenging: AUC ratios of 10 challenged bacterial isolates and their original counterparts in presence of IV, MX, EM, CH, AZ, CL, CX, TC, MP or IP at different concentrations. The dotted line marks theoretical uninhibited growth of the isolate (AUC ratio = 1). Bar colors correspond to the challenging status. White = original isolate, black = IV-challenged isolate, grey = MX-challenged isolate. For each challenged isolate, we highlighted the compound resulting in the highest |1-FC| (black triangles).