

1 **Catabolic pathway acquisition by soil pseudomonads readily enables growth**
2 **with salicyl alcohol but does not affect colonization of *Populus* roots**

3

4 Stephan Christel¹, Alyssa A. Carrell¹, Leah H. Burdick¹, Manuel I. Villalobos Solis¹,
5 Paul E. Abraham¹, Sara S. Jawdy¹, Julie E. Chaves¹, Nancy L. Engle¹, Timkhite-Kulu
6 Berhane¹, Tao Yao¹, Jin-Gui Chen¹, Wellington Muchero¹, Timothy J. Tschaplinski¹,
7 Melissa A. Cregger¹, and Joshua K. Michener^{1,†}

8

9 ¹Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley RD, Oak
10 Ridge, TN 37831, USA

11

12 [†]To whom correspondence should be addressed: michenerjk@ornl.gov

13 **Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No.**
14 **DE-AC05-00OR22725 with the U.S. Department of Energy. The United States**
15 **Government retains and the publisher, by accepting the article for publication,**
16 **acknowledges that the United States Government retains a non-exclusive, paid-up,**
17 **irrevocable, world-wide license to publish or reproduce the published form of this**
18 **manuscript, or allow others to do so, for United States Government purposes. DOE will**
19 **provide public access to these results of federally sponsored research in accordance with**
20 **the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).**

21 **ABSTRACT**

22 Horizontal gene transfer (HGT) is a fundamental evolutionary process that plays a
23 key role in bacterial evolution. The likelihood of a successful transfer event is
24 expected to depend on the precise balance of costs and benefits resulting from
25 pathway acquisition. Most experimental analyses of HGT have focused on
26 phenotypes that have large fitness benefits under appropriate selective conditions,
27 such as antibiotic resistance. However, many examples of HGT involve phenotypes
28 that are predicted to provide smaller benefits, such as the ability to catabolize
29 additional carbon sources. We have experimentally reproduced one such HGT event
30 in the laboratory, studying the effects of transferring a pathway for catabolism of the
31 plant-derived aromatic compound salicyl alcohol into soil isolates from the
32 *Pseudomonas* genus. We find that pathway acquisition enables rapid catabolism of
33 salicyl alcohol with only minor disruptions to existing metabolic and regulatory
34 networks of the new host. However, this new catabolic potential does not confer a
35 measurable fitness advantage during competitive growth in the rhizosphere. We
36 conclude that the phenotype of salicyl alcohol catabolism is readily transferred by
37 HGT but is selectively neutral under environmentally-relevant conditions. We
38 propose that this condition is common and that HGT of many pathways will be self-
39 limiting, because the selective benefits are small and negative frequency-dependent.

40 **INTRODUCTION**

41 Due to competing processes of gene gain by horizontal gene transfer (HGT) and
42 gene loss, bacterial gene content can vary widely even between strains of the same
43 species [1, 2]. These ‘accessory’ genes, which are only present in a subset of
44 strains, often alter the potential niche of the host [3], for example by encoding
45 pathways to assimilate additional nutrients or tolerate new stresses [4, 5]. However,
46 the fitness effects of accessory pathway acquisition are unclear, with arguments both
47 for models that are largely adaptive or largely neutral [6, 7].

48

49 Any such discussion of fitness effects must include both the benefits of pathway
50 acquisition as well as the associated costs [8]. The fitness effect of an accessory
51 gene depends on a broad range of epistatic interactions, both with its host and the
52 environment [9]. For example, acquisition of a pathway that provides access to a
53 new niche will only be beneficial if the costs of pathway acquisition and integration
54 are low while the benefits of niche expansion are high. These costs and benefits will
55 depend on details of the genome content of the host strain and the biotic and abiotic
56 conditions of the environment that the host inhabits.

57

58 The costs and benefits from HGT are often analyzed through knockout studies,
59 removing putative horizontally-transferred genes and measuring changes in
60 phenotype or growth [10]. However, these experiments are confounded by historical
61 evolution following gene transfer, which can mitigate the costs of newly-acquired
62 genes or introduce new dependencies [11, 12]. The effects of HGT can be more
63 directly assessed by targeted pathway transfer in the laboratory followed by analysis
64 of changes in phenotype and fitness [13].

65

66 If the benefits of HGT outweigh the costs, then targeted pathway transfer provides a
67 potential opportunity to deliberately manipulate bacterial colonization, with
68 applications in health, agriculture, and environmental remediation. For example,
69 generating a new niche by feeding a marine polysaccharide to mice allowed specific
70 colonization by a bacterium that had been engineered to contain the associated
71 catabolic pathway [14]. In this case, the costs of pathway acquisition were low and
72 the benefits were high. In general, this situation is likely to be rare, as many such
73 ecological niches will already be filled by native microbes [15].

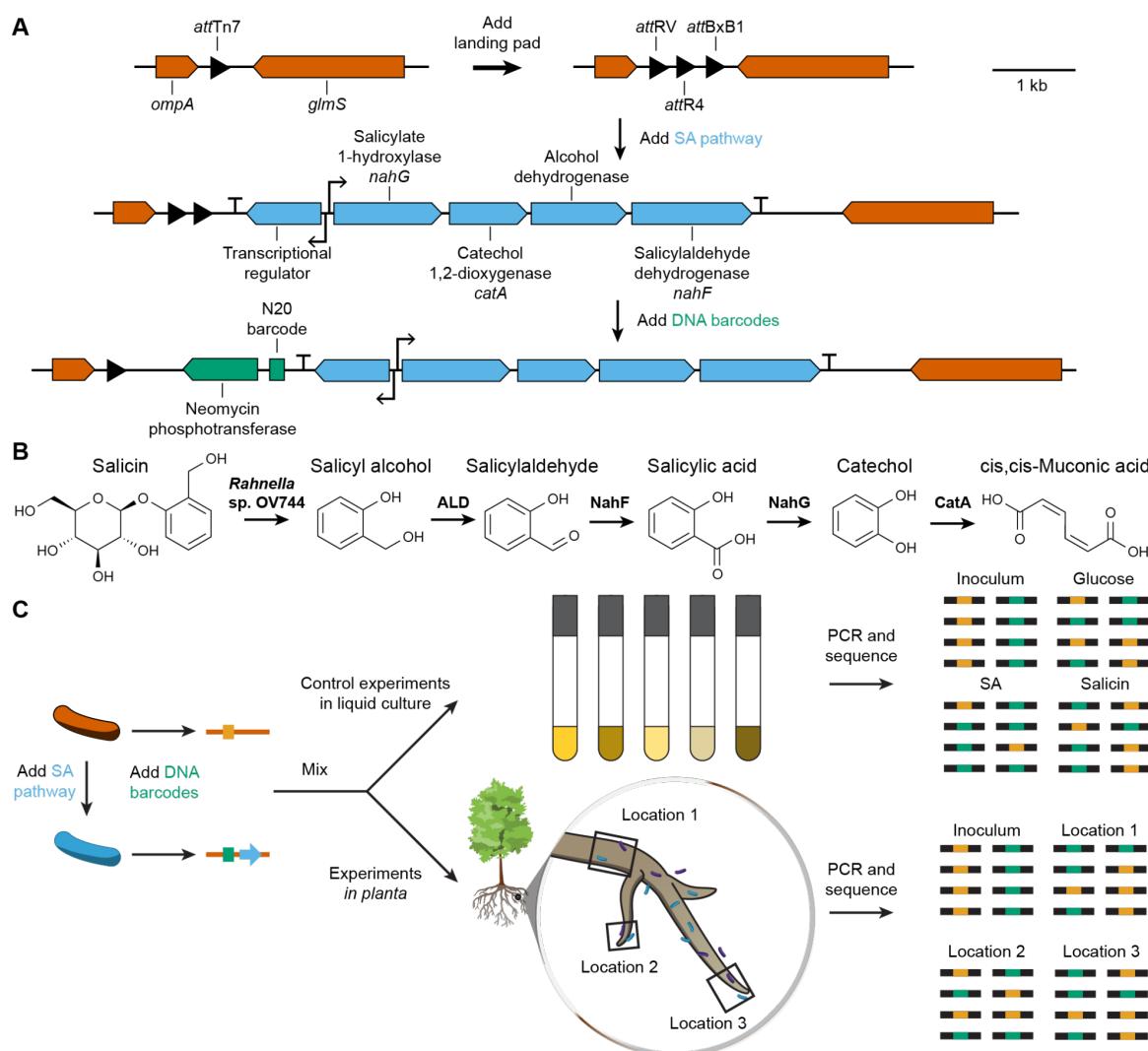
74

75 Even when an open niche is available, the utility of gaining access to a new niche
76 may be small if the host already has access to other niches. For example, a
77 recalcitrant environmental pollutant is an open niche that could be exploited as a
78 carbon and/or energy source. However, when introducing allopatric microbes for
79 bioremediation, metabolic specialists are more successful than generalists, likely
80 because they have fewer alternative niches available in their new environment [16,
81 17].

82

83 Similar to the gut and soil, the rhizosphere is a complex environment with abundant
84 metabolic niches and opportunities for HGT [18]. Plant root exudates provide diverse
85 carbon sources that support high microbial populations [19]. Metabolic cross feeding
86 and spatial structure further broaden the range of available niches [20]. These
87 factors are particularly significant in perennial plants that can maintain a dynamic
88 microbiome across multiple seasons [21].

89


90 Poplar (*Populus* sp.) trees provide a tractable model system to study microbial
91 dynamics in the perennial rhizosphere [22]. Poplar trees exude large quantities of
92 phenolic compounds derived from salicyl alcohol (SA), including salicin, populin, and
93 tremuloidin [23]. These compounds are thought to act primarily as inhibitors of
94 herbivory [24] but also serve as potential carbon sources for soil microbes [25]. An
95 intermediate in the SA catabolic pathway, salicylic acid is a major component of plant
96 exudates and thought to influence microbiome community composition [26].
97 Therefore, SA is a representative microbial metabolic niche in the rhizosphere and
98 HGT of pathways for SA catabolism is likely to occur frequently. The persistence of
99 these pathways after transfer will depend on the costs and benefits of pathway
100 acquisition. Pseudomonads are abundant members of the rhizosphere microbiome
101 and known for their aromatic catabolic potential, making them likely donors and
102 recipients of SA catabolic pathways [27, 28].

103

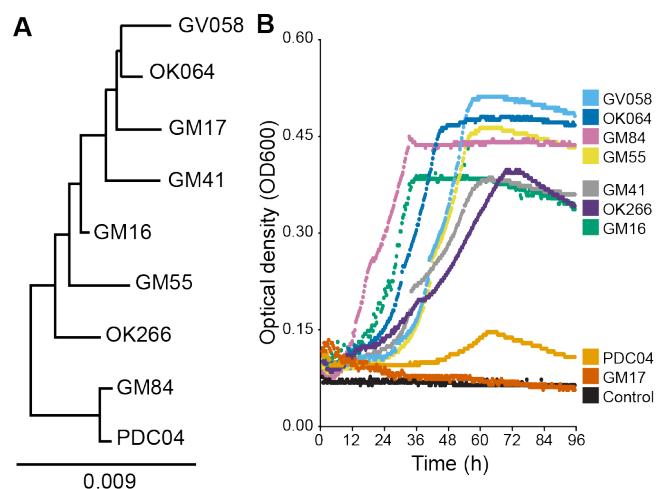
104 In this work, we have assessed the utility of acquiring a pathway for catabolism of SA
105 (Figure 1A). We show that salicyl alcohol catabolism is common among strains
106 isolated from the *Populus* rhizosphere and this phenotype can readily be transferred
107 into strains that do not natively possess it. The fitness costs and physiological

108 disruption due to pathway acquisition are small. However, root colonization assays
109 show that the fitness benefits are also minimal, even under conditions designed to
110 maximize these effects. We conclude that acquisition of this catabolic pathway is
111 functionally beneficial, in that it provides new capabilities at minimal cost, but
112 selectively neutral.

113

114
115 **Figure 1:** (A) To mimic HGT, the salicyl alcohol (SA) catabolic pathway from
116 *Pseudomonas* sp. GM16 was transferred to the Tn7 *att* site in other *Pseudomonas*
117 strains. DNA barcodes were then introduced to allow strain tracking *in situ*. (B) The
118 proposed pathway for salicin degradation is initiated by a glycosyltransferase in a
119 complementary strain, such as *Rahnella* sp. OV744, followed by successive
120 oxidation to *cis,cis*-muconic acid. The tested *Pseudomonas* strains contain native
121 pathways for assimilation of muconic acid. (C) Barcode amplicon sequencing was

122 used to measure fitness effects of pathway acquisition, both in liquid culture and in
123 the rhizosphere.


124

125 RESULTS AND DISCUSSION

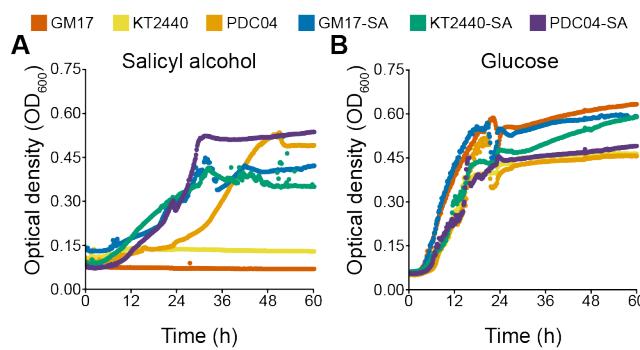
126 *Pseudomonad* growth with salicyl alcohol

127 To evaluate the frequency of SA catabolism in rhizosphere *Pseudomonads*, we
128 tested for growth with SA among nine diverse *Pseudomonas* strains previously
129 isolated from *Populus* roots (Figure 2A) [29]. Eight of the isolates grew in M9 minimal
130 medium with SA as the sole source of carbon and energy, including the previously-
131 characterized *Pseudomonas* sp. GM16 (hereafter 'GM16') [25]. One strain,
132 *Pseudomonas* sp. GM17 (hereafter 'GM17'), did not grow under these conditions
133 (Figure 2B).

134

135 **Figure 2:** (A) 16S phylogenetic tree of *Pseudomonas* strains isolated from *Populus*
136 and tested for SA catabolism. *Cellobiobacter japonicus* was used as an outgroup (not
137 shown). (B) Growth curves of *Pseudomonas* strains in M9 minimal medium with
138 salicyl alcohol as the sole source of carbon and energy. One representative curve is
139 shown for each strain, chosen from three biological replicates.

140


141 Given the high frequency of SA catabolism in these isolates, we sought to
142 understand the factors limiting the dissemination or retention of this pathway in
143 GM17. We initially hypothesized that deleterious interactions between a newly-
144 introduced SA pathway and the native metabolic pathways of the potential hosts
145 would prevent successful transfer into GM17 [30, 31]. To test this hypothesis, we

146 engineered the SA catabolic pathway into several *Pseudomonas* isolates and
147 measured changes in catabolic activity. We chose GM17 as a representative non-
148 catabolizing soil isolate, *Pseudomonas putida* KT2440 as a non-catabolizing
149 laboratory reference strain, and *Pseudomonas* sp. PDC04 as a representative
150 poorly-catabolizing isolate.

151

152 We first integrated *attP* sites for heterologous serine integrases into the T7 phage
153 integrase *att* site in each recipient strain [32–34]. We then used the heterologous
154 BxB1 *attP* site to stably introduce the SA catabolic pathway from GM16, including its
155 putative SalR regulator, into the genomes of the recipients. When we measured
156 growth with SA, we found that all three engineered strains could now grow with SA
157 (Figure 3A). Strain PDC04, which could naturally metabolize SA, grew more rapidly
158 with SA after introduction of the heterologous catabolic pathway. We did not observe
159 noticeable changes in growth with glucose between the wildtype and engineered
160 strains (Figure 3B).

161

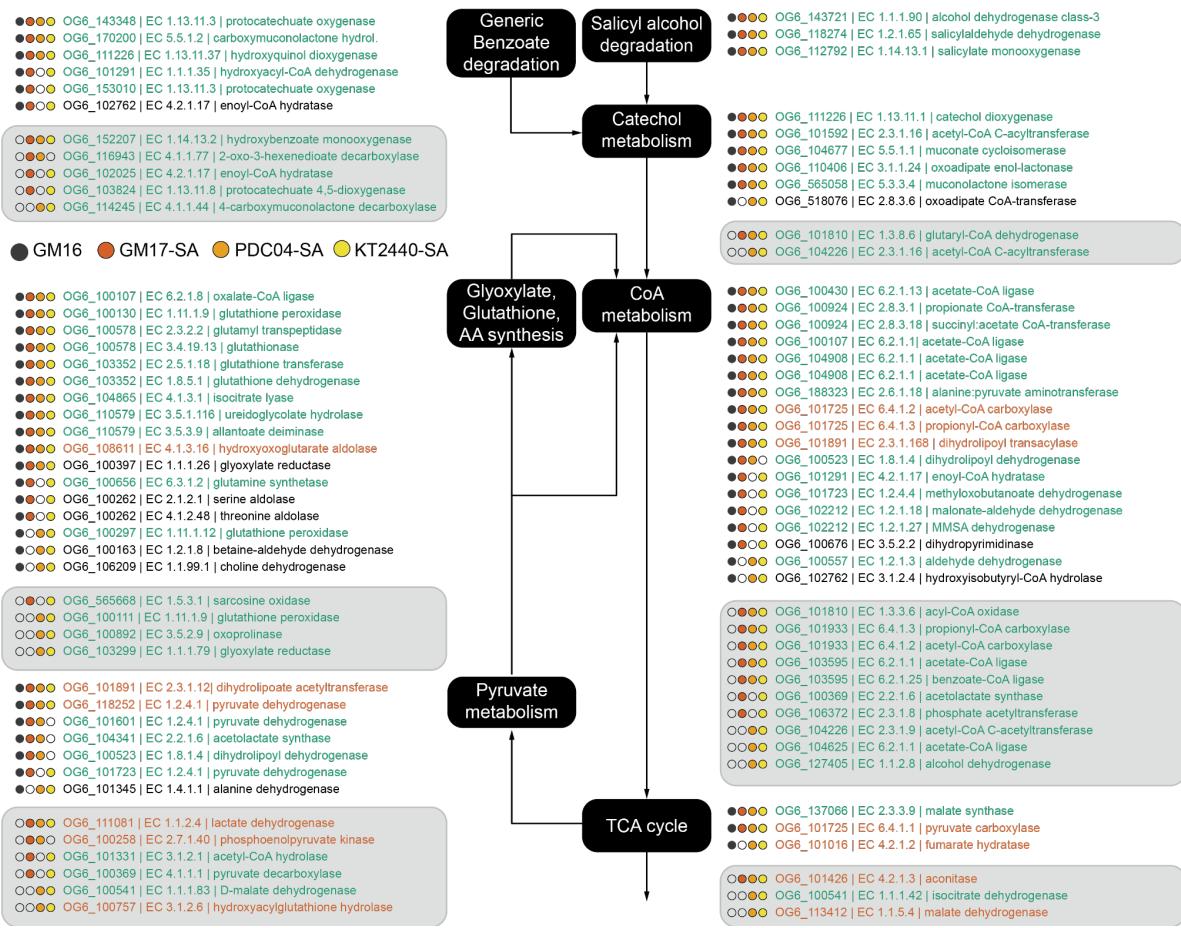
162

163 **Figure 3:** Growth of wildtype and engineered *Pseudomonas* strains. The ‘SA’ prefix
164 indicates that the strain contains a genomically-integrated SA catabolic pathway.
165 Individual strains were grown in M9 minimal medium containing 1 g/L glucose or
166 salicyl alcohol as the sole carbon and energy source.

167

168 *Proteomics analysis of pathway integration.*

169 While the engineered strains grew readily with SA, we hypothesized that pathway
170 acquisition might impose subtle stresses on the new host that would limit pathway
171 retention under more stringent selective conditions [35, 36]. To test this hypothesis,
172 we performed global proteomic analysis of one wild-type strain, GM16, and three
173 engineered strains, GM17-SA, PDC04-SA, and KT2440-SA. Each strain was grown


174 with SA as the sole carbon source and compared to the corresponding strain grown
175 with glucose.

176

177 On average, $27.7 \pm 2.6\%$ of measured proteins were detected at significantly ($q < 0.05$
178 and \log_2 fold change > 2) higher or lower abundance during growth with SA. This
179 broad shift in expression could indicate a relatively large physiological perturbation.
180 However, based on gene annotations, the vast majority of differentially expressed
181 proteins were likely directly involved in the degradation of SA and its cascading
182 products.

183

184 We used OrthoMCL to group and compare protein function rather than often-
185 misleading sequence identity. This analysis revealed that all but a few significantly
186 differentially abundant proteins could be placed along the flow of carbon from SA to
187 acetyl/succinyl-CoA metabolism and TCA cycle (Figure 4) and that this behavior was
188 indeed shared between all three SA strains plus the original host of the SA
189 degradation pathway, GM16. Very few ortholog groups shared differential expression
190 patterns in all engineered strains but not GM16. Among them was a
191 hydroxybenzoate monooxygenase (Orthogroup OG6_152207), a glutaryl-CoA
192 dehydrogenase (OG6_101810), as well as several dehydrogenases, carboxylases,
193 and ligases involved in CoA and pyruvate metabolism (Figure 4). The lack of such a
194 distinct ‘mutant signature’, i.e., the absence of a large set of differentially abundant
195 proteins common exclusively to engineered strains, indicated that the introduced
196 pathway did not disrupt genetic regulation in its new host strains. Furthermore,
197 detailed abundance analysis of the four proteins newly introduced into the
198 engineered strains revealed that they were only minimally expressed during growth
199 on glucose (data not shown), confirming that the regulatory systems from GM16 also
200 remained functional. Based on the proteomics results, we concluded that the
201 pathway is active, properly regulated, and does not cause significant stresses to the
202 new host bacteria.

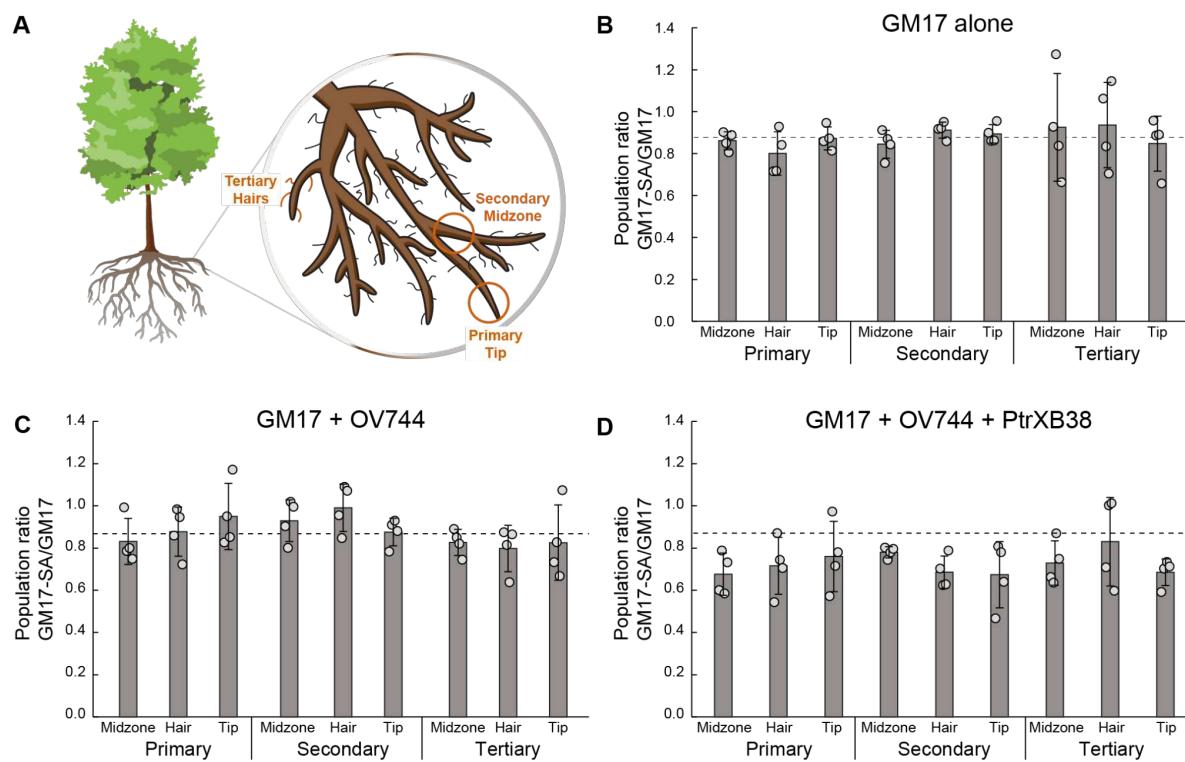
203

204 **Figure 4: Model of proteins with significantly increased abundance in wildtype GM16**
205 and engineered GM17, PDC04, and KT2440 strains when grown with SA compared
206 to glucose. Filled circles indicate that the orthologous group was identified to be
207 significantly differentially expressed in the corresponding strain during growth with
208 SA versus glucose. Orthologous groups were grouped according to their predicted
209 function and displayed along the pathway of SA oxidation (black boxes). Green text
210 indicates increased expression in presence of SA, red text decreased expression,
211 and black text contradicting expression in the strains. Light gray background
212 indicates orthologous groups uniquely identified in the mutants.

213

214 *Impact of pathway acquisition on root colonization*

215 Since the SA pathway was functional and minimally disruptive, we next tested its
216 effect under more environmentally-realistic conditions, during colonization of *Populus*
217 *trichocarpa* roots. To track changes in relative bacterial abundance, we introduced
218 random 20 nt DNA barcodes flanked by conserved primer binding sites into the R4
219 *attB* sites in wild-type and engineered GM17 (Figure 1A). We downsampled each


220 library to approximately 10,000 barcodes per strain and sequenced each library to
221 identify the barcodes that uniquely identified each strain. Changes in relative
222 abundance of the two strains can then be tracked by targeted amplicon sequencing
223 of the barcode region.

224

225 To test the accuracy of the assay, we mixed the barcoded populations of wild-type
226 and engineered GM17 and grew the mixed culture in liquid culture with glucose or
227 salicyl alcohol as the sole carbon source. We sequenced amplicons from the
228 inoculum and saturated cultures and determined changes in relative abundance of
229 the wild-type and mutant strains (Figure S1). We observed no change in relative
230 abundance of the SA mutant after growth with glucose, but an enrichment for the SA
231 mutant after growth with SA. These results are consistent with prior growth
232 experiments using pure cultures, showing that the SA pathway is active and provides
233 a growth advantage when SA is the sole carbon and energy source. To determine
234 the sensitivity of this assay, we also used the mixed culture to inoculate roots of
235 tissue-cultured *Populus trichocarpa* grown in sterile clay. We grew the resulting
236 plants for 21-28 days before harvesting the trees. We then dissected the roots into
237 segments ranging in mass from approximately 10 mg to less than 0.1 mg and
238 performed amplicon sequencing on the barcodes (Figures S2+S3). We reliably
239 amplified barcodes from root segments with masses less than 1 mg.

240

241 Next, we inoculated tissue-cultured *P. tremula* x *P. alba* 'INRA 717-1B4' with the
242 GM17 mixed culture and measured changes in relative abundance. We
243 hypothesized that, if the SA pathway provided a fitness advantage to its host during
244 colonization, then the abundance of barcodes from the engineered strain would
245 increase relative to the wild-type strain (Figure 1C). Since plant metabolite profiles
246 are expected to vary spatially based on root architecture, we tested replicate
247 samples from primary, secondary, and tertiary root segments, root hairs, and root
248 tips (Figure 5A). However, we observed no significant differences in abundance in
249 any location (Figure 5B). We concluded that the presence of the SA pathway was
250 providing a minimal net fitness benefit, either because the gross benefits were small
251 or because there was a corresponding cost to SA pathway maintenance and
252 expression.

253

254 **Figure 5: SA catabolism provides no fitness effect during plant colonization.**

255 (A) Mixtures of bacteria were inoculated onto axenic *P. tremula* x *P. alba* 'INRA 717-
256 1B4' cuttings and grown for 28 days. Population ratios were sampled at a range of
257 sites, including primary/secondary/tertiary roots at the tip/midzone/root hairs.

258 Representative sites are shown in red. (B) A mixture of wild-type and engineered
259 GM17 was inoculated onto axenic *P. tremula* x *P. alba* 'INRA 717-1B4'. The
260 population ratios before and after cultivation were determined by barcode amplicon
261 sequencing. The dashed line shows the population ratio of the inoculum. Error bars
262 show one standard deviation, calculated from the four biological replicates shown.
263 (C) Same as B, but with the addition of the salicin-degrading bacterium *Rahnella* sp.
264 (D) Same as C, but using an salicin-overproducing *PtrXB38-OE* line of *P.*
265 *tremula* x *P. alba* 'INRA 717-1B4'.

266

267 *Effects of epistatic interactions that benefit SA catabolizers*

268 While *Populus* secretes small amounts of SA, it primarily secretes SA conjugates,
269 including salicin (Figure S4). Neither wild-type nor engineered GM17 can degrade
270 salicin, which might limit the effect of SA catabolism in the absence of an accessory
271 deglycosylation pathway. Since co-cultures of GM16 and *Rahnella* sp. OV744
272 (hereafter 'OV744') have been shown to fully degrade salicin, we tested whether the

273 presence of OV744 would alter the fitness effect of SA catabolism in GM17. We first
274 repeated the *in vitro* assays, inoculating wild-type and engineered GM17 into M9
275 minimal medium with salicin as the sole carbon source in the presence and absence
276 of OV744. Using amplicon sequencing to specifically track changes in abundance of
277 wild-type and engineered GM17 from the mixed culture, we observed that the SA
278 pathway provided a fitness benefit during growth with salicin only when OV744 was
279 also present in the culture (Figure S5). These results are consistent with the model
280 that OV744 converts salicin into SA, which is then available for catabolism by the
281 GM17 SA mutant (Figure 1B).

282

283 We repeated the *P. tremula* x *P. alba* 'INRA 717-1B4' inoculations using the GM17
284 mixed library in the presence of OV744 and sampled a range of root positions after
285 28 days of growth. We again observed no change in the relative abundance of the
286 wild-type versus engineered GM17 strains (Figure 5C). By comparison to the control
287 experiments, we conclude that SA production from salicin by OV744 was too low to
288 provide a fitness benefit to the GM17 SA mutant.

289

290 To further amplify the potential benefits of SA catabolism, we repeated these
291 experiments using a *P. tremula* x *P. alba* INRA 717-1B4 mutant that overexpresses
292 the *PtrXB38* gene [37]. This mutant has been shown to produce significantly higher
293 concentrations of salicin in the roots (Figure S4). However, as in our previous
294 experiments, we saw no enrichment for the SA-degrading GM17 strain during growth
295 with the *PtrXB38-OE* plants either in the presence or absence of OV744 (Figure 5D
296 and Figure S5). The salicin concentration is higher in the *PtrXB38-OE* plants, which
297 would presumably provide more SA after hydrolysis by OV744. However, the
298 concentration may still be too low compared to the other available carbon sources to
299 provide a significant fitness difference.

300

301 CONCLUSIONS

302 In combination, our results demonstrate that acquisition of a pathway for SA
303 catabolism, either in the laboratory through metabolic engineering or presumably in
304 nature through HGT, can readily provide rhizosphere isolates with new metabolic
305 capabilities. The pathway for SA catabolism imposes minimal disruption on the
306 native pathways of the new host bacterium. However, SA catabolism did not provide

307 a fitness benefit during root colonization, even under conditions that are designed to
308 favor SA catabolizers.

309

310 We hypothesize that, under the conditions tested, GM17 can access sufficient
311 metabolic niches that the availability of a new niche does not alter its fitness. In a
312 more realistic microbial community, it might face additional competition in these other
313 niches and gain a larger proportional advantage from SA catabolism. However, as
314 we have shown, a more realistic community would also contain many other SA-
315 catabolizing microbes, so the benefits of the new niche would also be smaller.

316

317 In general, our results are consistent with a model where catabolic pathways spread
318 through HGT until the benefits of pathway acquisition decline to the point that they
319 are balanced by the small costs of pathway maintenance. While catabolic potential
320 can drive significant changes in colonization, we suggest that those examples will be
321 limited to rare metabolites that are not efficiently exploited by the native microbiota
322 and specialist microbes that have few alternative niches available. These
323 conclusions are consistent with prior evidence from bioaugmentation for
324 bioremediation and offer cautionary guidance for efforts to control colonization of
325 introduced microbes into native communities through engineering carbon utilization.

326

327 MATERIALS AND METHODS

328 Strains

329 *Pseudomonas* strains used in this study were *Populus*-derived isolates from the
330 ORNL Plant-Microbe Interfaces strain collection [29]. *P. putida* KT2440 was acquired
331 from the American Type Culture Collection. Genome sequences (complete or partial)
332 are available for all used wild type strains and can be retrieved from online
333 repositories (Table 2).

334

335 Construction of a broad host range tri-*attP* landing pad

336 A landing pad containing three phage integrase *attP* recognition sequences was
337 designed for chromosomal integration using a broad host range mini-Tn7 vector
338 method [32]. First, the tri-*attP* landing pad sequence was cloned into a mini-Tn7
339 vector, followed by co-transformation into each *Pseudomonas* strain with a plasmid
340 encoding Tn7 transposition pathway expression. Finally, the antibiotic selection

341 marker for the mini-Tn7 vector was removed by Flp-mediated excision. The mini-Tn7
342 vector (pUC18T-mini-Tn7T-GM, Addgene plasmid # 63121), Tn7 transposase
343 expression plasmid (pTNS, Addgene plasmid # 64967), and the FLP recombinase
344 expression plasmid (pFLP3, Addgene plasmid # 64946) were gifts from Herbert
345 Schweizer [38].
346 The R4, Bxb1 and RV phage integrase *attP* recognition sequences were designed
347 into a single landing pad sequence and synthesized *de novo* (Twist Biosciences).
348 The landing pad sequence was PCR amplified from the vector, and cloned into the
349 mini-Tn7 vector following manufacturer instructions (NEBuilder HiFi Assembly
350 Master Mix) to generate a mini-Tn7 vector + Landing Pad plasmid pJM442.
351

352 **Construction of *Pseudomonas* recipient strains**

353 Each wildtype *Pseudomonas* strain (Table 2) was transformed with pJM442 plasmid
354 using quad-parental conjugation as previously described [32]. *E. coli* WM6062, a
355 diaminopimelate (DAP) auxotroph strain carried the mini-Tn7 vector + Landing Pad
356 plasmid (pJM442), *E. coli* Pir1 carried the pTNS2 Tn7 transposase expression
357 plasmid, and *E. coli* DH5 α carried a plasmid containing the conjugation machinery
358 (pRK2073_Kan^R). All four strains were grown overnight in LB medium supplemented
359 with the appropriate antibiotics or nutrients (DAP), at 30°C (*Pseudomonas*) or 37°C
360 (*E. coli*). Saturated cultures were combined into a single Eppendorf tube at equal 100
361 mL volumes. The mixed culture was then centrifuged at room temperature at 7000 x
362 g, washed twice in 1 mL of sterile 10 mM MgSO₄, and resuspended into 30 μ L 10 mM
363 MgSO₄. The final resuspension was dropped onto a pre-dried LB agar plate
364 supplemented with DAP (60 mg/mL), and incubated overnight at 30°C. The next day,
365 the cells biomass was scraped from the agar plate, resuspended into 5 mL sterile 10
366 mM MgSO₄, and serially diluted. Then, 100 μ L of the 10⁻³ and 10⁻⁵ dilutions were spread
367 onto LB agar plates supplemented with 100 μ g/mL gentamicin without DAP and
368 incubated at 30°C overnight or until clear colonies appeared. Proper integration of the
369 landing pad into each strain was verified by whole genome resequencing.

370 To complete the recipient strain construction, the gentamycin resistance cassette was
371 removed from each strain using Flp-mediated excision. Chemically competent
372 versions of each strain were generated [39]. Single colonies of each strain were used
373 to inoculate LB medium supplemented with 100 μ g/mL gentamycin and grown to

374 saturation overnight. Saturated cultures (1 mL) were transferred to pre-chilled
375 Eppendorf tubes and centrifuged at room temperature, for 1 minute at 13,000g. The
376 supernatant was decanted, and the pellet was resuspended and washed twice in 1mL
377 cold 0.1 mM MgCl₂ at room temperature. After the second wash, the pellet was
378 resuspended with 1 mL cold TG salt (75 mM CaCl₂, 6mM MgCl₂, and 15% glycerol),
379 incubated for 10 min on ice, centrifuged as above and resuspended with 200 μ L TG
380 salt. The cells were then flash frozen in liquid nitrogen, and kept at -80°C until used
381 for transformation.

382 Aliquots of 100 μ L of each chemically competent *Pseudomonas* strain were mixed
383 with 100 ng of the FLP recombinase expression plasmid (pFLP3), incubated together
384 on ice for 15 minutes, followed by a 2 min heat shock at 37 °C. Cells were immediately
385 resuspended in 900 μ L SOC and allowed to recover for 30 minutes at 30 °C, followed
386 by plating onto LB agar supplemented with 25 μ g/mL tetracycline, and incubation 30
387 °C overnight, or until clear colonies became visible. The absence of the gentamicin
388 cassette was checked by patching single colonies simultaneously onto two LB agar
389 plates, one containing 100 μ g/mL gentamicin, or 25 μ g/mL tetracycline. Both plates
390 were incubated at 30 °C overnight or until colonies appeared. Successful
391 transformants resulted in the formation of colonies that grew on LB with tetracycline,
392 but did not grow in the presence of gentamycin.

393 The FLP recombinase expression plasmid pFLP3 was cured from the transformant
394 cells using sucrose counter selection. Successful FLP recombinase transformants
395 were streaked to single colony on YT-25 % sucrose agar (10 g/L yeast extract, 20
396 g/L tryptone, 250 g/L sucrose, 18 g/L agar) for counter-selection against the FLP
397 plasmid, incubating at 30 °C for ~30-48 hours. Surviving colonies were then re-
398 streaked onto fresh YT-25% sucrose plates and incubated at 30°C for 16 hours to
399 remove any enduring *sacB*-containing cells. Single colonies were simultaneously
400 patched onto 2 different LB agar plates, one containing 25% sucrose, and one
401 containing tetracycline. Successfully cured cells resulted in colonies that were able to
402 grow in the presence of sucrose, but not tetracycline. The final colonies were further
403 verified for successful removal of the gentamycin resistance cassette by whole
404 genome resequencing.

405

406 **Salicyl alcohol degradation pathway design, synthesis, and integration**
407 The SA degradation operon was amplified from *Pseudomonas* sp. GM16 genomic
408 DNA using primers SA-Reg FWD and SA-Reg REV (Table 4) and polymerase Q5
409 (New England Biolabs, Massachusetts, USA). The destination plasmid pGW44 [33]
410 was linearized using primers pGW44 FWD and pGW44 REV. The SA pathway was
411 then introduced into pGW44 using the Gibson Assembly Cloning Kit (New England
412 BioLabs), creating plasmid pJM455. The complete pathway was then genomically
413 integrated into target strains using the BxB1 *attB* site, followed by removal of the
414 kanamycin selection marker, as described previously [33].

415

416 **Growth analysis**

417 To measure growth kinetics with specific carbon sources, strains were grown to
418 saturation in M9 minimal medium with 1 g/L glucose as the sole carbon source.
419 Saturated cultures were centrifuged for 3 minutes at 8000 x g, washed with M9
420 minimal medium without carbon, and then diluted 1:100 into 100 µL fresh medium
421 containing the indicated carbon source. Cultures were grown at 30 °C in 96-well
422 plates in an BioTek Epoch 2 shaking incubator (Agilent, Santa Clara, CA) for 72
423 hours.

424

425 **Wild type and mutant barcoding**

426 To track and differentiate strains after eventual inoculation and growth on plant roots,
427 a set of random DNA barcodes was also integrated into each genome. A plasmid
428 library containing an R4 *attB* site and a stretch of 20 random nucleotides was
429 synthesized (Biomatik, Ontario, Canada). The resulting barcode library was
430 integrated into the R4 *attB* site of otherwise wild-type strains, containing only the
431 landing pad, or strains with the SA catabolic pathway already integrated into the
432 BxB1 *attP* site. The full libraries, which contained several million barcodes each,
433 were subsampled to achieve an estimated library size of 10,000 barcodes per strain
434 by spreading a dilution series on large LB agar plates and subsequently harvesting
435 10,000 colonies by washing a corresponding number of plates.

436

437 **Proteomics analysis**

438 *Cultivation.* For proteomic analysis, wild type and mutant strains were grown in test
439 tubes containing 10 ml M9 medium supplemented with 0.1 % glucose, 0.1% salicyl

440 alcohol, or a combination of the two. A 5% salicyl alcohol stock solution was
441 prepared in absolute ethanol and was added to the empty test tubes at the outset of
442 media preparation, to allow evaporation of the ethanol before addition of the M9.
443 Glucose overnight cultures of the strains were washed twice in M9 without an energy
444 source, inoculated into the test tubes, and finally incubated under shaking (30 °C,
445 250 RPM) until reaching OD 0.5. Then, cells were harvested by centrifugation at
446 8000 × g for 5 min, supernatant was aspirated, and the cell pellet was immediately
447 frozen at -80 °C until further processing.

448

449 *Cell lysis and protein extraction and digestion.* Cell pellets were solubilized with 500
450 µL of lysis buffer (4% sodium dodecyl sulfate (SDS) w/v in 100 mM Tris-HCl, pH 8.0).
451 Samples were vortexed and then disrupted by bead beating for 5 mins with 0.15mm
452 Zirconium oxide beads at 3:1 volume ratio of sample to beads. Samples were then
453 placed in a heat-block for 10 min at 90°C. Approximately 400 µL of cell lysates were
454 transferred to fresh Eppendorf tubes after centrifugation for 3 minutes at 21,000g.

455 Protein concentration was measured using a NanoDrop™ One^C instrument (Thermo
456 Scientific). Each sample was adjusted to 10 mM dithiothreitol (DTT) and incubated at
457 90 °C for 10 minutes. Following DTT addition, samples were then adjusted to 30 mM
458 iodoacetamide (IAA) to prevent reformation of disulfide bonds and incubated in the
459 dark for 15 minutes. To isolate proteins, the protein aggregation capture method was
460 employed [40]. Briefly, Ser-Mag beads and crude lysates were added to fresh
461 Eppendorf tubes at a 1:1 protein to beads ratio, precipitated and captured by
462 adjusting to 70% (v/v) LC-MS grade ACN, then washed with 1 mL ACN and 1mL of
463 70% LC-MS grade ethanol. Sequence-grade trypsin solution was added to a 1:75
464 (wt/wt) ratio of protein to trypsin and then additional Tris buffer was added to a final
465 additional volume of 200 µL. Trypsin digestion was performed overnight at 37 °C
466 under constant shaking at 600 rpm using an Eppendorf Thermomixer (Thermo
467 Scientific). Proteins were digested a second time using the same protein to trypsin
468 ratio of before, but this time incubated for 3 h at 37 °C under constant shaking at 600
469 rpm. After protein digestion, each sample was then adjusted to 0.5% formic acid (v/v)
470 followed by vortexing and incubation at room temperature for 10 min. Each sample
471 was then centrifuged at 21,000g for 10 min and supernatants transferred on top of
472 pre-equilibrated 10 kDa MW cutoff Vivaspin 500 filters. Tryptic peptides flowthroughs

473 were then collected after centrifugation at 12,000g for 10 min. Peptide
474 concentrations were measured using the same Nanodrop instrument of before and
475 transferred to autosampler vials for LC-MS/MS measurement.

476

477 *LC-MS/MS.* Peptide mixtures were analyzed using two-dimensional (2D) liquid
478 chromatography (LC) on an Ultimate 3000 RSLCnano system (Thermo Fisher
479 Scientific) coupled with a Q Exactive Plus mass spectrometer (Thermo Fisher
480 Scientific). For each sample, aliquots equivalent to 2 µg of peptides were injected to
481 an in-house built strong cation exchange (SCX) Luna trap column (5 µm, 150 µm X
482 50 mm; Phenomenex, USA) followed by a nanoEase symmetry reversed-phase (RP)
483 C18 trap column (5 µm, 300 µm X 50 mm; Waters, USA) and washed with an
484 aqueous solvent. Cellular peptide mixtures were separated and analyzed across one
485 SCX fraction by eluting the peptides from the SCX column with a volume plug of 500
486 mM ammonium acetate followed by a 90-min organic gradient (250 nL/min flow rate)
487 to separate peptides across an in-house pulled nanospray emitter analytical column
488 (75 µm X 350 mm) packed with 35 cm of C18 Kinetex RP C18 resin (1.7 µm;
489 Phenomenex, USA). Mass spectra were acquired with the Q Exactive Plus
490 instrument in a top 10 data-dependent acquisition setup. MS spectra were collected
491 within 300 to 1500 m/z with automatic gain control (AGC) target value of 3×10^6 at a
492 resolution of 70,000 with a maximum injection time (IT) of 25 ms. Precursor ions with
493 charge states ≥ 2 and ≤ 5 and intensity threshold of 1.6×10^5 were isolated using a
494 1.6 m/z isolation width for higher-energy C-trap collision dissociation (HCD) with a
495 normalized collision energy of 27 eV. MS/MS spectra were acquired at a resolution
496 of 17,500 at m/z 200 with an AGC target value of 1×10^5 and maximum IT of 50 ms.
497 Dynamic exclusion was set to 20 s to avoid repeated sequencing of peptides.
498 Each MS raw data file was processed by the SEQUEST HT database search
499 algorithm and confidence in peptide-to-spectrum (PSM) matching was evaluated by
500 Percolator [41] using the Proteome Discoverer v2.2 software. Peptides and PSMs
501 were considered identified at $q < 0.01$ and proteins were required to have at least one
502 unique peptide sequence. Protein relative abundance values were calculated by

503 summing together peptide extracted ion chromatograms. Protein abundances were
504 normalized by LOESS and median central tendency procedures performed on log2-
505 transformed values by InfernoRDN [42].

506

507 *Ortholog analysis for cross-species comparison.* Ortholog groups were constructed
508 with OrthoMCL using pre-configured workflows at the VEuPathDB Galaxy site. In
509 brief, all-versus-all BLASTP and the OrthoMCL algorithm were used to assign each
510 organism-encoded protein to OrthoMCL groups (version OG6r1) with a 1e-05
511 expectation value cutoff for BLASTP and a 4 main inflation value for the clustering
512 algorithm MCL.

513

514 **Metabolite analysis**

515 Salicin and salicyl alcohol of the PtrXB38-OE and control plants were extracted from
516 ~150 mg of frozen powdered root tissue twice overnight with 2.5 mL of 80% ethanol .
517 Sorbitol (75 μ L of 1mg/mL aqueous solution) was added to the first extract as an
518 internal standard [37]. The two extracts were combined, and a 1 mL aliquot was
519 dried under nitrogen for analysis. The dried extracts were silylated to produce
520 trimethylsilyl (TMS) derivatives by dissolving in 500 μ L of silylation grade acetonitrile
521 (Thermo Scientific, TS20062), followed by addition of 500 μ L of N-methyl-N-
522 trimethylsilyltrifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS)
523 (Thermo Scientific, TS48915) and heated for 1 h at 70 °C. After 2 days, 1 μ L was
524 injected into an Agilent Technologies 7890A GC coupled to a 5975C inert XL MS
525 configured as previously described but with the following modification. Gas (He) flow
526 was 1.20 mL per minute. Metabolite peaks were extracted using key mass-to-charge
527 (m/z) selected ions to minimize interference with co-eluting metabolites and
528 quantified as previously described, scaling back to the total ion chromatogram and
529 normalizing to internal standard recovered, volume analyzed and mass extracted.

530

531 **Differential localization experiments.**

532 *Plant inoculation and incubation.* Combinations of barcoded strains were created by
533 pelleting, washing, and resuspending glucose-grown overnight cultures (30 °C) in
534 sterile, distilled water to OD 1, and then mixing them in equal amounts. *P.*
535 *trichocarpa* BESC819, *P. tremula* x *P. alba* 'INRA 717-1B4', and the *PtrXB38-OE P.*
536 *tremula* x *P. alba* 'INRA 717-1B4' were propagated according to previously published
537 procedures [43]. In brief, sterile shoot tips were grown in tissue culture until root
538 establishment (25 °C, 16 h photoperiod). Then, plants similar in size and
539 development were chosen, 5 mL of microbe combination was mixed into 150 cm³
540 calcined clay for each plant, and the root systems were placed in the clay and gently
541 buried. After an incubation time of 21-28 days in a closed system magenta box
542 (same conditions as specified above), root systems were lifted from the clay, loosely
543 attached clay particles removed, and the roots frozen at -20 °C until further
544 processing. For differential localization analysis, 9 sampling locations were devised,
545 consisting of a cross of three structural categories; primary, secondary, and tertiary,
546 with three root regions; root tips, midzone, and root hairs (Figure 5A)[44].

547

548 *Nucleic acid extraction.* According to their development, roots were dissected into
549 primary (oldest and thickest roots), secondary (first branching roots, medium size
550 and age), and tertiary (youngest and thinnest). Furthermore, three sample types
551 were collected for each structural category, i.e., tips (root tips of the structural
552 category), hair roots (originating from the surface of the corresponding structure),
553 and segments (root mass from the middle of the structure, whereby hair roots were
554 removed from the surface). For each combination, 0.2 g of root mass was pooled for
555 nucleic acid extraction and an initial pulverization step was conducted. This step
556 consisted of freezing the tubes containing the root fragments in liquid nitrogen, and
557 bead-beating them three times for 1 minute at 30 Hz using a TissueLyser II (Qiagen)
558 and the steel beads included in the DNeasy Plant Pro Kit (Qiagen) with intermittent
559 refreezing in liquid N₂. Then, the pulverized root material was used as the regular
560 input for said kit according to the manufacturer's instructions. Bacterial mixtures used
561 for inoculating plant experiments were extracted using the DNeasy Blood and Tissue
562 Kit (Qiagen) according to the manufacturer's recommendations.

563

564 **Library preparation, sequencing and data analysis.**

565 Microbial genomic DNA obtained from plant dissects and inoculum mixtures was
566 amplified to enrich the barcode locus using primers suitable for sequencing adapter
567 attachment depending on the intended sequencer (Table 4). Amplicons were then
568 pooled at equimolar concentration and sequenced using an in-house Illumina MiSeq
569 sequencer, as well as commercially via Illumina NovaSeq technology (VANTAGE,
570 Vanderbilt University, Nashville, TN). From the resulting data, barcodes were
571 extracted from sequencing reads by Bartender v1.1 [45], summarized, and then
572 analyzed in R (v 4.0.3) using the tidyverse package (v 1.3.0) and a custom
573 visualization script.

574

575 **Data availability**

576 Raw sequencing reads generated and analyzed for this study can be downloaded
577 from the NCBI Sequence Read Archive under Bioproject PRJNA1054559. Custom
578 analysis scripts are available at [https://github.com/s-](https://github.com/s-christel/salicylate_barcode_experiment)
579 [christel/salicylate_barcode_experiment](https://github.com/s-christel/salicylate_barcode_experiment). All proteomics spectral data in this study
580 was deposited at the ProteomeXchange Consortium via the MassIVE repository
581 (<https://massive.ucsd.edu/>). The ProteomeXchange project identifier is PXD048223
582 and the MassIVE identifier is MSV000093756. The data can be reviewed under the
583 username “MSV000093756_reviewer” and password “Christel_PMI”.

584

585 **Acknowledgements**

586 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
587 AC05-00OR22725 with the U.S. Department of Energy. This work was supported by
588 the Plant Microbe Interfaces Science Focus Area, funded by the Office of Biological
589 and Environmental Research in the DOE Office of Science. The authors wish to
590 acknowledge Dawn M. Klingeman for assistance with DNA amplicon sequencing.

591 **TABLES**

592 Table 1: Differentially abundant proteins identified in analysis of four wild-type/SA
593 strain pairs grown in triplicate in presence of 0.1% glucose versus 0.1% salicyl
594 alcohol

Strain	GM16	KT2440	GM17	PDC04
Total detected proteins	2069	1891	2070	1903
Upregulated Glucose	217	238	172	245
Upregulated SA	277	351	389	303
Total differentially abundant proteins	494	589	561	548
Percentage of total	23.9	31.1	27.1	28.8

*p<0.05 and log2fold-change>2

595

596

597 Table 2: Strains used in this study

598

Strain	Genotype	Reference
<i>Pseudomonas</i> sp. GM16	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. GM17	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. PDC04	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas putida</i> KT2440	Wildtype	ATCC
<i>Rahnella</i> sp. OV744	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. GM41	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. GM55	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. GM84	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. GV054	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. GV058	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. OK064	Wildtype	Carper <i>et al.</i>
<i>Pseudomonas</i> sp. OK266	Wildtype	Carper <i>et al.</i>
JMP43	GM16 <i>attTn7::attBxB1/attRV/attR4</i>	This work
JMP44	GM17 <i>attTn7::attBxB1/attRV/attR4</i>	This work
JMP52	PDC04 <i>attTn7::attBxB1/attRV/attR4</i>	This work
JMN42	KT2440 <i>attTn7::attBxB1/attRV/attR4</i>	This work
JMP88	GM17 <i>attTn7::(attBxB1::SA-Reg)/attRV/attR4</i>	This work
JMP90	PDC04 <i>attTn7::(attBxB1::SA-Reg)/attRV/attR4</i>	This work
JMP91	KT2440 <i>attTn7::(attBxB1::SA-Reg)/attRV/attR4</i>	This work
JMP96	GM17 <i>attTn7::attBxB1/attRV/(attR4::Barcode s)</i>	This work
JMP97	GM17 <i>attTn7::(attBxB1::SA-Reg)/attRV/(attR4::Barcodes)</i>	This work

599

600

601 Table 3: Plasmids used in this study

602

Plasmid	Genotype	Reference
pUC18T-mini-Tn7T-GM		Choi et al., 2005 Addgene 63121
PTNS2		Choi et al., 2005 Addgene 64968
pFLP3		Choi et al., 2005 Addgene 64946
pJM442	pUC18T-mini-Tn7T-GM + <i>attBR4/attBBxB1/attBRV</i>	This work
pGW44	BxB1 <i>attP colE1 kanR</i>	Elmore et al., 2023
pJM455	pGW44 + SA catabolism pathway	This work
pJH207	R4 <i>attP colE1 kanR</i>	Elmore et al., 2023
pJM488	pJH207 + 20 nt barcodes	This work

603

604 Table 4: Primers used in this study

605

Primer name	Primer sequence	Use
SA-Reg FWD	5'- TCATCCAAGTCTTCAATTGCAATC CTCAGAATGGATAAGGCTGGTC-3'	Cloning of pJM455
SA-Reg REV	5'- GTCCTCGAGTCTAGACCAGCTGA TGTCAATCGCTGAAGAGATCAAA C-3'	Cloning of pJM455
pGW44 FWD	5'- CATCAGCTGGTCTAGACTCGAG-3'	Cloning of pJM455
pGW44 REV	5'- GGATTGCAATTGAAGACTTGGAT G-3'	Cloning of pJM455
SC_BC_fwd_v2	5'- GTCTCGTGGGCTCGGAGATGTGT ATAAGAGACAGGATGTCCACGAG GTCTCT-3'	Barcode amplification
SC_BC_rev_v2	5'- TCGTCGGCAGCGTCAGATGTGTA TAAGAGACAGGTGACCTGCAGC GTACG-3'	Barcode amplification

606

607

608

609 **REFERENCES**

- 610 1. Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D, et al.
611 Extensive mosaic structure revealed by the complete genome sequence of
612 uropathogenic *Escherichia coli*. *Proc Natl Acad Sci U S A* 2002; **99**: 17020–
613 17024.
- 614 2. Tettelin H, Maignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al.
615 Genome analysis of multiple pathogenic isolates of *Streptococcus agalactiae*:
616 Implications for the microbial ‘pan-genome’. *Proceedings of the National
617 Academy of Sciences* 2005; **102**: 13950–13955.
- 618 3. Niehus R, Mitri S, Fletcher AG, Foster KR. Migration and horizontal gene
619 transfer divide microbial genomes into multiple niches. *Nat Commun* 2015; **6**:
620 8924.
- 621 4. Goyal A. Metabolic adaptations underlying genome flexibility in prokaryotes.
622 *PLoS Genet* 2018; **14**: e1007763.
- 623 5. Pál C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks
624 by horizontal gene transfer. *Nat Genet* 2005; **37**: 1372–1375.
- 625 6. Andreani NA, Hesse E, Vos M. Prokaryote genome fluidity is dependent on
626 effective population size. *ISME J* 2017; **11**: 1719–1721.
- 627 7. McInerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes.
628 *Nat Microbiol* 2017; **2**: 17040.
- 629 8. Baltrus DA. Exploring the costs of horizontal gene transfer. *Trends Ecol Evol*
630 2013; **28**: 489–495.
- 631 9. Hall RJ, Whelan FJ, McInerney JO, Ou Y, Domingo-Sananes MR. Horizontal
632 Gene Transfer as a Source of Conflict and Cooperation in Prokaryotes. *Front
633 Microbiol* 2020; **11**: 1569.

634 10. Karcagi I, Draskovits G, Umenhoffer K, Fekete G, Kovács K, Méhi O, et al.
635 Indispensability of Horizontally Transferred Genes and Its Impact on Bacterial
636 Genome Streamlining. *Mol Biol Evol* 2016; **33**: 1257–1269.

637 11. Bruns H, Crüsemann M, Letzel A-C, Alanjary M, McInerney JO, Jensen PR, et
638 al. Function-related replacement of bacterial siderophore pathways. *ISME J*
639 2018; **12**: 320–329.

640 12. Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, et al.
641 Plasmid fitness costs are caused by specific genetic conflicts enabling resolution
642 by compensatory mutation. *PLoS Biol* 2021; **19**: e3001225.

643 13. Michener JK, Vuilleumier S, Bringel F, Marx CJ. Phylogeny poorly predicts the
644 utility of a challenging horizontally transferred gene in *Methylobacterium* strains.
645 *J Bacteriol* 2014; **196**: 2101–2107.

646 14. Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An
647 exclusive metabolic niche enables strain engraftment in the gut microbiota.
648 *Nature* 2018; **557**: 434–438.

649 15. Pudlo NA, Pereira GV, Parnami J, Cid M, Markert S, Tingley JP, et al. Diverse
650 events have transferred genes for edible seaweed digestion from marine to
651 human gut bacteria. *Cell Host Microbe* 2022; **30**: 314–328.e11.

652 16. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson
653 ER, et al. Field demonstration of successful bioaugmentation to achieve
654 dechlorination of tetrachloroethene to ethene. *Environ Sci Technol* 2002; **36**:
655 5106–5116.

656 17. Adrian L, Löffler FE. Outlook—The Next Frontiers for Research on
657 Organohalide-Respiring Bacteria. In: Adrian L, Löffler FE (eds). *Organohalide-
658 Respiring Bacteria*. 2016. Springer Berlin Heidelberg, Berlin, Heidelberg, pp

659 621–627.

660 18. Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping
661 their microbiome: global hotspots for microbial activity. *Annu Rev Phytopathol*
662 2015; **53**: 403–424.

663 19. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in
664 rhizosphere interactions with plants and other organisms. *Annu Rev Plant Biol*
665 2006; **57**: 233–266.

666 20. Sun X, Xu Z, Xie J, Hesselberg-Thomsen V, Tan T, Zheng D, et al. *Bacillus*
667 *velezensis* stimulates resident rhizosphere *Pseudomonas stutzeri* for plant
668 health through metabolic interactions. *ISME J* 2022; **16**: 774–787.

669 21. Dove NC, Veach AM, Muchero W, Wahl T, Stegen JC, Schadt CW, et al.
670 Assembly of the *Populus* Microbiome Is Temporally Dynamic and Determined
671 by Selective and Stochastic Factors. *mSphere* 2021; **6**: e0131620.

672 22. Cregger MA, Carper DL, Christel S, Doktycz MJ, Labb   J, Michener JK, et al.
673 Plant–Microbe Interactions: From Genes to Ecosystems Using *Populus* as a
674 Model System. *Phytobiomes Journal* 2021; **5**: 29–38.

675 23. Veach AM, Morris R, Yip DZ, Yang ZK, Engle NL, Cregger MA, et al.
676 Rhizosphere microbiomes diverge among *Populus trichocarpa* plant-host
677 genotypes and chemotypes, but it depends on soil origin. *Microbiome* 2019; **7**:
678 76.

679 24. Boeckler GA, Gershenzon J, Unsicker SB. Phenolic glycosides of the
680 Salicaceae and their role as anti-herbivore defenses. *Phytochemistry* 2011; **72**:
681 1497–1509.

682 25. Dahal S, Hurst GB, Chourey K, Engle NL, Burdick LH, Morrell-Falvey JL, et al.
683 Mechanism for Utilization of the *Populus*-Derived Metabolite Salicin by a

684 Pseudomonas-Rahnella Co-Culture. *Metabolites* 2023; **13**.

685 26. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et
686 al. PLANT MICROBIOME. Salicylic acid modulates colonization of the root
687 microbiome by specific bacterial taxa. *Science* 2015; **349**: 860–864.

688 27. Jun S-R, Wassenaar TM, Nookaew I, Hauser L, Wanchai V, Land M, et al.
689 Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as
690 Revealed by Comparative Genome Analysis. *Appl Environ Microbiol* 2016; **82**:
691 375–383.

692 28. Jiménez JI, Miñambres B, García JL, Díaz E. Genomic analysis of the aromatic
693 catabolic pathways from *Pseudomonas putida* KT2440. *Environ Microbiol* 2002;
694 **4**: 824–841.

695 29. Carper DL, Weston DJ, Barde A, Timm CM, Lu T-Y, Burdick LH, et al.
696 Cultivating the Bacterial Microbiota of *Populus* Roots. *mSystems* 2021; **6**:
697 e0130620.

698 30. Michener JK, Camargo Neves AA, Vuilleumier S, Bringel F, Marx CJ. Effective
699 use of a horizontally-transferred pathway for dichloromethane catabolism
700 requires post-transfer refinement. *Elife* 2014; **3**.

701 31. Close DM, Cooper CJ, Wang X, Chirania P, Gupta M, Ossyra JR, et al.
702 Horizontal transfer of a pathway for coumarate catabolism unexpectedly inhibits
703 purine nucleotide biosynthesis. *Mol Microbiol* 2019; **112**: 1784–1797.

704 32. Choi K-H, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites:
705 example *Pseudomonas aeruginosa*. *Nat Protoc* 2006; **1**: 153–161.

706 33. Elmore JR, Furches A, Wolff GN, Gorday K, Guss AM. Development of a high
707 efficiency integration system and promoter library for rapid modification of
708 *Pseudomonas putida* KT2440. *Metab Eng Commun* 2017; **5**: 1–8.

709 34. Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, Peabody GL 5th,
710 et al. High-throughput genetic engineering of nonmodel and undomesticated
711 bacteria via iterative site-specific genome integration. *Sci Adv* 2023; **9**:
712 eade1285.

713 35. Takahashi Y, Shintani M, Takase N, Kazo Y, Kawamura F, Hara H, et al.
714 Modulation of primary cell function of host *Pseudomonas* bacteria by the
715 conjugative plasmid pCAR1. *Environ Microbiol* 2015; **17**: 134–155.

716 36. Nojiri H. Impact of catabolic plasmids on host cell physiology. *Curr Opin*
717 *Biotechnol* 2013; **24**: 423–430.

718 37. Yao T, Zhang J, Yates TB, Shrestha HK, Engle NL, Ployet R, et al. Expression
719 quantitative trait loci mapping identified *PtrXB38* as a key hub gene in
720 adventitious root development in *Populus*. *New Phytol* 2023; **239**: 2248–2264.

721 38. Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR,
722 et al. A *Tn7*-based broad-range bacterial cloning and expression system. *Nat*
723 *Methods* 2005; **2**: 443–448.

724 39. Chuanchuen R, Narasaki CT, Schweizer HP. Benchtop and microcentrifuge
725 preparation of *Pseudomonas aeruginosa* competent cells. *Biotechniques* 2002;
726 **33**: 760, 762–3.

727 40. Batth TS, Tollenaere MX, Rüther P, Gonzalez-Franquesa A, Prabhakar BS,
728 Bekker-Jensen S, et al. Protein Aggregation Capture on Microparticles Enables
729 Multipurpose Proteomics Sample Preparation. *Mol Cell Proteomics* 2019; **18**:
730 1027–1035.

731 41. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised
732 learning for peptide identification from shotgun proteomics datasets. *Nat*
733 *Methods* 2007; **4**: 923–925.

734 42. Polpitiya AD, Qian W-J, Jaitly N, Petyuk VA, Adkins JN, Camp DG 2nd, et al.

735 DAnTE: a statistical tool for quantitative analysis of -omics data. *Bioinformatics*

736 2008; **24**: 1556–1558.

737 43. Henning JA, Weston DJ, Pelletier DA, Timm CM, Jawdy SS, Classen AT.

738 Relatively rare root endophytic bacteria drive plant resource allocation patterns

739 and tissue nutrient concentration in unpredictable ways. *Am J Bot* 2019; **106**:

740 1423–1434.

741 44. Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, et al. A

742 starting guide to root ecology: strengthening ecological concepts and

743 standardising root classification, sampling, processing and trait measurements.

744 *New Phytol* 2021; **232**: 973–1122.

745 45. Zhao L, Liu Z, Levy SF, Wu S. Bartender: a fast and accurate clustering

746 algorithm to count barcode reads. *Bioinformatics* 2018; **34**: 739–747.

747