

1 **Early evolution of the ecdysozoan body plan**

2

3 Deng Wang^{1†}, Yaqin Qiang^{2†}, Junfeng Guo^{2*}, Jean Vannier^{3†}, Zuchen Song²,
4 Jiaxin Peng², Boyao Zhang², Jie Sun^{1,2}, Yilun Yu^{4,5}, Yiheng Zhang⁶, Tao
5 Zhang⁶, Xiaoguang Yang¹, Jian Han^{1*}

6 ¹ State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of
7 Early Life & Environments and Department of Geology, Northwest University;
8 Xi'an, China. ² School of Earth Science and Resources, Key Laboratory of
9 Western China's Mineral Resources and Geological Engineering, Ministry of
10 Education, Chang'an University; Xi'an, China. ³ Université de Lyon, Université
11 Claude Bernard Lyon 1, ENS de Lyon, CNRS, Laboratoire de Géologie de
12 Lyon: Terre, Planètes, Environnement (CNRS-UMR 5276), Villeurbanne 69622,
13 France. ⁴ University of Chinese Academy of Sciences; Beijing, China. ⁵
14 Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy
15 of Sciences; Beijing, China. ⁶ School of Information Science and Technology,
16 Northwest University; Xi'an, China. † These authors contributed equally.
17 * Correspondence authors: junfengg@chd.edu.cn (J.G); elihanj@nwu.edu.cn
18 (J.H.).

19

20 **Abstract**

21 Extant ecdysozoans (moulted animals) are represented by a great
22 variety of vermiform or articulated organisms. However, controversies
23 remain about the nature of their ancestral body plan although the
24 vermiform hypothesis seems to prevail. We describe here *Beretella*
25 *spinosa* gen et sp. nov. a tiny ecdysozoan from the early Cambrian,
26 Yanjiahe Formation, South China, with an unusual sack-like appearance,
27 single opening, and spiny ornament. *Beretella* has no equivalent among
28 animals, except *Saccorhytus* from the basal Cambrian. Phylogenetic
29 analyses resolve both forms as a sister group (Saccorhytida) to all
30 known Ecdysozoa, thus suggesting that ancestral ecdysozoans may
31 have been non-vermiform animals. Saccorhytids are likely to represent
32 an early dead-end off-shoot along the stem-line Ecdysozoa that possibly
33 evolved through anatomical simplification (e.g. lack of anus). Although
34 extinct during the Cambrian, this animal lineage provides precious
35 insight into the early evolution of Ecdysozoa and the nature (possibly
36 non-vermiform) of the earliest representatives of the group.

37

38 **Introduction**

39 The Ediacaran–Cambrian transition is marked by the appearance in the fossil
40 record of a variety of new body plans that prefigure the majority of present-day
41 animal lineages, including the ecdysozoans a huge clade that encompasses
42 all invertebrate animals growing through successive moulted stages, such as
43 panarthropods (Arthropoda, Onychophora, Tardigrada), scaldiphoran (incl.

44 Priapulida) and nematoid worms(Erwin, 2020). Altogether ecdysozoans
45 represent a very high percentage of animal biodiversity and disparity,
46 inhabiting almost all possible ecological niches on Earth(Brusca et al., 2016).
47 The nature of the last common ancestor of Ecdysozoa (LCAE) remains largely
48 unresolved, even though worms are prevalent before the rise of panarthropods
49 as trace and body fossils in basal Cambrian and late Ediacaran rocks(Buatois
50 et al., 2014; Liu et al., 2014; Vannier et al., 2010). Some molecular phylogenies
51 also predict that the most basal ecdysozoans were vermiform
52 organisms(Howard et al., 2022; Laumer et al., 2019) that possibly diverged in
53 the Ediacaran (Howard et al., 2022; Rota-Stabelli et al., 2013). Current
54 reconstruction based on fossil and developmental evidence features the
55 ancestral ecdysozoan as a millimeter-sized worm(Budd, 2001; Valentine and
56 Collins, 2000) with a terminal(Ortega-Hernandez et al., 2019) or ventral mouth
57 (Martín-Durán and Hejnol, 2015; Nielsen, 2019). Clearly, the discovery of
58 *Saccorhytus*(Han et al., 2017; Liu et al., 2022; Shu and Han, 2020b) in the
59 basal Cambrian of China (Kuanchuanpu Formation; ca. 535 Ma(Sawaki et al.,
60 2008)) that is anything but a worm sowed doubt among scientists. *Saccorhytus*
61 is a sac-like secondarily phosphatized microscopic animal spiked with conical
62 sclerites and a single opening that was first seen as the earliest known
63 deuterostome(Han et al., 2017) but is now considered as an ecdysozoan on
64 more solid grounds(Liu et al., 2022; Shu and Han, 2020b), thus broadening the
65 anatomical spectrum of the group and its disparity in the Cambrian and
66 reopening the debate on the nature of LCAE.

67 We describe here *Beretella spinosa* gen. et sp. nov. from Member 5 of the
68 Yanjiahe Formation (basal Cambrian Stage 2, ca. 529 Ma, Hubei Province,
69 China) that shares morphological traits with *Saccorhytus* such as an ellipsoidal
70 body, a pronounced bilaterality, a spiny ornament made of broad-based
71 sclerites, and a single opening. Cladistic analyses are made to resolve the
72 position of both *Beretella* and *Saccorhytus* that provide key information on the
73 early evolution of the group.

74

75 **Systematic palaeontology**

76

77 Superphylum Ecdysozoa Aguinaldo et al.(Aguinaldo et al., 1997)
78 Phylum Saccorhytida Han, Shu, Ou and Conway Morris, 2017 stat. nov.

79

80 **Remarks.** Saccorhytida first appeared in the literature as a new stem-group
81 Deuterostomia that accommodated a single species, *Saccorhytus*
82 *coronarius*(Han et al., 2017). Since *Saccorhytus* is no longer considered a
83 primitive deuterostome and, instead, more likely belongs to ecdysozoans,
84 Saccorhytida became an extinct Order of Ecdysozoa(Liu et al., 2022; Shu and
85 Han, 2020b). Because both *Saccorhytus* and *Beretella* display major
86 morphological differences with all other known ecdysozoan phyla (Nematoida,
87 Scaldiphora, and Panarthropoda), Saccorhytida is tentatively elevated here

88 to the rank of phylum within Ecdysozoa.

89

90 **Emended diagnosis.** Microscopic, ellipsoidal body shape with pronounced
91 bilateral symmetry expressed by paired spiny sclerites. Single, presumably
92 oral opening on assumed ventral side (no anus).

93

94 **Remarks.** Only two forms, *Saccorhytus* and *Beretella* are currently placed
95 within Saccorhytida, making it premature to formally define intermediate
96 taxonomic categories such as an order and a family.

97

98 *Beretella spinosa* Han, Guo, Wang and Qiang, gen. et sp. nov.

99

100 **Etymology.** From ‘*béret*’, French, that designates a soft, visorless cap
101 referring to the overall shape of this species, and ‘*spinosa*’, an adjective (Latin),
102 alluding to its spiny ornament.

103

104 **Holotype.** CUBar138-12 (Fig. 1a–c).

105 **Paratype.** CUBar171-5 Fig. 1h, i) and CURBar121-8 (Fig. 1j, k).

106

107 **Diagnosis.** Body with a beret-like lateral profile. Convex side (presumably
108 dorsal) with an elevated (presumably posterior) and lower (presumably
109 anterior one) end. The opposite side (presumably ventral) flattened. Bilateral
110 symmetry well expressed in the overall body shape (sagittal plane) and sclerite
111 distribution. Antero-posterior polarity. Convex side with a slightly elevated
112 sagittal stripe topped with a single row of four aligned spines (S1) and five
113 additional spines (S2) on each side. Six broad-based conical sclerites (S3)
114 distributed in two symmetrical longitudinal rows plus two sagittal ones. Double
115 rows of six marginal spines (S4 and S5). Flattened side often pushed in and
116 partly missing, bearing a possible mouth opening. Possible oral spine.

117

118 **Stratigraphy and locality.** *Watsonella crosbyi* Assemblage Zone (Guo et al.,
119 2021), Member 5 of the Yanjiahe Formation (Cambrian Terreneuvian, Stage 2)
120 in the Yanjiahe section near Yichang City, Hubei Province, China
121 (Supplementary Figs. 1, 2).

122

123 **Description and comparisons**

124 The body of *Beretella spinosa* is secondarily phosphatized and has a
125 consistent beret-like three-dimensional shape in the lateral view. Its maximum
126 length, width, and height range from 1.0–2.9 mm, to 975–2450 µm, and 500–
127 1000 µm, respectively (Fig. 1, Supplementary Tables 1–3). The ratio of the
128 maximal length to width is 1.6:1 (Supplementary Fig. 3). As seen in top view, *B.*
129 *spinosa* shows a small lateral constriction at approximately mid-length (Fig. 1a,
130 c).

131 The body has a convex, assumedly dorsal side with one, presumably posterior

132 end more elevated than the other (Fig. 1b, e, i, k). This elevation is gradual
133 along the sagittal plane and then becomes more abrupt near the low elevated,
134 presumably anterior end. The opposite, assumedly ventral side is less well
135 preserved and seems to have been originally flattened.
136 The convex side bears a complex ornamented pattern made of five sets (S1–
137 S5) of spiny sclerites directed towards the more elevated end (Figs. 1a, b, d, e,
138 h–k, 2a, b, d). These sclerites were originally pointed (Figs. 1a, d, e, 2b, k, l,
139 Supplementary Fig. 4a, b, g), but most of them were broken thus revealing an
140 internal cavity and an ellipsoidal transverse section (Figs. 1a, b, h–k, 2a–e, g).
141 The broken sclerites show an inner and outer phosphatic layer (thickness ca.
142 20 to 50 µm) often separated by a thin empty space (Fig. 2g–l).
143 The convex side bears six prominent conical sclerites (S3) all with a rounded
144 to elliptical well-delimited broad base, distributed in two longitudinal
145 symmetrical pairs with two additional sclerites at both ends of the sagittal plane
146 (Figs. 1, 2d, Supplementary Figs. 3e–h, 4e–i). A low-relief stripe runs in a
147 sagittal position and vanishes towards the elevated end. It is topped by a row
148 of aligned spines (S1, Fig. 1a); the one closer to the more elevated end being
149 more tubular and longer. This row is flanked on both sides by smaller aligned
150 spines (S2, Figs. 1a, d, h, 2a–c). Two relatively sinuous rows of six tiny spines
151 are present parallel to the lateral margins (S4 and S5, Figs. 1b, e, h–j, 2d, e).
152 The convex side bears a polygonal micro-ornament (mesh size ca. 5 µm wide,
153 Fig. 2f, Supplementary Tables 1–3). However, its exact extension is uncertain
154 due to coarse secondary phosphatization. Clusters of spherical phosphatized
155 grains (diameter ca. 20 µm) occur near the sclerite base (Supplementary Fig.
156 4b).
157 In most specimens, the flattened side is occupied by a relatively large opening
158 (1200 and 600µm in maximal length and width, respectively) with irregularly
159 defined margins (Fig. 1c, f, see also supplementary information movies 1, 2).
160 The flattened side is often largely missing and opens into a spacious internal
161 cavity with no signs of internal organs (e.g. gut and pharynx) (Fig. 1c, f). One
162 specimen shows a tiny spine on the margin of the flattened side (Fig. 1f, g),
163 which differs from other spiny sclerites (S1–S5).
164 The length of studied specimens ranges from 1.0 to 2.9 mm (Supplementary
165 Fig. 3e–h). Whether growth was continuous or instead took place via
166 successive moulting stages and cuticular renewal (ecdysis) could not be
167 tested due to the small number of specimens (N=17) available for
168 measurements. No major morphological variations (e.g. a sclerite pattern) can
169 be seen between the smallest and largest specimens of *B. spinosa*
170 (Supplementary Fig. 3e–h).

171

172 **Remarks**

173 **Body polarities in *Beretella***

174 The anterior-posterior (AP) and dorsal-ventral (DV) polarities of *Beretella* are
175 uneasy to define because of the lack of modern equivalent among extant

176 animals. In the vast majority of extinct and extant invertebrates for which
177 antero-posterior polarity is defined on the basis of independent criteria (e.g.
178 position of mouth), sclerites point backwards (e.g. Cambrian scalidophoran
179 worms (Han et al., 2007; Huang et al., 2004) and *Wiwaxia* (Zhang et al.,
180 2015b)). This is most probably also the case with *Beretella* (Fig. 1a, d, j). The
181 dorsoventral polarity of *Beretella* is supported by the fact that protective
182 sclerites such as spines most commonly occur on the dorsal side of bilaterians
183 (Fig. 1a, d, j).

184

185 **Comparison with *Saccorhytus* and other ecdysozoans**

186 *Beretella spinosa* has no exact equivalent in any Cambrian animals except
187 *Saccorhytus coronarius*, an enigmatic, sac-like ecdysozoan(Han et al., 2017;
188 Liu et al., 2022; Shu and Han, 2020b). Both forms share a tiny, poorly
189 differentiated ellipsoidal body, and a set of prominent bilaterally arranged spiny
190 sclerites. Indeed, the broad-based conical sclerites (S3) of *Beretella* are
191 almost identical to those of *Saccorhytus* (Supplementary Fig. 4c) and have
192 counterparts among scalidophoran worms (Supplementary Fig. 4d). However,
193 they differ in number, ornamented structures, shape, and spatial arrangement
194 (see details in Supplementary Tables 1–3) which makes the hypothesis of
195 *Saccorhytus* being the larval stage of *Beretella* unlikely. Both *Beretella* and
196 *Saccorhytus* differ from other known ecdysozoans in the lack of a vermiform
197 body, introvert, annulations, and through gut (Supplementary Tables 1–3).

198

199 **Discussion**

200 **Ventral mouth.** All bilaterian animals have a digestive system with at least one
201 opening that corresponds to the mouth(Brusca et al., 2016). Although the
202 presumed oral area of *Beretella* is poorly preserved (ventral side often pushed
203 in and largely destroyed), its mouth is likely to be found ventrally (see
204 description), since no other opening occurs on its dorsal side, except those
205 created by broken sclerites. The well-defined dorsoventral polarity of *Beretella*
206 would suggest that the animal was resting on its ventral (flattened) side, the
207 spiny dorsal side playing a protective role. Maintaining ventral contact with a
208 substrate seems to be very unlikely unless these microscopic ellipsoidal
209 animals were interstitial.

210

211 **Phylogenetic position of *Beretella*.** *Beretella*'s phylogenetic affinities remain
212 elusive due to the lack of information concerning its internal anatomy and
213 ventral side. Its scleritome consists of isolated conical sclerites that were the
214 cuticular outgrowths of a seemingly rigid integument that covered both sides of
215 the animal. Such conical sclerites have close counterparts in Cambrian
216 ecdysozoans such as scalidophoran worms (e. g. *Eokinorhynchus*(Zhang et al.,
217 2015a)), lobopodians (e.g. *Onychodictyon ferox*(Hou et al., 1991)) and even
218 more clearly *Saccorhytus* that recent cladistic analyses resolved as a branch
219 of the total-group Ecdysozoa (Liu et al., 2022). These sclerites unknown in

220 other animal groups, suggest that both *Saccorhytus* and *Beretella* belongs to
221 Ecdysozoa in the absence of more direct fossil evidence such as exuviae or
222 features suggesting cuticular moulting (Daley and Drage, 2016; Wang et al.,
223 2019).

224 Cladistic analyses were performed to test the relation of *Beretella* and
225 *Saccorhytus* to other ecdysozoan groups and, more generally, their
226 phylogenetic relationships with other bilaterian groups (see details in
227 Supplementary Table 4). Both taxa join in a clade (Saccorhytida, Fig. 3a–c)
228 that is resolved as stem species within total-group Ecdysozoa and as the sister
229 group of Cycloneuralia plus Panarthropoda, i.e. crown-group Ecdysozoa (Figs.
230 3d, 4, Supplementary Figs. 6–9). These results are consistent with the body
231 plan of Saccorhytida being markedly different from that of crown-group
232 ecdysozoans that all have a vermiform body and differentiated structures such
233 as the introvert and pharyngeal complex (Fig. 4).

234

235 **The ancestral ecdysozoan body plan**

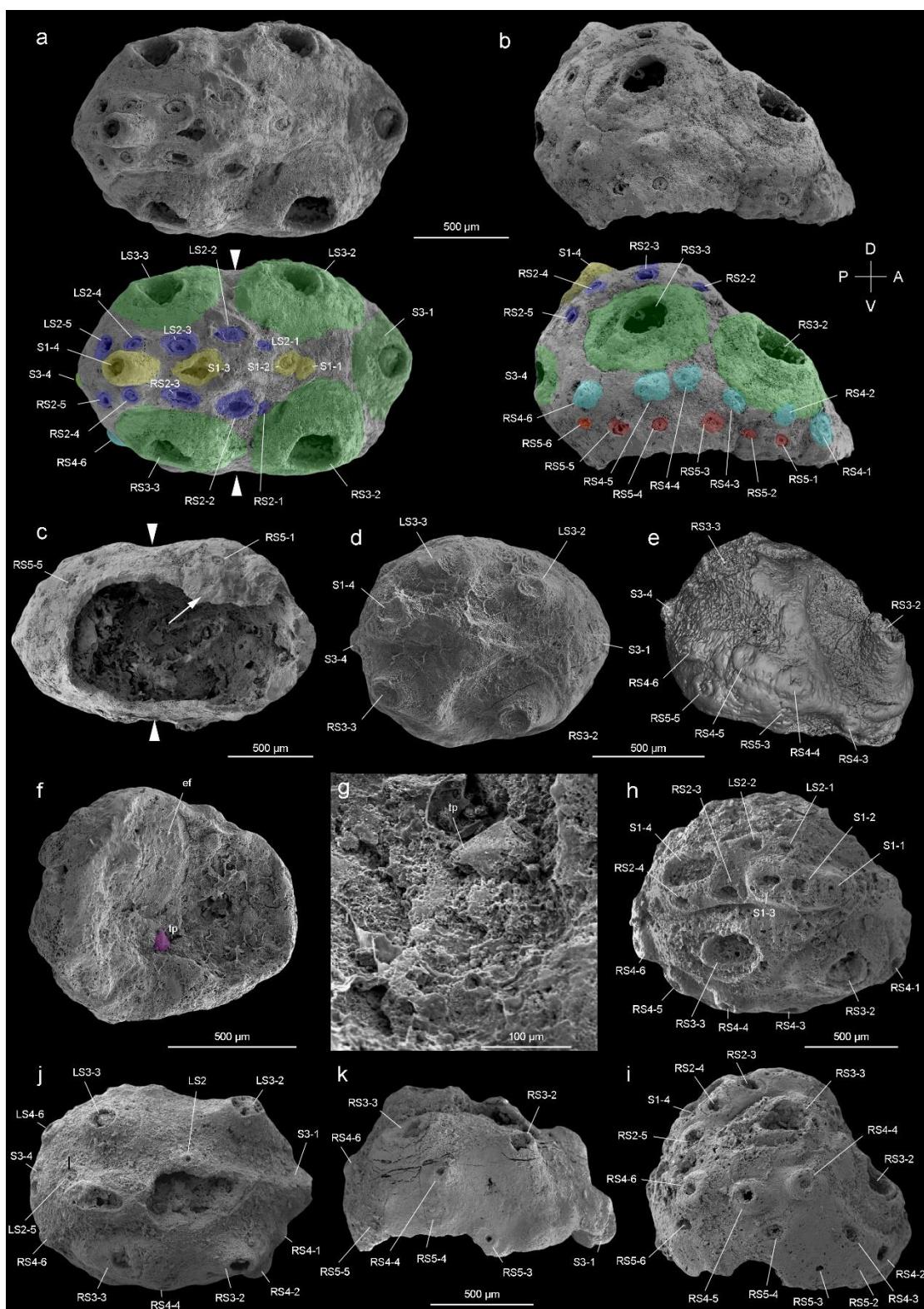
236 Molecular clock analyses often place the divergence of Ecdysozoa relatively
237 deep into the Ediacaran (Howard et al., 2022; Rota-Stabelli et al., 2013), thus
238 highlighting major discrepancy with the known fossil record of the group.
239 Potential ecdysozoans occur in the late Precambrian as suggested by 1)
240 sclerites resembling those of extant priapulids, found in Ediacaran Small
241 Carbonaceous Fossils assemblages (Moczydłowska et al., 2015) and 2)
242 locomotion traces presumably made by scalidophoran worms (Buatois et al.,
243 2014; Vannier et al., 2010). In the absence of fossil data for other vermiform
244 groups such as nematoids, scalidophorans are potentially the oldest known
245 representatives of Ecdysozoa. Recent Bayesian analyses based on a large
246 molecular data set obtained from the 8 extant ecdysozoan phyla recover
247 Scalidophora as the sister-group to Nematoida + Panarthropoda and suggest
248 that ecdysozoans probably diverged in the Ediacaran possibly some 23 million
249 years before the oldest fossil occurrence (trace fossils) of the group (Howard
250 et al., 2022). Although this study does not speculate on the nature of the last
251 common ancestor of Ecdysozoa, it is consistent with the view that the earliest
252 representatives of the group were probably vermiform. Howard et al. (Howard
253 et al., 2022) drew comparable conclusions based on *Acosmia*, an assumed
254 stem-ecdysozoan worm from early Cambrian Chengjiang Lagerstätte.
255 However, the re-evaluation of the morphological characteristics of this worm
256 rather suggests a less basal position either within the total-group Cycloneuralia
257 (Fig. 3d, Supplementary Figs. 6, 7) or among crown-group Ecdysozoa
258 (Supplementary Figs. 8, 9). The non-vermiform nature of saccorhytids and
259 their position as the sister group of the crown-group Ecdysozoa clearly
260 reopens the debate on the nature of the ancestral ecdysozoan (Fig. 4) and
261 suggests exploring various evolutionary hypotheses, in particular: 1) does the
262 enigmatic saccorhytid body plan results from anatomical simplification? 2) to
263 what extent may these animals shed light on the nature of the earliest

264 ecdysozoans?

265

266 Do saccorhytids result from simplification?

267 A relatively simple body plan and tiny size is often seen as resulting from
268 anatomical simplification (e.g. digestive system) and miniaturization
269 (micrometric size) in possible relation with the adaptation to specialized
270 ecological niches or parasitism (Hanken and Wake, 1993). For example, some
271 extant scalidophoran worms living in interstitial (meiobenthic) habitats such as
272 loriciferans have a miniaturized body (Kirstensen, 1983) compared with their
273 macroscopic counterparts (e.g. *Priapulus* (Schmidt-Rhaesa, 2013b)). However,
274 they retain a through gut and a functional introvert and show no sign of drastic
275 internal simplification (Schmidt-Rhaesa, 2013a). Anatomical reduction is a
276 typical feature of parasitism (Hanken and Wake, 1993) that is well-represented
277 among extant ecdysozoans such as nematodes (Schmidt-Rhaesa, 2014).
278 Although relatively small (ca. 0.1-2.5 mm long), nematodes underwent no
279 simplification of their digestive system. Saccorhytids have no specialized
280 features (e.g. anchoring or piercing structures) that would point to any
281 adaptation to ecto- or endo-parasitic lifestyles (Cong et al., 2017). *Saccorhytus*
282 has been interpreted¹⁶ as a possible interstitial animal based on its micrometric
283 size which corresponds to that of the extant meiofauna. If we accept the
284 hypothesis of saccorhytids resulting from simplification, then we need to
285 determine its origin. Simplification of saccorhytids from a vermiform animal
286 (e.g. cycloneuralian worm with a through gut and terminal mouth) is difficult to
287 conceive because it would involve considerable anatomical transformations
288 such as the loss of vermiform organization, introvert and pharynx in addition to
289 that of the digestive system (Fig. 4). Alternative options to consider are
290 ancestral and not necessarily vermiform ecdysozoans.

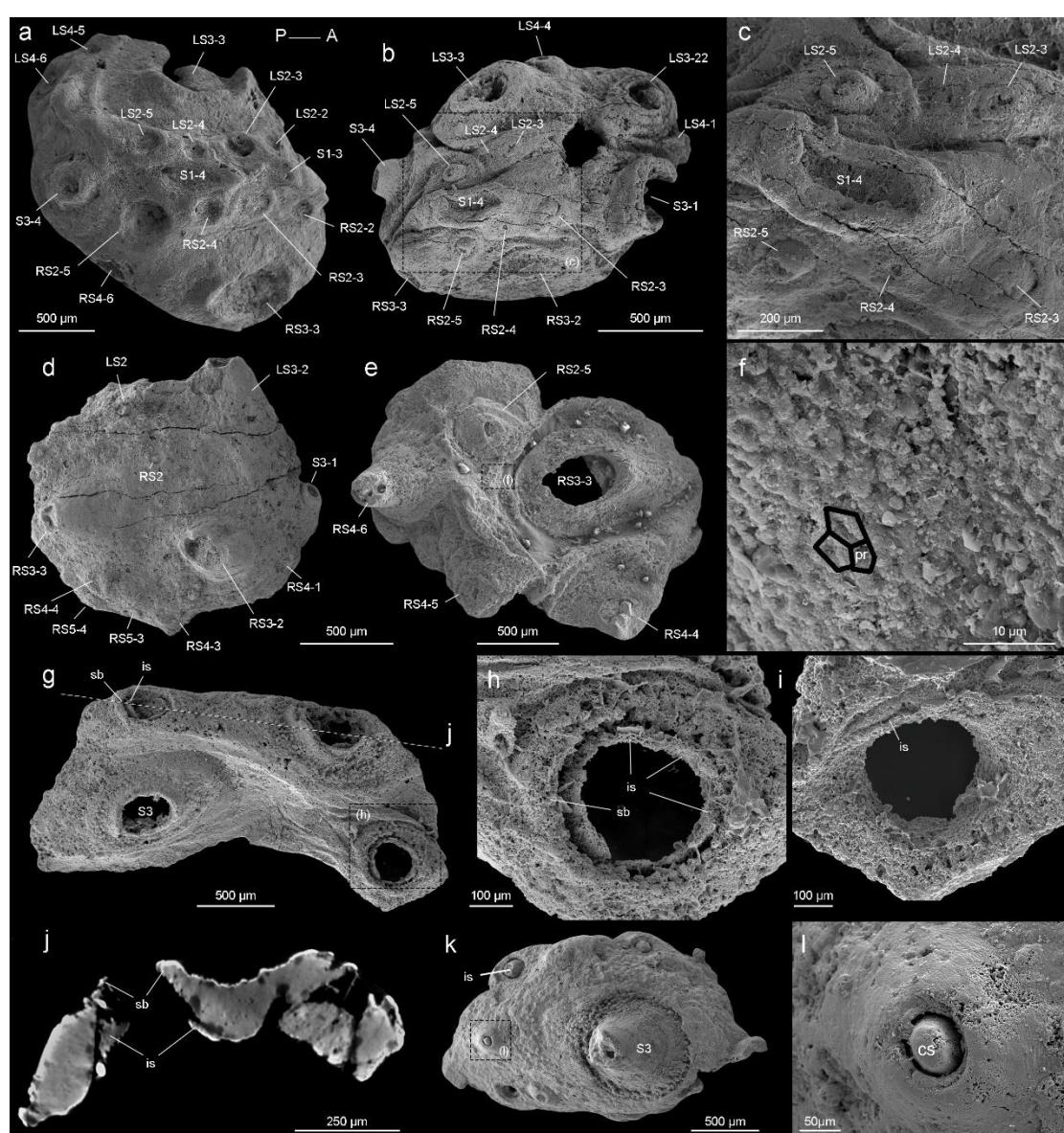

291

292 Early evolution of ecdysozoans: a new scenario

293 We propose here an alternative evolutionary hypothesis (Fig. 4) in which
294 saccorhytids are replaced within the broader framework of the origin and early
295 diversification of moulting animals. Saccorhytids are seen as an early off-shot
296 from the stem-line Ecdysozoa (see cladistic analysis above) that possibly
297 retained important features of the body plan of ancestral non-vermiform
298 ecdysozoans (see ancestral character state reconstruction in Supplementary
299 Table 4). This scenario must be considered as a working hypothesis whose
300 aim is to stimulate research in this key area of animal evolution.

301 The cuticular secretion and the loss of cilia (Valentine and Collins, 2000) are
302 seen as the first of a series of evolutionary events (Fig. 4) that led to the rise of
303 Ecdysozoa. Moulting (shedding of the old cuticle via apolysis and its renewal)
304 further reconciled body growth and cuticular protection (Schmidt-Rhaesa,
305 2007). Cuticle secretion and moulting may have been quasi-simultaneous
306 innovations that took place over a relatively short time interval. The nature of
307 the very first ecdysozoans is hypothetical and lacks fossil evidence. However,

308 they are tentatively represented here as small epibenthic or interstitial
309 slow-moving non-vermiform animals from which saccorhytids may have
310 evolved via an assumed anatomical simplification (i.e. loss of anus seen
311 details in Supplementary Table 4, Fig. 4).
312 In our scenario, this ancestral ecdysozoan stock would have also given rise to
313 vermiform ecdysozoans through stepwise anatomical transformations such as
314 the body elongation, the differentiation of key morpho-functional structures
315 such as the pharynx and the introvert and the shift of the ventral mouth to a
316 terminal position (Martín-Durán and Hejnol, 2015) (Fig. 4). This mouth shift
317 from ventral to terminal arising in crown ecdysozoans is consistent with the
318 chronology of divergence of animal lineages and the fact that the mouth of
319 most spiraliens is ventral (Martín-Durán and Hejnol, 2015; Nielsen, 2019;
320 Ortega-Hernandez et al., 2019). Developmental studies show that embryos of
321 extant cycloneuralians have a ventral mouth that moves to a terminal position
322 towards the adult stage (Martín-Durán and Hejnol, 2015; Nielsen, 2019).
323 These assumed major anatomical changes (e.g. functional introvert) must be
324 placed in the ecological context of Cambrian animal radiation. Important
325 changes in the functioning of marine ecosystems occurred in the early
326 Cambrian such as interactive relationships between animal species,
327 exemplified by predation (Vannier and Chen, 2005; Vermeij, 1977) may have
328 acted as drivers in the evolution of early ecdysozoans, in promoting burrowing
329 into sediment and the colonization of endobenthic habitats for the first time
330 (Vannier et al., 2010). Burrowing into the sediment could be seen as the
331 evolutionary response of epibenthic animals such as ancestral ecdysozoans to
332 escape visual predation (Daley et al., 2013; Vannier and Chen, 2005). This
333 migration to endobenthic shelters was made possible by the development of a
334 resistant cuticular layer (Fig. 4) that strongly reduced physical damage caused
335 by friction with the sediment and provided anchoring points (e.g. scalids and
336 sclerites). Whereas saccorhytids became rapidly extinct during the Cambrian,
337 worms massively colonized endobenthic habitats, resulting in bioturbation and
338 ecological turnover.
339

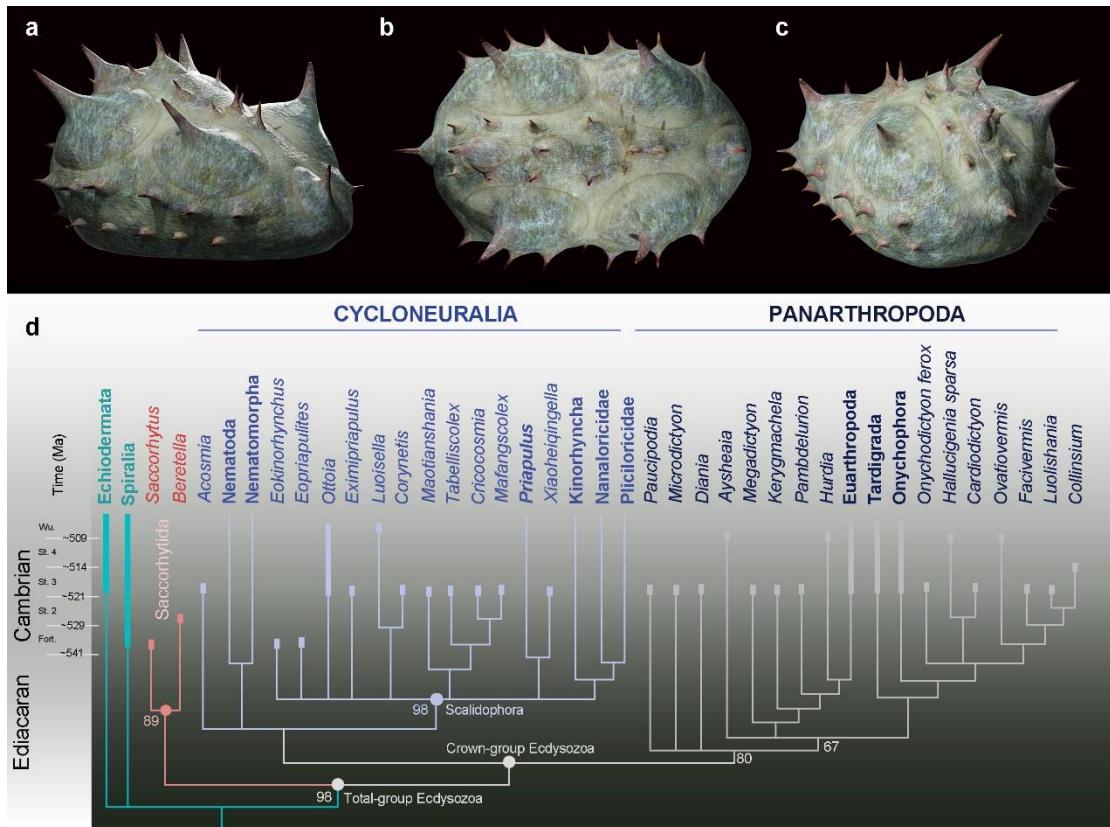

340

341

342 **Fig. 1. *Beretella spinosa* gen. et sp. nov. from Member 5 of the Yanjiahe**
343 **Formation (Cambrian Stage 2), Yichang, Hubei Province, China. a–c,**
344 **Holotype, CUBar138-12. a, Dorsal view showing the external ornament: (five**
345 **sclerites at the midline in yellow (S1); flanked by two rows of sclerites in blue**
346 **(S2); large broad-based conical sclerites in two dorsolateral pairs and one**
347 **antero-posterior pairs in green (S3)); white arrows indicate lateral constriction.**

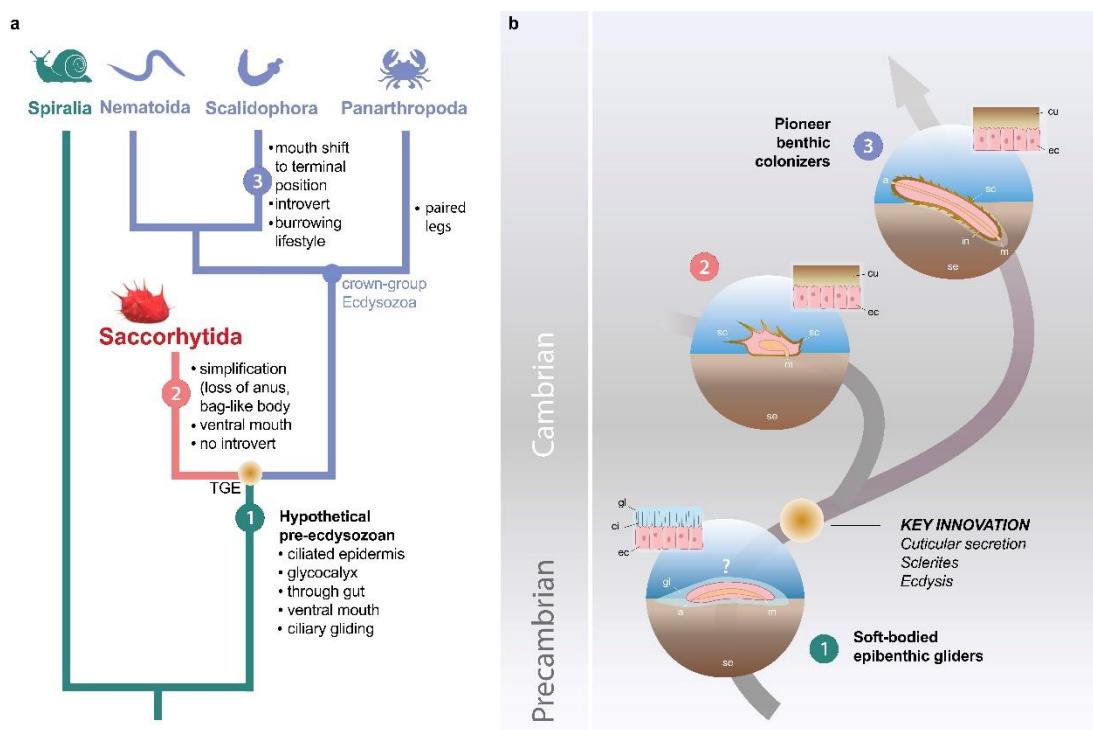
347 **b**, Right lateral view showing two additional rows of six sclerites (S4 and S5, in
348 light blue and pink, respectively). **c**, Ventral view showing a large opening that
349 may have accommodated the mouth (see the text) and an empty body cavity.
350 **d–g**, CUBar75-45. **d**, Dorsal view showing a broken S3. **e**, Micro-CT image,
351 right lateral view displaying S4. **f**, Ventral view depicting a tiny projection in
352 purple. **g**, An enlargement of the projection of **f**. **h–i**, Paratype, CUBar171-5. **h**,
353 Right dorsal view showing S1–S4. **i**, Right-lateral view showing S4 and S5. **j–k**,
354 Paratype CUBar121-8. **j**, Dorsal view showing poorly preserved S1 and S2. **k**,
355 Right-lateral view showing S3–S5. A, assumed anterior end (see text); ef,
356 exotic fragment; D, assumed dorsal side; L, left; P, posterior end; R, right; tp,
357 tiny spine; V, ventral side. The same abbreviations are used throughout the
358 manuscript including Supplementary materials.

359


360

361 **Fig. 2. *Beretella spinosa* gen. et sp. nov. a**, CUBar99-19, dorsal view
362 showing an ornament S1–S4. **b–c**, CUBar136-9, general dorsal view and

363 details. **d**, CUBar136-11, dorsal view showing S1–S5. **e–f**, CUBar73-15
 364 general view and details of the cuticular polygonal reticulation in black. **g–j**,
 365 CUBar128-27. **g–i**, general view and details of the bi-layered structure of the
 366 cuticular wall as seen in broken conical sclerites. **j**, Micro-CT section showing
 367 possibly sclerite infilling. **k–l**, CUBar99-18, cuticular fragment, general view and
 368 details of large sclerite (central feature represents possible phosphatic infilling).
 369 is, infilling sclerite; pr, polygonal reticulation; sb, sclerite base.


370

371

372

373 **Fig. 3. Position of *Beretella spinosa* in the animal tree based on cladistic**
374 **analysis. a-c**, artistic three-dimensional reconstructions of *Beretella spinosa* in
375 the anterolateral, dorsal, and posterolateral views. **d**, Animal tree obtained
376 from cladistic analyses using maximum likelihood tree obtained from cladistic
377 analyses using maximal likelihood (IQTREE). *Saccorhytus* and *Beretella* join in
378 a clade (new phylum *Saccorhytidida*) resolved as the sister-group of all other
379 ecdysozoans; numbers at key nodes denote probability. Fossil and extant taxa
380 are in italics and bold, respectively. Known fossil record indicated by thicker
381 bars (after (Shu and Han, 2020a)).

382

383 **Fig. 4. Possible evolutionary scenario to explain the origin and early**
384 **evolution of ecdysozoans.** a, Summary tree (see Supplementary Figs. 6-9)
385 showing saccorhytids as a sister-group of Cycloneuralia (Nematoda plus
386 Scalidophora) + Panarthropoda; main morphological features of each group
387 listed along each branch. b, Potential evolutionary pathway to evolve
388 Saccorhytida and crown-group Ecdysozoa. Numbers in green, red and blue
389 circles designate pre-ecdysozoan (Spiralia), Saccorhytida and Cycloneuralia,
390 respectively. Light brown gradient (circle) to emphasize ecdysis and sclerite
391 secretion seen as key evolutionary steps. 1, Hypothetical pre-ecdysozoan
392 animal with a ciliated epidermis and glycocalyx. 2, Saccorhytid exemplified by
393 *Beretella* with a cuticle bearing sclerites and a simplified internal organization
394 (e.g. loss of anus). 3, Crown-group ecdysozoan exemplified by a
395 scalidophoran worm with an elongated shape, a differentiated head (introvert)
396 and trunk, sclerites, a through gut, a terminal mouth and abilities to burrow into
397 bottom sediment. Animals not to scale. Abbreviations: a, anus; ci, cilia; cu,
398 cuticle; ec, epidermal cell; gl, glycocalyx (mucous layer); m, mouth; in, introvert;
399 sc, sclerite; se, sediment; TGE, total-group Ecdysozoa. Silhouettes from
400 phylopic.org.

401

402

403

404

405

406

407

408

409 **Methods**

410 **Material**

411 Fourteen specimens of *Beretella spinosa* were recovered from samples
412 (siliceous-phosphatic, intraclastic limestone) collected from Member 5 of the
413 Yanjiahe Formation, Yanjiahe section near Yichang City, Hubei Province,
414 China(Guo et al., 2021) (Supplementary Tables 1–3). These were obtained by
415 digesting the rocks in 10% acetic acid. Faunal elements associated with
416 *Beretella spinosa* (Supplementary Tables 1–3) in residues are mainly tiny
417 molluscs (CUBar21-4 and CUBar206-6). Comparisons were made with 10
418 specimens of *Saccorhytus coronarius* (ELIXX25-62, ELIXX34-298,
419 ELIXX45-20, ELIXX48-64, ELIXX58-336, ELIXX61-27, ELIXX65-116,
420 ELIXX65-296, ELIXX99-420) and one coeval scalidophoran specimen
421 (ELIXX57-320) all from Bed 2 of the Kuanchuanpu Formation, Zhangjiagou
422 section near Xixiang County, south Shaanxi Province, China. All specimens of
423 *Beretella* are deposited in the paleontological collections of Chang'an
424 University, Xi'an (CU), those of scalidophoran, and *Saccorhytus* at Northwest
425 University, Xi'an (ELI), China.

426

427 **Scanning electron microscopy (SEM)**

428 All specimens were coated with gold and then imaged using a FEI Quanta 400
429 FEG SEM at Northwest University and a FEI Quanta 650 at Chang'an
430 University.

431

432 **X-ray computed microtomography and 3D reconstruction**

433 Micro-CT-images (tiff format, with pixel size 1.1 μm) of *Beretella* (CUBar75-45,
434 CUBar128-27, CUBar138-12) and *Saccorhytus* (ELIXX65-116, ELIXX99-420)
435 were acquired using the Zeiss Xradia 520 at Northwest University (NWU),
436 Xi'an, China, at an accelerating voltage of 50 kV and a beam current of 80 μA .
437 Micro-CT data were processed using VGstudio Max 3.2 for 3D volume
438 rendering.

439

440 **Measurements**

441 Measurements of the length, width, and height of *Beretella* and *Saccorhytus*
442 were obtained from Micro-CT and SEM images by using tipDig2 v.2.16.

443

444 **Phylogenetic analysis**

445 We built our matrix with 55 taxa coded using 191 morphological characteristics
446 (Supplementary Texts 1, 2). It is largely based on the data published by
447 Howard et al.(Howard et al., 2020), Vinther and Parry(Vinther and Parry, 2019)
448 and Ou et al.(Ou et al., 2017), although emended and supplemented by recent
449 updates and new observations (Supplementary Text 1). Three characters (37.
450 Through gut, 38. U-shaped gut, and 40. Ventral mouth) in matrix were coded
451 as “? (uncertain)”, “?”, and “?”, respectively. Because although we can infer a

452 ventral mouth and no anus of *Beretella*, these anatomic structures are invisible
453 in fossils. We analyzed the data matrix using parsimony (TNT), likelihood
454 (IQTREE) and Bayesian inference (MrBayes). Parsimony analysis was
455 implemented in TNT under equal and implied (k=3) weight. Parameters are
456 default (Goloboff et al., 2008; Goloboff and Catalano, 2016). The
457 maximum-likelihood tree search was conducted in IQ-TREE(Nguyen et al.,
458 2015), and support was assessed using the ultrafast phylogenetic bootstrap
459 replication method (Hoang et al., 2018; Minh et al., 2013) to run 50,000
460 replicates. Bayesian inference was conducted in with MrBayes v3.2.6a with
461 default priors and Markov chain Monte Carlo settings(Ronquist et al., 2012).
462 Two independent runs of 7,000,000 Markov chain Monte Carlo generations
463 were performed, each containing four Markov chains under the Mkv + Γ model
464 for the discrete morphological character data(Lewis, 2001). In each run (N=2),
465 trees were collected at a sampling frequency of every 5,000 generations and
466 with the first 25% samples discarded as burn-in. The convergence of chains
467 was checked by effective sample size (ESS) values over 1,000 in Tracer
468 v.1.7(Rambaut et al., 2018), 1.0 for the potential scale reduction factor
469 (PSRF)(Gelman and Rubin, 1992), and by an average standard deviation of
470 split frequencies below 0.007.

471

472 **Ancestral character state reconstructions**

473 Ancestral character state reconstructions for six morphological characters
474 were performed on the ecdysozoan total group node, the ecdysozoan crown
475 group node and saccorhytid node. Characters selected for ancestral state
476 reconstruction represent traits inferred as ecdysozoan plesiomorphies
477 (ancestral characters) from studies of crown group taxa. These characters
478 included the presence or absence of: (1) through gut; (2) ventral mouth; (3)
479 introvert (see Supplementary Table 4).

480 This was carried out individually for the selected character in MrBayes. This
481 was employed to calculate the posterior probability of the presence (1) and
482 absence (0) of the selected characters at the selected nodes. Analyses used
483 the MK + gamma model, and always converged after 2 million generations.
484 Average deviation of split frequencies (< 0.01), ESS scores (> 200), and PSRF
485 values (= approx. 1.00) assessed convergence of the MCMC chains (Howard
486 et al., 2020).

487

488 **Data availability**

489 The data that support the findings of this study are available in the recent
490 paper and its Supplementary Information.

491

492 **References and Notes**

493

494 Aguinaldo, A.M.A., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R.,
495 Raff, R.A. and Lake, J.A., 1997. Evidence for a clade of nematodes,

- arthropods and other moulting animals. *Nature*, 387(6632): 489-93.

Brusca, R.C., Moore, W. and Shuster, S.M., 2016. *Invertebrates*. Sinauer Associates, Inc., Sunderland Massachusetts USA, 639-910 pp.

Buatois, L.A., Narbonne, G.M., Mangano, M.G., Carmona, N.B. and Myrow, P., 2014. Ediacaran matground ecology persisted into the earliest Cambrian. *Nat Commun*, 5: 3544.

Budd, G.E., 2001. Why are arthropods segmented? *Evolution & Development*, 3(5): 332-342.

Cong, P., Ma, X., Williams, M., Siveter, D.J., Siveter, D.J., Gabbott, S.E., Zhai, D., Goral, T., Edgecombe, G.D. and Hou, X., 2017. Host-specific infestation in early Cambrian worms. *Nature Ecology & Evolution*, 1(10): 1465-1469.

Daley, A.C. and Drage, H.B., 2016. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites. *Arthropod Structure & Development*, 45(2): 71-96.

Daley, A.C., Paterson, J.R., Edgecombe, G.D., García-Bellido, D.C., Jago, J.B. and Donoghue, P., 2013. New anatomical information on *Anomalocaris* from the Cambrian Emu Bay Shale of South Australia and a reassessment of its inferred predatory habits. *Palaeontology*, 56: 971-990.

Erwin, D.H., 2020. The origin of animal body plans: a view from fossil evidence and the regulatory genome. *Development*, 147(4): dev182899.

Gelman, A. and Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences (with discussion). *Statistical Science*, 7: 457-472.

Goloboff, P.A., Carpenter, J.M., Arias, J.S. and Esquivel, D.R.M., 2008. Weighting against homoplasy improves phylogenetic analysis of morphological data sets. *Cladistics*, 24(5): 758-773.

Goloboff, P.A. and Catalano, S.A., 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. *Cladistics*, 32: 221-238.

Guo, J.-F., Li, G.-X., Qiang, Y.-Q., Song, Z.-C., Zhang, Z.-F., Han, J. and Wang, W.-Z., 2021. *Watsonella crosbyi* from the lower Cambrian (Terreneuvian, Stage 2) Yanjiahe Formation in Three Gorges Area, South China. *Palaeoworld*, 30(1): 1-19.

Han, J., Conway Morris, S., Ou, Q., Shu, D.G. and Huang, H., 2017. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). *Nature*, 542(7640): 228-231.

Han, J., Liu, J.N., Zhang, Z.F., Zhang, X.L. and Shu, D.G., 2007. Trunk ornament on the palaeoscolecid worms *Cricocosmia* and *Tabelliscolex* from the Early Cambrian Chengjiang deposits of China. *Acta Palaeontologica Polonica*, 52(2): 423-431.

Hanken, J. and Wake, D.B., 1993. Miniaturization of body size: Organismal consequences and evolutionary significance. *Annual Review of Ecology and Systematics*, 24: 501-519.

Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. and Vinh, L.S., 2018.

- 540 UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol
541 Evol, 35(2): 518-522.
- 542 Hou, X.G., Ramskold, L. and Bergstrom, J., 1991. Composition and
543 preservation of the Chengjiang fauna -a Lower Cambrian soft-bodied
544 biota. *Zoologica Scripta*, 20(4): 395-411.
- 545 Howard, R.J., Edgecombe, G.D., Shi, X., Hou, X. and Ma, X., 2020. Ancestral
546 morphology of Ecdysozoa constrained by an early Cambrian stem
547 group ecdysozoan. *BMC Evolutionary Biology*, 20(1): 156.
- 548 Howard, R.J., Giacomelli, M., Lozano-Fernandez, J., Edgecombe, G.D.,
549 Fleming, J.F., Kristensen, R.M., Ma, X., Olesen, J., Sørensen, M.V.,
550 Thomsen, P.F., Wills, M.A., Donoghue, P.C.J. and Pisani, D., 2022. The
551 Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic
552 data. *Journal of the Geological Society*, 179: jgs2021-107.
- 553 Huang, D., Vannier, J. and Chen, J., 2004. Anatomy and lifestyles of Early
554 Cambrian priapulid worms exemplified by *Corynetis* and *Anningvermis*
555 from the Maotianshan Shale (SW China). *Lethaia*, 37(1): 21-33.
- 556 Kristensen, R.M., 1983. Loricifera, a new phylum with Aschelminthes
557 characters from the meiobenthos. *Zeitschrift für zoologische Systematik
558 und Evolutionsforschung*, 21(3): 163-180.
- 559 Laumer, C.E., Fernandez, R., Lemer, S., Combosch, D., Kocot, K.M., Riesgo,
560 A., Andrade, S.C.S., Sterrer, W., Sorensen, M.V. and Giribet, G., 2019.
561 Revisiting metazoan phylogeny with genomic sampling of all phyla.
562 *Proceedings of the Royal Society B*, 286(1906): 20190831.
- 563 Lewis, P.O., 2001. A likelihood approach to estimating phylogeny from discrete
564 morphological character data. *Systematic biology*, 50(6): 913-925.
- 565 Liu, A.G., Matthews, J.J., Menon, L.R., McIlroy, D. and Brasier, M.D., 2014.
566 *Haootia quadriformis* n. gen., n. sp., interpreted as a muscular cnidarian
567 impression from the Late Ediacaran period (approx. 560 Ma). *Proc Biol
568 Sci*, 281(1793).
- 569 Liu, Y., Carlisle, E., Zhang, H., Yang, B., Steiner, M., Shao, T., Duan, B.,
570 Marone, F., Xiao, S. and Donoghue, P.C.J., 2022. *Saccorhytus* is an
571 early ecdysozoan and not the earliest deuterostome. *Nature*, 609:
572 541-546.
- 573 Martín-Durán, J.M. and Hejnol, A., 2015. The study of *Priapulus caudatus*
574 reveals conserved molecular patterning underlying different gut
575 morphogenesis in the Ecdysozoa. *BMC Biology*, 13: 29.
- 576 Minh, B.Q., Nguyen, M.A. and von Haeseler, A., 2013. Ultrafast approximation
577 for phylogenetic bootstrap. *Mol Biol Evol*, 30(5): 1188-95.
- 578 Moczydłowska, M., Budd, G.E. and AgiĆ, H., 2015. Ecdysozoan-like sclerites
579 among Ediacaran microfossils. *Geological Magazine*, 152(06):
580 1145-1148.
- 581 Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. and Minh, B.Q., 2015. IQ-TREE:
582 a fast and effective stochastic algorithm for estimating
583 maximum-likelihood phylogenies. *Molecular biology and evolution*,

- 584 32(1): 268-274.
- 585 Nielsen, C., 2019. Was the ancestral panarthropod mouth ventral or terminal?
586 *Arthropod Structure & Development*, 49: 152-154.
- 587 Ortega-Hernandez, J., Janssen, R. and Budd, G.E., 2019. The last common
588 ancestor of Ecdysozoa had an adult terminal mouth. *Arthropod
589 Structure & Development*, 49: 155-158.
- 590 Ou, Q., Han, J., Zhang, Z., Shu, D., Sun, G. and Mayer, G., 2017. Three
591 Cambrian fossils assembled into an extinct body plan of cnidarian
592 affinity. *Proceedings of the National Academy of Science*, 114(33):
593 8835-8840.
- 594 Rambaut, A., Drummond, A., Xie, D., Baele, G. and Suchard, M., 2018.
595 Posterior summarisation in Bayesian phylogenetics using Tracer 1.7.
596 *Systematic Biology*, 67(5): 901-904.
- 597 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S.,
598 Larget, B., Liu, L., Suchard, M.A. and Huelsenbeck, J.P., 2012.
599 MrBayes 3.2: efficient Bayesian phylogenetic inference and model
600 choice across a large model space. *Systematic Biology*, 61(3): 539-42.
- 601 Rota-Stabelli, O., Daley, A.C. and Pisani, D., 2013. Molecular timetrees reveal
602 a Cambrian colonization of land and a new scenario for ecdysozoan
603 evolution. *Current Biology*, 23(5): 392-8.
- 604 Sawaki, Y., Nishizawa, M., Suo, T., Komiya, T., Hirata, T., Takahata, N., Sano,
605 Y., Han, J., Kon, Y. and Maruyama, S., 2008. Internal structures and U-
606 Pb ages of zircons from a tuff layer in the Meishucunian formation,
607 Yunnan Province, South China. *Gondwana Research*, 14(1-2):
608 148-158.
- 609 Schmidt-Rhaesa, A., 2007. The evolution of organ systems. Oxford university
610 press, 54-73 pp.
- 611 Schmidt-Rhaesa, A., 2013a. Nematomorpha. In: A. Schmidt-Rhaesa (Editor),
612 Gastrotricha, Cycloneuralia and Gnathifera. De Gruyter, Germany, pp.
613 29-146.
- 614 Schmidt-Rhaesa, A., 2013b. Priapulida. In: A. Schmidt-Rhaesa (Editor),
615 Gastrotricha, Cycloneuralia and Gnathifera. De Gruyter, Germany, pp.
616 147-180.
- 617 Schmidt-Rhaesa, A., 2014. Handbook of Zoology. Gastrotricha, Cycloneuralia
618 and Gnathifera, 2. De Gruyter, Germany, 5-12 pp.
- 619 Shu, D.G. and Han, J., 2020a. The core value of Chengjiang fauna: the
620 formation of the animal kingdom and the birth of basic human organs.
621 *Earth Science Frontiers*, 27: 382-412.
- 622 Shu, D.G. and Han, J., 2020b. The core value of Chengjiang fauna: the
623 information of animal kingdom and the birth basic human organs. *Earth
624 Science Frontiers*, 27: 1-32.
- 625 Valentine, J.W. and Collins, A.G., 2000. The significance of moulting in
626 ecdysozoan evolution. *Evolution & Development*, 2(3): 152-156.
- 627 Vannier, J., Calandra, I., Gaillard, C. and Żylińska, A., 2010. Priapulid worms:

- 628 Pioneer horizontal burrowers at the Precambrian-Cambrian boundary.
629 Geology, 38(8): 711-714.

630 Vannier, J. and Chen, J., 2005. Early Cambrian Food Chain: New Evidence
631 from Fossil Aggregates in the Maotianshan Shale Biota, SW China.
632 Palaios, 20(1): 3-26.

633 Vermeij, G.J., 1977. The Mesozoic marine revolution: evidence from snails,
634 predators and grazer. Paleobiology, 3: 245-258.

635 Vinther, J. and Parry, L.A., 2019. Bilateral jaw elements in *Amiskwia*
636 *sagittiformis* bridge the morphological gap between gnathiferans and
637 chaetognaths. Current Biology, 29(5): 881-888 e1.

638 Wang, D., Vannier, J., Schumann, I., Wang, X., Yang, X.G., Komiya, T., Uesugi,
639 K., Sun, J. and Han, J., 2019. Origin of ecdysis: fossil evidence from
640 535-million-year-old scalidophoran worms. Proceedings of the Royal
641 Society B, 286(1906): 20190791.

642 Zhang, H., Xiao, S., Liu, Y., Yuan, X., Wan, B., Muscente, A.D., Shao, T., Gong,
643 H. and Cao, G., 2015a. Armored kinorhynch-like scalidophoran animals
644 from the early Cambrian. Scientific Reports, 5: 16521.

645 Zhang, Z., Smith, M.R. and Shu, D., 2015b. New reconstruction of the *Wiwaxia*
646 scleritome, with data from Chengjiang juveniles. Sci Rep, 5: 14810.

648
649 **Acknowledgments:** We thank H. G. for technical assistance. Funding: We
650 thank the National Natural Science Foundation of China (grants 42172016,
651 41890844 to J.G., 41621003 to J.H., 42202009 to D.W.), the Strategic Priority
652 Research Program of the Chinese Academy of Sciences (grant XDB26000000
653 grant to J.H. and J.G.), the China Post-doctoral Science Foundation (grant
654 2022M722568 to D.W.), the Key Scientific and Technological Innovation Team
655 Project in Shaanxi Province (grant to J.G.), and the Région Auvergne Rhône
656 Alpes and Université Claude Bernard Lyon 1 (grant to J.V.) for financial
657 support.

658
659 **Author contributions:** J.H. and J.G. conceived the research. J.G., Y.Q., Z.S.,
660 J.P., and B. Z. collected the material from Yanjiahe Formation. Y.Q. and D.W.
661 prepared all the specimens, photographs, figures except Figure 4 (J.V.). J.S.
662 performed the analysis by Micro-CT and visualization with Micro-CT data. D.W.
663 and J.H. performed phylogenetic analyses. Y.Y. performed morphospace
664 analyses and Y.Z. and T.Z. performed computational fluid dynamic analyses in
665 initial draft (not used in this version). D.W., J.V., J.H., J.G., and Y.Q. wrote the
666 paper with input from all other authors. All authors approved the final
667 manuscript.

669 **Competing interests:** The authors declare no competing interests.

671 **Additional information**

672 **Supplementary information** The online version contains supplementary
673 material (tomographic data of *Beretella* and *Saccorhytus*, and movies of
674 3D-animation of the holotype of *Beretella*) available at
675 <https://figshare.com/s/054f31fc22567a590d7f>.

676

677 **Correspondence and requests for materials** should be addressed to J. G.
678 or J. H.

679

680