

1 **Genome assembly of the edible jelly fungus *Dacryopinax spathularia* (Dacrymycetaceae)**
2 Hong Kong Biodiversity Genomics Consortium
3 Project Coordinator and Co-Principal Investigators: Jerome H.L. Hui¹, Ting Fung Chan²,
4 Leo L. Chan³, Siu Gin Cheung⁴, Chi Chiu Cheang^{5,6}, James K.H. Fang⁷, Juan Diego
5 Gaitan-Espitia⁸, Stanley C.K. Lau⁹, Yik Hei Sung^{10,11}, Chris K.C. Wong¹², Kevin Y.L. Yip^{13,14},
6 Yingying Wei¹⁵
7 DNA extraction, library preparation and sequencing: Tze Kiu Chong¹, Sean T.S. Law¹
8 Genome assembly and gene model prediction: Wenyan Nong¹
9 Genome analysis and quality control: Wenyan Nong¹
10 Sample collector and logistics: Tze Kiu Chong¹, Sean T.S. Law¹, Ho Yin Yip¹
11 1. School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory
12 of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese
13 University of Hong Kong, Hong Kong, China
14 2. School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese
15 University of Hong Kong, Hong Kong SAR, China
16 3. State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City
17 University of Hong Kong, Hong Kong SAR, China
18 4. State Key Laboratory of Marine Pollution and Department of Chemistry, City University of
19 Hong Kong, Hong Kong SAR, China
20 5. Department of Science and Environmental Studies, The Education University of Hong
21 Kong, Hong Kong SAR, China
22 6. EcoEdu PEI, Charlottetown, PE, C1A 4B7, Canada
23 7. Department of Food Science and Nutrition, Research Institute for Future Food, and State
24 Key Laboratory of Marine Pollution, The Hong Kong Polytechnic University, Hong Kong
25 SAR, China
26 8. The Swire Institute of Marine Science and School of Biological Sciences, The University
27 of Hong Kong, Hong Kong SAR, China
28 9. Department of Ocean Science, The Hong Kong University of Science and Technology,
29 Hong Kong SAR, China
30 10. Science Unit, Lingnan University, Hong Kong SAR, China
31 11. School of Allied Health Sciences, University of Suffolk, Ipswich, IP4 1QJ, UK
32 12. Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong
33 Baptist University, Hong Kong SAR, China
34 13. Department of Computer Science and Engineering, The Chinese University of Hong
35 Kong, Hong Kong SAR, China
36 14. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
37 15. Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
38

39 Correspondence on behalf of the consortium: jeromehui@cuhk.edu.hk

40

41 **Abstract**

42 The edible jelly fungus *Dacryopinax spathularia* (Dacrymycetaceae) is
43 wood-decaying and can be commonly found worldwide. It has also been used in food
44 additives given its ability to synthesize long-chain glycolipids. In this study, we present the
45 genome assembly of *D. spathularia* using a combination of PacBio HiFi reads and Omni-C
46 data. The genome size of *D. spathularia* is 29.2 Mb and in high sequence contiguity and
47 completeness, including scaffold N50 of 1.925 Mb and 92.0% BUSCO score, respectively. A
48 total of 11,510 protein-coding genes, and 474.7 kb repeats accounting for 1.62% of the
49 genome, were also predicted. The *D. spathularia* genome assembly generated in this study
50 provides a valuable resource for understanding their ecology such as wood decaying
51 capability, evolutionary relationships with other fungus, as well as their unique biology and
52 applications in the food industry.

53

54 **Introduction**

55 *Dacryopinax spathularia* (Dacrymycetaceae) (Figure 1A) is a brown-rot fungus
56 commonly found on rotting coniferous and broadleaf wood around the world; and can be
57 easily distinguished by the spathulate shape of its gelatinous fruiting body (McNabb, 1965;
58 Worrall et al., 1997). Owing to its production of carotenoid pigments for protection against
59 photodynamic injury, its external appearance is generally orange to yellow (Vail & Lily,
60 1968). In addition to its ecological role in nutrients recycling, this species is also edible and
61 commonly known as “sweet osmanthus ear” mushroom in China (Bitzer et al., 2018). Given
62 its ability to synthesise long-chain glycolipids under fermentation, this species has also been
63 cultivated in food industry as natural preservatives in soft drinks (EFSA Panel on Food
64 Additives and Flavourings (FAF) et al., 2021).

65

66 **Context**

67 Edible jelly fungus *Dacryopinax spathularia* (Dacrymycetaceae), which was first
68 described as *Merulius spathularius*, is a macrofungus basidiomycete and can be commonly
69 found on rotting coniferous and broadleaf wood in tropics and subtropics. Its wood-decaying
70 ability facilitates nutrient recycling in forest ecosystem (Seifert, 1983). This species is edible
71 and frequently cultivated in industry as food additive such as natural preservative in soft
72 drinks (Bitzer et al., 2018; Bitzer et al., 2019). In addition, isolated fungal extract can also
73 display anti-bacterial properties (Hyde et al., 2019). *D. spathularia* can be naturally found in
74 Asia, Africa, America, Australia and Pacific, and the genomic resource of this species with
75 translational values is not available.

76

77 In Hong Kong, *D. spathularia* can also be commonly found (Agriculture, Fisheries
and Conservation Department, 2013) and has been selected as one of the species to be

78 sequenced by the Hong Kong Biodiversity Genomics Consortium (a.k.a. EarthBioGenome
79 Project Hong Kong) formed by investigators from eight publicly funded universities. Here,
80 we present the genome assembly of *D. spathularia*, which was assembled from PacBio long
81 reads and Omni-C sequencing data. The provision of the *D. spathularia* genome resource is
82 useful for the better understanding of wood decaying capability, phylogenetic relationships in
83 this family, as well as the biosynthesis of the long-chain glycolipids that are applied as natural
84 preservatives in food industry.

85

86 **Methods**

87 *Sample collection and culture of fungal isolates*

88 The fruit bodies of *D. spathularia* was collected in Luk Keng, Hong Kong on 20 June,
89 2022. The fungal isolate was transferred from the edge of fruit bodies to potato dextrose agar
90 (BD DifcoTM) plates using a pair of sterilized forceps. The remaining collected fruit bodies
91 were snap-frozen with liquid nitrogen and stored in -80°C refrigerator. Grown hyphae from
92 >2-week-old was then transferred to new plates for purification for at least three rounds. The
93 identity of isolate, termed “F14”, was validated with the DNA barcode of Translation
94 elongation factor 1 alpha (TEF-1 α) gene using primer pairs EF1-1018F and EF1-1620R
95 (Stielow et al., 2015) (Supplementary Information 1).

96

97 *High molecular weight DNA extraction*

98 ~1.5 g of mycelia of *D. spathularia* isolate was collected from the upper layer of agar
99 culture and was ground in a mortar with liquid nitrogen. High molecular weight (HMW)
100 genomic DNA was isolated with a CTAB treatment, followed by using NucleoBond HMW
101 DNA kit (Macherey Nagel Item No. 740160.20). Briefly, the ground tissue was transferred to
102 5 mL CTAB buffer (Doyle & Doyle, 1987) with an addition of 1% PVP for 1 h digestion at
103 55°C. After RNase A treatment, 1.6 mL 3M potassium acetate was added to the lysate,
104 followed by two rounds of chloroform:IAA (24:1) wash. The supernatant was added with H1
105 buffer from NucleoBond HMW DNA kit for a final volume of 6 mL and processed according
106 to the manufacturer’s protocol. The DNA sample was eluted in 80 μ L elution buffer (PacBio
107 Ref. No. 101-633-500) and its quantity and quality was assessed with NanoDropTM One/OneC
108 Microvolume UV-Vis Spectrophotometer, Qubit[®] Fluorometer, and overnight pulse-field gel
109 electrophoresis.

110

111 *Pacbio library preparation and sequencing*

112 DNA shearing was first performed from 5 μ g HMW DNA in 120 μ L elution buffer
113 using a g-tube (Covaris Part No. 520079) with 6 passes of centrifugation at 1,990 $\times g$ for 2
114 min. The sheared DNA sample was purified using SMRTbell[®] cleanup beads (PacBio Ref.
115 No. 102158-300), from which 2 μ L of sample was taken for quality check through overnight

116 pulse-field gel electrophoresis and Qubit® Fluorometer quantification. A SMRTbell library
117 was then prepared by following the protocol of the SMRTbell® prep kit 3.0 (PacBio Ref. No.
118 102-141-700). Briefly, the sheared DNA was repaired and polished at both ends, followed by
119 A-tailing and ligation of T-overhand SMRTbell adapters. A subsequent purification step was
120 processed with SMRTbell® cleanup beads and 2 µL of sample was taken and subject to
121 quality check as mentioned above. Nuclease treatment was then proceeded to remove
122 non-SMRT bell structures. A final size-selection step using 35% AMPure PB beads was
123 processed to eliminate short fragments.

124 A final library preparation was performed with The Sequel® II binding kit 3.2 (PacBio
125 Ref. No. 102-194-100) before sequencing. The SMRTbell library was proceeded with
126 annealing and binding with Sequel II® primer 3.2 and Sequel II® DNA polymerase 2.2,
127 respectively. SMRTbell® cleanup beads were used for further cleanup the library, to which
128 diluted Sequel II® DNA Internal Control Complex was added. The final library was loaded at
129 an on-plate concentration of 90 pM with the diffusion loading mode. Sequencing was
130 performed on the Pacific Biosciences SEQUEL IIe System for a run of 30-hour movies with
131 120 min pre-extension to output HiFi reads with one SMRT cell. Details of the resulting
132 sequencing data are listed in Supplementary Information 2.

133

134 ***Omni-C library preparation and sequencing***

135 ~0.5 g of stored fruit body was ground into powder with liquid nitrogen and used for
136 the construction of an Omni-C library by following the plant tissue protocol of the Dovetail®
137 Omni-C® Library Preparation Kit (Dovetail Cat. No. 21005). The ground tissue was
138 transferred to 4 mL 1X PBS and was proceeded to crosslinking with formaldehyde and
139 digestion with endonuclease DNase I. The quantity and fragment size of the lysate was
140 assessed with Qubit® Fluorometer and TapeStation D5000 HS ScreenTape, respectively. The
141 qualified lysate was polished at DNA ends and ligated with biotinylated bridge adaptors,
142 followed by proximity ligation, crosslink reversal of DNA and purification with SPRIselect™
143 Beads (Beckman Coulter Product No. B23317). The end repair and adapter ligation were
144 performed with the Dovetail™ Library Module for Illumina (Dovetail Cat. No. 21004). The
145 library was then sheared with USER Enzyme Mix and purified with SPRIselect™ Beads. The
146 DNA fragments were isolated in Streptavidin Beads, from which the library was amplified
147 with Universal and Index PCR Primers from the Dovetail™ Primer Set for Illumina (Dovetail
148 Cat. No. 25005). Size selection targeting fragment size between 350 bp and 1000 bp was
149 performed with SPRIselect™ Beads. The quantity and fragment size of the library was
150 assessed by Qubit® Fluorometer and TapeStation D5000 HS ScreenTape, respectively. The
151 resulting library was sequenced on an Illumina HiSeq-PE150 platform. Details of the
152 resulting sequencing data are listed in Supplementary Information 2.

153

154 ***RNA extraction and transcriptome sequencing***

155 ~1 g of mycelia of *D. spathularia* isolate was ground in a mortar with liquid nitrogen.
156 Total RNA was isolated from the ground tissue using the mirVana miRNA Isolation Kit
157 (Ambion), following the manufacturer's instructions. The RNA sample was subjected to
158 quality control with NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer and
159 1% agarose gel electrophoresis. The qualified sample was sent to Novogene Co. Ltd (Hong
160 Kong, China) for 150 bp paired-end sequencing. Details of the resulting sequencing data are
161 listed in Supplementary Information 2.

162

163 ***Genome assembly and gene model prediction***

164 A *de novo* genome assembly was conducted with Hifiasm (Cheng et al., 2021), which
165 was screened with BlobTools (v1.1.1) (Laetsch & Blaxter, 2017) by searching against the NT
166 database using BLAST to identify and remove any possible contaminations (Supplementary
167 Information 3). Haplotypic duplications were discarded using “purge_dups” according to the
168 depth of HiFi reads (Guan et al., 2020). The Omni-C data were used to scaffold the assembly
169 using YaHS (Zhou et al., 2022).

170 Gene model prediction was performed using funannotate (Palmer & Stajich, 2020).
171 RNA sequencing data were first processed using Trimmomatic (v0.39) and kraken2 (v2.0.8
172 with kraken2 database k2_standard_20210517) to remove the low quality and contaminated
173 reads. The processed reads were then aligned to the soft-masked repeat genome using Hisat2
174 to run the genome-guided Trinity (Grabherr et al., 2011) with parameters "--stranded RF
175 --jaccard_clip", from which 44,384 transcripts were derived. Gene models were then
176 predicted together with the protein evidence from *Dacryopinax primogenitus*
177 (GCF_000292625.1; Floudas et al., 2012) using funannotate with the following parameters
178 “--protein_evidence GCF_000292625.1_Dacryopinax_sp._DJM_731_SSP1_v1.0.proteins.faa
179 --genemark_mode ET --optimize_augustus --busco_db dikarya --organism fungus -d
180 --max_intronlen 3000”. The Trinity transcript alignments were converted to GFF3 format and
181 were input to PASA alignment in the Launch_PASA_pipeline.pl process to generate the
182 PASA models trained by TransDecoder, followed by selection of the PASA gene models
183 using the Kallisto TPM data. The PASA gene models were then used for training Augustus in
184 the funannotate-predict step. The gene models from several prediction sources, with a total of
185 54,275 genes from Augustus (4967), HiQ (4624), CodingQuarry (11762), GlimmerHMM
186 (10843), pasa (11217), snap (10862), were passed to Evidence Modeler to generate the gene
187 model annotation files. UTRs were then captured in the funannotate-update step using PASA
188 to generate the final genome annotation files.

189

190 ***Repeat annotation***

191 Transposable element (TE) annotation was performed by following the Earl Grey TE

192 annotation workflow pipeline (version 1.2, <https://github.com/TobyBaril/EarlGrey>) (Baril et
193 al., 2022).

194

195 **Results and discussion**

196 **Genome assembly**

197 A total of 9.34 Gb HiFi reads were generated from PacBio sequencing
198 (Supplementary Information 2). After scaffolding with 3.46 Gb Omni-C data, the *D.*
199 *spathularia* genome assembly has a size of 29.2 Mb, scaffold N50 of 1.925 Mb and 92.0%
200 BUSCO score (Figure 1B; Table 1), and 19 out of 24 scaffolds are >100 kb in length (Figure
201 and 1C; Table 2). The genome size is similar to *Dacryopinax primogenitus* (29.5 Mb)
202 (Floudas et al., 2012) and GenomeScope estimated heterozygosity of 5.09% (Figure 1D;
203 Table 3). Gene model prediction generated a total of 11,510 protein-coding genes with an
204 average protein length of 451 bp and a BUSCO score of 91.9%.

205

206 **Repeat content**

207 Repeat content analysis showed that transposable elements (TEs) account for 1.62%
208 of the *D. spathularia* genome (Figure 1E; Table 4). The major classified TE was LTR
209 retronsposons (0.95%) and DNA transposons (0.12%) (Table 4).

210

211 **Conclusion and future perspective**

212 The study presents the genome assembly of *D. spathularia*, which is a useful resource
213 for further phylogenomic studies in the family Dacrymycetaceae and investigations on the
214 biosynthesis of glycolipids via the fermentation process with applications in the food
215 industry.

216

217 **Data validation and quality control**

218 The identity of fungal isolate of *D. spathularia* was validated with DNA barcoding of
219 Translation elongation factor 1 alpha (TEF-1 α) gene, which was compared with sequences
220 from phylogenetic studies of Dacrymycetaceae (Zaroma & Ekman, 2020) and its sister family
221 Cerinomycetaceae (Savchenko et al., 2021), the *Dacryopinax primogenitus* genome
222 (Accession: NW_024467206.1:736197-736766), and *D. spathularia* (Accession:
223 AY881020.1). The sequences were aligned with MAFFT v7.271 (Katoh and Standley, 2013).
224 A phylogenetic tree was constructed with FastTree (Price et al., 2010) with 1,000 bootstraps
225 and visualized in Evolview v3 (Subramanian et al., 2019). The *D. spathularia* isolate in this
226 study was clustered with other two *D. spathularia* accessions with a bootstrap support of
227 92/100 (Supplementary Information 1).

228

229 For HMW DNA extraction and Pacbio library preparation, the samples were subject
to quality control with NanoDropTM One/OneC Microvolume UV-Vis Spectrophotometer,

230 Qubit® Fluorometer, and overnight pulse-field gel electrophoresis. The quality of Omni-C
231 library was inspected with Qubit® Fluorometer and TapeStation D5000 HS ScreenTape.

232 During the genome assembly, BlobTools (v1.1.1) (Laetsch & Blaxter, 2017) was
233 employed to identify and remove any possible contaminations (Supplementary Information 3).
234 The assembled genome and gene model prediction were assessed with Benchmarking
235 Universal Single-Copy Orthologs (BUSCO, v5.5.0) (Manni et al., 2021) using the fungi
236 dataset (fungi_odb10). GenomeScope2 (Vurture et al., 2017) was used to estimate the
237 genome size and heterozygosity of the assembly.

238

239

240 **Data availability**

241 The raw reads generated in this study were deposited in the NCBI database under the
242 SRA accessions SRR24631918, SRR27412332 and SRR27412333. The GenomeScope report,
243 genome, genome annotation and repeat annotation files were made publicly available in
244 Figshare (<https://figshare.com/s/9d7dd8509b902306bd5b>).

245

246

247 **Authors' contribution**

248 JHLH, TFC, LLC, SGC, CCC, JKHF, JDG, SCKL, YHS, CKCW, KYLY and YW
249 conceived and supervised the study; TKC and STSL collected the samples and carried out
250 DNA extraction, library preparation and genome sequencing; HYY arranged the logistics of
251 samples; WN performed genome assembly and gene model prediction.

252

253 **Competing interest**

254 The authors declare that they do not have competing interests.

255

256 **Funding**

257 This work was funded and supported by the Hong Kong Research Grant Council
258 Collaborative Research Fund (C4015-20EF), CUHK Strategic Seed Funding for
259 Collaborative Research Scheme (3133356) and CUHK Group Research Scheme (3110154).

260

261 **References**

- 262 1. Agriculture, Fisheries and Conservation Department. Common wood decay fungi of
263 Hong Kong (2). 2013.
264 https://www.herbarium.gov.hk/filemanager/leaflets/en/upload/3/13/7_en.pdf. Accessed 04
265 Jan 2024.
- 266 2. Baril T, Imrie RM, Hayward A. Earl Grey: a fully automated user-friendly transposable
267 element annotation and analysis pipeline. bioRxiv. 2022.

268 <https://doi.org/10.1101/2022.06.30.498289>

269 3. Bitzer J, Henkel T, Nikiforov AI, Rihner MO, Herberth MT. Developmental and
270 reproduction toxicity studies of glycolipids from *Dacryopinax spathularia*. Food and
271 Chemical Toxicology. 2018;120:430-8.

272 4. Bitzer J, Henkel T, Nikiforov AI, Rihner MO, Verspeek-Rip CM, Usta B, van den
273 Wijngaard M. Genetic toxicity studies of glycolipids from *Dacryopinax spathularia*. Food
274 and Chemical Toxicology. 2019;123:162-8.

275 5. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly
276 using phased assembly graphs with hifiasm. Nature methods. 2021;18(2):170-5.

277 6. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf
278 tissue. Phytochemical bulletin. 1987.

279 7. EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Engel KH,
280 Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Gundert R, Remy U, Husøy T, Manco
281 M. Safety evaluation of long-chain glycolipids from *Dacryopinax spathularia*. EFSA
282 Journal. 2021;19(6):e06609.

283 8. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar
284 R, Spatafora JW, Yadav JS, Aerts A. The Paleozoic origin of enzymatic lignin
285 decomposition reconstructed from 31 fungal genomes. Science. 2012;336(6089):1715-9.

286 9. Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing
287 haplotypic duplication in primary genome assemblies. Bioinformatics.
288 2020;36(9):2896-8.

289 10. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
290 Raychowdhury R, Zeng Q, Chen Z. Full-length transcriptome assembly from RNA-Seq
291 data without a reference genome. Nature biotechnology. 2011;29(7):644-52.

292 11. Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AG, Abeywickrama PD,
293 Aluthmuhandiram JV, Brahamanage RS, Brooks S, Chaiyasen A. The amazing potential
294 of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity. 2019;97:1-36.

295 12. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
296 improvements in performance and usability. Molecular biology and evolution.
297 2013;30(4):772-80.

298 13. Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies.
299 F1000Research. 2017;6(1287):1287.

300 14. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and
301 streamlined workflows along with broader and deeper phylogenetic coverage for scoring
302 of eukaryotic, prokaryotic, and viral genomes. Molecular biology and evolution.
303 2021;38(10):4647-54.

304 15. McNabb RF. Taxonomic studies in the Dacrymycetaceae: III. *Dacryopinax* Martin. New
305 Zealand Journal of Botany. 1965;3(1):59-72.

306 16. Nagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, Sun H, Yadav JS, Pangilinan J,
307 Larsson KH, Matsuura K. Comparative genomics of early-diverging mushroom-forming
308 fungi provides insights into the origins of lignocellulose decay capabilities. *Molecular*
309 *biology and evolution*. 2016;33(4):959-70.

310 17. Palmer JM, Stajich J. Funannotate v1. 8.1: Eukaryotic genome annotation. *Zenodo*
311 <https://doi.org/10.5281/zenodo.2020;4054262>.

312 18. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for
313 large alignments. *PloS one*. 2010;5(3):e9490.

314 19. Savchenko A, Zamora JC, Shirouzu T, Spirin V, Malysheva V, Kõljalg U, Miettinen O.
315 Revision of Cerinomyces (Dacrymycetes, Basidiomycota) with notes on morphologically
316 and historically related taxa. *Studies in Mycology*. 2021;99(1):100117.

317 20. Seifert KA. Decay of wood by the Dacrymycetales. *Mycologia*. 1983:1011-8.

318 21. Shirouzu T, Hosaka K, Nam KO, Weir BS, Johnston PR, Hosoya T. Phylogenetic
319 relationships of eight new Dacrymycetes collected from New Zealand.
320 *Persoonia-Molecular Phylogeny and Evolution of Fungi*. 2017;38(1):156-69.

321 22. Stielow JB, Levesque CA, Seifert KA, Meyer W, Irinyi L, Smits D, Renfurm RG, Verkley
322 GJ, Groenewald M, Chaduli D, Lomascolo A. One fungus, which genes? Development
323 and assessment of universal primers for potential secondary fungal DNA barcodes.
324 *Persoonia-Molecular Phylogeny and Evolution of Fungi*. 2015;35(1):242-63.

325 23. Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH. Evolview v3: a webserver for
326 visualization, annotation, and management of phylogenetic trees. *Nucleic acids research*.
327 2019;47(W1):W270-5.

328 24. Vail WJ, Lilly VG. The location of carotenoid pigments and thickness of the cell wall in
329 light-and dark-grown cells of *Dacryopinax spathularia*. *Mycologia*. 1968;60(4):902-7.

330 25. Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz
331 MC. GenomeScope: fast reference-free genome profiling from short reads.
332 *Bioinformatics*. 2017;33(14):2202-4.

333 26. Worrall JJ, Anagnost SE, Zabel RA. Comparison of wood decay among diverse
334 lignicolous fungi. *Mycologia*. 1997;89(2):199-219.

335 27. Zamora JC, Ekman S. Phylogeny and character evolution in the Dacrymycetes, and
336 systematics of Unilacrymaceae and Dacryonaemataceae fam. nov. *Persoonia-Molecular*
337 *Phylogeny and Evolution of Fungi*. 2020;44(1):161-205.

338 28. Zhou C, McCarthy SA, Durbin R. YaHS: yet another Hi-C scaffolding tool.
339 *Bioinformatics*. 2023;39(1):btac808.

340

341

342 **Table 1.** Genome statistic and sequencing information.

343 **Table 2.** Information on scaffold name and length.

344 **Table 3.** Summary of GenomeScope statistics.

345 **Table 4.** Summary of transposable element annotation.

346

347 **Figure 1.** Genomic information of *Dacryopinax spathularia*. **A)** Picture of *Dacryopinax*
348 *spathularia*; **B)** Genome statistics; **C)** Omni-C contact map of the assembly; **D)**
349 GenomeScope report summary; **E)** Pie chart and repeat landscape plot of repetitive elements
350 in the assembled genome.

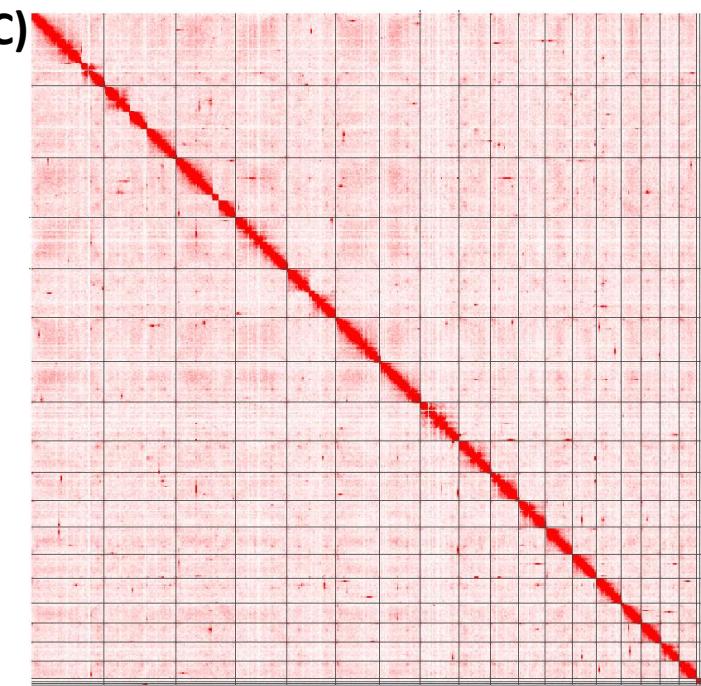
351

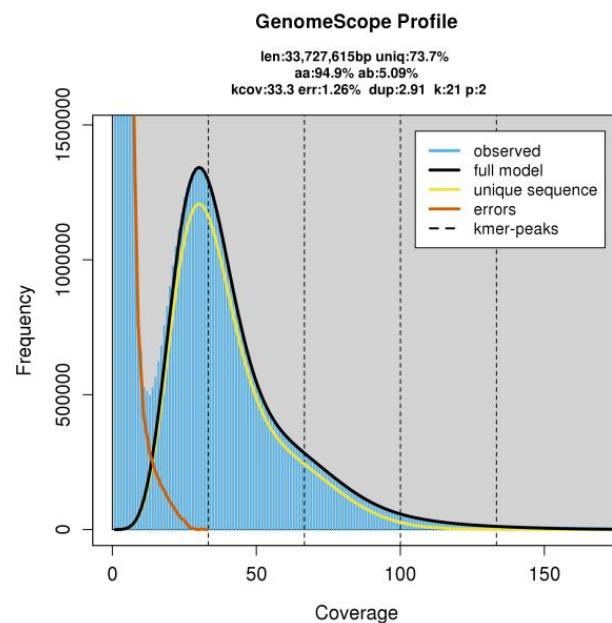
352 **Supplementary Information 1.** Phylogenetic analysis of Translation elongation factor 1
353 alpha (TEF-1 α) gene region *Dacryopinax spathularia* fungal isolate “F14” in this study.

354 **Supplementary Information 2.** Summary of genomic sequencing data.

355 **Supplementary Information 3.** Genome assembly QC and contaminant/cobiont detection.

356


A)


B)

	<i>Dacryopinax spathularia</i>	<i>Dacryopinax</i> sp.
Accession number	SAMN35152488	GCF_000292625.1
Total length	29,247,333	29,503,487
Number	24	99
N_count	0.002%	6.449%
N50	1,925,452	1,233,089
N50n	6	10
BUSCO (Genome)	92.0%	93.9%
Gene models	10,910	10,298
Protein-coding genes	11,510	10,237
Protein total length	5,192,691	4,133,687
Protein mean length	451	404
BUSCO (Proteome)	91.90%	94.90%

C)

D)

E)

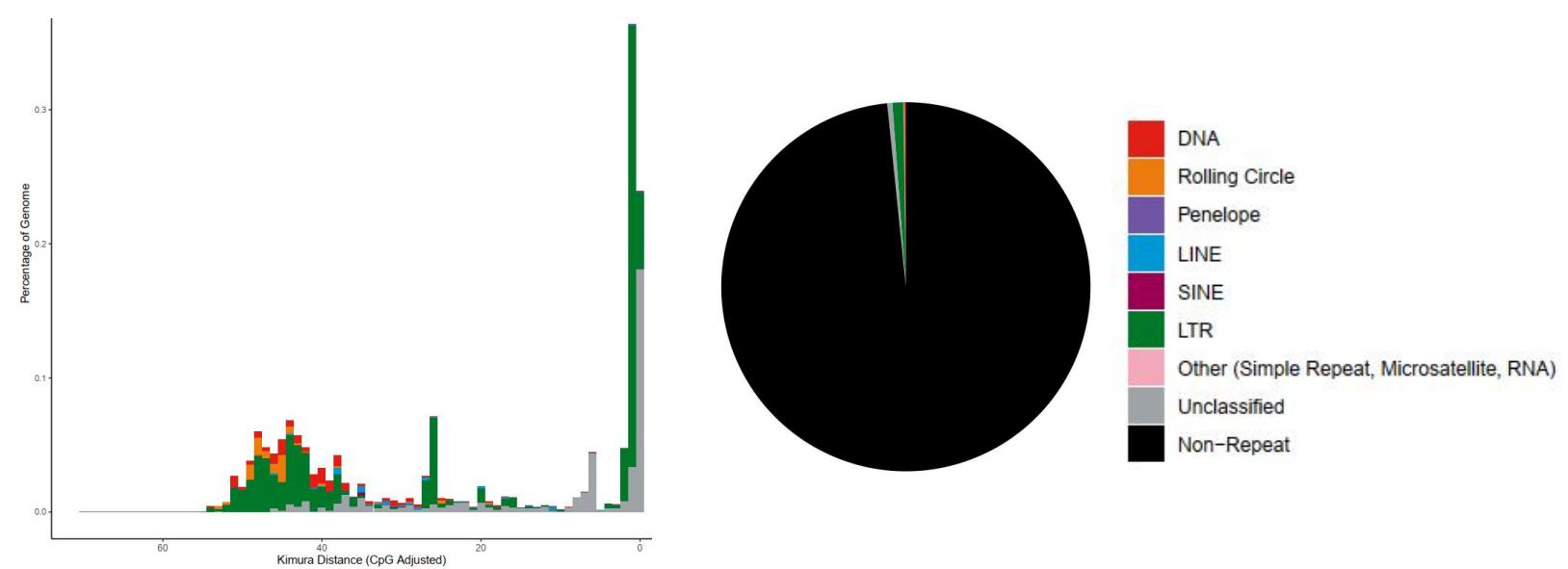


Figure 1