

1
2 **Brief Communication:**
3 **Proteome-scale tagging and functional screening in mammalian cells by ORFtag**
4
5

6 Filip Nemčko^{1,2,7}, Moritz Himmelsbach^{2,3,4,5,7}, Vincent Loubiere¹, Ramesh Yelagandula⁵,
7 Michaela Pagani¹, Nina Fasching⁵, Julius Brennecke^{5,*}, Ulrich Elling^{5,*}, Alexander
8 Stark^{1,6,*}, Stefan L. Ameres^{3,4,5,*}
9
10

11 ¹ Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna,
12 Austria

13 ² Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and
14 Medical University of Vienna, 1030 Vienna, Austria.

15 ³ Max Perutz Labs, Vienna BioCenter (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria

16 ⁴ University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell
17 Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria

18 ⁵ Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna,
19 Austria

20 ⁶ Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria

21 ⁷ These authors contributed equally: Filip Nemčko, Moritz Himmelsbach

22
23 * Co-corresponding authors: julius.brennecke@imba.oeaw.ac.at,
24 ulrich.elling@imba.oeaw.ac.at, stark@starklab.org, stefan.ameres@univie.ac.at

25 **Abstract**

26 Determining protein function in a systematic manner is a key goal of modern biology, but
27 remains challenging with current approaches. Here, we present ORFtag, a versatile, cost-
28 effective and highly efficient method for the massively-parallel tagging and functional
29 interrogation of proteins at proteome scale. Using mouse embryonic stem cells, we
30 showcase ORFtag's utility through screens for transcriptional activators, repressors and
31 post-transcriptional regulators. Each screen finds known and novel regulators, including
32 long ORFs not accessible to other methods, revealing that Zfp574 is a highly selective
33 transcriptional activator and that oncogenic fusions frequently function as transactivators.

34

35 **Main text**

36 Proteins are pivotal in nearly all cellular processes, but their biochemical diversity often
37 hinders systematic protein function studies. Genetic loss- or gain-of-function screens -
38 such as CRISPR-Cas9, Cas9i and Cas9a screens - are powerful methods for identifying
39 genes involved in specific cellular processes, but typically do not provide direct insight
40 into protein function¹. They are also often hampered by functional redundancies and the
41 essentiality of many genes. Conversely, sufficiency-based assays allow direct
42 determination of protein-inherent function^{2,3}. However, current systematic methods hinge
43 on the delivery and expression of open reading frame (ORF) libraries^{4,5}, which are not
44 only costly and challenging to maintain but also tend to favor shorter ORFs (<5kb) due to
45 limitations in DNA synthesis, cloning, viral packaging, and delivery into cells². While
46 targeted engineering of native gene locations can bypass these limitations, recent
47 CRISPR-Cas9 techniques for systematic gene tagging have only scaled to several
48 hundred genes⁶⁻¹⁰.

49

50 Here, we present ORFtag, a versatile approach that allows for the massive, parallel, and
51 proteome-scale tagging of endogenous ORFs, overcoming critical limitations of current
52 methods. ORFtag is based on insertional elements such as retroviral vectors containing
53 a constitutively active promoter, a selection gene, and a functional tag of interest followed
54 by a splice donor sequence (**Fig. 1a**). Upon large-scale transduction of cultured cells,

55 ORFtag cassettes randomly integrate into the genome and drive the transcription of
56 nearby endogenous gene loci by splicing of the functional tag to splice-acceptor sites
57 downstream of the integration site. With one cassette for each of three open reading
58 frames, ORFtag can be used to generate N-terminal fusions of endogenous ORFs with a
59 wide range of functional tags. A key feature of ORFtag is its compatibility with diverse
60 functional readouts including reporter-based positive selection by fluorescence-activated
61 cell sorting (FACS). In the selected cell population, tagged genes are identified by
62 mapping integration sites using inverse PCR (iPCR) followed by next-generation
63 sequencing (NGS)¹¹.

64

65 To benchmark the ORFtag approach, we performed three functional screens for
66 transcriptional activators, transcriptional repressors, and post-transcriptional gene
67 regulatory (PTGR) proteins in mouse embryonic stem cells (mESCs), each in two
68 biological replicates (**Fig. 1b**). For the transcriptional activator and repressor screens, we
69 systematically fused proteins to the DNA binding domain of the bacterial Tet Repressor
70 (TetR), enabling their recruitment to TetO binding sites located upstream of an integrated
71 GFP reporter. This reporter contained an inactive minimal promoter or a constitutively
72 active promoter for transcriptional activator and repressor screens, respectively. For the
73 PTGR screen, we tagged proteins with the lambda phage N protein (λ N) in order to recruit
74 them to boxB sites located in the 3' UTR of a constitutively expressed GFP reporter
75 mRNA. To ensure that each cell expresses only one tagged ORF, we transduced reporter
76 cells with retroviruses carrying ORFtag cassettes at low multiplicity of infection (MOI)
77 followed by selection. Cells with altered GFP reporter expression – increased for activator
78 and decreased for repressor and PTGR screens – were isolated by FACS and insertion
79 sites were determined in pool by inverse PCR (iPCR) on ring-ligated short DNA fragments
80 obtained by restriction digest and subsequent NGS¹¹ (**Fig. 1a**). Finally, we identified gene
81 loci where insertions were statistically over-represented in the sorted samples compared
82 to the non-selected background dataset by assigning each integration to the nearest
83 downstream splice acceptor-containing exons of protein-coding genes (see **Online**
84 **Methods** and **Extended Data Table 1**). For each of the three screens, we found a

85 prominent, screen-specific enrichment of insertions at positive control genes, exemplified
86 by the transcriptional coactivator Yap1 (for the activator screen), the KRAB domain-
87 containing Zfp57 (repressor), and the mRNA deadenylase complex subunit Cnot9
88 (PTGR) (**Fig. 1c**).

89
90 Overall, we identified 139 putative transcriptional activators, 207 repressors, and 77
91 PTGR proteins using stringent thresholds (FDR < 0.1%, log2 odds ratio ≥ 1 , see **Extended**
92 **Data Table 1**). Activator hits include several known transcriptional activators, such as
93 p65, Ep300, subunits of the Mediator complex, and all Kmt2(a-d) histone-
94 methyltransferases, which could not be screened before due to their long ORFs of up to
95 17kb (**Fig. 1d, Extended Data Fig. 1a**). Repressor hits contain 75 KRAB zinc-finger
96 repressors and their corepressor Trim28, HP1 family proteins, H3K9 methyl-transferases,
97 and Polycomb repressive complex components (**Fig. 1d, Extended Data Fig. 1a**).
98 Finally, the PTGR screen identified core components of the microRNA (Ago2, Tnrc6a/b/c)
99 and nonsense-mediated decay (Smg1, Smg9, Upf2) pathways, members of the Ccr4-Not
100 deadenylation complex (Cnot2, Cnot3, Cnot9), as well as translational inhibitors (Eif4e2,
101 Eif4enif1) (**Fig. 1d, Extended Data Fig. 1a**).
102

103 While ORFtag integrations per screen were highly reproducible (**Extended Data Fig. 1b**),
104 the hits from the three distinct assays showed almost no overlap, indicating that ORFtag
105 does not lead to the recurrent and artefactual detection of unspecific genes (**Fig. 2a &**
106 **Extended Data Fig. 1c**). Consistent with this, the activator and repressor screen hits
107 were strongly enriched for proteins containing activating and repressive domains,
108 respectively, and both protein sets share a significant enrichment for known transcription
109 factors (TFs) (**Fig. 2b**). Similarly, only PTGR hits were enriched for known RNA-binding
110 proteins (**Fig. 2b**). Moreover, the genes identified by the three screens were enriched for
111 distinct gene ontology (GO) terms, protein domains and subcellular locations, all of which
112 are consistent with their associated functions (**Fig. 2c**). Overall, these results indicate that
113 ORFtag is compatible with diverse functional assays and delivers assay-specific hits.
114

115 To experimentally validate the screen results at the level of protein-inherent functionality,
116 we individually cloned and transduced eight hits from each screen, fused to the respective
117 TetR or λ N tags, and tested whether they were sufficient to regulate the respective
118 reporters. All candidates tested, including hits that were not previously linked to the
119 respective biological processes, could be validated in recruitment assays together with
120 previously known regulators, confirming that ORFtag screens are highly specific and have
121 low false positive rates (**Fig. 2d**). For example, recruitment of the annotated cytoskeletal
122 protein Pxn or the uncharacterized protein 1700102P08Rik was sufficient to strongly
123 activate transcription, while the E3 ubiquitin ligase Trim8 and the uncharacterized protein
124 Msantd3 were sufficient to repress transcription. In turn, the neuronal activity-associated
125 protein Maco1 and the E3 ubiquitin ligase Trim13 were sufficient to repress reporter gene
126 expression when recruited to the 3'UTR of an mRNA.

127
128 To assess the potential of ORFtag in assigning cellular roles to uncharacterized proteins,
129 we sought to investigate the endogenous function of the zinc-finger protein Zfp574, which
130 ORFtag specifically identified as a transcriptional activator. Utilizing the auxin-inducible
131 degron system (**Fig. 2e**), we show that depletion of Zfp574 results in a significant growth
132 defect (**Fig. 2f**), indicating that Zfp574 is essential for cellular fitness. Rapid depletion of
133 Zfp574 followed by PRO-seq further revealed that Zfp574 functions strictly as a
134 transcriptional activator in accordance with the ORFtag results (39 genes go down, 0
135 genes go up upon depleting Zfp574 at $FDR \leq 0.05$ and $FC \geq 2$) (**Fig. 2g**). Cut&Run for
136 Zfp574 identified 140 binding sites genome-wide, the majority (87.9%) of which are
137 located in promoter-proximal positions (+- 500 bp around the gene transcription start
138 sites), and transcription of the promoter-bound genes was strongly affected upon Zfp574
139 depletion (**Fig. 2h, i**). Thus, Zfp574 is a novel selective transcriptional activator that
140 specifically binds and activates a small set of genes that support cell fitness. Taken
141 together, our results demonstrate that ORFtag, coupled with functional assays, provides
142 a robust and powerful method for the high-throughput assignment of protein function.

143

144 Some identified hits may regulate gene expression in ORFtag assays without necessarily
145 doing so endogenously. This underscores the distinction between a protein's inherent
146 biochemical function (as evaluated here) and its role within the cell. In fact, the process
147 of tagging and/or chromatin- or RNA-tethering can potentially overwrite a protein's usual
148 cellular function and change its localization within the cell (e.g. signaling peptides can be
149 bypassed, replaced or overwritten by ORFtag). Importantly, these hits remain valuable as
150 their ability to activate/repress gene expression *in principle* is highly relevant, e.g. in
151 cancer, when chromosomal re-arrangements create oncogenic fusion proteins. Indeed,
152 among our hits is the ortholog of the oncogene C3orf62, recently described by a tethering-
153 based approach to be an activator². We compared the ORFtag hits systematically to their
154 human orthologs and found oncogenes to be enriched among the activators and – more
155 weakly – the repressors but not the post-transcriptional regulators (**Fig. 2j**). These include
156 for example Zc3h7b and D630045J12Rik (KIAA1549in human) that can function as
157 activators, and Gm10324 that can function as a repressor, highlighting that oncogenic
158 fusions can recruit unrelated genes to function in gene regulation.

159
160 Having established that retroviral integration sites represent indeed successful ORF
161 tagging events that score in functional assays, we conducted a systematic and critical
162 assessment of ORFtag's ability to comprehensively and reproducibly tag proteins.
163 Comparison of the retroviral integration sites from six independent transductions,
164 performed in three different laboratories, revealed that, regardless of the protein tag used,
165 experimental cassettes integrated in a similar distribution across the genome and the
166 number of insertions per genomic region correlated highly (PCC \geq 0.84) (**Extended Data**
167 **Fig. 1b**). ORFtag integrations were enriched near transcription start sites (TSS), a well-
168 known feature of retroviral vectors¹¹, enabling the tagging of near-full-length proteins (**Fig.**
169 **3a**). Assigning each integration to a gene locus indicated that we were able to tag at least
170 83.7% of all mouse protein-coding genes with a median count of 15 integrations per gene,
171 given the scale and sequencing depth of our screens (**Fig. 3b, 3c**). The tagged genes
172 include those with large open reading frames yielding high molecular weight proteins (**Fig.**
173 **3d**). Indeed, in contrast to ORFeome-based approaches that are biased towards short

174 ORFs, ORFtag is not influenced by gene length (**Fig. 3e**). Moreover, the retroviral ORFtag
175 cassette allowed the tagging of ORFs that exhibited different endogenous expression
176 levels, including >59% of genes that are normally not expressed in mESCs (**Fig. 3f**).
177 Importantly, also the hits identified in the three functional screens include genes of varying
178 lengths and expression levels (**Fig. 3e & 3f**).

179
180 A limitation of ORFtag lies in its inability to functionally probe intronless genes and first
181 exons, due to them lacking splice acceptor sites. However, it is worth noting that 45.6%
182 of first exons are non-coding and that among protein-coding first exons, the median
183 encoded peptide length is 31 amino acids short. As a result, only 12.8% of first exons
184 contain annotated protein domains (**Extended Data Fig. 1d**). Intronless genes, which
185 cannot be tagged, constitute only a small fraction of protein coding genes (5.9%). These
186 are dominated by a few protein families, including histones and various sensory receptors
187 (**Extended Data Fig. 1e**), leaving 94.1% of protein-coding genes as potentially taggable
188 by ORFtag. We also note that certain genes may not be accessible to ORFtag screens if
189 cellular fitness is sensitive to changes in their expression levels.

190
191 In conclusion, ORFtag is an easy-to-implement functional genomics tool that enables
192 cost-effective proteome-scale functional screens. Due to its modularity, ORFtag can be
193 combined with various functional tags and a wide range of applications, including bio-
194 imaging, targeting proteins to various organelles, and protein-protein interaction studies.
195 Notably, while ORFtag utilizes N-terminal tagging, it can be adapted for C-terminal or
196 internal tagging, broadening the scope of proteins and applications that can be explored.
197 These alternative tagging approaches would mirror the tagged genes' endogenous
198 expression levels and are thus limited to genes expressed in the particular cell line.
199 Finally, ORFtag can be readily employed in cellular systems of various model organisms
200 without the need to generate species-specific resources. This adaptability and versatility
201 make ORFtag a promising tool for advancing functional genomics research.

202

203 **Figure Legends**

204 **Fig.1: ORFtag is a versatile tool for proteome-wide functional assays**

205 **a**, Overview of the ORFtag approach. The ORFtag cassette is embedded in a retroviral
206 backbone and contains a constitutively active promoter, selection gene, a tag, and a
207 splice-donor site. Upon transduction, the ORFtag cassette randomly integrates into the
208 genome and prompts splicing to a downstream splice acceptor, ultimately producing a
209 tagged protein. **B**, Schematic view of 3 different screens for transcriptional activators
210 (green), repressors (blue) or PTGRs (yellow). **C**, Genome browser screenshots of
211 ORFtag integration sites (vertical lines) in positive (+, top) or negative (-, bottom) strand
212 direction, before (non-selected, grey) and after FACS selection at the genomic locus of
213 each one activator (Yap1, green), repressor (Zfp57, blue) and PTGR (Cnot9, yellow) hit
214 emerging from ORFtag screens in mESCs. Log2 odds-ratio (log2OR) and false discovery
215 rate (FDR) are indicated. **D**, Volcano plots highlighting known (black circles, names) and
216 validated (marked red, see Fig. 2d) hits for the 3 screens.

217

218 **Fig.2: ORFtag interrogates protein function with high specificity**

219 **a**, Overlap between activator (green), repressor (blue) and PTGR (yellow) hits. **b**,
220 Enrichment of screen hits for human homologous genes with annotated DNA-binding,
221 activation, or repressive domains and RNA-binding proteins. **c**, Top enriched protein
222 domains, biological process and cellular compartment GO terms for activator, repressor
223 and PTGR hits. **d**, Independent validation of select screen hits. GFP intensity measured
224 by flow cytometry in reporter cell lines stably expressing the indicated full-length proteins
225 fused to TetR (Activator, Repressor) or λ N (PTGR); Wilcoxon test, *** $p \leq 1 \times 10^{-3}$. Refer to
226 Fig. 1d for the position of the hits in the volcano plot. **e**, Schematic view of Zfp574 rapid
227 depletion using Auxin-Inducible Degron (AID). The rapid depletion of Zfp574 upon 3-
228 indoleacetic acid (IAA) treatment shown by Western Blot. **f**, Cell viability timecourse in the
229 presence (-IAA, in grey) or absence of Zfp574 (+IAA, in red). Shown are two biological
230 replicates. **g**, MA plot showing PRO-seq fold-changes (log2) upon Zfp574 6h depletion.
231 Significantly up- (0) or down-regulated (39) genes are highlighted in red. **h**, PRO-seq fold-
232 changes (log2) of not-bound versus Zfp574 promoter-bound genes upon Zfp574

233 depletion; Wilcoxon test, ****p≤1×10⁻⁵. **i**, Zfp574 Cut&Run and PRO-seq screenshots at
234 the Rpl10 locus. **j**, Enrichment of screen hits for genes that were identified as part of
235 oncogenic fusions.

236

237 **Fig.3: Scope and limitations of massive parallel protein tagging using ORFtag**

238 **a**, Distribution of ORFtag integrations around TSSs of mouse protein-coding genes. **b**,
239 Saturation curve displaying the relationship between the fraction of tagged proteins and
240 the number of determined integration sites. **c**, Fraction of genes showing at least one
241 integration in the combined background sample. **d**, Western blot against the FLAG tag
242 assessing the tagging pattern in mESC lysate before (-) and after (+) ORFtag
243 transduction. **e**, Ratio of protein coding genes that were successfully tagged using
244 ORFtag (ORFtag, pink) or were hits in any of the three screens (ORFtag hits, purple),
245 normalized by the distribution found across the whole mouse genome (Genome, dashed
246 line). Human ORFeome is shown for comparison (ORFeome, light grey). See material
247 and methods for further details. **f**, Ratio of intron-containing protein coding genes that
248 were successfully tagged using ORFtag (ORFtag, pink) or were hits in any of the three
249 screens (ORFtag hits, purple), normalized by the distribution found across the whole
250 mouse genome (Genome, dashed line).

251

252 **Extended Data Legends**

253 **Extended Data Fig.1: Evaluation of ORFtag integrations at global scale**

254 **a**, STRING protein-protein interaction networks between activator/ repressor/ PTGR hits.
255 Node communities were highlighted using a color code (Louvain method), and their size
256 is proportional to the Odd ratio of the corresponding hit. Only the hits showing at least
257 one interaction with another hit are shown. **b**, Dendrogram of Pearson's Correlation
258 Coefficients between unsorted (triangles) and sorted (round) replicates from each
259 functional screen. All background (input) samples show high PCC (≥ 0.85). **c**, Scatter
260 plots displaying a pairwise comparison of -log10(FDR) values for screened genes across
261 different assays. **d**, Protein family enrichment of intronless genes, whose majority belongs
262 to few protein families. **e**, Fraction of exons that are non-coding (in white), code either for

263 no known protein domain (in shades of pink) or for a high confidence PFAM protein
264 domain (Domain-containing CDS, in blue). Importantly, most first exons are non-coding
265 or do not contain specific protein domains, fostering the use of ORFtag for a wide range
266 of functional studies.

267

268 **Extended Data Table 1: Identification of activator, repressor and PTGR hits**

269 For each gene locus, raw counts, odd ratio (log2) and the associated FDR are shown for
270 the 3 different screens. The last “hit” column specifies whether a locus was considered
271 as a hit (TRUE) or not (FALSE).

272

273 **References**

- 274 1. Nemčko, F. & Stark, A. Proteome-scale identification of transcriptional activators in
275 human cells. *Mol Cell* **82**, 497–499 (2022).
- 276 2. Alerasool, N., Leng, H., Lin, Z. Y., Gingras, A. C. & Taipale, M. Identification and
277 functional characterization of transcriptional activators in human cells. *Mol Cell* **82**, 677–
278 695.e7 (2022).
- 279 3. Luo, E. C. *et al.* Large-scale tethered function assays identify factors that regulate mRNA
280 stability and translation. *Nat Struct Mol Biol* **27**, 989–1000 (2020).
- 281 4. Wiemann, S. *et al.* The ORFeome Collaboration: A genome-scale human ORF-clone
282 resource. *Nat Methods* **13**, 191–192 (2016).
- 283 5. Yang, X. *et al.* A public genome-scale lentiviral expression library of human ORFs. *Nat
284 Methods* **8**, 659–661 (2011).
- 285 6. Reicher, A., Koren, A. & Kubicek, S. Pooled protein tagging, cellular imaging, and in situ
286 sequencing for monitoring drug action in real time. *Genome Res* **30**, 1846–1855 (2020).
- 287 7. Serebrenik, Y. V., Sansbury, S. E., Kumar, S. S., Henao-Mejia, J. & Shalem, O. Efficient
288 and flexible tagging of endogenous genes by homology-independent intron targeting.
289 *Genome Res* **29**, 1322–1328 (2019).
- 290 8. Schmid-Burgk, J. L., Höning, K., Ebert, T. S. & Hornung, V. CRISPaint allows modular
291 base-specific gene tagging using a ligase-4-dependent mechanism. *Nat Commun* **7**,
292 (2016).
- 293 9. Yarnall, M. T. N. *et al.* Drag-and-drop genome insertion of large sequences without
294 double-strand DNA cleavage using CRISPR-directed integrases. *Nat Biotechnol* **41**, 500–
295 512 (2023).
- 296 10. Sansbury, S. E., Serebrenik, Y. V., Lapidot, T., Burslem, G. M. & Shalem, O. Pooled
297 tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of
298 unfolded protein responses. *bioRxiv* 2023.07.13.548611 (2023)
299 doi:10.1101/2023.07.13.548611.
- 300 11. Elling, U. *et al.* A reversible haploid mouse embryonic stem cell biobank resource for
301 functional genomics. *Nature* **550**, 114–118 (2017).

302

303

304 **Methods**

305 Cell culture conditions

306 All experiments presented here were carried out in diploid mouse embryonic stem cells
307 (mESCs) that were derived from originally haploid HMSC2 termed AN3-12¹¹. The mESCs
308 were cultivated without feeders in high-glucose-DMEM (Sigma-Aldrich) supplemented
309 with 13.5% fetal bovine serum (Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich), 1x
310 Penicillin-Streptomycin (Sigma-Aldrich), 1x MEM non-essential amino acid solution
311 (Gibco), 1mM sodium pyruvate (Sigma-Aldrich), 50 mM β -mercaptoethanol (Merck) and
312 in-house produced recombinant LIF. Virus packaging cell lines, Lenti-X 293T (Takara),
313 and PlatinumE (Cell Biolabs), were grown according to the manufacturer's instructions.
314 All cell lines were cultured at 37°C and 5% CO₂ and regularly tested for mycoplasma
315 contamination.

316

317 Reporter cell lines

318 The reporter cell line for the Repressor screen was established previously¹² and contains
319 the reporter construct inserted into the expression-stable locus on Chr15 that is
320 compatible with the Flp recombinase-mediated cassette exchange (RMCE). Reporter cell
321 line for the Activator screen was generated by RMCE as follows – 5x10⁶ cells were
322 electroporated with a mix of 10 μ g of plasmid containing constructs flanked by FRT/F3
323 sites, and 6 μ g of plasmid expressing Flp, using a Maxcyte STX electroporation device
324 (GOC-1) and the Opt5 program. Seven days after the transfection, cells were sorted and
325 clonal cell lines were generated. Cell lines were genotyped using integration-site specific
326 PCRs and Sanger sequencing. The Activator reporter construct (Addgene, this study)
327 contains the PuroR-IRES-GFP reporter under the control of the minimal promoter derived
328 from the MYLPF gene (chr16:30374730–30374857 +, hg38) that was shown to have a
329 low basal expression and high inducibility¹³. Upstream of the promoter are 7x TetO sites
330 flanked by the loxP sites.

331

332 The reporter cell line for the PTGR screen was created by nucleofection of haploid AN3-
333 12 mESCs with 500ng of the reporter construct and 10 μ g of a Tol2 transposase encoding
334 plasmid using the Mouse ES Cell Nucleofector Kit (Lonza) according to the
335 manufacturer's protocol using an Amaxa Nucleofector (Lonza). The PTGR reporter
336 construct (Addgene, this study) encodes for PuroR-IRES-GFP followed by 10 boxB sites
337 that are flanked by two loxP sites under the control of a PGK promoter. Cells were
338 subsequently selected using 1 μ g/ml Puromycin (Gibco) followed by single clone
339 selection. Single cell clones were afterwards transduced with a retroviral vector for the
340 expression of pMSCV_hygro_CreERT2 and selected with 250 μ g/ml Hygromycin (Roche)
341 followed by single cell clone selection.

342

343 ORFtag screens

344 The ORFtag viral constructs were derived from the ecotropic Retro-EGT construct¹¹ that
345 includes the sequence features necessary for the inverse-PCR protocol (see below).
346 Furthermore, the construct contains constitutively active PGK promoter that drives the
347 expression of a NeoR resistance gene separated from a tag by the IRES sequence. The
348 tag contained either TetR with an N-terminally located nuclear localization signal
349 (Activator and Repressor screens; this study) or LambdaN domain (PTGR screen; this
350 study). Additionally, the tag contained 2x GGGS-linker followed by the BC2-tag and
351 3xFLAG-tag. Finally, the ORFtag construct contains a consensus splice donor motif
352 followed by a part of the Hprt intron (chrX:53020400-53020556 +, mm10). In order to tag
353 genes in all three possible coding frames, three constructs were used that contain either
354 0, 1 or 2 additional nucleotides upstream of the consensus splice motif.

355

356 Every ORFtag screen was performed in two independent replicates. Retroviral constructs
357 carrying ORFtag cassette were packed in PlatinumE cell lines using polyethylenimine
358 (PEI) reagent as described previously¹¹. Reporter cell lines (100-150 million cells) were
359 transduced with packaged retrovirus in the presence of 6 μ g/ml polybrene (Sigma) and at
360 low transduction efficiency (< 20%) to ensure only one virus per cells. Cells were
361 harvested 24 hours later and plated in medium containing 0.1 mg/ml G418 (Gibco) for

362 selection of transduced cells. Selection was continued until all cells on the control plate
363 died (4-5 days), after which 40 million cells were processed as non-selected background
364 for mapping of genomic integrations (see below). The remaining cells were sorted for
365 GFP-positive (Activator screens) or GFP-negative (Repressor screens) populations using
366 BD FACSAria III or Illu cell sorters (BD Biosciences) and processed for mapping of
367 genomic integrations (see below). For the PTGR screen a five-sort strategy was applied
368 to enrich cells that show a tethering dependent repression of reporter gene expression.
369 Cells with a GFP expression equal to the lowest 10 percent of GFP expression observed
370 after selection were sorted using BD FACSAria III and expanded thereafter. Additionally,
371 non-sorted cells were maintained for gating of the consecutive sorts. Two additional sorts
372 for cells with GFP expression similar to the lowest 10% of GFP signal observed in the
373 non-sorted cells were performed and again expanded in-between the sorts. A fourth sort
374 was performed for cells with a GFP expression equal to the lowest 5% of GFP signal
375 observed in the non-sorted cells. After expansion, the cells were treated with 500nM 4-
376 Hydroxytamoxifen (Sigma) to induce Cre-mediated recombination and to flox the boxB
377 sites of the reporter construct and hence to revert the tethering. Thereafter a final sort
378 was performed to select a cell population with a GFP expression equal to the highest 70%
379 of GFP expressing cells.

380

381 Transduction efficiency was measured by plating 10,000 cells on a 15-cm dish and
382 selecting with G418 (Gibco). A control plate with 1,000 cells was also plated without
383 selection. After 10 days, colonies were counted and transduction efficiency was
384 calculated as the number of colonies on the selected plate divided by the total number of
385 cells plated (10 times the number of colonies on the control plate).

386

387 Mapping of genomic integrations by next-generation sequencing

388 Genomic locations of ORFtag integrations were mapped using modified inverse-PCR
389 followed by next generation sequencing (iPCR-NGS) protocol¹¹. Genomic DNA was
390 prepared by lysing cell pellets in lysis buffer (10 mM Tris-HCl pH 8.0, 5 mM EDTA, 100
391 mM NaCl, 1% SDS, 0.5 mg/ml proteinase K) at 55°C overnight. Following a 2-hour RNase

392 A treatment (Qiagen, 100 mg/ml, 1:1,000 dilution) at 37°C, two extractions using
393 phenol:chloroform:isoamyl alcohol and one extraction using chloroform:isoamyl alcohol
394 were carried out. The samples then underwent two separate digestion reactions (with up
395 to 4 µg of genomic DNA) using NlaIII and MseI enzymes (NEB) at 37°C overnight,
396 followed by purification using a Monarch PCR&DNA Cleanup Kit (NEB). Ring-ligation was
397 carried out using T4 DNA ligase (NEB) at 16 °C overnight, followed by heat-inactivation
398 (65°C, 15 min) and linearization using SbfI-HF (NEB) at 37°C for 2 h. The digests were
399 then purified using a Monarch PCR&DNA Cleanup Kit (NEB) and amplified using firstly a
400 nested PCR reaction with KAPA HiFi HotStart ReadyMix (Roche), and a specific primer
401 pair (TGCAGGACCGGACGTGACTGGAGTTC*A,
402 TGCAGGACGATGAGCAGAGCCAGAACCA*
403 for 16 cycles. After cleanup with AMPure
404 XP Reagent (Beckman Coulter, 1:1 ratio beads:PCR), iPCR amplification was carried out
405 with KAPA HiFi HotStart ReadyMix (Roche), and a specific primer pair
406 (AATGATAACGGCGACCACCGAGATCTACACGAGCCAGAACCAAGGAAGGAACTTGA*C,
407 CAAGCAGAACGACGGCATACGAGAT [custom-barcode]
408 GTGACTGGAGTTCAGACGTGTGCTCTCCGATCT) for 18 cycles. Afterwards,
409 amplified libraries were size selected for a range of 400-800 bp using SPRIselect beads
410 (Beckman Coulter). NGS was performed on an Illumina NextSeq550 or Illumina HiSeq
411 2500 sequencer according to the manufacturers' protocols with custom first-read primer
412 (1:1 mix of GAGTGATTGACTACCCGTCAGCGGGGGTCTTCA and
TGAGTGATTGACTACCCACGACGGGGGTCTTCA).

413
414 Immunoprecipitation
415 To confirm expression of tagged proteins, the PTGR reporter mESCs, transduced with
416 the ORFtag construct as well as non-transduced cells, were lysed in lysis buffer (50mM
417 TRIS HCl pH: 7.5, 150mM NaCl, 0.1% SDS, 1% Triton-X-100, 0.5% NP-40, 0.5mM EDTA
418 supplemented with Proteinase Inhibitor (Roche) and protein concentration was
419 determined photometrically using the Protein Assay Dye Reagent Concentrate (BioRad),
420 according to the manufacturer's protocol and photometric measurement at 595nm.
421 Tagged proteins were captured using 80 μ l of in-house BC2-nanobody coupled magnetic

422 beads from 1mg total protein. Bound proteins were eluted by resuspension of the beads
423 in 1x SDS-sample buffer and incubated at 95°C for 5 minutes. Further details about
424 Western blotting can be found below.

425

426 Individual recruitment validations

427 To validate Activator hits, the candidates were amplified by PCR from mESC cDNA and
428 inserted into retroviral constructs that comprises the PGK promoter that drives the
429 expression of a PuroR resistance gene and a tag separated by the IRES sequence. The
430 tag contains TetR, along with an N-terminal nuclear localization signal, a 2x GGGS-linker,
431 a BC2-tag, and a 3xFLAG-tag, followed by the tested candidate. Retroviral constructs
432 were packed in PlatinumE cell lines (see above), and reporter cell lines (170,000 cells)
433 were transduced in the presence of 6 µg/ml polybrene (Sigma). Cells were harvested 24
434 hours later and plated in medium containing 1 µg/ml Puromycin (InvivoGen) to select for
435 transduced cells. After five days of selection, the reporter expression was analyzed on an
436 LSR Fortessa (BD) flow cytometer. For processing and visualization, FlowJo and R
437 package flowCore (v2.12.2) was used.

438

439 In order to validate Repressor and PTGR hits, PCR was used to amplify the candidates
440 from mESC cDNA, and lentiviral plasmids were created as fusion proteins containing
441 TetR/lambdaN-Candidate-P2A-mCherry coding sequence under the control of an EF1a
442 promoter. For the validation of Trim71, cDNA excluding the fragment encoded in exon 1
443 (Trim71dE1) was cloned into the aforementioned lentiviral plasmid. A fragment encoding
444 for the silencing domain of human Tnrc6b (Tnrc6b-SD) was expressed using the same
445 lentiviral plasmid as above as a positive control for the validation of PTGR hits. Lentivirus
446 was produced in Lenti-X 293T cells as in (Ref.¹²). Reporter cells were then transduced
447 with the virus in the presence of 8 µg/ml polybrene (Santa Cruz Biotechnology, SACSC-
448 134220). After 7 days of transduction, reporter expression was analyzed on an LSR
449 Fortessa (BD) flow cytometer. Reporter cells transduced with recruitment constructs were
450 gated based mCherry expression. For processing and visualization, FlowJo and R
451 package flowCore (v2.12.2) was used.

452

453 AID cell line generation

454 A parental cell line expressing the E3 ligase for AID was generated by inserting a cassette
455 into the expression-stable locus on Chr15 that is compatible with the Flp recombinase-
456 mediated cassette exchange in mESCs (RMCE, see “Reporter cell lines” section). The
457 construct contained EF1alpha- ARF16- HA- P2A- OsTir1- 3xMyc- T2A- mCherry-
458 SV40_polA site flanked by the FRT/F3 sites. The clonal Tir1 parental cell line was
459 genotyped using integration-site specific PCRs and Sanger sequencing.

460

461 To generate the N-terminally AID-tagged Zfp574 cell line, 5×10^6 Tir1 parental cells were
462 transfected with $10 \mu\text{g}$ of plasmid (Ref.¹⁴) that expresses Cas9 and the gRNA against a
463 target locus (CTTGCTGCTGCCATGACTG) and $5 \mu\text{g}$ of plasmid with a knock-in cassette
464 containing Blasticidin-P2A-V5-AID-GGGS flanked by 20 bp microhomology arms (Ref.¹⁴)
465 using a Maxcyte STX electroporation device (GOC-1) and the Opt5 program. Two days
466 after the transfection, cells were selected for knock-ins with $10 \mu\text{g}/\text{mL}$ Blasticidin
467 (ThermoFisher), individual clones were genotyped using knock-in-site specific PCRs and
468 Sanger sequencing. Potential candidates were investigated by western blotting against
469 the integrated V5-tag (Thermo Fisher, R960-25) with or without 500 μM 3-indoleacetic
470 acid (IAA, Merc) treatment.

471

472 Western blotting

473 Cells (3×10^6) were collected, centrifuged at 300g for 5 min, washed with 1xPBS and lysed
474 in $100 \mu\text{l}$ RIPA buffer containing protease inhibitor (Roche) and Benzonase (Sigma
475 Aldrich). For complete lysis, cells were incubated on ice for 30 min and sonicated for five
476 minutes (30 sec on/off, Diagenode Bioruptor). Afterwards, samples were centrifugated for
477 5 min at full speed and 4 °C, and supernatants were supplemented with $20 \mu\text{l}$ 4x Laemmli
478 buffer with 10% β -mercaptoethanol. Samples were boiled for 5 min at 98°C.

479

480 Proteins were resolved on SDS-PAGE on a 4-15% Mini-PROTEAN TGX gel (BioRad)
481 and transferred to an Immobilon-P PVDF membrane (Merck Millipore) using a wet-

482 chamber system. Tagged proteins were detected using mouse α-Flag M2 (Sigma Aldrich
483 F3165, 1:10,000), mouse α-V5-tag (Thermo Fisher R960-25, 1:1,000), or rabbit α-β-
484 tubulin (Addgene ab6046, 1:10,000) as primary and HRP-α-Mouse (Cell Signaling, 7076,
485 1:10,000) or HRP-α-Rabbit (Cell Signaling, 7074, 1:10,000) as secondary antibody and
486 imaged using ClarityTM Western ECL Substrate (BioRad) with a ChemiDocTM Imaging
487 System (BioRad) using ImageLab v5.1.1 (BioRad).

488

489 Cell viability timecourse

490 For growth curve assays, AID-tagged cell line (mCherry positive, see AID cell line
491 generation) was mixed at 1:1 ratio with WT cells, split into control (-IAA) and treatment
492 (+IAA, Merc, 500 uM) group and cultured in a 24-well cell culture plate. The ratio between
493 mCherry positive and negative cell was quantified every 24hrs by Flow Cytometry (iQue
494 Screener PLUS, Intellicyt).

495

496 PRO-seq

497 For each condition, 1x10⁷ AID-Zfp574 cells were collected and nuclei were isolated after
498 6h of 500uM IAA treatment or no treatment (two biological replicates per condition).
499 Spike-in control (S2 *Drosophila* cells; 1% of mESC cells) were added at the level of nuclei
500 permeabilization step. The next steps of the PRO-seq protocol were performed as in
501 (Ref.¹⁵) with a single modification: the nuclear run-on was performed at 37 °C for 3 min.

502

503 Cut&Run

504 For each biological replicate, 1x10⁶ cells from the AID-Zfp574 cell line or the Tir1 parental
505 cell line were used. The Tir1 parental cell line is used as Input, each experiment was
506 performed in two biological replicates. The protocol was performed as in (Ref.¹⁶) with a
507 V5-tag antibody (Thermo Fisher, R960-25) that was added to a final dilution of 1:100.

508

509 Bioinformatic analyses

510 All bioinformatic analyses were performed in R (v4.2.0, <https://www.R-project.org/>).
511 Computations on genomic coordinate were conducted using the GenomicRanges

512 (v1.50.1)¹⁷ and the data.table (<https://CRAN.R-project.org/package=data.table>) R
513 packages. All box plots depict the median (line), upper and lower quartiles (box) $\pm 1.5 \times$
514 interquartile range (whiskers); outliers not shown.

515

516 *Processing of ORFtrap screens*

517 First, iPCR reads from sorted and background (non-selected) samples were trimmed
518 using Trim galore (v0.6.0) with default parameters to remove Illumina adapters. Then,
519 trimmed reads were aligned to the mm10 version of the mouse genome using bowtie2¹⁸
520 with default parameters (for paired-end sequenced samples, only first mate reads were
521 considered), before removal of duplicated and low mapping quality reads (mapq<=30)
522 using samtools (v1.9)¹⁹. Mapped insertions were assigned to the closest downstream
523 exon junction – with a maximum distance of 200kb – based on GENCODE annotations
524 of the mouse genome (vM25). Finally, insertion counts were aggregated per gene. Of
525 note, only exons from protein-coding transcripts were considered, except for the first exon
526 of each transcript, which might not contain splicing acceptor sites. Consequently,
527 intronless genes – for which none of the isoforms contain a spliced intron – were not
528 considered.

529

530 Background replicates showed reproducible gene counts (PCC ≥ 0.84) and therefore were
531 merged, and genes with at least one insertion were considered as putatively tagged.
532 Finally, genes showing significantly more insertions in sorted samples compared to
533 merged background samples were identified using one-tailed fisher's exact test
534 (alternative= "greater") on merged biological replicates. Of note, only genes with at least
535 3 unique insertions in sorted samples were considered. Obtained p-values were corrected
536 for multiple testing using the FDR method and genes showing an FDR<0.001 and a log2
537 Odd Ratio ≥ 1 were classified as hits.

538

539 *Protein-protein interaction networks*

540 For each functional assay, STRING protein-protein interaction between hits were
541 retrieved using the STRINGdb R package (v2.10.0, database version 11.0). Finally, only

542 the hits showing at least one protein-protein interaction with another hit with a combined
543 score ≥ 900 were considered.

544

545 *CDS length bias*

546 To assess whether ORFtag is biased towards short ORFs, we stratified intronic protein
547 coding genes based on their shortest CDS length (< 2.5kb, 2.5-5kb and longer than 5kb).
548 Then, we compared how tagged genes (with at least one insertion in background
549 samples) and hits (union from the three screens) were distributed between these groups,
550 using all intronic protein coding genes as a reference. For example, to compute the
551 normalized ratio of tagged genes for the <2.5kb group, we used the following formula:
552 normalized ratio= ([tagged genes with CDS<2.5kb]/[total tagged genes])/([intrinsic protein
553 genes with CDS<2.5kb]/[total intrinsic protein coding genes]). To allow side-by-side
554 comparison, we also considered ORFs from the human ORFeome that Alerasool and
555 colleagues were able to transfect and detect².

556

557 *Gene expression bias*

558 To assess whether transcriptionally inactive mouse genes could be assayed using
559 ORFtag, we used publicly available data from the same mESC cell line (GSE99971)²⁰.
560 For each intronic protein coding gene, mean TPM was computed across three RNA-Seq
561 replicates (only protein-coding genes were considered). Genes with a mean TPM of 0
562 were classified as inactive and active genes were further stratified into quartiles. Then,
563 we compared how tagged genes (with at least one insertion in background samples) and
564 hits (union from the three screens) were distributed between these groups, using all
565 intronic protein coding genes as a reference. For example, to compute the normalized
566 ratio of tagged genes for the inactive group, we used the following formula: normalized
567 ratio= ([tagged genes with TPM=0]/[total tagged genes])/([intrinsic protein genes with
568 TPM=0]/[total intrinsic protein coding genes]).

569

570 Enrichment analysis of expected protein functions

571 To assess whether hits were enriched for genes with expected functions, we collected
572 publicaly available lists of human TF genes (Ref.²¹), human genes containing activation
573 or repressive-domains (Ref.²², only genes containing sufficient ('S' or 'N and S') and high
574 confidence ('H') domains were considered), human genes containing RNA-binding
575 domains (RBPbase²³, only the genes identified in at least two different cell lines were
576 used) and human fusion oncoproteins (COSMIC database v97, Ref.²⁴). Screen hits were
577 first assigned to their human orthologs using MGI²⁵ homology data. For each functional
578 assay, we assessed whether relevant categories were enriched among the hits using
579 one-tailed fisher's exact test (alternative= "greater"), and the total number of intronic
580 protein coding genes as background.

581

582 GO terms and protein domains enrichment

583 Biological Process (BP), Molecular Process (MF) and Cellular Compartment (CC) Gene
584 Ontology (GO) terms were obtained from the org.Mm.eg.db (v3.15.0) R package. Protein
585 domains were retrieved from the EnsDb.Mmusculus.v79 R package (v2.99.0). For each
586 functional assay, GO terms and protein domains that were over-represented among hits
587 were identified using one-tailed fisher's exact test (alternative= "greater"), using all
588 intronic protein coding genes as background. Obtained p-values were corrected for
589 multiple testing using the FDR method and features with an FDR<0.05 were considered
590 as significantly enriched. Of note, small categories containing less than five genes in total
591 and categories with less than three matching hits were not considered. Finally, top 8-10
592 enriched GO terms and proteins domains were plotted for each functional assay.

593

594 Protein family enrichment

595 To identify protein families enriched among intronless genes (for which none of the
596 isoforms contain a spliced intron), annotations were retrieved from the
597 EnsDb.Mmusculus.v79 R package (v2.99.0). Enriched protein families were identified
598 using one-tailed fisher's exact test (alternative= "greater"), and the total number of protein

599 coding genes as background. Obtained p-values were corrected for multiple testing using
600 the FDR method, and the protein families with an FDR<0.05 were plotted.

601

602 *Analysis of first exons*

603 For the analysis of first exons, first exons containing a predicted CDS were classified as
604 either short (≤ 20 aa) or long (> 20 aa). Then, manually-curated Pfam-A domains from
605 UCSC²⁶ were used to discriminate first exon CDSs containing a known protein domain
606 (e.g. coding for at least 10% of a full Pfam domain) or not.

607

608 *Gene annotation for PRO-seq analysis*

609 To obtain a non-redundant set of genes for quantification of PRO-seq signals, we
610 collected all coding and long non-coding transcripts from Ensembl v.100 for the mm10
611 version of the mouse genome, excluding transcripts shorter than 300 bp. When several
612 transcript isoforms shared the same annotated transcription start site (TSS), only the
613 longest isoform was retained. Next, TSS positions were corrected using FANTOM5²⁷
614 CAGE TSS clusters: for each unique annotated TSS, we identified the strongest CAGE
615 TSS within a 1kb window centered on the annotated TSS, excluding the coding sequence.
616 Finally, for each CAGE TSS, only the full length of the nearest transcript was used to
617 count overlapping reads (see next section).

618

619 *PRO-seq analysis*

620 PRO-seq libraries were sequenced in paired-end mode with 36-bp read length. To
621 eliminate PCR duplicates, an 8-bp long unique molecular identifier (UMI) was
622 incorporated at the 5' end of the reads during the sample processing. Before mapping,
623 the UMI was separated, and the Illumina adapters were trimmed using cutadapt v.1.18.
624 Only reads with a length greater than 10 bp were then mapped using Bowtie v.1.2.2²⁸,
625 initially to the mm10 version of the mouse genome. The mapping allowed for up to 2
626 mismatches and reported only the best alignment (-m 1 --best --strata) for each read. To
627 ensure the counting of unique nascent RNA molecules, reads that mapped to the same
628 genomic location were collapsed based on their UMIs, allowing for up to 1 mismatch. To

629 create the PRO-seq coverage signal with the exact positions of RNA pol II molecules,
630 only the first nucleotide of each read (i.e. the 3' end of nascent transcripts) was considered
631 and the strand swapped to match the transcription direction. A non-redundant CAGE-
632 corrected gene set was used to count the number of UMI-collapsed 1nt-long mapped
633 PRO-seq reads that overlap them (see the “Gene annotation for PRO-seq analysis”
634 section). Differential analysis was performed using DESeq2²⁹ (v.1.22.2) and significantly
635 up- or down-regulated genes were selected using FDR<0.05, log2 Fold Change ≥ 1
636 threshold.

637

638 Cut&Run analysis

639 Single-end 50-bp long reads were mapped to the mm10 genome using bowtie v.0.12.9,
640 allowing up to 3 mismatches and only uniquely mapping reads were retained. Afterwards,
641 peaks were called for each individual replicate, as well as for the combined replicates
642 against their respective input, using Macs2 v.2.1.2.1, with following settings: -f BEDPE -
643 g mm -B --nomodel --extsize 300 --SPMR. The Macs2 generated BedGraph files that
644 contain normalized coverage were converted into BigWig using bedGraphToBigWig.
645 Given the high correlation between two replicates (PCC of 0.613 at a common set of
646 peaks), only the merged sample was used for assigning bound genes if the peak was
647 localized within +- 500 bp around the gene transcription start sites.

648

649 **Data availability**

650 The raw sequencing data are available from GEO (<https://www.ncbi.nlm.nih.gov/geo/>)
651 under accession number GSE225972.

652

653 **Code availability**

654 All custom scripts that were generated for this study were made publicly available at
655 https://github.com/vloubiere/ORFtag_2023.

656

657

658

659 **References**

660

661 12. Moussa, H. F. *et al.* Canonical PRC1 controls sequence-independent propagation of
662 Polycomb-mediated gene silencing. *Nat Commun* **10**, 1–12 (2019).

663 13. Haberle, V. *et al.* Transcriptional cofactors display specificity for distinct types of core
664 promoters. *Nature* **570**, 122–126 (2019).

665 14. Neumayr, C. *et al.* Differential cofactor dependencies define distinct types of human
666 enhancers. *Nature* **606**, 406–413 (2022).

667 15. Serebreni, L. *et al.* Functionally distinct promoter classes initiate transcription via
668 different mechanisms reflected in focused versus dispersed initiation patterns. *EMBO J*
669 **42**, 1–24 (2023).

670 16. Hendy, O. *et al.* Developmental and housekeeping transcriptional programs in Drosophila
671 require distinct chromatin remodelers. *Mol Cell* **82**, 3598–3612.e7 (2022).

672 17. Lawrence, M. *et al.* Software for Computing and Annotating Genomic Ranges. *PLoS*
673 *Comput Biol* **9**, 1–10 (2013).

674 18. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
675 **9**, 357–359 (2012).

676 19. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, 1–4 (2021).

677 20. Herzog, V. A. *et al.* Thiol-linked alkylation of RNA to assess expression dynamics. *Nat*
678 *Methods* **14**, 1198–1204 (2017).

679 21. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **172**, 650–665 (2018).

680 22. Soto, L. F. *et al.* Compendium of human transcription factor effector domains. *Mol Cell*
681 **82**, 514–526 (2022).

682 23. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-
683 binding proteins. *Nat Rev Mol Cell Biol* **19**, 327–341 (2018).

684 24. Tate, J. G. *et al.* COSMIC: The Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids*
685 *Res* **47**, D941–D947 (2019).

686 25. Blake, J. A. *et al.* Mouse Genome Database (MGD): Knowledgebase for mouse-human
687 comparative biology. *Nucleic Acids Res* **49**, D981–D987 (2021).

688 26. Finn, R. D. *et al.* The Pfam protein families database. *Nucleic Acids Res* **38**, 211–222
689 (2009).

690 27. Forrest, A. R. R. *et al.* A promoter-level mammalian expression atlas. *Nature* **507**, 462–
691 470 (2014).

692 28. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient
693 alignment of short DNA sequences to the human genome. *Genome Biol* **10**, (2009).

694 29. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
695 for RNA-seq data with DESeq2. *Genome Biol* **15**, 1–21 (2014).

696

697

698 **Acknowledgements**

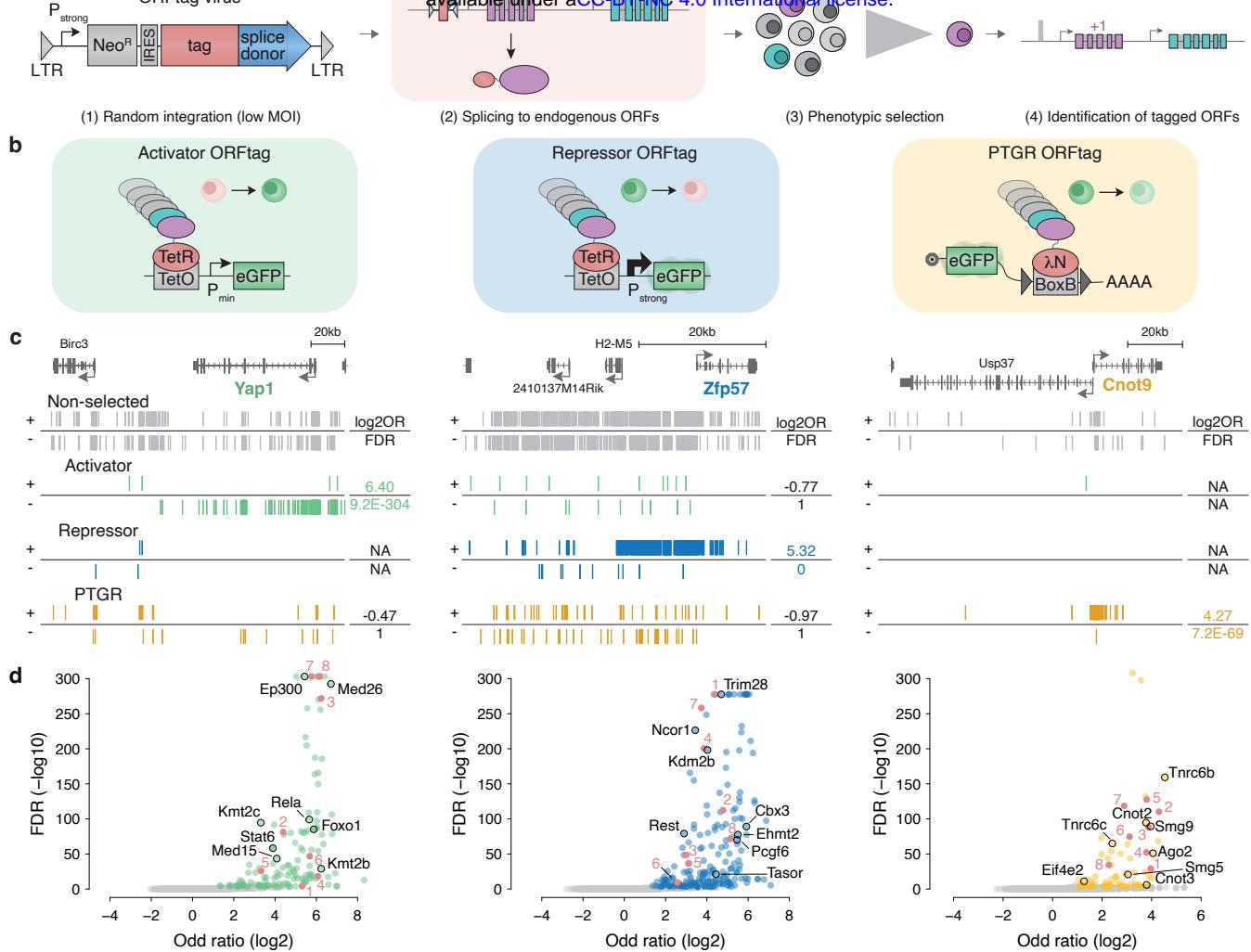
699 We thank the IMP/IMBA/GMI and Max Perutz Labs core facilities for support, especially
700 Flow Cytometry teams for provided outstanding support. Filip Nemčko was supported by
701 a Boehringer Ingelheim Fonds PhD fellowship. Vincent Loubiere was supported by HFSP

702 (LT000926/2020) and EMBO (790-2019) postdoctoral fellowships. Research in the
703 Ameres group is supported by the European Union (ERC, RiboTrace, CoG-866166) and
704 the Austrian Science Fund (FWF, 10.55776/F80). Research in the Stark group is
705 supported by the Austrian Science Fund (FWF, 10.55776/P29613, 10.55776/P33157 and
706 10.55776/P36971). Basic research at the IMP is supported by Boehringer Ingelheim
707 GmbH and the Austrian Research Promotion Agency (FFG, FO999902549). Research in
708 Brennecke group is funded by the Austrian Academy of Sciences and the European
709 Community (grant no. ERC-2015-CoG-682181). Next-generation sequencing was done
710 at the Vienna Biocenter Core Facilities GmbH (VBCF) Next-Generation Sequencing Unit.
711 For the purpose of Open Access, the authors have applied a CC BY public copyright
712 license to any Author Accepted Manuscript (AAM) version arising from this submission.

713

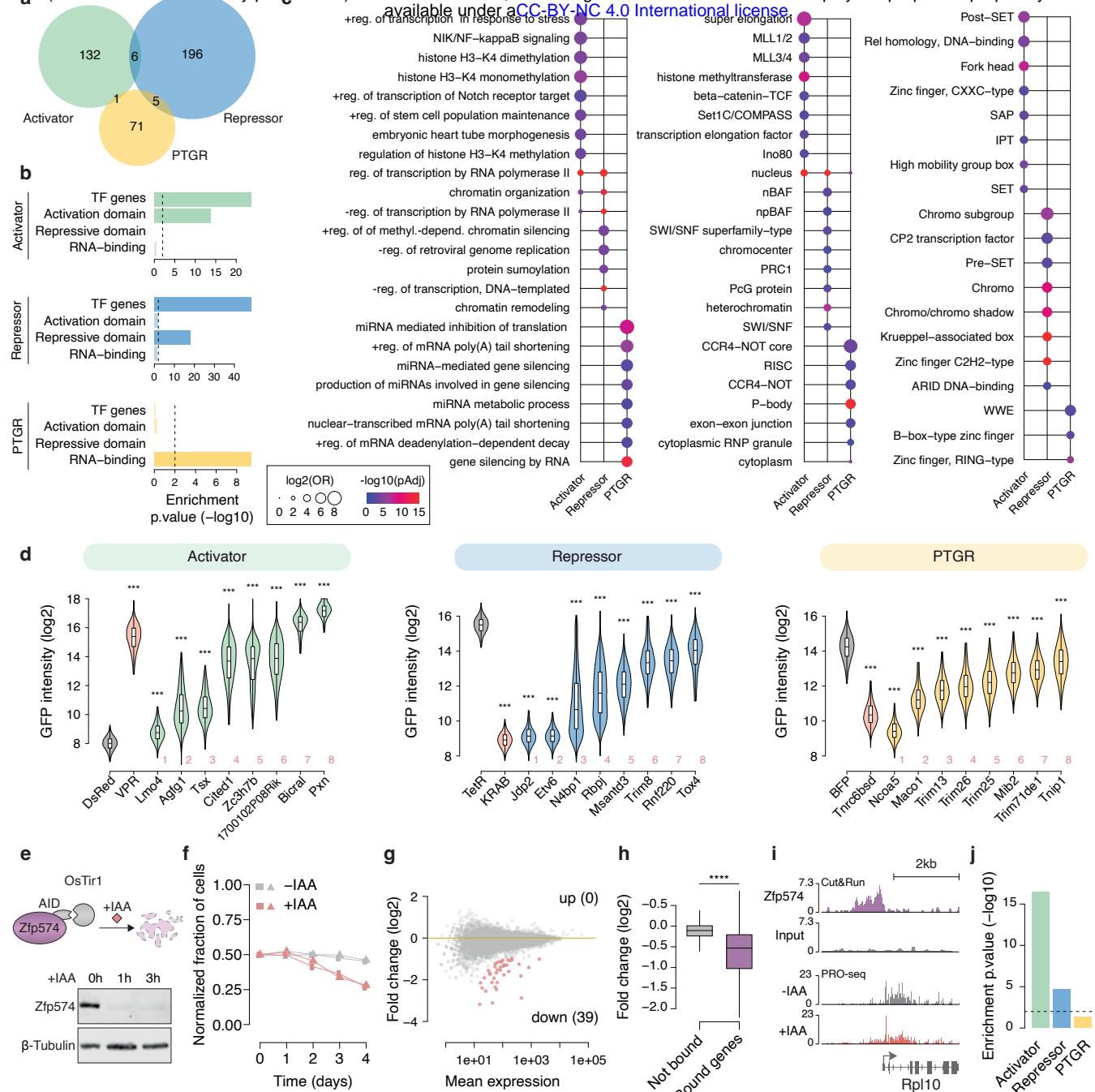
714 **Author contributions**

715 F.N. and M.H. implemented the ORFtag method and protocols. F.N. performed the
716 activator screen, M.H. the PTGR screen, and R.Y. and V.L. the repressor screen. F.N.,
717 M.H. and R.Y. performed candidate validation experiments. F.N. performed all Zfp574
718 follow-up experiments. V.L., F.N. and A.S. developed the bioinformatic pipeline. V.L. and
719 F.N. performed NGS data and downstream analyses. N.F. and M.P. helped with the
720 experiments. U.E. and S.L.A conceptualized the ORFtag approach. S.L.A., A.S., U.E. and
721 J.B. coordinated and supervised the work. All authors wrote the manuscript.

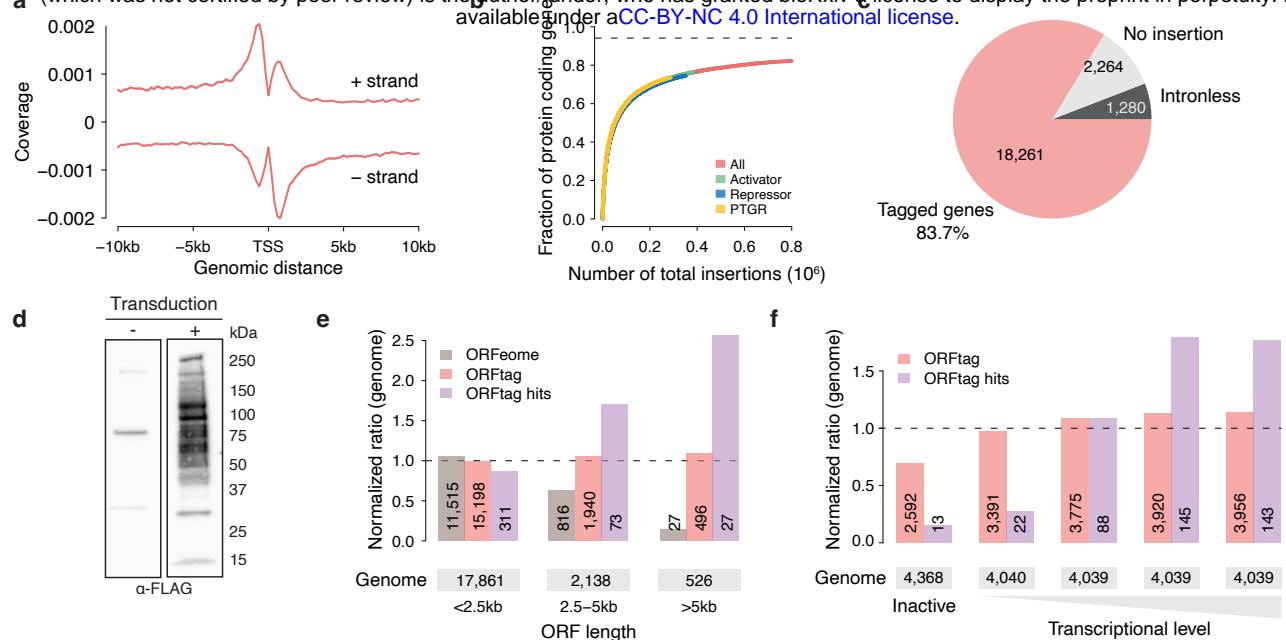

722

723 **Competing interests**

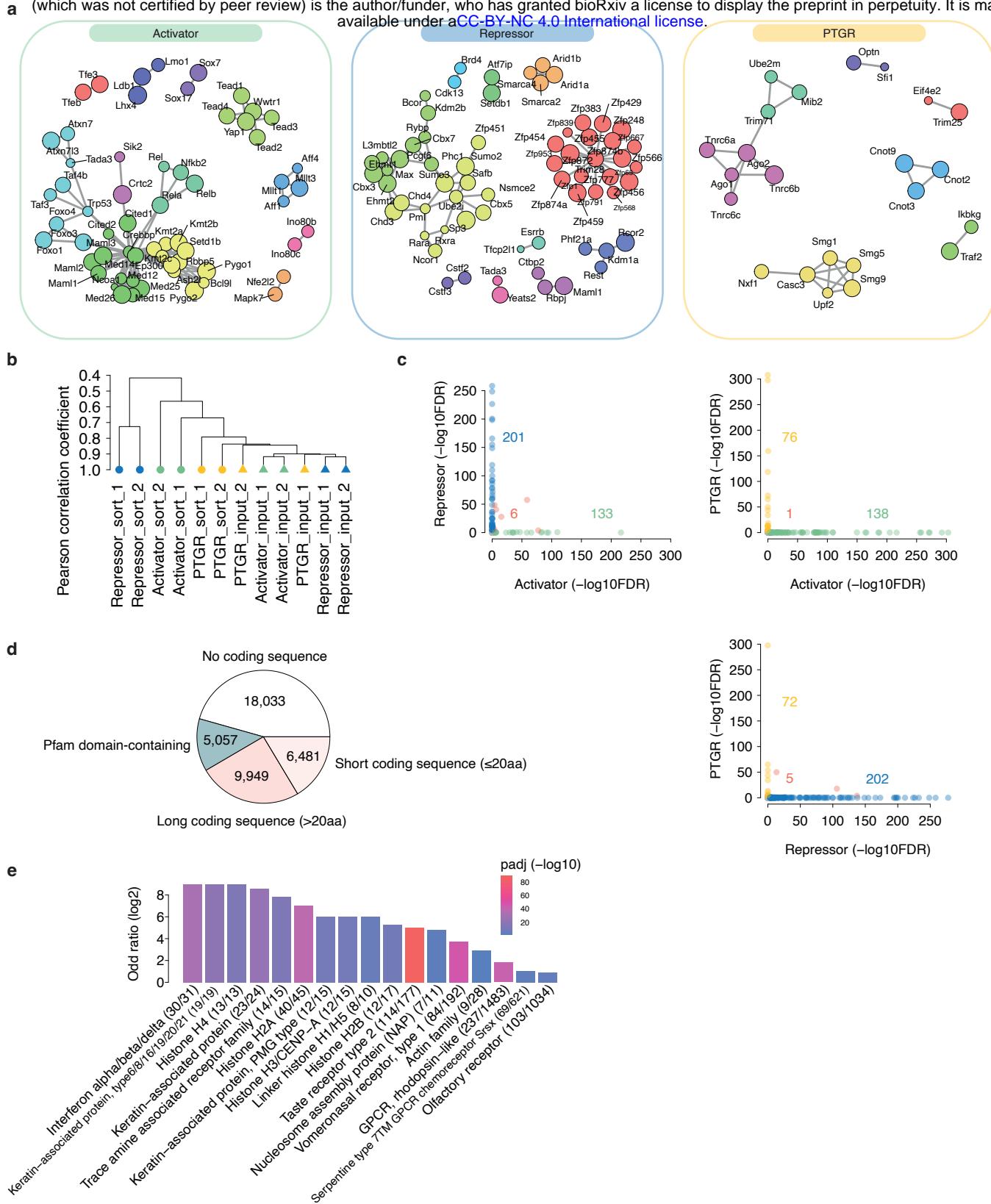
724 S.L.A. is co-founder, advisor, and member of the board of QUANTRO Therapeutics
725 GmbH. U.E. is co-founder of JLP Health and VIVERITA as well as advisor to TANGO
726 Therapeutics. N.F. is employed by QUANTRO Therapeutics GmbH. The other authors
727 declare no competing interests.


Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.16.575827>; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.


Figure 2

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.16.575827>; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.


Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.16.575827>; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Extended Data Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.16.575827>; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

