

1 Conservation of symbiotic signalling across 450 million years 2 of plant evolution

3 Tatiana Vernié^{1*}, Mélanie Rich¹, Tifenn Pellen¹, Eve Teyssier¹, Vincent Garrigues¹, Lucie
4 Chauderon¹, Lauréna Medioni¹, Fabian van Beveren¹, Cyril Libourel¹, Jean Keller¹, Camille
5 Girou¹, Corinne Lefort¹, Aurélie Le Ru², Didier Reinhardt³, Kyoichi Kodama⁴, Syota
6 Shimazaki⁴, Patrice Morel⁵, Junko Kyozuka⁴, Malick Mbengue¹, Michiel Vandenbussche⁵,
7 Pierre-Marc Delaux^{1*}

8 ¹ Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP
9 Toulouse, Castanet-Tolosan, France.

10 ² Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, 31326
11 Castanet-Tolosan, France.

12 ³ Department of Biology, University of Fribourg, Rte Albert-Gockel 3, 1700, Fribourg, Switzerland.

13 ⁴ Graduate School of Life Sciences, Tohoku University, Sendai, Japan.

14
15 ⁵ Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1,
16 CNRS, INRA, Lyon, France.

17
18 *Correspondence: tatiana.vernie@univ-tlse3.fr, pierre-marc.delaux@cnrs.fr

20 **Highlight**

21

- 22 • The common symbiotic pathway is activated during arbuscular mycorrhizal symbiosis in
23 *Marchantia paleacea*
- 24 • The three core members of the common symbiotic pathway are essential for symbiosis in
25 *Marchantia paleacea*
- 26 • The molecular function of the CCaMK/CYCLOPS module is conserved across land plants
- 27 • Symbiotic signalling has been conserved in plants for 450 million years

28
29

30 **Summary**

31
32 The colonization of land by plants 450 million years ago revolutionized life on Earth¹. The fossil record²
33 and genetic evidence in extant species³ suggest that this transition was facilitated by interactions with
34 symbiotic arbuscular mycorrhizal (AM) fungi⁴. This ancestral symbiosis relied on the biosynthesis of

35 chemicals by the host plant, both as signals⁵ and as nutrients³. In angiosperms, a signalling pathway
36 involving the receptor-like kinase SYMRK/DMI2^{6,7}, the Calcium and Calmodulin-dependent protein
37 kinase CCaMK/DMI3⁸ and the transcription factor CYCLOPS/IPD3^{9,10} has been described as the
38 common symbiosis pathway (CSP), essential for the establishment of the AM symbiosis and the root-
39 nodule symbiosis¹¹. Phylogenetic and comparative phylogenomic analyses indicated an ancient origin
40 of the CSP, present in all extant land plants forming intracellular symbioses^{12–15}. Trans-
41 complementation assays of the angiosperm mutants with orthologs from diverse species further
42 indicated the conservation of the molecular function of the CSP across the embryophytes^{9,12,14–16}.
43 However, this correlative evidence did not allow testing the ancestral biological function of the CSP. In
44 this study we demonstrate that SYMRK, CCaMK and CYCLOPS are essential for the colonization by
45 AM fungi in bryophytes, indicating that plants have maintained a dedicated signalling pathway to support
46 symbiotic interactions for 450 million years.

47

48 **Keywords**

49 Plant symbiosis - arbuscular mycorrhizal symbiosis - evolution - common symbiosis pathway -
50 *Marchantia* - evo-devo

51

52 **Results and Discussion**

53

54 ***The CYCLOPS-Responsive Element is a marker of CSP induction***

55

56 In angiosperms, activation of the CSP (Figure 1A) upon symbiont perception leads to the
57 phosphorylation of the transcription factor CYCLOPS by CCaMK, and the transcriptional activation of
58 its direct target genes^{17,18}. This direct activation by phosphorylated CYCLOPS is mediated by *cis*-
59 regulatory elements present in the promoter region of the target genes^{17,18}. The first of the four different
60 *cis*-regulatory elements bound by phosphorylated CYCLOPS described so far^{17–20} was identified in the
61 promoter of *NIN* from the angiosperm *Lotus japonicus*. A fusion of this element to a GUS reporter
62 (pCYC-RE:GUS) is activated during infection by rhizobial symbionts forming the root-nodule symbiosis
63 in *L. japonicus*^{17,21} and *Medicago truncatula* (Figure S1A). We hypothesized that this reporter could be
64 directly activated by phosphorylated CYCLOPS irrespective of the symbiotic context, and not
65 specifically during the root-nodule symbiosis. *M. truncatula* hairy-roots transformed with the pCYC-
66 RE:GUS reporter were grown in presence or absence of the Arbuscular Mycorrhizal (AM) fungus
67 *Rhizophagus irregularis*, harvested 6 weeks after inoculation and stained for GUS activity. By contrast
68 with the non-inoculated roots that showed only faint and rare staining, the plants inoculated with *R.*
69 *irregularis* showed consistent and intense GUS induction (Figure 1B and S1B-G). The intense staining
70 colocalized with the presence of the fungal hyphae and arbuscules (Figure 1B). The pCYC-RE:GUS
71 reporter is thus a marker for the activation of the CSP by rhizobial and AM fungi symbionts in *M.*
72 *truncatula*.

73 To determine whether this activation is specific to the phosphorylation of MtCYCLOPS, we co-
74 expressed in *M. truncatula* hairy roots the pCYC-RE:GUS reporter together with versions of CYCLOPS

75 from various species mimicking the phosphorylation by CCaMK (CYCLOPS-DD¹⁷). Overexpression of
76 *CYCLOPS-DD* from *M. truncatula*, *Mimosa pudica* or *Discaria trinervis* which are all able to form both
77 the root-nodule and AM symbioses induced the pCYC-RE:GUS reporter in *M. truncatula* hairy roots
78 (Figure 1C). The same activation was observed when overexpressing *CYCLOPS-DD* from *Fragaria*
79 *vesca* and *Nissolia schotii* which belong to lineages that lost the ability to form the root-nodule
80 symbiosis, but retained the AM symbiosis²². Finally, *CYCLOPS-DD* from the AM-hosts dicot *Petunia*
81 *hybrida*, monocots *Zea mays* and *Hordeum vulgare*, and bryophytes *Marchantia paleacea* (thalloid
82 liverworts) and *Anthoceros agrestis* (hornworts), all induced the pCYC-RE:GUS reporter in the absence
83 of AM fungi (Figure 1C). Activation of the pCYC-RE:GUS is thus not limited to phosphomimetic
84 CYCLOPS from species able to form both the root-nodule and the AM symbioses.

85 To determine whether the activation of the pCYC-RE:GUS was dependent on the genetic
86 background or the symbiotic abilities of the plant species, we expressed *MtCYCLOPS-DD* and the
87 pCYC-RE:GUS reporter in the root of the legume *Nissolia brasiliensis*. The genus *Nissolia* has lost the
88 ability to form the root-nodule symbiosis but retains the AM symbiosis²². As for the expression in *M.*
89 *truncatula*, overexpression of *MtCYCLOPS-DD* resulted in the activation of the pCYC-RE:GUS reporter
90 in *N. brasiliensis* (Figure S1H-I). Finally, overexpression of *MpaCYCLOPS-DD* was conducted in the
91 liverworts *M. paleacea* leading, again, to the activation of the pCYC-RE:GUS reporter (Figure 1D), while
92 control lines only expressing the pCYC-RE:GUS reporter did not show staining (Figure 1D).

93

94 Collectively, these data indicate that the pCYC-RE:GUS is a reliable marker for the activation of the
95 CSP, irrespective of the plant species and the type of symbiosis.

96

97 ***The CSP is activated during symbiosis in *Marchantia paleacea****

98

99 The bryophyte and vascular-plant lineages diverged *ca.* 450 million years ago. Because of this
100 early split during land-plant evolution, identifying conserved features between representatives of these
101 two lineages allows inferring the biology of their most recent common ancestor, a close relative of the
102 first land plants²³. Among bryophytes, the liverwort *M. paleacea* is able to engage in AM symbiosis^{15,24}
103 and has emerged as an appropriate model to study the conservation of symbiotic processes in land
104 plants. To determine whether the activation of the CSP is conserved across land plants, we first
105 transformed *M. paleacea* with promoter:GUS fusions for the upstream- and downstream-most
106 components of the CSP, namely *SYMRK* and *CYCLOPS*. The lines were inoculated with *R. irregularis*
107 or mock-treated, harvested six weeks later, and stained. In non-inoculated conditions the
108 pMpaSYMRK:GUS and pMpaCYCLOPS:GUS lines displayed background staining in the upper and
109 lower epidermis. Upon inoculation, an additional expression domain was detected for both genes in the
110 cells hosting arbuscules and in the area just below, where intracellular hyphae develop (Figure 1F-G).

111

112 To directly test the link between AM symbiosis and the CSP, the *M. paleacea* pCYC-RE:GUS
113 reporter lines were inoculated with *R. irregularis*, grown for six weeks and the activation of the reporter
114 tested by GUS staining. While non-inoculated plants showed barely any GUS signal, inoculated plants
displayed a robust signal in the part of the thallus hosting intracellular hyphae (Figure 1E). By contrast

115 with *M. truncatula* roots, no signal was observed in the area hosting mature arbuscules, just above the
116 intracellular hyphae (Figure 1E). While in *M. paleacea* the colonization is spatially well-defined,
117 development of the symbiotic structures in *M. truncatula* is asynchronous, mixing cells hosting
118 intracellular hyphae and arbuscules cells. This difference in the zonation of colonization may explain
119 the different pattern observed for the pCYC-RE:GUS reporter. Exploring the induction of this reporter
120 in other host species will allow determining whether this difference is due to lineage specificities or
121 represent two widely distributed patterns.

122

123 These results indicate that the CSP is activated during intracellular colonization by AM fungi in *M.*
124 *paleacea*.

125

126 ***The symbiotic function of SYMRK is conserved across land plants***

127

128 The activation of the CSP during AM symbiosis in *M. paleacea* is yet another correlative evidence
129 for the conserved symbiotic role of this signalling pathway in land plants. To directly test this role, we
130 generated nine *symrk* mutant alleles in *M. paleacea* using CRISPR/Cas9 (Figure 2A- and S2). Four
131 alleles lead to non-sense mutations coding for predicted truncated proteins (Figure 1B and S2). The
132 other five alleles displayed mis-sense mutations and small deletions that left the downstream original
133 reading frame intact (Figure 1B and S2). The nine mutants were inoculated with *R. irregularis* in parallel
134 with a line transformed with an empty vector (control line). While 96% of the control line thalli were
135 colonized and showed arbuscules five weeks after inoculation, none of the four non-sense alleles lines
136 showed signs of colonization (Figure 2B-C). Among the five mis-sense mutants two were not colonized,
137 and the other three showed a strong quantitative reduction in colonization (Figure 2B). Microscopy
138 confirmed the colonization defect in the *symrk* mutant lines, and the presence of fully developed
139 infection units harbouring arbuscules in the control line (Figure 2C). The consistent AM symbiosis defect
140 in the *M. paleacea* *symrk* mutant lines is similar to the phenotypes observed in diverse *symrk* mutant of
141 dicots^{6,7} and monocots^{25,26} in which colonization by AM fungi is fully abolished.

142

143 Altogether, these data indicate that the biological role of SYMRK for the establishment of the AM
144 symbiosis is conserved across land plants.

145

146 ***The symbiotic function of the CCaMK/CYCLOPS module is conserved across land plants***

147

148 Downstream of SYMRK, CCaMK and CYCLOPS act as a module triggering the initial steps of
149 the symbiotic response. In legumes and the monocots rice and barley, CCaMK is essential for AM
150 symbiosis, while *cyclops* mutants display phenotypes ranging from strong reduction in colonization rate
151 to the absence of AM fungi^{9,25,27}. Here, we added to the range of tested angiosperms *ccamk* and *cyclops*
152 mutants from a dicot that do not form the root-nodule symbiosis, the Solanaceous species *Petunia*
153 *hybrida*. Intracellular colonization was neither observed in the *ccamk* mutant nor in the *cyclops* mutant,
154 while the wild-type siblings were well colonized (Table S1) confirming the important role of CCaMK and

155 CYCLOPS for AM symbiosis in angiosperms. Next, we generated thirteen *ccamk* and seven *cyclops*
156 mutants in *M. paleacea* by CRISPR/Cas9 (Figure 3-4 and S3-4). Following inoculation with *R.*
157 *irregularis*, twelve of the *ccamk* mutants, showed no signs of colonization after five weeks, while the
158 control line (44/54 plants) and a *ccamk* mutant with only a small *in frame* deletion in the sequence
159 preceding the kinase domain (32/40 plants) were normally colonized (Figure 3B). Microscopy confirmed
160 the absence of colonization in the *ccamk* mutant lines, and the presence of fully developed infection
161 units harbouring arbuscules in the control line (Figure 3C). This demonstrates the essential symbiotic
162 role of *ccamk* in *M. paleacea*.

163 Five weeks after inoculation with *R. irregularis*, the phenotypes of the *cyclops* frameshift
164 mutants ranged from moderately to strongly reduced colonization, or to a total lack of colonization
165 (Figure 4B). One allele, only affected by a 12nt *in-frame* deletion, was colonized to a similar level than
166 the control line (Figure 4B). Similar phenotypes were still observed eight weeks after inoculation (Figure
167 3B). The observed difference in the strength of the phenotypes between *cyclops* mutants correlates
168 with the position of the CRISPR/Cas9-induced mutations (Figure 4 and S4). While the alleles showing
169 lack of, or strongly reduced, colonization were mutated in a domain conserved across all embryophytes
170 (Figure 4A-4B and S4-5), alleles with reduced colonization were mutated closer to the N-terminal part
171 of the protein, in a domain conserved across bryophytes, ferns and gymnosperms, but missing from the
172 angiosperms (Figure S5). This additional domain may thus have a non-essential function. Presence of
173 alternative start codons downstream the mutation present in the weak alleles (Figure S5) supports this
174 hypothesis, although further experiments are required to test it. Strongly reduced colonization was also
175 observed in two additional frameshift mutant lines generated in *M. paleacea* ssp *diptera* (Figure S6). To
176 consolidate the quantification of the phenotypes, RNA was extracted from the seven *M. paleacea*
177 *cyclops* mutants and the empty vector control line five weeks after inoculation with *R. irregularis*, and
178 the expression of the AM-responsive phosphate (*MpaSymPT*) and lipid (*MpaSTR*) transporters was
179 monitored by qRT-PCR. Expression of the *R. irregularis* housekeeping gene *RiTEF* was quantified as
180 a proxy for fungal abundance. The expression level of *SymPT*, *STR* and *RiTEF* mirrored the observed
181 colonization rates, confirming that the functionality of the AM symbiosis is impaired in the *cyclops*
182 frameshift mutants (Figure 4C).

183

184 The symbiotic defects observed in *M. paleacea* *ccamk* and *cyclops* mutants, reminiscent of the ones
185 observed in angiosperms, indicate that the biological function of these two genes as regulators of the
186 AM symbiosis is conserved across land plants.

187

188 **The molecular function of the CYCLOPS/CCaMK module is conserved across land plants**

189

190 Complementation of the symbiotic defects of angiosperms *ccamk* and *cyclops* mutants by their
191 bryophyte orthologs supports the conservation of the molecular function of this module across plant
192 lineages^{12,14,15}. In angiosperms, CCaMK phosphorylates CYCLOPS following symbiont-induced nuclear
193 calcium spiking⁹. In both *M. paleacea* and angiosperms expression of a gain of function version of *M.*
194 *paleacea* CYCLOPS mimicking this phosphorylation (*MpaCYCLOPS-DD*) leads to the activation of the

195 pCYC-RE:GUS reporter (Figure 1C-D). If the CYCLOPS/CCaMK module is indeed conserved across
196 plant lineages, we reasoned that overexpression of *MpaCYCLOPS-DD*, *MtCYCLOPS-DD* and
197 *MtCCaMK-Kin*, an autoactive version of CCaMK^{15,28}, should result in similar transcriptomic signatures
198 relative to control lines. To test this, *M. paleacea* lines overexpressing either of these three constructs
199 were generated, their transcriptome determined by RNAseq, and compared to lines transformed with
200 an empty vector to identify differentially expressed genes (Figure 4, Table S2). All three constructs lead
201 to very significant transcriptomic changes, ranging from 1156 to 1410 up-regulated genes, and 1348 to
202 1606 down-regulated genes (Figure 4D-4E, Table S2). Among the genes up-regulated in response to
203 *MpaCYCLOPS-DD*, 910 and 667 were also found up-regulated in response to *MtCYCLOPS-DD* and
204 *MtCCaMK-Kin* respectively (Figure 4D). A similar trend was observed for the down-regulated genes (1042
205 and 1024 respectively, Figure 4E). These overlaps were significantly higher than expected by chance
206 (Table S3).

207

208 Mirroring the trans-complementation of angiosperm mutants with liverwort sequences^{12,14,15}, these
209 results indicate that, similar to the conservation of the biological role of the CYCLOPS/CCaMK module,
210 the molecular function of these two components of the CSP is conserved across land plants.

211

212 Conclusion

213

214 As described over the last two decades for angiosperms, the CSP components *SYMRK*, *CCaMK* and
215 *CYCLOPS* are essential for AM symbiosis in the liverwort *M. paleacea*. To explain this conserved role,
216 the most parsimonious hypothesis suggests that the most recent common ancestor of the angiosperms
217 and the bryophytes already used the CSP to engage and associate with AM fungi. In other words, our
218 data indicate that plants have relied on a conserved symbiotic signalling pathway for 450 million years.
219 Phylogenomic data indicate that this pathway may subsequently have been co-opted for other
220 intracellular symbioses with diverse fungi and nitrogen-fixing bacteria¹⁵. Genetics in legumes support
221 this hypothesis for the root-nodule symbiosis¹¹. How transitions from one symbiotic type to another
222 occurred by co-opting the very ancient CSP represents the next challenge to be deciphered. Such an
223 understanding may open the possibility to expand the symbiotic abilities of crops species by mimicking
224 evolution.

225

226 Acknowledgements

227 We thank the genotoul bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul,
228 <https://doi.org/10.15454/1.5572369328961167E12>) for providing computing resources. We
229 acknowledge the TRI-FRAIB imaging facility, member of the national infrastructure France-BioImaging
230 supported by the French National Research Agency (ANR-10-INBS-04). Research performed at LRSV
231 was also supported by the 'Laboratoires d'Excellence (LABEX)' TULIP (ANR-10-LABX-41) and the
232 'École Universitaire de Recherche (EUR)' TULIP-GS (ANR-18-EURE-0019). L.M., C.G., T.V., J.K., C.L.
233 and P-M.D were supported by the project Engineering Nitrogen Symbiosis for Africa (ENSA) funded
234 through a grant to the University of Cambridge by the Bill and Melinda Gates Foundation (OPP1172165)

235 and the UK Foreign, Commonwealth and Development Office as Engineering Nitrogen Symbiosis for
236 Africa (OPP1172165). This project received funding from the European Research Council (ERC) under
237 the European Union's Horizon 2020 research and innovation programme (grant agreement no.
238 101001675 - ORIGINS) to P.-M.D.

239

240 **Author contributions**

241

242 T.V., P-M.D, M.K.R., M.V., J.Ky., M.M., D.R. designed and coordinated the experiments. T.V., A.L-R,
243 P.M., M.V., F.VB., M.K.R., E.T., J.Ke., C.Le., C.Li., C.G., T.P., L.C., V.C., K.K. and S.S. conducted
244 experiments. P-M.D. and T.V. wrote the manuscript. P-M.D. coordinated the project.

245

246 **Declaration of interest**

247

248 The authors declare no competing interests.

249 **Figure legends**

250 **Figure 1 Conservation of pCYC-RE:GUS activation by the CSP transcription factor CYCLOPS in
251 land plants**

252 A. Common Symbiosis Pathway (CSP) in angiosperms.

253 B. pCYC-RE:GUS is activated in response to AMS in *M. truncatula* six weeks post inoculation with
254 *Rhizophagus irregularis*. Whole roots images of GUS-stained inoculated and non inoculated roots
255 are shown (Scale bar 1mm). Faint blue signals could be observed on non inoculated roots whereas
256 intense blue patches were observed on inoculated roots. The zoomed image corresponds to one
257 of these blue patches with a WGA-Alexa Fluor 488 staining revealing AM fungi (black) and an
258 overlay of both images. Scale bar = 100µm. The number of plants with blue signal associated to
259 AM symbiosis is indicated.

260 C. *M. truncatula* roots were transformed with pCYC-RE:GUS and autoactive forms of CYCLOPS
261 (CYCLOPS-DD) orthologs from *M. truncatula*, *Nissolia schottii*, *Mimosa pudica*, *Discaria trinervis*,
262 *Fragaria vesca*, *Petunia axillaris* (*Petaxi*), *Zea mays* (*Zeamay*), *Hordeum vulgare* (*Horvul*),
263 *Marchantia paleacea* (*Marpal*), *Anthoceros agrestis* (*Antagro*) and stained for GUS activity. Control
264 plants correspond to plants transformed only with pCYC-RE:GUS. Plants showing a strong GUS
265 signal out of the total number of observed plants are indicated. For the control, only a faint GUS
266 signal was sometimes observed in the 23 plants observed. Scale bar = 1mm.

267 D. *M. paleacea* transformed lines expressing pCYC-RE:GUS (three independent lines: pCYC-
268 RE:GUS.5, 8 and 10) or pCYC-RE:GUS + MarpalCYCLOPS-DD (three independent lines: pCYC-
269 RE:GUS-MpaCYCDD.2, 5 and 10) are shown after staining for GUS activity. Scale bar = 1mm

270 E. *M. paleacea* transformed with pCYC-RE:GUS (pCYC-RE:GUS.10) without inoculation (Control)
271 or six weeks post inoculation with *R. irregularis*. Thalli were GUS stained and *R. irregularis* is
272 visualized with WGA-Alexa Fluor 488. Bright field, Alexa Fluor 488 and overlay are shown. Scale
273 bar = 100µm.

274 F. *M. paleacea* transformed with pMpaSYMRK:GUS without inoculation (Control) or six weeks
275 post inoculation with *R. irregularis*. Thalli were GUS stained and *R. irregularis* is visualized with
276 WGA-Alexa Fluor 488. Bright field, Alexa Fluor 488 and overlay are shown. Scale bar = 100µm.

277 G. *M. paleacea* transformed with pMpaCYCLOPS:GUS without inoculation (Control) or six weeks
278 post inoculation with *R. irregularis*. Thalli were GUS stained and *R. irregularis* is visualized with
279 WGA-Alexa Fluor 488. Bright field, Alexa Fluor 488 and overlay are shown. Scale bar = 100µm.

280 **Figure 2 SYMRK is essential fo Arbuscular Mycorrhizal Symbiosis in *Marchantia paleacea***

281 A. Exons/introns structure of the *MpaSYMRK* genomic sequence. The number of amino acids and
282 predicted domains are indicated. CRISPR/Cas9 was conducted on exon 1 and 2 (arrowheads
283 indicate position of sgRNAs).

284 B. Colonization rates of *M. paleacea symrk* mutant lines at six weeks post inoculation with *R.*
285 *irregularis*. Predicted protein structures are indicated on the left for the two first exons. Red asterisks
286 indicate the presence of a premature stop codon in the mutant line. *** = statistical difference
287 (p<0,001) calculated with a pairwise comparison of proportions (Chi2) to the control line and a BH
288 p-value adjustment. n= number of observed thalli.

289 C. Transversal sections of *symrk* and control lines six weeks post inoculation with *R. irregularis*. *R.*
290 *irregularis* is visualized with WGA-Alexa Fluor 488. Bright field, Alexa Fluor 488 and overlay are
291 shown for each line. Scale bar=100µm. *R. irregularis* is observed in control and *symrk_3.11* lines.

292 **Figure 3 CCaMK is essential for Arbuscular Mycorrhizal Symbiosis in *Marchantia paleacea***

293 A. Exons/introns structure of the *MpaCCaMK* genomic sequence. The number of amino acids and
294 predicted domains are indicated. CRISPR/Cas9 was conducted on exon 1 (arrowheads indicate
295 position of sgRNAs).

296 B. Colonization rates of *M. paleacea ccamk* lines at six weeks post inoculation with *R. irregularis*.
297 Predicted protein structures are indicated on the left for the first targeted exon. Red asterisks
298 indicate the presence of a premature stop codon in the mutant line. *** = statistical difference
299 (p<0,001) calculated with a pairwise comparison of proportions (Chi2) to the control line and a BH
300 p-value adjustment. n= number of observed thalli.

301 C. Transversal sections of *ccamk* and control lines six weeks post inoculation with *R. irregularis*. *R. irregularis* is visualized with WGA-Alexa Fluor 488. Bright field, Alexa Fluor 488 and overlay are shown for each line. Scale bar=100μm. *R. irregularis* is observed in control and *ccamk_9.19* lines.

304 **Figure 4 CYCLOPS is important for Arbuscular Mycorrhizal Symbiosis in *Marchantia paleacea***

305 A. Exons/intron structure of the *MpaCYCLOPS* genomic sequence. Number of amino acids and
306 predicted domains are indicated. CRISPR/Cas9 was conducted on exon 1 (arrowheads indicate
307 position of sgRNAs).

308 B. Colonization rates of *M. paleacea cyclops* lines at five and eight weeks post inoculation with *R.*
309 *irregularis*. Predicted protein structures are indicated on the left for the first exon. Red asterisks
310 indicate the presence of a premature stop codon in the mutant line. *** and ** indicate statistical
311 difference (p<0,001 and p<0.05 respectively) calculated with a pairwise comparison of proportions
312 (Chi2) to the control line and a BH p-value adjustment. n= number of observed thalli.

313 C. Transversal sections of *M. paleacea cyclops* and control lines eight weeks post inoculation with
314 *R. irregularis*. *R. irregularis* is visualized with WGA-Alexa Fluor 488. Bright field, Alexa Fluor 488
315 and overlay are shown for each line. Scale bar=100μm. *R. irregularis* is observed inside all thalli of
316 all lines except *cyclops.C9* and *cyclops.C4*. On the right panel, the bars correspond to the
317 expression levels of *MpaSymPT*, *MpaSTR* and *RiTEF* analyzed by qRT-PCR on thalli five weeks
318 post inoculation with *R. irregularis*. Data were normalized to *M. paleacea* housekeeping gene
319 *MpaEF1*. Error bars represent SE (n = 3). Asterisks indicate statistically significant differences
320 (Student's *t*-test: * *p-value* ≤ 0.1, ** *p-value* ≤ 0.05, and *** *p-value* ≤ 0.001) compared with the
321 control lines.

322 D. Venn diagrams of up-regulated genes in *M. paleacea* overexpressing *MpaCYCLOPS-DD*,
323 *MtCYCLOPS-DD*, or *MtCCaMK-Kin*, respectively (FDR≤0.05).

324 E. Venn diagrams of down regulated genes in *M. paleacea* overexpressing *MpaCYCLOPS-DD*,
325 *MtCYCLOPS-DD*, or *MtCCaMK-Kin*, respectively (FDR≤0.05).

326 **Data and resource availability**

327 **Lead contact**

328 Requests for resources and further information should be directed towards Pierre-Marc Delaux (pierre-marc.delaux@cnrs.fr).

330 **Materials availability**

331 Plasmids and transgenic lines generated in this study are available. For the transfer of transgenic
332 material, appropriate information on import permits will be required from the receiver.

333 Data and code availability

334 RNAseq reads were deposited on the SRA with the Bioproject number PRJNA1051818. This paper
335 does not report original code. Any additional information required to reanalyze the data reported in this
336 paper is available from the lead contact (pierre-marc.delaux@cnrs.fr) upon request.

337

338 **Material and methods**

339

340 Phylogeny

341

342 To reconstruct the phylogeny of CYCLOPS, we recovered protein sequences from a variety of land
343 plants using hmmscan from HMMER v3.4²⁹ with the HMM profile of the CYCLOPS domain
344 (IPR040036). A set of 37 protein sequences was aligned using MAFFT v7.520 with the E-INS-i
345 method³⁰. The phylogeny was reconstructed using IQ-TREE v2.2.2.3 with the model LG+C20+F+G and
346 support was provided with 1,000 ultrafast bootstrap replicates³¹⁻³⁴. The tree was rooted between
347 bryophytes and vascular plants, and the tree and alignment were visualized using ETE3 v3.1.2³⁵.

348

349 Cloning

350

351 The Golden Gate modular cloning system^{36,37} was used to prepare the plasmids as described in Rich
352 et al.³ for all constructs, except for pMpaSYMRK:GUS. Levels 0, 1 and 2 used in this study are listed in
353 Table S4 and held for distribution in the ENSA project core collection (<https://www.ensa.ac.uk/>).
354 Sequences were domesticated (listed in Table S4), synthesized and cloned into pMS (GeneArt, Thermo
355 Fisher Scientific, Waltham, USA).

356 Gateway system was used to construct pMpaSYMRK:GUS. pMpaSYMRK (2.4kb) was amplified with
357 GGGGACAAGTTGTACAAAAAAGCAGGCTTCGCTTCTCAGAAACAATCTA and
358 GGGGAGCCACTTGTAAGAAAGCTGGTCGTTCTGCTCAAACCGAGAC and cloned by BP in
359 pDON207 and then into pMDC164 by LR³⁸.

360

361 *Generation of CRISPR mutants in M. paleacea ssp. paleacea*

362 Constructs containing the *Arabidopsis thaliana* codon optimized Cas9³⁹ under the MpoEF1a promoter
363 and two guide RNA under the *M. paleacea* or *M. polymorpha* U6 promoter were transformed in *M.*
364 *paleacea*. A total of nine alleles of *symrk* (*Marpal_utg000051g0090241*), thirteen of *ccamk*
365 (*Marpal_utg000137g0173321*) and seven of *cyclops* (*Marpal_utg000051g0091871*) were genotyped
366 and selected for phenotyping (Table S5 and S6).

367

368 *Generation of CRISPR mutants in M. paleacea ssp. diptera*

369 To generate mutants of CYCLOPS in *Marchantia paleacea ssp. diptera* (*cyclops.D1*, *cyclops.D2*), plants
370 were transformed with the construct containing *Arabidopsis*-codon-optimized Cas9 fused with
371 MpoEF1a promoter and a guide RNA (GCTCGAACCATATTGATG) fused to the MpoU6-1 promoter.
372 Two edited lines were selected for phenotyping.

373

374

375 Medicago assays

376

377 Constructs were transformed in *Agrobacterium rhizogenes* A4TC24 by electroporation. Transformed
378 strains were grown at 28°C in Luria-Bertani medium supplemented with rifampicin and kanamycin (25
379 µg/mL). *M. truncatula* Jemalong A17 roots, were transformed with the different CYCLOPS-DD orthologs
380 and the pCYC-RE:GUS (Table S4) as described by Boisson-Dernier et al.⁴⁰, and grown on Fahraeus
381 medium for 2 months, selected with the DsRed marker present in all the constructs and GUS stained
382 as in Vernié et al. 2015⁴¹.
383 For nodulation and mycorrhization assays, *M. truncatula* plants with DsRed-positive roots were
384 transferred to pots containing Zeolite substrate (50% fraction 1.0-2.5mm, 50% fraction 0.5-1.0-mm,
385 Symbiom). For nodulation assays, plants were watered with liquid Fahraeus medium. Wild-type *S.*
386 *meliloti* RCR2011 pXLGD4 (GMI6526) was grown at 28°C in tryptone yeast medium supplemented with
387 6 mM calcium chloride and 10 µg/mL tetracycline, rinsed with water and diluted at OD600=0.02. Each
388 pot was inoculated with 10 ml of bacterial suspension. For mycorrhization assays, each pot was
389 inoculated with ca. 500 sterile spores of *Rhizophagus irregularis* DAOM 197198 (Agronutrition, Labège,
390 France) and grown with a 16 h/8 h photoperiod at 22 °C/20 °C. Pots were watered once per week with
391 Long Ashton medium containing 15 µM phosphate⁴².

392 *Nissolia* assays

393 *Nissolia brasiliensis* seeds provided by CIAT (Programade Recursos Genéticos, Valle, Colombia) were
394 scarified with sulfuric acid for 5min and surface-sterilized with bleach for 1min. Seeds were washed 5
395 times with H₂O at each step. Seeds were placed onto 0.8% (w/v) agar plates in a growth chamber
396 (25°C) under dark conditions for 3 days. Germinated seedlings were pierced with a needle that had
397 been previously dipped in the *A. rhizogenes* inoculum at OD=0.03, and placed on Fahraeus medium
398 plates in a 25°C growth chamber (16h light/8h dark). After 10 days, the untransformed roots (DSred-
399 negative) were removed with a scalpel blade. After one month, transformed roots were screened for
400 DsRed, and GUS stained as indicated for *M. truncatula*.

401 *Petunia* assays

402 *Petunia* genotyping

403 Petunia LY3784 (*cyclops-1*) and 86-5 (*ccamk-1*) mutants were identified by searching a sequence-
404 indexed dTph1 transposon database⁴³. Exact insert positions (expressed in base pairs downstream of
405 the ATG start codon with the coding sequence as a reference) were determined by aligning the dTph1
406 flanking sequences with the genomic and cDNA sequences. All *in silico*-identified candidate insertions
407 were confirmed by PCR-based genotyping of the progeny from the selected insertion lines, using
408 primers flanking the dTph1 transposon insertions (ATGCAGCATAATATACCAGGAAATG and
409 TGGGCTGGTTAGTAGTTTCAC for CYCLOPS, AAATTTCCACACTCTTGATCAAACTC and
410 AGCCACCTCTTCCAAGTATGTC for CCaMK). The following thermal profile was used for segregation
411 analysis PCR: 10 cycles (94°C for 15 s, 68°C for 20 s minus 1°C/cycle, 72°C for 30 s), followed by 40
412 cycles (94°C for 15 s, 58°C for 20 s, and 72°C for 30 s). The different insertion mutants were further
413 systematically genotyped in subsequent crosses and segregation analyses. PCR products were
414 analyzed by agarose gel electrophoresis. *cyclops-1* has an insertion at 609bp, *ccamk-1* at 262bp.

415

416 *Mycorrhization tests in Petunia hybrida*

417 Seeds were germinated by sowing in pots with wet soil, at the surface (without covering). Then, a mini-
418 greenhouse was placed over the pots to keep a high humidity and seeds were left to germinate in a
419 growth chamber (25°C day/22°C night, 60% humidity, 16h/8h day/night). Germinated seedlings were
420 transferred to zeolite (50% fraction 1.0-2.5mm, 50% fraction 0.5-1.0-mm, Symbiom) soaked in Long-
421 Ashton solution containing 15 µM of phosphate and inoculated with ca. 500 spores/pot of *R. irregularis*
422 DAOM 197198 (Agronutrition, Labège, France). Plants were grown in a growth chamber (25°C
423 day/22°C night, 60% humidity, 16h/8h day/night) and watered regularly with the Long-Ashton solution.
424 Root systems were harvested after 5 weeks and stained with ink. Mycorrhization was quantified using
425 the grid intersection method⁴⁴.

426

427 *Marchantia assays*

428

429 *Marchantia paleacea* ssp *paleacea* transformation

430 Gemmae collected from axenic *M. paleacea* were grown in ½ strength Gamborg B5 media (G5768,
431 Sigma) pH 5.7, 1.4% bacteriological agar (1330, Euromedex) for 4-5 weeks.
432 For each construct, 15-25 gemmalings were blended for 15 seconds in a sterile, 250ml stainless steel,
433 bowl (Waring, USA) in 10 ml of 0M51C medium (KNO₃ 2g/L, NH₄NO₃ 0.4g/L, MgSO₄ 7H₂O 0.37g/L,
434 CaCl₂ 2H₂O 0.3 g/L, KH₂PO₄ 0.275 g/L, L-glutamine 0.3 g/L, casamino-acids 1 g/L, Na₂MoO₄ 2H₂O
435 0.25 mg/L, CuSO₄ 5H₂O 0.025 mg/L, CoCl₂ 6H₂O 0.025 mg/L, ZnSO₄ 7H₂O 2 mg/L, MnSO₄ H₂O 10
436 mg/L, H₃BO₃ 3 mg/L, KI 0.75 mg/L, EDTA ferric sodium 36.7 mg/L, myo-inositol 100 mg/L, nicotinic acid
437 1 mg/L, pyridoxine HCL 1 mg/L, thiamine HCL 10 mg/L). The blended plant tissues were transferred to
438 250ml erlenmeyers containing 15 ml of 0M51C and kept at 20°C, 16h light/8h dark, on a shaking table
439 (200 RPM) for 3 days. Co-culture was initiated by adding 100 µL of saturated *Agrobacterium*
440 *tumefaciens* GV3101 liquid culture and acetosyringone (100 µM final). After 3 days, the plant
441 fragments were washed by decantation three times with water, and plated on ½ Gamborg containing
442 200 mg/L amoxycilin (Levmentin, Laboratoires Delbert, FR) and 10 mg/L Hygromycin (Duchefa
443 Biochimie, FR).

444 *Marchantia paleacea* ssp *diptera* transformation

445 Transformation was done as in Kodama et al 2022⁵. Parental lines used to generate cyclops mutant
446 were used as controls (Control.F).

447

448 *GUS-staining*

449 Plants, either mock-treated or inoculated with *R. irregularis* for 6 weeks, were harvested. For staining,
450 the GUS buffer is composed of: phosphate buffer (0.1 M), EDTA (5 mM), K₃Fe(CN)₆ (0.5 mM),
451 K₄Fe(CN)₆ (0.5 mM), X-Glu (0.25 mg/ml) and H₂O. After covering the plants with the GUS buffer, the
452 tissues were incubated under vacuum for 5 min (twice), before incubating at 37°C for 12-15h. Several
453 washes were performed with 70% ethanol to remove chlorophyll and clear the tissue. Tissues were
454 stored in an aqueous solution containing EDTA (0.5 M).

455

456 *Mycorrhization tests in Marchantia paleacea*

457 Thalli of *Marchantia paleacea* ssp *paleacea* and *Marchantia paleacea* ssp *diptera* were grown on a
458 zeolite substrate (50% fraction 1.0-2.5mm, 50% fraction 0.5-1.0-mm, Symbiom) in 7x7x8 cm pots (five
459 thalli per pot). Each pot was inoculated with ca. 1,000 sterile spores of *Rhizophagus irregularis* DAOM
460 197198 (Agronutrition, Labège, France) and grown with a 16h/8h photoperiod at 22°C/20°C. Pots were
461 watered once a week with Long-Ashton medium containing 15 µM of phosphate.

462 Six weeks post-inoculation, thalli were cleared of chlorophyll using ethanol 100% for 24 hours, then
463 stored in an aqueous solution containing EDTA (0.5 mM). Cleared thalli were scanned and the presence
464 of the black/purple pigment indicative of colonization scored. Colonization or lack of colonization was
465 confirmed by staining as presented below. Mycorrhization assays were run independently 2-5 times.

466

467 *Microscopy on M. paleacea*

468 Thalli were embedded in 6% agarose and 100µm transversal and horizontal sections were prepared
469 using a Leica vt1000s vibratome. Sections were incubated two days in 10% KOH at 4°C followed by
470 water washes. The sections were then incubated in the staining solution, PBS with 1 µg/ml WGA-Alexa
471 Fluor 488 (Invitrogen) overnight at 4°C. Pictures were taken with a Nikon Eclipse Ti with the camera
472 lens 10x/0.3 and with a Zeiss Axiozoom V16 microscope. Images were processed with ImageJ.

473

474 qRT-PCR

475

476 RNAs of *M. paleacea cyclops* mutant lines or empty-vector control plants were extracted using a Direct-
477 zol RNA MiniPrep Zymo kit according to the supplier's recommendation on ~100 mg of ground frozen
478 thalli.

479 Reverse transcription was performed using M-MLV (Promega, USA) on 500 ng of RNA and qPCR was
480 performed on 5x diluted cDNA in a BioRad CFX opus 384 thermocycler with SYBR Green (Sigma).
481 Relative expression values were calculated using the reference gene *MpaEF1*.

482

Primer	Sequence
MpaEF1 qPCR F	AATGTGTTGAGCAGCTTGGC
MpaEF1 qPCR R	ACGTTCCAAGTACTCTCGAGC
MpaSYMPT qPCR F	ACGGCAAGCAAGATCATGGA
MpaSYMPT qPCR R	GGACCAGGAACGTGAAGAGG
MpaSTR qPCR F	TCGTCTCTCATCACCACCAA
MpaSTR qPCR R	ATCCGCATGTCAAGAAGGAC
RiTEF qPCR F	GCCATACCGCTCATATTGCT
RiTEF qPCR R	CTAACACACATCGGTTTGG

483

484

485

486 RNAseq

487

488 *Library preparation*

489 Three independent lines expressing MtCYCLOPS-DD, MtCCaMK-K, MpaCYCLOPS-DD or
490 transformed with an empty vector control (Line 132) were harvested five weeks after transfer to zeolite
491 substrate (50% fraction 1.0-2.5mm, 50% fraction 0.5-1.0-mm, Symbiom) in 7x7x8 cm pots (five thalli
492 per pot). Thali from each pot were pooled in a single sample, flash-frozen and stored at -70°C until
493 extraction. TRI-reagent (Sigma) extraction was performed according to the supplier's recommendation
494 on ~100mg of ground frozen thalli. Around 2µg of RNA was treated with RQ1 DNase (Promega, USA)
495 and sent for sequencing to Genewiz/Azenta (Leipzig, Germany). Illumina libraries were prepared with
496 the NEBnext ultra II RNA directional kit and sequenced on a NovaSeq platform.

497

498 *Differential gene expression analysis*

499 All sequenced RNAseq libraries were mapped against the reference genome of *M. paleacea*³ using
500 nextflow⁴⁵ (v21.04.1, build 5556) run nf-core/rnaseq⁴⁶ (v3.4, 10.5281/zenodo.1400710) using *-profile*
501 *debug, genotoul -remove_ribo_rna -skip_qc --aligner star_salmon* options. The workflow used
502 bedtools⁴⁷ (v2.30.0), bioconductor-summarizedexperiment (v1.20.0), bioconductor-tximeta (v1.8.0),
503 gffread⁴⁸ (v0.12.1), picard (v2.25.7), salmon⁴⁹ (v1.5.2), samtools⁵⁰ (v1.13), star⁵¹ (v2.6.1d), stringtie⁵²
504 (v2.1.7), Trimgalore (v0.6.7, [GitHub - FelixKrueger/TrimGalore: A wrapper around Cutadapt and](#)
505 [FastQC to consistently apply adapter and quality trimming to FastQ files, with extra functionality for](#)
506 [RRBS data](#)), cutadapt⁵³ (v3.4) and ucsc (v377). Differentially expressed genes (DEGs) for the different
507 lines were estimated using 'edgeR'⁵⁴ in R (v4.1.2, R Core Team 2021). Briefly, low expressed genes
508 with less than 10 reads across each class of samples were removed. Then, gene counts were
509 normalized by library size and trimmed mean of M-values (i.e. TMM) normalization method⁵⁵. We
510 estimated differentially expressed genes (DEGs) by comparing each transformed genotype
511 (MtCYCLOPS-DD, MtCCaMK-K and MpaCYCLOPS-DD) to empty vector plants. Genes were
512 considered differentially expressed when the FDR was below 0.05 (Benjamini-Hochberg correction).

513

514 *Statistical analyses*

515 To estimate if the observed overlap between genes deregulated by the overexpression of the different
516 constructs in *M. paleacea* (MtCYCLOPS-DD, MtCCaMK-K and MpaCYCLOPS-DD) differed from
517 random expectations, we randomly sampled (10,000 times) the same number of genes than the number
518 of genes deregulated in each treatment, and cross-referenced these random datasets to estimate the
519 random overlap. Quantiles metrics were computed for each comparison.

520

521 **Supplemental Information**

522 **Supplemental Figure 1. pCYC-RE expression in *M. truncatula* roots**

523 **A.** The pCYC-RE:GUS signal in *M. truncatula* roots inoculated with *S. meliloti* is localized in young
524 dividing cells (triangle) at the origin of nodule primordium, in young nodule (star) and at the base of
525 developing and 12 days-old nodules (arrow). **B-G.** *M. truncatula* roots expressing pCYC-RE:GUS six
526 weeks post inoculation with *R. irregularis* (B, D, F) or non-inoculated (C, E, G). In inoculated roots the
527 blue signal is stronger and associated with colonized cells, whereas in non-inoculated roots, only some
528 weak and diffuse signal can be observed in a few roots. In F, an overlay with WGA-Alexa Fluor 488
529 signal associated with *R. irregularis* is shown. Scale bars correspond to 1 cm in B and C, and to 100µm
530 in other panels. **G-H.** *Nissolia brasiliensis* roots transformed with pCYC-RE:GUS (H) and pCYC-
531 RE:GUS + MtCYCLOPS DD (I). Number of plants showing a similar expression pattern out of the total
532 number of transformed plants are indicated.

533 **Supplemental Figure 2: Genomic and proteic alignments of MpaSYMRK in wild type and *M.*
534 *paleacea* mutant lines.**

535 **A** and **B.** Genomic alignment of the first and second exon of *MpaSYMRK*. Pairs of sgRNAs used for
536 CRISPR/Cas9 are underlined in different colors. Premature stop codons are underlined in black.

537 **C.** Proteic alignment of the two first exons of *MpaSYMRK* from the different mutant lines. Alignments
538 were performed using Clustal Omega and visualized in AliView.

539 **Supplemental Figure 3: Genomic and proteic alignments of MpaCCaMK in wild type and *M.*
540 *paleacea* mutant lines.**

541 **A.** Genomic alignment of the first exon of *MpaCCaMK*. Pairs of sgRNAs used for CRISPR/Cas9 are
542 underlined in different colors. Premature stop codons are underlined in black.

543 **B.** Proteic alignment of the first exon of *MpaCCaMK* from the different mutant lines. Alignments were
544 performed using Clustal Omega and visualized in AliView.

545 **Supplemental Figure 4: Genomic and proteic alignments of MpaCYCLOPS in wild type and *M.*
546 *paleacea* ssp *paleacea* mutant lines.**

547 **A.** Genomic alignment of the first exon of *MpaCYCLOPS*. Pairs of sgRNAs used for CRISPR/Cas9 are
548 underlined in different colors. Premature stop codons are underlined in black and the predicted new in-
549 frame start codons are underlined in blue. The N-terminal domain absent from angiosperms is indicated
550 in green, the regulatory domain in black.

551 **B.** Proteic alignment of *MpaCYCLOPS* first exon until premature stop codon if a stop codon is present.

552 **C.** Proteic alignment of MpaCYCLOPS first exon from sequences with new predicted in-frame start
553 codons in the different mutant lines. Alignments were performed using Clustal Omega and visualized
554 in AliView.

555 **Supplemental Figure 5: Loss of a N-terminal domain in angiosperms CYCLOPS proteins**

556 CYCLOPS phylogeny reconstructed using maximum likelihood. The untrimmed alignment of the
557 proteins is shown next to the phylogeny. The N-terminal domain is absent (or highly divergent) in
558 angiosperms and is highlighted in green. The regulatory, activation, and DNA-binding domains are
559 highlighted in red, yellow, and blue, respectively. The two phosphorylation sites are shown with a dark
560 blue rectangle; they were both mutated to D in CYCLOPS-DD overexpressing lines. Ultrafast bootstrap
561 support (%; out of 1,000 replicates) is shown at the end of the branches. The scale represents the
562 estimated number of substitutions per site. Sequences that differ from the original annotation are shown
563 with an asterisk (*), and experimentally validated proteins are marked with a yellow star.

564 **Supplemental Figure 6: *Marchantia paleacea* ssp *diptera cyclops* lines are impaired for**
565 **arbuscular mycorrhization with *R. irregularis***

566 **A.** Proteic alignments of MpaCYCLOPS first exon in wild type and *M. paleacea* ssp *paleacea* and ssp
567 *diptera* mutant lines. The N-terminal domain absent from angiosperms is indicated in green, the
568 regulatory domain in black. Alignments were performed using Clustal Omega and visualized in AliView.

569 **B.** The percentage of plants colonized by *R. irregularis* five weeks post inoculation with *R. irregularis*
570 is indicated. *** indicates statistical difference (p-value<0,001) calculated with a pairwise comparison of
571 proportions (Chi2) to the control line (Control.F) and a BH p-value adjustment. n= number of observed
572 thalli.

573 **C.** Sections of *cyclops* and control lines five weeks post inoculation with *R. irregularis*. *R. irregularis* is
574 visualized with blue ink. Scale bar=100μm.

575 **Table S1. Number of plants showing root mycorrhizal arbuscules in *petunia* lines *ccamk*,**
576 ***cyclops* and wild type**

577 **Table S2. List of differentially regulated genes in response to CYCLOPS-DD and CCaMK-K**
578 **overexpression in *Marchantia paleacea***

579 **Table S3. Statistical test of the overlap between CYCLOPS-DD and CCaMK-K-induced**
580 **transcriptomic changes**

581 **Table S4. List of constructs used in this study.**

582 **Table S5. List of primers for CRISPR lines**

583 **Table S6. *Marchantia paleacea* ssp *paleacea* selected lines in this study**

584 **References**

585 1. Beerling, D. (2007). The Emerald Planet: How plants changed Earth's history. *The Emerald*
586 *Planet*. 10.1093/OSO/9780192806024.001.0001.

587 2. Remy, W., Taylor, T.N., Hass, H., and Kerp, H. (1994). Four hundred-million-year-old vesicular
588 arbuscular mycorrhizae. *Proc. Natl. Acad. Sci. U. S. A.* **91**, 11841–11843.
589 10.1073/PNAS.91.25.11841.

590 3. Rich, M.K., Vigneron, N., Liboure, C., Keller, J., Xue, L., Hajheidari, M., Radhakrishnan, G. V.,
591 Le Ru, A., Diop, S.I., Potente, G., et al. (2021). Lipid exchanges drove the evolution of
592 mutualism during plant terrestrialization. *Science* (80-.). **372**, 864–868.
593 10.1126/science.abg0929.

594 4. Smith, S.E., and Read, D. (2008). *Mycorrhizal Symbiosis*, Third Edition. *Mycorrhizal*
595 *Symbiosis*, Third Ed., 1–787. 10.1016/B978-0-12-370526-6.X5001-6.

596 5. Kodama, K., Rich, M.K., Yoda, A., Shimazaki, S., Xie, X., Akiyama, K., Mizuno, Y., Komatsu,
597 A., Luo, Y., Suzuki, H., et al. (2022). An ancestral function of strigolactones as symbiotic
598 rhizosphere signals. *Nat. Commun.* **2022** **13** **13**, 1–15. 10.1038/s41467-022-31708-3.

599 6. Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N.,
600 Stougaard, J., Szczyglowski, K., et al. (2002). A plant receptor-like kinase required for both
601 bacterial and fungal symbiosis. *Nature* **417**, 959–962. 10.1038/nature00841.

602 7. Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P., and Kiss, G.B. (2002). A receptor
603 kinase gene regulating symbiotic nodule development. *Nature* **417**, 962–966.
604 10.1038/nature00842.

605 8. Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.-P., Ané, J.-M.,
606 Lauber, E., Bisseling, T., et al. (2004). A putative Ca²⁺ and calmodulin-dependent protein
607 kinase required for bacterial and fungal symbioses. *Science* **303**, 1361–1364.
608 10.1126/science.1093038.

609 9. Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K., Markmann, K., White, C.,
610 Schuller, B., Sato, S., et al. (2008). CYCLOPS, a mediator of symbiotic intracellular
611 accommodation. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 20540–20545.
612 10.1073/pnas.0806858105.

613 10. Messinese, E., Mun, J.H., Li, H.Y., Jayaraman, D., Rougé, P., Barre, A., Lougnon, G.,
614 Schornack, S., Bono, J.J., Cook, D.R., et al. (2007). A novel nuclear protein interacts with the
615 symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of *Medicago truncatula*.
616 *Mol. Plant. Microbe. Interact.* **20**, 912–921. 10.1094/MPMI-20-8-0912.

617 11. Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. *Nat. Rev. Microbiol.* 6, 763–775. 10.1038/nrmicro1987.

619 12. Wang, B., Yeun, L.H., Xue, J.Y., Liu, Y., Ané, J.M., and Qiu, Y.L. (2010). Presence of three
620 mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas
621 in the colonization of land by plants. *New Phytol.* 186, 514–525. 10.1111/j.1469-
622 8137.2009.03137.X.

623 13. Delaux, P.-M., Varala, K., Edger, P.P., Coruzzi, G.M., Pires, J.C., and Ané, J.-M. (2014).
624 Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome
625 Evolution. *PLoS Genet.* 10, e1004487. 10.1371/journal.pgen.1004487.

626 14. Delaux, P.-M., Radhakrishnan, G. V., Jayaraman, D., Cheema, J., Malbreil, M., Volkening,
627 J.D., Sekimoto, H., Nishiyama, T., Melkonian, M., Pokorny, L., et al. (2015). Algal ancestor of
628 land plants was preadapted for symbiosis. *Proc. Natl. Acad. Sci.* 112, 201515426.
629 10.1073/pnas.1515426112.

630 15. Radhakrishnan, G. V., Keller, J., Rich, M.K., Vernié, T., Mbadinga Mbadinga, D.L., Vigneron,
631 N., Cottret, L., Clemente, H.S., Libourel, C., Cheema, J., et al. (2020). An ancestral signalling
632 pathway is conserved in intracellular symbioses-forming plant lineages. *Nat. Plants* 6, 280–
633 289. 10.1038/s41477-020-0613-7.

634 16. Godfroy, O., Debellé, F., Timmers, T., and Rosenberg, C. (2006). A Rice Calcium- and
635 Calmodulin-Dependent Protein Kinase Restores Nodulation to a Legume Mutant. *Mol. Plant-*
636 *Microbe Interact.* 19, 495–501. 10.1094/MPMI-19-0495.

637 17. Singh, S., Katzer, K., Lambert, J., Cerri, M., and Parniske, M. (2014). CYCLOPS, a DNA-
638 binding transcriptional activator, orchestrates symbiotic root nodule development. *Cell Host*
639 *Microbe* 15, 139–152. 10.1016/j.chom.2014.01.011.

640 18. Pimprikar, P., Carbonnel, S., Paries, M., Katzer, K., Klingl, V., Bohmer, M.J., Karl, L., Floss,
641 D.S., Harrison, M.J., Parniske, M., et al. (2016). A CCaMK-CYCLOPS-DELLA Complex
642 Activates Transcription of RAM1 to Regulate Arbuscule Branching. *Curr. Biol.* 26, 987–998.
643 10.1016/j.cub.2016.01.069.

644 19. Cerri, M.R., Wang, Q., Stolz, P., Folgmann, J., Frances, L., Katzer, K., Li, X., Heckmann, A.B.,
645 Wang, T.L., Downie, J.A., et al. (2017). The ERN1 transcription factor gene is a target of the
646 CCaMK/CYCLOPS complex and controls rhizobial infection in *Lotus japonicus*. *New Phytol.*
647 215, 323–337. 10.1111/nph.14547.

648 20. Gong, X., Jensen, E., Bucerius, S., and Parniske, M. (2022). A CCaMK/Cyclops response
649 element in the promoter of *Lotus japonicus* calcium-binding protein 1 (CBP1) mediates
650 transcriptional activation in root symbioses. *New Phytol.* 235, 1196–1211.

651 10.1111/NPH.18112.

652 21. Cathebras, C., Gong, X., Andrade, R.E., Vondenhoff, K., Keller, J., Delaux, P.-M., Hayashi, M.,
653 Griesmann, M., and Parniske, M. (2022). A novel cis-element enabled bacterial uptake by
654 plant cells. *bioRxiv*, 2022.03.28.486070. 10.1101/2022.03.28.486070.

655 22. Griesmann, M., Chang, Y., Liu, X., Song, Y., Haberer, G., Crook, M.B., Billault-Penneteau, B.,
656 Laressergues, D., Keller, J., Imanishi, L., et al. (2018). Phylogenomics reveals multiple losses
657 of nitrogen-fixing root nodule symbiosis. *Science* (80-.). 361, 6398-. 10.1126/science.aat1743.

658 23. Puttick, M.N., Morris, J.L., Williams, T.A., Schneider, H., Pisani, D., and Donoghue, P.C.J.
659 (2018). The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte.
660 *Curr. Biol.* 10.1016/j.cub.2018.01.063.

661 24. Humphreys, C.P., Franks, P.J., Rees, M., Bidartondo, M.I., Leake, J.R., and Beerling, D.J.
662 (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. *Nat.*
663 *Commun.* 2010 11 1, 1–7. 10.1038/ncomms1105.

664 25. Li, X.R., Sun, J., Albinsky, D., Zarabian, D., Hull, R., Lee, T., Jarratt-Barnham, E., Chiu, C.H.,
665 Jacobsen, A., Soumpourou, E., et al. (2022). Nutrient regulation of lipochitooligosaccharide
666 recognition in plants via NSP1 and NSP2. *Nat. Commun.* 13. 10.1038/S41467-022-33908-3.

667 26. Miyata, K., Hosotani, M., Akamatsu, A., Takeda, N., Jiang, W., Sugiyama, T., Takaoka, R.,
668 Matsumoto, K., Abe, S., Shibuya, N., et al. (2023). OsSYMRK Plays an Essential Role in AM
669 Symbiosis in Rice (*Oryza sativa*). *Plant Cell Physiol.* 64, 378–391. 10.1093/PCP/PCAD006.

670 27. Jin, Y., Chen, Z., Yang, J., Mysore, K.S., Wen, J., Huang, J., Yu, N., and Wang, E. (2018).
671 IPD3 and IPD3L Function Redundantly in Rhizobial and Mycorrhizal Symbioses. *Front. Plant*
672 *Sci.* 9, 267. 10.3389/fpls.2018.00267.

673 28. Gleason, C., Chaudhuri, S., Yang, T., Muñoz, A., Poovaiah, B.W., and Oldroyd, G.E.D. (2006).
674 Nodulation independent of rhizobia induced by a calcium-activated kinase lacking
675 autoinhibition. *Nature* 441, 1149–1152. 10.1038/nature04812.

676 29. Eddy, S.R. (2009). A new generation of homology search tools based on probabilistic
677 inference. *Genome Inform.* 23, 205–211. 10.1142/9781848165632_0019.

678 30. Katoh, K., and Standley, D.M. (2013). MAFFT Multiple Sequence Alignment Software Version
679 7: Improvements in Performance and Usability. *Mol. Biol. Evol.* 30, 772–780.
680 10.1093/MOLBEV/MST010.

681 31. Quang, L.S., Gascuel, O., and Lartillot, N. (2008). Empirical profile mixture models for
682 phylogenetic reconstruction. *Bioinformatics* 24, 2317–2323.
683 10.1093/BIOINFORMATICS/BTN445.

684 32. Le, S.Q., and Gascuel, O. (2008). An Improved General Amino Acid Replacement Matrix. *Mol.*
685 *Biol. Evol.* **25**, 1307–1320. 10.1093/MOLBEV/MSN067.

686 33. Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., and Vinh, L.S. (2018). UFBoot2:
687 Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* **35**, 518–522.
688 10.1093/MOLBEV/MSX281.

689 34. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A.,
690 Lanfear, R., and Teeling, E. (2020). IQ-TREE 2: New Models and Efficient Methods for
691 Phylogenetic Inference in the Genomic Era. *Mol. Biol. Evol.* **37**, 1530–1534.
692 10.1093/MOLBEV/MSAA015.

693 35. Huerta-Cepas, J., Serra, F., and Bork, P. (2016). ETE 3: Reconstruction, Analysis, and
694 Visualization of Phylogenomic Data. *Mol. Biol. Evol.* **33**, 1635–1638.
695 10.1093/MOLBEV/MSW046.

696 36. Engler, C., Youles, M., Gruetzner, R., Ehnert, T.-M., Werner, S., Jones, J.D.G., Patron, N.J.,
697 and Marillonnet, S. (2014). A golden gate modular cloning toolbox for plants. *ACS Synth. Biol.*
698 **3**, 839–843. 10.1021/sb4001504.

699 37. Patron, N.J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M., Raitskin,
700 O., Leveau, A., Farré, G., Rogers, C., et al. (2015). Standards for plant synthetic biology: a
701 common syntax for exchange of DNA parts. *New Phytol.* **208**, 13–19. 10.1111/nph.13532.

702 38. Curtis, M.D., and Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput
703 Functional Analysis of Genes in *Planta*. *Plant Physiol.* **133**, 462. 10.1104/PP.103.027979.

704 39. Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., and
705 Sheen, J. (2013). Multiplex and homologous recombination–mediated genome editing in
706 *Arabidopsis* and *Nicotiana benthamiana* using guide RNA and Cas9. *Nat. Biotechnol.* **2013**
707 **31**, 688–691. 10.1038/nbt.2654.

708 40. Boisson-Dernier, A., Chabaud, M., Garcia, F., Bécard, G., Rosenberg, C., and Barker, D.G.
709 (2001). *Agrobacterium rhizogenes*-transformed roots of *Medicago truncatula* for the study of
710 nitrogen-fixing and endomycorrhizal symbiotic associations. *Mol. Plant. Microbe. Interact.* **14**,
711 695–700. 10.1094/MPMI.2001.14.6.695.

712 41. Vernié, T., Kim, J., Frances, L., Ding, Y., Sun, J., Guan, D., Niebel, A., Gifford, M.L., de
713 Carvalho-Niebel, F., and Oldroyd, G.E.D. (2015). The NIN Transcription Factor Coordinates
714 Diverse Nodulation Programs in Different Tissues of the *Medicago truncatula* Root. *Plant Cell*,
715 *tpc.15.00461*. 10.1105/tpc.15.00461.

716 42. Hewitt, E.J. (1966). Sand and water culture methods used in the study of plant nutrition,

717 Revised 2nd ed. (Commonwealth Agricultural Bureaux,).

718 43. Vandenbussche, M., Janssen, A., Zethof, J., Van Orsouw, N., Peters, J., Van Eijk, M.J.T.,
719 Rijpkema, A.S., Schneiders, H., Santhanam, P., De Been, M., et al. (2008). Generation of a 3D
720 indexed Petunia insertion database for reverse genetics. *Plant J.* **54**, 1105–1114.
721 10.1111/J.1365-313X.2008.03482.X.

722 44. Giovannetti, M., and Mosse, B. (1980). An evaluation of techniques for measuring vesicular
723 arbuscular mycorrhizal infection in roots. *New Phytol.* **84**, 489–500. 10.1111/j.1469-
724 8137.1980.tb04556.x.

725 45. DI Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., and Notredame, C.
726 (2017). Nextflow enables reproducible computational workflows. *Nat. Biotechnol.* **2017** *354* **35**,
727 316–319. 10.1038/nbt.3820.

728 46. Ewels, P.A., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Garcia, M.U., Di
729 Tommaso, P., and Nahnse, S. (2020). The nf-core framework for community-curated
730 bioinformatics pipelines. *Nat. Biotechnol.* **38**, 276–278. 10.1038/S41587-020-0439-X.

731 47. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing
732 genomic features. *Bioinformatics* **26**, 841–842. 10.1093/BIOINFORMATICS/BTQ033.

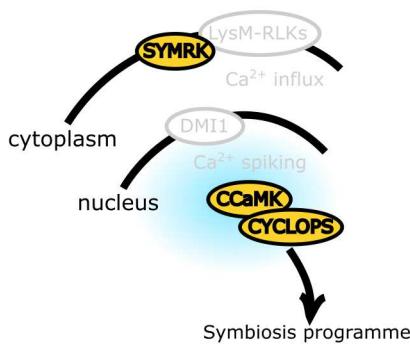
733 48. Pertea, G., and Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. *F1000Research* **9**.
734 10.12688/F1000RESEARCH.23297.2/DOI.

735 49. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides fast
736 and bias-aware quantification of transcript expression. *Nat. Methods* **2017** *144* **14**, 417–419.
737 10.1038/nmeth.4197.

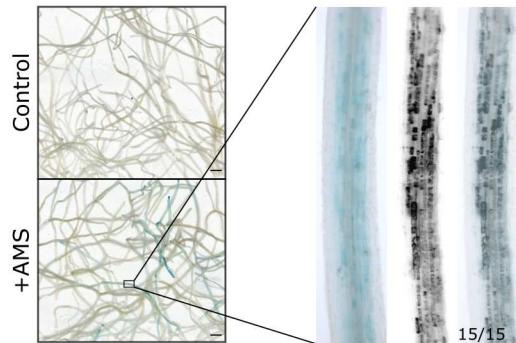
738 50. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
739 and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
740 2078–2079. 10.1093/BIOINFORMATICS/BTP352.

741 51. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
742 M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
743 15–21. 10.1093/BIOINFORMATICS/BTS635.

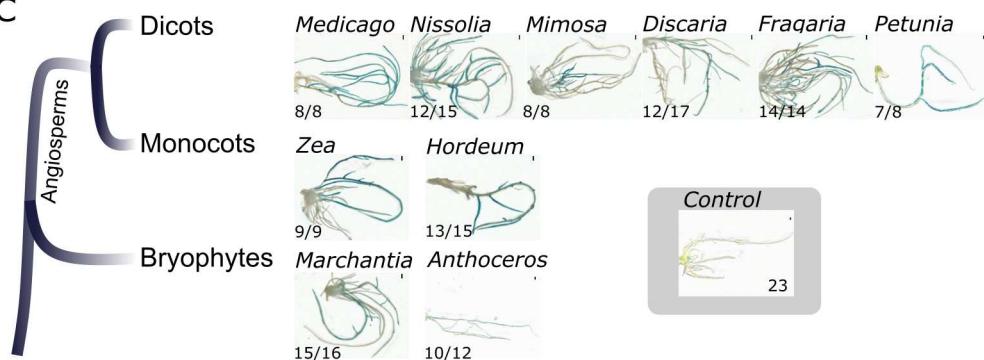
744 52. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L.
745 (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
746 *Nat. Biotechnol.* **2015** *333* **33**, 290–295. 10.1038/nbt.3122.

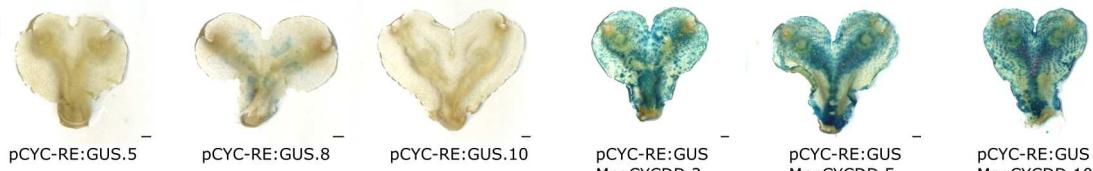

747 53. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
748 reads. *EMBnet.journal* **17**, 10. 10.14806/EJ.17.1.200.

749 54. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for
750 differential expression analysis of digital gene expression data. *Bioinformatics* *26*, 139–140.
751 10.1093/BIOINFORMATICS/BTP616.

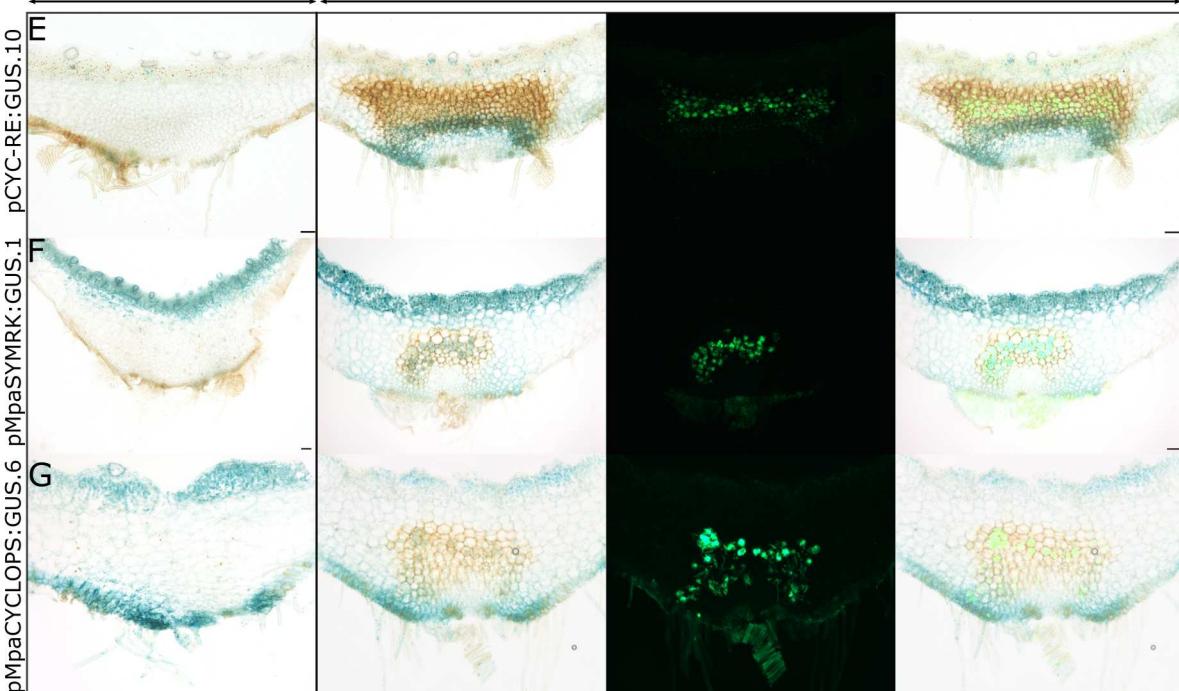

752 55. Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential
753 expression analysis of RNA-seq data. *Genome Biol.* *11*, 1–9. 10.1186/GB-2010-11-3-
754 R25/FIGURES/3.

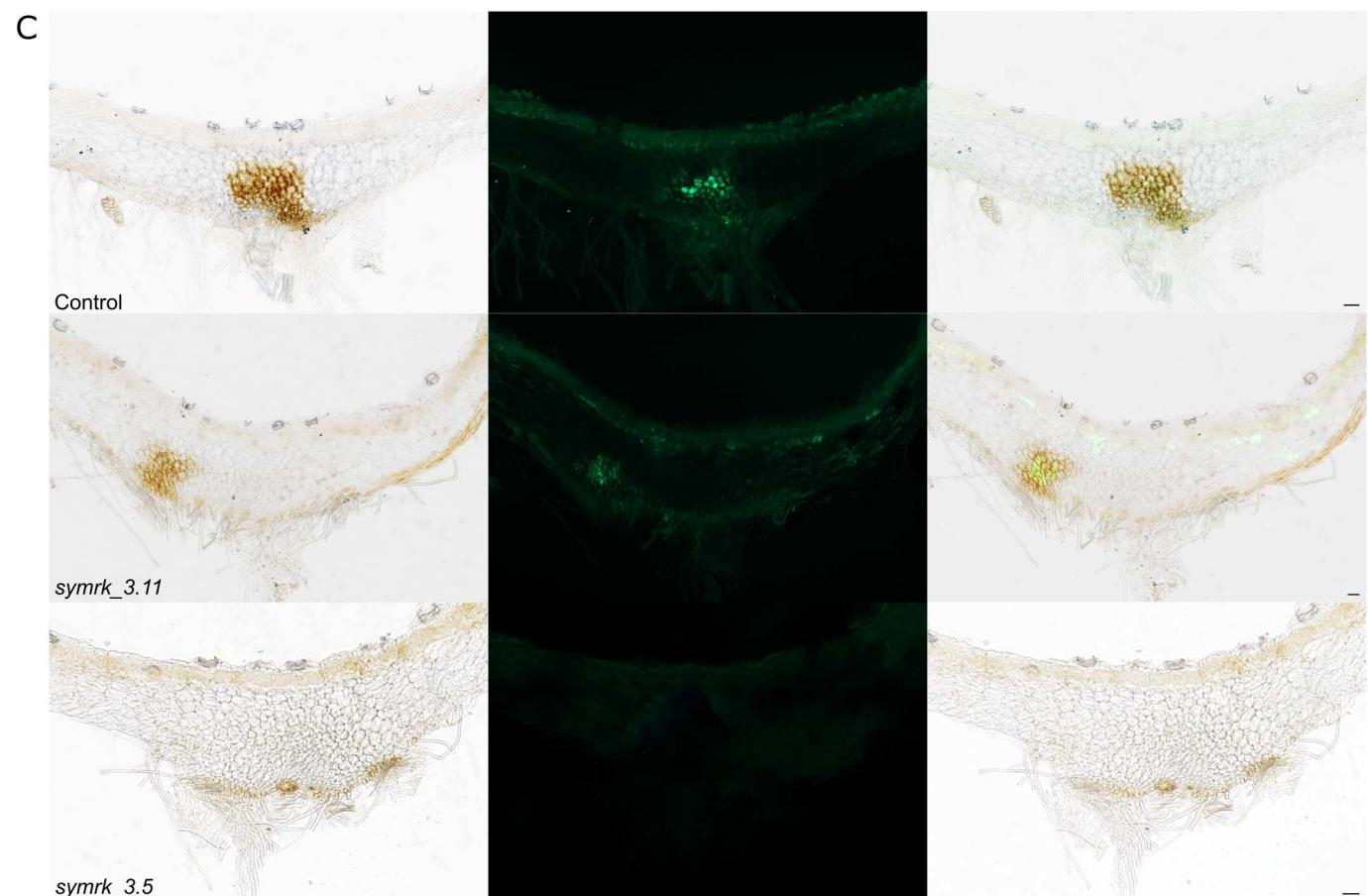
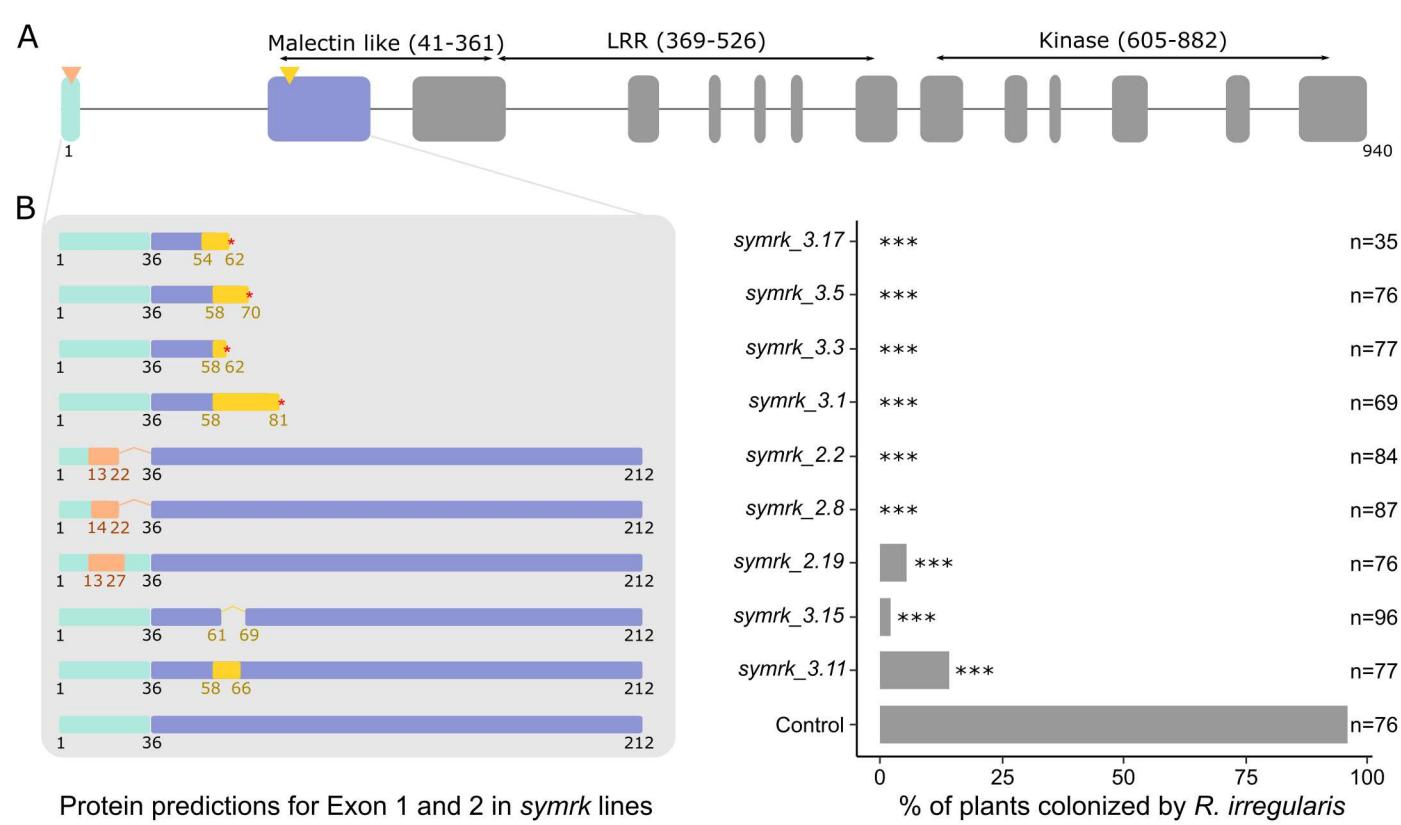
755

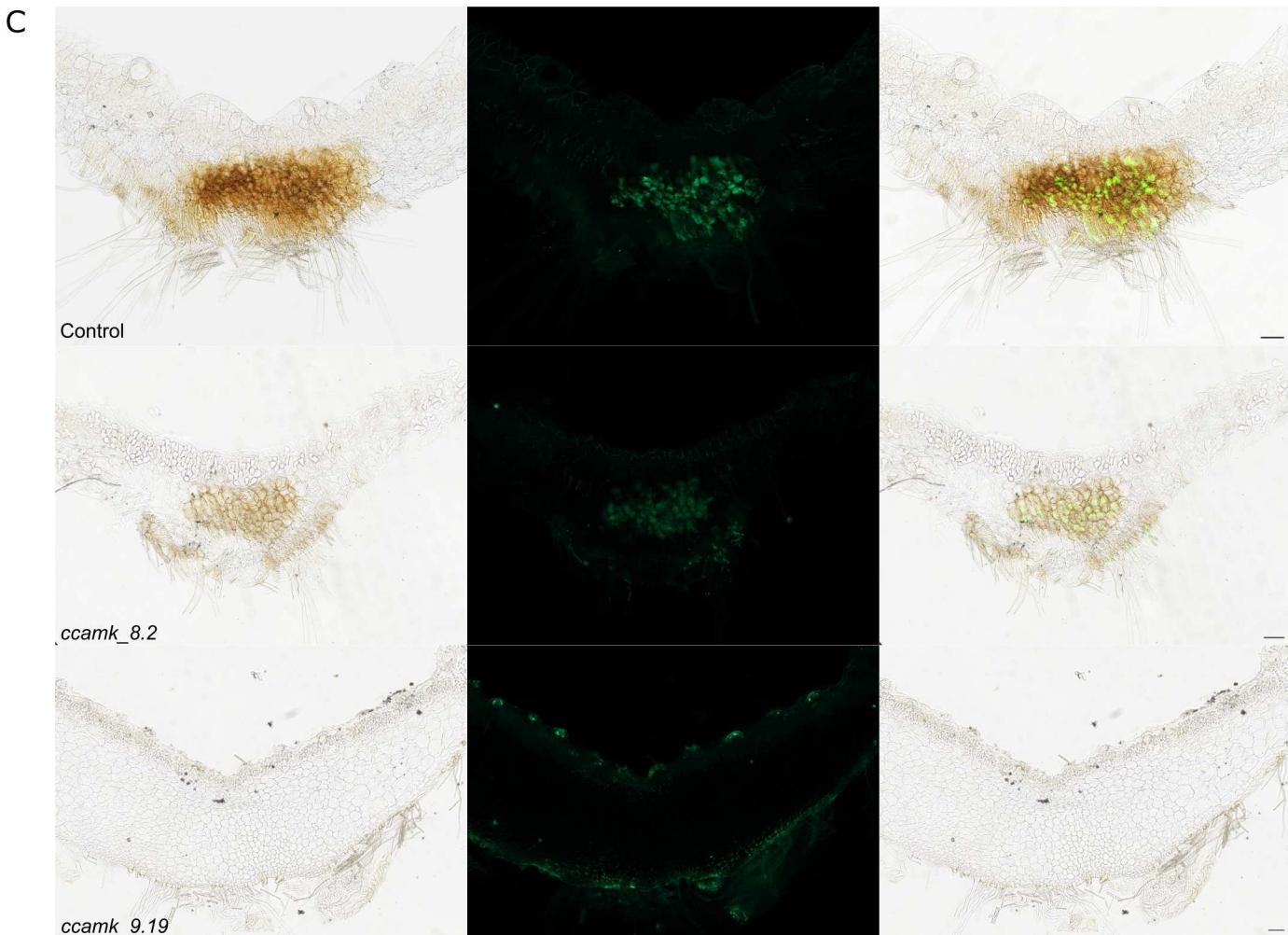
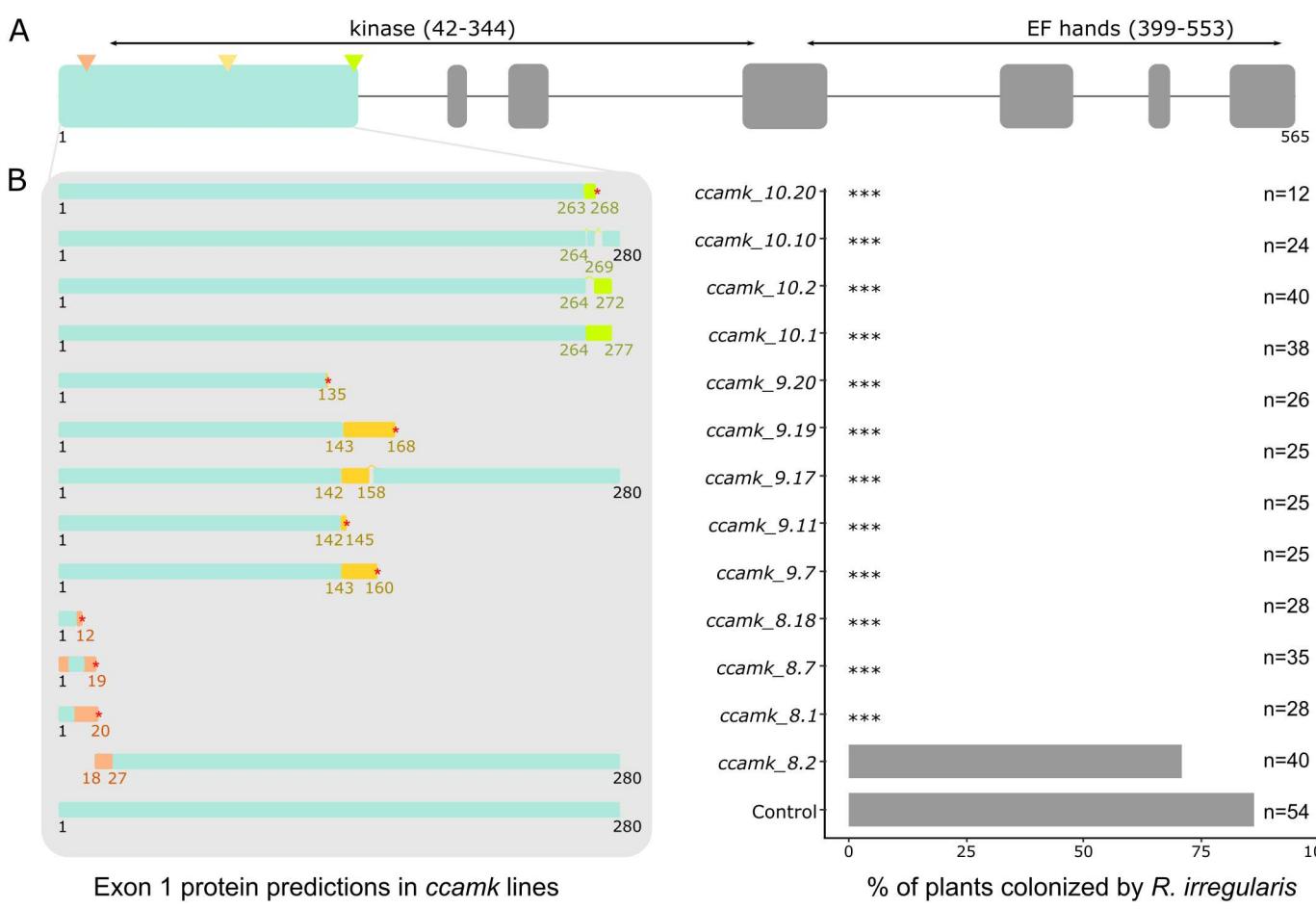

A

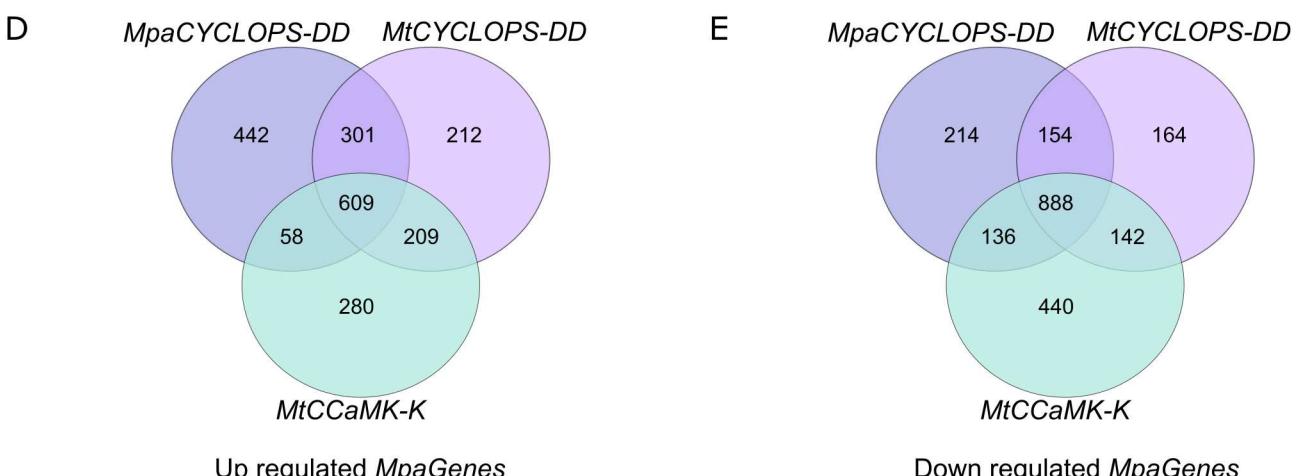
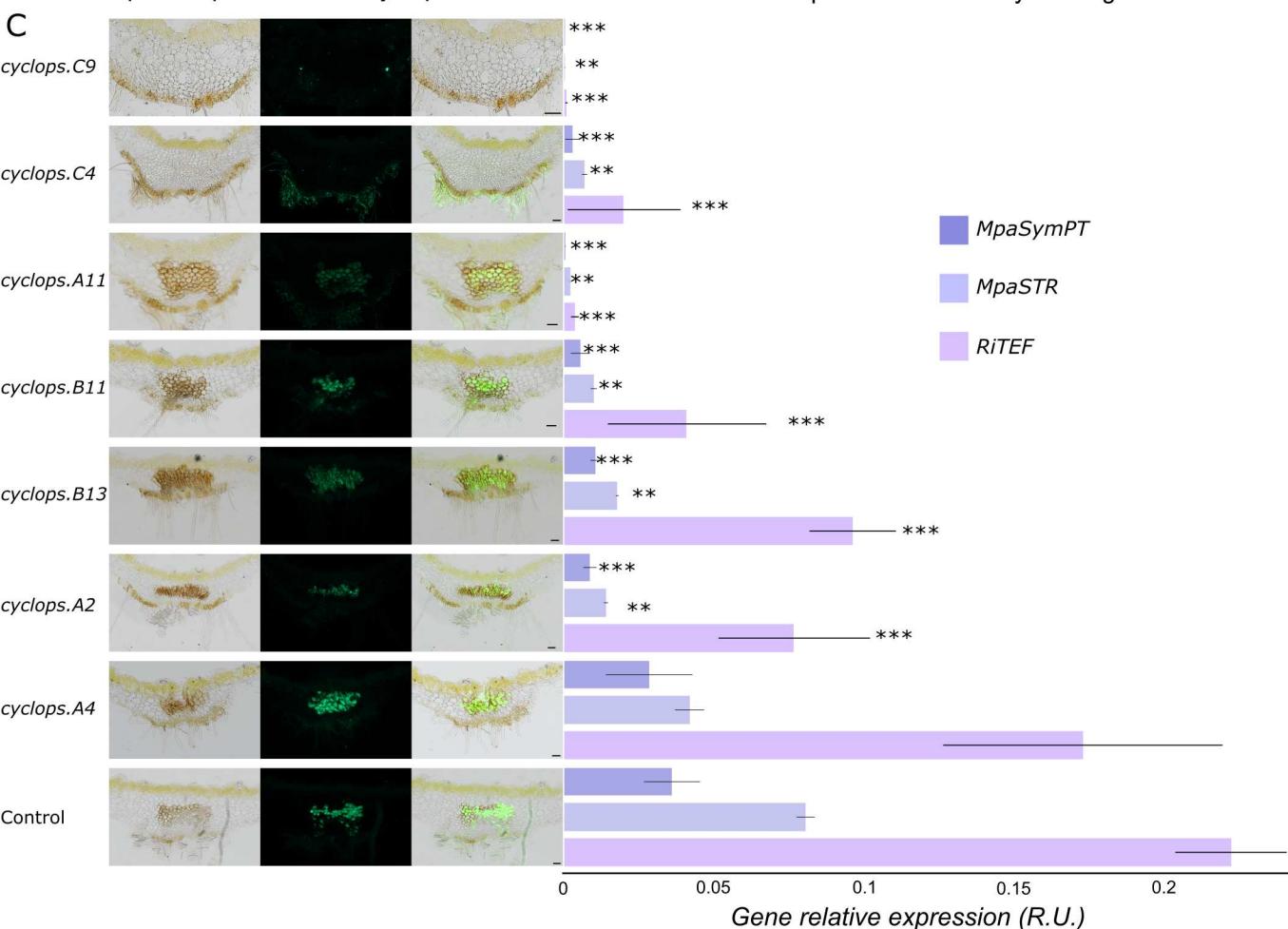
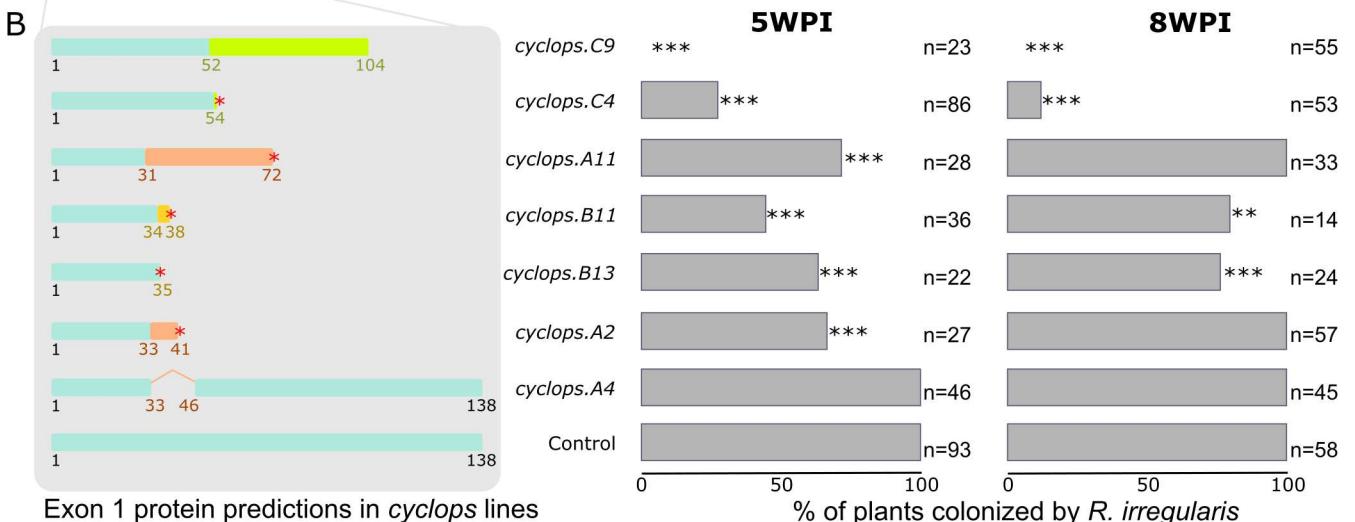
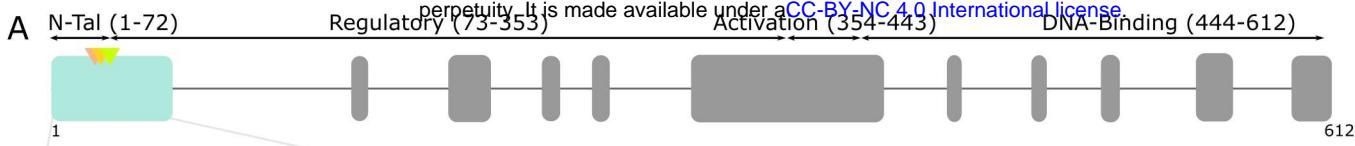

B

C





D





Control

+AMS

