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Abstract

Increasing the accuracy of the nucleotide sequence alignment is an essential is-
sue in genomics research. Although classic dynamic-programming algorithms
(e.g., Smith-Waterman and Needleman—Wunsch) guarantee to produce the
optimal result, their time complexity hinders the application of large-scale
sequence alignment. Many optimization efforts that aim to accelerate the
alignment process generally come from three perspectives: re-designing data
structures (e.g., diagonal or striped Single Instruction Multiple Data (SIMD)
implementations), increasing the number of parallelisms in SIMD operations
(e.g., difference recurrence relation), or reducing searching space (e.g., banded
dynamic programming). However, no methods combine all these three as-
pects to build an ultra-fast algorithm. We have developed a Banded Striped
Aligner(library) named BSAlign that delivers accurate alignment results at
an ultra-fast speed by knitting a series of novel methods together to take
advantage of all of the aforementioned three perspectives with highlights
such as active F-loop in striped vectorization and striped move in banded
dynamic programming. We applied our new acceleration design on both reg-
ular and edit-distance pairwise alignment. BSAlign achieved 2-fold speed-
up than other SIMD based implementations for regular pairwise alignment,
and 1.5 to 4-fold speedup in edit distance based implementations for long
reads. BSAlign is implemented in C programing language and is available at
https://github.com /ruanjue/bsalign.
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1 1. Introduction

2 Nucleotide sequence alignment is a way to arrange and compare
s DNA/RNA sequences from different sources to identify their regions of sim-
o ilarity. Two classic algorithms, namely Needleman-Wunsch algorithm|[1] and
s Smith-Waterman algorithm[2], are commonly used for sequence alignment.
s 'They handle sequence alignment by solving a dynamic programming problem
7 in which a scoring matrix is calculated and an optimal path from the cell with
¢ a maximal score is returned. Although these two methods have shown high
o capability in finding optimal alignment results, they require quadratic time
10 complexity and rapidly degenerate especially when processing long sequences.
un  To accelerate the alignment process, three major categories of optimization
12 techniques have been developed along the way.

13 Single Instruction Multiple Data (SIMD). The first optimization cate-
1 gory is to re-design the data structure of the scoring matrix calculation to
15 resolve data dependencies between neighboring cells so that the conditional
16 branch within the inner loop of the dynamic programming algorithm can
17 be eliminated and hence more efficient in parallelization techniques such as
18 SIMD. Among the initial trials in this category, Wozniak[3] has presented an
19 implementation to store values parallel to the minor diagonal to eliminate
2 the conditional branch in the inner loop of traditional implementation and
2 achieved a 2x speedup. In a different trial, Rognes et al.[4] introduced another
»» implementation to store values parallel to the query sequences. Compared to
23 Wozniak’s implementation, an advantage of Rognes’s design is that it only
2 needs to compute the query profile once for the entire reference sequences.
»s  However, the disadvantage is that conditional branches are placed in the
s inner loop when evaluating F matrix. The length of a single instruction
z ranges from 128-bit to 512-bit for recent tools such as BGSA[5], SeqAn|6]
2 and AnySeq[7].

20 Striped SIMD and F evaluation. To combine the merits of both
»  Wozniak[3] and Rognes[4], Farrar[8] fixed these disadvantages by introduc-
a1 ing a layout of query sequences that are parallel to the SIMD registers but
» are accessed in a striped pattern, which only computes query profile once
;3 and moves the conditional F matrix evaluation outside of the inner loop.
s As a result, Farrar’s striped vectorization successfully speeds up the Smith-
55 Waterman algorithm and has been adopted by many aligners, such as BWA-
s SW[9], Bowtie2[10], and SSW library[11]. However, cells in the same register
w are not always independent of each other. Farrar[8] solved this problem by
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adding a correction loop for every F element, which may iterate many times s
when the indels are long enough. 39

Difference recurrence relation. The next optimization category is to in- 4
crease the number of parallelisms in SIMD operations such as difference re- u
currence relation [12]. Since the traditional pairwise alignment stores and
calculates the absolute values in the score matrix, it limits the width of 43
SIMD operation as the sequence length increase. The difference recurrence 4
relation solves this problem by only storing and calculating the differences s
between the adjacent cells, which keeps the full width of SIMD operation re- 4
gardless of the sequence length. For example, the number of bits for storing
the absolute value of a single cell is 16 or even 32. But it can reduce to 8 s
bits if just storing the differences between cells. Therefore, the number of 4
parallelisms increases by 2 to 4 times. 50

Banded dynamic programming. Another optimization category is reduc- s
ing the search space such as banded dynamic programming(DP). Instead =
of calculating the whole score matrix, banded DP maintains a hypothetical s
"band” around cells with maximal scores and only calculates the scores for s
cells within the "band” and skips calculating the remaining cells within the ss
matrix[13, 14]. How to combine the method of using SIMD (minor diagonal s
or striped) and the idea of reducing the search space is not clear, especially s
when the input sequences contain abundant indel errors by third-generation ss
sequencers. Suzuki et al.[14] proposed a minor diagonal SIMD adaptive s
banded DP algorithm, which is implemented and improved in a popular e
long read mapper minimap2[15]. Since the striped SIMD method[8] proved &
to be six times faster than the minor diagonal and other SIMD method[3] in e
SW algorithm without banded DP, the algorithm to combine the best SIMD 3
method with banded DP is not developed yet. 64

Block aligner and wavefront algorithm. Recent methods block s
aligner(BA)[16] and wavefront algorithm(WFA)[17] manage to reduce the e
search space around the diagonal by two innovative approaches. Block aligner ¢
starts the alignment by a small square block and extends the block dynam- es
ically until the endpoint is reached. The block could be shifted either down
or right according to the sum of the cells. The size of the extended block 1o
may double when a Y-drop condition is met. The width of the block (band) =
depends on the sequence’s identity. Unlike the block aligner, the wavefront 7
algorithm regards the global alignment as the wave spreading from the start
point to the endpoint. WFA extends the wave step-by-step until the end-
point is reached. To speed up, WFA utilizes homologous region between the s

3
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76 sequences to skip the path(wavefront) that are unlikely to lead to the opti-
77 mal solution. The search space for the wavefront aligner is wave-like banding
7z along the diagonal.

79 Overall, we present a new library with an aligner, BSAlign, that is able
s to combine merits from the aforementioned optimization techniques without
&1 bringing their respective limitations. Firstly, we developed an active F loop
2 evaluation algorithm in the striped vectorization|8] to reduce the redundant F
&3 matrix recalculation, which accelerates the evaluation of the scoring matrix.
s« We also introduced difference recurrence relation and developed a banded
ss DP striped move algorithm to efficiently combine the striped SIMD method
s and banded DP. Finally, we designed a fast bit-vector algorithm to further
sz speed-up edit distance based alignment.

s 2. Materials and Methods

g0 2.1. Overview

% We developed a set of new methods to address the pairwise se-
a1 quence alignment problem by adopting advantages from previous work like
2 striped vectorization [8], difference recurrence relation[12], banded dynamic
3 programming[13], and by proposing novel improvements like a technique
u called active F-loop evaluation, a set of newly derived recurrence relations,
s a variant of bit conversion for edit-distance alignment, and different levels of
o adjustments to integrate all the features into the BSAlign.

o 2.2. The global alignment of nucleotide sequences

% In the beginning, the algorithm calculates the global alignment by the
o Needleman Wunsch algorithm[1]. The two sequences to be aligned, the query
w0 sequence and the reference sequence, are defined as Q and R. The length of
w1 the query sequence and reference sequence are then defined as Q;.,, and Ry,
w02 respectively. A matching matrix S(g;, 7;) is defined for all residue pairs (a, b)
s where a,b € {A,T,C,G}. The matching score S(g;, ;) < 0 when ¢;! = r; and
s S(gi,r;) > 0 when ¢; == r;. The penalty for starting a gap and continuing
s a gap are defined as GapO (gap open, GapO < 0), GapE (gap extension,
s GapE < 0), and GapOE = GapO + GapE. We keep track of three scoring
w7 matrices: E, F, and H, where E represents the alignment score ending with a
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vertical gap, F represents the alignment score ending with a horizontal gap: 10

E;; = maz{E; j_1 + GapE, H; j_1 + GapOE}
F,j = max{F;_1; + GapE, H;_, ; + GapOE} (1)
H;; = max{E;;, F;;, Hi_1j-1+ 5(q,7;)}

The cells for H;;, E;; and F;; are filled by 0 when ¢ < 1 or j < 1. In 10
our implementation, we store S(g;,r;) in four query profile arrays: S(Q,A), 1o
S(Q,C), S(Q,T) and S(Q,G). We calculate the score matrix row by row and
extract the S(g;, ;) from query profile column S(Q, ;). We simplify S(g;, ;) 12
as 5;; in this manuscript. 13

2.3. The striped SIMD data structure 114

To accelerate the pairwise alignment in the data structure, we first im- us
plemented striped SIMD[8] to the row of the score matrix as well as the wus
query profile arrays. Assuming the query and reference sequences are the 7
row and column in the score matrix, respectively. The row is divided into s
equal length segments, S. The number of segments, p, is equal to the number 110
of cells being processed in a SIMD register. Take an example in 128 SSE. 120
When processing byte integers (8-bit values) p = 16 and when processing 1z
word integers (16-bit values) p = 8. Hence, p is fixed in the algorithm and 12
S depends on query length (or band width) Qen: S = [Qren/p|(Figla). We 12
first introduce the way to store the non-striped score matrix for each register 12

N in the memory: 125
No = [ H07 H17 HZ: X prl ]
N = [ Hp7 Hp+17 Hp+27 i) Herpfl ]
Ns_1 = [ Hps—1), Hps—v+1, Hps—1y42, oy Hpu(s—1)4p-1 |

The potential overflow cells in Ng_; are filled by minimum value. In the 12
standard coordinate, there is an inner loop to compute H and F for each 1

register. 128
After striped conversion, the memory will store the score matrix for each 12
register M: 130

My = [ Ho  Hos, Hoyse, - Hoysepo1) |

My, = [ Hy, Hys, Hiiseo, o Higsip-1 |

Mgy = [ Hso, Hs_1ps, Hs 1isia, -y Hs 145:p-1) |

5
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13 Hence, the equation to convert each value (NN, ;) in non-striped SIMD(N) to
12 any value (M, ;) in striped SIMD(M) is

Nij = Mss)sp+1i/s).j (2)
133 In the striped coordinate, all the inner loops to compute H and F' are moved

134 outside of the register. Now, M;,; depends on M;. The initial one M, is
135 solved by the active F loop in the below subsection.

Normal order

i s*

Hivior ~ Hicig i .-. 1%141~m
w2 ~ Hioig oo g 9 10 16 [17118]

i ~ Hios s Hi617[18]

Normal move: ———pleftshift - -- - B o fill  ———3: SIMD operation

T

jas)

Hiosso ~ Hirsso 110 1415
Hingi ~ Higo

Striped move: > SIMD operation === === : SIMD+lcfi shift (eg. 4)

Figure 1: The striped move algorithm for each row. (a) Global visualization for
the banded along the diagonal. (b) Detail example for row iteration in normal order.
(c) Detail example for row iteration in striped order(striped move). Assuming the band
width, the number of divided segments(S) and the number of cells(p) in a register are 16,
4 and 4, respectively. In normal order, the cells are in the same color for the same register.
Only the offset is numbered inside the cell.

s 2.4. The striped move algorithm for banded DP

137 Another way to optimize the pairwise alignment is only focusing on the
13s  alignment along a diagonal band. A difficulty in applying banded DP to
130 the striped SIMD method is that the entire striped SIMD data structure
1o rearranges each time the band moves along the diagonal(Figlb). To overcome
w1 this difficulty, we develop a method to move the striped SIMD data structure
12 for banded DP(Figlc).

143 In normal coordinate, the whole register stores(Figlb):
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Noj = | Hio, Hiaj, Hiysj, o Hiyp1 ]
Ny = [ Hiproy Hiipia, Hiyprog, s Higpip1y ]
NSLl,j - [ HiJr(S'fl)*erO,j? H’i+(§fl)*p+1,j7 Hi+(§fl)*p+2,j7 ceey Hi+(§fl)*p+p71,j ]

¢ and j are the first column and row coordinate in the memory and 14
S * p is the band width. In the banded DP, the movement of the current s
row indicates the selection of the optimal path. Moving zero, one and two 1
cells to the right indicates one vertical gap, no gap and one horizontal gap, 1
respectively(Figla). In our banded dynamic programming algorithm, we 14
compare the H in the first and last register, move the current row zero, one 1
or two cells to the right according to the comparison and prepare for the next 1so
row. In the next row, the start position H;;, j+1 depends on the current row 1s
[H;;...H; 5., 1] as following: 152

Hi,j—i—h (Sum(NO,j) > SUTn(Ng,Lj))
Hifrji1 = Hii1j41, (Sum(Ny j) == Sum(Ng_Lj))

),

His 11, (Sum(Noy) < Sum(Ng_y;))

H;i, j+1 move zero, one and two cell(s) to the right are showed as row j+3, 15
j+1 and j+2 in Figlb and Figlec, respectively. We develop our striped move 15
following the above equations. In striped coordinates, the whole register 1ss

stores: 156
MO,j = [ Hi,ja Hi—&—l*s‘,j’ Hi+2*5’,j7 SES) Hz'—l—(p—l)*g,j ]
Ml,j = [ H’i+1,j7 Hi+1+1*§,j> Hi+1+2*§,j7 ey Hi+1+(p71)*§,j ]

MS’—I,j = [ Hi-l-g'—l,ja Hi+§—1+1*5,j7 Hi+§—l+2*§,j7 ey Hi+5‘—1+(p—1)*5*,j ]

The memory stores all the register as [My;, My ;, My, ..., Mg_1;]. In the 1
striped order, the cell order for the first register in j+1 row (such as s
(H1j+1,Hs j+1,Hg j+1,H13,j41]) is the same as the first, second and third reg- 1so
ister in the j row(such as [H; ;,Hs ;,Hg ;,H13;]) for moving zero, one or two 1e
cells to the right, respectively(Figlc). This holds true for all the registers e
except the last one or two registers. For the calculation of the next row, the 16
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1,3 memory is the following:

[Mojr1, Mijir, My, oo, Mgy ), (Sum(Mo;) > Sum(Mg_, ;)
memory = ¢ [Myji1, Maji1, s Mg_y i1, Mo ], (Sum(Mo;) == Sum(Ms_, ;))
[Majit,eos Mgy j0s Mogin, Migial, (Sum(Mog) < Sum(Mg_4 ;)
3
s For the exception, the new M can be converted from the pre(vi?
s ous M(dash arrow in Figle, such as [Hiji1,Hs j+1,Hoj+1,His j41] to
w6 [Hs j2,Ho jr2,Hi3 j+2,Hi7 12]). Take My 41 as an example:

MOJJrl = (MO,j << lbyte) + [O, O, R —OO] (4)

167 Lpyee 1S the byte length of H. As the row moves one cell to the right, the whole
s cells move from [H;;...H; 5., 1] to [Hiy1 j41...-H;y 54y j+1)- The addition cell
w6 H; 5., 541 18 set as the negative infinity and filled in the register. The negative
o infinity indicates this boundary cell will not be selected by equationl. The
i banded algorithm skips the calculation of boundary cells to speed up the
12 global alignment. Using our striped move method, the whole striped SIMD

3 data only needs bit operations to prepare for a new row in banded DP.

wa 2.5, Difference Recurrence Relation

175 The third way to optimize the pairwise alignment is to increase the num-
s ber of parallelisms (i.e., vector width) in SIMD operations. We choose to
w7 calculate the score matrix based on the difference recurrence relation[12] in-
s stead of the conventional stripped SIMD implementation[8]. We denote h, e,
o f as the relative score of the H, E, F' score matrices respectively. We also de-
1o fine v matrix and v matrix to represent the vertical difference and horizontal
11 difference within the H matrix, respectively.

hi,j = Hi,j - Hz'—l,j—l

Uiy = Hi,j - Hzel,j = hi,j —Ui—14

Vij = Hz',j - Hz',j—l = hi,j — Uj -1 (5>
¢ij =LEij—Hij

\fi,j = Fi,j - Hi—Lj—l

1.2 The definition of e and f matrix is asymmetry. Under the above definition,
13 our difference recurrence relation can be expressed as:
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hi ; = maz{S;;,ei; + uij1, fi;}
ei,j+1 = mam{em + ui,j—l — h@j + GapE, GCLPOE} (6)
fivr; = max{fi; + GapE, h;; + GapOE} — u; j_4

For every iteration in our implementation, we only store w; ;1 and e;;, 1
and calculate h; ;, v; ;, €; ;41 and fi11; by equation 5 and 6. 185

2.6. Active F loop 186

For non-striped pairwise alignment, the horizontal score F' and its differ- 1
ence [ can be calculated step-by-step via previous cells. In striped order, 1ss
some cells show up before their previous cells(f4, fs, fi2 in Fig2). Thus, it 1s
raises a problem only in calculating the horizontal score F' and its differ- 10
ence f. Farrar[8] initially developed a lazy F evaluation method to solve this 1
problem(Fig2a). It corrected the value F' via a couple of loops, which is time- 10
consuming for sequences that contain long indel errors(Fig2d). In contrast 1o
to lazy F evaluation, we actively correct all the cells in advance and guar- 10
antee that the value of H is always corrected, providing a linear complexity 1
solution to this problem in any situation(Fig2b,2e). 196

For most registers in the memory, f is smaller than e and S. The value 1o
of H does not source from f(FigSla). Only the horizontal gap will f start 1o
to influence the value of H(FigS1lb,c). In the initial loop, we set the negative 190
infinity as the first register M Fy; for horizontal difference f([fofafsfia] in 200
Fig?e): 201

MFO,j = [fO,j? fg',ja f§*2,j7 ) fS*(pfl),j]

Because fy; will never contribute to fi;, fo; (negative infinite) is always 20
error-free( fy in Fig2e top left). Then we calculate the whole matrix by equa- 203
tion 5 and 6. Because f ; is error-free, f1 ; to fs; is correct(f; to fy in Fig2e). 20
We save the last register M Fs ;: 205

MFS,]’ = [fg’,ja f§*2,j> fg'*?),ja teey fg'*p,j]

Note that we calculate f;;; in equation 6, so M Fg ;([f4fsfi2f16] in Fig2e) is 206
the last register to store f instead of M Fg_; ;. Because MFjg ; is calculated 2o
by M Fg_, ;, it solves the problems that fy,s 5 1 ; may update fy,s.5,;(Y = 28
0,1,2..., Fig81b). 209
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a. Lazy F loop b. Active F loop c. Long horizontal gap
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Figure 2: The lazy and active F loop algorithm inside a row. Assuming the band
width, the number of divided segments(S) and the number of cells(p) in a register are
16, 4 and 4, respectively. (a) and (b) are the work flow for the lazy and active F loop,
respectively. (c) is an example of long horizontal gap(f7,; to fi3,;). The dash line indicates
the optimal path. (d) and (e) show how the lazy and active F loop solve the above example
for each cell. Black box(waiting for updates) indicates the value is influenced by F' and
needs to be corrected. Grey box(updated) indicates the value is updated recently. White
box(no update) indicates the value is the same as expected and correct. The arrows above
digits indicate the first time being updated as the correct value. (d)Initial loop: All the
cells in the first register are negative infinity. The algorithm calculates all the cells by
standard SIMD calculation. Lazy F loop: The algorithm keeps correcting all the registers
one by one until none of them is updated. This figure shows a situation that it takes 3
loops to guarantee that all the cells are corrected. (e)Unlike the lazy F loop, there is no
difference between "updated” and "no update”. All the value is updated one times only.
Intital loop: The same as the lazy F loop. Correction: Each cell in the first segment is
checked by equation 7 and updated by the correct value. This extended register is also
the first register (after the right shift) in the striped format. Final loop: When the first
register is totally correct, the remaining segments are correct by SIMD calculation.

10
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The only exception is that the horizontal gap is long enough to pene- 210
trate all the F(fy.5, fy«gets - Jy«5+5-1) in the same cell position for all 2u
registers(Fig2c,S1c). If the F penetration happens, the value of f, ; is smaller .
than f,_g; + gappenalty (FigSlc). So we update the f, ; as the corrected a1
value in advance when we know F penetration has happened(correction in 2.
Fig2e). The equation to update all the f in the first register M [} ; is follow- s
mg: 216

facj d Q Q
fz; = max ’ _ z € (5, 5%2,..5%(p—1))
! Jo—gj+S*gapE — (Hy_1 -1 — H, 1 5;1)
(7)

Now, the updated f solves the problems that f,_g; may update f,;. So 2
Jysg+5,;(Y = 1,2...) is corrected(fs,f12 in Fig2). We right shift the last s
register MFg,; x bytes (length of fy;) and update as the first register o
MFE, j([fafsfizfie] to [fofafsfie] in Fig2). After the active F loop, we 20
use the updated f as the initial value and recalculate all the values by 2z
equation 5,6(final loop in Fig2e). So the remaining values are corrected 2
(f5,f0,f13:f2,f6,f10,f7, f11,f15 in Fig2 bottom). When all the values in f are 2
corrected or error-free, all the values of H are corrected. 22

Specifically, the active F loop and the parallel scan in parasail[18, 19] 2
are similar in general. One of the improvements is that the active F loop 22
is implemented in difference recurrence relation, while the parallel scan[18] 2
is implemented in the tradition way, storing and calculating the absolute s
values. Therefore, the active F loop can increase the number of parallelisms. 2

2.7. Edit distance 230

Calculating two sequences’ edit distance can be regarded as a special case 2u
of pairwise alignment when the mismatch and gap extend are both equal to 23
1 and, the match and gap open are both equal to 0. Since the difference 2
between adjacent cells belongs to (-1,0,1), the number of bits for storing 2.
them is only 2. We can further increase the number of parallelisms using 23
striped SIMD difference recurrence relation. As the number of bits decreases 23
to 2, all the conditions can be enumerated. We converted the equation 5 and 23
6 to boolean logic to further accelerate the calculation. 238

To simplify the standard pairwise alignment, we only require H, h, u and 23
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240 .
Uij = hij — Vi1, € (—1,0,1)
Vi =hij — w1, €(-1,0,1) (8)
hij =min{S;;,vi—1; + 1, u; ;-1 + 1}, € (0,1)

241 To minimize the computation resource, we defined a 2-bit binary code

22 for boolean logic. For h;;, u;; and v;;, 7-1,0,1” is converted to 710,00,017.

2«3 For S; ;, 70,17 is converted to ”01,00”. All the conditions for calculating h; ;

24 from S; ;, u; j—1 and v;_1; is enumerated as below(Tablel). The new codes
are inside the parentheses.

Sig(S23504) | Wij—1(U0 Ui ;—1) | Vi1, (01,01 1) hii (R ;i ;)
0(01) 1(10) 1(10) | = 0(00)
0(01) 1(10) 0(00) | = 0(00)
0(01) 1(10) 1(01) | = 0(00)
0(01) 0(00) 1(10) | = 0(00)
0(01) 0(00) 0(00) | = 0(00)
0(01) 0(00) 1(01) | = 0(00)
0(01) 1(01) 1(10) | = 0(00)
0(01) 1(01) 0(00) | = 0(00)
0(01) 1(01) 1(01) | = 0(00)
1(00) 1(10) 1(00) | = 0(00)
1(00) 1(10) 0(00) | = 0(00)
1(00) ~1(10) 1(01) | = 0(00)
1(00) 0(00) 1(10) | = 0(00)
1(00) 0(00) 0(00) | = 1(01)
1(00) 0(00) 1(01) | = 1(01)
1(00) 1(01) 1(10) | = 0(00)
1(00) 1(01) 0(00) | = 1(01)
1(00) 1(01) 1(01) 1(01)

Table 1: In edit distance mode, enumeration of conditions for converting h; ;
from S; ;, u; j—1 and v;_; ;. The new binary codes are inside the parentheses.

245

246 Hence, the boolean logic for the new h; ; is following;

70 71 al =0 [0

hi,j =0 hi,j = _'(Si,j’ui,jfl‘vifl,j) 9)
247 All the conditions for calculating w;; from h;; and v;,_; ; is enumerated

s as below(Table2).

2

&

12
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hi (R sl g) | ie1 (001 01 5) | = | vy (5,0 5)
0(00) 0(00) | = 0(00)
0(00) 1(01) | = 1(10)
0(00) 1(10) | = 1(01)
1(01) 0(00) | = 1(01)
1(01) 1(01) | = 0(00)

Table 2: In edit distance mode, enumeration of conditions for converting u; ;
from h;; and v;_1 ;. The new binary codes are inside the parentheses.

As h;j —v;—1; € (0,1), the condition of "h; ; = 1 and v;—1; = —1” does
not exist. Since v; ; is symmetry to wu; ; in this definition, the boolean logic
for u; ; and v ; is following:

_0 1
U5 = Vi1

-0
1]

&(=h;;) u;; =1,

J i, i1\ (B%,jwz(']—l,jw}fl,j)

= az'l,j—l&(_‘ilzl,j> T}z‘l,j = ﬂ11,]‘—1 N (B},j|ﬂ?,j—1|ﬂz‘l,j—1)

(10)

3. Experimental design

We implemented BSAlign with two modes: "align mode” for pairwise
alignment by score matrix, and ”edit mode” for pairwise alignment by min-
imum edit distance. For ”align mode”, we compared BSAlign to three
striped-SIMD programs: SSW][11](version:1.0), parasail[19](version:2.4.3),
ksw2[15](version:current), WFA[17](version:v2.2) and BA[16](version:0.2.0).
Note that ksw2 implemented the difference recurrence relation[12] and was a
component of minimap2[15]. The scores for the match, mismatch, gap open,
and gap extension were set at 2, -4, -4, -2 for all implementations, respec-
tively. For "edit mode”, we compared BSAlign to Myers[20](version:myers-
agrep) and Edlib[21](version:1.2.6). BA was run by rust WASM 128 bits;
block size range from 32 to 2048 bp. Myers’s bit-vector algorithm was one of
the fastest deterministic alignment algorithms, but it did not support global
alignment and did not trace back the optimal path. Edlib extended Myer’s
bit-vector algorithm with additional methods and traced back the optimal
path.

We use the same real datasets as BA[16]. The short read dataset
is 100,000 pairs of 101 bps Illumina HiSeq 2000 reads(accession num-
ber ERX069505). The long read dataset is 12,477 pairs of around 1000
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o1 bps Oxford Nanopore MinlON reads(accession numbers ERR3278877 to
o2 ERR3278886).

273 We simulated query sequences and reference sequences following a config-
oz uration that approximated the error rate in the real dataset for benchmark-
s ing. We randomly selected 100 start positions that contained no gap within
a6 a 100 kb region from GRCh38. We benchmarked software in three ways:
o7 time for length, time and accuracy for divergence and length, and accuracy
s for long indel and band width. In the time to length comparison, we set the
20 reference sizes as 102, 10%2%, 10%®, 10%7, 103, 10325, 1035, 1037, 104, 10*??,
s 10%°, 1047 and 105 base pairs with rounding. Then, we use PbSim2[22] to
21 simulate a query sequence for each reference region. These query sequences
22 and their reference sequences became pairs of input data in pairwise align-
23 ment. Sequences were simulated for both Pacbio and Nanopore using hmm
2+ model P6C4 and R103. The similarity and mutation ratio (in the format of
25 substitution:insertion:deletion) are set as default value in PbSim2 (85% and
26 PacBio 6:50:54, Nanopore 23:31:46). In the time and accuracy for different
»r  divergence and length comparison, we set the reference size as 102, 103, 10*
x and 10° base pairs. For each reference size, we also simulated reads with
20 difference divergence(80%, 95% and 99%). In the accuracy to long indel and
20 band width, the reference size is 10* base pairs and the divergence is 80%.
201 We randomly inserted or deleted 50, 100 and 200 base pairs sequences in the
20 middle of the reference. For each indel size, we benchmarked software with
203 different band width sizes (32, 64, 128, 256, 512 and 1024 base pairs).

204 4. Results

205 We developed the above algorithms under x86 processors using AVX2
206 SIMD and tested these programs on a machine with an AMD EPYC 7H12
207 processor, 1'TB RAM, and Ubuntu Linux 20.04.1. The execution time was
208 calculated as the sum of user and system time in a single thread. We re-
200 peated each alignment experiment 1000 times in repeat mode. To achieve
;0 a fair comparison, we modified the implementations to add a repeat mode
;0 in SSWI11] and Myers[20]. However, we were unable to add a repeat mode
32 for parasail[19]. We developed a standard Needleman-Wunsch implementa-
3 tion to evaluate the alignment accuracy. SSW/11] performed local alignment
54 instead of global alignment, we also develop a Smith-Waterman implemen-
505 tation to evaluate SSW’s accuracy. The recall rate was defined as the per-
w06 centage of alignments that was the same score as the Needleman-Wunsch or

14
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Smith-Waterman implementation for global or local alignment, respectively. sor
which may trim the tip sequence and get a higher score in comparison. We 30
also recorded the maximum memory in the system during the software exe- 30
cution. Overall, BSAlign outperformed all the other programs or was on par su
with the best program in all of the experimental scenarios. 311

4.1. Evaluation on real data 312

Table3 showed the time and accuracy performance results for 5 algorithms 213
evaluated using both real and simulated datasets. In the case of processing 3.
real datasets, BSAlign was the only algorithm that maintain 100% recall ss
rate for two datasets. WFA was the fastest algorithm for Illumina reads. s
In "no band” mode, all algorithms aligned the whole sequences without any =17
band width. BSAlign was 1.5-5.5X times as fast as ksw2 and SSW for Ox- s
ford Nanopore read. In "band” mode, all algorithms can align part of se- 1
quences associated with the best alignment according to its method. BA was s
the fastest algorithm for Oxford Nanopore reads with a recall rate of 87%. s
BSAlign was the second fastest algorithm with a recall rate of 100%. Overall, 32
BSAlign was the fastest algorithm with the best recall rate for the Oxford s
Nanopore dataset. 32

4.2. Evaluation of time and accuracy for different lengths 325

We evaluated all software in three different ways: the running time for s
different lengths, the running time and accuracy for different divergences s
and read lengths, and finally the accuracy for different sizes of indel and s
different band widths. In pairwise alignment experiments, BSAlign ran faster s
than ksw2[15], SSW[11], and parasail[19] in both "No Band” and "Band” s
modes(Table 3 and Figure 3a). Among all algorithms trailed, only BSAlign sx
and WFA[17] have the capacity to align sequences up to 100 kbps in length. 33
Block aligner[16] was at most 3.36 times as fast as bsalign for 1,000 bps 33
sequences. When the sequence length was equal to or longer than 10,000 33
bps, bsalign was at most 1.20 to 5.61 times as fast as block aligner and other 33
algorithms. 336

4.3. FEvaluation for edit distance mode 337

For the edit distance implementation, BSAlign recorded the fastest speed 338
compared to Myers[20] and Edlib[21](Figure 3b). The implementations were 33
compared in two modes. In the "whole mode”, all the aligners searched the 30
whole sequences for the minimum edit distance. In the "limit mode”, the s

15
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Figure 3: The average computation time in microseconds for Pairwise alignment
and Edit distance. The length of the query sequence pair is from 1,000 to 100,000. Each
pair is run 100 times. In a, six implementations: BSAlign, ksw2[15], SSW[11], parasail[19],
wavefront alignment[17] and block aligner[16] are compared. Option band width is set at
128 for BSAlign and ksw2. In b, three implementations: BSAlign, Edlib[21] and Myers[20]
are compared. The mode ”whole” and ”limit” mean the maximum edit distance is set at
the whole query length and the true edit distance in simulation, respectively.

w2 minimum edit distance was specified. All the aligners were instructed to stop
a3 searching the sequences that were over the minimum edit distance. In the
s "whole mode”, Figure3b showed that the fastest implementation switched be-
us  tween BSAlign and Edlib in different sequence lengths. In the ”limit mode”,
s all the aligners ran faster than the ”whole mode” due to smaller searching
a7 space, where BSAlign, Myers, and Edlib were 2.1, 1.33, and 1.11 times faster
us on average, respectively. BSAlign ran 2.49 and 4.93 times as fast as My-
s ers and Edlib, respectively. Additionally, BSAlign in edit distance mode is
0 always faster than all the pairwise alignment tools.

w1 4.4. Fvaluation of time and accuracy for different divergence

352 Furthermore, we benchmarked this six software for time and accuracy
353 performance under different divergences (Table4). The accuracy of most
354 software was 100%, except for the small size of band width for high divergence
35 sequences. Most software’s time was stable in terms of processing time for
16 different divergences except WFA[17]. Tts time for high divergence sequences
w7 (20%) was 4.2 to 14.8 times slower than low divergence sequences’. When the
s length was 1000 bps, WFA and BA are fast and accurate. When the length

16
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Real-Illumina Real-Ont 1=1k,d=5% 1=10k,d=5% 1=100k,d=5%  indel=50,d=20%

Time Recall Time Recall Time Recall Time Recall Time Recall Time  Recall

bsalign 1.65 1.00 3.78 1.00 0.85 1.00  70.00 1.00 3972.13 1.00 46.21 1.00
NoBand ksw2 1.48 0.98 945 1.00 2.22 1.00  207.00 1.00 error  error 171.15 1.00
SSW 2.71 1.00 24.55 1.00 2.13 1.00 175.00 1.00 2000.22 0.00 201.33 1.00
bsalign(128)  2.60 1.00 1.92 1.00 0.37 1.00 3.72 1.00 40.70 1.00 2.71 1.00
Band ksw2(128) 1.82 0.98 2.79 1.00 0.58 1.00 5.98 0.78 63.30 0.02 5.01 0.00
WFA 0.27 0.99 2.96 0.99 1.18 1.00 11.64 1.00 228.13 1.00  75.80 0.46
WFA .score 0.12 099 1.85 0.99 0.85 1.00 1.18 1.00 50.39 1.00 5.21 0.46
BA 2.16 0.99 091 0.87  0.11 1.00 4.48 1.00 error  error 7.57 0.00

Table 3: Time and accuracy performance of pairwise alignment algorithms.
WPFA .score only computes the alignment score, not the complete alignment.

=tk d=1% I=tkd=5% I=tkd=20% | I=10kd=1%  [=10kd=5%  I1=10kd=20% | I=100kd=1% [=100kd=5% I=100kd=20%
Time Recall Time Recall Time Recall| Time Recall Time Recall Time Recall | Time Recall Time Recall Time Recall

bsalign 087 100 08 100 076 100 7070 100 70.00 100 6250 100| 91.60 100 9200 100 8L10 100
NeBad ksw2 225 100 222 100 200 100| 20900 100 20700 100 18600 100 | error emor emor error eror error
SSW 200 100 213 100 260 100 16900 100 175.00 100 19700 100| 39.30 0.00 3930 000 5200  0.00

parasall 428600 100 439400 100 4273.00 100 | 631616 100 6293.77 100 608647 100| ewor emor eror emor emor eror
bsalign(128) 038 100 037 100 037 100 372 100 372 100 364 100| 4030 100 4070 100 3980 089
ksw2(128) 057 100 058 100 055 LO0| 606 077 598 074 559 000| 6370 027 6330 002 59.70  0.00
WFA 010 100 118 100 163 100 870 100 1164 100 3684 100|18L50 100 22813 100 1156.00  1.00
BA 011 100 01 100 011 100 452 100 448 100 410 100| eror ewor ermor error eror error

Band

Table 4: Time(ms) and accuracy performance for different divergence.*Due to
the higher deletion rate in simulation, the total sequence length of 20% divergence are
4.2% and 4.6% shorter than 5% and 1% divergence’s on average, respectively.

increase to 10,000 bps, BSAlign(band width 128) is always fastest than other 350
software. When the length further increased to 100,000 bps, BA(capacity e
overflow), parasail(early termination) and ksw2(core dumped) collapsed due s
to memory limitation. BSAlign(band width 128) was reliable and 6.70 times e
faster than other software. 363

4.5. Comparison of indel size, band width and accuracy 364

Because the banded methods might miss the optimal path, we further ses
evaluated the influence of indel size on the alignment accuracy(Table5). In e
this context, we randomly inserted or deleted 50, 100 and 200 bp sequences 67
in the middle of a reference(length=10k, divergence=20%). Overall, ksw2, 36
SSW and BSAlign in "no band” mode were 100% correct. In band mode, s
WFA detected approximately 50% long indels while BA detected none. ksw2 370
detected all the indels when the band width was set at 1024 bps. BSAlign sn
with band width 128, 256 and 512 bps detected all the 50, 100 and 200 bps 7
indels, respectively. As expected, to accurately detect long indels, the band 3
width size should be two times larger than the indel size. It suggests that sz

17
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indel=50,d=20% indel=100,d=20% indel=200,d=20%
Time Recall Time Recall Time Recall

bsalign  46.21 1.00 4593 1.00 4549 1.00
No Band  ksw2  171.15 1.00 171.04 1.00 171.00 1.00
SSW  121.90 0.99 127.88 0.99 153.19 0.99

bsalign  2.71 .00 2.65 001 2.64 0.00

Band 128 bp ) o 5.01 0.00  5.10 011  4.90 0.15
_ bsalign  3.26 100 3.30 1.00 3.22 0.00

Band 256 bp | o 9.51 043  9.46 042 998 0.38
bsalign  4.66 100 4.65 1.00  4.62 1.00

Band 512bp ) o 18.15 1.00 1821 0.98 18.03 0.83
bsalign  9.03 100 903 100 8.87 1.00

Band 1024 bp o 35.16 1.00  35.12 1.00  34.69 1.00
Band WFA  75.80 046 75.08 051 76,14 0.61

BA 7.57 0.00  7.47 0.00 7.8 0.00

Table 5: Time(ms) and accuracy for difference indel size(50,100 and 200 bp)
and band size(128 to 1024 bp).

ss BSAlign’s striped move is the most accurate strategy to find the optimal
we  path. Regarding the speed, BSAlign is always faster than others. Notably,
w7 the lazy F loop implementation SSW[11] run slower for long indels while the
sis  active F loop implementation BSAlign’s runtime was stable for all the indel
;o sizes. It suggests that BSAlign’s active F loop is fast and stable.

0 4.0. Comparison about memory

381 We also measured the memory during the execution(Table6). All the soft-
;2 ware except WFA required similar memory for difference divergence. The
;3 memory increased as the sequence length increased. No band method re-
;s quired a larger memory as they stored and calculated the whole alignment
;s matrix. The banded method required less memory than other methods. For
s example, BSAlign (band width 128 bps) required 16.36 and 32.46 times less
57 memory than WFA and BA for length 10k and divergence 20%, respectively.

s H. Discussion and Conclusion

389 Designing a dynamic banding method is about seeking a balance between
w0 speed and accuracy. No software can guarantee both fast and accurate results
;1 under any conditions. For example, WFA[17] works well for low divergence

18
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Length=1K Length=10K Length=100K
d=1% d=5% d=20% d=1% d=5% d=20% d=1% d=5%  d=20%
bsalign 4.19 4.18 3.97 184.72 183.90 162.52 18471.66 18314.93 16433.11
NoBand ksw2 5.16 4.91 4.56 157.56 154.53  143.79 error error error
SSW 4.08 4.43 7.07 10.57 11.82 17.94 24.19 27.56 140.14
bsalign(128) 2.54 2.52 2.50 5.89 5.88 5.65 40.35 40.18 36.86
Band ksw2(128) 2.13 2.09 2.05 6.80 6.31 7.53 33.14 33.11 31.19
WFA 8.58  10.39 10.61 3741  35.00 98.08 153.52 217.70  2095.99
BA 172.20 175.53 177.19 189.66 189.27 189.04 error error error

Table 6: Memory (Mb) for difference size and divergence.

short sequences. BA[16] and ksw2[15] work well for high divergence short o
sequences. When the sequences are short, the band width is short as well. In 303
this case, data structure like striped SIMD is unnecessary and time-wasting. 3o
When the sequences are long (10k bps or more), the band width increases as 30
well. In this case, the data structure like striped SIMD is necessary and fast. 3o
The striped SIMD banded method BSAlign is faster than the anti-diagonal o
banding method ksw2 when the band width is 128 bps(p = 16, Sper = 4 in 308

128 SSE). 399
400

Appendix A. Availability of source code and requirements s01
Lists the following: 402

e Project name: BSAlign 403

e Project home page: https://github.com/ruanjue/BSAlign 404

e Operating system(s): Linux 405

e Programming language: C Language 406

e Other requirements: None 407

e License: GNU General Public License v3.0 408
Appendix B. Declarations 409
Appendixz B.1. List of abbreviations 410
SW:Smith-Waterman a1
SIMD:single instruction multiple data a12
DP:dynamic programming 413
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aa Appendix B.2. List of symbols

a15 @: Query sequence.
as  R: Reference sequence.
a7 St Matching matrix.
ss  H: Alignment score.
a0 h: difference of H.
20 F: Alignment score end with a vertical gap.
o1 e: difference of E.
w22 F: Alignment score end with a horizontal gap.
w3 f: difference of F.
w20 GapO: gap open, less than zero.
s Gapkl: gap extension, less than zero.
w2 GapOE: GapO + GapE.
w2 S: The number of divided segments(for whole query sequence).
2s S: The number of divided segments(for band width).
220 p: The number of segments in a SIMD register.
a0 N: register(for any value).
. M: register in striped order(for any value).
2 MF': register in striped order(for f).
33 4 column id.
434 j : row id.
s w;;: vertical difference between H(H; ; — H;—1 ;).
s6 v; ;¢ horizontal difference between H(H, ; — H; j_1).
a7 h: hin new code for edit distance mode.
s U u in new code for edit distance mode.
v: v in new code for edit distance mode.

>

439

440
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Figure S1: The F loop in non-striped order. (a-c) shows how the pairwise alignment
calculates a cell (hi2;) in non-striped order in three situations: (a) no gap, (b) short
horizontal gap and (c) long horizontal gap. The dash line indicates the optimal path.
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