
BSAlign: a library for nucleotide sequence alignment

Haojing Shaoa,b, Jue Ruana,b,c

aShenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome

Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural

Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7,

Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
bContributed equally.,

cCorresponding author. E-mail: ruanjue@caas.cn,

Abstract

Increasing the accuracy of the nucleotide sequence alignment is an essential is-
sue in genomics research. Although classic dynamic-programming algorithms
(e.g., Smith-Waterman and Needleman–Wunsch) guarantee to produce the
optimal result, their time complexity hinders the application of large-scale
sequence alignment. Many optimization efforts that aim to accelerate the
alignment process generally come from three perspectives: re-designing data
structures (e.g., diagonal or striped Single Instruction Multiple Data (SIMD)
implementations), increasing the number of parallelisms in SIMD operations
(e.g., difference recurrence relation), or reducing searching space (e.g., banded
dynamic programming). However, no methods combine all these three as-
pects to build an ultra-fast algorithm. We have developed a Banded Striped
Aligner(library) named BSAlign that delivers accurate alignment results at
an ultra-fast speed by knitting a series of novel methods together to take
advantage of all of the aforementioned three perspectives with highlights
such as active F-loop in striped vectorization and striped move in banded
dynamic programming. We applied our new acceleration design on both reg-
ular and edit-distance pairwise alignment. BSAlign achieved 2-fold speed-
up than other SIMD based implementations for regular pairwise alignment,
and 1.5 to 4-fold speedup in edit distance based implementations for long
reads. BSAlign is implemented in C programing language and is available at
https://github.com/ruanjue/bsalign.

Keywords: keyword one, keyword two Pairwise alignment, Edit distance,
striped vectorization, banded dynamic programming, F evaluation

Preprint submitted to Genomics, Proteomics & Bioinformatics January 16, 2024

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

1. Introduction1

Nucleotide sequence alignment is a way to arrange and compare2

DNA/RNA sequences from different sources to identify their regions of sim-3

ilarity. Two classic algorithms, namely Needleman-Wunsch algorithm[1] and4

Smith-Waterman algorithm[2], are commonly used for sequence alignment.5

They handle sequence alignment by solving a dynamic programming problem6

in which a scoring matrix is calculated and an optimal path from the cell with7

a maximal score is returned. Although these two methods have shown high8

capability in finding optimal alignment results, they require quadratic time9

complexity and rapidly degenerate especially when processing long sequences.10

To accelerate the alignment process, three major categories of optimization11

techniques have been developed along the way.12

Single Instruction Multiple Data (SIMD). The first optimization cate-13

gory is to re-design the data structure of the scoring matrix calculation to14

resolve data dependencies between neighboring cells so that the conditional15

branch within the inner loop of the dynamic programming algorithm can16

be eliminated and hence more efficient in parallelization techniques such as17

SIMD. Among the initial trials in this category, Wozniak[3] has presented an18

implementation to store values parallel to the minor diagonal to eliminate19

the conditional branch in the inner loop of traditional implementation and20

achieved a 2x speedup. In a different trial, Rognes et al.[4] introduced another21

implementation to store values parallel to the query sequences. Compared to22

Wozniak’s implementation, an advantage of Rognes’s design is that it only23

needs to compute the query profile once for the entire reference sequences.24

However, the disadvantage is that conditional branches are placed in the25

inner loop when evaluating F matrix. The length of a single instruction26

ranges from 128-bit to 512-bit for recent tools such as BGSA[5], SeqAn[6]27

and AnySeq[7].28

Striped SIMD and F evaluation. To combine the merits of both29

Wozniak[3] and Rognes[4], Farrar[8] fixed these disadvantages by introduc-30

ing a layout of query sequences that are parallel to the SIMD registers but31

are accessed in a striped pattern, which only computes query profile once32

and moves the conditional F matrix evaluation outside of the inner loop.33

As a result, Farrar’s striped vectorization successfully speeds up the Smith-34

Waterman algorithm and has been adopted by many aligners, such as BWA-35

SW[9], Bowtie2[10], and SSW library[11]. However, cells in the same register36

are not always independent of each other. Farrar[8] solved this problem by37

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

adding a correction loop for every F element, which may iterate many times 38

when the indels are long enough. 39

Difference recurrence relation. The next optimization category is to in- 40

crease the number of parallelisms in SIMD operations such as difference re- 41

currence relation [12]. Since the traditional pairwise alignment stores and 42

calculates the absolute values in the score matrix, it limits the width of 43

SIMD operation as the sequence length increase. The difference recurrence 44

relation solves this problem by only storing and calculating the differences 45

between the adjacent cells, which keeps the full width of SIMD operation re- 46

gardless of the sequence length. For example, the number of bits for storing 47

the absolute value of a single cell is 16 or even 32. But it can reduce to 8 48

bits if just storing the differences between cells. Therefore, the number of 49

parallelisms increases by 2 to 4 times. 50

Banded dynamic programming. Another optimization category is reduc- 51

ing the search space such as banded dynamic programming(DP). Instead 52

of calculating the whole score matrix, banded DP maintains a hypothetical 53

”band” around cells with maximal scores and only calculates the scores for 54

cells within the ”band” and skips calculating the remaining cells within the 55

matrix[13, 14]. How to combine the method of using SIMD (minor diagonal 56

or striped) and the idea of reducing the search space is not clear, especially 57

when the input sequences contain abundant indel errors by third-generation 58

sequencers. Suzuki et al.[14] proposed a minor diagonal SIMD adaptive 59

banded DP algorithm, which is implemented and improved in a popular 60

long read mapper minimap2[15]. Since the striped SIMD method[8] proved 61

to be six times faster than the minor diagonal and other SIMD method[3] in 62

SW algorithm without banded DP, the algorithm to combine the best SIMD 63

method with banded DP is not developed yet. 64

Block aligner and wavefront algorithm. Recent methods block 65

aligner(BA)[16] and wavefront algorithm(WFA)[17] manage to reduce the 66

search space around the diagonal by two innovative approaches. Block aligner 67

starts the alignment by a small square block and extends the block dynam- 68

ically until the endpoint is reached. The block could be shifted either down 69

or right according to the sum of the cells. The size of the extended block 70

may double when a Y-drop condition is met. The width of the block (band) 71

depends on the sequence’s identity. Unlike the block aligner, the wavefront 72

algorithm regards the global alignment as the wave spreading from the start 73

point to the endpoint. WFA extends the wave step-by-step until the end- 74

point is reached. To speed up, WFA utilizes homologous region between the 75

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

sequences to skip the path(wavefront) that are unlikely to lead to the opti-76

mal solution. The search space for the wavefront aligner is wave-like banding77

along the diagonal.78

Overall, we present a new library with an aligner, BSAlign, that is able79

to combine merits from the aforementioned optimization techniques without80

bringing their respective limitations. Firstly, we developed an active F loop81

evaluation algorithm in the striped vectorization[8] to reduce the redundant F82

matrix recalculation, which accelerates the evaluation of the scoring matrix.83

We also introduced difference recurrence relation and developed a banded84

DP striped move algorithm to efficiently combine the striped SIMD method85

and banded DP. Finally, we designed a fast bit-vector algorithm to further86

speed-up edit distance based alignment.87

2. Materials and Methods88

2.1. Overview89

We developed a set of new methods to address the pairwise se-90

quence alignment problem by adopting advantages from previous work like91

striped vectorization [8], difference recurrence relation[12], banded dynamic92

programming[13], and by proposing novel improvements like a technique93

called active F-loop evaluation, a set of newly derived recurrence relations,94

a variant of bit conversion for edit-distance alignment, and different levels of95

adjustments to integrate all the features into the BSAlign.96

2.2. The global alignment of nucleotide sequences97

In the beginning, the algorithm calculates the global alignment by the98

Needleman Wunsch algorithm[1]. The two sequences to be aligned, the query99

sequence and the reference sequence, are defined as Q and R. The length of100

the query sequence and reference sequence are then defined as Qlen and Rlen,101

respectively. A matching matrix S(qi, rj) is defined for all residue pairs (a, b)102

where a, b ∈ {A, T, C,G}. The matching score S(qi, rj) < 0 when qi! = rj and103

S(qi, rj) > 0 when qi == rj. The penalty for starting a gap and continuing104

a gap are defined as GapO (gap open, GapO < 0), GapE (gap extension,105

GapE < 0), and GapOE = GapO + GapE. We keep track of three scoring106

matrices: E, F, and H, where E represents the alignment score ending with a107

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

vertical gap, F represents the alignment score ending with a horizontal gap: 108











Ei,j = max{Ei,j−1 +GapE,Hi,j−1 +GapOE}

Fi,j = max{Fi−1,j +GapE,Hi−1,j +GapOE}

Hi,j = max{Ei,j, Fi,j, Hi−1,j−1 + S(qi, rj)}

(1)

The cells for Hi,j, Ei,j and Fi,j are filled by 0 when i < 1 or j < 1. In 109

our implementation, we store S(qi, rj) in four query profile arrays: S(Q,A), 110

S(Q,C), S(Q,T) and S(Q,G). We calculate the score matrix row by row and 111

extract the S(qi, rj) from query profile column S(Q, rj). We simplify S(qi, rj) 112

as Si,j in this manuscript. 113

2.3. The striped SIMD data structure 114

To accelerate the pairwise alignment in the data structure, we first im- 115

plemented striped SIMD[8] to the row of the score matrix as well as the 116

query profile arrays. Assuming the query and reference sequences are the 117

row and column in the score matrix, respectively. The row is divided into 118

equal length segments, S. The number of segments, p, is equal to the number 119

of cells being processed in a SIMD register. Take an example in 128 SSE. 120

When processing byte integers (8-bit values) p = 16 and when processing 121

word integers (16-bit values) p = 8. Hence, p is fixed in the algorithm and 122

S depends on query length (or band width) Qlen: S = +Qlen/p,(Fig1a). We 123

first introduce the way to store the non-striped score matrix for each register 124

N in the memory: 125

N0 = [H0, H1, H2, ..., Hp−1]
N1 = [Hp, Hp+1, Hp+2, ..., Hp+p−1]

...
NS−1 = [Hp∗(S−1), Hp∗(S−1)+1, Hp∗(S−1)+2, ..., Hp∗(S−1)+p−1]

The potential overflow cells in NS−1 are filled by minimum value. In the 126

standard coordinate, there is an inner loop to compute H and F for each 127

register. 128

After striped conversion, the memory will store the score matrix for each 129

register M : 130

M0 = [H0, H0+S, H0+S∗2, ..., H0+S∗(p−1)]
M1 = [H1, H1+S, H1+S∗2, ..., H1+S∗(p−1)]

...
MS−1 = [HS−1, HS−1+S, HS−1+S∗2, ..., HS−1+S∗(p−1)]

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

Hence, the equation to convert each value (Ni,j) in non-striped SIMD(N) to131

any value (Mi,j) in striped SIMD(M) is:132

Ni,j = M(i%S)∗p++i/S,,j (2)

In the striped coordinate, all the inner loops to compute H and F are moved133

outside of the register. Now, Mi+1 depends on Mi. The initial one M0 is134

solved by the active F loop in the below subsection.135

Normal order

Stripe order

H i , j ~ H i+15, j

H i+1, j+1 ~ H i+16, j+1

H i+3, j+2 ~ H i+18, j+2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 4 8 12 1 5 9 13 2 106 14 3 7 11 15

1 5 9 13 2 106 14 3 7 11 15 4 8 12 16

3 7 11 15 4 8 12 16 5 9 13 106 1417 18

Striped move: : SIMD operation : SIMD + left shift (eg. 4)

a. b.

c.

H i , j ~ H i+15, j

H i+1, j+1 ~ H i+16, j+1

H i+3, j+2 ~ H i+18, j+2

: left shift : fillNormal move:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18H i+3, j+3 ~ H i+18, j+3

H i+3, j+3 ~ H i+18, j+3 3 7 11 15 4 8 12 16 5 9 13 106 1417 18

: SIMD operation

Figure 1: The striped move algorithm for each row. (a) Global visualization for
the banded along the diagonal. (b) Detail example for row iteration in normal order.
(c) Detail example for row iteration in striped order(striped move). Assuming the band
width, the number of divided segments(S̄) and the number of cells(p) in a register are 16,
4 and 4, respectively. In normal order, the cells are in the same color for the same register.
Only the offset is numbered inside the cell.

2.4. The striped move algorithm for banded DP136

Another way to optimize the pairwise alignment is only focusing on the137

alignment along a diagonal band. A difficulty in applying banded DP to138

the striped SIMD method is that the entire striped SIMD data structure139

rearranges each time the band moves along the diagonal(Fig1b). To overcome140

this difficulty, we develop a method to move the striped SIMD data structure141

for banded DP(Fig1c).142

In normal coordinate, the whole register stores(Fig1b):143

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

N0,j = [Hi+0,j, Hi+1,j, Hi+2,j, ..., Hi+p−1,j]
N1,j = [Hi+p+0,j, Hi+p+1,j, Hi+p+2,j, ..., Hi+p+p−1,j]

...
NS̄−1,j = [Hi+(S̄−1)∗p+0,j, Hi+(S̄−1)∗p+1,j, Hi+(S̄−1)∗p+2,j, ..., Hi+(S̄−1)∗p+p−1,j]

i and j are the first column and row coordinate in the memory and 144

S̄ ∗ p is the band width. In the banded DP, the movement of the current 145

row indicates the selection of the optimal path. Moving zero, one and two 146

cells to the right indicates one vertical gap, no gap and one horizontal gap, 147

respectively(Fig1a). In our banded dynamic programming algorithm, we 148

compare the H in the first and last register, move the current row zero, one 149

or two cells to the right according to the comparison and prepare for the next 150

row. In the next row, the start position Hi+x,j+1 depends on the current row 151

[Hi,j...Hi+S̄∗p−1,j] as following: 152

Hi+x,j+1 =











Hi,j+1, (Sum(N0,j) > Sum(NS̄−1,j))

Hi+1,j+1, (Sum(N0,j) == Sum(NS̄−1,j))

Hi+2,j+1, (Sum(N0,j) < Sum(NS̄−1,j))

Hi+x,j+1 move zero, one and two cell(s) to the right are showed as row j+3, 153

j+1 and j+2 in Fig1b and Fig1c, respectively. We develop our striped move 154

following the above equations. In striped coordinates, the whole register 155

stores: 156

M0,j = [Hi,j, Hi+1∗S̄,j, Hi+2∗S̄,j, ..., Hi+(p−1)∗S̄,j]
M1,j = [Hi+1,j, Hi+1+1∗S̄,j, Hi+1+2∗S̄,j, ..., Hi+1+(p−1)∗S̄,j]

...
MS̄−1,j = [Hi+S̄−1,j, Hi+S̄−1+1∗S̄,j, Hi+S̄−1+2∗S̄,j, ..., Hi+S̄−1+(p−1)∗S̄,j]

The memory stores all the register as [M0,j,M1,j,M2,j, ...,MS̄−1,j]. In the 157

striped order, the cell order for the first register in j+1 row (such as 158

[H1,j+1,H5,j+1,H9,j+1,H13,j+1]) is the same as the first, second and third reg- 159

ister in the j row(such as [H1,j,H5,j,H9,j,H13,j]) for moving zero, one or two 160

cells to the right, respectively(Fig1c). This holds true for all the registers 161

except the last one or two registers. For the calculation of the next row, the 162

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

memory is the following:163

memory =











[M0,j+1,M1,j+1,M2,j+1, ...,MS̄−1,j+1], (Sum(M0,j) > Sum(MS̄−1,j))

[M1,j+1,M2,j+1, ...,MS̄−1,j+1, M̄0,j+1], (Sum(M0,j) == Sum(MS̄−1,j))

[M2,j+1, ...,MS̄−1,j+1, M̄0,j+1, M̄1,j+1], (Sum(M0,j) < Sum(MS̄−1,j))

(3)
For the exception, the new M̄ can be converted from the previ-164

ous M(dash arrow in Fig1c, such as [H1,j+1,H5,j+1,H9,j+1,H13,j+1] to165

[H5,j+2,H9,j+2,H13,j+2,H17,j+2]). Take M̄0,j+1 as an example:166

M̄0,j+1 = (M0,j << lbyte) + [0, 0, ...,−∞] (4)

lbyte is the byte length of H. As the row moves one cell to the right, the whole167

cells move from [Hi,j...Hi+S̄∗p−1,j] to [Hi+1,j+1...Hi+S̄∗p,j+1]. The addition cell168

Hi+S̄∗p,j+1 is set as the negative infinity and filled in the register. The negative169

infinity indicates this boundary cell will not be selected by equation1. The170

banded algorithm skips the calculation of boundary cells to speed up the171

global alignment. Using our striped move method, the whole striped SIMD172

data only needs bit operations to prepare for a new row in banded DP.173

2.5. Difference Recurrence Relation174

The third way to optimize the pairwise alignment is to increase the num-175

ber of parallelisms (i.e., vector width) in SIMD operations. We choose to176

calculate the score matrix based on the difference recurrence relation[12] in-177

stead of the conventional stripped SIMD implementation[8]. We denote h, e,178

f as the relative score of the H, E, F score matrices respectively. We also de-179

fine u matrix and v matrix to represent the vertical difference and horizontal180

difference within the H matrix, respectively.181































hi,j = Hi,j −Hi−1,j−1

ui,j = Hi,j −Hi−1,j = hi,j − vi−1,j

vi,j = Hi,j −Hi,j−1 = hi,j − ui,j−1

ei,j = Ei,j −Hi,j−1

fi,j = Fi,j −Hi−1,j−1

(5)

The definition of e and f matrix is asymmetry. Under the above definition,182

our difference recurrence relation can be expressed as:183

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/











hi,j = max{Si,j, ei,j + ui,j−1, fi,j}

ei,j+1 = max{ei,j + ui,j−1 − hi,j +GapE,GapOE}

fi+1,j = max{fi,j +GapE, hi,j +GapOE} − ui,j−1

(6)

For every iteration in our implementation, we only store ui,j−1 and ei,j, 184

and calculate hi,j, vi,j, ei,j+1 and fi+1,j by equation 5 and 6. 185

2.6. Active F loop 186

For non-striped pairwise alignment, the horizontal score F and its differ- 187

ence f can be calculated step-by-step via previous cells. In striped order, 188

some cells show up before their previous cells(f4, f8, f12 in Fig2). Thus, it 189

raises a problem only in calculating the horizontal score F and its differ- 190

ence f . Farrar[8] initially developed a lazy F evaluation method to solve this 191

problem(Fig2a). It corrected the value F via a couple of loops, which is time- 192

consuming for sequences that contain long indel errors(Fig2d). In contrast 193

to lazy F evaluation, we actively correct all the cells in advance and guar- 194

antee that the value of H is always corrected, providing a linear complexity 195

solution to this problem in any situation(Fig2b,2e). 196

For most registers in the memory, f is smaller than e and S. The value 197

of H does not source from f(FigS1a). Only the horizontal gap will f start 198

to influence the value of H(FigS1b,c). In the initial loop, we set the negative 199

infinity as the first register MF0,j for horizontal difference f([f0f4f8f12] in 200

Fig2e): 201

MF0,j = [f0,j, fS̄,j, fS̄∗2,j, ..., fS̄∗(p−1),j]

Because f0,j will never contribute to f1,j, f0,j (negative infinite) is always 202

error-free(f0 in Fig2e top left). Then we calculate the whole matrix by equa- 203

tion 5 and 6. Because f0,j is error-free, f1,j to fs̄,j is correct(f1 to f4 in Fig2e). 204

We save the last register MFS̄,j: 205

MFS̄,j = [fS̄,j, fS̄∗2,j, fS̄∗3,j, ..., fS̄∗p,j]

Note that we calculate fi+1,j in equation 6, so MFS̄,j([f4f8f12f16] in Fig2e) is 206

the last register to store f instead of MFS̄−1,j. Because MFS̄,j is calculated 207

by MFS̄−1,j, it solves the problems that fY ∗S̄+S̄−1,j may update fY ∗S̄+S̄,j(Y = 208

0, 1, 2..., FigS1b). 209

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

d. Lazy F loop

Initial loop 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Lazy F loop

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

0 4 8 12Initial loop 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

4 8 12 16 4 8 12 16 0 4 8 12

Final loop 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 : waiting for updates

: no updatei

i

Correction

e. Active F loop

: updatedi

a. Lazy F loop

rerun if updated

SIMD calculation SIMD correction SIMD calculation SIMD calculation

Correction

b. Active F loop

j - 1
j

i+ 7

c. Long horizontal gap

8 9 10 11 12 13

√

>>

Figure 2: The lazy and active F loop algorithm inside a row. Assuming the band
width, the number of divided segments(S̄) and the number of cells(p) in a register are
16, 4 and 4, respectively. (a) and (b) are the work flow for the lazy and active F loop,
respectively. (c) is an example of long horizontal gap(f7,j to f13,j). The dash line indicates
the optimal path. (d) and (e) show how the lazy and active F loop solve the above example
for each cell. Black box(waiting for updates) indicates the value is influenced by F and
needs to be corrected. Grey box(updated) indicates the value is updated recently. White
box(no update) indicates the value is the same as expected and correct. The arrows above
digits indicate the first time being updated as the correct value. (d)Initial loop: All the
cells in the first register are negative infinity. The algorithm calculates all the cells by
standard SIMD calculation. Lazy F loop: The algorithm keeps correcting all the registers
one by one until none of them is updated. This figure shows a situation that it takes 3
loops to guarantee that all the cells are corrected. (e)Unlike the lazy F loop, there is no
difference between ”updated” and ”no update”. All the value is updated one times only.
Intital loop: The same as the lazy F loop. Correction: Each cell in the first segment is
checked by equation 7 and updated by the correct value. This extended register is also
the first register (after the right shift) in the striped format. Final loop: When the first
register is totally correct, the remaining segments are correct by SIMD calculation.

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

The only exception is that the horizontal gap is long enough to pene- 210

trate all the F (fY ∗S̄, fY ∗S̄+1, ..., fY ∗S̄+S̄−1) in the same cell position for all 211

registers(Fig2c,S1c). If the F penetration happens, the value of fx,j is smaller 212

than fx−S̄,j + gappenalty (FigS1c). So we update the fx,j as the corrected 213

value in advance when we know F penetration has happened(correction in 214

Fig2e). The equation to update all the f in the first register MF0,j is follow- 215

ing: 216

fx,j = max

{

fx,j

fx−S̄,j + S̄ ∗ gapE − (Hx−1,j−1 −Hx−1−S̄,j−1)
x ∈ (S̄, S̄∗2, ...S̄∗(p−1))

(7)
Now, the updated f solves the problems that fx−S̄,j may update fx,j. So 217

fY ∗S̄+S̄,j(Y = 1, 2...) is corrected(f8,f12 in Fig2). We right shift the last 218

register MFS̄,j x bytes (length of f0,j) and update as the first register 219

MF0,j([f4f8f12f16] to [f0f4f8f12] in Fig2). After the active F loop, we 220

use the updated f as the initial value and recalculate all the values by 221

equation 5,6(final loop in Fig2e). So the remaining values are corrected 222

(f5,f9,f13,f2,f6,f10,f7,f11,f15 in Fig2 bottom). When all the values in f are 223

corrected or error-free, all the values of H are corrected. 224

Specifically, the active F loop and the parallel scan in parasail[18, 19] 225

are similar in general. One of the improvements is that the active F loop 226

is implemented in difference recurrence relation, while the parallel scan[18] 227

is implemented in the tradition way, storing and calculating the absolute 228

values. Therefore, the active F loop can increase the number of parallelisms. 229

2.7. Edit distance 230

Calculating two sequences’ edit distance can be regarded as a special case 231

of pairwise alignment when the mismatch and gap extend are both equal to 232

1 and, the match and gap open are both equal to 0. Since the difference 233

between adjacent cells belongs to (-1,0,1), the number of bits for storing 234

them is only 2. We can further increase the number of parallelisms using 235

striped SIMD difference recurrence relation. As the number of bits decreases 236

to 2, all the conditions can be enumerated. We converted the equation 5 and 237

6 to boolean logic to further accelerate the calculation. 238

To simplify the standard pairwise alignment, we only require H, h, u and 239

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

v.240










ui,j = hi,j − vi−1,j, ∈ (−1, 0, 1)

vi,j = hi,j − ui,j−1, ∈ (−1, 0, 1)

hi,j = min{Si,j, vi−1,j + 1, ui,j−1 + 1}, ∈ (0, 1)

(8)

To minimize the computation resource, we defined a 2-bit binary code241

for boolean logic. For hi,j, ui,j and vi,j, ”-1,0,1” is converted to ”10,00,01”.242

For Si,j, ”0,1” is converted to ”01,00”. All the conditions for calculating hi,j243

from Si,j, ui,j−1 and vi−1,j is enumerated as below(Table1). The new codes244

are inside the parentheses.

Si,j(S̄
0
i,jS̄

1
i,j) ui,j−1(ū

0
i,j−1ū

1
i,j−1) vi−1,j(v̄

0
i−1,j v̄

1
i−1,j) = hi,j(h̄

0
i,jh̄

1
i,j)

0(01) -1(10) -1(10) = 0(00)
0(01) -1(10) 0(00) = 0(00)
0(01) -1(10) 1(01) = 0(00)
0(01) 0(00) -1(10) = 0(00)
0(01) 0(00) 0(00) = 0(00)
0(01) 0(00) 1(01) = 0(00)
0(01) 1(01) -1(10) = 0(00)
0(01) 1(01) 0(00) = 0(00)
0(01) 1(01) 1(01) = 0(00)
1(00) -1(10) -1(00) = 0(00)
1(00) -1(10) 0(00) = 0(00)
1(00) -1(10) 1(01) = 0(00)
1(00) 0(00) -1(10) = 0(00)
1(00) 0(00) 0(00) = 1(01)
1(00) 0(00) 1(01) = 1(01)
1(00) 1(01) -1(10) = 0(00)
1(00) 1(01) 0(00) = 1(01)
1(00) 1(01) 1(01) = 1(01)

Table 1: In edit distance mode, enumeration of conditions for converting hi,j

from Si,j, ui,j−1 and vi−1,j. The new binary codes are inside the parentheses.

245

Hence, the boolean logic for the new h̄i,j is following:246

h̄0
i,j = 0 h̄1

i,j = ¬(S̄1
i,j|ū

0
i,j−1|v̄

0
i−1,j) (9)

All the conditions for calculating ui,j from hi,j and vi−1,j is enumerated247

as below(Table2).248

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

hi,j(h̄
0
i,jh̄

1
i,j) vi−1,j(v̄

0
i−1,j v̄

1
i−1,j) = ui,j(ū

0
i,jū

1
i,j)

0(00) 0(00) = 0(00)
0(00) 1(01) = -1(10)
0(00) -1(10) = 1(01)
1(01) 0(00) = 1(01)
1(01) 1(01) = 0(00)

Table 2: In edit distance mode, enumeration of conditions for converting ui,j

from hi,j and vi−1,j. The new binary codes are inside the parentheses.

As hi,j − vi−1,j ∈ (0, 1), the condition of ”hi,j = 1 and vi−1,j = −1” does 249

not exist. Since vi,j is symmetry to ui,j in this definition, the boolean logic 250

for ūi,j and v̄i,j is following: 251

ū0
i,j = v̄1i−1,j&(¬h̄1

i,j) ū1
i,j = v̄1i−1,j ' (h̄1

i,j|v̄
0
i−1,j|v̄

1
i−1,j)

v̄0i,j = ū1
i,j−1&(¬h̄1

i,j) v̄1i,j = ū1
i,j−1 ' (h̄1

i,j|ū
0
i,j−1|ū

1
i,j−1)

(10)

3. Experimental design 252

We implemented BSAlign with two modes: ”align mode” for pairwise 253

alignment by score matrix, and ”edit mode” for pairwise alignment by min- 254

imum edit distance. For ”align mode”, we compared BSAlign to three 255

striped-SIMD programs: SSW[11](version:1.0), parasail[19](version:2.4.3), 256

ksw2[15](version:current), WFA[17](version:v2.2) and BA[16](version:0.2.0). 257

Note that ksw2 implemented the difference recurrence relation[12] and was a 258

component of minimap2[15]. The scores for the match, mismatch, gap open, 259

and gap extension were set at 2, -4, -4, -2 for all implementations, respec- 260

tively. For ”edit mode”, we compared BSAlign to Myers[20](version:myers- 261

agrep) and Edlib[21](version:1.2.6). BA was run by rust WASM 128 bits; 262

block size range from 32 to 2048 bp. Myers’s bit-vector algorithm was one of 263

the fastest deterministic alignment algorithms, but it did not support global 264

alignment and did not trace back the optimal path. Edlib extended Myer’s 265

bit-vector algorithm with additional methods and traced back the optimal 266

path. 267

We use the same real datasets as BA[16]. The short read dataset 268

is 100,000 pairs of 101 bps Illumina HiSeq 2000 reads(accession num- 269

ber ERX069505). The long read dataset is 12,477 pairs of around 1000 270

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

bps Oxford Nanopore MinION reads(accession numbers ERR3278877 to271

ERR3278886).272

We simulated query sequences and reference sequences following a config-273

uration that approximated the error rate in the real dataset for benchmark-274

ing. We randomly selected 100 start positions that contained no gap within275

a 100 kb region from GRCh38. We benchmarked software in three ways:276

time for length, time and accuracy for divergence and length, and accuracy277

for long indel and band width. In the time to length comparison, we set the278

reference sizes as 102, 102.25, 102.5, 102.75, 103, 103.25, 103.5, 103.75, 104, 104.25,279

104.5, 104.75 and 105 base pairs with rounding. Then, we use PbSim2[22] to280

simulate a query sequence for each reference region. These query sequences281

and their reference sequences became pairs of input data in pairwise align-282

ment. Sequences were simulated for both Pacbio and Nanopore using hmm283

model P6C4 and R103. The similarity and mutation ratio (in the format of284

substitution:insertion:deletion) are set as default value in PbSim2 (85% and285

PacBio 6:50:54, Nanopore 23:31:46). In the time and accuracy for different286

divergence and length comparison, we set the reference size as 102, 103, 104287

and 105 base pairs. For each reference size, we also simulated reads with288

difference divergence(80%, 95% and 99%). In the accuracy to long indel and289

band width, the reference size is 104 base pairs and the divergence is 80%.290

We randomly inserted or deleted 50, 100 and 200 base pairs sequences in the291

middle of the reference. For each indel size, we benchmarked software with292

different band width sizes (32, 64, 128, 256, 512 and 1024 base pairs).293

4. Results294

We developed the above algorithms under x86 processors using AVX2295

SIMD and tested these programs on a machine with an AMD EPYC 7H12296

processor, 1TB RAM, and Ubuntu Linux 20.04.1. The execution time was297

calculated as the sum of user and system time in a single thread. We re-298

peated each alignment experiment 1000 times in repeat mode. To achieve299

a fair comparison, we modified the implementations to add a repeat mode300

in SSW[11] and Myers[20]. However, we were unable to add a repeat mode301

for parasail[19]. We developed a standard Needleman-Wunsch implementa-302

tion to evaluate the alignment accuracy. SSW[11] performed local alignment303

instead of global alignment, we also develop a Smith-Waterman implemen-304

tation to evaluate SSW’s accuracy. The recall rate was defined as the per-305

centage of alignments that was the same score as the Needleman-Wunsch or306

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

Smith-Waterman implementation for global or local alignment, respectively. 307

which may trim the tip sequence and get a higher score in comparison. We 308

also recorded the maximum memory in the system during the software exe- 309

cution. Overall, BSAlign outperformed all the other programs or was on par 310

with the best program in all of the experimental scenarios. 311

4.1. Evaluation on real data 312

Table3 showed the time and accuracy performance results for 5 algorithms 313

evaluated using both real and simulated datasets. In the case of processing 314

real datasets, BSAlign was the only algorithm that maintain 100% recall 315

rate for two datasets. WFA was the fastest algorithm for Illumina reads. 316

In ”no band” mode, all algorithms aligned the whole sequences without any 317

band width. BSAlign was 1.5-5.5X times as fast as ksw2 and SSW for Ox- 318

ford Nanopore read. In ”band” mode, all algorithms can align part of se- 319

quences associated with the best alignment according to its method. BA was 320

the fastest algorithm for Oxford Nanopore reads with a recall rate of 87%. 321

BSAlign was the second fastest algorithm with a recall rate of 100%. Overall, 322

BSAlign was the fastest algorithm with the best recall rate for the Oxford 323

Nanopore dataset. 324

4.2. Evaluation of time and accuracy for different lengths 325

We evaluated all software in three different ways: the running time for 326

different lengths, the running time and accuracy for different divergences 327

and read lengths, and finally the accuracy for different sizes of indel and 328

different band widths. In pairwise alignment experiments, BSAlign ran faster 329

than ksw2[15], SSW[11], and parasail[19] in both ”No Band” and ”Band” 330

modes(Table 3 and Figure 3a). Among all algorithms trailed, only BSAlign 331

and WFA[17] have the capacity to align sequences up to 100 kbps in length. 332

Block aligner[16] was at most 3.36 times as fast as bsalign for 1,000 bps 333

sequences. When the sequence length was equal to or longer than 10,000 334

bps, bsalign was at most 1.20 to 5.61 times as fast as block aligner and other 335

algorithms. 336

4.3. Evaluation for edit distance mode 337

For the edit distance implementation, BSAlign recorded the fastest speed 338

compared to Myers[20] and Edlib[21](Figure 3b). The implementations were 339

compared in two modes. In the ”whole mode”, all the aligners searched the 340

whole sequences for the minimum edit distance. In the ”limit mode”, the 341

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

1,000 10,000 100,000
10

0
1,

00
0

10
,0

00
10

0,
00

0

10
0

1,
00

0
10

,0
00

10
0,

00
0

1,000 10,000 100,000
sequence length(bp)

ca
lc

ul
at

io
n

tim
e(

m
s)

Mode

Banded
No Band

Method

bsalign
ksw2
ssw
parasail
WFA
BA

a) Pairwise alignment
1,000 10,000 100,000

10
0

1,
00

0
10

,0
00

10
0,

00
0

10
0

1,
00

0
10

,0
00

10
0,

00
0

1,000 10,000 100,000
sequence length(bp)

ca
lc

ul
at

io
n

tim
e(

m
s)

Mode

limit
whole

Method

bsalign
Edlib
Myers

b) Edit distance

Figure 3: The average computation time in microseconds for Pairwise alignment
and Edit distance. The length of the query sequence pair is from 1,000 to 100,000. Each
pair is run 100 times. In a, six implementations: BSAlign, ksw2[15], SSW[11], parasail[19],
wavefront alignment[17] and block aligner[16] are compared. Option band width is set at
128 for BSAlign and ksw2. In b, three implementations: BSAlign, Edlib[21] and Myers[20]
are compared. The mode ”whole” and ”limit” mean the maximum edit distance is set at
the whole query length and the true edit distance in simulation, respectively.

minimum edit distance was specified. All the aligners were instructed to stop342

searching the sequences that were over the minimum edit distance. In the343

”whole mode”, Figure3b showed that the fastest implementation switched be-344

tween BSAlign and Edlib in different sequence lengths. In the ”limit mode”,345

all the aligners ran faster than the ”whole mode” due to smaller searching346

space, where BSAlign, Myers, and Edlib were 2.1, 1.33, and 1.11 times faster347

on average, respectively. BSAlign ran 2.49 and 4.93 times as fast as My-348

ers and Edlib, respectively. Additionally, BSAlign in edit distance mode is349

always faster than all the pairwise alignment tools.350

4.4. Evaluation of time and accuracy for different divergence351

Furthermore, we benchmarked this six software for time and accuracy352

performance under different divergences (Table4). The accuracy of most353

software was 100%, except for the small size of band width for high divergence354

sequences. Most software’s time was stable in terms of processing time for355

different divergences except WFA[17]. Its time for high divergence sequences356

(20%) was 4.2 to 14.8 times slower than low divergence sequences’. When the357

length was 1000 bps, WFA and BA are fast and accurate. When the length358

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

Real-Illumina Real-Ont l=1k,d=5% l=10k,d=5% l=100k,d=5% indel=50,d=20%

Time Recall Time Recall Time Recall Time Recall Time Recall Time Recall

NoBand
bsalign 1.65 1.00 3.78 1.00 0.85 1.00 70.00 1.00 3972.13 1.00 46.21 1.00
ksw2 1.48 0.98 9.45 1.00 2.22 1.00 207.00 1.00 error error 171.15 1.00
SSW 2.71 1.00 24.55 1.00 2.13 1.00 175.00 1.00 2000.22 0.00 201.33 1.00

Band

bsalign(128) 2.60 1.00 1.92 1.00 0.37 1.00 3.72 1.00 40.70 1.00 2.71 1.00
ksw2(128) 1.82 0.98 2.79 1.00 0.58 1.00 5.98 0.78 63.30 0.02 5.01 0.00
WFA 0.27 0.99 2.96 0.99 1.18 1.00 11.64 1.00 228.13 1.00 75.80 0.46
WFA.score 0.12 0.99 1.85 0.99 0.85 1.00 1.18 1.00 50.39 1.00 5.21 0.46
BA 2.16 0.99 0.91 0.87 0.11 1.00 4.48 1.00 error error 7.57 0.00

Table 3: Time and accuracy performance of pairwise alignment algorithms.
WFA.score only computes the alignment score, not the complete alignment.

l=1k,d=1% l=1k,d=5% l=1k,d=20% l=10k,d=1% l=10k,d=5% l=10k,d=20% l=100k,d=1% l=100k,d=5% l=100k,d=20%
Time Recall Time Recall Time Recall Time Recall Time Recall Time Recall Time Recall Time Recall Time Recall

NoBand

bsalign 0.87 1.00 0.85 1.00 0.76 1.00 70.70 1.00 70.00 1.00 62.50 1.00 91.60 1.00 92.00 1.00 81.10 1.00
ksw2 2.25 1.00 2.22 1.00 2.01 1.00 209.00 1.00 207.00 1.00 186.00 1.00 error error error error error error
SSW 2.00 1.00 2.13 1.00 2.60 1.00 169.00 1.00 175.00 1.00 197.00 1.00 39.30 0.00 39.30 0.00 52.00 0.00
parasail 4286.00 1.00 4394.00 1.00 4273.00 1.00 6316.16 1.00 6293.77 1.00 6086.47 1.00 error error error error error error

Band

bsalign(128) 0.38 1.00 0.37 1.00 0.37 1.00 3.72 1.00 3.72 1.00 3.64 1.00 40.30 1.00 40.70 1.00 39.80 0.89
ksw2(128) 0.57 1.00 0.58 1.00 0.55 1.00 6.06 0.77 5.98 0.74 5.59 0.00 63.70 0.27 63.30 0.02 59.70 0.00
WFA 0.10 1.00 1.18 1.00 1.63 1.00 8.70 1.00 11.64 1.00 36.84 1.00 181.50 1.00 228.13 1.00 1156.01 1.00
BA 0.11 1.00 0.11 1.00 0.11 1.00 4.52 1.00 4.48 1.00 4.10 1.00 error error error error error error

Table 4: Time(ms) and accuracy performance for different divergence.*Due to
the higher deletion rate in simulation, the total sequence length of 20% divergence are
4.2% and 4.6% shorter than 5% and 1% divergence’s on average, respectively.

increase to 10,000 bps, BSAlign(band width 128) is always fastest than other 359

software. When the length further increased to 100,000 bps, BA(capacity 360

overflow), parasail(early termination) and ksw2(core dumped) collapsed due 361

to memory limitation. BSAlign(band width 128) was reliable and 6.70 times 362

faster than other software. 363

4.5. Comparison of indel size, band width and accuracy 364

Because the banded methods might miss the optimal path, we further 365

evaluated the influence of indel size on the alignment accuracy(Table5). In 366

this context, we randomly inserted or deleted 50, 100 and 200 bp sequences 367

in the middle of a reference(length=10k, divergence=20%). Overall, ksw2, 368

SSW and BSAlign in ”no band” mode were 100% correct. In band mode, 369

WFA detected approximately 50% long indels while BA detected none. ksw2 370

detected all the indels when the band width was set at 1024 bps. BSAlign 371

with band width 128, 256 and 512 bps detected all the 50, 100 and 200 bps 372

indels, respectively. As expected, to accurately detect long indels, the band 373

width size should be two times larger than the indel size. It suggests that 374

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

indel=50,d=20% indel=100,d=20% indel=200,d=20%

Time Recall Time Recall Time Recall

No Band
bsalign 46.21 1.00 45.93 1.00 45.49 1.00
ksw2 171.15 1.00 171.04 1.00 171.00 1.00
SSW 121.90 0.99 127.88 0.99 153.19 0.99

Band 128 bp
bsalign 2.71 1.00 2.65 0.01 2.64 0.00
ksw2 5.01 0.00 5.10 0.11 4.90 0.15

Band 256 bp
bsalign 3.26 1.00 3.30 1.00 3.22 0.00
ksw2 9.51 0.43 9.46 0.42 9.28 0.38

Band 512 bp
bsalign 4.66 1.00 4.65 1.00 4.62 1.00
ksw2 18.15 1.00 18.21 0.98 18.03 0.83

Band 1024 bp
bsalign 9.03 1.00 9.03 1.00 8.87 1.00
ksw2 35.16 1.00 35.12 1.00 34.69 1.00

Band
WFA 75.80 0.46 75.08 0.51 76,14 0.61
BA 7.57 0.00 7.47 0.00 7.48 0.00

Table 5: Time(ms) and accuracy for difference indel size(50,100 and 200 bp)
and band size(128 to 1024 bp).

BSAlign’s striped move is the most accurate strategy to find the optimal375

path. Regarding the speed, BSAlign is always faster than others. Notably,376

the lazy F loop implementation SSW[11] run slower for long indels while the377

active F loop implementation BSAlign’s runtime was stable for all the indel378

sizes. It suggests that BSAlign’s active F loop is fast and stable.379

4.6. Comparison about memory380

We also measured the memory during the execution(Table6). All the soft-381

ware except WFA required similar memory for difference divergence. The382

memory increased as the sequence length increased. No band method re-383

quired a larger memory as they stored and calculated the whole alignment384

matrix. The banded method required less memory than other methods. For385

example, BSAlign (band width 128 bps) required 16.36 and 32.46 times less386

memory than WFA and BA for length 10k and divergence 20%, respectively.387

5. Discussion and Conclusion388

Designing a dynamic banding method is about seeking a balance between389

speed and accuracy. No software can guarantee both fast and accurate results390

under any conditions. For example, WFA[17] works well for low divergence391

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

Length=1K Length=10K Length=100K

d=1% d=5% d=20% d=1% d=5% d=20% d=1% d=5% d=20%

NoBand
bsalign 4.19 4.18 3.97 184.72 183.90 162.52 18471.66 18314.93 16433.11
ksw2 5.16 4.91 4.56 157.56 154.53 143.79 error error error
SSW 4.08 4.43 7.07 10.57 11.82 17.94 24.19 27.56 140.14

Band

bsalign(128) 2.54 2.52 2.50 5.89 5.88 5.65 40.35 40.18 36.86
ksw2(128) 2.13 2.09 2.05 6.80 6.31 7.53 33.14 33.11 31.19
WFA 8.58 10.39 10.61 37.41 35.00 98.08 153.52 217.70 2095.99
BA 172.20 175.53 177.19 189.66 189.27 189.04 error error error

Table 6: Memory (Mb) for difference size and divergence.

short sequences. BA[16] and ksw2[15] work well for high divergence short 392

sequences. When the sequences are short, the band width is short as well. In 393

this case, data structure like striped SIMD is unnecessary and time-wasting. 394

When the sequences are long (10k bps or more), the band width increases as 395

well. In this case, the data structure like striped SIMD is necessary and fast. 396

The striped SIMD banded method BSAlign is faster than the anti-diagonal 397

banding method ksw2 when the band width is 128 bps(p = 16, Sbar = 4 in 398

128 SSE). 399

400

Appendix A. Availability of source code and requirements 401

Lists the following: 402

• Project name: BSAlign 403

• Project home page: https://github.com/ruanjue/BSAlign 404

• Operating system(s): Linux 405

• Programming language: C Language 406

• Other requirements: None 407

• License: GNU General Public License v3.0 408

Appendix B. Declarations 409

Appendix B.1. List of abbreviations 410

SW:Smith-Waterman 411

SIMD:single instruction multiple data 412

DP:dynamic programming 413

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

Appendix B.2. List of symbols414

Q: Query sequence.415

R: Reference sequence.416

S: Matching matrix.417

H: Alignment score.418

h: difference of H.419

E: Alignment score end with a vertical gap.420

e: difference of E.421

F : Alignment score end with a horizontal gap.422

f : difference of F.423

GapO: gap open, less than zero.424

GapE: gap extension, less than zero.425

GapOE: GapO +GapE.426

S: The number of divided segments(for whole query sequence).427

S̄: The number of divided segments(for band width).428

p: The number of segments in a SIMD register.429

N : register(for any value).430

M : register in striped order(for any value).431

MF : register in striped order(for f).432

i: column id.433

j: row id.434

ui,j: vertical difference between H(Hi,j −Hi−1,j).435

vi,j: horizontal difference between H(Hi,j −Hi,j−1).436

h̄: h in new code for edit distance mode.437

ū: u in new code for edit distance mode.438

v̄: v in new code for edit distance mode.439

440

Appendix B.3. Consent for publication441

Not applicable.442

Appendix B.4. Competing Interests443

The authors declare that they have no competing interests.444

Appendix B.5. Funding445

This study was supported by the National Key Research and Develop-446

ment Project Program of China (2019YFE0109600) and the National Natural447

Science Foundation of China (31822029 and 32200517).448

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

Appendix B.6. Author’s Contributions 449

J.R. conceived the project, designed the algorithm, and implemented 450

BSAlign. H.S. contributed to the development and drafted the manuscript. 451

Both authors evaluated the results and revised the manuscript. 452

Appendix C. Acknowledgements 453

We thank Shigang Wu from CAAS for the help in the sequence alignment 454

comparison. We thank Fan Zhang from CAAS for the help in manuscript 455

preparation. 456

References 457

[1] S. B. Needleman, C. D. Wunsch, A general method applicable to the 458

search for similarities in the amino acid sequence of two proteins, Journal 459

of Molecular Biology 48 (3) (1970) 443–453. 460

[2] T. Smith, M. Waterman, Identification of common molecular subse- 461

quences., Journal of Molecular Biology 147 (1) (1981) 195–197. 462

[3] A. Wozniak, Using video-oriented instructions to speed up sequence 463

comparison, Bioinformatics 13 (2) (1997) 145–150. 464

[4] T. Rognes, E. Seeberg, Six-fold speed-up of smith-waterman sequence 465

database searches using parallel processing on common microprocessors, 466

Bioinformatics 16 (8) (2000) 699–706. 467

[5] J. Zhang, H. Lan, Y. Chan, Y. Shang, B. Schmidt, W. Liu, 468

BGSA: a bit-parallel global sequence alignment toolkit for multi- 469

core and many-core architectures, Bioinformatics 35 (13) (2018) 470

2306–2308. arXiv:https://academic.oup.com/bioinformatics/article- 471

pdf/35/13/2306/28878352/bty930 supplementary data.pdf, 472

doi:10.1093/bioinformatics/bty930. 473

URL https://doi.org/10.1093/bioinformatics/bty930 474

[6] R. Rahn, S. Budach, P. Costanza, M. Ehrhardt, J. Hancox, 475

K. Reinert, Generic accelerated sequence alignment in SeqAn us- 476

ing vectorization and multi-threading, Bioinformatics 34 (20) (2018) 477

3437–3445. arXiv:https://academic.oup.com/bioinformatics/article- 478

pdf/34/20/3437/48918959/bioinformatics 34 20 3437 s5.pdf, 479

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

doi:10.1093/bioinformatics/bty380.480

URL https://doi.org/10.1093/bioinformatics/bty380481

[7] A. Müller, B. Schmidt, A. Hildebrandt, R. Membarth, R. Leißa,482

M. Kruse, S. Hack, Anyseq: A high performance sequence483

alignment library based on partial evaluation (2020) 1030–484

1040doi:10.1109/IPDPS47924.2020.00109.485

[8] M. Farrar, Striped smith–waterman speeds database searches six times486

over other simd implementations, Bioinformatics 23 (2) (2007) 156–161.487

[9] H. Li, R. Durbin, Fast and accurate short read alignment with bur-488

rows–wheeler transform, Bioinformatics 25 (14) (2009) 1754–1760.489

[10] B. Langmead, S. L. Salzberg, Fast gapped-read alignment with bowtie490

2, Nature methods 9 (4) (2012) 357–359.491

[11] M. Zhao, W. P. Lee, E. P. Garrison, G. T. Marth, Ssw library: an simd492

smith-waterman c/c++ library for use in genomic applications., PLOS493

ONE 8 (12) (2013).494

[12] H. Suzuki, M. Kasahara, Introducing difference recurrence relations for495

faster semi-global alignment of long sequences., BMC Bioinformatics496

19 (1) (2018) 33–47.497

[13] K.-M. Chao, W. R. Pearson, W. Miller, Aligning two sequences498

within a specified diagonal band, Bioinformatics 8 (5) (1992)499

481–487. arXiv:https://academic.oup.com/bioinformatics/article-500

pdf/8/5/481/566378/8-5-481.pdf, doi:10.1093/bioinformatics/8.5.481.501

URL https://doi.org/10.1093/bioinformatics/8.5.481502

[14] H. Suzuki, M. Kasahara, Acceleration of nucleotide semi-global align-503

ment with adaptive banded dynamic programming, bioRxiv (2017)504

130633.505

[15] H. Li, Minimap2: pairwise alignment for nucleotide506

sequences, Bioinformatics 34 (18) (2018) 3094–3100.507

arXiv:https://academic.oup.com/bioinformatics/article-508

pdf/34/18/3094/25731859/bty191.pdf, doi:10.1093/bioinformatics/bty191.509

URL https://doi.org/10.1093/bioinformatics/bty191510

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

[16] D. Liu, M. Steinegger, Block aligner: fast and flexible pairwise sequence 511

alignment with simd-accelerated adaptive blocks, bioRxiv (2021). 512

[17] S. Marco-Sola, J. C. Moure, M. Moreto, A. Espinosa, Fast gap-affine 513

pairwise alignment using the wavefront algorithm, Bioinformatics 37 (4) 514

(2021) 456–463. 515

[18] J. A. Daily, Scalable parallel methods for analyzing metagenomics data 516

at extreme scale, Washington State University, 2015. 517

[19] J. A. Daily, Parasail: Simd c library for global, semi-global, and local 518

pairwise sequence alignments, BMC Bioinformatics 17 (1) (2016) 81–81. 519

[20] G. Myers, A fast bit-vector algorithm for approximate string matching 520

based on dynamic programming, Journal of the ACM 46 (3) (1999) 521

395–415. 522

[21] M. Šošić, M. Šikić, Edlib: a C/C++ library for fast, exact se- 523

quence alignment using edit distance, Bioinformatics 33 (9) (2017) 524

1394–1395. arXiv:https://academic.oup.com/bioinformatics/article- 525

pdf/33/9/1394/25151249/btw753.pdf, doi:10.1093/bioinformatics/btw753.526
URL https://doi.org/10.1093/bioinformatics/btw753 527

[22] Y. Ono, K. Asai, M. Hamada, PBSIM2: a simulator 528

for long-read sequencers with a novel generative model 529

of quality scores, Bioinformatics 37 (5) (2020) 589– 530

595. arXiv:https://academic.oup.com/bioinformatics/article- 531

pdf/37/5/589/37809062/btaa835.pdf, doi:10.1093/bioinformatics/btaa835.532
URL https://doi.org/10.1093/bioinformatics/btaa835 533

Appendix A. Supplementary Figures 534

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

h 12,j = max

S 12,j

f 12 h 12

a. No gap

b. Short horizontal gap

h 12,j = max

√

f 8,j = max

f 11,j + GapE - u11,j-1

h 11,j + GapOE - u11,j-1

c. Long horizontal gap

f 12,j ≥ f 11,j + GapE - (H11,j-1 - H10,j-1) ≥ f 10,j + 2GapE - (H11,j-1 - H9,j-1) ≥ f 8,j + 4GapE - (H11,j-1 - H7,j-1)

h 12,j = max f 12,j = max

f 11,j + GapE - u11,j-1

h 11,j + GapOE - u11,j-1

√

e 12,j + u 12,j-1

f 12,j

H11,j-1 - H10,j-1 = u11,j-1 H11,j-1 - H9,j-1 = u11,j-1 + u10,j-1

S 12,j

√

e 12,j + u 12,j-1

f 12,j

S 12,j

√

e 12,j + u 12,j-1

f 12,j

√

f 12,j h 12,j

H11,j-1 - H7,j-1 = u11,j-1 + u10,j-1 + u9,j-1 + u8,j-1

f 12,j h 12,j

f 11,j f 12,j

f 10,j f 11,j

f 9,j f 10,j

f 8,j f 9,j

not source from

source from

j - 1
j

i+

j - 1
j

i+

j - 1
j

11i+

f 11,j h 12,j

12

11 1210

7 8 9 10 11 12 13

Figure S1: The F loop in non-striped order. (a-c) shows how the pairwise alignment
calculates a cell (h12,j) in non-striped order in three situations: (a) no gap, (b) short
horizontal gap and (c) long horizontal gap. The dash line indicates the optimal path.

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.15.575791doi: bioRxiv preprint

https://doi.org/10.1101/2024.01.15.575791
http://creativecommons.org/licenses/by-nc/4.0/

