

1 **Chromosome-level genome assembly of the common chiton, *Liolophura japonica***
2 **(Lischke, 1873)**

3 Hong Kong Biodiversity Genomics Consortium

4

5 Project Coordinator and Co-Principal Investigators: Jerome H.L. Hui¹, Ting Fung Chan²,
6 Leo L. Chan³, Siu Gin Cheung⁴, Chi Chiu Cheang⁵, James K.H. Fang⁶, Juan D. Gaitan-
7 Espitia⁷, Stanley C.K. Lau⁸, Yik Hei Sung^{9,10}, Chris K.C. Wong¹¹, Kevin Y.L. Yip^{12,13},
8 Yingying Wei¹⁴

9 DNA extraction, library preparation and sequencing: Franco M.F. Au¹, Wai Lok So¹

10 Genome assembly and gene model prediction: Wenyen Nong¹

11 Gene family annotation: Ming Fung Franco Au¹

12 Samples collectors: Tin Yan Hui^{9,15}, Brian K.H. Leung¹⁵, Gray A. Williams¹⁵

13

14 1. School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory
15 of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese
16 University of Hong Kong, Hong Kong, China

17 2. School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese
18 University of Hong Kong, Hong Kong SAR, China

19 3. State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City
20 University of Hong Kong, Hong Kong SAR, China

21 4. State Key Laboratory of Marine Pollution and Department of Chemistry, City University of
22 Hong Kong, Hong Kong SAR, China

23 5. Department of Science and Environmental Studies, The Education University of Hong
24 Kong, Hong Kong SAR, China

25 6. State Key Laboratory of Marine Pollution, Research Institute for Future Food, and
26 Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong
27 Kong SAR, China

28 7. The Swire Institute of Marine Science and School of Biological Sciences, The University
29 of Hong Kong, Hong Kong SAR, China

30 8. Department of Ocean Science, The Hong Kong University of Science and Technology,
31 Hong Kong SAR, China

32 9. Science Unit, Lingnan University, Hong Kong SAR, China

33 10. School of Allied Health Sciences, University of Suffolk, Ipswich, IP4 1QJ, UK

34 11. Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong
35 Baptist University, Hong Kong SAR, China

36 12. Department of Computer Science and Engineering, The Chinese University of Hong
37 Kong, Hong Kong SAR, China

38 13. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.

39 14. Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China

40 15. The Swire Institute of Marine Science and School of Biological Sciences, The University
41 of Hong Kong, Hong Kong SAR, China

42

43

44 Correspondence on behalf of the consortium: jeromehui@cuhk.edu.hk

45

46

47 **Abstract**

48 Chitons (Polyplacophora) are marine molluscs that can be found worldwide from cold waters
49 to the tropics, and play important ecological roles in the environment. Nevertheless, there
50 remains only two chiton genomes sequenced to date. The chiton *Liolophura japonica*
51 (Lischke, 1873) is one of the most abundant polyplacophorans found throughout East Asia.
52 Our PacBio HiFi reads and Omni-C sequencing data resulted in a high-quality near
53 chromosome-level genome assembly of ~609 Mb with a scaffold N50 length of 37.34 Mb
54 (96.1% BUSCO). A total of 28,233 genes were predicted, including 28,010 protein-coding
55 genes. The repeat content (27.89%) was similar to the other Chitonidae species and
56 approximately three times lower than in the genome of the Hanleyidae chiton. The genomic
57 resources provided in this work will help to expand our understanding of the evolution of
58 molluscs and the ecological adaptation of chitons.

59

60 **Introduction**

61 The Mollusca is the second largest animal phylum after Arthropoda, which divides
62 into two subphyla, including the shell-bearing Conchifera (Monoplacophora, Bivalvia,
63 Gastropoda, Scaphopoda and Cephalopoda) and the shell-lacking Aculifera (Polyplacophora,
64 Caudofoveata and Solenogastres) (Kocot et al 2020; Kocot et al 2011; Smith et al 2011).
65 Within the latter, chitons (Polyplacophora) are thought to be a relatively early diverging
66 group of living molluscs (Sigwart and Sutton, 2007), represented by keystone species that
67 regulate the structure of marine communities in both intertidal and subtidal systems
68 worldwide (Paine, 2002; Martinez-Tejada et al., 2016). These “living fossils” are
69 characterised by a highly evolutionary-conserved and unique type of shell formed by eight
70 articulating aragonite plates that provide protection from environmental threats (Eernisse &
71 Reynolds 1994; Scherholz et al 2013; Connors et al., 2012). This biomineralized armour
72 incorporates an integrated sensory system that includes hundreds of eyes with aragonite-
73 based lenses (Li et al., 2015) acting as a light-sensing adaptation (Chappell et al., 2023).
74 Contrary to other molluscs, our understanding of the Polyplacophora is constrained to only
75 two available genomes (*Acanthopleura granulata* and *Hanleya hanleyi*) (Varney et al
76 2021;2022

77 *Liolophura japonica* (Polyplacophora, Chitonidae) (Lischke 1873) (Figure 1A) is
78 one of the most abundant polyplacophorans found on intertidal rocky reefs of the Asian
79 continent including China, Korea, and Japan. This species diverged from the last common
80 ancestor of *Liophura* at ~184 million years ago during the early Pleistocene period (Choi et
81 al 2021). On the shore, they are distributed over a wide vertical range from the mid littoral
82 zone to the low subtidal zone, where the animals experience periodic fluctuations in
83 environmental conditions with the ebb and flow of the tide (Harper 1996; Harper & Williams
84 2001). Unlike other mobile species inhabiting rocky shores which migrate towards the low
85 shore areas during summer (Lewis 1954; Williams & Morritt 1995), *L. japonica* does not
86 show any significant seasonal migration behaviour and can survive stressful low tide periods
87 presumably by fitting themselves into small refuges via the eight flexible, interlocking plates
88 (Ng & Williams 2006; McMahon 1986; Harper & Williams 2001). In terms of its feeding
89 biology, it is a generalist consumer feeding on a wide range of microalgae and macroalgae
90 (Nishihama et al 1986; Harper 1996), and owing to their high density it is an important grazer
91 in the intertidal zone of East Asia, contributing to the control of on-shore primary
92 productivity (Dethier & Duggins 1984; Nishihama et al 1986).

93

94 **Context**

95 Here we report the assembled genome of the chiton *L. japonica* (Polyplacophora,
96 Chitonidae) (Lischke 1873) (Figure 1A), which is selected as one of the species sequenced by
97 the Hong Kong Biodiversity Genomics Consortium (a.k.a. EarthBioGenome Project Hong
98 Kong), organised by researchers from 8 publicly funded universities in Hong Kong. The *L.*
99 *japonica* genome presented in this study is of high quality and near chromosomal level,
100 which serves as a valuable resource for the understanding of evolutionary biology of
101 polyplacophorans as well as the adaptation of its resilience under oscillating environmental
102 changes in the intertidal zones.

103

104 **Methods**

105 ***Collection and storage of samples, Isolation of high molecular weight genomic DNA,***
106 ***quantification, and qualification***

107 The chiton, *Liolophura japonica*, were collected at the rocky shore in Kau Sai Chau,
108 Hong Kong (22.380 °N, 114.310 °E) during the summer of 2022. They were kept at 35 ppt
109 artificial sea water under room temperature until DNA isolation. High molecular weight
110 (HMW) genomic DNA was isolated from single individual. In general, the tissue was first
111 frozen in liquid nitrogen and ground to powder. DNA extraction was carried out with the
112 sample powder using a Qiagen MagAttract HMW kit (Qiagen Cat. No. 67563) following the
113 manufacturer's protocol with some modifications. In brief, around 1 g of sample was first put
114 in 200 µl 1X PBS and mixed with RNase A, Proteinase K, and Buffer AL provided in the kit.
115 The mixture was allowed to sit at room temperature (~22 °C) for 2 hours. The mixture was
116 gently flicked to allow through mixing of samples and digestion solution. The sample was
117 eluted with 120 µl of elution buffer (PacBio Ref. No. 101-633-500). When DNA was
118 transferred at any time throughout the extraction progress, wide-bore tips were used.
119 Afterwards, the sample was quantified by the Qubit® Fluorometer and Qubit™ dsDNA HS
120 and BR Assay Kits (Invitrogen™ Cat. No. Q32851). Overnight pulse-field gel electrophoresis
121 was used to examine the molecular weight of the isolated DNA, together with three DNA
122 markers (λ-Hind III digest; Takara Cat. No. 3403, DL15,000 DNA Marker; Takara Cat. No.
123 3582A and CHEF DNA Size Standard-8-48 kb Ladder; Cat. No. 170-3707). Purity of sample
124 was examined by the NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer, with
125 A260/A280: ~1.8 and A260/A230: >2.0 as a standard.

126

127 ***DNA shearing, library preparation and sequencing***

128 120 µl of DNA sample with around 8-10 µg DNA was transferred to a g-tube
129 (Covaris Part No. 520079). The sample was then proceeded to 6 passes of centrifugation with
130 2,000 xg of 2 min. The resultant DNA was collected and stored in a 2 mL DNA LoBind®
131 Tube (Eppendorf Cat. No. 022431048) at 4 °C until library preparation. Overnight pulse-field
132 gel electrophoresis was used to examine the molecular weight of the isolated DNA as
133 described in the previous section. The electrophoresis profile was set as follow: 5K as the
134 lower end and 100K as the higher end for the designated molecular weight;
135 Gradient=6.0V/cm; Run time = 15 h:16 min; included angle = 120 °; Int. Sw. Tm = 22 s; Fin.
136 Sw. Tm = 0.53 s; Ramping factor: a = Linear. The gel was run in 1.0% PFC agarose in 0.5X
137 TBE buffer at 14 °C. A SMRTbell library was constructed using the SMRTbell® prep kit 3.0
138 (PacBio Ref. No. 102-141-700), following the manufacturer's protocol. In brief, the genomic

139 DNA was subjected to DNA repair to remove single-stranded overhangs and to repair damage
140 on the DNA backbone during shearing. After repair, both ends of the DNA were polished and
141 tailed with an A-overhang. Ligation of T-overhang SMRTbell adapters was performed at 20
142 °C for 30 min. Afterwards, the SMRTbell library was purified with SMRTbell® cleanup beads
143 (PacBio Ref. No. 102158-300). The concentration and size of the library were examined
144 using the Qubit® Fluorometer and Qubit™ dsDNA HS and BR Assay Kits (Invitrogen™ Cat.
145 No. Q32851), and the pulse-field gel electrophoresis, respectively. A subsequent nuclease
146 treatment step was performed to remove any non-SMRTbell structure in the library mixture.
147 A final size-selection step was carried out to remove the small DNA fragments in the library
148 with 35% AMPure PB beads. The Sequel® II binding kit 3.2 (PacBio Ref. No. 102-194-100)
149 was used for final preparation for sequencing. In brief, Sequel II primer 3.2 and Sequel II
150 DNA polymerase 2.2 were annealed and bound to the SMRTbell library, respectively. The
151 library was loaded at an on-plate concentration of 50-90 pM using the diffusion loading mode.
152 The sequencing was conducted on the Sequel IIe System with an internal control provided in
153 the binding kit. The sequencing was setup and performed in 30-hour movies (with 120 min
154 pre-extension) with the software SMRT Link v11.0 (PacBio). HiFi reads are generated and
155 collected for further analysis. One SMRT cell was used for this sequencing. Details
156 sequencing data can be found in Supplementary Information 1.

157

158 ***Omni-C library preparation and sequencing***

159 An Omni-C library was constructed using the Dovetail® Omni-C® Library
160 Preparation Kit (Dovetail Cat. No. 21005) according to the manufacturer's instructions. In
161 brief, around 20 mg of flash-freezing powdered tissue sample was added into 1 mL 1X PBS,
162 where the genomic DNA was crosslinked with formaldehyde and the fixed DNA was
163 digested with endonuclease DNase I. Afterwards, the concentration and fragment size of the
164 digested sample was checked by the Qubit® Fluorometer and Qubit™ dsDNA HS and BR
165 Assay Kits (Invitrogen™ Cat. No. Q32851), and the TapeStation D5000 HS ScreenTape,
166 respectively. Following the quality examination, both ends of the DNA were polished.
167 Ligation of a biotinylated bridge adaptor was conducted at 22 °C for 30 min, and subsequent
168 proximity ligation between crosslinked DNA fragments was performed at 22 °C for 1 hour.
169 After the ligation events, the DNA was reverse crosslinked, and purified with SPRIselect™
170 Beads (Beckman Coulter Product No. B23317) to remove the biotin that was not internal to

171 the ligated fragments. The Dovetail™ Library Module for Illumina (Dovetail Cat. No. 21004)
172 was used for the end repair and adapter ligation. During this process, the DNA was tailed
173 with an A-overhang, which allowed Illumina-compatible adapters to ligate to the DNA
174 fragments at 20 °C for 15 min. The Omni-C library was then sheared into small fragments
175 with USER Enzyme Mix and purified with SPRIselect™ Beads subsequently. Afterwards,
176 Streptavidin Beads were added to isolate the DNA fragments with internal biotin. Universal
177 and Index PCR Primers from the Dovetail™ Primer Set for Illumina (Dovetail Cat. No.
178 25005) were used to amplify the library. The final size selection step was carried out with
179 SPRIselect™ Beads to pick only the DNA fragments ranging between 350 bp and 1000 bp.
180 At last, the concentration and fragment size of the sequencing library was examined by the
181 Qubit® Fluorometer and Qubit™ dsDNA HS and BR Assay Kits, and the TapeStation D5000
182 HS ScreenTape, respectively. After the quality checking, the library was sequenced on an
183 Illumina HiSeq-PE150 platform. Details sequencing data can be found in Supplementary
184 Information 1.

185

186 ***Transcriptome sequencing***

187 Total RNA and small RNA (<200 nt) from different tissues (i.e. digestive gland, foot,
188 gill, gonad, heart) were isolated using the TRIzol reagent (Invitrogen) and the mirVana™
189 miRNA Isolation Kit (Ambion) following the manufacturer's protocol respectively. The
190 quality of the extracted RNA was checked using NanoDrop™ One/OneC Microvolume UV-
191 Vis Spectrophotometer (Thermo Scientific™ Cat. No. ND-ONE-W) and gel electrophoresis.
192 The qualified transcriptome samples were sent to Novogene Co. Ltd (Hong Kong, China) for
193 polyA selected RNA sequencing library construction using the TruSeq RNA Sample Prep Kit
194 v2 (Illumina Cat. No. RS-122-2001), and 150 bp paired-end (PE) sequencing. Agilent 2100
195 Bioanalyser (Agilent DNA 1000 Reagents) was used to measure the insert size and
196 concentration of the final libraries. Details of the sequencing data are listed in Supplementary
197 Information 1.

198

199 ***Genome assembly, gene model prediction and repeat analysis***

200 *De novo* genome assembly was performed using Hifiasm (Cheng et al 2021).
201 Haplotypic duplications were identified and removed using purge_dups based on the depth of

202 HiFi reads (Guan et al 2020). Proximity ligation data from the Omni-C library were used to
203 scaffold genome assembly by YaHS (Zhou et al., 2022). Transposable elements (TEs) were
204 annotated as previously described (Baril et al 2022), using the automated Earl Grey TE
205 annotation pipeline (version 1.2, <https://github.com/TobyBaril/EarlGrey>). Mitochondrial
206 genome was assembled using MitoHiFi (v2.2, <https://github.com/marcelauliano/MitoHiFi>)
207 (Allio et al 2020). RNA sequencing data were first processed with Trimmomatic (Bolger,
208 Lohse & Usadel 2014). Gene models were then trained and predicted by funannotate using
209 the parameters “--repeats2evm --protein_evidence uniprot_sprot.fasta --genemark_mode ET -
210 --optimize_augustus --organism other --max_intronlen 350000”. Briefly, in the funannotate-
211 train step, the transcripts assembled by Trinity were used to map to the repeat soft-masked
212 genome by minimap2, the Trinity transcript alignments were converted to GFF3 format and
213 used as input to run the PASA alignment in the Launch_PASA_pipeline.pl process to get the
214 PASA models trained by TransDecoder, and then use Kallisto TPM data to select the PASA
215 gene models. The PASA gene models were used to train Augustus in the funannotate-predict
216 step. The gene models from several prediction sources including GeneMark, high-quality
217 Augustus predictions (HiQ), pasa, Augustus, GlimmerHM and snap were passed to Evidence
218 Modeler to generate the gene model annotation files. UTRs were captured in the funannotate-
219 update step using PASA. Briefly, PASA was run twice in funannotate-update step, the
220 transcripts generated in the previous funannotate-train step were mapped to the genome, these
221 data were automatically parsed and used to update the UTR data using PASA comparison
222 method according to PASA built-in process, 10,327 UTRs were updated in this study. The
223 protein-coding genes were searched with BLASTP against the nr and swissprot databases by
224 diamond (v0.9.24) (Buchfink, Xie & Huson, 2015) with parameters “--more-sensitive --
225 eval 1e-3” and mapped by HISAT2 (version 2.1.0) (Kim et al., 2019) with transcriptome
226 reads. 73.9% and 55.8% of the 28,032 protein-coding genes were mapped to the NR and
227 swissprot databases, respectively. The BUSCO of the protein-coding genes was 90.9%,
228 including 83.5% complete and single-copy genes, 7.4% complete and duplicated genes, 5.0%
229 fragmented genes, and 4.1% of BUSCOs genes were missed (metazoa_odb10 with 954 total
230 BUSCOs genes).

231 Transposable elements (TEs) were annotated as previously described (Baril et al
232 2022) using the automated Earl Grey TE annotation pipeline (version 1.2,
233 <https://github.com/TobyBaril/EarlGrey>) with "-r eukarya" to search the initial mask of known
234 elements and other default parameters. Briefly, this pipeline first identified known TEs from

235 Dfam withRBRM (release 3.2) and RepBase (v20181026). De novo TEs were then identified
236 and consensus boundaries extended using an automated BLAST, Extract, Extend process
237 with 5 iterations and 1000 flanking bases added in each round. Redundant sequences were
238 removed from the consensus library before the genome assembly was annotated with the
239 combined known and de novo TE libraries. Annotations were processed to remove overlap
240 and defragment annotations prior to final TE quantification.

241

242 **Results and discussion**

243 A total of 8.77 Gb of HiFi bases of common chiton *Liolophura japonica* were
244 generated with an average HiFi read length of 8,347 bp with 14X data coverage. After
245 scaffolding with ~397 Gb Omni-C data, the assembled genome size was 609.5 Mb, with 632
246 scaffolds and a scaffold N50 of 37.34 Mb, and the complete BUSCO estimation to be 96.1 %
247 (metazoa_odb10) (Figure 1B; Table 1). 13 pseudomolecules of chromosomal length were
248 anchored from Omni-C data (Figure 1C; Table 2), which is close to the karyotype of *L.*
249 *japonica* (2n = 24) (Kawai 1976; Nishikawa & Ishida 1969) and thus indicates the assembly is
250 of near chromosome-level. The assembled *L. japonica* genome has a genome size close to the
251 estimation performed by GenomeScope, which is 609.7 Mb with heterozygosity rate at
252 1.24% (Figure 1D; Supplementary Information 2), and similar to the other published chiton
253 genome (*Acanthopleura granulata*, 606 Mb) (Varney et al 2021) (Table 1). Telomeres can
254 also be found in 7 out of 13 pseudomolecules (Table 3).

255 Total RNA sequencing data from different tissues, including digestive gland, foot,
256 gill, gonad, and heart, was used to assemble the transcriptome of *L. japonica*. The final
257 transcriptome assembly contained 294,118,260 transcripts, with 192,010 Trinity annotated
258 genes (average length of 1,100 bp and N50 length of 2,373 bp). The resultant transcriptomes
259 were used to predict the gene models, and a total of 28,233 gene models were generated with
260 28,010 predicted protein-coding genes, having a mean coding sequence length of 447 bp
261 (Table 1).

262 For the repeat elements, a total repeat content of 27.89% was found in the genome
263 assembly including 14.04% unclassified elements, comparable to the estimated genome
264 repeat length with kmer 21 (27.14%) and the Chitonidae species *Acanthopleura granulata*
265 (23.56%) (Varney et al 2021) (Figure 1E; Table 4; Supplementary Information 2). Among the
266 remaining repeats, LINE is the most abundant (6.70%), followed by SINE elements (3.24%)

267 and DNA (2.21%), whereas LTR, Penelope, rolling circle and other are only present in low
268 proportions (LTR: 0.95%, Penelope: 0.52%, rolling circle: 0.15%, other: 0.08%).

269

270 Conclusion and future perspective

271 The high-quality, near chromosome-level *L. japonica* genome was presented in this
272 study. It provides a useful resource for further insights into the environmental adaptations of
273 *L. japonica* in residing the intertidal zones and for future investigations on the evolutionary
274 biology in polyplacophorans and other molluscs.

275

276 Data validation and quality control

277 To assess the quality of samples in DNA extraction and PacBio library preparation,
278 NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer, Qubit® Fluorometer, and
279 overnight pulse-field gel electrophoresis were performed. Furthermore, the Omni-C library
280 quality was assessed by Qubit® Fluorometer and TapeStation D5000 HS ScreenTape.

281

282 During genome assembly, the Hifiasm output was compared to the NT database via
283 BLAST, which was used as the input for BlobTools (v1.1.1) (Laetsch & Blaxter 2017), where
284 scaffolds recognised as possible contaminations were removed from the assembly
285 (Supplementary Information 3). Moreover, a kmer-based statistical approach was employed
286 to estimate genome heterozygosity, repeat content and genome size from sequencing Omni-C
287 reads using Jellyfish (Marçais & Kingsford 2011) and GenomeScope
288 (<http://qb.cshl.edu/genomescope/genomescope2.0/>) (Ranallo-Benavidez et al 2020) (Figure
289 1D, Supplementary Information 2). In addition, telomeric repeats was screened by using
290 FindTelomeres (<https://github.com/JanaSperschneider/FindTelomeres>). Benchmarking
291 Universal Single-Copy Orthologs (BUSCO, v5.5.0) (Manni et al 2021) was used to assess the
292 completeness of the genome assembly and gene annotation with metazoan dataset
293 (metazoa_odb10).

294

295 Data availability

296 The final assemblies, Omni-C data and PacBio HiFi reads were submitted to NCBI
297 under accession numbers GCA_032854445.1

298 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_032854445.1/). The raw reads
299 generated in this study were deposited to the NCBI database under the BioProject accessions
300 PRJNA973839 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA973839). The genome
301 annotation files were deposited and publicly available in figshare
302 (https://doi.org/10.6084/m9.figshare.24208719).

303

304 **Author's contributions**

305 JHLH, TFC, LLC, SGC, CCC, JKHF, JDG, SCKL, YHS, CKCW, KYLY and YW conceived
306 and supervised the study; MFFA and WLS carried out DNA extraction, library preparation
307 and sequencing; WN performed genome assembly and gene model prediction; MFFA
308 conducted homeobox gene annotation. TYH, BKHL and GAW collected the chiton samples.

309

310 **Funding**

311 This work was funded and supported by the Hong Kong Research Grant Council
312 Collaborative Research Fund C4015-20EF, CUHK Strategic Seed Funding for Collaborative
313 Research Scheme (3133356) and CUHK Group Research Scheme (3110154).

314

315 **References**

316 Adema, C. M., Hillier, L. W., Jones, C. S., Loker, E. S., Knight, M., Minx, P., ... & Wilson, R.
317 K. (2017). Whole genome analysis of a schistosomiasis-transmitting freshwater snail.
318 *Nature communications* **8**(1), 15451.

319 Allio, R., Schomaker-Bastos, A., Romiguier, J., Prosdocimi, F., Nabholz, B., & Delsuc, F.
320 (2020). MitoFinder: Efficient automated large-scale extraction of mitogenomic data in
321 target enrichment phylogenomics. *Molecular Ecology Resources*, **20**(4), 892-905.

322 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
323 alignment search tool. *Journal of molecular biology* **215**(3), 403-410.

324 Baril, T., Imrie, R. M., & Hayward, A. (2022). Earl Grey: a fully automated user-friendly
325 transposable element annotation and analysis pipeline. *bioRxiv*.
326 <https://doi.org/10.1101/2022.06.30.498289>

327 Bolger, A. M., Lohse, M. & Usadel, B. (2004). Trimmomatic: a flexible trimmer for Illumina
328 sequence data. *Bioinformatics* **30**, 2114-2120.

329 Buchfink, B., Xie, C. & Huson, D. H. (2015). Fast and sensitive protein alignment using
330 DIAMOND. *Nat. Methods* **12**, 59-60.

331 Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021). Haplotype-resolved de
332 novo assembly using phased assembly graphs with hifiasm. *Nature methods*, **18**(2),
333 170-175.

334 Choi, E. H., Yeo, M. Y., Kim, G., Park, B., Shin, C. R., Baek, S. Y., & Hwang, U. W. (2021).
335 *Liolophura* species discrimination with geographical distribution patterns and their
336 divergence and expansion history on the northwestern Pacific coast. *Sci. Rep.* **11**(1),
337 17602.

338 Cleary, D. F., Polónia, A. R. M., Huang, Y. M., & Swierts, T. (2020). Compositional variation
339 between high and low prokaryotic diversity coral reef biotopes translates to different
340 predicted metagenomic gene content. *Antonie van Leeuwenhoek* **113**(4), 563-587.

341 Dethier, M. N., & Duggins, D. O. (1984). An" indirect commensalism" between marine
342 herbivores and the importance of competitive hierarchies. *The American Naturalist*
343 **124**(2), 205-219.

344 Eernisse, D. J. & Reynolds, P. D. (1994). Polyplacophora. In: Harrison FW, Kohn AJ, editors.
345 *Microscopic Anatomy of Invertebrates*, Vol. 5. Mollusca 1. New York: Wiley-Liss; p.
346 56–110.

347 Guan, D., McCarthy, S. A., Wood, J., Howe, K., Wang, Y., & Durbin, R. (2020). Identifying
348 and removing haplotypic duplication in primary genome
349 assemblies. *Bioinformatics*, **36**(9), 2896-2898.

350 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis,
351 X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke,
352 A., Rhing, N., di Palma, F., Birren, B. W., Nuxbaum, C., Lindblad-Toh, K., Friedman,
353 N. & Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data
354 without a reference genome. *Nat. Biotechnol.* **29**, 644–652.

355 Harper, K. D. (1996). The ecology of *Acanthopleura japonica* (Mollusca: Polyplacophora): a
356 dominant herbivore on Hong Kong rocky shores.

357 Harper, K. D., & Williams, G. A. (2001). Variation in abundance and distribution of the chiton
358 *Acanthopleura japonica* and associated molluscs on a seasonal, tropical, rocky shore.
359 *Journal of Zoology* **253**(3), 293-300.

360 Kawai, M. (1976). Chromosomes of two species of shore chitons from Japan. *Venus*
361 (*Japanese Journal of Malacology*), 35(3), 143-146.

362 Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. (2019). Graph-based genome
363 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**,
364 907-915.

365 Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., ... &
366 Halanych, K. M. (2011). Phylogenomics reveals deep molluscan relationships. *Nature*
367 **477**(7365), 452-456.

368 Kocot, K. M., Poustka, A. J., Stöger, I., Halanych, K. M., & Schrödl, M. (2020). New data
369 from Monoplacophora and a carefully-curated dataset resolve molluscan relationships.
370 *Scientific Reports* **10**(1), 101.

371 Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular
372 evolutionary genetics analysis across computing platforms. *Molecular biology and*
373 *evolution* **35**(6), 1547.

374 Laetsch, D. R., & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies.
375 *FI1000Res.* **6**(1287), 1287.

376 Lewis, J. R. (1954). Observations on a high-level population of limpets. *The Journal of*
377 *Animal Ecology* 85-100.

378 Li, Y., Nong, W., Baril, T., Yip, H. Y., Swale, T., Hayward, A., ... & Hui, J. H. (2020).
379 Reconstruction of ancient homeobox gene linkages inferred from a new high-quality
380 assembly of the Hong Kong oyster (*Magallana hongkongensis*) genome. *Bmc*
381 *Genomics* **21**(1), 1-17.

382 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. (2021). BUSCO
383 update: novel and streamlined workflows along with broader and deeper phylogenetic
384 coverage for scoring of eukaryotic, prokaryotic, and viral genomes. *Mol. Biol. Evol.* **38**,
385 4647-4654.

386 Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting
387 of occurrences of k-mers. *Bioinformatics* **27**, 764-770.

388 McMahon, R. F. (1986). Aerial respiratory behaviour, desiccation resistance, thermal
389 tolerance and respiratory response to hypoxia of the intertidal chiton *Liolophura*
390 *japonica*. *American Zoologist* **26**, 123.

391 Nishikawa, S., & Ishida, S. (1969). Some aspects on chromosomes of Japanese
392 chitons. *Journal of the Shimonoseki University of Fisheries*, **17**, 83-87.

393 Nishihama, S. Nojima, S., & Kikuchi, T. (1986). Distribution, diet, and activity of the chiton
394 *Liolephura japonica*. *Publ. Amakusa Mar. Biol. Lab., Kyushu Univ.* **8**, 113-123.

395 Ng, J. S., & Williams, G. A. (2006). Intraspecific variation in foraging behaviour: influence of
396 shore height on temporal organization of activity in the chiton *Acanthopleura japonica*.
397 *Marine Ecology Progress Series* **321**, 183-192.

398 Nong, W., Yu, Y., Aase-Remedios, M. E., Xie, Y., So, W. L., Li, Y., ... & Hui, J. H. (2022).
399 Genome of the ramshorn snail *Biomphalaria straminea*—An obligate intermediate host
400 of schistosomiasis. *GigaScience* **11**, giac012.

401 Scherholz, M., Redl, E., Wollesen, T., Todt, C., & Wanninger, A. (2013). Aplacophoran
402 mollusks evolved from ancestors with polyplacophoran-like features. *Current Biology*
403 **23**(21), 2130-2134.

404 Sigwart, J. D., Green, P. A., & Crofts, S. B. (2015). Functional morphology in chitons
405 (Mollusca, Polyplacophora): influences of environment and ocean acidification. *Marine
406 Biology* **162**, 2257-2264.

407 Simakov, O., Marletaz, F., Cho, S. J., Edsinger-Gonzales, E., Havlak, P., Hellsten, U., ... &
408 Rokhsar, D. S. (2013). Insights into bilaterian evolution from three spiralian genomes.
409 *Nature* **493**(7433), 526-531.

410 Stanke, M. Keller, O., Gunduz, I., Hayes, A., Waack, S. & Morgenstern, B. AUGUSTUS: ab
411 initio prediction of alternative transcripts. *Nucleic Acids Res.* **34**, 435–439 (2006).

412 Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C., Rouse, G. W., ... &
413 Dunn, C. W. (2011). Resolving the evolutionary relationships of molluscs with
414 phylogenomic tools. *Nature* **480**(7377), 364-367.

415 Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O. & Borodovsky, M. (2008). Gene
416 prediction in novel fungal genomes using an ab initio algorithm with unsupervised
417 training. *Genome Res.* **18**, 1979-1990.

418 Todt, C., Okusu, A., Schander, C., & Schwabe, E. (2008). Solenogastres, Caudofoveata, and
419 Polyplacophora. *Phylogeny and Evolution of the Mollusca* **4**, 71-96.

420 Varney, R. M., Speiser, D. I., McDougall, C., Degnan, B. M., & Kocot, K. M. (2021). The
421 iron-responsive genome of the chiton *Acanthopleura granulata*. *Genome Biol. Evol.*
422 **13**(1), evaa263.

423 Varney, R. M., Yap-Chiongco, M. K., Mikkelsen, N. T., & Kocot, K. M. (2022). Genome of
424 the lepidopleurid chiton *Hanleya hanleyi* (Mollusca,
425 Polyplacophora). *F1000Research*, 11.

426 Williams, G. A., & Morritt, D. (1995). Habitat partitioning and thermal tolerance in a tropical
427 limpet, *Cellana grata*. *Marine Ecology Progress Series* **124**, 89-103.

428 Zhou, C., McCarthy, S. A., & Durbin, R. (2023). YaHS: yet another Hi-C scaffolding tool.
429 *Bioinformatics*, 39(1), 1-3.

430 Zhong, Y. F., Butts, T., & Holland, P. W. (2008). HomeoDB: a database of homeobox gene
431 diversity. *Evolution & development* **10**(5), 516-518.

432 Zhong, Y. F., & Holland, P. W. (2011). HomeoDB2: functional expansion of a comparative
433 homeobox gene database for evolutionary developmental biology. *Evolution &*
434 *development* **13**(6), 567-568.

435

436 **Table and figure legends**

437 **Table 1.** Summary of genome statistics of *Liolophura japonica*, *Acanthopleura granulata*
438 (Varney et al 2021) and *Hanleya hanleyi* (Varney et al 2022).

439 **Table 2.** Scaffold information of 13 pseudomolecules.

440 **Table 3.** List of telomeric repeats found in 9 scaffolds.

441 **Table 4.** Catalogue of repeat elements in the *Liolophura japonica* genome.

442

443 **Figure 1.** A) Picture of *Liophura japonica*; B) Statistics of the genome assembly generated
444 in this study; C) Hi-C contact map of the assembly visualised using Juicebox v1.11.08
445 (details can be found in Supplementary Table 6); D) Genomescope report with k-mer = 21; E)
446 Repetitive elements distribution.

447

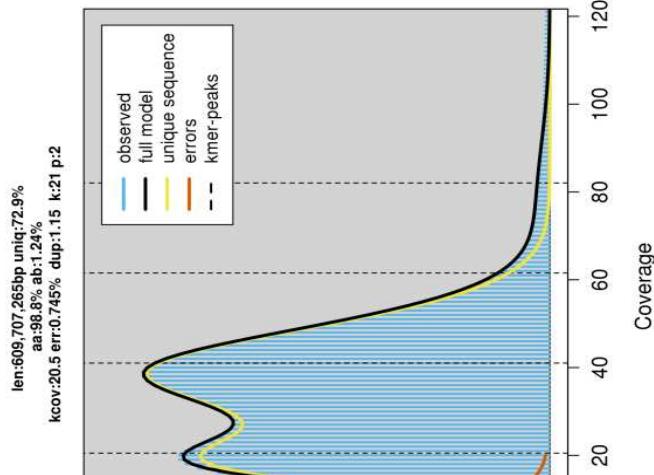
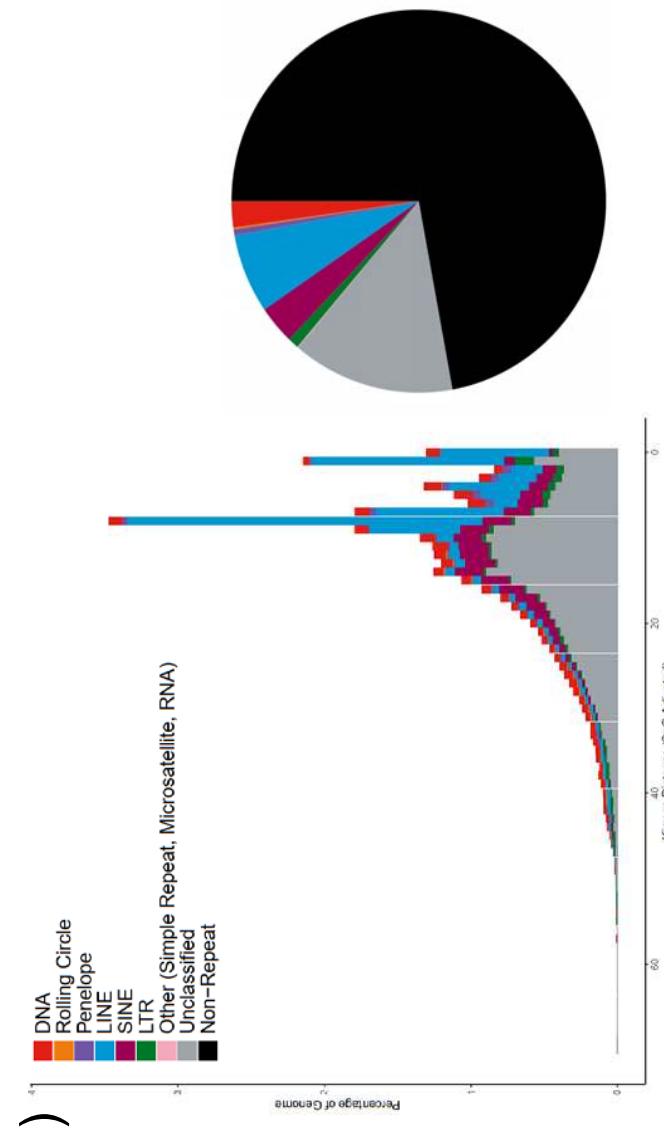
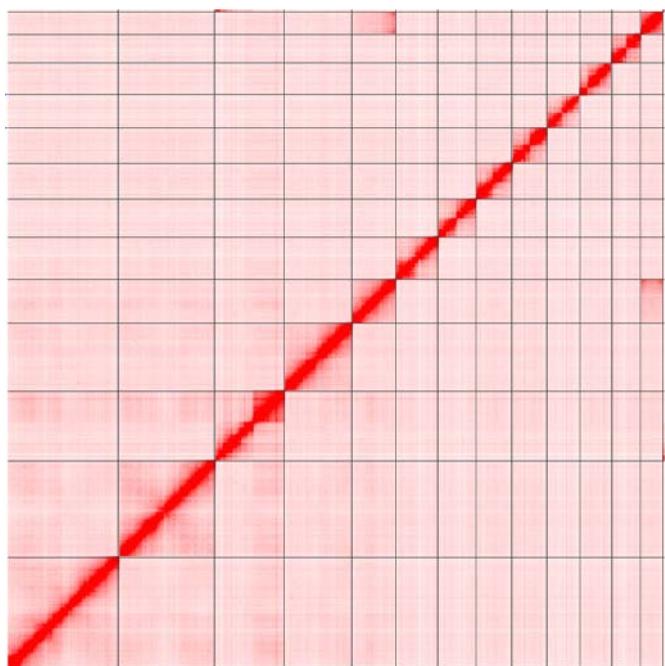
448 **Supplementary Information 1.** Details of genome and transcriptome sequencing data.

449 **Supplementary Information 2.** GenomeScope statistics report at K-mer = 21.

450 **Supplementary Information 3.** Genome assembly QC and contaminant/cobiont detection
451 for the *Liophura japonica*.

452

453




B)

	<i>Liolophura japonica</i>
Accession number	GCA_032854445.1
total_length	609,495,693
number	636
mean_length	964,392
N_count	0.0364%
Gaps	1,110
N50	37,343,639
N50n	5
BUSCOs	96.40%
HiFi (X)	14
HiFi Reads	1,050,568
HiFi Bases	8,769,373,110
HiFi Ave_len	8,347
Gene models	28,233

B)

C)

