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Abstract 23 
Staying engaged with a task is necessary to maintain goal-directed behaviors. Although engagement 24 
varies with the specific task at hand it also exhibits continuous, intrinsic fluctuations widely. This 25 
intrinsic component of engagement is difficult to isolate behaviorally or neurally in controlled 26 
experiments with humans. By contrast, animals spontaneously move between periods of complete task 27 
engagement and disengagement, even in experimental settings. We, therefore, looked at behavior in 28 
macaques in a series of four tasks while recording fMRI signals. We identified consistent 29 
autocorrelation in task disengagement.  This made it possible to build models capturing task-30 
independent engagement and to link it to neural activity. Across all tasks, we identified common 31 
patterns of neural activity linked to impending task disengagement in mid-cingulate gyrus.  By contrast, 32 
activity centered in perigenual anterior cingulate cortex (pgACC) was associated with maintenance of 33 
task performance. Importantly, we were able to carefully control for task-specific factors such as the 34 
reward history, choice value, and other motivational effects, such as response vigor, as indexed by 35 
response time, when identifying neural activity associated with task engagement. Moreover, we showed 36 
pgACC activity had a causal link to task engagement; in one of our tasks, transcranial ultrasound 37 
stimulation of pgACC, but not of control regions, changed task engagement/disengagement patterns.  38 
 39 
 40 
Introduction 41 

Everyone experiences fluctuations in how engaged they are with tasks that need doing throughout the 42 
day. While some of our motivation is clearly linked to specific tasks and incentives, we also find 43 
ourselves from time to time either demotivated or full of vigor regardless of the task at hand. 44 
Furthermore, while there might be extended periods of disengagement, there are also brief collapses in 45 
task engagement (for example, while checking one9s phone). While we also experience fluctuating 46 
levels of task engagement,  in some people, periods of disengagement are especially prominent; apathy 47 
3 sustained periods of task disengagement 3 is a core, transdiagnostic feature of psychological and 48 

neurological illnesses 1,2. 49 

Such fluctuations occur even though engagement must be sustained across extended periods of time for 50 
many goal-directed behaviors to succeed. Additionally, when performing a task, it is important to stay 51 
engaged independently of the specifics of the task at hand.  Important insights into related processes 52 
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have been gained by investigating motivation changes occurring in response to specific external factors 53 
such as reward incentives or other feedback 3. However, task engagement is also subject to intrinsic 54 
fluctuation and must be maintained despite adverse external factors. Likewise, sometimes engagement 55 
is lost despite the presence of incentives. It has been proposed that maintaining engagement requires 56 
cognitive resources that are depleted by effort and that can be restored by taking breaks 4.  57 

Changes in response vigor 5 and speed 6313 occur as motivation waxes and wanes. However, variation 58 
in response vigor and speed occur only if a person decides to maintain task engagement. Therefore, 59 
deciding whether or not to engage in the task at all or to pause and disengage completely is a separate 60 
process to the one determining response speed and vigor for any given response. Similarly, task 61 
engagement differs from attention lapses as indexed by individual erroneous responses that have also 62 
previously been studied in the context of motivation 14. 63 

In the present study, we focus on general mechanisms of task engagement and disengagement across a 64 
series of four different tasks while recording brain activity using fMRI. In this way, we can identify 65 
neural activity changes in moments when an agent spontaneously and completely disengages from a 66 
task independently of the concurrent specific, external task demands. We used macaque monkeys to 67 
examine these issues for several reasons. The social and other demands of human neuroimaging 68 
experiments usually ensure that human participants exhibit continuous task execution; their 69 
performance scores may fluctuate but human participants rarely give up and spontaneously stop 70 
altogether in the same manner that they do frequently when outside the laboratory. Macaques, however, 71 
while engaged for the majority of the experiments, repeatedly and reproducibly both disengage and re-72 
engage for periods of time during daily testing in the laboratory, even when the tasks are relatively 73 
simple and are performed proficiently15,16. While this is generally a great nuisance for the researchers, 74 
for our study it is fortunate as it allowed us to construct and fit models to these disengagements and link 75 
them to their neural substrates. Using data from four diverse decision-making tasks allows us to find 76 
behavioral and neural signatures that are task-general (see Supplementary Text 1 for descriptions of the 77 
four tasks). Importantly, these disengagements are not part of the task design but occur spontaneously 78 
despite the reward incentives provided by the tasks. Moreover, by controlling for variation in extrinsic 79 
experimental factors, such as reward level, we can capture engagement and disengagement due to task-80 
independent factors. Intrinsic motivation has previously been linked to satiation (for example, 81 
cumulative reward, 17 or time spent on task, e.g. 18). By also controlling for these factors, we aim to 82 
capture the intrinsically fluctuating aspect of task engagement and disengagement that occurs regardless 83 

of task identity19.  84 

While task engagement is continually fluctuating during extended activity 20 disengagements are all or 85 
none events. For example, one might feel more or less motivated to do a chore throughout the day 3 86 
which we refer to here as the level of general task engagement.  In addition there are periods of complete 87 
cessation and disengagement from the task. We examined neural activity related to both slow 88 
fluctuations in engagements and sudden disengagements. To do this we used a new approach that 89 
considers the distribution of tasks engagements and disengagements to estimate continual variation in 90 
a general state of task engagement. Such a state tracks the current level of engagement above and 91 
beyond the current trial. This allowed us to identify events when animals suddenly and 8surprisingly9 92 
disengage even though they are in an otherwise engaged state. By contrast, we can also identify 93 
8expected9 disengagements that occur when we estimate that the animal is in a state of low general 94 
engagement. This allowed us to examine the neural activity linked to general task engagement,  95 
expected task disengagements, and surprising task disengagements. We argue that such model-derived 96 
estimates capture aspects of task engagement not previously reported in the literature: By linking 97 
engagement both to trial and state activity, and estimating its task-independent component as our model 98 
is based on unexplained residual variance, we are able to parse aspects of task engagement not 99 
previously studied. Importantly, we contrasted these novel, model-derived estimates of engagement 100 
with other distinct aspects of motivation such as changes in response vigor indexed by reaction time. 101 
This made it possible to dissociate signals leading to task engagement or disengagement from neural 102 
activity related to variation in motivation to execute a specific action quickly.  103 
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By using a whole brain imaging technique such as fMRI, we can seek neural correlates of engagement 104 
throughout the brain during all four tasks. This is important as the neural circuits linked to task 105 
engagement/disengagement are not well defined.  However, we note that areas of anterior cingulate 106 
cortex (ACC) and adjacent medial frontal cortex have been linked to intrinsically motivated behaviors 107 
21, mood fluctuation 20, and neural activity has been reported to change in some related situations 15,22, 108 

particularly when driven by endogenous factors such as satiety 23.  109 

Our fMRI analysis identified one important area of activity change in perigenual ACC (pgACC) that 110 
was prominent across all four tasks. We therefore used neurostimulation data in which activity in this 111 
region was manipulated to test its causal importance for task engagement: Specifically, one of the 112 
datasets used in our analysis had stimulated pgACC using transcranial ultrasound stimulation (TUS), 113 
and thus allowed us to compare the effect of pgACC stimulation against other control regions.  Not only 114 
did we examine the impact of TUS on pgACC and compare it to sham TUS but in addition we also 115 
examined the impact of TUS to the basal forebrain (BF). BF TUS leads to changes in motivation-related 116 
influences on action timing  13 and so it provides an especially strong comparison with pgACC TUS. In 117 
addition, we examined the impact of TUS of an additional control region in the parietal operculum 118 
(POp) 3 a region in which task-related and task-initiation related activity had not been observed 3 to 119 
control for general cortical stimulation effects. 120 

 121 
Results 122 
 123 
We combined data from four different reward-based decision-making tasks 13,24327. The tasks covered a 124 
range of different paradigms: simple stimulus-response mapping, incentivized exploration/exploitation, 125 
incentivized delayed responses, and novel value inference (see Supplementary Text 1 for descriptions 126 
of the four tasks). In each case, the animals occasionally disengaged from the task and stopped 127 
responding before re-engaging after some time. For the purpose of our analysis, we define 128 
disengagements as responding after 3 s or later, or not responding at all during a trial, i.e. the trial <timed 129 
out= before a response was made. However, for one of our tasks that incentivized late responses 13,27, 130 
we only counted trials as disengaged where the animal did not respond at all (see Fig S1 for details for 131 
all tasks). We binarized trials into ones where the animals are engaged or disengaged (Fig 1A). This 132 
definition of disengagements conceptualizes behavior as all or none events which we can contrast with 133 
a continuous measure of response vigor i.e. when the animals remain on task but respond more or less 134 
rapidly (see below). While other definitions of disengagement might be possible (e.g. by looking at 135 
decision errors), those would have not been applicable in our tasks due to the large variations in 136 
difficulty across task and because errors can occur during learning as well as when there is 137 
disengagement tasks. By applying our response time-based definition, we can consistently classify 138 
disengagements across a range of diverse tasks and capture the intrinsic, task-independent nature of 139 
these events. Our threshold of 3 s was chosen to ensure that on trials that were classified as 140 
disengagements, the animals made the decision to disengage rather than responding sluggishly while 141 
still being on-task. Overall, we started with 17 datasets in 13 animals but excluded six datasets from 142 
five animals that disengaged in less than 5% of trials on average across sessions (Fig S1). Two animals 143 
that provided in one task 24 also provided data in two other tasks 13,27, which left eleven datasets from 144 
nine unique animals (see Fig S1 for details). 145 
 146 
Our aim was to use disengagements to construct variables that, on a trial-by-trial basis, capture different 147 
aspects of task engagement that are independent of the specific task identity. We then used these 148 
variables in an fMRI analysis to identify their neural correlates. 149 
 150 
To contrast task engagement and disengagement with variation in motivation related to response vigor 151 
and speed, we repeated the same analysis using response times (RTs). For this control analysis we only 152 
used data on engaged trials (we did not analyze the trials classified as disengagements in which, by 153 
definition, no response or delayed response is made; see Fig S1). For this analysis, we used data from 154 
13 (unique) animals because we now had sufficient data from more animals to include in the analysis.  155 
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However, we avoided considering data from one of the previous tasks 13,27 because the animals 156 
performing it were sometimes incentivized to respond late as part of the task design and thus RTs do 157 
not provide the simple measure of vigor in the same way as in other tasks.  158 
 159 
 160 
Behavioral results 161 
 162 
For each task, we constructed separate regression models that accounted for the extrinsic variables that 163 
could be measured in each experiment by the investigators. These models included regressors such as 164 
the task stimuli encountered, the responses made, the rewards animals received, and the trial number 165 
(see Methods for the specific models for each task). Using these models, we can account for variance 166 
in task-engagement and disengagement that is due to extrinsic factors. These regressors are, of course, 167 
the ones that are usually the focus of any analysis of a neural data set.  However, by regressing out the 168 
variance due to all extrinsic factors (i.e. taking the residual error of the regression models) we are left 169 
with the components of task-engagement and disengagement that are due to what is normally considered 170 
residual fluctuations in behavior that typically receive little investigative attention (Fig 1B). However, 171 
these residuals also capture task engagement and disengagement that is dependent on intrinsic variation. 172 
As such, they capture the intrinsic level of current engagement (CE; the distributions of CE for each 173 
task are shown in supplementary Fig. S2). Using the same analysis approach across tasks is essential 174 
for generalizability but also means we had to find a definition of disengagement that works across 175 
studies. Thus, while there might be some adjustment in the behavioral definition that could be made if 176 
we had only analyzed a single task, we employed an approach with the merit of general applicability; 177 
while we might have failed to detect task-specific motivational factors, the approach achieves the aim 178 
of identifying neural processes common to many situations. 179 
 180 
 181 

 182 
Figure 1. Behavioral results and fMRI design. (A) We binarized animal9s RTs into trials in which they 183 
were engaged or disengaged. On disengaged trials the animals took longer than 3 s to respond, or did 184 
not respond at all (i.e. the trial timed out). Fig S1 shows the individual RT distributions for each animal. 185 
(B) To control for the influence on motivation exerted by extrinsic task event-related factors, we 186 
constructed separate logistic regression models for each of our four tasks. Each model contained task-187 
specific regressors (see Methods for details) as well as regressors coding for the previous five 188 
rewards/non-rewards the animals received at the end of each trial, the current cumulative reward, and 189 
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the trial number. By regressing out the effects these variables have on engagement, we were left with 190 
the residuals.  These residuals contain the fluctuations in task engagement that are intrinsic as opposed 191 
to those that are due to extrinsic factors related to task structure and task events. We refer to this index 192 
as the intrinsic level of current engagement (CE). (C) (Left) We find a persistent autocorrelation of the 193 
residual fluctuations suggesting that intrinsic CE 3 engagements and disengagements 3 are temporally 194 
clustered. Shaded error represents the standard error of the mean across data sets. The average 195 
correlations for each lag from 2 to 10 are: 0.040, 0.032, 0.028, 0.022, 0.010, 0.014, 0.010, 0.009, and -196 
0.002. (Right) By fitting exponential kernels to the index of the intrinsic CE (the residual fluctuations) 197 
separately for each of the four tasks, we can also capture this autocorrelation. (D) The same kernels can 198 
then be used to smooth the estimate of the intrinsic CE (orange line, shown for an example session) on 199 
each trial in each task.  As a result, an estimate is obtained of the slowly fluctuating general engagement 200 
(GE) of an animal that can be made available for each trial (purple line, shown for an example session). 201 
(E) To capture effects of task engagement in a similar manner in our neural analyses of all four tasks, 202 
we time-locked to two events in each trial that all our four tasks have in common: the end of the reward 203 
delivery in the previous trial, and the onset of the decision-prompt in the current trial. The rationale for 204 
looking at both of these time-points is that it is not a priori obvious when, during a trial, task 205 
engagement/disengagement effects should be most prominent; arguably engagement might be expected 206 
to produce sustained activity patterns that are observable at both time-points. (F) Even after their 207 
hemodynamic convolution with the relatively fast hemodynamic response function observed in 208 
macaques 28,29, there is limited correlation between these regressors in all four tasks. Note also that time-209 
shifted regressors (similar regressors but time-locked to previous-trial-end or current trial decision-210 
prompt) are relatively uncorrelated because the task-designs ensured sufficient time intervals between 211 
the end of one trial and the beginning of the next in all four tasks. Thus, the regressors at the two time 212 
points can provide independent indicators of task engagement-related activity 213 
 214 
If engagement is indeed drifting across trials, then we should be able to observe clustering in the 215 
residuals. To this end, we examined its autocorrelation. If engagement and disengagement were solely 216 
determined by extrinsic task features, then the residuals would not be autocorrelated over trials. 217 
However, in our data we did indeed find persistent autocorrelation in the residuals thus providing 218 
evidence for CE (Fig.1C left; significant for lags < 10 at p < 0.05 with Bonferroni correction; we exclude 219 
lag = 1 because in some tasks repeated disengagements were impossible, as the experiment waited for 220 
the animal to re-engage before continuing). In other words, periods of engagement and disengagement 221 
are temporally clustered. We confirmed that this is not an artefact of the regression models we used by 222 
randomly shuffling which trials are classified as engaged or disengaged and repeating this analysis 1000 223 
times. Here, we did not find any autocorrelation of the residual over trials.  224 
 225 
We can use the autocorrelation of CE to estimate the level of task engagement for each animal on each 226 
trial. We refer to this variable as general engagement (GE). While CE corresponds to the residual 227 
fluctuations in Fig.1B, GE is a more general and slowly varying estimate of task engagement that is a 228 
weighted average of CE on the current but also on surrounding trials: if the animal disengages on 229 
previous/future trials, we can assume it is also, to some degree, in a disengaged state currently. 230 
Conversely, if it is engaged on these trials, we can assume it is also, to some degree, in an engaged state 231 
currently.  To this end, we fit exponential kernels to the residual fluctuations (Fig 1C right shows the 232 
fitted kernel for each of the four tasks). These kernels capture the extent to which task engagement on 233 
a trial, as indexed by the residual fluctuations, is related to task engagement on preceding and following 234 
trials. Smoothing the residual fluctuations (CE; orange line in Fig.1D; shown after normalizing) by 235 
these kernels allows us to obtain an estimate of a continuously varying GE (blue line in Fig.1D; shown 236 
after normalizing) on each trial. We construct GE this way to obtain an interpretable regressor we can 237 
use in our fMRI analyses. While CE and the disengage choices are closely (inversely) related, CE values 238 
are impacted by the degree of predictability of a specific disengagement choice (black dots in Fig.1D 239 
vs orange line in Fig.1D), and are thus also useful interpretable regressor for our fMRI analyses.  240 
 241 
 242 
We can also combine the estimates of CE and GE to obtain two derived quantities that are used in first 243 
stages of the neural analysis as contrasts. First, we can average the current CE index with the 244 
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continuously varying GE index to obtain an estimate of a third variable we refer to as overall 245 
engagement (OE). OE provides an overarching estimate of engagement on any trial as it uses both the 246 
engagement on the current trial (as given by CE) and of the surrounding trials (as given by GE) to index 247 
engagement, and so it is a useful starting point for neural analyses; as explained in more detail below, 248 
we can first identify areas in which activity is related to OE and then we can examine whether the 249 
activity tracks CE, the more slowly varying GE, or both quantities. Thus, CE and GE can also be thought 250 
of as the separated trial and state components of an overarching model that indexes OE. Second, we can 251 
subtract the model-derived estimate of GE from the CE level to identify engagement shifts (ES) when 252 
an animal9s task engagement suddenly collapses and there is abrupt disengagement; the animal may be 253 
disengaged on the current trial even though the events that normally surround a disengagement were 254 
not observed. This allows us to examine CE when it is unexpected given the current level of GE; i.e. it 255 
allows us to identify trials with low engagement in an otherwise highly engaged state. Importantly, for 256 
the purpose of our neural analysis, both ES and OE can be constructed by subtracting/adding CE and 257 
GE on the contrast-level within a single general linear model. 258 
 259 
We repeated an analogous, control analysis of RTs 3 an index of motivational change in relation to 260 
response vigor as opposed to task engagement.  However, this analysis was performed on engaged trials 261 
only; responses were only made, and RTs were only measurable on engage trials (Fig S3A-C). We 262 
again find that, after having regressed out the variance in RTs due to task-manipulations, the error in 263 
RT estimates is autocorrelated over trials (significant for lags < 8 at p < 0.05 with Bonferroni 264 
correction). We refer to these residual fluctuations as trial vigor. By fitting exponential kernels to trial 265 
vigor, we again obtain estimates of a general state vigor on each trial. The GE and general state vigor 266 
estimates are analogous state-related variables but they are only weakly correlated (Fig S3D) and thus 267 
reflect different potential motivational processes. Just as for ES and OE, we can also consider individual 268 
trial vigor (as explained above) and slow fluctuations in trial vigor 3  state vigor 3 to obtain analogous  269 
contrasts relating to response speed as opposed to task engagement to use in our neural analysis. Once 270 
again these vigor-related variables were uncorrelated with our key task engagement/disengagement 271 
related variables of interest.  272 
 273 
 274 
fMRI results 275 
 276 
As in the behavioral analyses, we constructed a separate neural regression model for each task that 277 
captured all aspects of the extrinsic task variables (see Methods for the specific models). In addition to 278 
these task-specific models, we also included regressors that captured the task engagement factors that 279 
we identified in our behavioral analysis (Fig.1C), and regressors accounting for body and limb motion 280 
during task-performance and low-quality volumes (see Methods for details). Because the neural activity 281 
we are interested in is related to overarching engagement that is not necessarily associated with any one 282 
event that occurred during the task, we time-locked our regressors to two separate points within each 283 
trial that all four tasks had in common: (1) we time-locked to the decision-prompt on each trial when 284 
monkeys were asked to make a choice, and (2) we time-locked to the end of the outcome-period of the 285 
previous trial when animals either received a reward or no reward for their previous choice 30.  This 286 
ensured we had a measure of activity when task-specific performance and learning in a trial had been 287 
concluded and potential preparatory activity for the coming trial was beginning while also ensuring that 288 
the measurement was taken in the same way across all tasks; the same two time points could be defined 289 
in an identical manner for all four tasks. Moreover, the previous-trial-end and the following decision-290 
prompt are far enough apart in time to ensure that regressors time-locked to each event are relatively 291 
uncorrelated even after convolution with the macaque9s fast hemodynamic response function 28,29 (Fig 292 
1F). We hypothesized that general task enagement-related activity 3 our signals of interest 3 should be 293 
found at both time points. In our analysis we, therefore, included regressors for both CE and GE at both 294 
time-points, and use contrasts to also estimate OE and ES. Moreover, we also included our analogous 295 
control estimates of the trial vigor level and the state vigor at both of the same time-points (Fig S3). 296 
Importantly, as we can only estimate trial vigor and state vigor on engaged trials, these regressors are 297 
zeroed out on disengaged trials. 298 
 299 
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We combined the results of these session-level regressions separately for each data set per animal using 300 
fixed effects. In a final step, we combined the data from all data sets on a third level using random 301 
effects. This allows us to examine the neural correlates of task-independent engagement across tasks 302 
and animals. To examine the effects of engagement/disengagement we used eleven data sets from nine 303 
animals across four tasks while controlling for response vigor.  Statistical significance was determined 304 
using a standard cluster-based thresholding criteria of z > 2.3 and p < 0.05 31. Significant clusters for 305 
our contrasts of interest are shown as white outlines in Fig 2. Additionally, we also show the non-306 
cluster-corrected z-statistics at a lower threshold of z>1.5 in Fig 2 to give a more complete picture of 307 
the results. Moreover, in the supplementary analyses we report analyses for vigor-related effects using 308 
a larger sample of data from thirteen animals across three tasks, as discussed above. 309 
 310 
When we examined neural activity related to CE (Fig 2A), we saw a large overlap between activity at 311 
previous-trial-end (Fig 2A left) and decision-prompt (Fig 2A middle), with activity at decision-prompt 312 
being slightly more lateral. Combining these estimates allowed us to identify regions that show activity 313 
both at previous-trial-end and decision-prompt (Fig 2A right), which suggests that it is sustained 314 
throughout this task period and not linked to any particular task event (Fig 1E). While there was 315 
widespread activity in the brain, within frontal cortex, pgACC (area 32), ventromedial PFC (areas 25 316 
and 14), and the larger orbitofrontal network (areas 12 and 13) were particularly active. For a full table 317 
of cluster locations and descriptions see Table S1. 318 
 319 
Similarly, when we examined neural activity related to GE (Fig 2B), we again saw a large overlap 320 
between activity at previous-trial-end (Fig 2B left) and decision-prompt (Fig 2B middle). Combining 321 
both time-points again yielded regions that show sustained activity (Fig 2B right). While the activity 322 
again included pgACC (area 32) prominently, there was somewhat less ventromedial PFC and OFC 323 
activity and instead more activity in anterior supracallosal ACC gyrus (gACC; area 24) as well anterior 324 
dorsal ACC sulcus. Moreover, we found a significant cluster in frontopolar cortex (area 10o). For a full 325 
table of cluster locations and descriptions see Table S2. 326 
 327 
To identify regions that were active when the animals had a high overall task engagement level, we 328 
combined our estimates of CE and GE into OE (Fig 2C). At the end of the previous trial, activity was 329 
prominent in pgACC (area 32) and extended caudally into  gACC (area 24) and into dorsal ACC sulcus 330 
(rostral cingulate zone) (Fig 2C left). At decision-prompt, activity was again seen in pgACC (area 32), 331 
but otherwise more orbitofrontal (area 47/12o) (Fig 2C middle). When combining activity at previous-332 
trial-end and decision-prompt to find areas that were active throughout the whole task-period and across 333 
CE and GE, we observed a prominent and extensive area centered on pgACC (area 32), but extending 334 
into adjacent dorsal ACC sulcus (dACC; note that this area is sometimes refer to as mid-cingulate cortex 335 
or rostral cingulate zone) and subgenual ACC (sgACC; area 25) and also, albeit to a more limited extent 336 
in orbitofrontal cortex (OFC) in area 13 and the sub-region bordering ventrolateral prefrontal cortex 3 337 
47/12o 3 , and striatum (Fig 2C right). For a full table of cluster locations and descriptions see Table 338 
S3. 339 
 340 
We also looked for effects of ES, i.e. the difference between GE and CE (Fig 2D). Such activity was 341 
prominent when animals disengaged on the current trial while otherwise having been in an engaged 342 
state and likely to soon return again to an engaged state. In other words, the analysis identifies 343 
8surprising9 disengagements, where the disengagement is not preceded or followed by other 344 
disengagements; or conversely engagement in a disengaged state. It thus identifies trials where our GE 345 
and CE indexes are opposed. Again, similar regions were active when time-locking to previous-trial-346 
end (Fig 2D left) and decision-prompt (Fig 2D middle). When we time-locked to both previous-trial-347 
end and decision-prompt, activity was prominent throughout mid supracallosal cingulate gyrus (area 348 
24) (Fig 2D right) extending into poster cingulate cortex and the precunous. For a full table of cluster 349 
locations and descriptions see Table S4. 350 
 351 
Overall, while we saw some small differences between the focus of activation between previous trial 352 
end and decision prompt, none of the frontal effects were statistically different in a comparison between 353 
the two. All statistically significant differences we found were in more posterior parts of the brain, 354 
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suggesting that the frontal circuit activity carrying general task engagement information is particularly 355 
sustained. 356 
 357 

 358 
Figure 2. Neural activity associated with engagement and disengagement. Whole-brain activity is 359 
shown for different contrasts (top to bottom), time-locked to different events (left to right). Activity 360 
with z>1.5 is shown superimposed, with white outlines indicating significant clusters at z>2.3.  (A) For 361 
CE we observed activity in regions spanning pgACC (area 32), sgACC (area 25), and OFC (areas 12 362 
and 13), both at previous-trial-end and decision-prompt and when looking at both time-points 363 
combined. (B) For GE we observe activity throughout anterior and mid cingulate gyrus (including 364 
pgACC and supracallosal gACC), and frontopolar cortex. (C) For OE we observed activation most 365 
prominently in pgACC but extending into adjacent sgACC and dACC, and also OFC areas 13 and 366 
47/12o when animals are engaging with the current trial while also being in an overall engaged state. 367 
(D) For ES, we observed activity in the supracallosal cingulate cortex (including supracallosal gACC) 368 
when animals, surprisingly, disengaged from the trial despite otherwise being in an engaged state. 369 
 370 
To further examine the factors driving engagement on the whole-brain level, we focused on activity 371 
that was present both at previous-trial-end and decision prompt (Fig 2 right column) as this activity is 372 
most likely due to sustained task engagement. There we focused on OE-related and ES-related activity 373 
(Fig 2 dotted lines) and extracted the BOLD time course from regions of interest (ROIs) we placed in 374 
grey matter within the areas of functional activity. Specifically, we defined the ROIs as the overlap 375 
between functional activity and anatomically defined regions (pgACC, OFC, striatum, and gACC)32, 376 
and looked separately at the effects of CE and GE in the timecourse.  377 
 378 
We observed that activity related to CE and GE appears similar in pgACC, OFC and the striatum (Fig 379 
3A-C middle rows). Activity related to GE extended over a window of approximately 30s 3 380 
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approximately 15s before and 15s after the current trial. In contrast, activity related to current CE level 381 
was prominent before and on the trial itself.  However, activity tracking both the more phasic CE level 382 
and the more tonic GE was observed across all areas in which OE effects were observed, namely pgACC 383 
(area 32), OFC (area 13), and striatum (Fig 3A-C). Finally, to confirm that OE effects in each region 384 
were not driven by activity recorded just in one task, we extracted the t-statistics in these ROIs from the 385 
whole-brain analysis and examined them for differences by task (Fig 3A-C bottom rows). Effects in the 386 
same direction were present in all four tasks and ROIs, although they were especially prominent in a 387 
task that required animals to make novel decisions 24.  388 
 389 

 390 
Figure 3. CE and GE timecourses in ROIs. We extracted timecourses from ROIs placed in anatomically 391 
defined regions within our significant OE and ES clusters for activity both at previous-trial-end and 392 
decision-prompt. Significant clusters are shown in red with ROIs shown in light red (top). We then 393 
visualized the CE and GE timecourses in these regions time-locked to decision-prompt (middle rows). 394 
Shaded error bars represent standard errors of the mean across sessions. We also extracted the t-statistics 395 
associated with CE and GE from our whole-brain analysis in the same ROIs to visualize effects for each 396 
task separately (bottom row). Bars represent task-means and dots represent individual animal means. 397 
(A-C) Extracted CE timecourses from pgACC, OFC, and striatum show sustained activity before and 398 
during the trial. By contrast, GE timecourses show sustained activity both before and after the trial. 399 
Effects are consistent across all four tasks (bottom). (D) Extracted CE timecourses from supracallosal 400 
gACC exhibit decreases during and after the current trial when animals disengaged, while GE 401 
timecourses are sustained increases beginning many seconds before and continuing many seconds after 402 
the current trial (i.e. engaged). Effects are consistent across three of the four tasks, with CE having the 403 
opposite (positive) sign in the fourth task (bottom). 404 
 405 
Extracting the timecourse from the gACC ROI placed within the significant ES cluster (Fig 3D) 406 
demonstrated that there was both a decrease in activity that was related to CE 3 an effect that began 407 
shortly before trial onset but which was then sustained for some time afterwards 3 and an increase in 408 
activity related to GE (Fig 3D middle).  To confirm that the effect was not driven by any one particular 409 
task, we extracted the t-statistics in the ROIs identified by the whole-brain analysis and examined them 410 
by task. We found broadly similar effects in three tasks although the current CE effect was different in 411 
the fourth task (Fig 3E). The ES contrast also clearly revealed activity in posterior cingulate cortex and 412 
precuneus, a region that has previously been implicated in decisions to disengage with foraging 33. 413 
 414 
Finally, we note that these results were specific to task engagement/disengagement as opposed to 415 
response vigor: when we looked at the latter, we were unable to see similar patterns of neural activity 416 
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to those shown in figures 2 and 3 (See Figs. S4-S5 for vigor results). If anything, vigor activity was 417 
weaker overall and more transiently related to either decision prompt or after end trial. However, we 418 
found a small cluster of activity related to a future relative increase in vigor (Fig S5). 419 
 420 
 421 
TUS results 422 
 423 
Our fMRI analysis identified OE activity in pgACC (Fig 2C). A study we used in the fMRI analysis 424 
also manipulated activity in pgACC using transcranial ultrasound stimulation (TUS) 13 (Fig 4A) 425 
making it possible to assess whether activity was causally responsible for the task engagement level or 426 
a consequence of a process that was engendered elsewhere. Thus, we next sought a causal test of 427 
pgACC9s importance for task engagement. In addition to examining pgACC TUS data, we were also 428 
able to examine the impact of TUS in other regions:  in the dataset, BF and POp, were also stimulated, 429 
and it also include a sham condition13. BF is a useful control region because BF activity is associated 430 
with the timing of individual actions and BF TUS and cholinergic manipulation (BF is a source of 431 
many cholinergic projects) have been shown to alter the timing of individual actions 13,27. By contrast, 432 
POp was not associated with general task engagement/disengagement nor with performance of the 433 
specific task and so POp TUS acted as a general control for cortical stimulation. The TUS wave 434 
frequency was set to 250 kHz. TUS was applied in 30 ms bursts that were generated every 100 ms for 435 
a total period of 40 s.  The procedure was then immediately repeated for another 40 s in the same area 436 
but in the other hemisphere.  All TUS was applied prior to the behavioral task.  Sustained TUS trains 437 
have previously been shown to exert a sustained impact on neural activity and behavior and therefore 438 
make it possible to examine the effect of neural disruption in the absence of any concomitant auditory 439 
effects that might be associated with the delivery of each TUS pulse 24,34337 440 

 441 

 442 
Figure 4. TUS effects on disengagement. (A) One of the tasks 13,27 used in our analysis also causally 443 
manipulated activity in pgACC using TUS. The stimulation site is shown as a white circle superimposed 444 
on the significant OE cluster. Two other regions were also stimulated and we use data from these TUS 445 
sites as controls, and also included a sham condition as a further control. (B) The total time spent 446 
disengaged by time in the experiment, averaged over sessions and animals, reveals that after pgACC 447 
stimulation, animals are more engaged early on during the task, compared to the situation after 448 
stimulating BF, POp, or sham. (C) When averaging the time spent disengaged over the first and last 20 449 
min of the task, we find a significant difference between pgACC and the other TUS sites in the first but 450 
not in the last 20 min. Bars represent condition means, and black dots represent individual subject 451 
means.  452 
 453 
To examine the effect TUS had on the time spent disengaged, we classified each timepoint in each 454 
session as engaged or disengaged, and calculated the time spent disengaged for each stimulation site as 455 
animals progressed through the session. This analysis revealed a tendency for more frequent early 456 
disengagements in the control conditions than after pgACC stimulation, whereas late disengagements 457 
appeared equally common throughout all conditions (Fig 4B). Indeed, when testing for a difference 458 
between disengagements after pgACC stimulation compared to other stimulations sides, we found a 459 
significant difference in the first 20 min but not in the last 20 min (early: �!(1) = 5.27	; 	�	 = 	0.022;  460 
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late: �!(1) = 0.03	; 	�	 = 	0.867; mixed effects models with random slopes and intercepts for condition 461 
by monkey). This effect of more engagement early on can also be observed in each animal individually 462 
(Fig S6).  463 
 464 
Discussion 465 
 466 
Task engagement fluctuates throughout daily activity leading to inattention. Ultimately, however, 467 
people and animals may give up on a task completely and either remain inactive or pursue an entirely 468 
different course of behavior.  While the process of error monitoring and subsequent adjustment of 469 
behavior has received considerable attention 38340, less is known about the processes that drive complete 470 
task disengagement. This is despite the obvious relevance such mechanisms have to the understanding 471 
of apathy 3 a prominent feature of psychological and neurological illnesses 1. Although the social 472 
demands of the research setting mean that human participants rarely give up on a task completely when 473 
they are participating in an experiment, it is not unusual for macaques to move between periods of task 474 
disengagement and then re-engagement. In the current investigation we identified such periods and 475 
found that they manifested in similar ways across eleven macaques performing four different cognitive 476 
tasks in the MRI scanner. When animals were strongly engaged in any task and unlikely to disengage, 477 
then a broad region of increased activity spanning several areas, but which was especially prominent in 478 
pgACC, was found. Activity was weakest on trials when the animals9 task engagement levels collapsed 479 
and the monkeys disengaged. The effects were apparent even when we controlled for RT suggesting 480 
that pgACC activity was related to task disengagement rather than any change in response timing 13, 481 
response control 38,41, or any change in response vigor that might lead to changes in RT 5,42,43. While 482 
vigor and engagement were associated with different behavioral indices and had correspondingly 483 
distinguishable relationships with brain activity, some of the effects were adjacent in the brain. 484 
However, vigor effects often appeared to be mostly linked with the vigor level on the preceding the 485 
current trial (see Fig S4 and S5) or with increases of vigor that were about to occur (Fig S4D future 486 
vigour 3 past vigour). By contrast, engagement effects reflected stable patterns of behavior sustained 487 
over several trials. 488 
 489 
The pattern of activity found in pgACC suggests it is linked to a fundamental process of task 490 
engagement that is independent of any particular task identity or specific task feature.  This conclusion 491 
was reached after observing that the link between pgACC activity and task engagement was found after 492 
regressing out any influence that specific task events might have had on neural activity. In fact, for all 493 
analyses, we extensively regressed out task parameters to remove all the variance linked to task features 494 
and reward history, so that we were able to examine how fluctuations in the residual, activity unrelated 495 
to any specific task type was linked to fluctuations in engagement. As such, our findings cannot be 496 
attributed to parameters manipulated during the task or satiety and fatigue (we regress out the 497 
cumulative reward and the trial number). While we did not examine task-related activity here, this was 498 
the focus of previous analyses of all included datasets 13,24327. Importantly, each original study shows 499 
distinct patterns of neural activity that can be linked to the variables manipulated during each task, 500 
which differ from the activity patterns we show here. While we focused on the task independent 501 
elements of motivation and engagement there is, of course, a large body of work on motivation, fatique 502 
and apathy based on effort and cost models 44348. Future research could potentially combine both 503 
approaches (intrinsic/task independent and task driven motivational fluctuations) to get a more 504 
comprehensive picture of their interplay. 505 
 506 
 507 
In all tasks included in the analysis, we could distinguish between activity related to task engagement 508 
on a given trial (current engagement; CE) 3 whether the animal was engaged or disengaged on the trial 509 
itself 3 and the more general state (general engagement; GE) surrounding the trial.  Moreover, activity 510 
change was not just apparent at the time of responding but it was present and built up over a longer 511 
preceding time period.  Timecourse analyses revealed elevated signals approximately 15 s before and 512 
15 s after the trial in question. The slowly evolving pgACC signal might reflect the parallel slow 513 
evolution of task engagement factors and their independence of specific task events. 514 
 515 
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Importantly, the corresponding pgACC region of the human brain 49 has been linked to the 516 
predisposition to initiate foraging behavior and in determining that the prospect of potential future 517 
outcomes mean that it is worth initiating a sequence of behavior despite potential costs 50,51.  The pgACC 518 
is unusual in that it is one of only two cortical regions that project strongly to the striosomal 519 
compartment of the basal ganglia, in anterior striatum, which, in turn, is distinguished by a number of 520 
anatomical features including projection to the dopaminergic midbrain 9,52,53. As a result, pgACC is 521 
well placed to regulate fundamental aspects of motivated behavior under the control of dopamine 54 522 
 523 
Not only was activity in pgACC predictive of task engagement but TUS-induced alteration of pgACC 524 
activity led to consistent patterns of changed task engagement in the four macaques that participated in 525 
an additional TUS study. As the TUS stimulation data was part of the original study design 13 we had 526 
no control over stimulation sides and could not employ the same stimulation across all tasks or brain 527 
sites. While we were unable to examine the impact of stimulating the supracallosal gACC region (Figure 528 
2D), it was, however, possible to examine the effect of pgACC stimulation because, fortuitously, 529 
transcranial ultrasound stimulation had been applied to this area in the task investigated by 530 
Khalighinejad and colleagues 13. However, due to only having TUS stimulation in one study, we could 531 
not investigate the task general causal impact of pgACC stimulation. After the application of TUS, 532 
macaques were less likely to disengage from a task. Normally, when animals were in the control 533 
condition, in the first half of a 20 min testing session, macaques disengaged from the task for 534 
approximately 3 min. After pgACC TUS, however, animals often worked continually without 535 
disengaging or only took a break for approximately 2 min on average.  Importantly, the effects were 536 
specific to pgACC TUS and were not observed after TUS to two control brain regions. First, similar 537 
effects not seen when applying TUS to an anterior parietal control region, POp, in which there was no 538 
task-related or task engagement-related activity. Second, and perhaps even more importantly, such 539 
effects were not seen when TUS was applied to the cholinergic basal forebrain (BF) even though it has 540 
previously been shown that BF TUS and systemic cholinergic manipulation change the timing of 541 
animals9 decisions to make individual actions 13,27. However, while the stimulated pgACC appeared to 542 
track our engagement variable, we acknowledge that several factors, such as emotion, energy level and 543 
ability to focus, and subjective emotional responses 55 may be directly or indirectly linked to 544 
engagement. Future research will need to tease apart. 545 
 546 
 547 
Relatively few behavioral experiments have focused on the macaque pgACC and previous behavioral 548 
analysis approaches have not allowed identification of clear changes in task engagement 13 of the sort 549 
that we were able to identify here. However, it has been reported that electrical microstimulation of the 550 
macaque pgACC during a cost/benefit decision making task led to fewer decisions to pay higher costs 551 
(enduring air puffs) to obtain higher rewards (more juice) 10. If pgACC is not only responsible for 552 
setting the general willingness to endure costs for benefits during choices but also responsible for setting 553 
the general level of engagement, then our results and these previous findings can be reconciled.   554 
However, it is important to note that TUS is unlikely to recreate patterned excitation of specific neurons 555 
that can be induced by microstimulation but rather it may be more likely to disrupt the endogenous 556 
activity patterns within a brain region 34,37. In the rat, optogenetic inhibition of the projections from the 557 
homologue of pgACC 56 3 often called the prelimbic cortex 3 to the striosome compartment of the 558 
striatum similarly leads rats to be more likely to pay the cost of engaging in a trial in order to obtain a 559 
reward 57. This occurs because pgACC outputs synapse with inhibitory interneurons in the striosome 560 
which, in turn, connect with striatal projection neurons. Thus, disrupting pgACC leads to the release of 561 
striatal projection neurons from inhibition. As noted, striosomal projection neurons are distinguished 562 
by their unique anatomical connections to regions such as the dopaminergic midbrain. In summary, 563 
pgACC TUS or pgACC optogenetically mediated inhibition in monkeys and rats respectively make 564 
animals more likely to engage in an effortful task to obtain reward or to take a costly action to obtain 565 
reward. Both interventions may resemble one another in leading to the release of striatal projection 566 
neurons from inhibition and, as a consequence, changes in dopamine levels. While we found an impact 567 
of TUS on behaviour, we can only speculate about the physiological mechanism(s) at this stage. 568 
Hopefully future research on the physiological impact of TUS and post stimulation fMRI will be able 569 
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to shed some light onto this question, in particularly why TUS can lead to apparent enhancement of 570 
behaviours associated with the stimulated brain regions, despite TUS not mimicking neural activity.  571 
 572 
 573 
The pgACC region studied here not only has a homologue in rodents but also in humans 49,56. In humans, 574 
coupling between pgACC activity and striatal activity has been linked to disinhibition of effortful 575 
choices; first, it was more prominent when the costs of a course of action were high but it was still 576 
pursued and second it was more prominent in individuals who were inclined to pursue such courses of 577 
action 51. Individual variation in pgACC activity has also been reported to covary with how influenced 578 
each person is by the prospect of future reward despite the need to engage in a sequence of decisions 50. 579 
It also tracks how well people have been performing simple tasks and how they are likely to evaluate 580 
their performance 58,59. 581 
 582 
The idea that animals make decisions to engage or disengage with one behavior or another or simply to 583 
do nothing at all is consistent with a growing body of work on decision making during foraging and 584 
their neural correlates 60,61. It also suggests alternative ways of thinking about situations in which people 585 
and animals appear to lack task engagement. In particular, the engagement shift (ES) activity in 586 
supracallosal cingulate gyrus (area 24, also called mid-cingulate cortex) might normally, in less 587 
constrained situations than in the current experiment, lead to sudden deliberate decisions to disengage, 588 
rather than simply reflecting slowly waning task engagement. While this is only speculation, it is 589 
nonetheless noteworthy that ES specifically activated the supracallosal cingulate gyrus in a region 590 
adjacent to one that has been linked to switching and foraging activity in the past in humans, macaques, 591 
and rodents 35,50,51,60,62364 and which is distinct from pgACC. Our results have obvious links to a large 592 
body of work on error monitoring 65 and performance lapses 66 in humans that have identified 593 
ACC/MCC and pre-SMA as relevant regions for both error monitoring as well as post error adaptation 594 
effects. While our lapses are a complete disengagement from the task, not  an error per se, the overlap 595 
between the anatomical location of the effects reported here and the effects previously reported is 596 
intriguing, suggesting common mechanisms may prevent disengagement, maintain engagement with 597 
the current task, and mediate performance monitoring for errors and post-error adaptation and return to 598 
task performance. Overall, our results suggest slowly drifting fluctuation in engagement where low 599 
pgACC activity is linked to low engagement levels and repeated giving up, while sudden and surprising 600 
decisions to give up during otherwise high engagement state are triggered by sudden supracallosal 601 
gACC activity. The engagement shift (ES) was also the only contrast that clearly revealed posterior 602 
cingulate cortex and precuneus, a region that has previously been implicated in decisions to disengage 603 
with foraging 33, further suggesting that ES might be linked to deliberate decisions to disengagement in 604 
a specific trial, as opposed to gradual drifting decline in task engagement. 605 
 606 
Overall, our findings not only suggest pgACC mediation of intrinsic variation in task engagement but, 607 
more generally, emphasize the multifaceted nature of motivation and task performance. Specifically, 608 
we could dissociate task engagement from response speed. However, our ES index suggests that even 609 
giving up on a task might not be determined by solely one factor. In fact, in our study, animals might 610 
give up because of an overall change in intrinsic task engagement (OE) or because they deliberately, 611 
but transiently, want to do something else (ES). We suggest that future work should embrace this 612 
complexity. 613 
 614 
While we could show task-general and robust neural and behavioural patterns related to task 615 
engagement, we do not know what cognitive/emotional or otherwise internal construct is driving 616 
motivation states, as we cannot ask the animal about their subjective experience. It is possible that other 617 
fundamental constructs are linked to our pgACC activity in particular, which in turn relate to the 618 
motivational state the animal is in, instead of pgACC driving motivation directly. However, whatever 619 
such a fundamental construct might be responsible, it appears intimately linked to motivation across 620 
tasks. 621 
 622 
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Importantly, engagement-related activity was not confined to pgACC but was also noticeable in a 623 
posterior part of the lateral orbitofrontal sulcus.  This region has been identified with credit assignment 624 
3 the linking of specific choices to specific outcomes 28,34 3 but it is also notable that cortex in the same 625 
region or nearby is the second cortical region in the macaque, in addition to pgACC, that projects to the 626 
striosomal compartment of the stratum, the striatal region that is, in turn, likely to influence the 627 
dopaminergic midbrain, and in which stimulation is known to affect cost-benefit decision making 9,52. 628 
 629 
While the current study has taken some of the first steps needed to identify the neural mechanisms 630 
mediating task engagement, some questions remain unanswered. Notably while pgACC and posterior 631 
lateral orbitofrontal sulcus were less active when task disengagement occurred, a more posterior mid-632 
cingulate gyrus region (area 24) was most active during sudden disengagement (Fig 3). As well as 633 
attempting to understanding the key elements that determine the multifaceted relationships between 634 
specific task features, task engagement, brain activity and the cellular mechanisms at play in pgACC 635 
and beyond, an important future step will be  examining the effect of manipulating activity in area 24. 636 
 637 
Methods 638 
 639 
Subjects 640 
13 rhesus macaques across 17 data sets were included in the four studies considered. All procedures 641 
were conducted under licenses from the United Kingdom (UK) Home Office in accordance with the 642 
UK Animals (Scientific Procedures) Act 1986 and with the European Union guidelines (EU Directive 643 
2010/63/EU).  644 
 645 
Data collection  646 
The fMRI data were acquired in a horizontal 3 Tesla MRI scanner with a full-size bore using a four-647 
channel, phased-array, receive-only radio-frequency coil in conjunction with a local transmission coil 648 
(Windmiller Kolster Inc, Fresno, USA). The animals were head-fixed in a sphinx position in an MRI-649 
compatible chair (Rogue Research, CA). fMRI data were acquired using a gradient-echo T2* echo 650 
planar imaging (EPI) sequence with the following parameters: 1.5 × 1.5 × 1.5 mm resolution, 36 axial 651 
interleaved slices with no gap, TR of 2280 ms, TE of 30 ms and 130 volumes per run. Proton-density-652 
weighted images using a gradient-refocused echo (GRE) sequence (TR = 10 ms, TE = 2.52 ms) were 653 
acquired as reference for offline image reconstruction. 654 
 655 
Behavioral task-models 656 
 657 
We used data from four different tasks 13,24327. See Supplementary Text 1 for descriptions of the four 658 
tasks. In all tasks monkeys had to respond to stimuli on screen that were rewarded, while their neural 659 
activity was recorded using fMRI. Briefly, Jahn and colleagues (study 1) 25 ran an exploration-660 
exploitation task with different time horizons. On some trials, monkeys had to make one-off choices 661 
between two stimuli on screen based on the information presented. On other trials, they had to choose 662 
between the same options repeatedly, which enabled them to learn more about the value of the options. 663 
Grohn and colleagues (study 2) 26 ran a task with a single option presented on screen. By manipulating 664 
the reward associated with the option, as well as the location of the option on the screen, they induced 665 
different kinds of surprises. In the study of Bongioanni and colleagues (study 3) 24 monkeys had to 666 
choose between two options that varied among two dimensions, reward amount and reward probability. 667 
They presented the monkeys with novel stimuli that they had not encountered before but the value of 668 
which they should be able to infer based on previously observed stimuli. Khalighinejad and colleagues 669 
(study 4) 13,27 showed monkeys a single stimulus that contained information about the reward amount 670 
and the inter-trial-interval length. The longer monkeys waited to respond, the more the reward 671 
probability increased, which was also displayed as a feature of the stimulus, but at the price of losing 672 
time as the experiment did not have a fixed number of trials but was limited to 40 min. This allowed 673 
them to study how monkeys decide when to make a response. 674 
 675 
To regress out the effect task-manipulations have on engagements/disengagements, we used logistic 676 
regressions to control for these effects. For all tasks, we included regressors for the rewards the animals 677 
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obtained on the previous 5 trials, the current trial number, and the cumulative reward the animals 678 
received so far during a session. Additionally, we included task-specific regressors for each task that 679 
are based on the models used in the original analyses of the tasks: 680 
 681 
For study 1 25 we included a regressor coding for repetition bias (whether the animal has responded on 682 
the same side on the previous trial), a regressor coding for the choice horizon (short or long), and a 683 
regressor coding for the current choice number within a horizon. Moreover, we used the Bayesian model 684 
described by Jahn9s and colleagues 25 to estimate the expected reward and the expected uncertainty on 685 
each trial. We then included the sum of the expected reward of both stimuli, and the sum of the 686 
uncertainty of both stimuli as regressors as well as the absolute difference in expected reward and 687 
uncertainty between the two stimuli. Finally, we allowed these 4 latter regressors to vary by horizon as 688 
interaction terms. 689 
 690 
For study 2 26 we included a regressor coding for whether the stimulus is on the left or the right side of 691 
the screen, a regressor coding for whether the stimulus switched sides, and a regressor coding for 692 
whether the monkeys received 2 drops of juice on the last trial.  693 
 694 
For study 3 24 we included regressors for the absolute additive value difference, the absolute 695 
multiplicative value difference, the total additive value, and the total multiplicative value. Additive and 696 
multiplicative value here refer to adding or multiplying reward magnitude and probability (further 697 
details can be found in the original publication). Moreover, we also included a regressor capturing a 698 
repetition bias (responding on the same side as on the previous trial).  699 
 700 
For study 4 13,27 we included regressors for the current reward magnitude, the length of the upcoming 701 
inter-trial-interval, and the speed of the dots on screen.  702 
 703 
All models were run separately for each monkey. For each monkey, we allowed all regressors to also 704 
vary as random slopes by session. We then took the difference between the model prediction and 705 
observed behavior as our measure of CE.  706 
 707 
 708 
Autocorrelation and kernels 709 
 710 
To calculate the autocorrelation of our measure of intrinsic task engagement we shift the timeseries for 711 
each session of each monkey by lags from 2-10 and compute the correlation for each (we leave out 712 
lag=1 because for some of our experiments two disengagements cannot occur after each other because 713 
of the task design). We then separately average the sessions of each monkey, before finally averaging 714 
over monkeys. 715 
 716 
To test whether the autocorrelation is significantly larger than 0, we randomly permute the data of each 717 
session and repeat the above procedure 10000 times on the permuted data. We then determine the p-718 
value as the number of times the average autocorrelation over monkeys is smaller than the permuted 719 
average. Because we are testing lags from 2-10, we use a p-value of 0.05/9 = 0.0056. For RTs we use a 720 
p-value of 0.05/10 = 0.005 because we are testing lags 1-10. 721 
 722 
To compute the task engagement state, we fitted an exponential kernel to our measure of intrinsic task 723 
engagement. Specifically, we found the free parameter � that minimised the squared distance between 724 

the function �(1 2 �)|#|� and the data, where for each trial, � indexes all past and future trials of a 725 
session, leaving out the current trial, i.e. � = �����	�����, & ,22,21,1,2, & , ����	�����, and � is a 726 

normalization factor that makes the weights sum up to 1, i.e. � = 3(�(1 2 �)|#|)$%. We compute � 727 
separately for each of our 4 tasks by finding the ³ that minimizes this error across all sessions associated 728 
with that task. Thus, we overall fit four values of ³. For study 1 25 and study 4 13,27 we used � =729 
�����	�����, & ,22,2, & , ����	�����4leaving out trials -1 and 14because disengagements do not occur 730 
concurrently because of the task designs.  731 
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 732 
We then used the fitted value of  � to smooth the data, thus obtaining a state estimate on each trial. By 733 
using only the half of the kernel that is directed towards the past/future, i.e. � = �����	�����, & ,22,21 734 
and � = 1,2, & , ����	�����, we were also able obtain separate state estimates of the past and future GE, 735 
which we used as regressors in the whole brain analysis. 736 
 737 
When fitting the kernel to RTs we are only using engaged trials. Therefore, the timeseries is interrupted 738 
when a disengagement happens, which also breaks the autocorrelation. For RTs we therefore only use 739 
consecutive chunks that are uninterrupted by disengagements to fit the kernel, i.e. we set � =740 
��������	�����	�/��	��	�������,& ,22,21,1,2, & , ������	�����	�/��	��	������. 741 
 742 
Whole-brain analyses 743 
 744 
EPI data were prepared for analysis following a dedicated nonhuman primate fMRI processing pipeline 745 
using tools from FSL 67, Advanced Normalization Tools (ANTs) 68, and the Magnetic Resonance 746 
Comparative Anatomy Toolbox (MrCat; https://github.com/neuroecology/MrCat).  747 
 748 
Like for our behavioral analysis, we also created separate neural regression models for each task. Apart 749 
from these task-specific regressors (further outlined below), we also included the same regressors 750 
across-tasks. For all tasks, we included regressors for the current level of the intrinsic CE (computed as 751 
described in the behavioral task-models section), the past GE, and the future SM (computed as described 752 
in the autocorrelation and kernels section). We included all of these regressors twice, once time-locked 753 
to the end of the reward delivery of the previous trial, and once time-locked to the onset of the decision-754 
prompt. Moreover, we also included regressors for the trial vigor, and the past and future state vigor, 755 
again time-locked both to the end of the previous trial9s reward delivery and the decision-prompt. The 756 
correlation between these 12 regressors in shown in Fig S3D.  757 
 758 
To compute overall estimates of GE and state vigor, we created contrasts that summed up the past and 759 
future GE, and the past and future state vigor. Moreover, to estimate OE we added a contrast that 760 
summed up CE and GE, and to estimate ES we added a contrast that subtracted CE and GE. Similar 761 
contrasts were included for vigor. Finally, we also included contrasts that subtracted the past and future 762 
GE, and the past and future state vigor. 763 
 764 
Additionally, we also included some control regressors that were the same for all 4 tasks. We included 765 
intercepts time-locked to the beginning of the reward delivery, the end of the reward delivery, the onset 766 
of the decision-prompt, and when decisions were made. We also included the current trial number, the 767 
cumulative reward so far, and the seconds since the beginning of the experiment, all time-locked to the 768 
end of the previous trial9s reward-delivery, and to the onset of the decision prompt. Moreover, we also 769 
included confound regressors to index head motion and volumes with excessive noise. Motion-related 770 
artefacts were captured by including 13 principal components accounting for volume-by-volume 771 
magnetic field distortions due to limb and body movements during task performance. Volumes with 772 
excessive noise were entirely excluded from the fMRI analysis by including regressors for each flagged 773 
volume. Both the 13 principal components and the low-quality volumes were estimated for each session 774 
using the MrCat toolbox (https://github.com/neuroecology/MrCat) as also described in the original 775 
publications for each dataset 13,24327. 776 
 777 
Task-specific regressors were based on the models used in the original papers. The regressors we 778 
included were: 779 
 780 
For study 1 25 we included an intercept time-locked to the onset of the wait-stimulus. We also included 781 
regressors for the expected reward of the chosen stimulus, the expected reward of the unchosen 782 
stimulus, the uncertainty of the chosen stimulus, and the uncertainty of the unchosen stimulus, all time 783 
locked to the wait-stimulus. These quantities were calculated according to the Bayesian model described 784 
in the original paper. At decision, we included a regressor for the response side. At the beginning of the 785 
reward delivery, we included regressors for the amount of reward received, the expected reward of the 786 
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chosen stimulus, the expected reward of the unchosen stimulus, the uncertainty of the chosen stimulus, 787 
and the uncertainty of the unchosen stimulus, all again according to the Bayesian model. Some sessions 788 
also included a horizon manipulation, such that animals had to either make one-off decisions, or decide 789 
among the same options multiple times while learning new information about the options throughout. 790 
For these sessions, we included a regressor at the decision-prompt whether the trial was a short or a 791 
long horizon trial. Furthermore, in some sessions animals received feedback about the reward of the 792 
unchosen stimulus, whereas in others they did not. For the sessions that included this feedback, we also 793 
included a regressor for the amount of reward of the unchosen option, time-locked to reward delivery.  794 
 795 
For study 2 26 we included a regressors for the response side and whether the stimulus had switched 796 
sides at decision. At reward delivery, we included regressors for the current reward amount, and the 797 
reward amount of the previous 5 trials as separate regressors. We also included a regressor for whether 798 
the reward was 2 drops of juice, and a regressor for whether the previous reward was 2 drops of juice. 799 
Finally, we also included a regressor for whether the current trial was an error and no reward would be 800 
delivered, time-locked to when the reward would otherwise be delivered.  801 
 802 
For study 3 24 we included regressors for the absolute additive value difference, the absolute 803 
multiplicative value difference, the total additive value, and the total multiplicative value, all time-804 
locked to decision-prompt. These regressors are further described in the original paper. We also 805 
included a regressor for the response side at decision, and a regressor for the reward amount at reward 806 
delivery.  807 
 808 
For study 4 13,27 we included regressors for the current reward magnitude, the upcoming inter-trial-809 
interval duration, and the dot-speed, all time-locked to stimulus presentation. We also included 810 
regressors for the last trial9s reward amount, and the number of dots on screen when the last trial9s 811 
response was made, also time-locked to stimulus presentation. At decision, we included a regressor for 812 
the number of dots currently on screen. Finally, we included a regressor for the reward amount at reward 813 
delivery.  814 
 815 
We used a hierarchical GLM approach to combine data from monkeys and sessions: We first fitted each 816 
session individually using the appropriate regression model (as described above), and then warped the 817 
resulting statistical maps into F99 standard space. There, on a second hierarchical level, we combined 818 
data individually for each monkey using fixed effects and pre-planned contrasts over regressors that 819 
were shared across models. Finally, on a third hierarchical level, we combined data from all monkeys 820 
using random effects, as implemented in the FLAME 1+2 procedure from FLS 67. To test for statistical 821 
significance, we used a standard cluster-based thresholding criteria of z > 2.3 and p < 0.05 (Worsley et 822 
al., 1992). 823 
 824 
Analyses were run in FSL9s fMRI Expert Analysis Tool (FEAT). Regressors were z-scored and 825 
convolved with a hemodynamic response function (HRF), which was modelled as a gamma function 826 
(lag = 3 , sd = 1.5) convolved with a boxcar function of duration 1s.  827 
 828 
 829 
ROI analyses and timecourses 830 
 831 
To define ROIs, we calculated the overlap between the cluster-corrected t-statistic map from the 832 
whole-brain analysis and anatomically defined regions based on an atlas 32, which we dilated with a 833 
kernel of 3x3x3 voxels. We then warped these ROIs into session-space using the nonlinear 834 
deformation field. 835 
 836 
To visualise the BOLD timecourse of a regressor we re-ran the convolutional whole-brain analysis for 837 
each session of each monkey in FEAT, leaving out the 12 regressors of interest we described above 838 
but including all other task-relevant and nuisance regressors. We then extracted the average residual 839 
of this whole-brain analysis from each ROI. Next, we upsample the timecourse by a factor of 10 using 840 
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spline interpolation. Because we are interested in temporally extended effects of task engagement, we 841 
then smooth the upsampled timecourse with a moving average filter of 5s.   842 
 843 
 844 
TUS  stimulation and analysis 845 
 846 
TUS stimulation was conducted with a single-element ultrasound transducer (H115-MR, diameter 64 847 
mm, Sonic Concept, Bothell, WA, USA) with region-specific coupling cones filled with degassed water 848 
and sealed with a latex membrane (Durex). The ultrasound wave frequency was set to the 250 kHz 849 
resonance frequency and 30 ms bursts of ultrasound were generated every 100 ms (duty cycle 30%) 850 
with a digital function generator (Handyscope HS5, TiePie engineering, Sneek, the Netherlands). 851 
Overall, the stimulation lasted for 40 s. A 75-Watt amplifier (75A250A, Amplifier Research, Souderton, 852 
PA) was used to deliver the required power to the transducer. For further details see  13 853 
 854 
To calculate the time spent disengaged, we classified each trial in each session as engaged or disengaged 855 
in the same way we did for the data sets for the behavioral and fMRI analysis. We then calculated the 856 
total time spent disengaged for each session, and tested whether there was a significant difference 857 
between the sessions in which pgACC was stimulated or the control conditions (BF, POp, or sham 858 
stimulation). In this model we also included a random intercept for each animal to control for different 859 
baseline effects, and a random slope for whether pgACC or a control side was stimulated. 860 
 861 
To visualize where in a session differences between conditions emerged, we also calculated the 862 
cumulative sum of the time spent disengaged for each second of each session, and then averaged this 863 
sum over sessions for each condition. 864 
  865 
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