

1 **General mechanisms of task engagement in the primate frontal cortex**
2

3 **Authors:** Jan Grohn^{1*}, Nima Khalighinejad¹, Caroline Jahn¹, Alessandro Bongioanni^{1,2}, Urs
4 Schuffelgen¹, Jerome Sallet^{1,3}, Matthew Rushworth¹, Nils Kolling^{3,4}

5
6 ¹ Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology,
7 University of Oxford, Oxford, UK

8 ² Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191
9 Gif/Yvette, France

10 ³ Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine,
11 69500 Bron, France.

12 ⁴ Wellcome Centre for Integrative Neuroimaging (WIN), Department of Psychiatry, University of
13 Oxford, Oxford, UK

14 * jan.grohn@psy.ox.ac.uk

15 **Classification**

16 Biological Sciences, Neuroscience

17 **Keywords**

18 Decision-making, Engagement, Motivation, fMRI

19 **Abstract**

20 *Staying engaged with a task is necessary to maintain goal-directed behaviors. Although engagement
21 varies with the specific task at hand it also exhibits continuous, intrinsic fluctuations widely. This
22 intrinsic component of engagement is difficult to isolate behaviorally or neurally in controlled
23 experiments with humans. By contrast, animals spontaneously move between periods of complete task
24 engagement and disengagement, even in experimental settings. We, therefore, looked at behavior in
25 macaques in a series of four tasks while recording fMRI signals. We identified consistent
26 autocorrelation in task disengagement. This made it possible to build models capturing task-
27 independent engagement and to link it to neural activity. Across all tasks, we identified common
28 patterns of neural activity linked to impending task disengagement in mid-cingulate gyrus. By contrast,
29 activity centered in perigenual anterior cingulate cortex (pgACC) was associated with maintenance of
30 task performance. Importantly, we were able to carefully control for task-specific factors such as the
31 reward history, choice value, and other motivational effects, such as response vigor, as indexed by
32 response time, when identifying neural activity associated with task engagement. Moreover, we showed
33 pgACC activity had a causal link to task engagement; in one of our tasks, transcranial ultrasound
34 stimulation of pgACC, but not of control regions, changed task engagement/disengagement patterns.*

35 **Introduction**

36 Everyone experiences fluctuations in how engaged they are with tasks that need doing throughout the
37 day. While some of our motivation is clearly linked to specific tasks and incentives, we also find
38 ourselves from time to time either demotivated or full of vigor regardless of the task at hand.
39 Furthermore, while there might be extended periods of disengagement, there are also brief collapses in
40 task engagement (for example, while checking one's phone). While we also experience fluctuating
41 levels of task engagement, in some people, periods of disengagement are especially prominent; apathy
42 – sustained periods of task disengagement – is a core, transdiagnostic feature of psychological and
43 neurological illnesses^{1,2}.

44 Such fluctuations occur even though engagement must be sustained across extended periods of time for
45 many goal-directed behaviors to succeed. Additionally, when performing a task, it is important to stay
46 engaged independently of the specifics of the task at hand. Important insights into related processes

53 have been gained by investigating motivation changes occurring in response to specific external factors
54 such as reward incentives or other feedback ³. However, task engagement is also subject to intrinsic
55 fluctuation and must be maintained despite adverse external factors. Likewise, sometimes engagement
56 is lost despite the presence of incentives. It has been proposed that maintaining engagement requires
57 cognitive resources that are depleted by effort and that can be restored by taking breaks ⁴.

58 Changes in response vigor ⁵ and speed ⁶⁻¹³ occur as motivation waxes and wanes. However, variation
59 in response vigor and speed occur only if a person decides to maintain task engagement. Therefore,
60 deciding whether or not to engage in the task at all or to pause and disengage completely is a separate
61 process to the one determining response speed and vigor for any given response. Similarly, task
62 engagement differs from attention lapses as indexed by individual erroneous responses that have also
63 previously been studied in the context of motivation ¹⁴.

64 In the present study, we focus on general mechanisms of task engagement and disengagement across a
65 series of four different tasks while recording brain activity using fMRI. In this way, we can identify
66 neural activity changes in moments when an agent spontaneously and completely disengages from a
67 task independently of the concurrent specific, external task demands. We used macaque monkeys to
68 examine these issues for several reasons. The social and other demands of human neuroimaging
69 experiments usually ensure that human participants exhibit continuous task execution; their
70 performance scores may fluctuate but human participants rarely give up and spontaneously stop
71 altogether in the same manner that they do frequently when outside the laboratory. Macaques, however,
72 while engaged for the majority of the experiments, repeatedly and reproducibly both disengage and re-
73 engage for periods of time during daily testing in the laboratory, even when the tasks are relatively
74 simple and are performed proficiently^{15,16}. While this is generally a great nuisance for the researchers,
75 for our study it is fortunate as it allowed us to construct and fit models to these disengagements and link
76 them to their neural substrates. Using data from four diverse decision-making tasks allows us to find
77 behavioral and neural signatures that are task-general (see Supplementary Text 1 for descriptions of the
78 four tasks). Importantly, these disengagements are not part of the task design but occur spontaneously
79 despite the reward incentives provided by the tasks. Moreover, by controlling for variation in extrinsic
80 experimental factors, such as reward level, we can capture engagement and disengagement due to task-
81 independent factors. Intrinsic motivation has previously been linked to satiation (for example,
82 cumulative reward, ¹⁷ or time spent on task, e.g. ¹⁸). By also controlling for these factors, we aim to
83 capture the intrinsically fluctuating aspect of task engagement and disengagement that occurs regardless
84 of task identity¹⁹.

85 While task engagement is continually fluctuating during extended activity ²⁰ disengagements are all or
86 none events. For example, one might feel more or less motivated to do a chore throughout the day –
87 which we refer to here as the level of general task engagement. In addition there are periods of complete
88 cessation and disengagement from the task. We examined neural activity related to both slow
89 fluctuations in engagements and sudden disengagements. To do this we used a new approach that
90 considers the distribution of tasks engagements and disengagements to estimate continual variation in
91 a general state of task engagement. Such a state tracks the current level of engagement above and
92 beyond the current trial. This allowed us to identify events when animals suddenly and ‘surprisingly’
93 disengage even though they are in an otherwise engaged state. By contrast, we can also identify
94 ‘expected’ disengagements that occur when we estimate that the animal is in a state of low general
95 engagement. This allowed us to examine the neural activity linked to general task engagement,
96 expected task disengagements, and surprising task disengagements. We argue that such model-derived
97 estimates capture aspects of task engagement not previously reported in the literature: By linking
98 engagement both to trial and state activity, and estimating its task-independent component as our model
99 is based on unexplained residual variance, we are able to parse aspects of task engagement not
100 previously studied. Importantly, we contrasted these novel, model-derived estimates of engagement
101 with other distinct aspects of motivation such as changes in response vigor indexed by reaction time.
102 This made it possible to dissociate signals leading to task engagement or disengagement from neural
103 activity related to variation in motivation to execute a specific action quickly.

104 By using a whole brain imaging technique such as fMRI, we can seek neural correlates of engagement
105 throughout the brain during all four tasks. This is important as the neural circuits linked to task
106 engagement/disengagement are not well defined. However, we note that areas of anterior cingulate
107 cortex (ACC) and adjacent medial frontal cortex have been linked to intrinsically motivated behaviors
108²¹, mood fluctuation²⁰, and neural activity has been reported to change in some related situations^{15,22},
109 particularly when driven by endogenous factors such as satiety²³.

110 Our fMRI analysis identified one important area of activity change in perigenual ACC (pgACC) that
111 was prominent across all four tasks. We therefore used neurostimulation data in which activity in this
112 region was manipulated to test its causal importance for task engagement: Specifically, one of the
113 datasets used in our analysis had stimulated pgACC using transcranial ultrasound stimulation (TUS),
114 and thus allowed us to compare the effect of pgACC stimulation against other control regions. Not only
115 did we examine the impact of TUS on pgACC and compare it to sham TUS but in addition we also
116 examined the impact of TUS to the basal forebrain (BF). BF TUS leads to changes in motivation-related
117 influences on action timing¹³ and so it provides an especially strong comparison with pgACC TUS. In
118 addition, we examined the impact of TUS of an additional control region in the parietal operculum
119 (POp) – a region in which task-related and task-initiation related activity had not been observed – to
120 control for general cortical stimulation effects.

121
122 **Results**
123

124 We combined data from four different reward-based decision-making tasks^{13,24-27}. The tasks covered a
125 range of different paradigms: simple stimulus-response mapping, incentivized exploration/exploitation,
126 incentivized delayed responses, and novel value inference (see Supplementary Text 1 for descriptions
127 of the four tasks). In each case, the animals occasionally disengaged from the task and stopped
128 responding before re-engaging after some time. For the purpose of our analysis, we define
129 disengagements as responding after 3 s or later, or not responding at all during a trial, i.e. the trial “timed
130 out” before a response was made. However, for one of our tasks that incentivized late responses^{13,27},
131 we only counted trials as disengaged where the animal did not respond at all (see Fig S1 for details for
132 all tasks). We binarized trials into ones where the animals are engaged or disengaged (Fig 1A). This
133 definition of disengagements conceptualizes behavior as all or none events which we can contrast with
134 a continuous measure of response vigor i.e. when the animals remain on task but respond more or less
135 rapidly (see below). While other definitions of disengagement might be possible (e.g. by looking at
136 decision errors), those would have not been applicable in our tasks due to the large variations in
137 difficulty across task and because errors can occur during learning as well as when there is
138 disengagement tasks. By applying our response time-based definition, we can consistently classify
139 disengagements across a range of diverse tasks and capture the intrinsic, task-independent nature of
140 these events. Our threshold of 3 s was chosen to ensure that on trials that were classified as
141 disengagements, the animals made the decision to disengage rather than responding sluggishly while
142 still being on-task. Overall, we started with 17 datasets in 13 animals but excluded six datasets from
143 five animals that disengaged in less than 5% of trials on average across sessions (Fig S1). Two animals
144 that provided in one task²⁴ also provided data in two other tasks^{13,27}, which left eleven datasets from
145 nine unique animals (see Fig S1 for details).

146
147 Our aim was to use disengagements to construct variables that, on a trial-by-trial basis, capture different
148 aspects of task engagement that are independent of the specific task identity. We then used these
149 variables in an fMRI analysis to identify their neural correlates.

150
151 To contrast task engagement and disengagement with variation in motivation related to response vigor
152 and speed, we repeated the same analysis using response times (RTs). For this control analysis we only
153 used data on engaged trials (we did not analyze the trials classified as disengagements in which, by
154 definition, no response or delayed response is made; see Fig S1). For this analysis, we used data from
155 13 (unique) animals because we now had sufficient data from more animals to include in the analysis.

156 However, we avoided considering data from one of the previous tasks^{13,27} because the animals
 157 performing it were sometimes incentivized to respond late as part of the task design and thus RTs do
 158 not provide the simple measure of vigor in the same way as in other tasks.

159

160

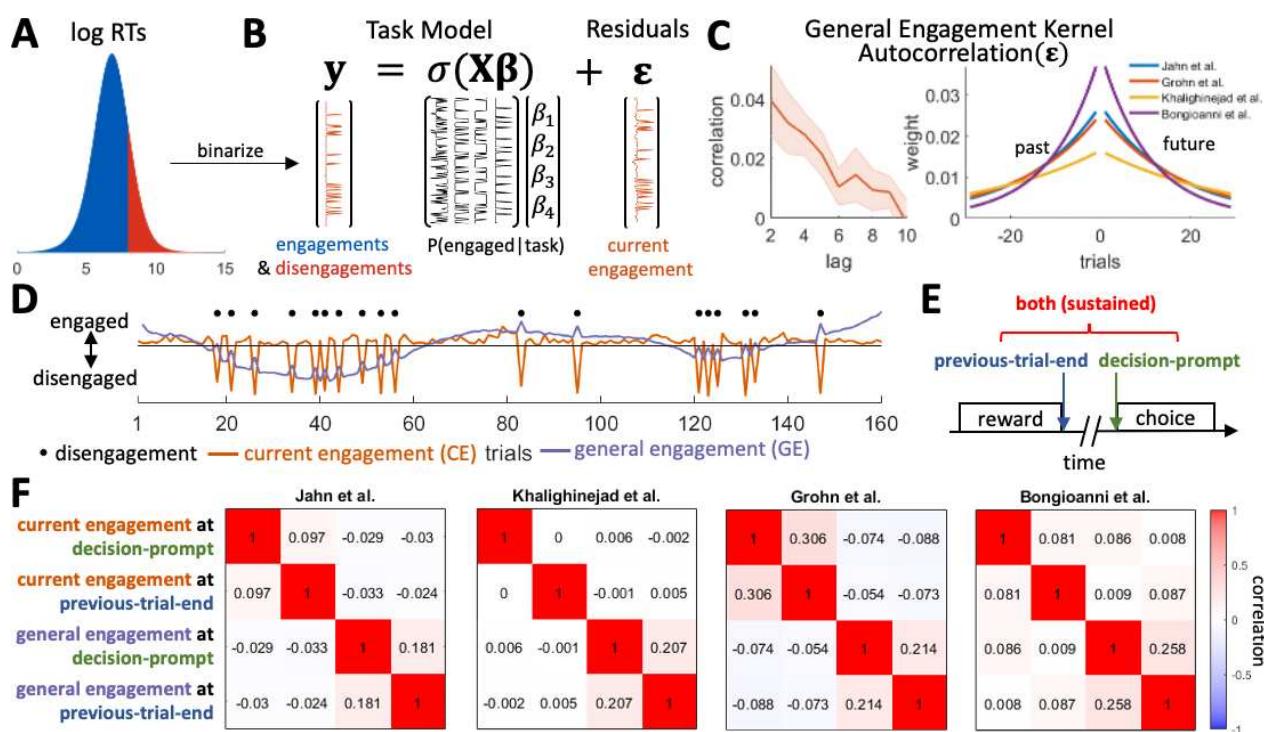
161 *Behavioral results*

162

163 For each task, we constructed separate regression models that accounted for the extrinsic variables that
 164 could be measured in each experiment by the investigators. These models included regressors such as
 165 the task stimuli encountered, the responses made, the rewards animals received, and the trial number
 166 (see *Methods* for the specific models for each task). Using these models, we can account for variance
 167 in task-engagement and disengagement that is due to extrinsic factors. These regressors are, of course,
 168 the ones that are usually the focus of any analysis of a neural data set. However, by regressing out the
 169 variance due to all extrinsic factors (i.e. taking the residual error of the regression models) we are left
 170 with the components of task-engagement and disengagement that are due to what is normally considered
 171 residual fluctuations in behavior that typically receive little investigative attention (Fig 1B). However,
 172 these residuals also capture task engagement and disengagement that is dependent on intrinsic variation.
 173 As such, they capture the intrinsic level of *current engagement* (CE; the distributions of CE for each
 174 task are shown in supplementary Fig. S2). Using the same analysis approach across tasks is essential
 175 for generalizability but also means we had to find a definition of disengagement that works across
 176 studies. Thus, while there might be some adjustment in the behavioral definition that could be made if
 177 we had only analyzed a single task, we employed an approach with the merit of general applicability;
 178 while we might have failed to detect task-specific motivational factors, the approach achieves the aim
 179 of identifying neural processes common to many situations.

180

181



182

183 **Figure 1.** Behavioral results and fMRI design. (A) We binarized animal's RTs into trials in which they
 184 were engaged or disengaged. On disengaged trials the animals took longer than 3 s to respond, or did
 185 not respond at all (i.e. the trial timed out). Fig S1 shows the individual RT distributions for each animal.
 186 (B) To control for the influence on motivation exerted by extrinsic task event-related factors, we
 187 constructed separate logistic regression models for each of our four tasks. Each model contained task-
 188 specific regressors (see *Methods* for details) as well as regressors coding for the previous five
 189 rewards/non-rewards the animals received at the end of each trial, the current cumulative reward, and

190 the trial number. By regressing out the effects these variables have on engagement, we were left with
191 the residuals. These residuals contain the fluctuations in task engagement that are intrinsic as opposed
192 to those that are due to extrinsic factors related to task structure and task events. We refer to this index
193 as the intrinsic level of *current engagement* (CE). **(C)** (Left) We find a persistent autocorrelation of the
194 residual fluctuations suggesting that intrinsic CE – engagements and disengagements – are temporally
195 clustered. Shaded error represents the standard error of the mean across data sets. The average
196 correlations for each lag from 2 to 10 are: 0.040, 0.032, 0.028, 0.022, 0.010, 0.014, 0.010, 0.009, and -
197 0.002. (Right) By fitting exponential kernels to the index of the intrinsic CE (the residual fluctuations)
198 separately for each of the four tasks, we can also capture this autocorrelation. **(D)** The same kernels can
199 then be used to smooth the estimate of the intrinsic CE (orange line, shown for an example session) on
200 each trial in each task. As a result, an estimate is obtained of the slowly fluctuating *general engagement*
201 (GE) of an animal that can be made available for each trial (purple line, shown for an example session).
202 **(E)** To capture effects of task engagement in a similar manner in our neural analyses of all four tasks,
203 we time-locked to two events in each trial that all our four tasks have in common: the end of the reward
204 delivery in the previous trial, and the onset of the decision-prompt in the current trial. The rationale for
205 looking at both of these time-points is that it is not *a priori* obvious when, during a trial, task
206 engagement/disengagement effects should be most prominent; arguably engagement might be expected
207 to produce sustained activity patterns that are observable at both time-points. **(F)** Even after their
208 hemodynamic convolution with the relatively fast hemodynamic response function observed in
209 macaques^{28,29}, there is limited correlation between these regressors in all four tasks. Note also that time-
210 shifted regressors (similar regressors but time-locked to previous-trial-end or current trial decision-
211 prompt) are relatively uncorrelated because the task-designs ensured sufficient time intervals between
212 the end of one trial and the beginning of the next in all four tasks. Thus, the regressors at the two time
213 points can provide independent indicators of task engagement-related activity
214

215 If engagement is indeed drifting across trials, then we should be able to observe clustering in the
216 residuals. To this end, we examined its autocorrelation. If engagement and disengagement were solely
217 determined by extrinsic task features, then the residuals would not be autocorrelated over trials.
218 However, in our data we did indeed find persistent autocorrelation in the residuals thus providing
219 evidence for CE (Fig.1C left; significant for lags < 10 at $p < 0.05$ with Bonferroni correction; we exclude
220 lag = 1 because in some tasks repeated disengagements were impossible, as the experiment waited for
221 the animal to re-engage before continuing). In other words, periods of engagement and disengagement
222 are temporally clustered. We confirmed that this is not an artefact of the regression models we used by
223 randomly shuffling which trials are classified as engaged or disengaged and repeating this analysis 1000
224 times. Here, we did not find any autocorrelation of the residual over trials.
225

226 We can use the autocorrelation of CE to estimate the level of task engagement for each animal on each
227 trial. We refer to this variable as *general engagement* (GE). While CE corresponds to the residual
228 fluctuations in Fig.1B, GE is a more general and slowly varying estimate of task engagement that is a
229 weighted average of CE on the current but also on surrounding trials: if the animal disengages on
230 previous/future trials, we can assume it is also, to some degree, in a disengaged state currently.
231 Conversely, if it is engaged on these trials, we can assume it is also, to some degree, in an engaged state
232 currently. To this end, we fit exponential kernels to the residual fluctuations (Fig 1C right shows the
233 fitted kernel for each of the four tasks). These kernels capture the extent to which task engagement on
234 a trial, as indexed by the residual fluctuations, is related to task engagement on preceding and following
235 trials. Smoothing the residual fluctuations (CE; orange line in Fig.1D; shown after normalizing) by
236 these kernels allows us to obtain an estimate of a continuously varying GE (blue line in Fig.1D; shown
237 after normalizing) on each trial. We construct GE this way to obtain an interpretable regressor we can
238 use in our fMRI analyses. While CE and the disengage choices are closely (inversely) related, CE values
239 are impacted by the degree of predictability of a specific disengagement choice (black dots in Fig.1D
240 vs orange line in Fig.1D), and are thus also useful interpretable regressor for our fMRI analyses.
241
242

243 We can also combine the estimates of CE and GE to obtain two derived quantities that are used in first
244 stages of the neural analysis as contrasts. First, we can average the current CE index with the

245 continuously varying GE index to obtain an estimate of a third variable we refer to as *overall*
246 *engagement* (OE). OE provides an overarching estimate of engagement on any trial as it uses both the
247 engagement on the current trial (as given by CE) and of the surrounding trials (as given by GE) to index
248 engagement, and so it is a useful starting point for neural analyses; as explained in more detail below,
249 we can first identify areas in which activity is related to OE and then we can examine whether the
250 activity tracks CE, the more slowly varying GE, or both quantities. Thus, CE and GE can also be thought
251 of as the separated trial and state components of an overarching model that indexes OE. Second, we can
252 subtract the model-derived estimate of GE from the CE level to identify *engagement shifts* (ES) when
253 an animal's task engagement suddenly collapses and there is abrupt disengagement; the animal may be
254 disengaged on the current trial even though the events that normally surround a disengagement were
255 not observed. This allows us to examine CE when it is unexpected given the current level of GE; i.e. it
256 allows us to identify trials with low engagement in an otherwise highly engaged state. Importantly, for
257 the purpose of our neural analysis, both ES and OE can be constructed by subtracting/adding CE and
258 GE on the contrast-level within a single general linear model.
259

260 We repeated an analogous, control analysis of RTs – an index of motivational change in relation to
261 response vigor as opposed to task engagement. However, this analysis was performed on engaged trials
262 only; responses were only made, and RTs were only measurable on engage trials (Fig S3A-C). We
263 again find that, after having regressed out the variance in RTs due to task-manipulations, the error in
264 RT estimates is autocorrelated over trials (significant for lags < 8 at $p < 0.05$ with Bonferroni
265 correction). We refer to these residual fluctuations as *trial vigor*. By fitting exponential kernels to trial
266 vigor, we again obtain estimates of a general *state vigor* on each trial. The GE and general *state vigor*
267 estimates are analogous state-related variables but they are only weakly correlated (Fig S3D) and thus
268 reflect different potential motivational processes. Just as for ES and OE, we can also consider individual
269 *trial vigor* (as explained above) and slow fluctuations in trial vigor – *state vigor* – to obtain analogous
270 contrasts relating to response speed as opposed to task engagement to use in our neural analysis. Once
271 again these vigor-related variables were uncorrelated with our key task engagement/disengagement
272 related variables of interest.
273
274

275 *fMRI results*

276 As in the behavioral analyses, we constructed a separate neural regression model for each task that
277 captured all aspects of the extrinsic task variables (see *Methods* for the specific models). In addition to
278 these task-specific models, we also included regressors that captured the task engagement factors that
279 we identified in our behavioral analysis (Fig.1C), and regressors accounting for body and limb motion
280 during task-performance and low-quality volumes (see *Methods* for details). Because the neural activity
281 we are interested in is related to overarching engagement that is not necessarily associated with any one
282 event that occurred during the task, we time-locked our regressors to two separate points within each
283 trial that all four tasks had in common: (1) we time-locked to the decision-prompt on each trial when
284 monkeys were asked to make a choice, and (2) we time-locked to the end of the outcome-period of the
285 previous trial when animals either received a reward or no reward for their previous choice³⁰. This
286 ensured we had a measure of activity when task-specific performance and learning in a trial had been
287 concluded and potential preparatory activity for the coming trial was beginning while also ensuring that
288 the measurement was taken in the same way across all tasks; the same two time points could be defined
289 in an identical manner for all four tasks. Moreover, the previous-trial-end and the following decision-
290 prompt are far enough apart in time to ensure that regressors time-locked to each event are relatively
291 uncorrelated even after convolution with the macaque's fast hemodynamic response function^{28,29} (Fig
292 1F). We hypothesized that general task engagement-related activity – our signals of interest – should be
293 found at both time points. In our analysis we, therefore, included regressors for both CE and GE at both
294 time-points, and use contrasts to also estimate OE and ES. Moreover, we also included our analogous
295 control estimates of the *trial vigor* level and the *state vigor* at both of the same time-points (Fig S3).
296 Importantly, as we can only estimate *trial vigor* and *state vigor* on engaged trials, these regressors are
297 zeroed out on disengaged trials.
298

299

300 We combined the results of these session-level regressions separately for each data set per animal using
301 fixed effects. In a final step, we combined the data from all data sets on a third level using random
302 effects. This allows us to examine the neural correlates of task-independent engagement across tasks
303 and animals. To examine the effects of engagement/disengagement we used eleven data sets from nine
304 animals across four tasks while controlling for response vigor. Statistical significance was determined
305 using a standard cluster-based thresholding criteria of $z > 2.3$ and $p < 0.05$ ³¹. Significant clusters for
306 our contrasts of interest are shown as white outlines in Fig 2. Additionally, we also show the non-
307 cluster-corrected z-statistics at a lower threshold of $z > 1.5$ in Fig 2 to give a more complete picture of
308 the results. Moreover, in the supplementary analyses we report analyses for vigor-related effects using
309 a larger sample of data from thirteen animals across three tasks, as discussed above.
310

311 When we examined neural activity related to CE (Fig 2A), we saw a large overlap between activity at
312 previous-trial-end (Fig 2A left) and decision-prompt (Fig 2A middle), with activity at decision-prompt
313 being slightly more lateral. Combining these estimates allowed us to identify regions that show activity
314 both at previous-trial-end and decision-prompt (Fig 2A right), which suggests that it is sustained
315 throughout this task period and not linked to any particular task event (Fig 1E). While there was
316 widespread activity in the brain, within frontal cortex, pgACC (area 32), ventromedial PFC (areas 25
317 and 14), and the larger orbitofrontal network (areas 12 and 13) were particularly active. For a full table
318 of cluster locations and descriptions see Table S1.
319

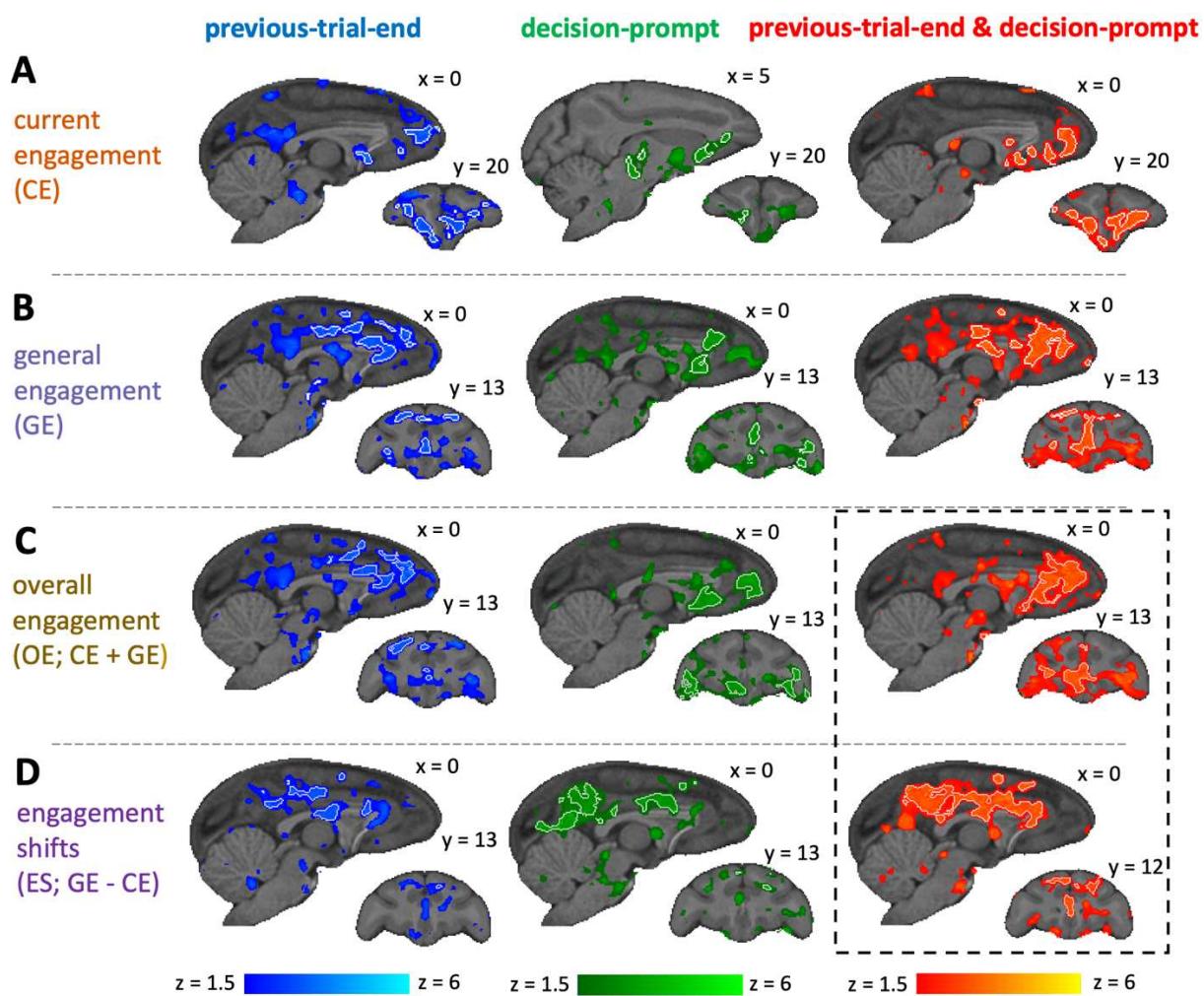
320 Similarly, when we examined neural activity related to GE (Fig 2B), we again saw a large overlap
321 between activity at previous-trial-end (Fig 2B left) and decision-prompt (Fig 2B middle). Combining
322 both time-points again yielded regions that show sustained activity (Fig 2B right). While the activity
323 again included pgACC (area 32) prominently, there was somewhat less ventromedial PFC and OFC
324 activity and instead more activity in anterior supracallosal ACC gyrus (gACC; area 24) as well anterior
325 dorsal ACC sulcus. Moreover, we found a significant cluster in frontopolar cortex (area 10o). For a full
326 table of cluster locations and descriptions see Table S2.
327

328 To identify regions that were active when the animals had a high overall task engagement level, we
329 combined our estimates of CE and GE into OE (Fig 2C). At the end of the previous trial, activity was
330 prominent in pgACC (area 32) and extended caudally into gACC (area 24) and into dorsal ACC sulcus
331 (rostral cingulate zone) (Fig 2C left). At decision-prompt, activity was again seen in pgACC (area 32),
332 but otherwise more orbitofrontal (area 47/12o) (Fig 2C middle). When combining activity at previous-
333 trial-end and decision-prompt to find areas that were active throughout the whole task-period and across
334 CE and GE, we observed a prominent and extensive area centered on pgACC (area 32), but extending
335 into adjacent dorsal ACC sulcus (dACC; note that this area is sometimes referred to as mid-cingulate cortex
336 or rostral cingulate zone) and subgenual ACC (sgACC; area 25) and also, albeit to a more limited extent
337 in orbitofrontal cortex (OFC) in area 13 and the sub-region bordering ventrolateral prefrontal cortex –
338 47/12o –, and striatum (Fig 2C right). For a full table of cluster locations and descriptions see Table
339 S3.
340

341 We also looked for effects of ES, i.e. the difference between GE and CE (Fig 2D). Such activity was
342 prominent when animals disengaged on the current trial while otherwise having been in an engaged
343 state and likely to soon return again to an engaged state. In other words, the analysis identifies
344 ‘surprising’ disengagements, where the disengagement is not preceded or followed by other
345 disengagements; or conversely engagement in a disengaged state. It thus identifies trials where our GE
346 and CE indexes are opposed. Again, similar regions were active when time-locking to previous-trial-
347 end (Fig 2D left) and decision-prompt (Fig 2D middle). When we time-locked to both previous-trial-
348 end and decision-prompt, activity was prominent throughout mid supracallosal cingulate gyrus (area
349 24) (Fig 2D right) extending into poster cingulate cortex and the precunous. For a full table of cluster
350 locations and descriptions see Table S4.
351

352 Overall, while we saw some small differences between the focus of activation between previous trial
353 end and decision prompt, none of the frontal effects were statistically different in a comparison between
354 the two. All statistically significant differences we found were in more posterior parts of the brain,

355 suggesting that the frontal circuit activity carrying general task engagement information is particularly
 356 sustained.
 357

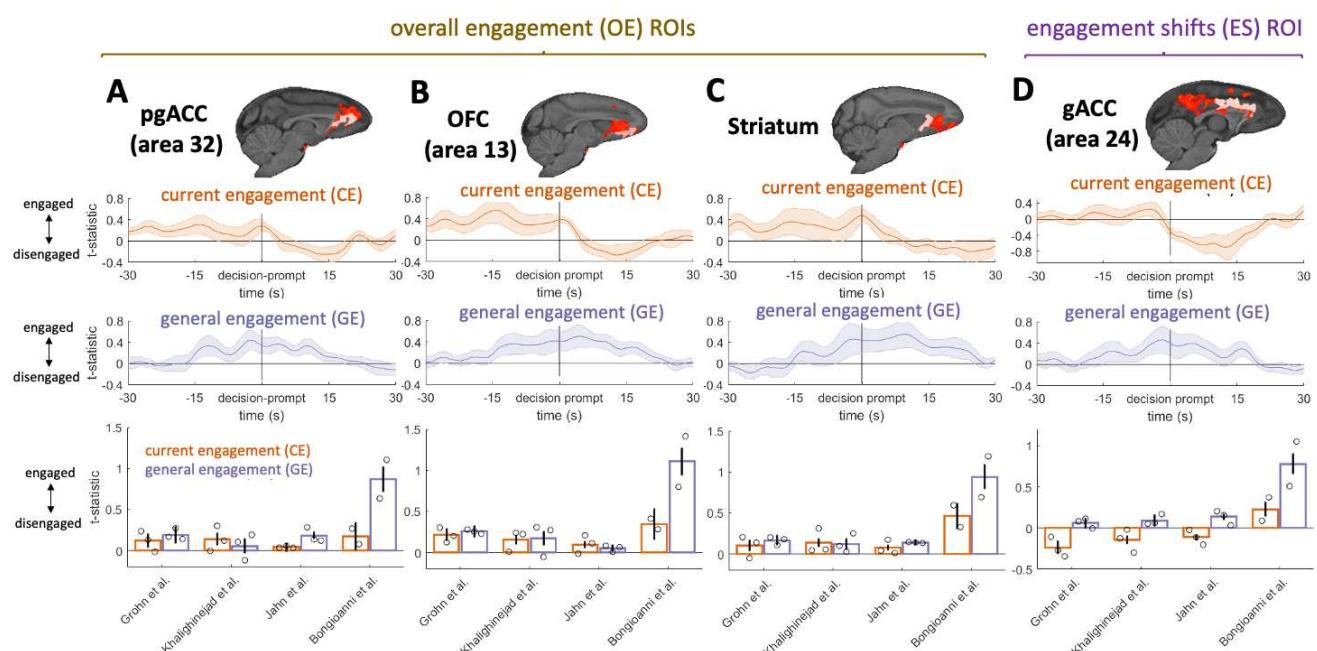


358
 359 **Figure 2.** Neural activity associated with engagement and disengagement. Whole-brain activity is
 360 shown for different contrasts (top to bottom), time-locked to different events (left to right). Activity
 361 with $z > 1.5$ is shown superimposed, with white outlines indicating significant clusters at $z > 2.3$. (A) For
 362 CE we observed activity in regions spanning pgACC (area 32), sgACC (area 25), and OFC (areas 12
 363 and 13), both at previous-trial-end and decision-prompt and when looking at both time-points
 364 combined. (B) For GE we observe activity throughout anterior and mid cingulate gyrus (including
 365 pgACC and supracallosal gACC), and frontopolar cortex. (C) For OE we observed activation most
 366 prominently in pgACC but extending into adjacent sgACC and dACC, and also OFC areas 13 and
 367 47/12o when animals are engaging with the current trial while also being in an overall engaged state.
 368 (D) For ES, we observed activity in the supracallosal cingulate cortex (including supracallosal gACC)
 369 when animals, surprisingly, disengaged from the trial despite otherwise being in an engaged state.
 370

371 To further examine the factors driving engagement on the whole-brain level, we focused on activity
 372 that was present both at previous-trial-end and decision prompt (Fig 2 right column) as this activity is
 373 most likely due to sustained task engagement. There we focused on OE-related and ES-related activity
 374 (Fig 2 dotted lines) and extracted the BOLD time course from regions of interest (ROIs) we placed in
 375 grey matter within the areas of functional activity. Specifically, we defined the ROIs as the overlap
 376 between functional activity and anatomically defined regions (pgACC, OFC, striatum, and gACC)³²,
 377 and looked separately at the effects of CE and GE in the timecourse.
 378

379 We observed that activity related to CE and GE appears similar in pgACC, OFC and the striatum (Fig
 380 3A-C middle rows). Activity related to GE extended over a window of approximately 30s –

381 approximately 15s before and 15s after the current trial. In contrast, activity related to current CE level
 382 was prominent before and on the trial itself. However, activity tracking both the more phasic CE level
 383 and the more tonic GE was observed across all areas in which OE effects were observed, namely pgACC
 384 (area 32), OFC (area 13), and striatum (Fig 3A-C). Finally, to confirm that OE effects in each region
 385 were not driven by activity recorded just in one task, we extracted the t-statistics in these ROIs from the
 386 whole-brain analysis and examined them for differences by task (Fig 3A-C bottom rows). Effects in the
 387 same direction were present in all four tasks and ROIs, although they were especially prominent in a
 388 task that required animals to make novel decisions²⁴.
 389



390
 391 **Figure 3. CE and GE timecourses in ROIs.** We extracted timecourses from ROIs placed in anatomically
 392 defined regions within our significant OE and ES clusters for activity both at previous-trial-end and
 393 decision-prompt. Significant clusters are shown in red with ROIs shown in light red (top). We then
 394 visualized the CE and GE timecourses in these regions time-locked to decision-prompt (middle rows).
 395 Shaded error bars represent standard errors of the mean across sessions. We also extracted the t-statistics
 396 associated with CE and GE from our whole-brain analysis in the same ROIs to visualize effects for each
 397 task separately (bottom row). Bars represent task-means and dots represent individual animal means.
 398 (A-C) Extracted CE timecourses from pgACC, OFC, and striatum show sustained activity before and
 399 during the trial. By contrast, GE timecourses show sustained activity both before and after the trial.
 400 Effects are consistent across all four tasks (bottom). (D) Extracted CE timecourses from supracallosal
 401 gACC exhibit decreases during and after the current trial when animals disengaged, while GE
 402 timecourses are sustained increases beginning many seconds before and continuing many seconds after
 403 the current trial (i.e. engaged). Effects are consistent across three of the four tasks, with CE having the
 404 opposite (positive) sign in the fourth task (bottom).
 405

406 Extracting the timecourse from the gACC ROI placed within the significant ES cluster (Fig 3D)
 407 demonstrated that there was both a decrease in activity that was related to CE – an effect that began
 408 shortly before trial onset but which was then sustained for some time afterwards – and an increase in
 409 activity related to GE (Fig 3D middle). To confirm that the effect was not driven by any one particular
 410 task, we extracted the t-statistics in the ROIs identified by the whole-brain analysis and examined them
 411 by task. We found broadly similar effects in three tasks although the current CE effect was different in
 412 the fourth task (Fig 3E). The ES contrast also clearly revealed activity in posterior cingulate cortex and
 413 precuneus, a region that has previously been implicated in decisions to disengage with foraging³³.
 414

415 Finally, we note that these results were specific to task engagement/disengagement as opposed to
 416 response vigor: when we looked at the latter, we were unable to see similar patterns of neural activity

417 to those shown in figures 2 and 3 (See Figs. S4-S5 for vigor results). If anything, vigor activity was
418 weaker overall and more transiently related to either decision prompt or after end trial. However, we
419 found a small cluster of activity related to a future relative increase in vigor (Fig S5).

420

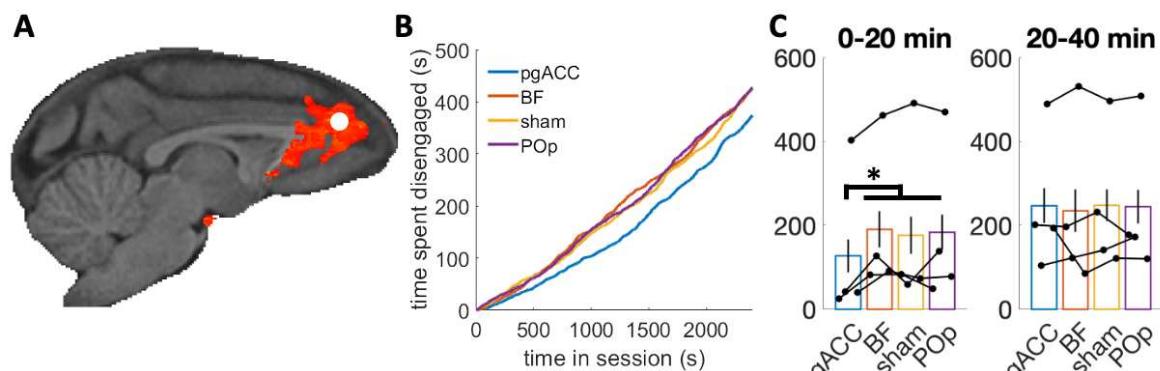
421

422 *TUS results*

423

424 Our fMRI analysis identified OE activity in pgACC (Fig 2C). A study we used in the fMRI analysis
425 also manipulated activity in pgACC using transcranial ultrasound stimulation (TUS)¹³ (Fig 4A)
426 making it possible to assess whether activity was causally responsible for the task engagement level or
427 a consequence of a process that was engendered elsewhere. Thus, we next sought a causal test of
428 pgACC's importance for task engagement. In addition to examining pgACC TUS data, we were also
429 able to examine the impact of TUS in other regions: in the dataset, BF and POp, were also stimulated,
430 and it also include a sham condition¹³. BF is a useful control region because BF activity is associated
431 with the timing of individual actions and BF TUS and cholinergic manipulation (BF is a source of
432 many cholinergic projects) have been shown to alter the timing of individual actions^{13,27}. By contrast,
433 POp was not associated with general task engagement/disengagement nor with performance of the
434 specific task and so POp TUS acted as a general control for cortical stimulation. The TUS wave
435 frequency was set to 250 kHz. TUS was applied in 30 ms bursts that were generated every 100 ms for
436 a total period of 40 s. The procedure was then immediately repeated for another 40 s in the same area
437 but in the other hemisphere. All TUS was applied prior to the behavioral task. Sustained TUS trains
438 have previously been shown to exert a sustained impact on neural activity and behavior and therefore
439 make it possible to examine the effect of neural disruption in the absence of any concomitant auditory
440 effects that might be associated with the delivery of each TUS pulse^{24,34-37}

441



442

443

444

445

446

447

448

449

450

451

452

453

Figure 4. TUS effects on disengagement. (A) One of the tasks^{13,27} used in our analysis also causally manipulated activity in pgACC using TUS. The stimulation site is shown as a white circle superimposed on the significant OE cluster. Two other regions were also stimulated and we use data from these TUS sites as controls, and also included a sham condition as a further control. (B) The total time spent disengaged by time in the experiment, averaged over sessions and animals, reveals that after pgACC stimulation, animals are more engaged early on during the task, compared to the situation after stimulating BF, POp, or sham. (C) When averaging the time spent disengaged over the first and last 20 min of the task, we find a significant difference between pgACC and the other TUS sites in the first but not in the last 20 min. Bars represent condition means, and black dots represent individual subject means.

454

455

456

457

458

459

460

To examine the effect TUS had on the time spent disengaged, we classified each timepoint in each session as engaged or disengaged, and calculated the time spent disengaged for each stimulation site as animals progressed through the session. This analysis revealed a tendency for more frequent early disengagements in the control conditions than after pgACC stimulation, whereas late disengagements appeared equally common throughout all conditions (Fig 4B). Indeed, when testing for a difference between disengagements after pgACC stimulation compared to other stimulations sides, we found a significant difference in the first 20 min but not in the last 20 min (early: $\chi^2(1) = 5.27$; $p = 0.022$;

461 late: $\chi^2(1) = 0.03$; $p = 0.867$; mixed effects models with random slopes and intercepts for condition
462 by monkey). This effect of more engagement early on can also be observed in each animal individually
463 (Fig S6).

464

465 Discussion

466

467 Task engagement fluctuates throughout daily activity leading to inattention. Ultimately, however,
468 people and animals may give up on a task completely and either remain inactive or pursue an entirely
469 different course of behavior. While the process of error monitoring and subsequent adjustment of
470 behavior has received considerable attention³⁸⁻⁴⁰, less is known about the processes that drive complete
471 task disengagement. This is despite the obvious relevance such mechanisms have to the understanding
472 of apathy – a prominent feature of psychological and neurological illnesses¹. Although the social
473 demands of the research setting mean that human participants rarely give up on a task completely when
474 they are participating in an experiment, it is not unusual for macaques to move between periods of task
475 disengagement and then re-engagement. In the current investigation we identified such periods and
476 found that they manifested in similar ways across eleven macaques performing four different cognitive
477 tasks in the MRI scanner. When animals were strongly engaged in any task and unlikely to disengage,
478 then a broad region of increased activity spanning several areas, but which was especially prominent in
479 pgACC, was found. Activity was weakest on trials when the animals' task engagement levels collapsed
480 and the monkeys disengaged. The effects were apparent even when we controlled for RT suggesting
481 that pgACC activity was related to task disengagement rather than any change in response timing¹³,
482 response control^{38,41}, or any change in response vigor that might lead to changes in RT^{5,42,43}. While
483 vigor and engagement were associated with different behavioral indices and had correspondingly
484 distinguishable relationships with brain activity, some of the effects were adjacent in the brain.
485 However, vigor effects often appeared to be mostly linked with the vigor level on the preceding the
486 current trial (see Fig S4 and S5) or with increases of vigor that were about to occur (Fig S4D future
487 vigour – past vigour). By contrast, engagement effects reflected stable patterns of behavior sustained
488 over several trials.

489

490 The pattern of activity found in pgACC suggests it is linked to a fundamental process of task
491 engagement that is independent of any particular task identity or specific task feature. This conclusion
492 was reached after observing that the link between pgACC activity and task engagement was found after
493 regressing out any influence that specific task events might have had on neural activity. In fact, for all
494 analyses, we extensively regressed out task parameters to remove all the variance linked to task features
495 and reward history, so that we were able to examine how fluctuations in the residual, activity unrelated
496 to any specific task type was linked to fluctuations in engagement. As such, our findings cannot be
497 attributed to parameters manipulated during the task or satiety and fatigue (we regress out the
498 cumulative reward and the trial number). While we did not examine task-related activity here, this was
499 the focus of previous analyses of all included datasets^{13,24-27}. Importantly, each original study shows
500 distinct patterns of neural activity that can be linked to the variables manipulated during each task,
501 which differ from the activity patterns we show here. While we focused on the task independent
502 elements of motivation and engagement there is, of course, a large body of work on motivation, fatigue
503 and apathy based on effort and cost models⁴⁴⁻⁴⁸. Future research could potentially combine both
504 approaches (intrinsic/task independent and task driven motivational fluctuations) to get a more
505 comprehensive picture of their interplay.

506

507

508 In all tasks included in the analysis, we could distinguish between activity related to task engagement
509 on a given trial (current engagement; CE) – whether the animal was engaged or disengaged on the trial
510 itself – and the more general state (general engagement; GE) surrounding the trial. Moreover, activity
511 change was not just apparent at the time of responding but it was present and built up over a longer
512 preceding time period. Timecourse analyses revealed elevated signals approximately 15 s before and
513 15 s after the trial in question. The slowly evolving pgACC signal might reflect the parallel slow
514 evolution of task engagement factors and their independence of specific task events.

515

516 Importantly, the corresponding pgACC region of the human brain ⁴⁹ has been linked to the
517 predisposition to initiate foraging behavior and in determining that the prospect of potential future
518 outcomes mean that it is worth initiating a sequence of behavior despite potential costs ^{50,51}. The pgACC
519 is unusual in that it is one of only two cortical regions that project strongly to the striosomal
520 compartment of the basal ganglia, in anterior striatum, which, in turn, is distinguished by a number of
521 anatomical features including projection to the dopaminergic midbrain ^{9,52,53}. As a result, pgACC is
522 well placed to regulate fundamental aspects of motivated behavior under the control of dopamine ⁵⁴
523

524 Not only was activity in pgACC predictive of task engagement but TUS-induced alteration of pgACC
525 activity led to consistent patterns of changed task engagement in the four macaques that participated in
526 an additional TUS study. As the TUS stimulation data was part of the original study design ¹³ we had
527 no control over stimulation sides and could not employ the same stimulation across all tasks or brain
528 sites. While we were unable to examine the impact of stimulating the supracallosal gACC region (Figure
529 2D), it was, however, possible to examine the effect of pgACC stimulation because, fortuitously,
530 transcranial ultrasound stimulation had been applied to this area in the task investigated by
531 Khalighinejad and colleagues ¹³. However, due to only having TUS stimulation in one study, we could
532 not investigate the task general causal impact of pgACC stimulation. After the application of TUS,
533 macaques were less likely to disengage from a task. Normally, when animals were in the control
534 condition, in the first half of a 20 min testing session, macaques disengaged from the task for
535 approximately 3 min. After pgACC TUS, however, animals often worked continually without
536 disengaging or only took a break for approximately 2 min on average. Importantly, the effects were
537 specific to pgACC TUS and were not observed after TUS to two control brain regions. First, similar
538 effects not seen when applying TUS to an anterior parietal control region, POp, in which there was no
539 task-related or task engagement-related activity. Second, and perhaps even more importantly, such
540 effects were not seen when TUS was applied to the cholinergic basal forebrain (BF) even though it has
541 previously been shown that BF TUS and systemic cholinergic manipulation change the timing of
542 animals' decisions to make individual actions ^{13,27}. However, while the stimulated pgACC appeared to
543 track our engagement variable, we acknowledge that several factors, such as emotion, energy level and
544 ability to focus, and subjective emotional responses ⁵⁵ may be directly or indirectly linked to
545 engagement. Future research will need to tease apart.

546
547 Relatively few behavioral experiments have focused on the macaque pgACC and previous behavioral
548 analysis approaches have not allowed identification of clear changes in task engagement ¹³ of the sort
549 that we were able to identify here. However, it has been reported that electrical microstimulation of the
550 macaque pgACC during a cost/benefit decision making task led to fewer decisions to pay higher costs
551 (enduring air puffs) to obtain higher rewards (more juice) ¹⁰. If pgACC is not only responsible for
552 setting the general willingness to endure costs for benefits during choices but also responsible for setting
553 the general level of engagement, then our results and these previous findings can be reconciled.
554 However, it is important to note that TUS is unlikely to recreate patterned excitation of specific neurons
555 that can be induced by microstimulation but rather it may be more likely to disrupt the endogenous
556 activity patterns within a brain region ^{34,37}. In the rat, optogenetic inhibition of the projections from the
557 homologue of pgACC ⁵⁶ – often called the prelimbic cortex – to the striosome compartment of the
558 striatum similarly leads rats to be more likely to pay the cost of engaging in a trial in order to obtain a
559 reward ⁵⁷. This occurs because pgACC outputs synapse with inhibitory interneurons in the striosome
560 which, in turn, connect with striatal projection neurons. Thus, disrupting pgACC leads to the release of
561 striatal projection neurons from inhibition. As noted, striosomal projection neurons are distinguished
562 by their unique anatomical connections to regions such as the dopaminergic midbrain. In summary,
563 pgACC TUS or pgACC optogenetically mediated inhibition in monkeys and rats respectively make
564 animals more likely to engage in an effortful task to obtain reward or to take a costly action to obtain
565 reward. Both interventions may resemble one another in leading to the release of striatal projection
566 neurons from inhibition and, as a consequence, changes in dopamine levels. While we found an impact
567 of TUS on behaviour, we can only speculate about the physiological mechanism(s) at this stage.
568 Hopefully future research on the physiological impact of TUS and post stimulation fMRI will be able
569

570 to shed some light onto this question, in particular why TUS can lead to apparent enhancement of
571 behaviours associated with the stimulated brain regions, despite TUS not mimicking neural activity.
572

573
574 The pgACC region studied here not only has a homologue in rodents but also in humans^{49,56}. In humans,
575 coupling between pgACC activity and striatal activity has been linked to disinhibition of effortful
576 choices; first, it was more prominent when the costs of a course of action were high but it was still
577 pursued and second it was more prominent in individuals who were inclined to pursue such courses of
578 action⁵¹. Individual variation in pgACC activity has also been reported to covary with how influenced
579 each person is by the prospect of future reward despite the need to engage in a sequence of decisions⁵⁰.
580 It also tracks how well people have been performing simple tasks and how they are likely to evaluate
581 their performance^{58,59}.
582

583 The idea that animals make decisions to engage or disengage with one behavior or another or simply to
584 do nothing at all is consistent with a growing body of work on decision making during foraging and
585 their neural correlates^{60,61}. It also suggests alternative ways of thinking about situations in which people
586 and animals appear to lack task engagement. In particular, the engagement shift (ES) activity in
587 supracallosal cingulate gyrus (area 24, also called mid-cingulate cortex) might normally, in less
588 constrained situations than in the current experiment, lead to sudden deliberate decisions to disengage,
589 rather than simply reflecting slowly waning task engagement. While this is only speculation, it is
590 nonetheless noteworthy that ES specifically activated the supracallosal cingulate gyrus in a region
591 adjacent to one that has been linked to switching and foraging activity in the past in humans, macaques,
592 and rodents^{35,50,51,60,62-64} and which is distinct from pgACC. Our results have obvious links to a large
593 body of work on error monitoring⁶⁵ and performance lapses⁶⁶ in humans that have identified
594 ACC/MCC and pre-SMA as relevant regions for both error monitoring as well as post error adaptation
595 effects. While our lapses are a complete disengagement from the task, not an error *per se*, the overlap
596 between the anatomical location of the effects reported here and the effects previously reported is
597 intriguing, suggesting common mechanisms may prevent disengagement, maintain engagement with
598 the current task, and mediate performance monitoring for errors and post-error adaptation and return to
599 task performance. Overall, our results suggest slowly drifting fluctuation in engagement where low
600 pgACC activity is linked to low engagement levels and repeated giving up, while sudden and surprising
601 decisions to give up during otherwise high engagement state are triggered by sudden supracallosal
602 gACC activity. The engagement shift (ES) was also the only contrast that clearly revealed posterior
603 cingulate cortex and precuneus, a region that has previously been implicated in decisions to disengage
604 with foraging³³, further suggesting that ES might be linked to deliberate decisions to disengagement in
605 a specific trial, as opposed to gradual drifting decline in task engagement.
606

607 Overall, our findings not only suggest pgACC mediation of intrinsic variation in task engagement but,
608 more generally, emphasize the multifaceted nature of motivation and task performance. Specifically,
609 we could dissociate task engagement from response speed. However, our ES index suggests that even
610 giving up on a task might not be determined by solely one factor. In fact, in our study, animals might
611 give up because of an overall change in intrinsic task engagement (OE) or because they deliberately,
612 but transiently, want to do something else (ES). We suggest that future work should embrace this
613 complexity.
614

615 While we could show task-general and robust neural and behavioural patterns related to task
616 engagement, we do not know what cognitive/emotional or otherwise internal construct is driving
617 motivation states, as we cannot ask the animal about their subjective experience. It is possible that other
618 fundamental constructs are linked to our pgACC activity in particular, which in turn relate to the
619 motivational state the animal is in, instead of pgACC driving motivation directly. However, whatever
620 such a fundamental construct might be responsible, it appears intimately linked to motivation across
621 tasks.
622

623 Importantly, engagement-related activity was not confined to pgACC but was also noticeable in a
624 posterior part of the lateral orbitofrontal sulcus. This region has been identified with credit assignment
625 – the linking of specific choices to specific outcomes^{28,34} – but it is also notable that cortex in the same
626 region or nearby is the second cortical region in the macaque, in addition to pgACC, that projects to the
627 striosomal compartment of the striatum, the striatal region that is, in turn, likely to influence the
628 dopaminergic midbrain, and in which stimulation is known to affect cost-benefit decision making^{9,52}.
629

630 While the current study has taken some of the first steps needed to identify the neural mechanisms
631 mediating task engagement, some questions remain unanswered. Notably while pgACC and posterior
632 lateral orbitofrontal sulcus were less active when task disengagement occurred, a more posterior mid-
633 cingulate gyrus region (area 24) was most active during sudden disengagement (Fig 3). As well as
634 attempting to understand the key elements that determine the multifaceted relationships between
635 specific task features, task engagement, brain activity and the cellular mechanisms at play in pgACC
636 and beyond, an important future step will be examining the effect of manipulating activity in area 24.
637

638 Methods

639

640 Subjects

641 13 rhesus macaques across 17 data sets were included in the four studies considered. All procedures
642 were conducted under licenses from the United Kingdom (UK) Home Office in accordance with the
643 UK Animals (Scientific Procedures) Act 1986 and with the European Union guidelines (EU Directive
644 2010/63/EU).

645

646 Data collection

647 The fMRI data were acquired in a horizontal 3 Tesla MRI scanner with a full-size bore using a four-
648 channel, phased-array, receive-only radio-frequency coil in conjunction with a local transmission coil
649 (Windmiller Kolster Inc, Fresno, USA). The animals were head-fixed in a sphinx position in an MRI-
650 compatible chair (Rogue Research, CA). fMRI data were acquired using a gradient-echo T2* echo
651 planar imaging (EPI) sequence with the following parameters: 1.5 × 1.5 × 1.5 mm resolution, 36 axial
652 interleaved slices with no gap, TR of 2280 ms, TE of 30 ms and 130 volumes per run. Proton-density-
653 weighted images using a gradient-refocused echo (GRE) sequence (TR = 10 ms, TE = 2.52 ms) were
654 acquired as reference for offline image reconstruction.

655

656 Behavioral task-models

657

658 We used data from four different tasks^{13,24–27}. See Supplementary Text 1 for descriptions of the four
659 tasks. In all tasks monkeys had to respond to stimuli on screen that were rewarded, while their neural
660 activity was recorded using fMRI. Briefly, Jahn and colleagues (study 1)²⁵ ran an exploration-
661 exploitation task with different time horizons. On some trials, monkeys had to make one-off choices
662 between two stimuli on screen based on the information presented. On other trials, they had to choose
663 between the same options repeatedly, which enabled them to learn more about the value of the options.
664 Grohn and colleagues (study 2)²⁶ ran a task with a single option presented on screen. By manipulating
665 the reward associated with the option, as well as the location of the option on the screen, they induced
666 different kinds of surprises. In the study of Bongioanni and colleagues (study 3)²⁴ monkeys had to
667 choose between two options that varied among two dimensions, reward amount and reward probability.
668 They presented the monkeys with novel stimuli that they had not encountered before but the value of
669 which they should be able to infer based on previously observed stimuli. Khalighinejad and colleagues
670 (study 4)^{13,27} showed monkeys a single stimulus that contained information about the reward amount
671 and the inter-trial-interval length. The longer monkeys waited to respond, the more the reward
672 probability increased, which was also displayed as a feature of the stimulus, but at the price of losing
673 time as the experiment did not have a fixed number of trials but was limited to 40 min. This allowed
674 them to study how monkeys decide when to make a response.

675

676 To regress out the effect task-manipulations have on engagements/disengagements, we used logistic
677 regressions to control for these effects. For all tasks, we included regressors for the rewards the animals

678 obtained on the previous 5 trials, the current trial number, and the cumulative reward the animals
679 received so far during a session. Additionally, we included task-specific regressors for each task that
680 are based on the models used in the original analyses of the tasks:
681

682 For study 1²⁵ we included a regressor coding for repetition bias (whether the animal has responded on
683 the same side on the previous trial), a regressor coding for the choice horizon (short or long), and a
684 regressor coding for the current choice number within a horizon. Moreover, we used the Bayesian model
685 described by Jahn's and colleagues²⁵ to estimate the expected reward and the expected uncertainty on
686 each trial. We then included the sum of the expected reward of both stimuli, and the sum of the
687 uncertainty of both stimuli as regressors as well as the absolute difference in expected reward and
688 uncertainty between the two stimuli. Finally, we allowed these 4 latter regressors to vary by horizon as
689 interaction terms.
690

691 For study 2²⁶ we included a regressor coding for whether the stimulus is on the left or the right side of
692 the screen, a regressor coding for whether the stimulus switched sides, and a regressor coding for
693 whether the monkeys received 2 drops of juice on the last trial.
694

695 For study 3²⁴ we included regressors for the absolute additive value difference, the absolute
696 multiplicative value difference, the total additive value, and the total multiplicative value. Additive and
697 multiplicative value here refer to adding or multiplying reward magnitude and probability (further
698 details can be found in the original publication). Moreover, we also included a regressor capturing a
699 repetition bias (responding on the same side as on the previous trial).
700

701 For study 4^{13,27} we included regressors for the current reward magnitude, the length of the upcoming
702 inter-trial-interval, and the speed of the dots on screen.
703

704 All models were run separately for each monkey. For each monkey, we allowed all regressors to also
705 vary as random slopes by session. We then took the difference between the model prediction and
706 observed behavior as our measure of CE.
707

708 709 *Autocorrelation and kernels* 710

711 To calculate the autocorrelation of our measure of intrinsic task engagement we shift the timeseries for
712 each session of each monkey by lags from 2-10 and compute the correlation for each (we leave out
713 lag=1 because for some of our experiments two disengagements cannot occur after each other because
714 of the task design). We then separately average the sessions of each monkey, before finally averaging
715 over monkeys.
716

717 To test whether the autocorrelation is significantly larger than 0, we randomly permute the data of each
718 session and repeat the above procedure 10000 times on the permuted data. We then determine the p-
719 value as the number of times the average autocorrelation over monkeys is smaller than the permuted
720 average. Because we are testing lags from 2-10, we use a p-value of 0.05/9 = 0.0056. For RTs we use a
721 p-value of 0.05/10 = 0.005 because we are testing lags 1-10.
722

723 To compute the task engagement state, we fitted an exponential kernel to our measure of intrinsic task
724 engagement. Specifically, we found the free parameter α that minimised the squared distance between
725 the function $\alpha(1 - \alpha)^{|d|}N$ and the data, where for each trial, d indexes all past and future trials of a
726 session, leaving out the current trial, i.e. $d = \text{first trial}, \dots, -2, -1, 1, 2, \dots, \text{last trial}$, and N is a
727 normalization factor that makes the weights sum up to 1, i.e. $N = \sum(\alpha(1 - \alpha)^{|d|})^{-1}$. We compute α
728 separately for each of our 4 tasks by finding the α that minimizes this error across all sessions associated
729 with that task. Thus, we overall fit four values of α . For study 1²⁵ and study 4^{13,27} we used $d =$
730 $\text{first trial}, \dots, -2, 2, \dots, \text{last trial}$ —leaving out trials -1 and 1—because disengagements do not occur
731 concurrently because of the task designs.

732
733
734
735
736
737

We then used the fitted value of α to smooth the data, thus obtaining a state estimate on each trial. By using only the half of the kernel that is directed towards the past/future, i.e. $d = \text{first trial}, \dots, -2, -1$ and $d = 1, 2, \dots, \text{last trial}$, we were also able obtain separate state estimates of the past and future GE, which we used as regressors in the whole brain analysis.

742
743
744

When fitting the kernel to RTs we are only using engaged trials. Therefore, the timeseries is interrupted when a disengagement happens, which also breaks the autocorrelation. For RTs we therefore only use consecutive chunks that are uninterrupted by disengagements to fit the kernel, i.e. we set $d = \text{earliest trial that is engaged}, \dots, -2, -1, 1, 2, \dots, \text{latest trial that is engaged}$.

748
749
750
751
752
753
754
755
756
757

EPI data were prepared for analysis following a dedicated nonhuman primate fMRI processing pipeline using tools from FSL⁶⁷, Advanced Normalization Tools (ANTs)⁶⁸, and the Magnetic Resonance Comparative Anatomy Toolbox (MrCat; <https://github.com/neuroecology/MrCat>).

758
759
760
761
762
763
764

Like for our behavioral analysis, we also created separate neural regression models for each task. Apart from these task-specific regressors (further outlined below), we also included the same regressors across-tasks. For all tasks, we included regressors for the current level of the intrinsic CE (computed as described in the *behavioral task-models* section), the past GE, and the future SM (computed as described in the *autocorrelation and kernels* section). We included all of these regressors twice, once time-locked to the end of the reward delivery of the previous trial, and once time-locked to the onset of the decision-prompt. Moreover, we also included regressors for the trial vigor, and the past and future state vigor, again time-locked both to the end of the previous trial's reward delivery and the decision-prompt. The correlation between these 12 regressors in shown in Fig S3D.

765
766
767
768
769
770
771
772
773
774
775
776
777

To compute overall estimates of GE and state vigor, we created contrasts that summed up the past and future GE, and the past and future state vigor. Moreover, to estimate OE we added a contrast that summed up CE and GE, and to estimate ES we added a contrast that subtracted CE and GE. Similar contrasts were included for vigor. Finally, we also included contrasts that subtracted the past and future GE, and the past and future state vigor.

778
779
780
781
782
783
784
785
786

Additionally, we also included some control regressors that were the same for all 4 tasks. We included intercepts time-locked to the beginning of the reward delivery, the end of the reward delivery, the onset of the decision-prompt, and when decisions were made. We also included the current trial number, the cumulative reward so far, and the seconds since the beginning of the experiment, all time-locked to the end of the previous trial's reward-delivery, and to the onset of the decision prompt. Moreover, we also included confound regressors to index head motion and volumes with excessive noise. Motion-related artefacts were captured by including 13 principal components accounting for volume-by-volume magnetic field distortions due to limb and body movements during task performance. Volumes with excessive noise were entirely excluded from the fMRI analysis by including regressors for each flagged volume. Both the 13 principal components and the low-quality volumes were estimated for each session using the MrCat toolbox (<https://github.com/neuroecology/MrCat>) as also described in the original publications for each dataset^{13,24-27}.

787
788
789
790
791
792
793
794
795
796

Task-specific regressors were based on the models used in the original papers. The regressors we included were:

For study 1²⁵ we included an intercept time-locked to the onset of the wait-stimulus. We also included regressors for the expected reward of the chosen stimulus, the expected reward of the unchosen stimulus, the uncertainty of the chosen stimulus, and the uncertainty of the unchosen stimulus, all time locked to the wait-stimulus. These quantities were calculated according to the Bayesian model described in the original paper. At decision, we included a regressor for the response side. At the beginning of the reward delivery, we included regressors for the amount of reward received, the expected reward of the

787 chosen stimulus, the expected reward of the unchosen stimulus, the uncertainty of the chosen stimulus,
788 and the uncertainty of the unchosen stimulus, all again according to the Bayesian model. Some sessions
789 also included a horizon manipulation, such that animals had to either make one-off decisions, or decide
790 among the same options multiple times while learning new information about the options throughout.
791 For these sessions, we included a regressor at the decision-prompt whether the trial was a short or a
792 long horizon trial. Furthermore, in some sessions animals received feedback about the reward of the
793 unchosen stimulus, whereas in others they did not. For the sessions that included this feedback, we also
794 included a regressor for the amount of reward of the unchosen option, time-locked to reward delivery.
795

796 For study 2²⁶ we included a regressors for the response side and whether the stimulus had switched
797 sides at decision. At reward delivery, we included regressors for the current reward amount, and the
798 reward amount of the previous 5 trials as separate regressors. We also included a regressor for whether
799 the reward was 2 drops of juice, and a regressor for whether the previous reward was 2 drops of juice.
800 Finally, we also included a regressor for whether the current trial was an error and no reward would be
801 delivered, time-locked to when the reward would otherwise be delivered.
802

803 For study 3²⁴ we included regressors for the absolute additive value difference, the absolute
804 multiplicative value difference, the total additive value, and the total multiplicative value, all time-
805 locked to decision-prompt. These regressors are further described in the original paper. We also
806 included a regressor for the response side at decision, and a regressor for the reward amount at reward
807 delivery.
808

809 For study 4^{13,27} we included regressors for the current reward magnitude, the upcoming inter-trial-
810 interval duration, and the dot-speed, all time-locked to stimulus presentation. We also included
811 regressors for the last trial's reward amount, and the number of dots on screen when the last trial's
812 response was made, also time-locked to stimulus presentation. At decision, we included a regressor for
813 the number of dots currently on screen. Finally, we included a regressor for the reward amount at reward
814 delivery.
815

816 We used a hierarchical GLM approach to combine data from monkeys and sessions: We first fitted each
817 session individually using the appropriate regression model (as described above), and then warped the
818 resulting statistical maps into F99 standard space. There, on a second hierarchical level, we combined
819 data individually for each monkey using fixed effects and pre-planned contrasts over regressors that
820 were shared across models. Finally, on a third hierarchical level, we combined data from all monkeys
821 using random effects, as implemented in the FLAME 1+2 procedure from FLS⁶⁷. To test for statistical
822 significance, we used a standard cluster-based thresholding criteria of $z > 2.3$ and $p < 0.05$ (Worsley et
823 al., 1992).
824

825 Analyses were run in FSL's fMRI Expert Analysis Tool (FEAT). Regressors were z-scored and
826 convolved with a hemodynamic response function (HRF), which was modelled as a gamma function
827 (lag = 3, sd = 1.5) convolved with a boxcar function of duration 1s.
828
829

830 *ROI analyses and timecourses*

831 To define ROIs, we calculated the overlap between the cluster-corrected t-statistic map from the
832 whole-brain analysis and anatomically defined regions based on an atlas³², which we dilated with a
833 kernel of 3x3x3 voxels. We then warped these ROIs into session-space using the nonlinear
834 deformation field.
835

836 To visualise the BOLD timecourse of a regressor we re-ran the convolutional whole-brain analysis for
837 each session of each monkey in FEAT, leaving out the 12 regressors of interest we described above
838 but including all other task-relevant and nuisance regressors. We then extracted the average residual
839 of this whole-brain analysis from each ROI. Next, we upsample the timecourse by a factor of 10 using
840

841 spline interpolation. Because we are interested in temporally extended effects of task engagement, we
842 then smooth the upsampled timescourse with a moving average filter of 5s.
843
844

845 *TUS stimulation and analysis*
846

847 TUS stimulation was conducted with a single-element ultrasound transducer (H115-MR, diameter 64
848 mm, Sonic Concept, Bothell, WA, USA) with region-specific coupling cones filled with degassed water
849 and sealed with a latex membrane (Durex). The ultrasound wave frequency was set to the 250 kHz
850 resonance frequency and 30 ms bursts of ultrasound were generated every 100 ms (duty cycle 30%)
851 with a digital function generator (Handyscope HS5, TiePie engineering, Sneek, the Netherlands).
852 Overall, the stimulation lasted for 40 s. A 75-Watt amplifier (75A250A, Amplifier Research, Souderton,
853 PA) was used to deliver the required power to the transducer. For further details see ¹³
854

855 To calculate the time spent disengaged, we classified each trial in each session as engaged or disengaged
856 in the same way we did for the data sets for the behavioral and fMRI analysis. We then calculated the
857 total time spent disengaged for each session, and tested whether there was a significant difference
858 between the sessions in which pgACC was stimulated or the control conditions (BF, POp, or sham
859 stimulation). In this model we also included a random intercept for each animal to control for different
860 baseline effects, and a random slope for whether pgACC or a control side was stimulated.
861

862 To visualize where in a session differences between conditions emerged, we also calculated the
863 cumulative sum of the time spent disengaged for each second of each session, and then averaged this
864 sum over sessions for each condition.
865

866 **Funding:** Funding for this work was provided by Medical Research Council
867 (<https://www.ukri.org/councils/mrc/>) grants MR/P024955/1 (MFSR, JS, and NK), G0902373
868 (MFSR), MR/K501256/1 (JG), MR/N013468/1 (JG), Wellcome Trust (<https://wellcome.ac.uk/>) grants
869 203139/Z/16/Z (MFSR); WT100973AIA (MFSR); WT101092MA (MFSR and JS), 105651/Z/14/Z
870 (JS), St John's College, University of Oxford (<https://www.sjc.ox.ac.uk/>) (JG), the Biotechnology
871 Biological Sciences Research Council (<https://www.ukri.org/councils/bbsrc/>) grant BB/R010803/1
872 (NK), the European Research Council (<https://erc.europa.eu/>) grant FORAGINGCORTEX, project
873 number 101076247 (NK), the Economic and Social Research Council
874 (<https://www.ukri.org/councils/esrc/>) grant ES/J500112/1 (AB), and a studentship from the Paris
875 Descartes University doctoral and a mobility grant (CJ).

876
877 For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any
878 Author Accepted Manuscript version arising from this submission.

879
880 The funders had no role in study design, data collection and analysis, decision to publish, or
881 preparation of the manuscript. Views and opinions expressed are those of the author only and do not
882 necessarily reflect those of the funders. Neither the European Union nor the granting authority can be
883 held responsible for them.

884

885 **Contributions:** NIM.K., C.J., A.B., U.S., and J.S. provided behavioral and neural data. J.G. analyzed
886 the data. NIL.K. and M.R. supervised the project. J.G., NIL.K., and M.R. wrote the paper. All authors
887 commented on the draft of the paper.

888 **Data Availability:** All datasets used in this study have already previously been published. Please
889 contact the corresponding authors of the original publications for access to the raw datasets. Source
890 data underlying the figures and analyses in this manuscript will be deposited in a public repository
891 upon publication.

892 **Code Availability:** The code to replicate the analyses and figures shown in this paper will be
893 deposited in a public repository upon publication.

894

895 **References**

896

897 1. Husain, M. & Roiser, J. P. Neuroscience of apathy and anhedonia: a transdiagnostic
898 approach. *Nat Rev Neurosci* **19**, 470–484 (2018).

899 2. Scholl, J., Trier, H. A., Rushworth, Matthew F S & Kolling, N. Should I stick with it or
900 move on? The effect of apathy and compulsivity on planning and stopping in
901 sequential decision making. *PLoS Biol.*

902 3. Pessiglione, M. *et al.* How the brain translates money into force: A neuroimaging
903 study of subliminal motivation. *Science (1979)* (2007) doi:10.1126/science.1140459.

904 4. Meyniel, F., Sergent, C., Rigoux, L., Daunizeau, J. & Pessiglione, M.
905 Neurocomputational account of how the human brain decides when to have a break.
906 *Proceedings of the National Academy of Sciences* **110**, 2641–2646 (2013).

907 5. Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the
908 control of response vigor. *Psychopharmacology 2007 191:3* **191**, 507–520 (2007).

909 6. Klaus, A., Alves Da Silva, J. & Costa, R. M. What, If, and When to Move: Basal
910 Ganglia Circuits and Self-Paced Action Initiation. <https://doi.org/10.1146/annurev-neuro-072116-031033> **42**, 459–483 (2019).

911 7. Brass, M. & Haggard, P. The what, when, whether model of intentional action.
912 *Neuroscientist* **14**, 319–325 (2008).

913 8. Hikosaka, O. The habenula: from stress evasion to value-based decision-making.
914 *Nature Reviews Neuroscience* **2010 11:7** **11**, 503–513 (2010).

915 9. Amemori, S. *et al.* Microstimulation of primate neocortex targeting striosomes induces
916 negative decision-making. *European Journal of Neuroscience* **51**, 731–741 (2020).

917 10. Amemori, K. I. & Graybiel, A. M. Localized microstimulation of primate pregenual
918 cingulate cortex induces negative decision-making. *Nature Neuroscience* **2012 15:5**
919 **15**, 776–785 (2012).

920 11. Khalighinejad, N., Priestley, L., Jbabdi, S. & Rushworth, M. F. S. Human decisions
921 about when to act originate within a basal forebrain-nigral circuit. *Proc Natl Acad Sci
922 U S A* **117**, 11799–11810 (2020).

923 12. Khalighinejad, N., Garrett, N., Priestley, L., Lockwood, P. & Rushworth, M. F. S. A
924 habenula-insular circuit encodes the willingness to act. *Nature Communications* **2021
925 12:1** **12**, 1–12 (2021).

926 13. Khalighinejad, N. *et al.* A Basal Forebrain-Cingulate Circuit in Macaques Decides It Is
927 Time to Act. *Neuron* **105**, 370–384.e8 (2020).

928 14. Esterman, M., Noonan, S. K., Rosenberg, M. & Degutis, J. In the Zone or Zoning Out?
929 Tracking Behavioral and Neural Fluctuations During Sustained Attention. *Cerebral
930 Cortex* **23**, 2712–2723 (2013).

931 15. San-Galli, A., Varazzani, C., Abitbol, R., Pessiglione, M. & Bouret, S. Primate
932 Ventromedial Prefrontal Cortex Neurons Continuously Encode the Willingness to
933 Engage in Reward-Directed Behavior. *Cerebral Cortex* **28**, 73–89 (2018).

934 16. Stoll, F. M. *et al.* The Effects of Cognitive Control and Time on Frontal Beta
935 Oscillations. *Cerebral Cortex* **26**, 1715–1732 (2016).

936 17. Minamimoto, T., Camera, G. Ia & Richmond, B. J. Measuring and Modeling the
937 Interaction Among Reward Size, Delay to Reward, and Satiation Level on Motivation
938 in Monkeys. <https://doi.org/10.1152/jn.90959.2008> **101**, 437–447 (2009).

939 18. Boksem, M. A. S., Meijman, T. F. & Lorist, M. M. Mental fatigue, motivation and
940 action monitoring. *Biol Psychol* **72**, 123–132 (2006).

941 19. Sidman, M. & Stebbins, W. C. Satiation effects under fixed-ratio schedules of
942 reinforcement. *J Comp Physiol Psychol* **47**, 114–116 (1954).

943

944 20. Vinckier, F., Rigoux, L., Oudiette, D. & Pessiglione, M. Neuro-computational account
945 of how mood fluctuations arise and affect decision making. *Nature Communications*
946 2018 **9**:1 **9**, 1–12 (2018).

947 21. Passingham, R. E., Bengtsson, S. L. & Lau, H. C. Medial frontal cortex: from self-
948 generated action to reflection on one's own performance. *Trends Cogn Sci* **14**, 16–21
949 (2010).

950 22. Chew, B., Blain, B., Dolan, R. J. & Rutledge, R. B. A Neurocomputational Model for
951 Intrinsic Reward. *Journal of Neuroscience* **41**, 8963–8971 (2021).

952 23. Bouret, S. & Richmond, B. J. Ventromedial and Orbital Prefrontal Neurons
953 Differentially Encode Internally and Externally Driven Motivational Values in
954 Monkeys. *Journal of Neuroscience* **30**, 8591–8601 (2010).

955 24. Bongioanni, A. *et al.* Activation and disruption of a neural mechanism for novel choice
956 in monkeys. *Nature* 2021 **591**:7849 **591**, 270–274 (2021).

957 25. Jahn, C. *et al.* Strategic exploration in the macaque's prefrontal cortex. *bioarxiv* (2022)
958 doi:<https://doi.org/10.1101/2022.05.11.491468>.

959 26. Grohn, J. *et al.* Multiple systems in macaques for tracking prediction errors and other
960 types of surprise. *PLoS Biol* **18**, e3000899 (2020).

961 27. Khalighinejad, N., Manohar, S., Husain, M. & Rushworth, M. F. S. Complementary
962 roles of serotonergic and cholinergic systems in decisions about when to act. *Current
963 Biology* (2022).

964 28. Chau, B. K. H. *et al.* Contrasting Roles for Orbitofrontal Cortex and Amygdala in
965 Credit Assignment and Learning in Macaques. *Neuron* **87**, 1106–1118 (2015).

966 29. Leite, F. P. *et al.* Repeated fMRI Using Iron Oxide Contrast Agent in Awake,
967 Behaving Macaques at 3 Tesla. *Neuroimage* **16**, 283–294 (2002).

968 30. Quilodran, R., Rothé, M. & Procyk, E. Behavioral Shifts and Action Valuation in the
969 Anterior Cingulate Cortex. *Neuron* **57**, 314–325 (2008).

970 31. Worsley, K. J., Evans, A. C., Marrett, S. & Neelin, P. A Three-Dimensional Statistical
971 Analysis for CBF Activation Studies in Human Brain:
972 <http://dx.doi.org/10.1038/jcbfm.1992.127> **12**, 900–918 (1992).

973 32. Reveley, C. *et al.* Three-Dimensional Digital Template Atlas of the Macaque Brain.
974 *Cerebral Cortex (New York, NY)* **27**, 4463 (2017).

975 33. Barack, D. L., Chang, S. W. C. & Platt, M. L. Posterior Cingulate Neurons
976 Dynamically Signal Decisions to Disengage during Foraging. *Neuron* **96**, 339–347.e5
977 (2017).

978 34. Folloni, D. *et al.* Ultrasound modulation of macaque prefrontal cortex selectively alters
979 credit assignment–related activity and behavior. *Sci Adv* **7**, 7700 (2021).

980 35. Fouragnan, E. F. *et al.* The macaque anterior cingulate cortex translates counterfactual
981 choice value into actual behavioral change. *Nature Neuroscience* 2019 **22**:5 **22**, 797–
982 808 (2019).

983 36. Folloni, D. *et al.* Manipulation of Subcortical and Deep Cortical Activity in the
984 Primate Brain Using Transcranial Focused Ultrasound Stimulation. *Neuron* **101**, 1109–
985 1116.e5 (2019).

986 37. Verhagen, L. *et al.* Offline impact of transcranial focused ultrasound on cortical
987 activation in primates. *Elife* **8**, (2019).

988 38. Schall, J. D., Palmeri, T. J. & Logan, G. D. Models of inhibitory control. *Philosophical
989 Transactions of the Royal Society B: Biological Sciences* **372**, (2017).

990 39. Ullsperger, M., Fischer, A. G., Nigbur, R. & Endrass, T. Neural mechanisms and
991 temporal dynamics of performance monitoring. *Trends Cogn Sci* **18**, 259–267 (2014).

992 40. Ullsperger, M., Danielmeier, C. & Jocham, G. Neurophysiology of performance
993 monitoring and adaptive behavior. *Physiol Rev* **94**, 35–79 (2014).

994 41. Ma, L., Chan, J. L., Johnston, K., Lomber, S. G. & Everling, S. Macaque anterior
995 cingulate cortex deactivation impairs performance and alters lateral prefrontal
996 oscillatory activities in a rule-switching task. *PLoS Biol* **17**, e3000045 (2019).

997 42. Chee, M. W. L. *et al.* Lapsing during Sleep Deprivation Is Associated with Distributed
998 Changes in Brain Activation. *Journal of Neuroscience* **28**, 5519–5528 (2008).

999 43. Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases
1000 of momentary lapses in attention. *Nature Neuroscience* **2006** 9:7 9, 971–978 (2006).

1001 44. Matthews, J. *et al.* Computational mechanisms underlying the dynamics of physical
1002 and cognitive fatigue. *Cognition* **240**, 105603 (2023).

1003 45. Müller, T., Klein-Flügge, M. C., Manohar, S. G., Husain, M. & Apps, M. A. J. Neural
1004 and computational mechanisms of momentary fatigue and persistence in effort-based
1005 choice. *Nature Communications* **2021** 12:1 **12**, 1–14 (2021).

1006 46. Müller, T. & Apps, M. A. J. Motivational fatigue: A neurocognitive framework for the
1007 impact of effortful exertion on subsequent motivation. *Neuropsychologia* **123**, 141–
1008 151 (2019).

1009 47. Blain, B. *et al.* Neuro-computational Impact of Physical Training Overload on
1010 Economic Decision-Making. *Current Biology* **29**, 3289-3297.e4 (2019).

1011 48. Wiegler, A., Branzoli, F., Adanyeguh, I., Mochel, F. & Pessiglione, M. A neuro-
1012 metabolic account of why daylong cognitive work alters the control of economic
1013 decisions. *Curr Biol* **32**, 3564-3575.e5 (2022).

1014 49. Neubert, F.-X., Mars, R. B., Sallet, J. & Rushworth, M. F. S. Connectivity reveals
1015 relationship of brain areas for reward-guided learning and decision making in human
1016 and monkey frontal cortex. *Proceedings of the National Academy of Sciences* **112**,
1017 E2695–E2704 (2015).

1018 50. Kolling, N., Scholl, J., Chekroud, A., Trier, H. A. & Rushworth, M. F. S. Prospection,
1019 Perseverance, and Insight in Sequential Behavior. *Neuron* **99**, 1069-1082.e7 (2018).

1020 51. Kolling, N., Behrens, T. E. J., Mars, R. B. & Rushworth, M. F. S. Neural Mechanisms
1021 of Foraging. *Science (1979)* **335**, 95–98 (2012).

1022 52. Eblen, F. & Graybiel, A. M. Highly restricted origin of prefrontal cortical inputs to
1023 striosomes in the macaque monkey. *Journal of Neuroscience* **15**, 5999–6013 (1995).

1024 53. Fujiyama, F. *et al.* Exclusive and common targets of neostriatofugal projections of rat
1025 striosome neurons: a single neuron-tracing study using a viral vector. *European
1026 Journal of Neuroscience* **33**, 668–677 (2011).

1027 54. Walton, M. E., Bouret, S., Walton, M. E. & Bouret, S. What Is the Relationship
1028 between Dopamine and Effort? *Trends Neurosci* **42**, 79–91 (2019).

1029 55. Parvizi, J., Rangarajan, V., Shirer, W. R., Desai, N. & Greicius, M. D. The will to
1030 persevere induced by electrical stimulation of the human cingulate gyrus. *Neuron* **80**,
1031 1359–1367 (2013).

1032 56. Vogt, B. A. Architecture, cytology and comparative organization of primate cingulate
1033 cortex. in *Cingulate Neurobiology and Disease* (Oxford University Press, 2009).

1034 57. Friedman, A. *et al.* A Corticostriatal Path Targeting Striosomes Controls Decision-
1035 Making under Conflict. *Cell* **161**, 1320–1333 (2015).

1036 58. Bang, D. & Fleming, S. M. Distinct encoding of decision confidence in human medial
1037 prefrontal cortex. *Proc Natl Acad Sci U S A* **115**, 6082–6087 (2018).

1038 59. Wittmann, M. K. *et al.* Predictive decision making driven by multiple time-linked
1039 reward representations in the anterior cingulate cortex. *Nat Commun* (2016)
1040 doi:10.1038/ncomms12327.

1041 60. Kolling, N. *et al.* Value, search, persistence and model updating in anterior cingulate
1042 cortex. *Nature Neuroscience* **2016** 19:10 **19**, 1280–1285 (2016).

1043 61. Kolling, N. & O'Reilly, J. X. State-change decisions and dorsomedial prefrontal
1044 cortex: the importance of time. *Curr Opin Behav Sci* **22**, 152–160 (2018).

1045 62. Kolling, N., Wittmann, M. & Rushworth, M. F. S. Multiple neural mechanisms of
1046 decision making and their competition under changing risk pressure. *Neuron* **81**, 1190–
1047 1202 (2014).

1048 63. Stoll, F. M., Fontanier, V. & Procyk, E. Specific frontal neural dynamics contribute to
1049 decisions to check. *Nat Commun* **7**, (2016).

1050 64. Tervo, D. G. R. *et al.* The anterior cingulate cortex directs exploration of alternative
1051 strategies. *Neuron* **109**, 1876–1887.e6 (2021).

1052 65. Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H. & Garavan, H. The Anterior
1053 Cingulate and Error Avoidance. *Journal of Neuroscience* **26**, 4769–4773 (2006).

1054 66. Eichele, T. *et al.* Prediction of human errors by maladaptive changes in event-related
1055 brain networks. *Proc Natl Acad Sci U S A* **105**, 6173–6178 (2008).

1056 67. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M.
1057 FSL. *Neuroimage* **62**, 782–790 (2012).

1058 68. Avants, B. B. *et al.* The Insight ToolKit image registration framework. *Front
1059 Neuroinform* **8**, (2014).

1060