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Abstract

Staying engaged with a task is necessary to maintain goal-directed behaviors. Although engagement
varies with the specific task at hand it also exhibits continuous, intrinsic fluctuations widely. This
intrinsic component of engagement is difficult to isolate behaviorally or neurally in controlled
experiments with humans. By contrast, animals spontaneously move between periods of complete task
engagement and disengagement, even in experimental settings. We, therefore, looked at behavior in
macaques in a series of four tasks while recording fMRI signals. We identified consistent
autocorrelation in task disengagement. This made it possible to build models capturing task-
independent engagement and to link it to neural activity. Across all tasks, we identified common
patterns of neural activity linked to impending task disengagement in mid-cingulate gyrus. By contrast,
activity centered in perigenual anterior cingulate cortex (pgACC) was associated with maintenance of
task performance. Importantly, we were able to carefully control for task-specific factors such as the
reward history, choice value, and other motivational effects, such as response vigor, as indexed by
response time, when identifying neural activity associated with task engagement. Moreover, we showed
pgACC activity had a causal link to task engagement, in one of our tasks, transcranial ultrasound
stimulation of pgACC, but not of control regions, changed task engagement/disengagement patterns.

Introduction

Everyone experiences fluctuations in how engaged they are with tasks that need doing throughout the
day. While some of our motivation is clearly linked to specific tasks and incentives, we also find
ourselves from time to time either demotivated or full of vigor regardless of the task at hand.
Furthermore, while there might be extended periods of disengagement, there are also brief collapses in
task engagement (for example, while checking one’s phone). While we also experience fluctuating
levels of task engagement, in some people, periods of disengagement are especially prominent; apathy
— sustained periods of task disengagement — is a core, transdiagnostic feature of psychological and

neurological illnesses '2.

Such fluctuations occur even though engagement must be sustained across extended periods of time for
many goal-directed behaviors to succeed. Additionally, when performing a task, it is important to stay
engaged independently of the specifics of the task at hand. Important insights into related processes
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53  have been gained by investigating motivation changes occurring in response to specific external factors
54 such as reward incentives or other feedback *. However, task engagement is also subject to intrinsic
55  fluctuation and must be maintained despite adverse external factors. Likewise, sometimes engagement
56 s lost despite the presence of incentives. It has been proposed that maintaining engagement requires
57  cognitive resources that are depleted by effort and that can be restored by taking breaks *.

58  Changes in response vigor ° and speed ' occur as motivation waxes and wanes. However, variation
59  in response vigor and speed occur only if a person decides to maintain task engagement. Therefore,
60  deciding whether or not to engage in the task at all or to pause and disengage completely is a separate
61  process to the one determining response speed and vigor for any given response. Similarly, task
62  engagement differs from attention lapses as indexed by individual erroneous responses that have also
63  previously been studied in the context of motivation ',

64  In the present study, we focus on general mechanisms of task engagement and disengagement across a
65  series of four different tasks while recording brain activity using fMRI. In this way, we can identify
66  neural activity changes in moments when an agent spontaneously and completely disengages from a
67  task independently of the concurrent specific, external task demands. We used macaque monkeys to
68  examine these issues for several reasons. The social and other demands of human neuroimaging
69  experiments usually ensure that human participants exhibit continuous task execution; their
70  performance scores may fluctuate but human participants rarely give up and spontaneously stop
71  altogether in the same manner that they do frequently when outside the laboratory. Macaques, however,
72 while engaged for the majority of the experiments, repeatedly and reproducibly both disengage and re-
73 engage for periods of time during daily testing in the laboratory, even when the tasks are relatively
74 simple and are performed proficiently'>'®. While this is generally a great nuisance for the researchers,
75  for our study it is fortunate as it allowed us to construct and fit models to these disengagements and link
76  them to their neural substrates. Using data from four diverse decision-making tasks allows us to find
77  behavioral and neural signatures that are task-general (see Supplementary Text 1 for descriptions of the
78  four tasks). Importantly, these disengagements are not part of the task design but occur spontaneously
79  despite the reward incentives provided by the tasks. Moreover, by controlling for variation in extrinsic
80  experimental factors, such as reward level, we can capture engagement and disengagement due to task-
81  independent factors. Intrinsic motivation has previously been linked to satiation (for example,
82  cumulative reward, '’ or time spent on task, e.g. '*). By also controlling for these factors, we aim to
83  capture the intrinsically fluctuating aspect of task engagement and disengagement that occurs regardless
84  of task identity!®.

85  While task engagement is continually fluctuating during extended activity *° disengagements are all or
86  none events. For example, one might feel more or less motivated to do a chore throughout the day —
87  which we refer to here as the level of general task engagement. In addition there are periods of complete
88  cessation and disengagement from the task. We examined neural activity related to both slow
89  fluctuations in engagements and sudden disengagements. To do this we used a new approach that
90  considers the distribution of tasks engagements and disengagements to estimate continual variation in
91  a general state of task engagement. Such a state tracks the current level of engagement above and
92  beyond the current trial. This allowed us to identify events when animals suddenly and ‘surprisingly’
93  disengage even though they are in an otherwise engaged state. By contrast, we can also identify
94  ‘expected’ disengagements that occur when we estimate that the animal is in a state of low general
95  engagement. This allowed us to examine the neural activity linked to general task engagement,
96  expected task disengagements, and surprising task disengagements. We argue that such model-derived
97  estimates capture aspects of task engagement not previously reported in the literature: By linking
98  engagement both to trial and state activity, and estimating its task-independent component as our model
99 is based on unexplained residual variance, we are able to parse aspects of task engagement not
100  previously studied. Importantly, we contrasted these novel, model-derived estimates of engagement
101 with other distinct aspects of motivation such as changes in response vigor indexed by reaction time.
102 This made it possible to dissociate signals leading to task engagement or disengagement from neural
103 activity related to variation in motivation to execute a specific action quickly.
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104 By using a whole brain imaging technique such as fMRI, we can seek neural correlates of engagement
105  throughout the brain during all four tasks. This is important as the neural circuits linked to task
106  engagement/disengagement are not well defined. However, we note that areas of anterior cingulate
107  cortex (ACC) and adjacent medial frontal cortex have been linked to intrinsically motivated behaviors
108 2!, mood fluctuation *°, and neural activity has been reported to change in some related situations >,

109  particularly when driven by endogenous factors such as satiety >>.

110 Our fMRI analysis identified one important area of activity change in perigenual ACC (pgACC) that
111 was prominent across all four tasks. We therefore used neurostimulation data in which activity in this
112 region was manipulated to test its causal importance for task engagement: Specifically, one of the
113 datasets used in our analysis had stimulated pgACC using transcranial ultrasound stimulation (TUS),
114  and thus allowed us to compare the effect of pgACC stimulation against other control regions. Not only
115  did we examine the impact of TUS on pgACC and compare it to sham TUS but in addition we also
116  examined the impact of TUS to the basal forebrain (BF). BF TUS leads to changes in motivation-related
117  influences on action timing ' and so it provides an especially strong comparison with pgACC TUS. In
118  addition, we examined the impact of TUS of an additional control region in the parietal operculum
119  (POp) — a region in which task-related and task-initiation related activity had not been observed — to
120 control for general cortical stimulation effects.

121

122 Results

123

124 We combined data from four different reward-based decision-making tasks '***?’. The tasks covered a
125  range of different paradigms: simple stimulus-response mapping, incentivized exploration/exploitation,
126  incentivized delayed responses, and novel value inference (see Supplementary Text 1 for descriptions
127  of the four tasks). In each case, the animals occasionally disengaged from the task and stopped
128  responding before re-engaging after some time. For the purpose of our analysis, we define
129  disengagements as responding after 3 s or later, or not responding at all during a trial, i.e. the trial “timed
130 out” before a response was made. However, for one of our tasks that incentivized late responses 1321
131 we only counted trials as disengaged where the animal did not respond at all (see Fig S1 for details for
132 all tasks). We binarized trials into ones where the animals are engaged or disengaged (Fig 1A). This
133 definition of disengagements conceptualizes behavior as all or none events which we can contrast with
134 a continuous measure of response vigor i.e. when the animals remain on task but respond more or less
135  rapidly (see below). While other definitions of disengagement might be possible (e.g. by looking at
136  decision errors), those would have not been applicable in our tasks due to the large variations in
137  difficulty across task and because errors can occur during learning as well as when there is
138  disengagement tasks. By applying our response time-based definition, we can consistently classify
139  disengagements across a range of diverse tasks and capture the intrinsic, task-independent nature of
140  these events. Our threshold of 3 s was chosen to ensure that on trials that were classified as
141  disengagements, the animals made the decision to disengage rather than responding sluggishly while
142 still being on-task. Overall, we started with 17 datasets in 13 animals but excluded six datasets from
143 five animals that disengaged in less than 5% of trials on average across sessions (Fig S1). Two animals
144 that provided in one task ** also provided data in two other tasks '**’, which left eleven datasets from
145  nine unique animals (see Fig S1 for details).

146

147  Our aim was to use disengagements to construct variables that, on a trial-by-trial basis, capture different
148  aspects of task engagement that are independent of the specific task identity. We then used these
149  variables in an fMRI analysis to identify their neural correlates.

150

151  To contrast task engagement and disengagement with variation in motivation related to response vigor
152 and speed, we repeated the same analysis using response times (RTs). For this control analysis we only
153 used data on engaged trials (we did not analyze the trials classified as disengagements in which, by
154  definition, no response or delayed response is made; see Fig S1). For this analysis, we used data from
155 13 (unique) animals because we now had sufficient data from more animals to include in the analysis.
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156  However, we avoided considering data from one of the previous tasks 1327 because the animals
157  performing it were sometimes incentivized to respond late as part of the task design and thus RTs do
158  not provide the simple measure of vigor in the same way as in other tasks.

159

160

161  Behavioral results

162

163 For each task, we constructed separate regression models that accounted for the extrinsic variables that
164  could be measured in each experiment by the investigators. These models included regressors such as
165  the task stimuli encountered, the responses made, the rewards animals received, and the trial number
166  (see Methods for the specific models for each task). Using these models, we can account for variance
167  intask-engagement and disengagement that is due to extrinsic factors. These regressors are, of course,
168  the ones that are usually the focus of any analysis of a neural data set. However, by regressing out the
169  variance due to all extrinsic factors (i.e. taking the residual error of the regression models) we are left
170 with the components of task-engagement and disengagement that are due to what is normally considered
171  residual fluctuations in behavior that typically receive little investigative attention (Fig 1B). However,
172 these residuals also capture task engagement and disengagement that is dependent on intrinsic variation.
173 As such, they capture the intrinsic level of current engagement (CE; the distributions of CE for each
174  task are shown in supplementary Fig. S2). Using the same analysis approach across tasks is essential
175  for generalizability but also means we had to find a definition of disengagement that works across
176  studies. Thus, while there might be some adjustment in the behavioral definition that could be made if
177  we had only analyzed a single task, we employed an approach with the merit of general applicability;
178  while we might have failed to detect task-specific motivational factors, the approach achieves the aim
179  of identifying neural processes common to many situations.

180
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183  Figure 1. Behavioral results and fMRI design. (A) We binarized animal’s RTs into trials in which they
184  were engaged or disengaged. On disengaged trials the animals took longer than 3 s to respond, or did
185  notrespond at all (i.e. the trial timed out). Fig S1 shows the individual RT distributions for each animal.
186  (B) To control for the influence on motivation exerted by extrinsic task event-related factors, we
187  constructed separate logistic regression models for each of our four tasks. Each model contained task-
188  specific regressors (see Methods for details) as well as regressors coding for the previous five
189  rewards/non-rewards the animals received at the end of each trial, the current cumulative reward, and
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190 the trial number. By regressing out the effects these variables have on engagement, we were left with
191  the residuals. These residuals contain the fluctuations in task engagement that are intrinsic as opposed
192 to those that are due to extrinsic factors related to task structure and task events. We refer to this index
193 as the intrinsic level of current engagement (CE). (C) (Left) We find a persistent autocorrelation of the
194 residual fluctuations suggesting that intrinsic CE — engagements and disengagements — are temporally
195  clustered. Shaded error represents the standard error of the mean across data sets. The average
196  correlations for each lag from 2 to 10 are: 0.040, 0.032, 0.028, 0.022, 0.010, 0.014, 0.010, 0.009, and -
197  0.002. (Right) By fitting exponential kernels to the index of the intrinsic CE (the residual fluctuations)
198  separately for each of the four tasks, we can also capture this autocorrelation. (D) The same kernels can
199  then be used to smooth the estimate of the intrinsic CE (orange line, shown for an example session) on
200  each trial in each task. As aresult, an estimate is obtained of the slowly fluctuating general engagement
201  (GE) of an animal that can be made available for each trial (purple line, shown for an example session).
202 (E) To capture effects of task engagement in a similar manner in our neural analyses of all four tasks,
203  we time-locked to two events in each trial that all our four tasks have in common: the end of the reward
204  delivery in the previous trial, and the onset of the decision-prompt in the current trial. The rationale for
205  looking at both of these time-points is that it is not a priori obvious when, during a trial, task
206  engagement/disengagement effects should be most prominent; arguably engagement might be expected
207  to produce sustained activity patterns that are observable at both time-points. (F) Even after their
208  hemodynamic convolution with the relatively fast hemodynamic response function observed in
209  macaques ***, there is limited correlation between these regressors in all four tasks. Note also that time-
210  shifted regressors (similar regressors but time-locked to previous-trial-end or current trial decision-
211  prompt) are relatively uncorrelated because the task-designs ensured sufficient time intervals between
212 the end of one trial and the beginning of the next in all four tasks. Thus, the regressors at the two time
213 points can provide independent indicators of task engagement-related activity

214

215  If engagement is indeed drifting across trials, then we should be able to observe clustering in the
216  residuals. To this end, we examined its autocorrelation. If engagement and disengagement were solely
217  determined by extrinsic task features, then the residuals would not be autocorrelated over trials.
218  However, in our data we did indeed find persistent autocorrelation in the residuals thus providing
219  evidence for CE (Fig.1C left; significant for lags < 10 at p < 0.05 with Bonferroni correction; we exclude
220  lag =1 because in some tasks repeated disengagements were impossible, as the experiment waited for
221  the animal to re-engage before continuing). In other words, periods of engagement and disengagement
222 are temporally clustered. We confirmed that this is not an artefact of the regression models we used by
223 randomly shuffling which trials are classified as engaged or disengaged and repeating this analysis 1000
224 times. Here, we did not find any autocorrelation of the residual over trials.

225

226 We can use the autocorrelation of CE to estimate the level of task engagement for each animal on each
227  trial. We refer to this variable as general engagement (GE). While CE corresponds to the residual
228  fluctuations in Fig.1B, GE is a more general and slowly varying estimate of task engagement that is a
229  weighted average of CE on the current but also on surrounding trials: if the animal disengages on
230  previous/future trials, we can assume it is also, to some degree, in a disengaged state currently.
231  Conversely, if it is engaged on these trials, we can assume it is also, to some degree, in an engaged state
232 currently. To this end, we fit exponential kernels to the residual fluctuations (Fig 1C right shows the
233 fitted kernel for each of the four tasks). These kernels capture the extent to which task engagement on
234 atrial, as indexed by the residual fluctuations, is related to task engagement on preceding and following
235  trials. Smoothing the residual fluctuations (CE; orange line in Fig.1D; shown after normalizing) by
236 these kernels allows us to obtain an estimate of a continuously varying GE (blue line in Fig.1D; shown
237  after normalizing) on each trial. We construct GE this way to obtain an interpretable regressor we can
238  usein our fMRI analyses. While CE and the disengage choices are closely (inversely) related, CE values
239  are impacted by the degree of predictability of a specific disengagement choice (black dots in Fig.1D
240  vs orange line in Fig.1D), and are thus also useful interpretable regressor for our fMRI analyses.

241

242

243 We can also combine the estimates of CE and GE to obtain two derived quantities that are used in first
244 stages of the neural analysis as contrasts. First, we can average the current CE index with the

5
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245  continuously varying GE index to obtain an estimate of a third variable we refer to as overall
246  engagement (OE). OE provides an overarching estimate of engagement on any trial as it uses both the
247  engagement on the current trial (as given by CE) and of the surrounding trials (as given by GE) to index
248  engagement, and so it is a useful starting point for neural analyses; as explained in more detail below,
249  we can first identify areas in which activity is related to OE and then we can examine whether the
250  activity tracks CE, the more slowly varying GE, or both quantities. Thus, CE and GE can also be thought
251  ofas the separated trial and state components of an overarching model that indexes OE. Second, we can
252 subtract the model-derived estimate of GE from the CE level to identify engagement shifts (ES) when
253  an animal’s task engagement suddenly collapses and there is abrupt disengagement; the animal may be
254  disengaged on the current trial even though the events that normally surround a disengagement were
255  not observed. This allows us to examine CE when it is unexpected given the current level of GE; i.e. it
256  allows us to identify trials with low engagement in an otherwise highly engaged state. Importantly, for
257  the purpose of our neural analysis, both ES and OE can be constructed by subtracting/adding CE and
258  GE on the contrast-level within a single general linear model.

259

260  We repeated an analogous, control analysis of RTs — an index of motivational change in relation to
261  response vigor as opposed to task engagement. However, this analysis was performed on engaged trials
262  only; responses were only made, and RTs were only measurable on engage trials (Fig S3A-C). We
263  again find that, after having regressed out the variance in RTs due to task-manipulations, the error in
264  RT estimates is autocorrelated over trials (significant for lags < 8 at p < 0.05 with Bonferroni
265  correction). We refer to these residual fluctuations as trial vigor. By fitting exponential kernels to trial
266  vigor, we again obtain estimates of a general state vigor on each trial. The GE and general state vigor
267  estimates are analogous state-related variables but they are only weakly correlated (Fig S3D) and thus
268  reflect different potential motivational processes. Just as for ES and OE, we can also consider individual
269  trial vigor (as explained above) and slow fluctuations in trial vigor — state vigor — to obtain analogous
270  contrasts relating to response speed as opposed to task engagement to use in our neural analysis. Once
271  again these vigor-related variables were uncorrelated with our key task engagement/disengagement
272 related variables of interest.

273

274

275  fMRI results

276

277  As in the behavioral analyses, we constructed a separate neural regression model for each task that
278  captured all aspects of the extrinsic task variables (see Methods for the specific models). In addition to
279  these task-specific models, we also included regressors that captured the task engagement factors that
280  we identified in our behavioral analysis (Fig.1C), and regressors accounting for body and limb motion
281  during task-performance and low-quality volumes (see Methods for details). Because the neural activity
282  we are interested in is related to overarching engagement that is not necessarily associated with any one
283  event that occurred during the task, we time-locked our regressors to two separate points within each
284  trial that all four tasks had in common: (1) we time-locked to the decision-prompt on each trial when
285  monkeys were asked to make a choice, and (2) we time-locked to the end of the outcome-period of the
286  previous trial when animals either received a reward or no reward for their previous choice **. This
287  ensured we had a measure of activity when task-specific performance and learning in a trial had been
288  concluded and potential preparatory activity for the coming trial was beginning while also ensuring that
289  the measurement was taken in the same way across all tasks; the same two time points could be defined
290  in an identical manner for all four tasks. Moreover, the previous-trial-end and the following decision-
291  prompt are far enough apart in time to ensure that regressors time-locked to each event are relatively
292 uncorrelated even after convolution with the macaque’s fast hemodynamic response function **% (Fig
293 1F). We hypothesized that general task enagement-related activity — our signals of interest — should be
294 found at both time points. In our analysis we, therefore, included regressors for both CE and GE at both
295 time-points, and use contrasts to also estimate OE and ES. Moreover, we also included our analogous
296  control estimates of the trial vigor level and the state vigor at both of the same time-points (Fig S3).
297  Importantly, as we can only estimate #rial vigor and state vigor on engaged trials, these regressors are
298  zeroed out on disengaged trials.

299
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300  We combined the results of these session-level regressions separately for each data set per animal using
301  fixed effects. In a final step, we combined the data from all data sets on a third level using random
302  effects. This allows us to examine the neural correlates of task-independent engagement across tasks
303  and animals. To examine the effects of engagement/disengagement we used eleven data sets from nine
304  animals across four tasks while controlling for response vigor. Statistical significance was determined
305  using a standard cluster-based thresholding criteria of z > 2.3 and p < 0.05 *'. Significant clusters for
306  our contrasts of interest are shown as white outlines in Fig 2. Additionally, we also show the non-
307  cluster-corrected z-statistics at a lower threshold of z>1.5 in Fig 2 to give a more complete picture of
308  the results. Moreover, in the supplementary analyses we report analyses for vigor-related effects using
309  alarger sample of data from thirteen animals across three tasks, as discussed above.

310

311  When we examined neural activity related to CE (Fig 2A), we saw a large overlap between activity at
312 previous-trial-end (Fig 2A left) and decision-prompt (Fig 2A middle), with activity at decision-prompt
313 being slightly more lateral. Combining these estimates allowed us to identify regions that show activity
314  both at previous-trial-end and decision-prompt (Fig 2A right), which suggests that it is sustained
315  throughout this task period and not linked to any particular task event (Fig 1E). While there was
316  widespread activity in the brain, within frontal cortex, pgACC (area 32), ventromedial PFC (areas 25
317  and 14), and the larger orbitofrontal network (areas 12 and 13) were particularly active. For a full table
318  of cluster locations and descriptions see Table S1.

319

320  Similarly, when we examined neural activity related to GE (Fig 2B), we again saw a large overlap
321  between activity at previous-trial-end (Fig 2B left) and decision-prompt (Fig 2B middle). Combining
322 both time-points again yielded regions that show sustained activity (Fig 2B right). While the activity
323 again included pgACC (area 32) prominently, there was somewhat less ventromedial PFC and OFC
324 activity and instead more activity in anterior supracallosal ACC gyrus (gACC; area 24) as well anterior
325  dorsal ACC sulcus. Moreover, we found a significant cluster in frontopolar cortex (area 100). For a full
326  table of cluster locations and descriptions see Table S2.

327

328  To identify regions that were active when the animals had a high overall task engagement level, we
329  combined our estimates of CE and GE into OE (Fig 2C). At the end of the previous trial, activity was
330  prominent in pgACC (area 32) and extended caudally into gACC (area 24) and into dorsal ACC sulcus
331  (rostral cingulate zone) (Fig 2C left). At decision-prompt, activity was again seen in pgACC (area 32),
332 but otherwise more orbitofrontal (area 47/120) (Fig 2C middle). When combining activity at previous-
333 trial-end and decision-prompt to find areas that were active throughout the whole task-period and across
334  CE and GE, we observed a prominent and extensive area centered on pgACC (area 32), but extending
335  into adjacent dorsal ACC sulcus (dACC; note that this area is sometimes refer to as mid-cingulate cortex
336  orrostral cingulate zone) and subgenual ACC (sgACC; area 25) and also, albeit to a more limited extent
337  in orbitofrontal cortex (OFC) in area 13 and the sub-region bordering ventrolateral prefrontal cortex —
338  47/120 —, and striatum (Fig 2C right). For a full table of cluster locations and descriptions see Table
339  S3.

340

341  We also looked for effects of ES, i.e. the difference between GE and CE (Fig 2D). Such activity was
342  prominent when animals disengaged on the current trial while otherwise having been in an engaged
343  state and likely to soon return again to an engaged state. In other words, the analysis identifies
344 ‘surprising’ disengagements, where the disengagement is not preceded or followed by other
345  disengagements; or conversely engagement in a disengaged state. It thus identifies trials where our GE
346  and CE indexes are opposed. Again, similar regions were active when time-locking to previous-trial-
347  end (Fig 2D left) and decision-prompt (Fig 2D middle). When we time-locked to both previous-trial-
348  end and decision-prompt, activity was prominent throughout mid supracallosal cingulate gyrus (area
349  24) (Fig 2D right) extending into poster cingulate cortex and the precunous. For a full table of cluster
350  locations and descriptions see Table S4.

351

352 Overall, while we saw some small differences between the focus of activation between previous trial
353  end and decision prompt, none of the frontal effects were statistically different in a comparison between
354  the two. All statistically significant differences we found were in more posterior parts of the brain,
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suggesting that the frontal circuit activity carrying general task engagement information is particularly
sustained.

previous-trial-end decision-prompt previous-trial-end & decision-prompt
A x=5 x=0

current
engagement y=20
(CE)

general
engagement
(GE)

C

overall
engagement
(OE; CE + GE)

D
engagement
shifts

(ES; GE - CE)

z=15 NN =6 z=1.5 I : - 6

Figure 2. Neural activity associated with engagement and disengagement. Whole-brain activity is
shown for different contrasts (top to bottom), time-locked to different events (left to right). Activity
with z>1.5 is shown superimposed, with white outlines indicating significant clusters at z>2.3. (A) For
CE we observed activity in regions spanning pgACC (area 32), sgACC (area 25), and OFC (areas 12
and 13), both at previous-trial-end and decision-prompt and when looking at both time-points
combined. (B) For GE we observe activity throughout anterior and mid cingulate gyrus (including
pgACC and supracallosal gACC), and frontopolar cortex. (C) For OE we observed activation most
prominently in pgACC but extending into adjacent sgACC and dACC, and also OFC areas 13 and
47/120 when animals are engaging with the current trial while also being in an overall engaged state.
(D) For ES, we observed activity in the supracallosal cingulate cortex (including supracallosal gACC)
when animals, surprisingly, disengaged from the trial despite otherwise being in an engaged state.

To further examine the factors driving engagement on the whole-brain level, we focused on activity
that was present both at previous-trial-end and decision prompt (Fig 2 right column) as this activity is
most likely due to sustained task engagement. There we focused on OE-related and ES-related activity
(Fig 2 dotted lines) and extracted the BOLD time course from regions of interest (ROIs) we placed in
grey matter within the areas of functional activity. Specifically, we defined the ROIs as the overlap
between functional activity and anatomically defined regions (pgACC, OFC, striatum, and gACC)¥,
and looked separately at the effects of CE and GE in the timecourse.

We observed that activity related to CE and GE appears similar in pgACC, OFC and the striatum (Fig
3A-C middle rows). Activity related to GE extended over a window of approximately 30s —
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381 approximately 15s before and 15s after the current trial. In contrast, activity related to current CE level
382  was prominent before and on the trial itself. However, activity tracking both the more phasic CE level
383  and the more tonic GE was observed across all areas in which OE effects were observed, namely pgACC
384  (area 32), OFC (area 13), and striatum (Fig 3A-C). Finally, to confirm that OE effects in each region
385  were not driven by activity recorded just in one task, we extracted the t-statistics in these ROIs from the
386  whole-brain analysis and examined them for differences by task (Fig 3A-C bottom rows). Effects in the
387  same direction were present in all four tasks and ROIs, although they were especially prominent in a
388 task that required animals to make novel decisions **.
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391  Figure 3. CE and GE timecourses in ROIs. We extracted timecourses from ROIs placed in anatomically
392 defined regions within our significant OE and ES clusters for activity both at previous-trial-end and
393 decision-prompt. Significant clusters are shown in red with ROIs shown in light red (top). We then
394  visualized the CE and GE timecourses in these regions time-locked to decision-prompt (middle rows).
395  Shaded error bars represent standard errors of the mean across sessions. We also extracted the t-statistics
396  associated with CE and GE from our whole-brain analysis in the same ROISs to visualize effects for each
397  task separately (bottom row). Bars represent task-means and dots represent individual animal means.
398  (A-C) Extracted CE timecourses from pgACC, OFC, and striatum show sustained activity before and
399  during the trial. By contrast, GE timecourses show sustained activity both before and after the trial.
400  Effects are consistent across all four tasks (bottom). (D) Extracted CE timecourses from supracallosal
401  gACC exhibit decreases during and after the current trial when animals disengaged, while GE
402  timecourses are sustained increases beginning many seconds before and continuing many seconds after
403  the current trial (i.e. engaged). Effects are consistent across three of the four tasks, with CE having the
404  opposite (positive) sign in the fourth task (bottom).

405

406  Extracting the timecourse from the gACC ROI placed within the significant ES cluster (Fig 3D)
407  demonstrated that there was both a decrease in activity that was related to CE — an effect that began
408  shortly before trial onset but which was then sustained for some time afterwards — and an increase in
409  activity related to GE (Fig 3D middle). To confirm that the effect was not driven by any one particular
410  task, we extracted the t-statistics in the ROIs identified by the whole-brain analysis and examined them
411 by task. We found broadly similar effects in three tasks although the current CE effect was different in
412 the fourth task (Fig 3E). The ES contrast also clearly revealed activity in posterior cingulate cortex and
413 precuneus, a region that has previously been implicated in decisions to disengage with foraging **.
414

415  Finally, we note that these results were specific to task engagement/disengagement as opposed to
416  response vigor: when we looked at the latter, we were unable to see similar patterns of neural activity
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417  to those shown in figures 2 and 3 (See Figs. S4-S5 for vigor results). If anything, vigor activity was
418  weaker overall and more transiently related to either decision prompt or after end trial. However, we
419  found a small cluster of activity related to a future relative increase in vigor (Fig S5).

420

421

422 TUS results

423

424 Our fMRI analysis identified OE activity in pgACC (Fig 2C). A study we used in the fMRI analysis
425  also manipulated activity in pgACC using transcranial ultrasound stimulation (TUS) * (Fig 4A)

426  making it possible to assess whether activity was causally responsible for the task engagement level or
427  aconsequence of a process that was engendered elsewhere. Thus, we next sought a causal test of

428  pgACC’s importance for task engagement. In addition to examining pgACC TUS data, we were also
429 able to examine the impact of TUS in other regions: in the dataset, BF and POp, were also stimulated,
430  and it also include a sham condition'®. BF is a useful control region because BF activity is associated
431  with the timing of individual actions and BF TUS and cholinergic manipulation (BF is a source of
432 many cholinergic projects) have been shown to alter the timing of individual actions '**’. By contrast,
433 POp was not associated with general task engagement/disengagement nor with performance of the
434 specific task and so POp TUS acted as a general control for cortical stimulation. The TUS wave

435  frequency was set to 250 kHz. TUS was applied in 30 ms bursts that were generated every 100 ms for
436  atotal period of 40 s. The procedure was then immediately repeated for another 40 s in the same area
437  butin the other hemisphere. All TUS was applied prior to the behavioral task. Sustained TUS trains
438  have previously been shown to exert a sustained impact on neural activity and behavior and therefore
439  make it possible to examine the effect of neural disruption in the absence of any concomitant auditory
440  effects that might be associated with the delivery of each TUS pulse ****

441
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443 Figure 4. TUS effects on disengagement. (A) One of the tasks '**’ used in our analysis also causally
444 manipulated activity in pgACC using TUS. The stimulation site is shown as a white circle superimposed
445  on the significant OE cluster. Two other regions were also stimulated and we use data from these TUS
446  sites as controls, and also included a sham condition as a further control. (B) The total time spent
447  disengaged by time in the experiment, averaged over sessions and animals, reveals that after pgACC
448  stimulation, animals are more engaged early on during the task, compared to the situation after
449  stimulating BF, POp, or sham. (C) When averaging the time spent disengaged over the first and last 20
450  min of the task, we find a significant difference between pgACC and the other TUS sites in the first but
451  not in the last 20 min. Bars represent condition means, and black dots represent individual subject
452  means.

453

454  To examine the effect TUS had on the time spent disengaged, we classified each timepoint in each
455  session as engaged or disengaged, and calculated the time spent disengaged for each stimulation site as
456  animals progressed through the session. This analysis revealed a tendency for more frequent early
457  disengagements in the control conditions than after pgACC stimulation, whereas late disengagements
458  appeared equally common throughout all conditions (Fig 4B). Indeed, when testing for a difference
459  between disengagements after pgACC stimulation compared to other stimulations sides, we found a
460  significant difference in the first 20 min but not in the last 20 min (early: y?(1) = 5.27; p = 0.022;
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461  late: y2(1) = 0.03; p = 0.867; mixed effects models with random slopes and intercepts for condition
462 by monkey). This effect of more engagement early on can also be observed in each animal individually
463  (Fig S6).

464

465  Discussion

466

467  Task engagement fluctuates throughout daily activity leading to inattention. Ultimately, however,
468  people and animals may give up on a task completely and either remain inactive or pursue an entirely
469  different course of behavior. While the process of error monitoring and subsequent adjustment of
470  behavior has received considerable attention ***°, less is known about the processes that drive complete
471  task disengagement. This is despite the obvious relevance such mechanisms have to the understanding
472  of apathy — a prominent feature of psychological and neurological illnesses '. Although the social
473  demands of the research setting mean that human participants rarely give up on a task completely when
474  they are participating in an experiment, it is not unusual for macaques to move between periods of task
475  disengagement and then re-engagement. In the current investigation we identified such periods and
476  found that they manifested in similar ways across eleven macaques performing four different cognitive
477  tasks in the MRI scanner. When animals were strongly engaged in any task and unlikely to disengage,
478  then a broad region of increased activity spanning several areas, but which was especially prominent in
479  pgACC, was found. Activity was weakest on trials when the animals’ task engagement levels collapsed
480  and the monkeys disengaged. The effects were apparent even when we controlled for RT suggesting
481  that pgACC activity was related to task disengagement rather than any change in response timing %,
482  response control ***', or any change in response vigor that might lead to changes in RT ****, While
483  vigor and engagement were associated with different behavioral indices and had correspondingly
484  distinguishable relationships with brain activity, some of the effects were adjacent in the brain.
485  However, vigor effects often appeared to be mostly linked with the vigor level on the preceding the
486  current trial (see Fig S4 and S5) or with increases of vigor that were about to occur (Fig S4D future
487  vigour — past vigour). By contrast, engagement effects reflected stable patterns of behavior sustained
488  over several trials.

489

490  The pattern of activity found in pgACC suggests it is linked to a fundamental process of task
491  engagement that is independent of any particular task identity or specific task feature. This conclusion
492 was reached after observing that the link between pgACC activity and task engagement was found after
493  regressing out any influence that specific task events might have had on neural activity. In fact, for all
494 analyses, we extensively regressed out task parameters to remove all the variance linked to task features
495  and reward history, so that we were able to examine how fluctuations in the residual, activity unrelated
496  to any specific task type was linked to fluctuations in engagement. As such, our findings cannot be
497  attributed to parameters manipulated during the task or satiety and fatigue (we regress out the
498  cumulative reward and the trial number). While we did not examine task-related activity here, this was
499  the focus of previous analyses of all included datasets '***?’. Importantly, each original study shows
500  distinct patterns of neural activity that can be linked to the variables manipulated during each task,
501  which differ from the activity patterns we show here. While we focused on the task independent
502  elements of motivation and engagement there is, of course, a large body of work on motivation, fatique
503  and apathy based on effort and cost models **. Future research could potentially combine both
504  approaches (intrinsic/task independent and task driven motivational fluctuations) to get a more
505  comprehensive picture of their interplay.

506

507

508  In all tasks included in the analysis, we could distinguish between activity related to task engagement
509  ona given trial (current engagement; CE) — whether the animal was engaged or disengaged on the trial
510  itself — and the more general state (general engagement; GE) surrounding the trial. Moreover, activity
511  change was not just apparent at the time of responding but it was present and built up over a longer
512 preceding time period. Timecourse analyses revealed elevated signals approximately 15 s before and
513 15 s after the trial in question. The slowly evolving pgACC signal might reflect the parallel slow
514  evolution of task engagement factors and their independence of specific task events.

515
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516  Importantly, the corresponding pgACC region of the human brain ** has been linked to the
517  predisposition to initiate foraging behavior and in determining that the prospect of potential future
518  outcomes mean that it is worth initiating a sequence of behavior despite potential costs ***'. The pgACC
519  is unusual in that it is one of only two cortical regions that project strongly to the striosomal
520 compartment of the basal ganglia, in anterior striatum, which, in turn, is distinguished by a number of
521  anatomical features including projection to the dopaminergic midbrain *>>3. As a result, pgACC is
522 well placed to regulate fundamental aspects of motivated behavior under the control of dopamine **
523

524  Not only was activity in pgACC predictive of task engagement but TUS-induced alteration of pgACC
525  activity led to consistent patterns of changed task engagement in the four macaques that participated in
526  an additional TUS study. As the TUS stimulation data was part of the original study design '* we had
527  no control over stimulation sides and could not employ the same stimulation across all tasks or brain
528  sites. While we were unable to examine the impact of stimulating the supracallosal gACC region (Figure
529  2D), it was, however, possible to examine the effect of pgACC stimulation because, fortuitously,
530  transcranial ultrasound stimulation had been applied to this area in the task investigated by
531  Khalighinejad and colleagues . However, due to only having TUS stimulation in one study, we could
532 not investigate the task general causal impact of pgACC stimulation. After the application of TUS,
533  macaques were less likely to disengage from a task. Normally, when animals were in the control
534  condition, in the first half of a 20 min testing session, macaques disengaged from the task for
535  approximately 3 min. After pgACC TUS, however, animals often worked continually without
536  disengaging or only took a break for approximately 2 min on average. Importantly, the effects were
537  specific to pgACC TUS and were not observed after TUS to two control brain regions. First, similar
538  effects not seen when applying TUS to an anterior parietal control region, POp, in which there was no
539  task-related or task engagement-related activity. Second, and perhaps even more importantly, such
540  effects were not seen when TUS was applied to the cholinergic basal forebrain (BF) even though it has
541  previously been shown that BF TUS and systemic cholinergic manipulation change the timing of
542  animals’ decisions to make individual actions '**’. However, while the stimulated pgACC appeared to
543  track our engagement variable, we acknowledge that several factors, such as emotion, energy level and
544  ability to focus, and subjective emotional responses > may be directly or indirectly linked to
545  engagement. Future research will need to tease apart.

546

547

548  Relatively few behavioral experiments have focused on the macaque pgACC and previous behavioral
549  analysis approaches have not allowed identification of clear changes in task engagement '* of the sort
550  that we were able to identify here. However, it has been reported that electrical microstimulation of the
551  macaque pgACC during a cost/benefit decision making task led to fewer decisions to pay higher costs
552  (enduring air puffs) to obtain higher rewards (more juice) '°. If pgACC is not only responsible for
553  setting the general willingness to endure costs for benefits during choices but also responsible for setting
554  the general level of engagement, then our results and these previous findings can be reconciled.
555  However, it is important to note that TUS is unlikely to recreate patterned excitation of specific neurons
556  that can be induced by microstimulation but rather it may be more likely to disrupt the endogenous
557  activity patterns within a brain region ***”. In the rat, optogenetic inhibition of the projections from the
558  homologue of pgACC ® — often called the prelimbic cortex — to the striosome compartment of the
559  striatum similarly leads rats to be more likely to pay the cost of engaging in a trial in order to obtain a
560  reward *’. This occurs because pgACC outputs synapse with inhibitory interneurons in the striosome
561  which, in turn, connect with striatal projection neurons. Thus, disrupting pgACC leads to the release of
562  striatal projection neurons from inhibition. As noted, striosomal projection neurons are distinguished
563 Dby their unique anatomical connections to regions such as the dopaminergic midbrain. In summary,
564  pgACC TUS or pgACC optogenetically mediated inhibition in monkeys and rats respectively make
565  animals more likely to engage in an effortful task to obtain reward or to take a costly action to obtain
566  reward. Both interventions may resemble one another in leading to the release of striatal projection
567  neurons from inhibition and, as a consequence, changes in dopamine levels. While we found an impact
568  of TUS on behaviour, we can only speculate about the physiological mechanism(s) at this stage.
569  Hopefully future research on the physiological impact of TUS and post stimulation fMRI will be able
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570  to shed some light onto this question, in particularly why TUS can lead to apparent enhancement of
571  behaviours associated with the stimulated brain regions, despite TUS not mimicking neural activity.
572

573

574  The pgACC region studied here not only has a homologue in rodents but also in humans ***. In humans,
575  coupling between pgACC activity and striatal activity has been linked to disinhibition of effortful
576 choices; first, it was more prominent when the costs of a course of action were high but it was still
577  pursued and second it was more prominent in individuals who were inclined to pursue such courses of
578  action °'. Individual variation in pgACC activity has also been reported to covary with how influenced
579  each person is by the prospect of future reward despite the need to engage in a sequence of decisions *°.
580 It also tracks how well people have been performing simple tasks and how they are likely to evaluate
581 their performance %7

582

583  The idea that animals make decisions to engage or disengage with one behavior or another or simply to
584  do nothing at all is consistent with a growing body of work on decision making during foraging and
585  theirneural correlates %!, It also suggests alternative ways of thinking about situations in which people
586  and animals appear to lack task engagement. In particular, the engagement shift (ES) activity in
587  supracallosal cingulate gyrus (area 24, also called mid-cingulate cortex) might normally, in less
588  constrained situations than in the current experiment, lead to sudden deliberate decisions to disengage,
589  rather than simply reflecting slowly waning task engagement. While this is only speculation, it is
590  nonetheless noteworthy that ES specifically activated the supracallosal cingulate gyrus in a region
591  adjacent to one that has been linked to switching and foraging activity in the past in humans, macaques,
592  and rodents **°%3160626* and which is distinct from pgACC. Our results have obvious links to a large
593 body of work on error monitoring ®° and performance lapses ® in humans that have identified
594  ACC/MCC and pre-SMA as relevant regions for both error monitoring as well as post error adaptation
595  effects. While our lapses are a complete disengagement from the task, not an error per se, the overlap
596  between the anatomical location of the effects reported here and the effects previously reported is
597  intriguing, suggesting common mechanisms may prevent disengagement, maintain engagement with
598  the current task, and mediate performance monitoring for errors and post-error adaptation and return to
599  task performance. Overall, our results suggest slowly drifting fluctuation in engagement where low
600  pgACC activity is linked to low engagement levels and repeated giving up, while sudden and surprising
601  decisions to give up during otherwise high engagement state are triggered by sudden supracallosal
602  gACC activity. The engagement shift (ES) was also the only contrast that clearly revealed posterior
603  cingulate cortex and precuneus, a region that has previously been implicated in decisions to disengage
604  with foraging *, further suggesting that ES might be linked to deliberate decisions to disengagement in
605  a specific trial, as opposed to gradual drifting decline in task engagement.

606

607  Overall, our findings not only suggest pgACC mediation of intrinsic variation in task engagement but,
608  more generally, emphasize the multifaceted nature of motivation and task performance. Specifically,
609  we could dissociate task engagement from response speed. However, our ES index suggests that even
610  giving up on a task might not be determined by solely one factor. In fact, in our study, animals might
611  give up because of an overall change in intrinsic task engagement (OE) or because they deliberately,
612  but transiently, want to do something else (ES). We suggest that future work should embrace this
613  complexity.

614

615  While we could show task-general and robust neural and behavioural patterns related to task
616  engagement, we do not know what cognitive/emotional or otherwise internal construct is driving
617  motivation states, as we cannot ask the animal about their subjective experience. It is possible that other
618  fundamental constructs are linked to our pgACC activity in particular, which in turn relate to the
619  motivational state the animal is in, instead of pgACC driving motivation directly. However, whatever
620  such a fundamental construct might be responsible, it appears intimately linked to motivation across
621  tasks.

622
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623  Importantly, engagement-related activity was not confined to pgACC but was also noticeable in a
624  posterior part of the lateral orbitofrontal sulcus. This region has been identified with credit assignment
625  —the linking of specific choices to specific outcomes 2*** — but it is also notable that cortex in the same
626  region or nearby is the second cortical region in the macaque, in addition to pgACC, that projects to the
627  striosomal compartment of the stratum, the striatal region that is, in turn, likely to influence the
628  dopaminergic midbrain, and in which stimulation is known to affect cost-benefit decision making 2.
629

630  While the current study has taken some of the first steps needed to identify the neural mechanisms
631  mediating task engagement, some questions remain unanswered. Notably while pgACC and posterior
632  lateral orbitofrontal sulcus were less active when task disengagement occurred, a more posterior mid-
633  cingulate gyrus region (area 24) was most active during sudden disengagement (Fig 3). As well as
634  attempting to understanding the key elements that determine the multifaceted relationships between
635  specific task features, task engagement, brain activity and the cellular mechanisms at play in pgACC
636  and beyond, an important future step will be examining the effect of manipulating activity in area 24.
637

638  Methods

639

640  Subjects

641 13 rhesus macaques across 17 data sets were included in the four studies considered. All procedures
642  were conducted under licenses from the United Kingdom (UK) Home Office in accordance with the
643 UK Animals (Scientific Procedures) Act 1986 and with the European Union guidelines (EU Directive
644  2010/63/EU).

645

646  Data collection

647  The fMRI data were acquired in a horizontal 3 Tesla MRI scanner with a full-size bore using a four-
648  channel, phased-array, receive-only radio-frequency coil in conjunction with a local transmission coil
649  (Windmiller Kolster Inc, Fresno, USA). The animals were head-fixed in a sphinx position in an MRI-
650  compatible chair (Rogue Research, CA). fMRI data were acquired using a gradient-echo T2* echo
651  planar imaging (EPI) sequence with the following parameters: 1.5 x 1.5 x 1.5 mm resolution, 36 axial
652  interleaved slices with no gap, TR of 2280 ms, TE of 30 ms and 130 volumes per run. Proton-density-
653  weighted images using a gradient-refocused echo (GRE) sequence (TR = 10 ms, TE = 2.52 ms) were
654  acquired as reference for offline image reconstruction.

655

656  Behavioral task-models

657

658  We used data from four different tasks '***?7. See Supplementary Text 1 for descriptions of the four
659  tasks. In all tasks monkeys had to respond to stimuli on screen that were rewarded, while their neural
660  activity was recorded using fMRI. Briefly, Jahn and colleagues (study 1) *° ran an exploration-
661  exploitation task with different time horizons. On some trials, monkeys had to make one-off choices
662  between two stimuli on screen based on the information presented. On other trials, they had to choose
663  between the same options repeatedly, which enabled them to learn more about the value of the options.
664  Grohn and colleagues (study 2) *° ran a task with a single option presented on screen. By manipulating
665  the reward associated with the option, as well as the location of the option on the screen, they induced
666  different kinds of surprises. In the study of Bongioanni and colleagues (study 3) ** monkeys had to
667  choose between two options that varied among two dimensions, reward amount and reward probability.
668  They presented the monkeys with novel stimuli that they had not encountered before but the value of
669  which they should be able to infer based on previously observed stimuli. Khalighinejad and colleagues
670  (study 4) "**7 showed monkeys a single stimulus that contained information about the reward amount
671  and the inter-trial-interval length. The longer monkeys waited to respond, the more the reward
672  probability increased, which was also displayed as a feature of the stimulus, but at the price of losing
673  time as the experiment did not have a fixed number of trials but was limited to 40 min. This allowed
674  them to study how monkeys decide when to make a response.

675

676  To regress out the effect task-manipulations have on engagements/disengagements, we used logistic
677  regressions to control for these effects. For all tasks, we included regressors for the rewards the animals
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678  obtained on the previous 5 trials, the current trial number, and the cumulative reward the animals
679  received so far during a session. Additionally, we included task-specific regressors for each task that
680  are based on the models used in the original analyses of the tasks:

681

682  For study 1 * we included a regressor coding for repetition bias (whether the animal has responded on
683  the same side on the previous trial), a regressor coding for the choice horizon (short or long), and a
684  regressor coding for the current choice number within a horizon. Moreover, we used the Bayesian model
685  described by Jahn’s and colleagues ** to estimate the expected reward and the expected uncertainty on
686  cach trial. We then included the sum of the expected reward of both stimuli, and the sum of the
687  uncertainty of both stimuli as regressors as well as the absolute difference in expected reward and
688  uncertainty between the two stimuli. Finally, we allowed these 4 latter regressors to vary by horizon as
689 interaction terms.

690

691  For study 2 * we included a regressor coding for whether the stimulus is on the left or the right side of
692  the screen, a regressor coding for whether the stimulus switched sides, and a regressor coding for
693  whether the monkeys received 2 drops of juice on the last trial.

694

695  For study 3 ** we included regressors for the absolute additive value difference, the absolute
696  multiplicative value difference, the total additive value, and the total multiplicative value. Additive and
697  multiplicative value here refer to adding or multiplying reward magnitude and probability (further
698  details can be found in the original publication). Moreover, we also included a regressor capturing a
699  repetition bias (responding on the same side as on the previous trial).

700

701  For study 4 **” we included regressors for the current reward magnitude, the length of the upcoming
702  inter-trial-interval, and the speed of the dots on screen.

703

704  All models were run separately for each monkey. For each monkey, we allowed all regressors to also
705  vary as random slopes by session. We then took the difference between the model prediction and
706  observed behavior as our measure of CE.

707

708

709  Autocorrelation and kernels

710

711  To calculate the autocorrelation of our measure of intrinsic task engagement we shift the timeseries for
712 each session of each monkey by lags from 2-10 and compute the correlation for each (we leave out
713 lag=1 because for some of our experiments two disengagements cannot occur after each other because
714 of the task design). We then separately average the sessions of each monkey, before finally averaging
715  over monkeys.

716

717  To test whether the autocorrelation is significantly larger than 0, we randomly permute the data of each
718  session and repeat the above procedure 10000 times on the permuted data. We then determine the p-
719  value as the number of times the average autocorrelation over monkeys is smaller than the permuted
720  average. Because we are testing lags from 2-10, we use a p-value of 0.05/9 = 0.0056. For RTs we use a
721  p-value of 0.05/10 = 0.005 because we are testing lags 1-10.

722

723 To compute the task engagement state, we fitted an exponential kernel to our measure of intrinsic task
724  engagement. Specifically, we found the free parameter a that minimised the squared distance between
725  the function a(1 — a)!4/N and the data, where for each trial, d indexes all past and future trials of a
726  session, leaving out the current trial, i.e. d = first trial, ...,—2,—1,1,2, ..., last trial, and N is a
727  normalization factor that makes the weights sum up to 1, i.e. N = ¥ (a(1 — )%=, We compute a
728  separately for each of our 4 tasks by finding the a that minimizes this error across all sessions associated
729  with that task. Thus, we overall fit four values of a. For study 1 *° and study 4 '**” we used d =
730  first trial, ...,—2,2, ..., last trial—leaving out trials -1 and 1—because disengagements do not occur
731 concurrently because of the task designs.
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732
733 We then used the fitted value of a to smooth the data, thus obtaining a state estimate on each trial. By
734 using only the half of the kernel that is directed towards the past/future, i.e. d = first trial, ..., —2,—1

735 and d = 1,2, ..., last trial, we were also able obtain separate state estimates of the past and future GE,
736  which we used as regressors in the whole brain analysis.

737

738  When fitting the kernel to RTs we are only using engaged trials. Therefore, the timeseries is interrupted
739  when a disengagement happens, which also breaks the autocorrelation. For RTs we therefore only use
740  consecutive chunks that are uninterrupted by disengagements to fit the kernel, i.e. we set d =

741 earliest trial that is engaged, ...,—2,—1,1,2, ..., latest trial that is enaged.
742

743 Whole-brain analyses

744

745  EPI data were prepared for analysis following a dedicated nonhuman primate fMRI processing pipeline
746  using tools from FSL ¢, Advanced Normalization Tools (ANTs) , and the Magnetic Resonance
747  Comparative Anatomy Toolbox (MrCat; https:/github.com/neuroecology/MrCat).

748

749  Like for our behavioral analysis, we also created separate neural regression models for each task. Apart
750  from these task-specific regressors (further outlined below), we also included the same regressors
751  across-tasks. For all tasks, we included regressors for the current level of the intrinsic CE (computed as
752 described in the behavioral task-models section), the past GE, and the future SM (computed as described
753 in the autocorrelation and kernels section). We included all of these regressors twice, once time-locked
754 to the end of the reward delivery of the previous trial, and once time-locked to the onset of the decision-
755  prompt. Moreover, we also included regressors for the trial vigor, and the past and future state vigor,
756  again time-locked both to the end of the previous trial’s reward delivery and the decision-prompt. The
757  correlation between these 12 regressors in shown in Fig S3D.

758

759  To compute overall estimates of GE and state vigor, we created contrasts that summed up the past and
760  future GE, and the past and future state vigor. Moreover, to estimate OE we added a contrast that
761 summed up CE and GE, and to estimate ES we added a contrast that subtracted CE and GE. Similar
762 contrasts were included for vigor. Finally, we also included contrasts that subtracted the past and future
763  GE, and the past and future state vigor.

764

765  Additionally, we also included some control regressors that were the same for all 4 tasks. We included
766 intercepts time-locked to the beginning of the reward delivery, the end of the reward delivery, the onset
767  of the decision-prompt, and when decisions were made. We also included the current trial number, the
768  cumulative reward so far, and the seconds since the beginning of the experiment, all time-locked to the
769  end of the previous trial’s reward-delivery, and to the onset of the decision prompt. Moreover, we also
770  included confound regressors to index head motion and volumes with excessive noise. Motion-related
771  artefacts were captured by including 13 principal components accounting for volume-by-volume
772  magnetic field distortions due to limb and body movements during task performance. Volumes with
773  excessive noise were entirely excluded from the fMRI analysis by including regressors for each flagged
774  volume. Both the 13 principal components and the low-quality volumes were estimated for each session
775  using the MrCat toolbox (https://github.com/neuroecology/MrCat) as also described in the original
776  publications for each dataset ***?7,

777

778  Task-specific regressors were based on the models used in the original papers. The regressors we
779  included were:

780

781  For study 1 * we included an intercept time-locked to the onset of the wait-stimulus. We also included
782  regressors for the expected reward of the chosen stimulus, the expected reward of the unchosen
783 stimulus, the uncertainty of the chosen stimulus, and the uncertainty of the unchosen stimulus, all time
784 locked to the wait-stimulus. These quantities were calculated according to the Bayesian model described
785  inthe original paper. At decision, we included a regressor for the response side. At the beginning of the
786  reward delivery, we included regressors for the amount of reward received, the expected reward of the
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787  chosen stimulus, the expected reward of the unchosen stimulus, the uncertainty of the chosen stimulus,
788  and the uncertainty of the unchosen stimulus, all again according to the Bayesian model. Some sessions
789  also included a horizon manipulation, such that animals had to either make one-off decisions, or decide
790  among the same options multiple times while learning new information about the options throughout.
791  For these sessions, we included a regressor at the decision-prompt whether the trial was a short or a
792 long horizon trial. Furthermore, in some sessions animals received feedback about the reward of the
793 unchosen stimulus, whereas in others they did not. For the sessions that included this feedback, we also
794  included a regressor for the amount of reward of the unchosen option, time-locked to reward delivery.
795

796  For study 2 *° we included a regressors for the response side and whether the stimulus had switched
797  sides at decision. At reward delivery, we included regressors for the current reward amount, and the
798  reward amount of the previous 5 trials as separate regressors. We also included a regressor for whether
799  the reward was 2 drops of juice, and a regressor for whether the previous reward was 2 drops of juice.
800  Finally, we also included a regressor for whether the current trial was an error and no reward would be
801  delivered, time-locked to when the reward would otherwise be delivered.

802

803  For study 3 ** we included regressors for the absolute additive value difference, the absolute
804  multiplicative value difference, the total additive value, and the total multiplicative value, all time-
805  locked to decision-prompt. These regressors are further described in the original paper. We also
806  included a regressor for the response side at decision, and a regressor for the reward amount at reward
807  delivery.

808

809  For study 4 '**7 we included regressors for the current reward magnitude, the upcoming inter-trial-
810  interval duration, and the dot-speed, all time-locked to stimulus presentation. We also included
811  regressors for the last trial’s reward amount, and the number of dots on screen when the last trial’s
812  response was made, also time-locked to stimulus presentation. At decision, we included a regressor for
813  the number of dots currently on screen. Finally, we included a regressor for the reward amount at reward
814  delivery.

815

816  Weused a hierarchical GLM approach to combine data from monkeys and sessions: We first fitted each
817  session individually using the appropriate regression model (as described above), and then warped the
818  resulting statistical maps into F99 standard space. There, on a second hierarchical level, we combined
819  data individually for each monkey using fixed effects and pre-planned contrasts over regressors that
820  were shared across models. Finally, on a third hierarchical level, we combined data from all monkeys
821  using random effects, as implemented in the FLAME 1+2 procedure from FLS ®’. To test for statistical
822  significance, we used a standard cluster-based thresholding criteria of z > 2.3 and p < 0.05 (Worsley et
823  al, 1992).

824

825  Analyses were run in FSL’s fMRI Expert Analysis Tool (FEAT). Regressors were z-scored and

826  convolved with a hemodynamic response function (HRF), which was modelled as a gamma function
827  (lag=3,sd=1.5) convolved with a boxcar function of duration Is.

828

829

830  ROI analyses and timecourses

831

832  To define ROIs, we calculated the overlap between the cluster-corrected t-statistic map from the

833  whole-brain analysis and anatomically defined regions based on an atlas **, which we dilated with a
834  kernel of 3x3x3 voxels. We then warped these ROIs into session-space using the nonlinear

835  deformation field.

836

837  To visualise the BOLD timecourse of a regressor we re-ran the convolutional whole-brain analysis for
838  each session of each monkey in FEAT, leaving out the 12 regressors of interest we described above
839  but including all other task-relevant and nuisance regressors. We then extracted the average residual
840  of this whole-brain analysis from each ROIL. Next, we upsample the timecourse by a factor of 10 using
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841  spline interpolation. Because we are interested in temporally extended effects of task engagement, we
842  then smooth the upsampled timecourse with a moving average filter of 5s.

843

844

845  TUS stimulation and analysis

846

847  TUS stimulation was conducted with a single-element ultrasound transducer (H115-MR, diameter 64
848  mm, Sonic Concept, Bothell, WA, USA) with region-specific coupling cones filled with degassed water
849  and sealed with a latex membrane (Durex). The ultrasound wave frequency was set to the 250 kHz
850  resonance frequency and 30 ms bursts of ultrasound were generated every 100 ms (duty cycle 30%)
851  with a digital function generator (Handyscope HS5, TiePie engineering, Sneek, the Netherlands).
852 Overall, the stimulation lasted for 40 s. A 75-Watt amplifier (75SA250A, Amplifier Research, Souderton,
853  PA) was used to deliver the required power to the transducer. For further details see '

854

855  To calculate the time spent disengaged, we classified each trial in each session as engaged or disengaged
856  in the same way we did for the data sets for the behavioral and fMRI analysis. We then calculated the
857  total time spent disengaged for each session, and tested whether there was a significant difference
858  between the sessions in which pgACC was stimulated or the control conditions (BF, POp, or sham
859  stimulation). In this model we also included a random intercept for each animal to control for different
860  baseline effects, and a random slope for whether pgACC or a control side was stimulated.

861

862  To visualize where in a session differences between conditions emerged, we also calculated the
863  cumulative sum of the time spent disengaged for each second of each session, and then averaged this
864  sum over sessions for each condition.

865
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