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SUMMARY 

Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion 

kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals about substrate 

stiffness to the cell to regulate a variety of cellular responses, but their roles in early 

transcriptional and metabolic responses remain largely unexplored. We cultured mouse 

embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and 

assessed the early transcriptional responses of these cells to placement on soft and stiff 

substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff ECM altered 

the expression of genes important for metabolic and biosynthetic processes, and these 

responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-

p130Cas signaling mechanotransduces ECM stiffness to early transcriptional changes that alter 

cellular metabolism and biosynthesis.  
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BACKGROUND 

Extracellular matrix (ECM) is part of a dynamic microenvironment that modulates various 

energy-demanding cellular processes, including cell adhesion, spreading, differentiation, 

migration, and proliferation [1, 2, 3, 4, 5]. There is evidence that the stiffness of the ECM serves 

as a biomechanical signal that influences mitochondrial network structure and function [6, 7, 8]. 

For example, a stiff ECM signals mitochondrial reprogramming to increase energy production 

for adhesion of the cell to a stiffer substrate [9]. This reprogramming and associated changes to 

a variety of cell processes involve transcriptional changes as the cells adapt to their 

microenvironment. The mechanism directing these broad changes is not clearly understood. 

The mechanotransduction of ECM stiffness begins with the direct interaction between 

ECM components and integrins, which are cell adhesion receptors and non-catalytic proteins 

that regulate critical mediators of cell metabolism [10]. Integrins signal through their association 

with cytosolic proteins, including a non-receptor tyrosine kinase known as focal adhesion kinase 

(FAK) [11, 12, 13]. Our previous studies showed that a stiffer ECM leads to increased 

phosphorylation of FAK and one of its binding partners, p130Cas [14, 15, 16]. We identified 

p130Cas as a target of FAK because FAK inhibition reduced stiffness-induced p130Cas 

phosphorylation. This stiffness-mediated activation of FAK and p130Cas regulates several 

cellular processes, including cell cycle progression, proliferation [17, 18, 19], cell adhesion, and 

motility [20, 21, 22] by signaling through Rac, ERK, and AKT pathways. Thus, FAK and 

p130Cas are positioned to act as mechanotransducers, signaling that adaptations to cell 

processes are needed to adapt to the change in the microenvironment.  

To investigate whether FAK and p130Cas modulate transcriptional programming in 

response to ECM stiffness, we used next-generation sequencing and a comprehensive 

bioinformatics approach to compare the transcriptomes of mouse embryonic fibroblasts (MEFs) 

with and without FAK and p130Cas knockdown and the global transcriptional differences 

between cells on soft and stiff substrates. We mapped out protein–protein interactions among 

commonly regulated genes to reveal which metabolic and biosynthetic processes are modulated 

by FAK-p130Cas signaling as cells adapt to physical changes in their microenvironment.  

 

METHODS 

Cell culture  

Spontaneously immortalized mouse embryonic fibroblasts (MEFs), provided by the Assoian 

Laboratory at the University of Pennsylvania, were cultured in low-glucose Dulbecco’s Modified 

Eagle’s Medium (DMEM; cat. no. 10-014-CV, Corning) supplemented with 50 μg/ml gentamicin 
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solution (cat. no. 30-005-CR, Corning) and 10% fetal bovine serum (FBS; cat. no. F2442, 

Sigma-Aldrich). Before seeding MEFs on fibronectin (cat. no. 341631, Calbiochem)-coated soft 

or stiff polyacrylamide hydrogels [23] for experimentation, cells were synchronized in the G0 cell 

cycle phase, in which cells near confluency (~80%) were serum starved by incubation for 24 h 

in DMEM with 1 mg/ml heat-inactivated, fatty-acid-free bovine serum albumin (BSA; cat. no. 

5217, Tocris). Subsequently, serum-starved MEFs were replated for 1 h on polyacrylamide 

hydrogels with 10% FBS, and total lysates were collected for immunoblotting or RNA 

sequencing analyses.  

 

siRNA transfection 

MEFs were transfected with 200 nM FAK or p130Cas siRNAs using Lipofectamine 2000 reagent 

(cat. no. 11668019, Invitrogen) in Opti-MEM (cat. no. 31985070, Gibco) according to previously 

described methods [4, 14, 16]. MEFs were transfected with siRNA for 5 h followed by immediate 

serum starvation in DMEM with 1 mg/ml BSA for 24 h. Cells were then trypsinized and seeded 

on fibronectin-coated hydrogels with DMEM containing 10% FBS. A non-targeting siRNA (cat. 

no. AM4611, Ambion) served as an experimental control. FAK and p130Cas siRNAs were 

obtained from Ambion: FAK siRNA #1 (ID: 157448): CCUAGCAGACUUUAACCAAtt; FAK siRNA 

#2 (ID: 61352): GGCAUGGAGAUGCUACUGAtt; p130Cas siRNA #1 (ID: 161328): 

GCCAAUCGGCAUCUUCCUUtt; p130Cas siRNA #2 (ID: 161329): 

GCUGAAACAGUUUGAGCGAtt. 

 

Immunoblotting 

As previously described [4, 14, 16], total cell lysates were collected from MEFs cultured on 

polyacrylamide hydrogels by incubating the hydrogels face down for 1 to 2 min at room 

temperature on 5× SDS sample buffer containing β-mercaptoethanol. Equal amounts of 

extracted protein were fractionated on reducing 10% SDS-polyacrylamide gels, and the 

fractioned proteins were subsequently transferred electrophoretically onto nitrocellulose blotting 

membranes. These membranes were probed with antibodies against FAK (cat. no. 610087, BD 

Transduction), p130Cas (cat. no. 610271, BD Transduction), or GAPDH (cat. no. sc-25778, 

Santa Cruz Biotechnology). Immunoblot signals were detected using enhanced 

chemiluminescence. 

 

RNA sample preparation for RNA-Seq analysis  
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RNA sample preparation and RNA-Seq analysis were in accordance with established protocols, 

as described in our previous research [3]. Triplicate samples were generated for MEFs cultured 

under four different conditions: (i) soft hydrogels with non-targeting control siRNA, (ii) stiff 

hydrogels with non-targeting control siRNA, (ii) stiff hydrogels with FAK siRNA #1, and (iv) stiff 

hydrogels with p130Cas siRNA #2. Total RNA was extracted using TRIzol reagent (cat. no. 

15596018, Invitrogen) and subsequently purified with an RNeasy kit (cat. no. 74106, Qiagen). 

Libraries were prepared using the Illumina TruSeq Stranded total RNA kit with the Ribo-Zero 

plus rRNA depletion kit, followed by sequencing on an Illumina HiSeq 4000 PE100 sequencer. 

Sequencing coverage was approximately 40 million reads per sample. 

 

RNA-Seq data preprocessing and alignment 

To evaluate the quality of RNA-Seq, we performed quality control analysis using both FastQC 

before alignment and MultiQC after alignment. The sequencing quality was assessed using 

FastQC version 0.11.9 [24], and potential contamination was detected by using FastQ Screen 

version 0.14.1 [25]. Summaries of FastQC and FastQ Screen quality reports were generated 

using MultiQC version 1.9 [26]. No adapter trimming was performed. Genomic alignments were 

performed using HISAT2 version 2.2.1 [27] with default parameters. The UCSC mm10 reference 

was used for the reference genome and gene annotation set. Sequence alignments were 

compressed and sorted into binary alignment map (BAM) files using SAMtools version 1.3. 

Mapped reads for genomic features were counted using Subread featureCounts version 2.0.0 

[28] using the parameters -s 2 –g gene_name –t exon –Q 60 -B -C; the annotation file specified 

with –a was the UCSC mm10 reference provided by Illumina’s iGenomes. After the counting, 

expression values for 23,418 transcripts were defined. Alignment statistics and feature 

assignment statistics were once again summarized using MultiQC. 

 

Identification of differentially expressed genes 

Data were first preprocessed to ensure the quality of the datasets. Gene entries with expression 

in all samples were retained for differential expression analysis. We employed ggplot2 [29] and 

pheatmap [30] packages to create visualizations, including a principal-component analysis plot 

and a sample correlation heat map, using a normalized count dataset. The DESeq2 [31] 

package in R was applied to identify differentially expressed genes (DEGs) between the 

following groups: stiff hydrogels with FAK siRNA, stiff hydrogels with p130Cas siRNA, soft 

hydrogels with control siRNA, and stiff hydrogels with control siRNA. DEGs were selected on 

the basis of the following thresholds as recently described in [3]: Benjamini-Hochberg adjusted p 
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value of <0.05, absolute log2(fold-change) of >0.32, and baseMean intensity of >500. Python’s 

bioinfokit [32] and R’s pheatmap packages [30] were used to illustrate gene expression patterns 

and distribution.  

 

Functional enrichment analysis 

To gain a deeper understanding of the biological processes associated with DEGs, a gene 

enrichment analysis was performed to examine biological processes and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways. The analysis was carried out using the g:GOSt 

function on the gProfiler web server (https://biit.cs.ut.ee/gprofiler/gost) [33]. The significance 

threshold was set to the Benjamini-Hochberg FDR (false discovery rate) value, and significant 

GO terms and KEGG pathways were defined by an adjusted p value of f0.05. For visualization 

purposes, bubble plots representing the top 20 enriched GO terms and KEGG pathways were 

generated using the SRplot online server.  

 

Ingenuity Pathway Analysis 

Commonly regulated DEGs from the FAK siRNA and p130Cas siRNA datasets were uploaded 

to the Ingenuity Pathway Analysis (IPA) software [34], using the expression log ratio and 

adjusted p values from the FAK dataset as the observation. IPA’s Core Analysis function was 

used to gain a deeper understanding of altered signaling pathways in response to FAK and 

p130Cas knockdown. The Diseases and Functions and Pathways features were used to 

determine significantly affected pathways and diseases [absolute activation z score g 2; -log10(p 

value) g 2] on the basis of common molecules. The Network Analysis feature was used to 

explore transcriptional networks leading to metabolic processes. The statistical values for 

Network Analysis were computed based on the p-score, derived from p values and -log10(p 

values). Additionally, the "My pathway" tool was used to illustrate known relationships between 

molecules or molecules to functions. 

 

GO term analysis and protein–protein interaction network 

We performed GO term “biological process” enrichment analysis on DEGs commonly regulated 

in FAK siRNA and p130Cas siRNA datasets and visualized the results using the ClueGO plugin 

within Cytoscape [35]. The analysis used a two-sided hypergeometric test with Benjamini-

Hochberg correction (p < 0.05) and a kappa score threshold of 0.5 to determine GO term 

network connectivity. The nodal network representation for GO biological process terms was 

constrained (p < 0.0001) and global network specificity to fit the terms within the graphic. All 
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significantly enriched GO biological processes (Benjamini Hochberg corrected p value < 0.05) 

were included in the Supplementary Table S2. To explore protein–protein interactions (PPIs) 

among DEGs, the STRING website [36] was used to construct the PPI network. STRING 

website’s k-means clustering online tool was used to identify clusters within the PPI network. 

Orphan and non-present protein entries in the dataset were filtered and the network was 

visualized in Cytoscape. FAK siRNA expression data were incorporated into the node table, with 

log₂(fold-change) values indicating expression levels and node color representing intensity. 

Additionally, we identified the top 10 hub genes using the Density of Maximum Neighborhood 

Component (DMNC) topological algorithm within the cytoHubba application [37].  

 

RNA binding protein motif enrichment analysis 

The Transite transcript set motif analysis online tool [38] was used to identify enriched RNA-

binding protein (RBP) motifs within the commonly regulated genes affected by FAK and 

p130Cas knockdown. Separate analyses were conducted on the 5' and 3' untranslated regions 

(UTRs), employing a matrix-based transcript set motif analysis, with the whole transcript list as 

the background. The analysis pipeline was configured with the Benjamini-Hochberg method, 

allowing for a maximum of 50 binding sites per mRNA. RBP motifs with a p value of <0.05 were 

considered significantly enriched and hierarchically clustered using Euclidean distance and the 

ward.D2 clustering method. The resulting dendrogram displaying differentially represented RBP 

motifs was visualized using the ggdendro package in R. The PPI network of all enriched RBPs 

was visualized using Cytoscape [39]. The STRING enrichment application [36] was applied to 

perform enrichment analysis for RBPs and proteins correlated to the following significantly 

enriched biological process GO categories: regulation of mRNA metabolic process 

(GO:1903311), gene expression (GO:0010467), regulation of RNA metabolic process 

(GO:0051252), mRNA processing (GO:0006397), RNA splicing (GO:0008380), regulation of 

translation (GO:0006417), macromolecule metabolic process (GO:0043170), cellular nitrogen 

compound metabolic process (GO:0034641), regulation of cellular metabolic process 

(GO:0031323), and regulation of primary metabolic process (GO:0080090). 

 

Statistical analysis 

Statistical significance was assessed for the data in Figure 1B using paired, one-tailed Student’s 

t tests. The graphs present means + SD from the indicated number of independent experiments. 

 

RESULTS 
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Stiff ECM influences metabolic and biosynthetic processes 

To investigate the roles of substrate stiffness and FAK/p130Cas in the early transcriptional 

response, a whole-transcriptome analysis was performed using mRNA samples from MEFs 

transfected with FAK siRNA, p130Cas siRNA, or non-targeting control siRNA and cultured for 1 

h on soft (3–8 kPa) or stiff (18–24 kPa) [4] polyacrylamide-based hydrogels. Immunoblotting 

analysis of total lysates confirmed that the siRNAs successfully downregulated their targets 

(Fig. 1A-B). RNA sequencing (RNA-Seq) analysis of mRNAs isolated from these samples 

yielded an average of 56.3 million sequences per sample with a 74.9% read mapping rate 

(Table S1). Expression values of 23,418 high-quality transcripts were obtained by counting 

mapped reads for genomic features. The relationships between samples according to gene 

expression were assessed in an unsupervised manner and can be visualized in a correlation 

heat map (Fig. 1C) and principal-component analysis plot (Fig. 1D). We then compared high 

stiffness versus low stiffness and identified 738 differentially expressed genes (DEGs): 467 were 

upregulated and 271 were downregulated (Fig. 1E). To better understand this early 

transcriptional response to ECM stiffness, we performed a Gene Ontology (GO) enrichment 

analysis. The top biological process categories enriched among the DEGs were mainly related 

to metabolic and biosynthetic processes, including “organonitrogen compound metabolic 

process,” “protein metabolic process,” “organic substance biosynthetic process,” “biosynthetic 

process,” and “cellular biosynthetic process” (Fig. 1F). Additionally, the analysis of cellular 

component categories indicated significant enrichment for cellular metabolism, including 

“ribosomal subunit,” “ribosome,” “cytosolic ribosome,” “mitochondrial protein-containing 

complex,” and “inner mitochondrial membrane protein complex,” in response ECM stiffness 

(Fig. 1G). These data show that ECM stiffness substantially impacts the cellular transcriptome, 

particularly influencing processes related to metabolism and biosynthesis. 

 

FAK modulates stiffness-mediated metabolic and biosynthesis processes 

To examine the role of FAK in the early transcriptional response to ECM stiffness, we conducted 

a differential expression analysis using DESeq2 on RNA-Seq data obtained from MEFs 

transfected with FAK or non-targeting control siRNAs and cultured on stiff hydrogels, with 

triplicate samples for each condition. Genes were filtered by significance thresholds (see 

methods and reference [3]), resulting in the identification of 924 DEGs: 385 showing 

upregulation and 539 displaying downregulation. The distribution and expression patterns of 

these DEGs are displayed in a volcano plot (Fig. 2A) and correlation heat map (Fig. 2B). To 

further investigate biological functions associated with DEGs, we conducted GO enrichment 
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analyses. Biological process categories that were enriched among the downregulated DEGs in 

response to FAK knockdown included “developmental process,” “regulation of response to 

stimuli,” “organonitrogen compound metabolic process,” and “protein metabolic process” (Fig. 

2C). Those enriched among upregulated DEGs included “regulation of biological processes,” 

“developmental process,” “positive regulation of metabolic processes,” “cell differentiation,” and 

“regulation of cell signaling” (Fig. 2D). The KEGG pathway enrichment analysis found 

enrichment in pathways such as “MAPK signaling pathway,” “FoxO signaling pathway,” 

“pathways in cancer,” and “biosynthesis of amino acids” (Fig. 2E). An Ingenuity Pathway 

Analysis (IPA) predicted significant and differential changes with positive enrichment of five 

canonical pathways (including “superpathway of cholesterol biosynthesis” and “cell cycle control 

of chromosomal replication”) and negative enrichment of seven canonical pathways (including 

“pulmonary fibrosis idiopathic signaling pathway” and “GP6 signaling pathway”) in response to 

FAK knockdown (Fig. 2F).  

We further compared data from FAK siRNA-transfected cells on stiff hydrogels with data 

from control siRNA-treated cells on soft hydrogels, identifying 1,929 DEGs (924 upregulated 

and 1,005 downregulated) (Fig. S1A, B). The enrichment analysis of downregulated DEGs 

revealed predominantly metabolic and biosynthetic processes influenced by FAK knockdown, 

including “organonitrogen compound metabolic process,” “organonitrogen compound 

biosynthesis process,” “protein metabolic process,” and “peptide biosynthetic process” (Fig. 

S1C); upregulated DEGs showed enrichment in biological processes such as “multicellular 

organism development,” “positive regulation of biological process,” “regulation of primary 

metabolic process,” and “anatomical structure development” (Fig. S1D). The KEGG pathway 

analysis identified enrichment in pathways including “biosynthesis of amino acids,” “carbon 

metabolism,” “VEGF signaling pathway,” “metabolic pathways,” and “FoxO signaling pathway” 

among others (Fig. S1E). Furthermore, IPA canonical pathway analysis predicted significant 

and differential changes in 111 canonical pathways, including positive enrichment of 68 

pathways (including “mitochondrial dysfunction,” “ERK/MAPK signaling,” and “Rho GTPase 

cycle”) and negative enrichment of 43 pathways (including “selenoamino acid metabolism” and 

“mitochondrial translation”) (see Fig. S1F for a histogram of the top 20). These findings indicate 

that FAK’s role in the early transcriptional response to ECM stiffness involves modulation of 

critical cell functions, including metabolism and biosynthesis. 

 

p130Cas predominantly impacts stiffness-mediated metabolic and biosynthetic 

processes  
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To assess the impact of p130Cas knockdown on the early transcriptional response to ECM 

stiffness, we compared RNA-Seq data from MEFs treated with p130Cas siRNA with data from 

those treated with non-targeting control siRNA, both cultured on stiff hydrogels. We identified 

952 DEGs (453 upregulated DEGs and 499 downregulated DEGs), which are presented in a 

volcano plot (Fig. 3A) and a heat map (Fig. 3B). Further functional enrichment analysis 

identified numerous metabolic and biosynthetic processes, such as “organonitrogen compound 

metabolic process,” “small molecule metabolic process,” “organic substance biosynthetic 

process,” and “primary metabolic process,” that were enriched among downregulated DEGs 

(Fig. 3C). Additionally, biological processes such as “anatomical structure development,” 

“developmental process,” “regulation of cellular response,” and “regulation of signaling” were 

enriched among upregulated DEGs (Fig. 3D). KEGG pathway analysis of all DEGs indicated 

enrichment in various disease pathways, such as “prion disease,” “Alzheimer disease,” 

“Parkinson disease,” and “Huntington disease.” There was also enrichment of “metabolic 

pathways,” “steroid biosynthesis,” “carbon metabolism,” and “valine, leucine, and isoleucine 

degradation pathways” (Fig. 3E). Moreover, IPA canonical pathway analysis predicted positive 

enrichment of 12 canonical pathways (including “pulmonary fibrosis idiopathic signaling 

pathway” and “superpathway of cholesterol biosynthesis”) and negative enrichment of 6 

pathways (including “microautophagy signaling pathway” and “oxidative phosphorylation”) in 

response to p130Cas knockdown (Fig. 3F).  

We also compared the data from cells transfected with p130Cas siRNA and cultured on 

stiff hydrogels to data from cells treated with control siRNA and cultured on soft hydrogels. This 

analysis revealed 2,705 DEGs: 1,367 upregulated and 1,338 downregulated (Fig. S2A, B). The 

enrichment analysis of these downregulated DEGs unveiled mostly metabolic and biosynthetic 

processes affected by p130Cas knockdown, including "organonitrogen compound biosynthetic 

process,” “organonitrogen compound metabolic process,” "peptide biosynthetic process,” and 

“protein metabolic process” (Fig. S2C). Additionally, upregulated DEGs in cells with p130Cas 

knockdown were associated with biological processes such as “anatomical structure 

development,” “multicellular organism development,” “developmental process,” “negative 

regulation of cellular process,” and “negative regulation of biological process” (Fig. S2D). The 

KEGG pathway analysis in this dataset highlighted disease pathways such as "Huntington 

disease,” “prion disease,” “Parkinson disease,” and “Alzheimer’s disease” as well as “oxidative 

phosphorylation” and “metabolic pathways” (Fig. S2E). Moreover, IPA canonical pathway 

analysis predicted significant and differential changes in 150 canonical pathways, including 

positive enrichment of 86 pathways (including “mitochondrial dysfunction,” “granzyme A 
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signaling, and “Rho GTPase cycle”) and negative enrichment of 64 pathways (including 

“selenoamino acid metabolism,” “electron transport, ATP synthesis, and heat production by 

uncoupling proteins,” “oxidative phosphorylation,” and “mitochondrial translation”) (see Fig. S2F 

for a histogram of the top 20). The impact of p130Cas knockdown on biological processes and 

KEGG pathways was comparable to that observed with FAK knockdown, further emphasizing 

the roles of p130Cas and FAK in cellular metabolism, biosynthesis, and disease-related 

mechanisms. 

 

FAK-p130Cas signaling affects metabolic processes and RNA splicing 

We further analyzed our dataset to identify DEGs in MEFs cultured on stiff hydrogels that were 

commonly regulated with FAK and p130Cas knockdown: 151 DEGs were commonly 

downregulated (Fig. 4A) and 157 DEGs were commonly upregulated (Fig. 4B) by FAK and 

p130Cas knockdown. GO analysis of these genes showed they were primarily enriched in 

“metabolic processes,” “tissue development,” “cell differentiation,” “regulation of signal 

transduction,” “apoptosis,” and “response to external stimulus” (Fig. 4C) (see Table S2 for all 

enriched biological processes). 

 We use the Transite set motif analysis tool to identify RNA-binding proteins (RBPs) 

recognized by the 3′ and 5′ untranslated regions (UTRs) of the common DEGs, which would 

indicate potential regulation of mRNA synthesis, translocation, and clearance. Three motifs 

within 3′ UTRs and 23 motifs within 5′ UTRs were significantly enriched in transcripts regulated 

by FAK-p130Cas signaling (Fig. 4D). Additionally, we used Cytoscape software to construct a 

protein-protein interaction (PPI) network with all enriched RBPs, revealing in a network 

composed of 21 nodes and 67 edges. A STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) enrichment analysis of the PPI network indicated that the node RBPs were 

associated with the 3′ and 5′ UTRs (see Fig. 4D) and all linked to biological processes 

highlighted in the network, including “regulation of RNA metabolic process,” “RNA splicing,” 

“regulation of translation,” “macromolecule metabolic process,” and “regulation of cellular 

metabolic process” (Fig. 4E).  

 

FAK-p130Cas signaling affects lipid metabolic processes 

To gain insight into the molecular consequences of interfering with FAK-p130Cas signaling, we 

used the Core Analysis function in the IPA software to analyze the differential expression of 

DEGs commonly regulated with FAK or p130Cas knockdown. There were differential and 

significant changes in six canonical pathways: five pathways were positively enriched and one 
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pathway was negatively enriched (Fig. 5A). Pathways associated with “superpathway of 

cholesterol biosynthesis” and “PPAR signaling,” both associated with lipid metabolism, were 

positively and negatively enriched, respectively. The IPA Diseases and Functions feature 

identified 70 diseases and functions that were significantly and differentially impacted by FAK 

and p130Cas knockdown (Fig. 5B). Lipid metabolic processes, such as “lipolysis” (z-score, 

3.249) and “metabolism of membrane lipid derivatives” (z-score, 2.734), were predicted to be 

highly activated. We then applied IPA’s Path Explorer tool to illustrate the molecular 

relationships among DEGs associated with lipolysis and metabolism of membrane lipid 

derivatives (Fig. 5C, D). The IPA Interaction Network Analysis identified three regulatory 

networks linking signaling events to metabolism: one associated with carbohydrate metabolism, 

nucleic acid metabolism, and small molecule biochemistry (p-score = 25) (Fig. 5E), one 

associated with lipid metabolism, small molecule biochemistry, and vitamin and mineral 

metabolism (p-score = 21) (Fig. 5F), and one associated with amino acid metabolism, cellular 

movement, and small molecule biochemistry (p-score = 21) (Fig. 5G). Collectively, these data 

demonstrate that inhibition of FAK-p130Cas signaling not only impacts lipid metabolism but also 

has far-reaching consequences on multiple metabolic pathways.  

 

FAK-p130Cas signaling affects various metabolic processes via hub genes 

We constructed another PPI network to identify highly connected hub genes—genes that have 

numerous interactions with other genes—among commonly regulated DEGs in response to both 

FAK and p130Cas knockdown. The resultant PPI network comprised 213 nodes and 649 edges 

(Fig. S3). We then performed k-means clustering by using the STRING online tool, which 

identified four functionally distinct clusters within the PPI network (Fig. 6A). Cluster 1, with 28 

nodes and 96 edges (Fig. 6B), was linked to “amino acid metabolism,” “alpha-amino acid 

metabolism,” “alpha-amino acid biosynthetic process,” “carboxylic acid metabolic process,” etc. 

(Fig. 6C). Cluster 2, comprising 54 nodes and 55 edges (Fig. 6D), was enriched in “anatomical 

structure of morphogenesis,” “regulation of cell migration,” “cell migration,” “blood vessel 

development,” etc. (Fig. 6E). Cluster 3, with 33 nodes and 61 edges (Fig. 6F), was associated 

with “lipid biosynthetic process,” “sterol metabolic process,” “lipid metabolic process,” “sterol 

biosynthetic process,” etc. (Fig. 6G). Cluster 4, comprising 73 nodes and 264 edges (Fig. 6H), 

was enriched in “negative regulation of cellular process,” “anatomical structure development,” 

“positive regulation of biological process,” “regulation of protein metabolic process,” etc. (Fig. 

6I). 
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We identified the top ten hub genes within the PPI network for DEGs commonly 

regulated by both FAK and p130Cas knockdown in comparison to expression in control siRNA-

treated cells on stiff hydrogels by using the Density of Maximum Neighborhood Component 

(DMNC) topological algorithm of the cytoHubba application. This analysis identified Hsd17b7, 

Slc1a4, Srr, Idi1, Stard4, Jag1, Cyp51, Slc1a5, Fgfr1, and Sc5d as highly connected hub genes 

within the PPI network (Fig. 6J). These ten hub genes are involved in various metabolic and 

biosynthetic processes, including “secondary alcohol metabolic process,” “steroid metabolic 

process,” “cholesterol metabolic process,” “cholesterol biosynthetic processes,” and “small 

molecule biosynthetic process” (Fig. 6K). An IPA core analysis of the expression log ratios of 

these ten genes revealed a hub gene network (p-score, 32) associated with lipid metabolism, 

small molecule biochemistry, and vitamin and mineral metabolism (Fig. 6L). Thus, the hub 

genes, intricately connected within the network, play central roles in various metabolic 

processes affected by inhibition of FAK-p130Cas signaling.  

 

DISCUSSION 

In this study, we investigated the impact of focal adhesion proteins (FAK and p130Cas) on the 

early transcriptional responses of MEFs to ECM stiffness. These studies support and extend the 

results of previous studies, which showed that adhesion-mediated mechanotransduction alters 

mitochondrial reprogramming [9] as well as actin cytoskeletal dynamics [40, 41] and sterol 

responsive element binding protein (SREBP) activity [42]. Our findings reveal that ECM stiffness 

triggers robust transcriptional changes associated with metabolic, biosynthetic, and 

developmental processes within 1 h, indicating a mechanism for rapid bioenergetic changes in 

MEFs in response to changes in substrate stiffness.  

FAK is activated by ECM/integrin interactions, and ECM stiffness induces metastasis 

and autophagy of cancer cells through integrin-FAK signaling [43, 44]. FAK activity in solid 

tumors leads to an increase in intracellular glucose levels as a result of a shift from OXPHOS 

(mitochondrial oxidative phosphorylation) to glycolysis [45]. Our findings show that in normal 

cells, FAK depletion (via siRNA knockdown) significantly impacts metabolic, biosynthetic, and 

developmental cell processes. FAK depletion in cancer-associated fibroblasts triggers an 

upregulation of CC chemokines (or β-chemokines), resulting in an increase in malignant cell 

glycolysis [46]. The KEGG pathway analysis in the present study indicates that the changes with 

FAK depletion are linked to metabolic disorders (diabetic cardiomyopathy), cancers (pancreatic, 

breast, lung, etc.), and neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington 

diseases), all involving altered metabolism and biosynthesis [47-53]. Altogether, the results from 
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our study highlight the importance of FAK in regulating crucial metabolic and biosynthetic 

processes. 

Cancer cells use signaling pathways, such as those involving ERK1/2, MAPK, Akt, and 

Rap1, to switch to aerobic glycolysis (known as the Warburg effect) to facilitate rapid 

proliferation [54]. Rap1 deficiency in mice alters the expression of genes involved in 

metabolism, leading to obesity and glucose intolerance [55]. These same signaling molecules 

are regulated by p130Cas [56-59], and previous studies as well as the data we present here 

indicate that p130Cas is crucial for modulating intracellular responses in response to changes in 

ECM stiffness [21, 60]. Specifically, our studies reveal a previously unrecognized role of 

p130Cas as a regulator of transcriptional programs involving metabolic and biosynthetic 

processes, such that information about ECM stiffness is mechanotransduced via p130Cas 

signaling to modulate transcriptional programs for various metabolic and biosynthetic 

processes. 

The interaction between FAK and p130Cas is key for the early transcriptional responses 

of cells to their microenvironment. Inhibition of the FAK-p130Cas signaling resulted in an 

upregulation of Il1r1 (interleukin 1 receptor, type I) and Tnfrsf1a (tumor necrosis factor receptor 

superfamily member 1A; also known as TNFR1), which reduce peroxisome-proliferator-

activated receptor (PPAR) signaling [61]. PPAR signaling regulates the expression of enzymes 

involved in intracellular lipid metabolic processes, such as fatty acid uptake, lipid homeostasis, 

and peroxisome proliferation [62, 63]. Interestingly, we found that knockdown-mediated 

inhibition of FAK-p130Cas signaling upregulated genes for cyclooxygenase enzymes (Ptgs1 

and Ptgs2), nine other genes necessary for lipolysis [64-73], and genes enriched in various 

metabolic processes. The data indicate that stiffness-mediated early transcriptional responses in 

cells with knockdown of FAK-p130Cas signaling alter lipid metabolism by impairing PPAR 

signaling and fatty acid utilization. This leads cells to activate the superpathway of cholesterol 

metabolism and biosynthesis signaling, producing more cholesterol in place of the unused fatty 

acids.  

We found that untranslated regions of common transcripts regulated by FAK and 

p130Cas are enriched for RBP motifs. For example, the 3′ UTR motifs are recognized by 

PTBP1, PTBP2, ROD1, SFRS1, and ZRANB2, which are important for stabilizing mRNAs by 

promoting exon inclusion [74] and repressing premature slicing and degradation [75]. 

Additionally, the common 5′ motifs recognized AU-rich elements such as ELAVL proteins, which 

stabilize mRNAs; e.g., ELAVL1 stabilizes Ptgs2 mRNA in colon cancer cell lines, which causes 

an increase in COX-2 levels [76]. The negative enrichment for 5′ UTR motifs recognizing TIA1 
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and ZC3H10, which promote mRNA storage and degradation [77, 78], is further evidence that 

the transcriptional response mediated by FAK-p130Cas signaling involves translational 

regulation; however, further studies are needed to assess actual translation efficiency.  

Our analyses with the cytoHubba application of Cytoscape software identified ten hub 

DEGs common to FAK and p130Cas knockdown. These genes, Hsd17b7, Slc1a4, Srr, Idi1, 

Stard4, Jag1, Cyp51, Slc1a5, Fgfr1, and Sc5d, are mainly associated with metabolic and 

biosynthetic processes. The downregulation of Slc1a4 and Slc1a5, which code for glutamine 

transporters, with FAK-p130Cas knockdown is interesting, because cancer cells rely on the 

transport of glutamine through these receptors to meet their energy demands [79]. Many 

regulators of cholesterol metabolism were among the hub genes that were upregulated with 

FAK and p130Cas knockdown. These include the genes for Stard4, which is known to regulate 

intracellular cholesterol homeostasis [80], Hsd17b7, which is an enzyme that produces 

zymosterol [81], a precursor for cholesterol biosynthesis, and estradiol [82]. Sc5d catalyzes the 

synthesis of 7-dehydrocholesterol [83] to form cholesterol, and Idi1 and Cyp51 are part of the 

superpathway of the canonical cholesterol biosynthesis pathway [84]. 

  

CONCLUSION 

This study provides new insights into the genome-wide early transcriptional changes mediated 

by FAK-p130Cas signaling in response to ECM stiffness. FAK and p130Cas knockdown altered 

transcriptomes for metabolic reprogramming, increasing the expression of genes involved in 

cholesterol biosynthesis and reducing the expression of those involved in PPAR signaling and 

fatty acid utilization. Our analyses identified ten hub genes that were common targets of FAK 

and p130Cas signaling and are regulators of metabolic and biosynthetic processes. Altogether, 

the findings presented here reveal an important role of FAK and p130Cas as 

mechanotransduction signals to modulate metabolic processes enabling cells to adapt to the 

bioenergetic demands aroused by ECM stiffness.  
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FIGURE LEGENDS 

Figure 1. RNA-Seq analysis identify stiffness-induced early transcriptional changes and 

associated biological processes and cellular components. Mouse embryonic fibroblasts 

(MEFs) were transfected with non-targeting control siRNA or siRNAs targeting FAK and 

p130Cas, synchronized to G0, and plated on fibronectin-coated soft or stiff substrates for 1 h. 

(A) Immunoblots of total cell lysates showing protein levels of FAK and p130Cas with GAPDH 

as the loading control. (B) Graphs present mean + SD, normalized to GAPDH abundance, and 

plotted relative to the signal on the soft hydrogels, n = 3. *p < 0.05, **p < 0.01, ***p < 0.001; ns, 

not significant. Correlation heat map (C) and principal-component analysis plot (D) for the entire 

transcriptome list. (E) Volcano plot illustrates the distribution of differentially expressed genes 

(DEGs) in response to stiffer ECM; significance determined by adjusted p value of <0.05; 

log2(fold-change) <-0.32 or >0.32; and baseMean > 500. Bubble plots depict the top 20 

significantly enriched biological processes (F) and cellular components (G) among DEGs in 

response to stiff versus soft substrate. 

 
Figure 2. FAK knockdown affects stiffness-mediated cellular function and metabolic 

processes. Volcano plot (A) and heat map (B) to visualize the distribution and expression 

patterns, respectively, of differentially expressed genes (DEGs) in response to FAK knockdown. 

Bubble plots show the top 20 enriched biological processes for significantly downregulated (C) 

and upregulated (D) DEGs comparing FAK siRNA to control siRNA in cells on stiff hydrogels. (E) 

Top 20 enriched KEGG pathways for DEGs with FAK siRNA versus control siRNA in cells on 

stiff hydrogels. (F) Histogram represents significantly and differentially activated or inhibited 

[absolute activation z score g 2; -log10(p value) g 2)] canonical pathways in response to FAK 

knockdown.  

 

Figure 3. p130Cas knockdown results in significant changes in metabolic and 

biosynthetic processes. Volcano plot (A) and heat map (B) to visualize the distribution and 

expression patterns, respectively, of differentially expressed genes (DEGs) in response to 

p130Cas knockdown. Bubble plots show the top 20 enriched biological processes for 

significantly downregulated (C) and upregulated (D) DEGs comparing p130Cas siRNA to control 

siRNA in cells on stiff hydrogels. (E) Top 20 enriched KEGG pathways for DEGs with p130Cas 

siRNA versus control siRNA in cells on stiff hydrogels. (F) Histogram represents significantly 

and differentially activated or inhibited [absolute activation z score g 2; -log10(p value) g 2)] 

canonical pathways in response to p130Cas knockdown.  
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Figure 4. Metabolic processes are impacted by commonly regulated DEGs influenced by 

FAK-p130Cas signaling. Venn diagrams show commonly downregulated (A) and upregulated 

(B) differentially expressed genes (DEGs) in cells on stiff hydrogels with FAK siRNA or p130Cas 

siRNA. (C) Gene ontology (GO) analysis identifies a network of significantly connected and 

grouped biological processes (p�<�0.0001 by two-sided hypergeometric test with Benjamini–

Hochberg correction; global network specificity) among common DEGs of FAK-p130Cas 

signaling. (D) Dendrogram shows hierarchical clustering of significantly enriched (p < 0.05) 

RNA-binding protein motifs identified by the Transite set motif analysis tool in 3′ and 5′ 

untranslated regions of common DEGs. (E) STRING enrichment analysis shows a protein–

protein interaction network (21 nodes and 67 edges) of all enriched RNA-binding proteins and 

their associated biological processes.  

 

Figure 5. Inhibiting FAK-p130Cas signaling affects lipid metabolic processes. Histograms 

display differentially and significantly changed [absolute activation z score g 2; -log10(p value) g 

2] canonical pathways (A) and diseases and functions (B) analyzed in QIAGEN IPA software 

using the Core Analysis function. Network diagrams acquired by IPA’s Path Explorer tool show 

relationships between 14 DEGs and lipolysis function (activation z-score, 3.249) (C) and 

between 21 DEGs and metabolism of membrane lipid derivate (activation z-score, 2.734) (D). 

IPA Interaction Network Analysis identified three regulatory networks associated with 

carbohydrate metabolism, nucleic acid metabolism, and small molecule biochemistry (p-score, 

25) (E), lipid metabolism, small molecule biochemistry, and vitamin and mineral metabolism (p-

score, 21) (F), and amino acid metabolism, cellular movement, and small molecule biochemistry 

(p-score, 21) (G). 

 

Figure 6. Hub genes mediate the impact of FAK and p130Cas knockdown on various 

metabolic processes. (A) Four clusters within the protein–protein interaction network of 

commonly regulated genes in FAK-p130Cas signaling. (B-I) The protein–protein interaction 

networks of the four identified clusters (B, D, F, and H) and bubble plots (C, E, G, and I) 

illustrate the top 20 enriched biological processes corresponding to each network. (J) Network 

(10 nodes and 45 edges) displays the top 10 hub genes identified using the Density of 

Maximum Neighborhood Component topological algorithm in the cytoHubba plug-in. (K) Bubble 

plot shows top 20 enriched biological processes of the top 10 hub genes. (L) The hub gene 
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network (p-score, 32) associates with lipid metabolism, small molecule biosynthesis, and 

vitamin and mineral metabolism.  

 

SUPPLEMENTARY INFORMATION 

Figure S1. Transcriptional changes related to metabolism, biosynthesis, development, 

and signaling pathways in cells with FAK knockdown placed on soft hydrogels. Volcano 

plot (A) and heat map (B) to visualize the distribution and expression patterns of DEGs between 

FAK siRNA-transfected cells on stiff hydrogels and control siRNA-treated cells on soft 

hydrogels. Bubble plots show the top 20 enriched biological processes for significantly 

downregulated (C) and upregulated DEGs (D) comparing cells on stiff hydrogels with FAK 

siRNA to cells on soft hydrogels with control siRNA. (E) Top 20 enriched KEGG pathways 

among DEGs in cells on stiff hydrogels with FAK siRNA versus cells on soft hydrogels with 

control siRNA. (F) Histogram represents the top 20 significantly and differentially activated or 

inhibited [absolute activation z score g 2; -log10(p value) g 2] canonical pathways in response to 

FAK knockdown.  

 

Figure S2. Transcriptional changes related to metabolism, biosynthesis, development, 

and disease in cells with p130Cas knockdown placed on soft hydrogels. Volcano plot (A) 

and heat map (B) to visualize the distribution and expression patterns of DEGs between 

p130Cas siRNA-transfected cells on stiff hydrogels and control siRNA-treated cells on soft 

hydrogels. Bubble plots show the top 20 enriched biological processes for significantly 

downregulated (C) and upregulated (D) DEGs comparing cells on stiff hydrogels with p130Cas 

siRNA to cells on soft hydrogels with control siRNA. (E) Top 20 enriched KEGG pathways 

among DEGs in cells on stiff hydrogels with p130Cas siRNA versus cells on soft hydrogels with 

control siRNA. (F) Histogram represents the top 20 significantly and differentially activated or 

inhibited [absolute activation z score g 2; -log10(p value) g 2] canonical pathways in response to 

p130Cas knockdown.  

 

Figure S3. Protein–protein interaction network (213 nodes and 649 edges) of commonly 

regulated genes in FAK-p130Cas signaling. 
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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