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Abstract 

Time-varying changes in whole-brain connectivity patters, or connectome state dynamics, hold 

significant implications for cognition. However, connectome dynamics at fast (> 1Hz) timescales highly 

relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome 

studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome 

dynamics using source-localized EEG connectomes during resting-state (N=926 including twins, 473 

females). We focused on dynamic connectome features pertinent to individual differences, specifically 

those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent 

connectome state) in beta and gamma bands, and Transition Probability (i.e., the frequency of state 

switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant 

relationship between the heritable phenotypes of sub-second connectome dynamics and cognition. 

Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma 

bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory 

working memory) most notably contributed to the relationship. We conclude that the specific order in 

which rapid connectome states are sequenced shapes individuals’ cognitive abilities and traits. Such sub-

second connectome dynamics may inform about behavioral function and dysfunction and serve as 

endophenotypes for cognitive abilities. 
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1. Introduction 

Cognitive processes are inherently dynamic, with a substantial portion of these dynamics 

unfolding at speeds of few 100 milliseconds or faster. It stands to reason that ongoing or spontaneous 

neural processes constituting most brain activity, including large-scale connectome dynamics, affect 

cognition (Raichle and Gusnard, 2005). Indeed, great functional significance of large-scale network 

dynamics for cognitive performance (Sadaghiani et al., 2015; Kucyi et al., 2018) and inter-individual 

differences therein (Eichenbaum et al., 2020; Jun et al., 2022) has been established using fMRI. In fact, 

investigations of functional connectome dynamics and their functional significance have been dominated 

by fMRI due to its exceptional spatial resolution. Unfortunately, the temporal dynamics captured by the 

fMRI-derived slow and indirect measure of neural activity, or BOLD signal, misses the rich temporal 

dynamics that occur on cognitively more relevant sub-second timescales.  

These time-varying dynamics in large-scale functional connectivity can be characterized as 

flexible changes in connectome states, representing varying strength of connectivity between specific 

sets of brain regions within the whole-brain connectome, which occur repeatedly over time. Recently, 

data-driven approaches, such as Hidden Markov Modeling (HMM), have been employed to identify 

temporally recurrent connectome states with state-specific mean and covariance from the observed time 

series of different brain regions. 

Prior fMRI connectome studies have established that a wide range of behaviors and cognitive 

processes are linked to such recurrent state dynamics, encompassing both the temporal organization of 

connectome state transitions (Vidaurre et al., 2017; Eichenbaum et al., 2020; Jun et al., 2022) and 

changes in the spatial organization of connectivity patters (Sadaghiani et al., 2015; Shine et al., 2016). 

Particular temporal features of fMRI-derived connectome dynamics, specifically the proportion of the total 

recording time spent in each connectome state (Fractional Occupancy) and the probability to transition 

between specific pairs of connectome states (Transition Probability), have not only been linked to 

behavioral performance (Vidaurre et al., 2017; Eichenbaum et al., 2020; Jun et al., 2022), but also found 

to be heritable (Vidaurre et al., 2017; Jun et al., 2022). More specifically, our previous fMRI work has 

established substantial genetic effects (h2 ~ 40%) and behavioral relevance of Fractional Occupancy and 

Transition Probability (Jun et al., 2022). We further found preliminary evidence for specific genetic 

polymorphisms predictive of fMRI-derived Fractional Occupancy and Transition Probability via the 

regulatory impact of modulatory neurotransmitter systems (Jun et al., under review). While this fMRI-

based body of literature establishes that infraslow connectome dynamics are endophenotypes driving 

individually specific cognitive abilities, little is known about the functional impact of rapid connectome 

dynamics. 

Non-invasive, real-time methods, i.e., EEG and MEG, allow capturing rapid electrophysiological 

signals with real-time fidelity. Recently, a growing body of work has established the capability to 

investigate the spatially informative functional connectome and, importantly, its rapid dynamics in source-
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space with measures addressing source leakage (static/time-averaged connectome: (de Pasquale et al., 

2010; Brookes et al., 2011; Deligianni et al., 2014; Hipp and Siegel, 2015; Wirsich et al., 2017), 

connectome dynamics: (Baker et al., 2014; Brookes et al., 2014; Sitnikova et al., 2020; Wirsich et al., 

2020; Coquelet et al., 2022), for review, see (Sadaghiani and Wirsich, 2020)). Importantly, we have 

recently shown that Fractional Occupancy and Transition Probability of rapid connectome dynamics 

derived from source-space EEG are also under significant genetic influence (Jun et al., In Preparation). 

This subject-specificity of temporal phenotypes of rapid connectome dynamics lead us to question their 

functional implications for individual differences in cognitive abilities. 

In the current study, we focused on the heritable time-varying phenotypes of sub-second, 

electrophysiological connectome dynamics. Heritable features inherently reflect individual differences and 

further allow us to narrow the particularly large feature space of rich, electrophysiological connectome 

dynamics that comprise numerous frequency bands. We investigated whether such band-specific 

dynamic phenotypes contribute to inter-individual variability in cognitive task measures. Specifically, we 

applied Hidden Markov Modelling (HMM) to obtain discrete brain states using source-reconstructed 

resting-state EEG data from the Minnesota Twin Family Study (Keyes et al., 2009). For each canonical 

frequency band, we focused on previously identified heritable temporal phenotypes (i.e., Fractional 

Occupancy and Transition Probability; (Jun et al., In Preparation)) and examined their associations with 

cognitive task measures using canonical correlation analysis. To the best of our knowledge, this is the 

first source-reconstructed EEG study investigating the behavioral significance of rapid temporal 

connectome dynamics. 

 

2. Materials and Methods  

Figure 1 is a schematic representation of the overall approach and analysis subsections.  
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Figure 1. An overview of the analysis pipeline. [A] We used resting-state EEG signals in source-space and
structural images sourced from the Minnesota Twin Family Study dataset. Employing a hidden Markov model (HMM),
we extracted six discrete connectome states for amplitude timeseries of each canonical frequency band. These
states were associated with a state time course for each subject, indicating the likelihood of each state being active.
Connectivity matrices reflecting amplitude coupling are shown for each state. These six states are color-coded (blue,
red, yellow, green, purple, and light blue) to visually depict their contribution to the connectome dynamics of interest.
From this analysis, we obtained two temporal features of rapid connectome dynamics for each frequency band,
namely the proportion of time spent in each connectome state (Fractional Occupancy) and the probability matrix
describing transitions between all possible pairs of discrete states (Transition Probability). These features were
constructed in a multivariate manner to comprehensively represent all states. For further analysis, we retained
Fractional Occupancy and Transition Probability in bands in which they were found to be heritable (Jun et al., In
Preparation). [B] In order to identify linear relationships (“modes”) between these multivariate dynamic connectome
phenotypes and cognitive task measures, we conducted canonical correlation analysis (CCA). This analysis was
carried out on dimensionality-reduced data, encompassing frequency-specific N principal components of multivariate
dynamic connectome phenotypes and N cognitive factors. 

 

2.1. Subjects and cognitive measures 

Participants for the present investigation are from the two independent cohorts of twins from the

Minnesota Twin and Family Research (MCTFR) (Iacono et al., 1999; Keyes et al., 2009). Twins in both

cohorts have been followed periodically since approximately the age of 11. As part of their most recent

assessment, participants underwent structural MRI scans in addition to resting EEG recordings. At time of

initial recruitment, participants gave written informed consent or assent, if under the age of 18, to

participate in the initial study as well as to be shared with other researchers. 
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From the pool of all 1084 healthy adult subjects, we included 928 subjects with complete resting-

state EEG and structural MRI data. The included subjects (473 females) were 23–40 years of age at time 

of data acquisition. All 928 subjects entered HMM estimation of discrete connectome states. 

Subsequently, 463 sex-matched pairs (926 subjects) were formed for cognitive association analysis as 

follows: 206 monozygotic (MZ) twin pairs, 112 sex-matched dizygotic (DZ) twin pairs, and 145 pairs of 

sex-matched unrelated individuals. Note that all pairs are uniquely defined so that none of the subjects 

overlap between groups to avoid dependencies across members of families with > 2 subjects. 

We included 15 summary measures from 8 cognitive tasks provided by MCTFR (see Table S1 for 

more detailed description for each measure and task). The measures were transformed into z-scores. All 

926 subjects had more than 50% of cognitive measures (859 subjects with complete dataset). 

2.2 MRI and EEG acquisition  

Structural MRI data were collected on either 3T Siemens Trio or Prisma MRI scanner (32-channel 

array head coil) at the Center for Magnetic Resonance Research, University of Minnesota. Three-

dimensional T1-weighted sagittal plane anatomical images were acquired using the following 

magnetization-prepared rapid gradient echo sequence: TR = 2530 ms; TE = 3.65 ms; flip angle = 7°; 

matrix size = 256 × 256; FOV = 256 mm; GRAPPA = 2; 240 coronal slices with 1-mm isotropic voxels; 

single shot; interleaved acquisition. 

While recording EEG, participants rested comfortably in a darkened room, with their head and 

neck supported while hearing 55-dB white noise played through headphones. They were instructed to 

keep their eyes closed and relax. A recorded voice subsequently instructed them to open the eyes or 

close them at 1-min intervals. A total of 6 min of EEG was collected, 3 min with eyes open and 3 with 

eyes closed. EEG data were acquired from 61 scalp electrodes arranged according to the International 

10/10 system using a BioSemi ActiveTwo system (BioSemi, Amsterdam, The Netherlands) at 1024 

Hz. ActiveTwo amplifiers are DC coupled. ActiveTwo signals are monopolar. They were low-pass filtered 

using a digital 5th-order Bessel antialiasing sinc filter with a cutoff frequency (3-dB attenuation) of 205 Hz. 

Pairs of electrodes placed above and below the right eye or on the outer canthus of each eye allowed for 

detecting blinks and other eye movements. Additional electrodes were placed on left and right earlobes, 

and the average of these signals was derived offline to serve as a reference. 

2.3. EEG signal pre-processing and source localization 

Raw resting-state EEG signals were pre-processed using in-house code of Minnesota Twin 

Family Study group and EEGLAB (Delorme and Makeig, 2004) in MATLAB (version R2021b, Mathworks, 

Inc.). Signals were down-sampled to 256 Hz, filtered with a 0.1 Hz high-pass filter (firfilt EEGLAB plugin; 

1,286 Kaiser window), and referenced to averaged earlobe signals. A monitored automated pipeline 

detected four kinds of signal anomalies: disconnected channels/flat signals, interelectrode electrolyte 

bridging (Tenke and Kayser, 2001), large amplitude deviations, and muscle/cap shift (motion) noise. 
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Descriptives (e.g., temporal variance) were calculated for each electrode and 1-s time range. Data that 

exceeded four normalized median absolute deviations from the median (Rousseeuw and Croux, 1993) in 

25% of a 1s time range or 75% of a given electrode were removed. Among others, this approach is 

effective in removing periods with head motion artifacts. Ocular correction was performed using 

independent components (IC) analysis (infomax algorithm; Bell and Sejnowski, 1995) and joint 

consideration of temporal and spatial signal characteristics. The IC time series and inverse weights were 

compared with the time courses of the bipolar vertical or horizontal EOG and the inverse weight of a 

stereotypical blink or horizontal saccade to correct for vertical and horizontal ocular artifacts, respectively. 

If the squared joint temporal and spatial correlations for an IC exceeded an empirically calculated 

threshold (Mognon et al., 2011), that IC was subtracted from the data.  

For source localization, we imported preprocessed EEG recordings and MR-based anatomical 

images into Brainstorm software (Tadel et al., 2011). The EEG signals were resampled to 250 Hz, 

corrected for DC offsets, linearly detrended, and low-pass filtered at 70 Hz. We manually marked fiducial 

points, including the anterior commissure (AC), posterior commissure (PC), inter-hemispheric point, 

nasion (NAS), and left and right pre-auricular points (LPA and RPA), of all subjects using their individual 

anatomical images to aid coregistration of electrode positions and T1 images. The coregistration was 

refined by manually moving the electrode positions onto the electrode artifacts visible in the T1 image. 

We then used the OpenMEEG software (Gramfort et al., 2010) with a symmetric boundary element 

method (BEM) to calculate a forward model of the skull based on the individual T1 image of each subject 

(Tadel et al., 2019). Then, we used the Tikhonov-regularized minimum-norm estimation (MNE) as inverse 

method to compute the sources, with default parameter settings for regularization and source depth 

weighting (Tikhonov parameter = 10%, assumed SNR = 3.0, constrained sources normal to cortex, depth 

weighting 0.5/max amount 10) (Baillet et al., 2001; Tadel et al., 2019). 

2.4. Parcellation and Source-leakage correction  

We used the Desikan-Killiany Atlas (Desikan et al., 2006) in Brainstrom to average source signals 

within each of the atlas’ 68 anatomically distinct brain regions. To aid network-level interpretation, we also 

determined each region's membership within the canonical Intrinsic Connectivity Networks or ICNs (Yeo 

et al., 2011) based on spatial overlap. 

To mitigate source-leakage confounds caused by the blurring of point dipole sources and the 

spreading of signals across neighboring regions, we excluded regions whose signals were collinear with 

others based on the qr function in Matlab. As a result, 14 regions were excluded from the investigation 

(Figure S1). The remaining 54 regional signals underwent detrending and bandpass filtering within 

canonical frequency ranges: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-25 Hz), and gamma 

(30-45 Hz). Then, we used a symmetric orthogonalization procedure (Colclough et al., 2015) to remove 

all shared signal at zero lag between the regions. This multivariate method extends previous 

orthogonalization methods (Brookes et al., 2012; Hipp et al., 2012) and identifies orthogonal time-courses 
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that maintain the closest similarity to the original, unmodified time-series. Finally, amplitude envelopes for 

each canonical frequency band and brain region were computed using the Hilbert transform, which were 

then downsampled to 40 Hz (Baker et al., 2014; Hunyadi et al., 2019). 

2.5. Hidden Markov Modelling of connectome states 

The hidden Markov model (HMM) assumes that time series data can be represented by a finite 

sequence of hidden states. Each HMM-inferred connectome state, along with its corresponding time 

series, represents a unique connectivity pattern that temporally re-occurs over time. Using the HMM-MAR 

toolbox (Vidaurre et al., 2016), we applied the HMM to the region-wise EEG amplitude timeseries 

separately for each frequency band and obtained six discrete connectome states (K = 6). While HMMs 

require an a priori selection of the number of states, K, the objective is not to establish a ‘correct’ number 

of states but to strike a balance between model complexity and model fit and to identify a number that 

describes the dataset at a useful granularity (Quinn et al., 2018). Our previous fMRI-based investigation 

into connectome heritability (Jun et al., 2022) reported results for two different K values (to ensure that 

outcomes are not limited to a single chosen parameter), namely K of 4 and K of 6. This choice was in turn 

informed by prior fMRI literature (Vidaurre et al., 2016; Karapanagiotidis et al., 2020). The choice of K = 4 

and 6 falls with the range applied in prior HMM studies of EEG and MEG data, which have used Ks 

between 3 and 16 (Baker et al., 2014; Vidaurre et al., 2016; Quinn et al., 2018; Hunyadi et al., 2019; 

Coquelet et al., 2022), where two of the studies used K of 6. Therefore, based on the success of our prior 

fMRI study in revealing heritability within 6-state and 4-state models (Jun et al., 2022), the current study 

reports results from K of 6 (main text) and K of 4 (supplementary). 

2.6. Null model of Hidden Markov Models  

To demonstrate that the dynamic trajectory of connectome state transitions is not occurring by 

chance, we employed a null model. This involved generating 50 simulated state time courses for each 

frequency band, which were of the same length as the original empirical state time courses. While 

preserving the static covariance structure, the temporal ordering of states was intentionally disrupted 

(Vidaurre et al., 2016). It is worth noting that selecting 50 simulations for each of the frequency bands in 

this analysis represents a rigorous choice in comparison to previous studies (e.g., four simulations in 

(Vidaurre et al., 2017)). We performed HMM inference with Ks of 6 (and 4 for replication) on each of these 

simulated time courses, allowing us to recalculate all above-described temporal and spatial connectome 

phenotypes at both the group and subject levels. Through this process, we confirmed that the original 

dataset's non-random distribution of phenotypes over states represented veridic dynamics as it was 

absent in the simulated data (see Supplementary Figure S2 in Jun et al. Preprint). 

2.7. Multivariate temporal features of the dynamic connectome 

The HMM-derived estimates provide a comprehensive set of multivariate temporal features that 

simultaneously characterized all states of the dynamic connectome. These estimates describe the 
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temporal aspects of connectome dynamics by characterizing the sequence of connectome states, namely 

the trajectory of the connectome through state space. For each subject, we calculated the Fractional 

Occupancy (the proportion of total time spent in a given state; 1 × K) and Transition Probability (the 

probability matrix of transitioning between all possible pairs of discrete states; K × K). While Transition 

Probability and Fractional Occupancy are not fully independent measures, they contain non-overlapping 

information about connectome dynamics. For example, a state with particularly high Fractional 

Occupancy is likely to have high values as initial state and target state in the Transition Probability matrix. 

Despite such dependence, however, two hypothetical subjects with highly comparable Fractional 

Occupancy values across the k states may still have substantially different sequencing, and thus 

transition probabilities, across the states. Notably, our previous work demonstrated strong genetic effects 

specifically on these two temporal phenotypes in fMRI-derived slow functional connectome dynamics (Jun 

et al., 2022) and EEG-derived rapid connectome dynamics (Jun et al., In Preparation). 

2.8. Association between dynamic trajectories of states and cognitive performance 

Our previous work (Jun et al., In Preparation) has established the substantial and robust 

heritability of Transition Probability in the theta, alpha, and gamma bands, as well as Fractional 

Occupancy in the beta and gamma bands. In the present study, we investigated behavioral associations 

of these heritable connectome dynamics phenotypes using canonical correlation analysis (CCA). CCA 

tests for linear relationships (or “mode”) between two sets of variables (Hotelling, 1936), and as such as 

been previously applied to the static connectome and HMM-derived state transitions (Smith et al., 2015; 

Vidaurre et al., 2017; Eichenbaum et al., 2020; Jun et al., 2022). Here, we trained CCA on the 

dimensionality-reduced temporal phenotypes of source-space EEG connectome dynamics (U canonical 

variate matrix detailed below) and cognitive measures (V canonical variate matrix detailed below).  

To build the U matrix, we integrated heritable phenotypes of rapid connectome dynamics from all 

frequency bands. Specifically, these phenotypes encompassed (1) off-diagonals of the K × K Transition 

Probability matrix (30 dimension) from the theta and alpha bands, (2) 1 × K Fractional Occupancy (6 

dimensions) from the beta band, and (3) a composite of off-diagonals of the K × K Transition Probability 

and 1 × K Fractional Occupancy (36 dimensions) from the gamma band. All variables were normalized (z-

scored) before dimensionality-reduction (Wang et al., 2020). For each band separately, Principal 

Component Analysis (PCA) was applied on the above-described set of multivariate variables, and only 

principal components (PCs) with eigenvalues exceeding 1 were retained. Subsequently, the U matrix was 

defined as the PCs aggregated across all bands. Detailed information of PCA on connectome phenotypes 

for each frequency band can be found in Figure S2.  

The V matrix encompassed 15 performance measures from 8 cognitive tasks provided by the 

Minnesota Twin Family Study (see Table S1 for details of cognitive task measures). Again, measures 

were z-scored before applying dimensionality-reduction. We adopted dimensionality-reduction methods 

used for cognitive measures in prior research (Han and Adolphs, 2020; Jun et al., 2022). Specifically, we 
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first conducted the PCA on the cognitive measures to identify the number of PCs with eigenvalues 

surpassing 1 (Figure S3A). Subsequently, we applied the maximum likelihood method for factor analysis, 

retaining the number of factors, determined based on the preceding PCA. Notably, due to the lack of 

evidence for the orthogonality among the cognitive measures (as depicted in Figure 2B), we used Promax 

oblique rotation to adjust them. To further enhance the reliability of our analysis, we calculated factor 

scores using both ridge regression and Bartlett methods and found that both methods yielded comparable 

factor scores (Figure S3B). Consequently, the V canonical variate comprised of the factor scores derived 

from the regression method and entered the subsequent CCA. 

To assess the statistical significance of the identified modes of covariation, 10,000 permutations 

of the rows of U relative to V were performed, while maintaining the within-participant structure of the 

data. Then, the CCA mode was recalculated for each permutation to generate a distribution of random 

canonical variate pair correlation values, and each mode of covariation identified in the real data was 

compared to the random distribution (Smith et al., 2015) (Figure S4). Furthermore, post-hoc correlations 

between the modes and the cognitive factors allowed for determining the contribution of each factor to the 

given mode and providing further insights into the relationships between the cognitive measures and 

dynamic connectome features. 

 

3. Results 

3.1. Connectome phenotypes and cognitive measures entering the CCA. 

In our prior investigation in the same cohort (Jun et al., In Preparation), we established heritability 

of temporal phenotypes of rapid connectome dynamics, specifically Transition Probability in theta, alpha, 

and gamma bands, as well as Fractional Occupancy in beta and gamma bands. Building upon these 

findings, we investigated the association between the heritable connectome dynamics phenotypes and 

cognitive measures using canonical correlation analysis (CCA). Prior to conducting CCA, we applied PCA 

to the phenotypes of each band separately. This resulted in 6 principal components (PCs) for the theta 

band (accounting for 81.24% of total variance), 7 for the alpha band (accounting for 86.79% of total 

variance), 3 for the beta band (accounting for 87.36% of total variance), and 8 for the gamma band 

(accounting for 88.14% of total variance). These 24 PCs were aggregated to build a canonical variate for 

CCA. Figure 2A provides a comprehensive illustration of the specific contributions of connectome 

phenotypes to each PC. Further information of PCA on connectome phenotypes for each frequency band 

can be found in Figure S2.  

As for the cognitive measures, we applied dimensionality-reduction (factor analysis following 

PCA) and retained five cognitive factors. Figure 2C provides insights into the extent to which each 

cognitive measure contributed to these factors. With cautious acknowledgment that labeling reduced 

dimensions is suboptimal by nature, we characterize the factors as follows: Factor 1: “Visuospatial 
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Processing” (indicated by high positive loadings across several tasks sharing visuospatial demands);

Factor 2: “Verbal Memory” (indicated by high positive loadings of Short and Long Delay Recall measures

from Rey Auditory Verbal Learning Task (RAVLT)); Factor 3: “Reward-based decision making” (indicated

by high positive loadings of Iowa Gambling Task measures); Factor 4: “Verbal working memory”

(indicated by high positive loading of Total Immediate Recall measure from RAVLT); and Factor 5:

“Auditory working memory” (indicated by high positive loadings on WAIS-III Digit Span task measures). 
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Figure 2. Overview of the dimensionality reduced canonical variates. (A) The principal coefficients matrix 
displays the weight that each component of the temporal phenotypes has on each of the select number of principal 
components (eigenvalue > 1). (B) Empirical correlation matrix for the 15 cognitive performance measures from 
Minnesota Twin Family Study (sample size N = 926), color-coded for Pearson’s correlation coefficient. See Table S1 
for details of cognitive measures and tasks. (C) The factor loading matrix displays the weight that each cognitive 
measure has on each of the Factors.  

 

3.2. Temporal phenotypes of EEG connectome dynamics are associated with cognition. 

The CCA analysis conducted on the 24 PCs of connectome phenotypes and 5 cognitive factors 

revealed a significant linear association, commonly referred to as a "mode," after adjusting for age and 

sex. The canonical coefficient (r) of the mode was found to be .25 with a corresponding p value of .015 

(Figure 3A). The identified mode underwent non-parametric statistical significance testing (10,000 

permutations) establishing significance at p = .0012 (Figure S4). 

Subsequent post hoc correlation analyses were performed to identify differential contributions 

(“canonical loadings”) of PCs and cognitive factors to the mode (Figure 3B). We found that Factor 1 

(“Visuospatial Processing”; canonical loadings (r) = -.23, p = 1.11e-12) contributed the most to the 

significant CCA mode, followed by Factor 4 (“Verbal working memory”; r = -.09, p = .007), Factor 5 

(“Auditory working memory”, r = -.08, p = .020), and Factor 3 (“”Reward-based decision making”; r = -.07, 

p = .024). Further, we found significant contributions of PCs from theta, alpha, and gamma bands: alpha 

PC3 (r = -.14, p = 2.40e-05), theta PC3 (r = -.09, p = .005), gamma PC7 (r = -.08, p = .015), gamma PC4 

(r = -.08, p = .016), gamma PC8 (r = .07, p = .024), and gamma PC5 (r = .07, p = .032).  
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Figure 3. Heritable temporal dynamic connectome phenotypes are related to cognition. Canonical correlation
analysis (CCA) finds the maximum linear correlation between two multi-dimensional canonical variates: U and V
adjusting for age and sex. Canonical variate U is defined as 24 PCs of connectome dynamics phenotypes across al
frequency bands. Canonical variate V is defined as five cognitive factor loadings, each representing different
cognitive domain. (A) CCA identified one significant mode of association (B) The significant mode had contributions
from four cognitive Factors, namely Factor 1: “Visuospatial Processing”, Factor 3: “Reward-based decision making”
Factor 4: “Verbal working memory”, and Factor 5: “Auditory working memory”. On the connectome side, contributions
to the significant mode came from multiple PCs spanning alpha, theta, and gamma bands (C) The Venn diagram
illustrate the relationships between different sets of cognitive task measures constructing Factor 1, which contributed
significantly to the canonical mode (cf. Figure 2C). Each circle represents cognitive domains measured by the
cognitive task(s) of the same color (tasks are labeled in square brackets). The overlapping areas of the circles
represent the cognitive domain that is common to multiple cognitive tasks. (D) The pie charts visualize the
contribution of band-specific PCs to the canonical mode. Here, each complete pie comprises the total variance in the
heritable features of the given frequency band (cf. Figure 2A), and the blue areas reflect the proportion of this
variance that significantly contributed to the canonical mode. * p < .05, ** p < .01, *** p < .005.  

 
 
Discussion 

Our current interest in the link between fast, transient connectome dynamics at sub-second timescales

and cognition arises from the potential of these timescales to facilitate cognitive functioning and provide

endophenotypes of translational relevance. Prior fMRI work has shown that slow time-varying connectome

phenotypes may serve as promising endophenotypes for cognitive abilities (Vidaurre et al., 2017;
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Eichenbaum et al., 2020; Jun et al., 2022). Moving beyond infraslow timescales, our recent work has 

established substantial genetic influence on the phenotypes of rapid EEG connectome dynamics (Jun et al., In 

Preparation). In the present study, we investigated the relationship between these heritable phenotypes –

characterizing overall occurrence and sequencing of rapid connectome states– and a broad range of cognitive 

task measures. Our findings suggest that electrophysiological connectome state transitions unfolding at multiple 

rapid speeds collectively contribute to shape cognitive abilities.  

One of the methods that investigates large-scale brain dynamics with direct electrophysiological 

techniques has been microstates, denoting recurrent, spatially diffuse sensor-level topographies that 

transition rapidly (every ~40-200 ms) (Lehmann et al., 2009; Coquelet et al., 2022). These EEG 

microstates were found to be predictive of interindividual variability in cognitive abilities (Muthukrishnan et 

al., 2016; Kim et al., 2021) and linked to neurodegenerative and psychiatric disorders (Hatz et al., 2015; 

da Cruz et al., 2020). Yet, the diffuse topographies reflected in microstates fall short of informing about 

connectome states that encompass spatially localized coactivations across networks of brain regions. 

However, recent advances in methods have significantly improved the study of rapid connectome dynamics at 

cognitively highly relevant timescales (Baker et al., 2014; Brookes et al., 2014; Sitnikova et al., 2020; Wirsich et al., 

2020; Coquelet et al., 2022). Despite these methodological advances, the role of rapid source-space connectome 

dynamics in individuals’ cognitive abilities has remained elusive. 

Such a role in cognitive abilities is likely, given the observation that rapid connectome dynamics are 

genetically determined to a similar degree than infraslow connectome dynamics (source-space EEG: Fractional 

Occupancy in beta (44%) and gamma (40%) bands and Transition Probability in theta (38%), alpha (63%), and 

gamma (40%) bands (Jun et al., In Preparation) compared to fMRI: Fractional Occupancy (h
2

=39%) and 

Transition Probability (h
2

=43%). (Jun et al., 2022)). Confirming this predicted cognitive significance, our CCA 

findings unveiled that the heritable phenotypes across multiple frequency bands are significant associated with 

various cognitive factors. This finding not only showcases the ability of source-space EEG to capture the 

functional significance of rich sub-second temporal dynamics, but also demonstrates that rapid connectome 

transitions occurring at different speeds (i.e., theta, alpha, and gamma bands) collectively contribute to this 

relationship.  

Importantly, our data suggest that Transition Probability holds greater functional significance than 

Fractional Occupancy; along with the third PC of alpha and theta bands that represent the differential 

contributions of Transition Probability elements, the four gamma-band PCs that contributed to the significant 

mode of association captured largely variance in Transition Probabilities (Figure 3D). This is likely due to the fact 

that Transition Probability captures the temporal transition patterns, i.e., the specific sequencing of states, that 

depict the dynamic changes in interactions between brain regions. These dynamic patterns likely underlie a 
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diverse functional repertoire in the brain, which is relevant for a wide range of behavioral and cognitive outcomes 

(Deco et al., 2013; Petersen and Sporns, 2015). 

The most substantial contribution to the connectome-cognition association emerged from the 

“Visuospatial Processing” factor (r = -.23) and PC3 of the alpha band (r = -.14). This observation may be attributed 

to the extensive role of the alpha rhythm in shaping perception and cognition through the modulation of cortical 

excitability and subsequent signal processing of neural populations. In particular, alpha oscillation power is known 

to impact performance in tasks involving visuospatial processing, attention, working memory, and other higher 

order cognitive control functions (Palva and Palva, 2011; Klimesch, 2012; Mathewson et al., 2012; Sadaghiani and 

Kleinschmidt, 2016). Alternatively, or additionally, this observation may arise because visuospatial processing is 

heavily represented among the neurocognitive measures included in our study. As depicted in Figure 2C, the 

“Visuospatial Processing” factor contains high positive loadings from most of the measures (5 out of 8 

tasks) and encompasses various other cognitive functions, including visuospatial working memory, visual-

motor coordination, and other higher order cognitive domains (Figure 3C). Moreover, the substantial 

heritability effect size of the alpha band phenotype (63%) relative to other connectome dynamics 

phenotypes (38~44%) (Jun et al., In Preparation) may further influence this finding.  

Interestingly, the effect size of this behavioral association with rapid connectome dynamics (r = 

.25, p = .015) is similar to that with slow connectome dynamics (r = .23, p = 5.41e-11; (Jun et al., 2022)). 

While direct comparisons between these findings are not feasible due to different populations and distinct 

sets of cognitive measures included in each study, it is interesting to note that the “Language” factor 

contributed the most (r = -.21) to the relationship with slow connectome dynamics, whereas “Visuospatial 

Processing” factor contributed the most (r = -.23) to the relationship with rapid connectome dynamics 

(Figure 3B). 

Our study is subject to several limitations and methodological considerations. While we defined 

connectome features separately for canonical frequency bands, this approach does not assume or 

necessitate the bands to be discretely separable or oscillatory in nature. The approach is equally 

compatible with the view that the bands represent electrophysiological processes at different speed within 

a larger 1/f spectrum. Further, we defined the boundaries of the frequency bands according to common 

conventions in the field rather than according to the individual subjects’ power spectrum. While defining 

the bands individually may strengthen the observed associations to cognition, the non-individualized 

approach should not invalidate the current findings. Other considerations concern the choice of 

connectome features and cognitive measures. While our study incorporated all cognitive task measures 

available from MCTFR, the cognitive factors included in our study are not diverse enough to adequately cover 

other cognitive domains, such as cognitive flexibility (switching) or language. We hope that the current work 

motivates future source-space M/EEG investigations of other cognitive domains. Another crucial aspect is that we 

investigated only a few hypothesis-driven connectome phenotypes (i.e., Transition Probability and Fractional 
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Occupancy in specific bands) in the present study. These phenotypes were selected based on a preceding study, 

which stands as the sole investigation exploring the genetic impact on the time-varying characteristics of rapid 

connectome dynamics in source-space. However, it is likely that other dynamic features of the 

electrophysiological connectome, including features primarily shaped by the environment, are individually 

specific and affect cognitive abilities.  Future studies with sample sizes and analyses appropriate for more 

exploratory approaches may address a more extensive list of dynamic connectome features and 

behavioral measures. Together, our findings establish that rapid, sub-second transitions between whole-

brain connectome states, most notably the state sequencing in alpha, theta, and gamma bands, are 

associated with cognitive performance including visuospatial processing abilities. This evidence 

substantially extends previous findings linking infraslow fMRI-derived connectome dynamics and 

cognition (Vidaurre et al., 2017; Eichenbaum et al., 2020; Jun et al., 2022) and identifies Transition 

Probabilities in resting-state electrophysiology as potential endophenotypes for cognitive abilities. As such, 

these phenotypes may inform identification of connectome-based biomarkers of cognitive function and 

dysfunction with cost-efficient EEG. 
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