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Abstract 

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a 

prominent feature of brain activity with broad functional implications. While infraslow (<0.1Hz) 

connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for 

cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome 

dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. 

Using source-localized EEG connectomes during resting-state (N=928 including twins, 473 females), we 

quantified heritability of multivariate (multi-state) features describing temporal or spatial characteristics of 

connectome dynamics. States switched rapidly every ~60-500ms. Temporal features were heritable, 

particularly, Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in 

theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state 

switches, respectively. Genetic effects explained a substantial proportion of phenotypic variance of these 

features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in 

theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence 

for heritability of spatial features, specifically states’ Modularity and connectivity pattern. We conclude that 

genetic effects strongly shape individuals’ connectome dynamics at rapid timescales, specifically states’ 

overall occurrence and sequencing.  
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1. Introduction 

Investigations of the functional connectome have been dominated by fMRI due to its superb 

spatial resolution, which however does not allow the study of rapid connectome dynamics at sub-second, 

cognitively highly relevant timescales. A growing body of work has established that non-invasive, real-

time methods, i.e., EEG and MEG, can provide a window into the connectome and, importantly, its rapid 

dynamics when combining source-localization with measures addressing source leakage (static/time-

averaged connectome: (de Pasquale et al., 2010; Brookes et al., 2011; Deligianni et al., 2014; Hipp and 

Siegel, 2015; Wirsich et al., 2017), connectome dynamics: (Baker et al., 2014; Brookes et al., 2014; 

Sitnikova et al., 2020; Wirsich et al., 2020; Coquelet et al., 2022), for review, see (Sadaghiani and 

Wirsich, 2020)).  

What we know from fMRI connectome studies suggests that the time-varying dynamics in large-

scale connectivity hold great functional promise (Preti et al., 2017; Cohen, 2018). These reconfigurations 

can be characterized as flexible changes in connectome states, representing varying strengths of 

connectivity between specific sets of brain regions within the whole-brain connectome, which occur 

repeatedly over time. Such time-varying features have been linked to a wide range of behaviors and 

cognitive processes, encompassing both the temporal organization of connectome state transitions 

(Vidaurre et al., 2017; Eichenbaum et al., 2020; Jun et al., 2022) and changes in the spatial organization 

of connectome states (Thompson et al., 2013; Sadaghiani et al., 2015; Douw et al., 2016). Particular 

temporal features of fMRI-derived connectome dynamics, specifically the proportion of the total recording 

time spent in each connectome state (Fractional Occupancy) and the probability to transition between 

specific pairs of connectome states (Transition Probability), have been linked to behavioral performance 

(Vidaurre et al., 2017; Eichenbaum et al., 2020; Jun et al., 2022) and found to be heritable (Vidaurre et 

al., 2017; Jun et al., 2022). More specifically, our previous fMRI work has established substantial genetic 

effects (h2 ~ 40%) and behavioral relevance of Fractional Occupancy and Transition Probability (Jun et 

al., 2022). We further identified specific genetic polymorphisms predictive of fMRI-derived Fractional 

Occupancy and Transition Probability via the regulatory impact of modulatory neurotransmitter systems 

(Jun et al., under review).  

However, as mentioned above, the temporal dynamics captured by the slow fMRI-derived indirect 

measure of neural activity, or BOLD signal, limit the study of rich, sub-second temporal dynamics. While 
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direct electrophysiological techniques, i.e., MEG or EEG, can capture such rapid dynamics, their use in 

the study of individual differences and heritability has primarily focused on the electrophysiological power 

spectrum or static (time-averaged) connectivity (Posthuma et al., 2005; Smit et al., 2005; Colclough et al., 

2017). When investigating large-scale brain dynamics with M/EEG, one area of focus has been 

microstates, denoting recurrent, spatially diffuse sensor-level topographies that transition rapidly (every 

~40-200 ms) (Lehmann et al., 2009; Coquelet et al., 2022). These EEG microstates were found to be 

predictive of interindividual variability in cognitive abilities (Muthukrishnan et al., 2016; Kim et al., 2021) 

and linked to neurodegenerative and psychiatric disorders (Hatz et al., 2015; da Cruz et al., 2020). 

However, the diffuse topographies reflected in microstates fall short of informing about connectome states 

that encompass spatially localized coactivations across networks of brain regions. Recently, we have 

shown that rapid temporal dynamics of recurrent connectome states are of functional significance, 

explaining individuals' cognitive abilities (Jun et al., In Preparation). This individual specificity invites the 

question to what degree such rapid connectome state dynamics are heritable. 

In the current study, we investigated whether temporal and spatial features of fast connectome 

dynamics in canonical electrophysiological frequency bands are subject to genetic effects. To address 

this question, we applied Hidden Markov Modelling (HMM) to extract discrete brain states using source-

reconstructed resting-state EEG data from the Minnesota Twin Family Study (Keyes et al., 2009). The 

dataset included monozygotic (MZ) and dizygotic (DZ) twin pairs, and pairs of unrelated individuals 

(N=928). Consistent with our preceding heritability study in fMRI (Jun et al., 2022), we included two 

temporal features and two spatial features based on prior evidence for their behavioral relevance. 

Interestingly, only temporal features were found to be heritable in the fMRI study. Yet, we included the 

spatial features in the current study given that rapid EEG-derived dynamics might capture connectivity 

processes different from those observed in fMRI. The temporal features consisted of Fractional 

Occupancy and Transition Probability, and the spatial features included time-varying Modularity 

(ModularityTime-Varying) and the time-varying strength of functional connectivity (FCTime-Varying) of the set of 

connections (clusters) exhibiting the strongest cross-state change. We examined the effect of genetic 

relatedness on each multi-variate connectome feature and fitted quantitative genetic models to quantify 

the genetic effects. To the best of our knowledge, this is the first EEG study investigating heritability of 

source-space connectome dynamics. This study sheds light on genetic contributions to individual 

differences in sub-second connectome dynamics.  

 

2. Materials and Methods  

Figure 1 is a schematic representation of the overall approach and analysis subsections.  
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Figure 1. An overview of the analysis pipeline. [A] We used resting-state source-space EEG and structural
images from Minnesota Twin Family Study samples. We employed a hidden Markov model (HMM) to extract K=6
discrete connectome states (or K=4 states for replication) for each canonical EEG frequency band associated with a
state time course for each subject indicating the probability of when each state is active. The amplitude coupling-
based FC matrices of the states are shown at the bottom. The six states are color coded (blue, red, yellow, green,
purple, and light blue) to illustrate their contribution to the connectome’s dynamic features of interest. [B] We
constructed each feature in a multivariate manner to comprehensively represent all states. Specifically, multivariate
temporal features were defined as the proportion of the recording time spent in each connectome state (Fractiona
Occupancy) and the probability matrix of transitioning between all possible pairs of discrete states (Transition
Probability). Multivariate spatial features include time-varying Modularity (ModularityTime-Varying), and time-varying
connectivity strength (FCTime-Varying) averaged across the set of connections (region-pairs) with the strongest dynamic
changes across states (Zalesky et al., 2010). [C] We tested whether genetically more related subjects displayed
greater similarity in their multivariate features than genetically less related subjects. First, for each feature of
dimension m, we estimated a null model-derived origin point in the m-dimensional space. The position of each
subject’s multi-dimensional feature value was estimated relative to this origin for genetic modeling. Further, the
similarity of this position between a given pair of subjects was quantified as Euclidean distance for ANCOVA analyses
a one-way ANCOVA of the factor sibling status with three levels (monozygotic twins (MZ), sex-matched dizygotic
twins (DZ), and sex-matched pairs of unrelated individuals) was performed on the distance value for each of the
features. Secondly, we employed structural equation modeling (i.e., genetic variance component model) to quantify
the genetic effects. Phenotypic variance of a trait was partitioned into additive genetic (denoted A), common
environmental (denoted C) Or dominant genetic effect (denoted D) and unique environmental components (denoted
E). Narrow-sense heritability (h2) is quantified as the proportion of variance attributed to the genetic factor (A) and
broad-sense heritability (H2) as the proportion of variance attributed to A and D factors.  

 

2.1. Subjects 

Participants for the present investigation are from the two independent cohorts of twins from the

Minnesota Twin and Family Research (MCTFR) (Iacono et al., 1999; Keyes et al., 2009).  Twins in both
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cohorts have been followed periodically since approximately the age of 11. As part of their most recent 

assessment, participants underwent structural MRI scans in addition to resting EEG recordings.  At time 

of initial recruitment, participants gave written informed consent or assent, if under the age of 18, to 

participate in the initial study as well as to be shared with other researchers. 

From the pool of all 1084 healthy adult subjects, we included 928 subjects with complete resting-

state EEG and structural MRI data. The included subjects (473 females) were 23–40 years of age at time 

of data acquisition. All 928 subjects entered HMM estimation of discrete connectome states. 

Subsequently, 463 sex-matched pairs were defined for heritability analysis as follows: 206 monozygotic 

(MZ) twin pairs, 112 sex-matched dizygotic (DZ) twin pairs, and 145 pairs of sex-matched unrelated 

individuals. Note that all pairs are uniquely defined so that none of the subjects overlap between groups 

to avoid dependencies across members of families with > 2 subjects. 

2.2 MRI and EEG acquisition  

Structural MRI data were collected on either 3T Siemens Trio or Prisma MRI scanner (32-channel 

array head coil) at the Center for Magnetic Resonance Research, University of Minnesota. Three-

dimensional T1-weighted sagittal plane anatomical images were acquired using the following 

magnetization-prepared rapid gradient echo sequence: TR = 2530 ms; TE = 3.65 ms; flip angle = 7°; 

matrix size = 256 × 256; FOV = 256 mm; GRAPPA = 2; 240 coronal slices with 1-mm isotropic voxels; 

single shot; interleaved acquisition. 

While recording EEG, participants rested comfortably in a darkened room, with their head and 

neck supported while hearing 55-dB white noise played through headphones. They were instructed to 

keep their eyes closed and relax. A recorded voice subsequently instructed them to open the eyes or 

close them at 1-min intervals. A total of 6 min of EEG was collected, 3 min with eyes open and 3 with 

eyes closed. EEG data were acquired from 61 scalp electrodes arranged according to the International 

10/10 system using a BioSemi ActiveTwo system (BioSemi, Amsterdam, The Netherlands) at 1024 

Hz. ActiveTwo amplifiers are DC coupled. ActiveTwo signals are monopolar. They were low-pass filtered 

using a digital 5th-order Bessel antialiasing sinc filter with a cutoff frequency (3-dB attenuation) of 205 Hz. 

Pairs of electrodes placed above and below the right eye or on the outer canthus of each eye allowed for 

detecting blinks and other eye movements. Additional electrodes were placed on left and right earlobes, 

and the average of these signals was derived offline to serve as a reference. 

2.3. EEG signal pre-processing and source localization 

Raw resting-state EEG signals were pre-processed using in-house code of Minnesota Twin 

Family Study group and EEGLAB (Delorme and Makeig, 2004) in MATLAB (version R2021b, Mathworks, 

Inc.). Signals were down-sampled to 256 Hz, filtered with a 0.1 Hz high-pass filter (firfilt EEGLAB plugin; 

1,286 Kaiser window), and referenced to averaged earlobe signals. A monitored automated pipeline 

detected four kinds of signal anomalies: disconnected channels/flat signals, interelectrode electrolyte 
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bridging (Tenke and Kayser, 2001), large amplitude deviations, and muscle/cap shift (motion) noise. 

Descriptives (e.g., temporal variance) were calculated for each electrode and 1-s time range. Data that 

exceeded four normalized median absolute deviations from the median (Rousseeuw and Croux, 1993) in 

25% of a 1s time range or 75% of a given electrode were removed. Among others, this approach is 

effective in removing periods with head motion artifacts. Ocular correction was performed using 

independent components (IC) analysis (infomax algorithm; Bell and Sejnowski, 1995) and joint 

consideration of temporal and spatial signal characteristics. The IC time series and inverse weights were 

compared with the time courses of the bipolar vertical or horizontal EOG and the inverse weight of a 

stereotypical blink or horizontal saccade to correct for vertical and horizontal ocular artifacts, respectively. 

If the squared joint temporal and spatial correlations for an IC exceeded an empirically calculated 

threshold (Mognon et al., 2011), that IC was subtracted from the data.  

For source localization, we imported preprocessed EEG recordings and MR-based anatomical 

images into Brainstorm software (Tadel et al., 2011). The EEG signals were resampled to 250 Hz, 

corrected for DC offsets, linearly detrended, and low-pass filtered at 70 Hz. We manually marked fiducial 

points, including the anterior commissure (AC), posterior commissure (PC), inter-hemispheric point, 

nasion (NAS), and left and right pre-auricular points (LPA and RPA), of all subjects using their individual 

anatomical images to aid coregistration of electrode positions and T1 images. The coregistration was 

refined by manually moving the electrode positions onto the electrode artifacts visible in the T1 image. 

We then used the OpenMEEG software (Gramfort et al., 2010) with a symmetric boundary element 

method (BEM) to calculate a forward model of the skull based on the individual T1 image of each subject 

(Tadel et al., 2019). Then, we used the Tikhonov-regularized minimum-norm estimation (MNE) as inverse 

method to compute the sources, with default parameter settings for regularization and source depth 

weighting (Tikhonov parameter = 10%, assumed SNR = 3.0, constrained sources normal to cortex, depth 

weighting 0.5/max amount 10) (Baillet et al., 2001; Tadel et al., 2019). 

2.4. Parcellation and Source-leakage correction  

We used the Desikan-Killiany Atlas (Desikan et al., 2006) in Brainstrom to average source signals 

within each of the atlas’ 68 anatomically distinct brain regions. To aid network-level interpretation, we also 

determined each region's membership within the canonical Intrinsic Connectivity Networks or ICNs (Yeo 

et al., 2011) based on spatial overlap. 

To mitigate source-leakage confounds caused by the blurring of point dipole sources and the 

spreading of signals across neighboring regions, we excluded regions whose signals were collinear with 

others based on the qr function in Matlab. As a result, 14 regions were excluded from the investigation 

(Figure S1). The remaining 54 regional signals underwent detrending and bandpass filtering within 

canonical frequency ranges: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-25 Hz), and gamma 

(30-45 Hz). Then, we used a symmetric orthogonalization procedure (Colclough et al., 2015) to remove 

all shared signal at zero lag between the regions. This multivariate method extends previous 
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orthogonalization methods (Brookes et al., 2012; Hipp et al., 2012) and identifies orthogonal time-courses 

that maintain the closest similarity to the original, unmodified time-series. Finally, amplitude envelopes for 

each canonical frequency band and brain region were computed using the Hilbert transform, which were 

then downsampled to 40 Hz (Baker et al., 2014; Hunyadi et al., 2019). 

2.5. Hidden Markov Modelling of connectome states 

The hidden Markov model (HMM) assumes that time series data can be represented by a finite 

sequence of hidden states. Each HMM-inferred connectome state, along with its corresponding time 

series, represents a unique connectivity pattern that temporally re-occurs over time. Using the HMM-MAR 

toolbox (Vidaurre et al., 2016), we applied the HMM to the region-wise EEG amplitude timeseries 

separately for each frequency band to derive discrete recurrent connectome states characterized by their 

mean activation and FC matrix. We obtained six connectome states (K = 6). While HMMs require an a 

priori selection of the number of states, K, the objective is not to establish a ‘correct’ number of states but 

to strike a balance between model complexity and model fit and to identify a number that describes the 

dataset at a useful granularity (Quinn et al., 2018). Our previous fMRI-based investigation into 

connectome heritability (Jun et al., 2022) reported results for two different K values (to ensure that 

outcomes are not limited to a single chosen parameter), namely K of 4 and K of 6. This choice was in turn 

informed by prior fMRI literature (Vidaurre et al., 2016; Karapanagiotidis et al., 2020). The choice of K = 4 

and 6 falls with the range applied in prior HMM studies of EEG and MEG data, which have used Ks 

between 3 and 16 (Baker et al., 2014; Vidaurre et al., 2016; Quinn et al., 2018; Hunyadi et al., 2019; 

Coquelet et al., 2022), where two of the studies used K of 6. Therefore, based on the success of our prior 

fMRI study in revealing heritability within 6-state and 4-state models (Jun et al., 2022), the current study 

reports results from K of 6 (main text) and K of 4 (supplementary materials). 

2.6. Null model of Hidden Markov Models  

To demonstrate that the dynamic trajectory of connectome state transitions is not occurring by 

chance, we employed a null model. This involved generating 50 simulated state time courses for each 

frequency band, which were of the same length as the original empirical state time courses. While 

preserving the static covariance structure, the temporal ordering of states was intentionally disrupted 

(Vidaurre et al., 2016). It is worth noting that selecting 50 simulations for each of the frequency bands in 

this analysis represents a rigorous choice in comparison to previous studies (e.g., four simulations in 

(Vidaurre et al., 2017)). We performed HMM inference with Ks of 6 (and 4 for replication) on each of these 

simulated time courses, allowing us to recalculate all above-described temporal and spatial connectome 

features at both the group and subject levels. Through this process, we confirmed that the original 

dataset's non-random distribution of features over states represented veridic dynamics as it was absent in 

the simulated data (Figure S2). We further used the surrogate data for heritability testing as detailed 

below. 

2.7. Multivariate temporal features of the dynamic connectome 
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The HMM-derived estimates provide a comprehensive set of multivariate temporal features that 

simultaneously characterized all states of the dynamic connectome. These estimates describe the 

temporal aspects of connectome dynamics by characterizing the sequence of connectome states, namely 

the trajectory of the connectome through state space. For each subject, we calculated the Fractional 

Occupancy (the proportion of total time spent in a given state; 1 × K) and Transition Probability (the 

probability matrix of transitioning between all possible pairs of discrete states; K × K). Notably, our 

previous work demonstrated strong genetic effects specifically on these two temporal features in fMRI-

derived functional connectomes (Jun et al., 2022). 

2.8. Multivariate spatial features of the dynamic connectome 

In line with our prior fMRI study (Jun et al., 2022), we also incorporated several multivariate 

spatial features to describe the functional connectivity (FC) arrangement of states. While no spatial 

features were found to be heritable in the fMRI study, outcomes might differ for rapid EEG-derived 

dynamics. To assess the level of segregation for each connectome state, we estimated Newman's 

Modularity (Newman, 2006), a fundamental global topological characteristic. The Brain Connectivity 

Toolbox (Rubinov and Sporns, 2010) was employed to quantify Modularity, where the modular partition 

was configured to comprise the canonical ICNs (Yeo et al., 2011). The Modularity value for the K states 

were then combined into a K-dimensional vector constituting the multivariate feature (ModularityTime-Varying) 

for heritability analysis. 

Our second spatial feature was derived from clusters of connections that exhibited significant 

differences in FC strength across the K connectome states. As an initial step, we conducted mass 

univariate F-tests across states for all connections, adjusting for age and sex. For each connection, the 

resulting (absolute) F-value reflects its change in connectivity value across the K states. Subsequently, 

upon thresholding F-values at a variety of connection densities (1-5%), we performed the Network-Based 

Statistics (NBS) permutation method  to identify sets of connected edges or clusters that showed 

significant differences at family-wise error rate corrected P < .05 (see Figure S6 for visualization of binary 

matrix of a data-driven set of clusters of connections). At each density, the edge-wise FC values within 

the identified clusters were averaged separately for each of the K states, resulting in a 1 x K vector 

representing the time-varying FC (FCTime-Varying) of the data-driven clusters for heritability analysis. In the 

main manuscript, we present results for a 5% density and provide generalizations to other densities in 

Tables S3.  

For exploratory analyses, we expanded our scope by incorporating a more comprehensive 

collection of multivariate spatial features. Specifically, we examined FCTime-Varying between all pairs of the 

seven canonical ICNs, including the within-network connectivity of each ICN. For each ICN pair and each 

of the K states, we averaged FC values among their connections and combined them into a K-

dimensional vector. This vector represents the multivariate feature that encompasses the FCTime-Varying of 

the corresponding ICN pair for the purpose of heritability analysis (see Table S4 for details). 
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2.9. Similarity estimation and heritability testing  

The procedures carried out in our previous twin heritability study (Jun et al., 2022) laid the 

groundwork for the current investigation. Initially, for each multivariate connectome dynamics feature and 

separately for each frequency band, we constructed a multidimensional space by setting the origin point 

as the average of the feature from the 50 surrogate datasets, as described in the null model (2.6) section 

above. Using the multidimensional space, we calculated the pairwise similarity of each feature by 

measuring the Euclidean distance between pairs of subjects (Colclough et al., 2017; Jun et al., 2022). 

Crucially, this similarity estimation approach preserved the positional relationship between elements in 

each multivariate feature. To investigate the relationship between the genetic makeup of subject pairs 

and the similarity of each multivariate feature, we conducted a one-way analysis of covariance (ANCOVA) 

of sibling status (MZ twins, sex-matched DZ twins, and sex-matched unrelated individuals) on the 

similarity of each multivariate feature, adjusting for the difference in age and sex between the subject 

pairs. 

Additionally, we explored whether the heritability of attributes was driven by the overall pattern or 

by specific components (i.e., state-by-state elements) of each multivariate feature. Specifically, we 

assessed the similarity of each state-specific component of the Fractional Occupancy, FCTime-Varying of 

data-driven clusters and ModularityTime-Varying between a given pair of subjects. Likewise, we estimated the 

similarity of each off-diagonal state-pair component of the Transition Probability matrix. To examine the 

effects of sibling status and connectome state on the similarity of individual components of the 

multivariate features, we employed two-way ANCOVAs of the factors sibling status and connectome 

state. 

Finally, we employed structural equation modeling, commonly used in classical twin studies, to 

quantify the variance in dynamic connectome features explained by genetic effects. This modeling 

approach, with underlying biological assumptions (Keller and Coventry, 2005), partitions the phenotypic 

variance into the three distinct components using maximum likelihood methods: additive genetic variance 

(A), accompanied by either common environmental variance (C) or dominant genetic variance (D), and 

random environmental variance (E) (Yashin and Iachine, 1995). Leveraging these components, 

heritability is computed as the portion of phenotype variance explained by genetic variance, denoted as 

narrow-sense heritability (h2) in the ACE model and broad-sense heritability (H2) in the ADE model.  

The genetic variance model requires each subject to have a singular value for each phenotype to 

estimate the correlation of univariate phenotypes among twin pairs. To accommodate our multivariate 

phenotypes within this framework, computed the Euclidean distance for each subject's multivariate 

phenotype from the origin point which we established (Figure 1). To implement this method, we utilized 

the R package mets (http://cran.r-project.org/web/packages/mets/index.html), adjusted for age and sex. 

Subsequently, we employed nested models, namely AE, CE, or DE, to gauge the statistical significance 
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of these nested structures using a likelihood ratio test and assessed the fitness of each model using the 

Akaike Information Criterion (AIC) (Akaike, 1987). 

 

3. Results 

Results generated by the analysis procedures (illustrated in Figure 1) are presented following the 

progression from Figure 1A through 1C. 

3.1. Discrete connectome states have distinct spatial and temporal profiles 

As a first step to quantifying dynamic connectome features, we identify discrete connectome 

states, i.e., whole-brain recurrent connectivity patterns, then show that the states differ from each other in 

FC strength of specific networks, topological segregation-integration (Modularity), and Fractional 

Occupancy. To identify the states, we employed a data-driven approach using hidden Markov modeling 

(HMM) (Vidaurre et al., 2016).  To ensure that results are not limited to the specific a priori selected 

number of states (K), we applied two different K within the range of prior EEG/MEG studies (Baker et al., 

2014; Vidaurre et al., 2016; Quinn et al., 2018; Hunyadi et al., 2019; Coquelet et al., 2022). We report 

outcomes for K = 6 and replicate results for K = 4 in Supplementary Information. 

As expected, the states identified by the HMM switched rapidly. The dwell time spent in individual 

occurrences of states were in the sub-second range for all EEG frequencies (mean across the K states 

and all subjects for delta (414.78 ± 293.0 ms), theta (344.53 ± 329.70 ms), alpha (344.01 ± 417.73 ms), 

beta (230.67 ± 408.14 ms), and gamma (250.05 ± 736.48 ms)).  

Differences in FC strength across connectome states were quantified with a method that 

accounts for multiple comparisons in graph space (Network-Based Statistics (NBS; Zalesky et al., 2010). 

Figure 2C illustrates the cluster of connections with cross-state FC differences (NBS FWER-corrected P† 

< 0.05) in alpha band, consisting of 70 out of 1431 (5%) connections. Similar observations were made for 

all other EEG frequency bands (Figure S6 for data-driven set of clusters of connections with different 

densities). In addition to examining the NBS-derived cluster, we conducted extensive exploratory 

analyses to assess the involvement of all canonical ICNs. We performed an equivalent one-way 

ANCOVA of the factor state on FC between each possible pair of canonical ICNs. The results 

demonstrated that all pairs of ICNs contributed to FC differences across states (Table S1 for Ks of 6 and 

4 across all frequency bands). 

Moving beyond the specific sets of connections, we investigated cross-state differences in the 

global topology of the connectome, specifically focusing on Modularity (Newman, 2006; Rubinov and 

Sporns, 2010) due to its functional relevance (Sadaghiani et al., 2015; Shine and Poldrack, 2018). A one-

way ANCOVA of the factor state showed significant difference in Modularity across the connectome 
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states in alpha band (Figure 2D, F(5, 5538) = 80.01, P†  = 5.11e-80, η2
p = .067). Similarly, this effect was

present in all other EEG frequency bands (Table S2 for Ks of 6 and 4 across all frequency bands). 

Beyond the spatial features, the connectome states showed distinctive temporal characteristics.

An equivalent one-way ANCOVA of the factor state on Fractional Occupancy revealed significant

differences in the proportion of time spent in each state for the alpha band (Figure 2E, F(5, 5548) =

1.14e+03, P† < 0.001, where P† is the P value Bonferroni-corrected for 20 tests, η2
p = . 507). Similar

observations were made for all other EEG frequency bands (Table S2 for Ks of 6 and 4 across al

frequency bands). 

In summary, these findings confirm that the rapid (sub-second) dynamics of spontaneous

connectivity can be characterized as non-random sequences of six discrete connectome states, exhibiting

differences in spatial organization, global topology, and proportion of occurrence. 

 

Figure 2. HMM states and state-dissociating features. (A) From band-specific leakage-corrected EEG signals
(amplitude envelopes) concatenated over all subjects, HMM estimates connectome states that each have a
characteristic FC matrix. The FC matrices reflect amplitude coupling among all region pairs. Here, the connectome
states’ FC matrices for the alpha band (8-12 Hz) are provided as examples (See full visualization of the states for al
canonical bands in Figure S4). The rows and columns represent 54 regions organized according to their membership
to canonical intrinsic connectivity networks (ICNs listed on the left) (Yeo et al., 2011). (B) HMM estimates a specific
(probabilistic) state time course for each subject indicating when each state is active. An approximately two-minute
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section of the state time course is visualized for one subject exemplifying periods occupied by each state and the 
transitions across states. (C) The binary matrix shows a data-driven clusters of connections whose FC strength 
differed significantly across the six states. Specifically, F values from a connection-wise ANCOVA of the factor state 
were threshold at 5% connection density and entered Network-Based Statistics (NBS) to control for multiple 
comparisons (Zalesky et al., 2010). For the ensuing significant cluster of connections, we provide the (D) Modularity, 
and (E) Fractional Occupancy for each state. F values are reported for one-way ANCOVAs of the factor state (6 
levels) for each variable, adjusted for age and sex. Strong differences across states in all three measures suggest 
distinct spatial and temporal features of each state. P†: P values Bonferroni-corrected for 20 tests (four multivariate 
features and five frequency bands), η2

p: Partial Eta squared effect size.  

 

3.2. Multivariate temporal features of the dynamic connectome are heritable. 

We tested the hypothesis that subject pairs with similar genetic makeup had more similar 

multivariate connectome dynamics features than subjects with less genetic relatedness. Specifically, the 

multivariate features included Fractional Occupancy (1 × K), Transition Probability matrix (K × K), FCTime-

Varying of data-driven clusters (1 × K), and ModularityTime-Varying (1 × K) (cf. Figure 1A). The similarity of each 

multivariate feature between a given pair of subjects was quantified as Euclidean distance. Distance 

values entered a one-way ANCOVA of the factor sibling status with three levels, including monozygotic 

(MZ) twins, sex-matched dizygotic (DZ) twins, and sex-matched pairs of unrelated individuals, adjusted 

for age and sex. No subjects overlapped between groups. 

We found that temporal features describing the dynamic trajectory of connectome state 

transitions are heritable in theta, alpha, beta, and gamma bands, but not in delta band (Figure 3). That is, 

genetically closer subject pairs have more similar Fractional Occupancy and Transition Probability 

phenotypes, compared to less genetically related pairs: Fractional Occupancy in theta (F(2, 458) = 9.01, P† 

= .003), alpha (F(2, 458) = 16.80, P† = 1.82e-06), beta (F(2, 458) = 9.95, P† = .001), and gamma (F(2, 458) = 

11.17, P† = 3.65e-04) and Transition Probability in theta (F(2, 458) = 7.55, P† = .012), alpha (F(2, 458) = 

14.51, P† =  1.55e-05), and gamma (F(2, 458) =, P† = 2.97e-05). This impact of sibling status on temporal 

features was consistently large and independent of the chosen number of states (cf. Figure 3 and Figure 

S5). Note that there was no effect of sibling status in surrogate data lacking time-varying dynamics but 

with preserved static covariance structure (cf. Null Model section 2.6): Fractional Occupancy in delta 

through gamma (F(2, 458) = 2.99, F(2, 458) = 2.12, F(2, 458) = .55, F(2, 458) = .06, and F(2, 458) = .07 respectively, 

all P† = 1.00) and Transition Probability in delta through gamma (F(2, 458) = 2.89, F(2, 458) = .39, F(2, 458) = .38, 

F(2, 458) = 1.08, and F(2, 458) = .54, all P† = 1.00). 

Contrary to the temporal features, we did not find support that was robust (i.e., invariant to 

methodological choices) for heritability of the spatial features, describing how connectome states are 

spatially instantiated in individuals. Specifically, outcomes of equivalent ANCOVAs for ModularityTime-Varying 

and FCTime-Varying of data-driven clusters showed no impact of sibling status, irrespective of frequency 

bands and chosen number of states (Table S3). This lack of robust heritability was confirmed by a 

subsequent variance-component genetic analysis (see Results III). Our sample size permitted detecting, 

at 80% power, effects of small size (η2 = .021, equivalent to f = .145, or larger). Therefore, if for spatial 
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features heritability produced effects smaller than the detectable size, these effects would be of low 

practical impact. Further, we provide additional Bayesian Factor values to directly assess the probability 

of H0 (i.e., the null hypothesis that there is no effect of sibling status) against H1 (Table S3). Indeed, the 

Bayes Factor for ModularityTime-Varying and FCTime-Varying of data-driven clusters showed that the data are 

more likely to occur under H0 than under H1. For example, ModularityTime-Varying in alpha band showed 

anecdotal support for the null hypothesis (BF01 = 1.72), whereas FCTime-Varying of data-driven clusters in 

alpha band presented strong support for the null hypothesis (BF01 = 33.57; suggesting that data are 34 

times more likely to occur under H0 than under H1). Notably, the lack of evidence for the heritability of 

spatial connectome dynamics features aligns with an equivalent null result in our preceding fMRI study 

(Jun et al., 2022).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.15.575731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575731
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

Figure 3. Heritability of temporal features of the dynamic connectome. (A) Heritability of each of the multivariate
connectome dynamics features was assessed separately by one-way ANCOVAs of the factor sibling status (three
levels: monozygotic twins (MZ), sex-matched dizygotic twins (DZ), and sex-matched pairs of unrelated individuals),
adjusted for age and sex. The main effect of sibling status indicates the heritability, or genetic effect. Bar graphs show
that genetically more similar subject pairs have shorter Euclidean distance, indicating higher similarity of a given
temporal feature. This effect of sibling status was large and independent of the chosen number of states (see Figure
S5). P†: P values Bonferroni-corrected for 20 tests (four multivariate features and five frequency bands), η2

p: Partia
Eta squared effect size. (B) A visual illustration of the effects exemplified for two subject pairs, one from the MZ group
(left) and the other from the unrelated subject group (right). While the MZ twins display high similarity of Fractional
Occupancy and Transition Probabilities, both temporal features are dissimilar across the unrelated pair.  

 

To ensure that the absence of a robust outcome for spatial features was not influenced by a

narrow feature selection, we performed additional equivalent analyses on exploratory spatial features:
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FCTime-Varying of data-driven clusters defined across four other connection densities (1~4% across different 

number of states; Table S3) and FCTime-Varying of all 21 possible pairs among the seven ICNs (Tables S4). 

Consistent with our findings for the main spatial features, ANCOVAs of the factor sibling status and Bayes 

Factors of all of the exploratory spatial features provided anecdotal to decisive evidence for H0, i.e., the 

lack of heritability. These findings strongly contrast the observations for temporal features, where Bayes 

Factor of both Fractional Occupancy and Transition Probability showed that the data are significantly 

more likely to occur under H1 than under H0: Fractional Occupancy in theta (BF10 = 1.07e+02), alpha 

(BF10 = 1.77e+05), beta (BF10 = 2.99e+02), gamma (BF10 = 9.51e+02) and Transition Probability in theta 

(BF10 = 26.5), alpha (BF10 = 2.08e+04), beta (BF10 = 5.13), gamma (BF10 = 9.72e+03). 

Importantly, the effect sizes of significant multivariate Fractional Occupancy and Transition 

Probability were notably larger (with mean η2
p of .049 across all frequency bands; Figure 3) compared to 

those of the individual (i.e., state-by-state) components of the multivariate features (with mean η2
p of .016 

across all frequency bands; Table S5). Therefore, our findings demonstrate that the dynamic trajectory of 

rapid EEG connectome state transitions are robustly heritable, predominantly when considered as 

multivariate patterns, rather than as individual state-specific components. 

 

3.3. Genetic effects account for substantial variability in temporal connectome dynamics. 

We then quantified the extent to which genetic variance contributes to phenotypic variance using 

structural equation modeling, a technique commonly employed in classical twin studies (Falconer, 1990). 

While the model is traditionally applied to univariate phenotypes, the above-described one-way 

ANCOVAs of the factor sibling status suggest that connectome dynamics features are inherited 

predominantly as multivariate patterns. Therefore, we adapted the model to accommodate multivariate 

phenotypes by quantifying the subject-wise Euclidean distance of multivariate features from a “null” point 

of origin (from dynamics-free surrogate data; Figure 1 and Materials and Methods 2.6 Null models).  

A substantial portion of phenotypic variance in the temporal features was explained by genetic 

variance in the genetic models, adjusted for age and sex (Table 1; Table S6 for K = 4). Specifically, 

Transition Probability in alpha, beta, and gamma bands, as well as Fractional Occupancy in beta and 

gamma bands were explained by the ADE model. In the ADE model, A (additive genetic effect) and D 

(dominant genetic effect) together estimate broad-sense heritability (H2). Conversely, Transition 

Probability in the theta band was described by the ACE model, where narrow-sense heritability (h2) was 

estimated using the A variance component. Notably, we found substantial heritability of Transition 

Probability (h2 of the theta band = 38.4% [.03, .74], H2 of the alpha band = 63.3% [.56, .71], H2 of the beta 

band = 22.6% [.08, .37], and H2 of the gamma band = 40% [.28, .52]) and Fractional Occupancy (H2 of 

the beta band = 44.3% [.33, .55] and H2 of the gamma band = 39.8% [.28, .52]). In all cases, the fitness of 

the nested models (i.e., AE, CE, or DE) was not significantly better than the ACE or ADE model. These 
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outcomes indicate that genetics contribute substantially to the temporal features of connectome 

dynamics. 

Consistent with the ANCOVA-based heritability findings (Tables S3-4), the genetic models did not 

support genetic effects on either spatial feature (ModularityTime-Varying and FCTime-Varying of data-driven 

clusters; Table 1 and Table S6 for K of 4). Specifically, the heritability (h2) of spatial features was 

estimated as zero or its 95% confidence interval crossed zero, supporting the null hypothesis, i.e., lack of 

heritability. 

 
Discussion 

The use of source-space electrophysiological signals allowed us to investigate rapidly emerging 

and dissolving patterns of spatially localized connectivity networks and their transitions at the whole-brain 

level. Bringing this approach to a large cohort, we established genetic effects on rapid connectome 

dynamics in specific frequency bands. Overcoming the limited temporal resolution of prior heritability 

investigations of slow connectome dynamics in fMRI (cf. infra-slow (< 0.1 Hz) fMRI BOLD signal; 

(Vidaurre et al., 2017; Barber et al., 2021; Jun et al., 2022), the current findings shed light on sub-second 

timescales highly relevant to cognitive processes. As an additional innovation, we embraced the multi-

dimensional nature of dynamic connectome features (Jun et al., 2022), as these features collectively 

encompass patterns from multiple connectome states. Reinforcing the multi-dimensional view, the 

heritability effect size was larger for multivariate features (Figure 3 and Figure S5) than for state-wise 

scalar features (cf. Table S5). Quantitative modeling with the multivariate features showed that the 

genetic influence on the rapid sequencing of connectome states was substantial (22-63% of variance 

explained). 

Previous twin studies have found considerable genetic effects on multiple EEG features, however 

predominantly focusing on stable rather than time-varying characteristics. Specifically, in terms of the 

power spectrum, heritability was particularly evident in individuals’ alpha peak frequency (71% to 83% 

phenotypic variance explained (Posthuma et al., 2001; Smit et al., 2006) and alpha power (79% to 93% 

variance explained, depending on scalp location and age of cohort (Smit et al., 2005, 2006)). The degree 

of heritability observed beyond the alpha band has been somewhat less pronounced; in direct 

comparisons across the spectrum the highest heritability of spectral power was observed at the alpha 

peak frequency, while it was lower in theta and delta bands (Smit et al., 2005).  

Besides the EEG power spectrum, static (time-averaged) M/EEG FC measures were found to be 

subject-specific (cf. fingerprinting; (Kong et al., 2019; Kabbara et al., 2021; Sareen et al., 2021)) and 

under genetic influence. For example, the heritability estimates of static EEG FC ranged from 27% to 

75%, primarily observed in alpha and beta bands (Posthuma et al., 2005; Schutte et al., 2013). 

Additionally, heritability estimates for graph theoretical measures of the static EEG FC matrix ranged from  
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46% to 89% for clustering coefficients and from 37% to 62% for average path length (Smit et al., 2008). 

However, it is important to note that the above-mentioned studies were performed in sensor-space and 

employed synchronization likelihood for network estimation, a measure that may be susceptible to volume 

conduction artifacts. A source-space MEG heritability study correcting such artifacts estimated the 

heritability of amplitude coupling in individual edges, which averaged across edges reached 8% for the 

alpha band and 19% for the beta band (Colclough et al., 2017). 

Our study significantly extends this important previous research by establishing heritability of 

rapid whole-brain connectome dynamics, derived from source-localized (and leakage-corrected) EEG. 

Our quantitative heritability estimates fall within the range reported in the above-described studies that 

focused on stable EEG spectral properties and static FC investigations. The strongest genetic influence in 

our study was observed in the alpha band, paralleling prior heritability estimates of the power spectrum. 

While this dominance may result from the high signal-to-noise ratio of the alpha band, the strong alpha 

signal in itself likely reflects an important functional role of this frequency in cognition (Palva and Palva, 

2011; Klimesch, 2012; Sadaghiani and Kleinschmidt, 2016). In general, and for all frequency bands, it is 

the rapid changes that are thought to be particularly critical for cognitive processes, which are inherently 

dynamic at numerous timescales (Gratton, 2018). By addressing electrophysiological processes from a 

time-varying perspective, the current study establishes the heritability of cognitively significant rapid brain 

state changes. Our separate study in the same cohort directly confirms the predicted implications of such 

rapid connectome dynamics for individual differences in cognitive abilities (Jun et al. In Preparation). 

Notably, robust evidence for a genetic influence was found for Transition Probabilities in all bands 

except delta but was observed for Fractional Occupancy in the higher bands only (beta and gamma). 

While Transition Probability and Fractional Occupancy are not fully independent measures, they contain 

non-overlapping information about connectome dynamics. For example, a state with particularly high 

Fractional Occupancy is likely to have high values as initial state and target state in the Transition 

Probability matrix. Despite such dependence, however, two hypothetical subjects with highly comparable 

Fractional Occupancy values across the k states may still have substantially different sequencing, and 

thus transition probabilities, across the states. This sequencing, as suggested by our findings, is under 

strong genetic influence broadly across electrophysiological timescales. At least at infraslow timescales 

(typically observed in fMRI), such brain state changes are in part driven by the spatially broad but 

structured influence of ascending modulatory neurotransmitter systems (Klaassens et al., 2017; Shine et 

al., 2018; Lord et al., 2019). Numerous genetic polymorphisms with functional impact are known within 

receptors, transporters, and enzymes of these systems (Kautzky et al., 2015; Sadaghiani et al., 2017; de 

Rojas et al., 2021). Future causal (e.g., neuropharmacological interventions and subcortical micro-

stimulation) or modelling studies could assess to what degree similar neuromodulatory process are at 

play in the individually specific connectome dynamics at rapid timescales. 
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Consistent with our previous fMRI investigation (Jun et al., 2022), the results concerning the 

spatial features of connectome states largely supported the null hypothesis of the absence of heritability 

for a wide range of features. Specifically, when examining our primary spatial features, i.e., cluster-based 

FCTime-Varying and ModularityTime-Varying, there was no discernible influence of sibling status on the 

phenotypic similarity between subjects across different number of states. This lack of heritability for 

cluster-based FCTime-Varying was further corroborated by exploring additional connection densities (Table 

S3). Further, in an exhaustive exploratory assessment of 21 ICN pairs, FCTime-Varying exhibited no 

observable influence from sibling status under different methodological alternatives (Table S4). Therefore, 

our study suggests that genetic effects primarily contribute to how the connectome transitions across 

different states, rather than the precise way in which the states are spatially instantiated in individuals. It 

is remarkable that this dissociation between temporal and spatial features of connectome dynamics holds 

across the full spectrum of connectivity timescales, from infraslow (fMRI) through gamma band (EEG). 

Still, it is important to acknowledge that factors beyond genetics, such as individuals' experiences and 

learning, play a substantial role in shaping subject-specific connectomes and their spatial patterns, as 

indicated by the significant contribution of common and random environmental variances to the spatial 

features in Table 1. 

Our study is subject to several limitations and methodological considerations. While we provide 

results separately for each canonical frequency band, this approach does not assume or necessitate the 

bands to be discretely separable or oscillatory in nature. The approach is equally compatible with a more 

general view that the bands represent electrophysiological processes at different speed within a larger 1/f 

spectrum. Further, we defined the boundaries of the frequency bands according to common conventions 

in the field rather than according to the individual’s power spectrum. Because the latter (especially the 

alpha peak frequency commonly used to anchor individual bands) is highly heritable (see above), defining 

the bands individually may strengthen the observed heritability of connectome dynamics. However, a 

non-individualized definition of bands is unlikely to result in false positives in terms of such heritability. 

Another consideration is that while the set of spatial features of connectome dynamics in our main and 

supplementary reports was large, it is necessarily inexhaustive. Other dynamic spatial features not 

explored in this study could potentially exhibit heritability and call for future investigation.  

In conclusion, our findings provide the first evidence of genetic influence on rapid transitions 

between whole-brain source-space EEG connectome states and the proportion of time spent in each 

state. In combination with our previous findings in fMRI-derived dynamics (Jun et al., 2022), the evidence 

of a genetic basis of connectome state trajectories extends the full breadth of connectivity timescales 

from infraslow to gamma band. These findings may inform the identification of functionally relevant 

genetic polymorphisms and the development of connectome-based biomarkers at timescales particularly 

relevant to cognitive processes. 
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Tables 

Table 1. Variance-component model parameter estimates of the dynamic connectome features (K = 6). 

Phenotypes Genetic 
model h2 (95% CI) A (95% CI) C/D (95% CI) E (95% CI) -2LL AIC chi df p(chi) 

Delta 
              

Fractional Occupancy ACE 0 (.00, .00) 0.00 (.00, .00) 0.04 (.07, .15) 0.96 (.85, 1.07) -2249.3 -2237.3    
 AE 0.034 (-.09, .16) 0.03 (.09, .16)   0.97 (.84, 1.09) -2249.1 -2239.1 0.2 1 0.635 

 CE 0 (.00, .00)   0.04 (.07, .15) 0.96 (.85, 1.07) -2249.3 -2239.3 0.2 1 0.635 
Transition Probability ACE 0.098 (-.29, .48) 0.10 (.29, .48) 0.11 (.20, .43) 0.79 (.65, .93) -2149.1 -2137.1 

   
 

AE 0.227 (.10, .35) 0.23 (.10, .35) 
  

0.77 (.65, .90) -2148.7 -2138.7 0.4 1 0.528 

 
CE 0 (.00, .00) 

  
0.19 (.08, .29) 0.81 (.71, .92) -2148.9 -2138.9 0.4 1 0.528 

ModularityTime-Varying ACE 0 (.00, .00) 0.00 (.00, .00) 0.04 (.07, .14) 0.97 (.86, 1.07) 459.8 471.8 
   

 
AE 0.034 (-.09, .16) 0.03 (.09, .16) 

  
0.97 (.84, 1.09) 459.9 469.9 0.1 1 0.747 

 CE 0 (.00, .00)   0.04 (.07, .14) 0.97 (.86, 1.07) 459.8 469.8 0.1 1 0.747 
FCTime-Varying of 
data-driven clusters (5%) 

ADE 0.094 (-.07, .26) 0.00 (.00, .00) 0.09 (.07, .26) 0.91 (.74, 1.07) -6711.4 -6699.4 
   

 AE 0.092 (-.00, .19) 0.09 (.00, .19)   0.91 (.81, 1.00) -6711.4 -6701.4 0.1 1 0.782 

 DE 0.094 (-.00, .19)   0.09 (.00, .19) 0.91 (.81, 1.00) -6711.4 -6701.4 0.1 1 0.782 
Theta               
Fractional Occupancy ACE 0 (.00, .00) 0.00 (.00, .00) 0.04 (.07, .14) 0.96 (.86, 1.07) -2199.3 -2187.3    
 

AE 0.025 (-.10, .14) 0.03 (.10, .14) 
  

0.98 (.86, 1.10) -2199.0 -2189.0 0.3 1 0.604 

 
CE 0 (.00, .00) 

  
0.04 (.07, .14) 0.96 (.86, 1.07) -2199.3 -2189.3 0.3 1 0.604 

Transition Probability ACE 0.384 (.03, .74) 0.38 (.03, .74) 0.07 (.23, .38) 0.54 (.44, .65) -2126.5 -2114.5 
   

 
AE 0.462 (.36, .57) 0.46 (.36, .57) 

  
0.54 (.43, .64) -2126.3 -2116.3 0.2 1 0.666 

 
CE 0 (.00, .00) 

  
0.38 (.28, .47) 0.63 (.53, .72) -2122.1 -2112.1 0.2 1 0.666 

ModularityTime-Varying ACE 0 (-.00, .00) 0.00 (.00, .00) 0.06 (.05, .17) 0.94 (.83, 1.05) 448.1 46.1    
 AE 0.071 (-.06, .20) 0.07 (.06, .20)   0.93 (.80, 1.06) 448.3 458.3 0.1 1 0.716 

 CE 0 (.00, .00)   0.06 (.05, .17) 0.94 (.83, 1.05) 448.1 458.1 0.1 1 0.716 
FCTime-Varying of 
data-driven clusters (5%) 

ACE 0 (.00, .00) 0.00 (.00, .00) 0.11 (.01, .20) 0.89 (.80, .99) -6411.4 -6399.4 
   

 
AE 0.101 (.00, .20) 0.10 (.00, .20) 

  
0.90 (.80, 1.00) -6411.0 -6401.0 0.4 1 0.546 

 
CE 0 (.00, .00) 

  
0.11 (.01, .20) 0.89 (.80, .99) -6411.4 -6401.4 0.4 1 0.546 

Alpha               
Fractional Occupancy ACE 0 (-.00, .00) 0.00 (.00, .00) 0.05 (.06, .16) 0.95 (.84, 1.06) -2313.0 -24.0 

   
 

AE 0.057 (-.07, .18) 0.06 (.07, .18) 
  

0.94 (.82, 1.07) -2312.8 -2302.8 0.1 1 0.704 

 
CE 0 (.00, .00) 

  
0.05 (.06, .16) 0.95 (.84, 1.06) -2313.0 -2303.0 0.1 1 0.704 

Transition Probability ADE 0.633 (.56, .71) 0.32 (.32, .96) 0.31 (.33, .96) 0.37 (.29, .44) -1787.0 -1775.0    
 AE 0.627 (.55, .71) 0.63 (.55, .71)   0.37 (.29, .45) -1786.1 -1776.1 0.8 1 0.364 

 DE 0.635 (.56, .71)   0.64 (.56, .71) 0.37 (.29, .44) -1786.2 -1776.2 0.8 1 0.364 
ModularityTime-Varying ACE 0.01 (-.43, .45) 0.01 (.43, .45) 0.07 (.32, .45) 0.93 (.79, 1.06) 631.7 643.7    
 

AE 0.082 (-.04, .21) 0.08 (.04, .21) 
  

0.92 (.79, 1.04) 631.8 641.8 0.1 1 0.752 
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CE 0 (.00, .00) 

  
0.07 (.04, .18) 0.93 (.82, 1.04) 631.7 641.7 0.1 1 0.752 

FCTime-Varying of 
data-driven clusters (5%) ADE 0.058 (-.04, .15) 0.06 (.04, .15) 0.00 (.00, .00) 0.94 (.85, 1.04) -6214.0 -6202.0    

 
AE 0.058 (-.04, .15) 0.06 (.04, .15) 

  
0.94 (.85, 1.04) -6214.0 -6204.0 1.6 1 1 

 
DE 0.058 (-.04, .15) 

  
0.06 (.04, .15) 0.94 (.85, 1.04) -6214.0 -6204.0 1.6 1 1 

Beta               
Fractional Occupancy ADE 0.443 (.33, .55) 0.04 (.49, .57) 0.40 (.15, .96) 0.56 (.45, .67) -2468.4 -2456.4 

   
 AE 0.425 (.32, .53) 0.43 (.32, .53)   0.58 (.47, .68) -2467.1 -2457.1 1.3 1 0.263 

 DE 0.444 (.34, .55)   0.44 (.34, .55) 0.56 (.45, .66) -2468.4 -2458.4 1.3 1 0.263 
Transition Probability ADE 0.226 (.08, .37) 0.00 (.00, .00) 0.23 (.08, .37) 0.77 (.63, .92) -2223.8 -2211.8    
 AE 0.192 (.06, .33) 0.19 (.06, .33)   0.81 (.67, .94) -2222.5 -2212.5 1.3 1 0.251 

 
DE 0.226 (.08, .37) 

  
0.23 (.08, .37) 0.77 (.63, .92) -2223.8 -2213.8 1.3 1 0.251 

ModularityTime-Varying ADE 0.118 (-.01, .25) 0.00 (.00, .00) 0.12 (.01, .25) 0.88 (.75, 1.01) 614.3 626.3 
   

 
AE 0.105 (-.02, .23) 0.11 (.02, .23) 

  
0.90 (.77, 1.02) 614.8 624.8 0.5 1 0.477 

 
DE 0.118 (-.01, .25) 

  
0.12 (.01, .25) 0.88 (.75, 1.01) 614.3 624.3 0.5 1 0.477 

FCTime-Varying of 
data-driven clusters (5%) 

ACE 0 (.00, .00) 0.00 (.00, .00) 0.02 (.07, .12) 0.98 (.88, 1.07) -5061.8 -5049.8 
   

 AE 0.02 (-.09, .13) 0.02 (.09, .13)   0.98 (.87, 1.09) -5061.7 -5051.7 0.1 1 0.792 

 CE 0 (.00, .00)   0.02 (.07, .12) 0.98 (.88, 1.07) -5061.8 -5051.8 0.1 1 0.792 
Gamma               
Fractional Occupancy ADE 0.398 (.28, .52) 0.00 (.00, .00) 0.40 (.28, .52) 0.60 (.48, .72) -2013.3 -2001.3    
 AE 0.358 (.24, .48) 0.36 (.24, .48)   0.64 (.52, .76) -2008.9 -1998.9 4.4 1 0.035 

 
DE 0.398 (.28, .52) 

  
0.40 (.28, .52) 0.60 (.48, .72) -2013.3 -2003.3 4.4 1 0.035 

Transition Probability ADE 0.4 (.28, .52) 0.00 (.00, .00) 0.40 (.28, .52) 0.60 (.48, .72) -1372.4 -136.4 
   

 
AE 0.376 (.26, .49) 0.38 (.26, .49) 

  
0.62 (.51, .74) -137.9 -136.9 1.5 1 0.222 

 
DE 0.4 (.28, .52) 

  
0.40 (.28, .52) 0.60 (.48, .72) -1372.4 -1362.4 1.5 1 0.222 

ModularityTime-Varying ADE 0 (.00, .00) 0.00 (.00, .00) 0.00 (.00, .00) 1.00 (1.00, 1.00) 695.2 707.2 
   

 AE 0 (.00, .00) 0.00 (.00, .00)   1.00 (1.00, 1.00) 695.2 705.2 4.4 1 1 

 DE 0 (-.00, .00)   0.00 (.00, .00) 1.00 (1.00, 1.00) 695.2 705.2 4.4 1 1 
FCTime-Varying of 
data-driven clusters (5%) 

ACE 0 (.00, .00) 0.00 (.00, .00) 0.00 (.00, .00) 1.00 (1.00, 1.00) -6176.5 -6164.5 
   

 
AE 0 (.00, .00) 0.00 (.00, .00) 

  
1.00 (1.00, 1.00) -6176.5 -6166.5 2.8 1 1 

 
CE 0 (.00, .00) 

  
0.00 (.00, .00) 1.00 (1.00, 1.00) -6176.5 -6166.5 2.8 1 1 

All models were adjusted for age and sex. A, Additive genetic effect; C, common environmental effect; D, dominant genetic effect; E, Unique/non-shared 
environment effect; -2LL, twice the negative log-likelihood; AIC, Akaike’s information criterion; df, degrees of freedom; χ2, chi square, ∆df, change in degree of 
freedom between the full model and the nested model; p, χ2 test in model fitting. The AE and CE models are nested within the ACE model. Each nested model is 
compared with the fully saturated model. The fitness of models was tested based on a change in AIC (for a change of df of 1, the statistically significant change in 
χ

2 is 3.84). h2, the narrow-sense heritability estimated as σ2
A/(σ2

A + σ2
c + σ2

E); the broad-sense heritability estimated as (σ2
A + σ2

D)/(σ2
A + σ2

D + σ2
E); CI: 

Confidence Interval (lower bound, upper bound).  
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