

Decline of honeybees and its consequences for beekeepers and crop pollination in western Nepal

Kortsch, S.^{1 2} †, Timberlake³, T.P., Cirtwill, A.R.¹, Sapkota, S.⁴, Rokaya, M.⁵, Devkota⁶, K., Roslin^{1 7}, T., Memmott, J.³, Saville, N.⁸

¹Spatial Foodweb Ecology Group, Department of Agricultural Sciences
University of Helsinki
Helsinki, Finland

²Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences
University of Helsinki
Hanko, Finland

³ School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK

⁴ HERD International, Sainbu Awas Cr-10 Marga, Bhaisepati, Lalitpur, Nepal

⁵ School of Public Health, Karnali, Academy of Health Sciences
Jumla, Nepal

⁶ Agriculture and Forestry University
Rampur, Chitwan, Nepal

⁷ Swedish Agricultural University
Uppsala, Sweden

⁸ Institute for Global Health, University College London, 30 Guilford Street, London, WC1N 1EH

† Corresponding author: susanne.kortsch@helsinki.fi

1 Abstract

2 1. Pollination service by insects is globally threatened, yet trends outside of Europe and

3 North America are poorly understood. Therefore, in less-studied regions of the world,

4 beekeeper records can provide valuable insights into changes in pollinator populations.

5 2. We conducted a questionnaire survey of 116 beekeepers in 10 villages in the Jumla

6 District of western Nepal, where the native honeybee *Apis cerana cerana* is widely kept as a

7 managed honeybee. We complemented the beekeeper survey with field data on insect-crop

8 visitation, a household income survey, and an interview with a local lead beekeeper.

9 3. 76% of beekeepers reported declines in the *Apis cerana cerana* population. 86%

10 experienced declines in honey yield per hive, and 78% reported declines in the number of

11 beehives per beekeeper. Honey yield per hive fell by 50% between 2012 and 2022, whilst

12 the number of occupied hives decreased by 44%. Beekeepers ranked climate change and

13 declining flower abundance as the most-important drivers of the decline.

14 4. The drastic bee declines raise concerns for the future food and economic security of

15 this region, where honey sales contribute to 16% of total household farming income. *Apis*

16 *cerana cerana* plays a major role in crop pollination and contributes more than 50% of all

17 flower visits to apple, cucumber, and pumpkin.

18 5. To mitigate further declines in this region, we promote the use of pollinator-friendly

19 farming practices including more wild flowers and maintenance of native habitat areas, and

20 well-insulated log or top-bar log hives to buffer bees against extreme temperature

21 fluctuations, which are expected to worsen with climate warming.

²² **Keywords**

²³ insect decline, pollinator decline, beekeeping, subsistence farming, insect pollination, crop

²⁴ production, climate change, please add suggestions.

25 Introduction

26 Insect pollination is important for the quantity and quality of yields for 75% of global crop
27 species (Klein *et al.*, 2007a). At present, pollination services are also severely
28 threatened (Potts *et al.*, 2016). Insect pollinators have been reported declining across most
29 regions of the world where historic data and monitoring programs enable such
30 assessments (Biesmeijer *et al.*, 2006; Cameron *et al.*, 2011; Powney *et al.*, 2019; Van Klink
31 *et al.*, 2020). These declines are thought to be driven by a combination of anthropogenic
32 factors including agricultural intensification, habitat loss, disease, pesticide use and climate
33 change (Goulson *et al.*, 2015; Potts *et al.*, 2010a; Dicks *et al.*, 2021; Müller *et al.*, 2023).

34 The threats facing pollinators likely differ amongst regions of the world, and the impact of
35 pollinator declines on food security is potentially most severe for smallholder farmers in
36 low-income countries. These farmers strongly rely on local pollination services for their
37 food and nutrition security, as well as their income (Timberlake *et al.*, 2022; Garibaldi
38 *et al.*, 2016). Despite the immense importance of pollination services to smallholder
39 farmers, we know almost nothing about the population trends of insect pollinators in
40 regions of the world where smallholder farming systems predominate (Steward *et al.*, 2014).

41 This makes it challenging to assess the degree of risk and identify likely drivers and
42 mitigation strategies.

43 The lack of historic data and formal monitoring schemes on insect populations in most
44 low-income countries currently poses a major barrier to our understanding of global
45 pollinator statuses and trends, and our ability to tailor conservation efforts accordingly. In
46 the absence of long-term quantitative data on insect population trends, other forms of data

47 may prove useful in under-studied regions, such as records and perceptions of local
48 beekeepers. Given the strong reliance on bees for their livelihoods, food, and medicinal
49 needs, beekeepers typically have a strong awareness of the health and well-being of their
50 bees and the environment in which they forage (Crane, 1999). This should make
51 beekeepers ideal witnesses for reporting on the population status of the bees they keep,
52 along with the environmental stressors affecting them. However, despite their wealth of
53 local knowledge, the perceptions, records and experience of indigenous beekeepers are
54 rarely considered (Potts *et al.*, 2016).

55 Beekeeping is practiced widely across the world, predominantly using two species of
56 managed honeybees *Apis mellifera* and *Apis cerana*, but also various stingless bees such as
57 *Trigona* spp. and *Melipona* spp. (Osterman *et al.*, 2021). Beekeeping has immense cultural
58 and economic importance across the world (Nat Schouten & John Lloyd, 2019),
59 particularly for smallholder farmers, as it requires only a small amount of land and
60 minimal investment whilst providing a significant source of income (Devkota *et al.*, 2022)
61 In addition to producing valuable products such as honey, beeswax, pollen, and propolis,
62 managed bees can play a crucial role in crop pollination, substantially enhancing
63 agricultural yields (Devkota, 2020; Isaacs & Kirk, 2010). In Nepal, where this study is
64 based, traditional beekeeping of the native *Apis cerana* has been practised for many
65 centuries. Bees were traditionally kept in wooden log hives but commercial beekeeping
66 with modern beehives began with the rearing of *A. cerana* in the 1980s (Partap and Verma
67 1998). After the introduction of *Apis mellifera* in 1992, commercial and migratory
68 beekeeping was taken up in the plains and mid-hills (Devkota, 2020).
69 The introduction of *A. mellifera* in Nepal reflects a broader trend of introduction and

70 replacement of *A. cerana* across South Asia, resulting in widespread reports of *A. cerana*
71 population decline (Theisen-Jones & Bienefeld, 2016). Here, we focus on *Apis cerana*
72 *cerana*, a subspecies of *A. cerana* native to the western high hills and mountains of Nepal,
73 where it occurs both as a wild and semi-domesticated pollinator. Although the honey
74 production of *Apis cerana cerana* is relatively low compared to the western honeybee *Apis*
75 *mellifera*; *Apis cerana cerana* are efficient pollinators in harsh, high-altitude mountain
76 environments such as in the Jumla district of western Nepal (Pokhrel *et al.*, 2006). In the
77 Jumla District, *Apis cerana* was identified as the most important pollinator in both
78 subsistence and commercial cash crop farming systems (Timberlake *et al.*, 2023), consistent
79 with the high importance of *Apis* spp. honeybees worldwide (Potts *et al.*, 2010b; Klein
80 *et al.*, 2007b). Moreover, *Apis cerana* requires relatively low maintenance and management
81 costs, and beekeepers possess indigenous technical knowledge on their forage and
82 management (Saville & Upadhyaya, 2000), making the species highly suitable for remote
83 subsistence farming communities with limited access to funds and technology (Pokhrel
84 *et al.*, 2006; Devkota *et al.*, 2022).

85 Despite its central role for crop pollination and livelihoods of subsistence farmers, aside
86 from studies undertaken in the 1990s (Saville & Upadhyaya, 2000), very little is known
87 about the management practices, population trends and conservation status of *Apis cerana*
88 *cerana* in the Jumla District or elsewhere. In particular, the magnitude of population
89 declines are unclear, local-level population assessments are lacking, and the implications of
90 these declines for local crop production and beekeeper livelihoods have not been
91 investigated. In this study, we investigate the ecological and economic importance of *Apis*
92 *cerana cerana* in a remote mountainous region of western Nepal. We use a combination of

93 qualitative beekeeper surveys and quantitative ecological field data to answer the following
94 three questions: 1) Have beekeepers in Jumla experienced a change in the population size
95 of *Apis cerana cerana*? 2) Has the honey yield per beehive and the number of beehives per
96 beekeepers changed in Jumla over the past ten years? 3) What are the drivers of *Apis*
97 *cerana cerana* population change in Jumla, and what consequences might this have for crop
98 production and beekeeper livelihoods?

99 Methods

100 Study site and sampling methods

101 The main study was conducted in 10 smallholder farming villages at 2400-3000m above sea
102 level in Patarasi Rural Municipality, Jumla District, Mid-Western Nepal (*Appendix S1*).
103 Jumla is a remote mountainous district, situated in the Karnali Province of western Nepal.
104 Rates of poverty, food insecurity and malnutrition are particularly high in this region, and
105 80% of the population are directly dependent on smallholder agriculture (Central Bureau
106 of Statistics and UNICEF Nepal, 2020). More than 50 crops are grown in this region,
107 including many pollinator-dependent species such as apples, beans, pumpkins, cucumber,
108 mustard, and buckwheat. Beekeeping with traditional log hives has been practised in
109 Jumla for centuries, with many households keeping hives of the native *Apis cerana cerana*
110 in and around their homesteads (Saville & Upadhyaya, 2000). Despite efforts to test and
111 introduce improved, modern beehives in the 1990s (Saville *et al.*, 2000), most beekeepers
112 keep their bees in hollowed-out log hives, which prevent combs from being inspected

113 without permanently damaging them. Since *Apis cerana cerana* compared to *Apis cerana*
114 *himalaya* and *Apis cerana indica* is the most high yielding subspecies with lower rates of
115 absconding, and to avoid bee diseases spread from the exotic *Apis mellifera*, no other bee
116 species are widely kept in this region. The honey produced by these hives is either sold for
117 income or retained for household consumption, medicine (Saville, 2000a), and use in
118 religious ceremonies (Saville, 2000b). Since honey production is one of the few sources of
119 cash income for local farmers in the region, beekeeping is an important activity for
120 sustainable livelihood. Beehives are generally situated near houses, surrounded by small
121 vegetable gardens and livestock paddocks. Village areas also include small arable fields,
122 apple orchards, and large areas of steep, heavily-grazed grassland pasture and native
123 coniferous forest.

124 **Questionnaire survey and interview**

125 We conducted questionnaire surveys on a total of 116 beekeepers in 10 study villages to
126 explore the status of honeybee populations (*Apis cerana cerana*) in Jumla (consult
127 *Appendix S2* for the survey questions). On average, 11 beekeepers were interviewed per
128 village, which represented the majority of the core beekeeping population in the smaller
129 villages and about half for the bigger villages. The questionnaire was designed to reveal
130 temporal changes in honey yield per hive and number of (occupied) hives per beekeeper
131 currently (i.e., in year 2022) and in the past (years: 2021, 2019, 2017, 2012, and before
132 2012). To better understand the potential drivers behind the changes, we asked the
133 beekeepers to rank the main causes for the changes in number of honeybees, beehives and

134 honey yield. Similarly, to gain insights into the potential consequences to their livelihood,
135 we asked the beekeepers to rank the main environmental impacts on their bees. The
136 questions and reply options are shown in *Appendix S2*. Interviews were conducted in the
137 Nepali language by a trained data collector in the presence of the lead author, and answers
138 were recorded on Android tablets using a custom-built data collection app in CommCare
139 Version 2.48.3 (<http://www.commcarehq.org/home/>), an opensource, cloud-based data
140 collection platform. All interviews were performed by the same individual to avoid any
141 variation due to interviewer effects.

142 To test for temporal trends in honey yield per hive and number of beehives per
143 beekeeper, we fit two general linear models (glms) relating honey yield (in kg) or number of
144 occupied hives to year. Because of right-sided skewness in the data, we used a log link
145 function in both cases. Honey yield was modelled as a Gaussian process and number of
146 beehives as a Poisson process. Predictions were back-transformed to the original scale for
147 easier interpretation. Assuming that the log-linear relationships may continue in the
148 future, we predicted future changes in honey yields and number of beehives up to until the
149 year 2030. The regressions were performed using base R, version 4.3.0 (R Core Team,
150 2019), and data visualisations using tidyverse (Wickham *et al.*, 2019).

151 To gain a more general and in-depth understanding on the status of honeybees and the
152 causes for change in honeybees in Jumla district, we conducted an in-depth interview with
153 one carefully selected local, lead beekeeper who comes from a household which kept large
154 numbers of traditional beehives across many generations. The lead beekeeper has worked
155 in the Jumla veterinary office for many years and is also one of the few who uses the
156 improved Jumla top-bar hive to manage bee colonies. Because of this, he has better

157 technical knowledge of beekeeping than most beekeepers in the district (see *Appendix S3*)
158 for a transcription and translation of the interview from Nepali to English). In the
159 interview, the same questions were asked as in the questionnaire survey, but the lead
160 beekeeper was encouraged to elaborate on the replies.

161 **Economic importance of honeybees in Jumla District**

162 To assess the prevalence of beekeeping and its importance as a livelihood strategy across
163 the wider Jumla District, we conducted a series of brief structured questionnaires with the
164 lead farmer of 920 households across all eight municipalities of Jumla District
165 (Chandannath, Kankasundari, Sinja, Hima, Tila, Guthichaur, Tatopani and Patarasi).
166 Approximately four respondents were randomly selected from each village in each of the
167 eight municipalities during a series of farmer consultation meetings. As far as possible, the
168 gender of respondents was balanced to ensure roughly equal participation in the study.
169 Each respondent was asked a simple binary question of whether or not they kept bees. If
170 they answered yes to this question, the participant was then asked how many occupied
171 beehives they had and how much income they derived in the previous year from selling
172 honey. Finally, the respondent was asked to list all of the crops they grow and report their
173 total annual household income from the sale of all agricultural produce. These data
174 enabled us to assess the prevalence of beekeeping in the region and to calculate the
175 proportional contribution of honey sales to total agricultural revenue and determine the
176 relative value of beekeeping as a livelihood strategy. These wider household surveys were
177 conducted by eight trained data collectors (one in each municipality) and answers were

178 recorded in the open-source data collection platform Open Data Kit (ODK).

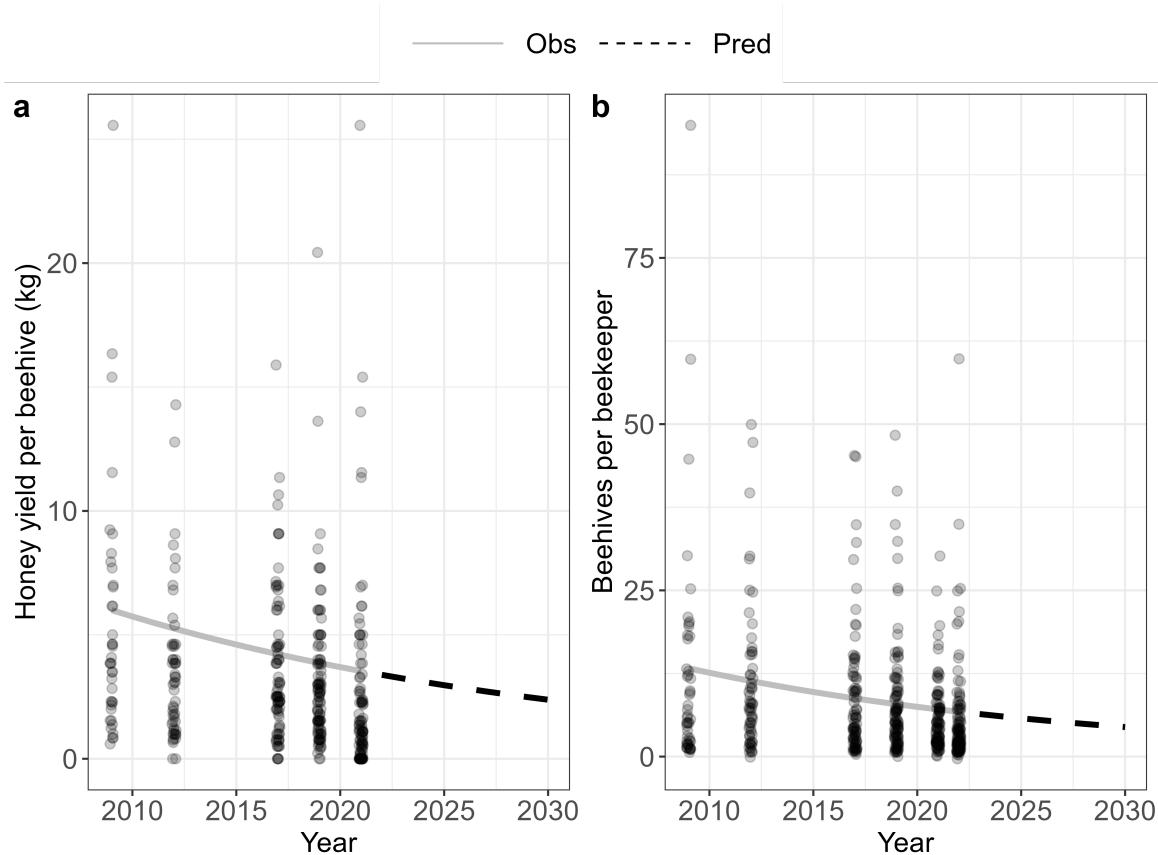
179 **Crop dependency on *Apis cerana cerana***

180 To investigate the Asian honeybee's importance as a crop pollinator in Jumla, we analysed
181 an insect visitation data set collected in the 10 villages in Jumla during the same time
182 period as the beekeeper survey was conducted. Insect visitation surveys were conducted
183 every two weeks from 18 April to 4 November 2021 (spring to autumn) in a 600 x 600
184 metre sampling area centred on the midpoint of each study village. This area was divided
185 into three habitat categories: village, crop, and semi-natural vegetation. In each of these
186 habitats, we randomly located three replicate fixed survey plots of 60 x 60 metres (9 plots
187 per village). Every two weeks, a 40-minute plant-pollinator visitation survey was
188 conducted in each plot to record the interactions between plants (both crop and non-crop
189 species) and flower-visiting insects. Insects were captured, pinned and identified to species
190 or morphospecies (see acknowledgements). For full details of the insect visitation surveys,
191 see *Appendix S1* and Timberlake et al, submitted.

192 For each crop in each village, we calculated the proportion of all visits to each crop that
193 were made by *Apis cerana cerana*. Restricting our analysis to pollinator-dependent crops
194 only, we ranked crops from the highest to the lowest proportion of visits made by
195 honeybees, thereby identifying crops which are most reliant on honeybees and therefore
196 most likely to be impacted by honeybee declines.

197 As well as making a large number of visits to crops, honeybees might be especially
198 important pollinators because they carry large amounts of pollen. To test this, we

199 calculated the pollen carrying capacity of *Apis cerana* and compared it with that of other
200 insect taxa recorded visiting crop flowers in this study region. Pollen carrying capacity was
201 recorded by swabbing a total of 1928 insect specimens (representing 136 unique crop
202 flower-visiting taxa) with glycerine jelly and counting the total number of pollen grains on
203 each insect using light microscopy; pollen in the corbicula was not included in the sampling
204 as this is not available for pollination. For each of the 136 insect taxa that were sampled,
205 we calculated a mean pollen carrying capacity value across all replicate specimens and
206 compared these values amongst taxa to identify the best transporters of pollen (see
207 *Appendix S1* for further details).


208 **Results**

209 The district-wide household survey of 920 farming households across all 8 municipalities of
210 Jumla revealed that 12.5% of all farming households keep at least one beehive. For those
211 households which kept bees, the mean number of hives per household was 3.4 (± 0.3 SE).
212 The average number of beehives for the 116 selected beekeeper respondents of this study
213 decreased from 10.5 in 2012 to 5.3 in 2022.

214 **Temporal changes in honey yield and beehives**

215 Across all villages, beekeepers report a significant ($p < 0.0001$) decline in honey yield from
216 2012 (and before) to 2021. (Fig. 1 a). Specifically, honey yield declined by 50% over this
217 10-year period (See SI *Appendix 4* for detailed results). Declines were consistent across all
218 10 villages, but these were only statistically significant for the villages of Chuma and

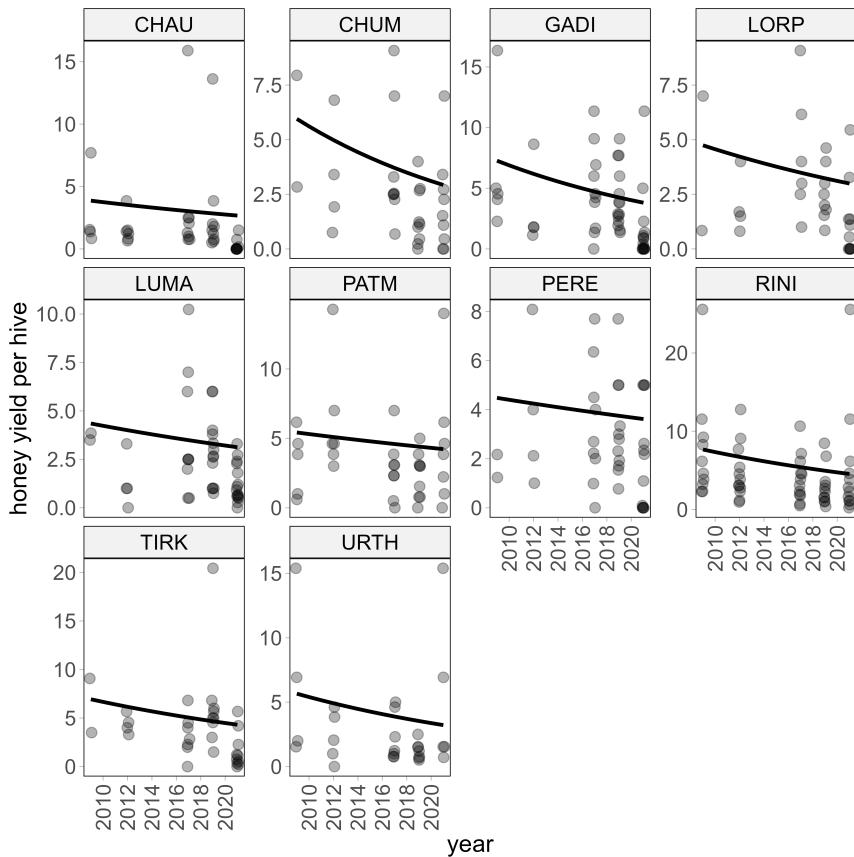

219 Gadigaun (Fig. 2).

Figure 1: Change in a) honey yield per hive (kg) for the period before 2012 to 2022 and b) number of beehives per beekeeper for the period before 2012 to 2021 across all villages, with stippled prediction lines, until year 2030.

220 Across villages, beekeepers also reported a significant ($p < 0.0001$) decline in the number
221 of (occupied) beehives per beekeeper during the period from 2012 to 2022 (Fig. 1 b),
222 corresponding to total decline of 44% during this 10 year period (see SI Appendix 4 for
223 detailed results of glm). The decline in beehives per beekeepers varied between villages and
224 was statistically significant in Chaura, Chuma, Lorpa, Patmara, and Urthu (Fig. 3). The
225 significant decline of beehives in Patmara is especially notable as this village used to be a
226 hub for beekeeping in the Jumla district in the 1990s and beekeepers there had a rich
227 knowledge of *Apis cerana cerana* and traditional ways to manage them (Saville &

228 Upadhyaya, 2000).

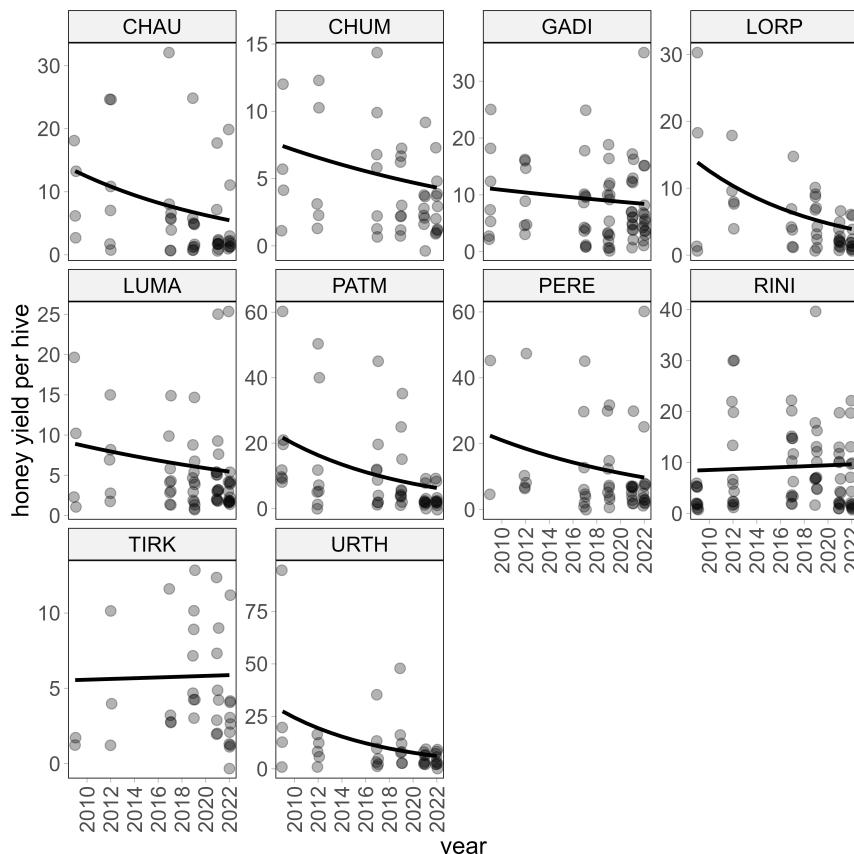
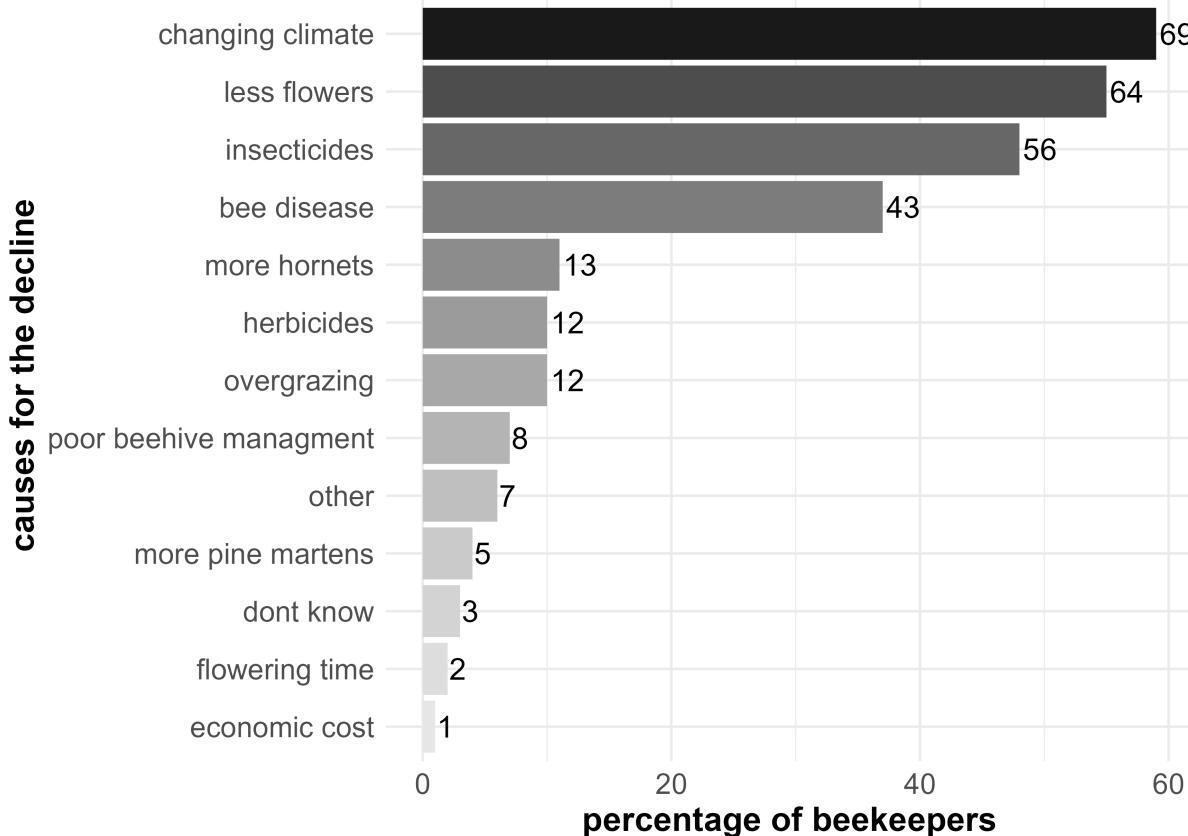


Figure 2: Change in honey yield per beehive for the 10 villages for the period before 2012 to 2021. The decline in honey yield was concientent across villages but only statistically significant ($p<0.05$) for Chuma and Gadigaun. Darker points in the panels are due to overlapping values between villages

229 Reasons for the decline in honeybees


230 According to the beekeepers' responses to the questionnaires, the four main causes for the
231 decline of honeybees in the Jumla district are: 1) climate change (listed as a major driver
232 by 69% of respondents), 2) reduced availability of flowers (64% of respondents), 3)
233 insecticide/herbicide use (56% of respondents) and 4) bee diseases (43% of respondents)
234 (Fig. 4). When asked in more detail about the characteristics of the changes in the climate,

235 the beekeepers reported: 1) heavier monsoon, 2) more unpredictable weather patterns and
236 3) drier weather (see *SI Appendix 4 Fig. S3*). While heavier monsoon (rain) and drier
237 weather may initially seem contradictory, the issue here is shifts in the timing of these
238 events which may influence the timing of flowering plants and insect activity potentially
239 causing mismatches between the two. When asked in more detail about the characteristics
240 of lower flower availability, the beekeepers reported: 1) cutting of the forest, 2) fewer
241 flowering crops 3) overgrazing, and 4) wetter weather, as the main causes for the decline in
242 flower abundances (see *SI Appendix 4 Fig S4*). Some respondents also mentioned the
243 destruction of the deciduous flowering shrub known as 'Dhatelo' (*Prinsepia utilis*) as a

Figure 3: Change in the number of beehives per beekeeper for the 10 villages. The decline in beehives per beekeepers was statistically significant ($p < 0.05$) for Chaura, Chuma, Lorpa, Patmara, and Urthu but non-significant in the remaining five villages.

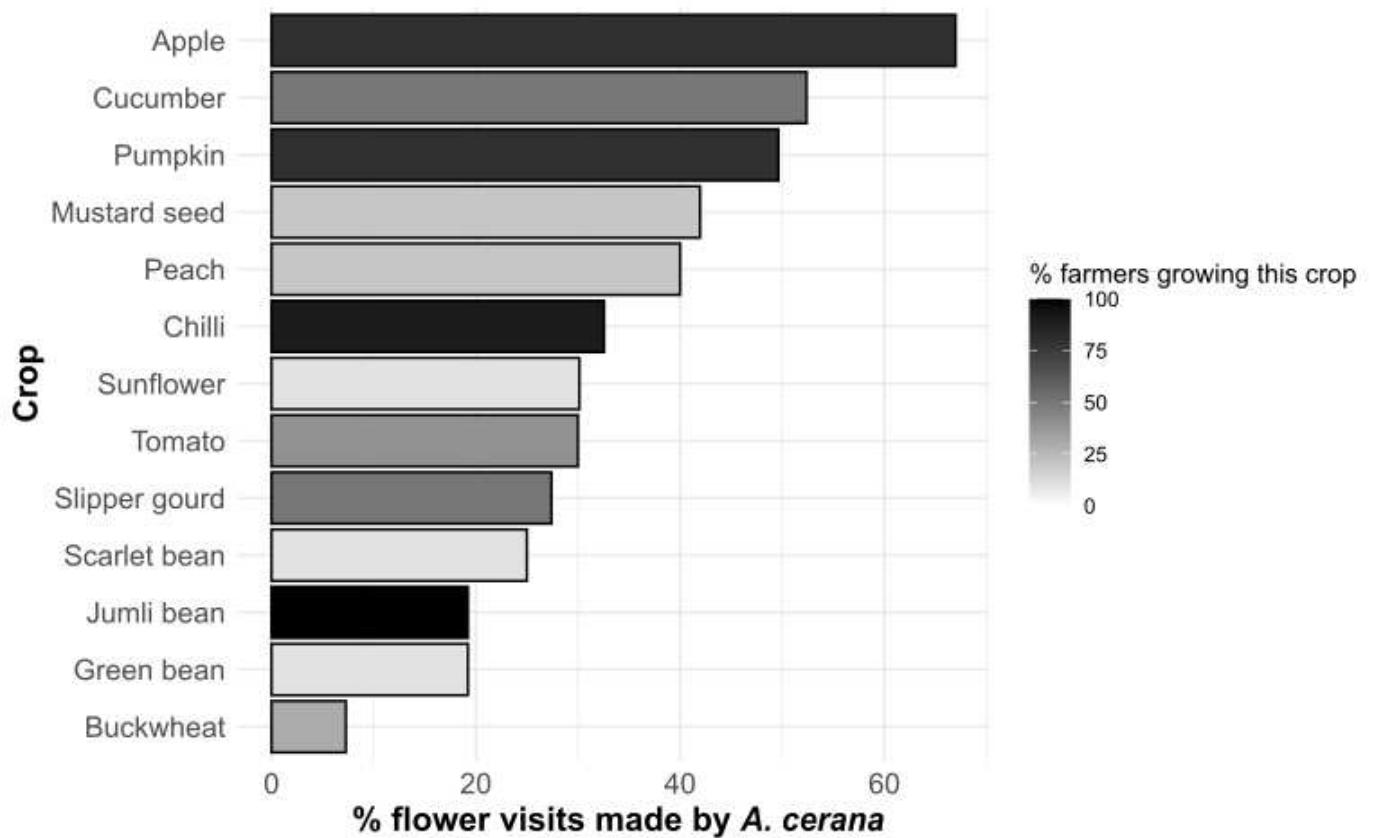
²⁴⁴ significant factor in reducing flower availability. 'Dhatelo' shrubs bloom early in the season
²⁴⁵ when few other plants are in-flower. Thus, their removal is likely to increase food scarcity
²⁴⁶ for honeybees early in the season with negative impacts.

Figure 4: Ranking of the causes for the decline in honeybees according to beekeepers' perceptions. The bars correspond to the percentage of beekeepers who listed a driver as a potential cause for the honeybee decline. The numbers next to the bars show the actual number of beekeepers (n=116) which this percentage corresponds to. The top four causes (darkest bars from the top) are: 1) climate change, 2) less flowers, 3) insecticides, 4) and bee disease.

²⁴⁷ Importance of *Apis cerana* to agriculture

²⁴⁸ Out of all the pollinator-dependent crops grown in this study region, apple *Malus*
²⁴⁹ *domestica* was most dependent on honeybees (67% of all visits to flowers of this crop were

250 made by *A. cerana cerana*) followed by cucumber *Cucumis sativus* (52%), pumpkin
251 *Cucurbita maxima* (50%), mustard seed *Brassica alba* (42%) and chilli *Capsicum sp.*
252 (33%). These crops are all important to local farmers and are widely grown in the region.
253 Particularly important are chilli, apple and pumpkin, which are grown by more than 80%
254 of all farmers (Fig. 5).


255 In addition to the high number of visits made by honeybees to important crops, the
256 bees also carry a relatively large amount of pollen per individual bee. This means they can
257 potentially deposit many pollen grains per visit, which can be important for full pollination
258 of fruits such as apples. Honeybees carried, on average, 96 (± 6.8 SE) pollen grains per
259 individual, compared to a mean of 57 (± 7.7 SE) and a median of 18 grains across all taxa
260 sampled. Although there were 29 other insect taxa (out of a total of 135) which carried
261 more pollen than honeybees (mostly bumblebee and solitary bee species), honeybees were
262 nevertheless within the top 20% of pollen-carrying taxa (see *Appendix S1* for how the
263 pollen data was collected). The high visitation rates of honeybees to a range of important
264 crops, combined with their relatively high pollen transport capacity, suggests that *Apis*
265 *cerana cerana* is amongst the most important crop pollinators in this region.

266 Apples are the most economically important crop in this region and their high
267 dependence on honeybees suggests their production may be heavily impacted by the
268 observed honeybee declines. Consistent with this prediction, when asked about changes in
269 apple yield quality and quantity, 55% and 42% of the beekeepers respond they experienced
270 a decrease in apple yield and change in quality, respectively, whereas only 8.6% and 2.6%
271 experienced an increase, respectively (see *Appendix S4*).

272 Effects on beekeepers' livelihoods

273 Half of the beekeepers (51%) reported impacts to their livelihood due to loss of honeybees,
274 42% reported no change and 7% did not know (see *Appendix S4*). For the beekeepers that
275 experienced a negative impact on their livelihood, the main features were loss of income
276 and less, or no, honey for their own consumption. The 42% of the respondents who
277 reported no impact, all replied that they have other income from high value crops such as
278 apples in follow-up question (see *Appendix S4*

279 A wider survey of 920 farming households across all 8 municipalities of the Jumla
280 District revealed that the mean household income from the sale of honey was NPR

Figure 5: Percentage of visits from honeybees to the most important crop plants in the Jumla district. The color shading shows the percentage of farmers growing the crop

281 (Nepalese rupees) 5,493 (\pm 1,015 SE), or USD 41.23, representing 16% of total household
282 farming income (mean 34,567 NPRs, or USD 260). Given the rate of decline in honey yield
283 reported in this study (Fig. 1), we estimate that beekeepers have lost approximately 14% of
284 their household income from agriculture over the last ten years as a result of these changes.
285 This ignores any loss of income as a result of crop yield declines, which may be even more
286 substantial. Interestingly, only 17% of respondents were aware of the honeybees as essential
287 pollinators to crop production, despite the heavy reliance on crop pollination services by
288 farmers in this region.

289 **Summary of in-depth interview with key informant**

290 The key informant beekeeper (local expert) confirmed the decline in honey yield indicated
291 by the beekeepers of the survey. The total amount of honey harvested from all of his hives
292 combined has declined from 50-100 kg per year to only 3 kg over the past 5 to 10 years. He
293 mentioned that the amount of honey produced was not even sufficient for keeping his bee
294 colonies alive during the winter. He further stated that the bees are starving. The two
295 most important drivers for the decline in honeybees that he mentioned were climate change
296 and pesticide use. In particular, he stated that there is huge effect of climatic change on
297 bees: “It rains when is should not, and it does not rain when it should”. Similar
298 descriptions were given by several beekeepers during the survey. For example, when bees
299 start to become active in April and May, it rains heavily when it should not be raining.
300 According to the key informant’s perception, the heavy rainfall will wash away the pollen
301 which, combined with fewer flowers, decreases the resource availability for the bees.

302 Moreover, he said that climate change induces shifts in flowering seasons and behaviour.

303 Plants flower earlier and the season is shorter. He believed that this is why bees do not

304 have enough food and die. According to him, there was no problem of livestock overgrazing

305 in Jumla. In terms of pollination services, the key informant stated that apple quantity

306 and quality has diminished compared to the past. When asked about how the decline in

307 honeybees has affected his livelihood, he confirmed that the decline in honeybees has

308 affected his livelihood negatively due to loss of income and loss of honey for household

309 consumption. He also said that farmers are not prioritizing beekeeping as much as in the

310 past. According to him, the farmers are unaware of the importance of bees for crop

311 pollination and food production, which may explain why they do not prioritize beekeeping.

312 Discussion

313 According to the beekeepers in our study, the honeybee *Apis cerana cerana* is declining in

314 western Nepal. The reported honeybee decline is likely indicative of a regional trend,

315 consistent with previous reports of declining *Apis cerana* populations in Nepal and

316 throughout Asia (Theisen-Jones & Bienefeld, 2016; Warrit *et al.*, 2023; Partap & Partap,

317 2002). Because of declining bee populations, honey yields and the number of occupied

318 beehives are also decreasing. Changing climate and unpredictable weather patterns and

319 reduced flower availability are the major drivers for the declines, as perceived by the

320 beekeepers. Locally, the decline in bees is associated with loss of income from honey sales

321 and poorer crop pollination, especially for apples. This poses a risk to the livelihoods and

322 food security of beekeepers and subsistence farmers in the region.

323 Are honeybees starving in western Nepal?

324 Across the world, pollinating insects are threatened by a range of anthropogenic pressures
325 such as agricultural intensification, habitat loss, climate change and pesticide use (Goulson
326 *et al.*, 2015; Potts *et al.*, 2010a; Dicks *et al.*, 2021). All of these pressures are known to
327 reduce the availability of food (pollen and nectar) for insects (Baude *et al.*, 2016); a
328 resource which is considered the most important factor limiting pollinator populations
329 (Roulston & Goodell, 2011; Woodard & Jha, 2017). Honeybees are generalist foragers
330 whose accumulation of honey is largely determined by the quantity and quality of floral
331 resources present in the landscape, as well as local climatic conditions which influence their
332 ability to forage (Quinlan *et al.*, 2023). The declining honey yields reported by beekeepers
333 in our study region therefore indicate a reduction in floral resource availability or a reduced
334 ability to freely forage and collect these resources, for example due to unfavourable weather
335 conditions. Weather conditions are a key factor influencing the foraging activity of both
336 managed honeybees and wild bees (Karbassioon *et al.*, 2023; Clarke & Robert, 2018) and
337 this may be particularly relevant in our study region where weather patterns have changed
338 dramatically, as reported by beekeepers and confirmed by empirical data (Shrestha *et al.*,
339 2019; Sabin *et al.*, 2020). In particular, beekeepers report that heavier and more erratic
340 rainfall events - often coinciding with important stages of the colony life cycle - are
341 impacting the ability of bees to forage and accumulate honey reserves.

342 Fewer flowers and reduced foraging ability equates to less food for bees and will result in
343 honeybees collecting less pollen and nectar for their brood - thus reducing the size of
344 colonies and limiting the honey stored for the winter, which ultimately risks starvation of

345 the bee colonies. In the case of our study region, where beekeepers report climate change
346 and reduced flower availability as the two most important drivers of bee and honey
347 declines, it is likely that these two factors are interacting. For example, climate change can
348 alter the distribution, quantity and quality of the flowers on which insects depend for
349 food (Thuiller *et al.*, 2005). Moreover, warming can lead to unpredictable seasonal weather
350 patterns, which cause phenological mismatches between plants and pollinators (Roslin
351 *et al.*, 2021). As insects are ectotherms, changes in temperature can also have a direct
352 influence on their physiology and behaviour, and thus change their foraging
353 range (Ribbands, 1951). For bees, the outcome of such direct and indirect effects on
354 behaviour and physiology can influence a colony's ability to store sufficient honey to
355 survive the winter. Our key informant remarked that honey yields are more and more often
356 getting too low to even keep colonies alive throughout the winter.

357 As a factor contributing to reductions in honey yields, reduced flower availability may
358 force bees to forage over greater distance. A recent study using an agent-based model
359 shows that flower abundance is a major driver of foraging distances with decreasing floral
360 abundance leading to larger foraging distances (Hayes & Grüter, 2023). Evidence also
361 shows that honey bees produce less honey if they need to forage at greater
362 distances (Ribbands, 1951; Couvillon *et al.*, 2014; Danner *et al.*, 2016). Moreover, the
363 breeding rate of a colony partly depends upon the quantity of incoming forage (Nolan,
364 1925). In other words, if incoming foraging decreases, the colonies decline. Larger foraging
365 distances may also put honeybees at greater risk of exposure to unpredictable weather
366 regimes, increasing the chances of being caught in bad weather. Beekeepers, including the
367 lead beekeeper, in our survey repeatedly stated that bees were often caught in weather

368 conditions with heavy rainfall during flights, and therefore did not return to the hives.
369 Increasingly unpredictable weather patterns, as predicted for the Himalayan region (Sabin
370 *et al.*, 2020), could worsen the situation for honeybees and other pollinators further.

371 ***Apis cerana cerana* decline and its consequences for crop
372 pollination**

373 Honeybees are one of the most important crop pollinators in this region, both because of
374 the large number of visits they make to key crops and because of the large amount of
375 pollen they carry per individual. In the unlikely event of total honeybee loss, farmers stand
376 to lose approximately 45% of all crop pollen transport and as much as 73% in the case of
377 apple (Timberlake *et al.*, 2023). Red Delicious Apples, the major cash crop in the region,
378 are almost entirely pollinator-dependent and may already be showing signs of decline in
379 honeybee pollination, as beekeepers in our survey generally report reductions in apple
380 quality (e.g., shape and size) and quantity.

381 In addition to cash crops, honeybees are important pollinators for a range of other
382 nutritionally-important crop plants (Timberlake *et al.*, 2023) such as mustard seeds,
383 pumpkins, and chilies, which may all experience decreased pollination as a result of
384 honeybee declines. In smallholder farming villages where most people depend upon local
385 food production for survival, these declines have the potential for serious impacts on their
386 food and nutrition security, as well as their livelihoods. Surprisingly, only 17% of
387 respondents were aware of the value of honeybees or other pollinators to crop production,
388 which is in line with the key informant's perception. This lack of knowledge may also

389 explain why only half of the respondents reported a negative impact of bee declines on
390 their livelihood, as they are only considering the loss of income from reductions in honey
391 production and ignore the importance of bees for crop production and hence agricultural
392 income.

393 **Are wild insect pollinators also declining in Jumla?**

394 It is likely that honeybees are not the only insects declining in Jumla. Many of the
395 mechanisms that are reported to be driving honeybee decline in Jumla such as fewer flower
396 resources, unpredictable climatic patterns, phenological mismatches, and agrochemical use
397 are also known to cause declines in other pollinating insects (Goulson *et al.*, 2015; Potts
398 *et al.*, 2016; Dicks *et al.*, 2021; Müller *et al.*, 2023). Honey yields are known to serve as a
399 convenient bio-indicator of floral resource availability and foraging conditions, so consistent
400 declines in honey yields point towards strong floral resource limitation and resulting
401 population declines for all pollinators in this region (Quinlan *et al.*, 2023).

402 Indeed, many wild pollinators are likely to be affected even more severely than
403 honeybees as they do not retain honey reserves to help them through sparse periods of the
404 year and their food supply is not supplemented by beekeepers as is sometimes the case for
405 honeybees. Moreover, their foraging ranges are shorter than honeybees, making it more
406 challenging for them to reach distant resources. This prediction is consistent with studies
407 from other regions of the world which indicate that declines in wild pollinators are
408 generally steeper than those for honeybees (Zattara & Aizen, 2021; Aldercotte *et al.*, 2022;
409 Goulson & Nicholls, 2016). The increasingly erratic weather patterns reported by

410 beekeepers in this region are also likely to be having severe impacts on the wild pollinator
411 community as weather patterns are known to be one of the most important factors
412 influencing wild insect populations (Müller *et al.*, 2023). In regions of the world where
413 honeybees have experienced from Colony Collapse Disorder (generally linked to
414 honeybee-specific diseases), wild pollinators have been shown to provide effective insurance
415 against honeybee losses (Winfree *et al.*, 2007). However, in our study region, where the
416 reported drivers of honeybee decline are stressors which also impact wild pollinators (loss
417 of flowers, changing weather patterns and pesticides), it is unlikely that wild pollinators
418 will be able to substitute for declines in the pollination services provided by honeybees.
419 This increases the potential vulnerability of pollination services in this region and further
420 emphasises the importance of mitigating these declines.

421 **Knowledge gaps, future prospects and management advice**

422 To mitigate further declines in *Apis cerana cerana* and wild pollinators in this region,
423 farmers should be made aware of the value of these insects for their crop production, and
424 encouraged to incorporate pollinator-friendly management practices into their farming.
425 Pollinator-friendly management may include the increased provision of floral resources,
426 reduced insecticide and herbicide use, and the maintenance of crop diversity and natural
427 habitat areas on their farms. Floral resources can be enhanced by incorporating native
428 flowering shrubs such as *Cotoneaster microphyllus*, *Prinsepia utilis* and *Rosa sericea* into
429 hedgerows and adding flower-rich field margins to farmland (Timberlake *et al.*, 2023).
430 These should ideally be provided in close proximity to hives and crops so that bees do not

431 have to travel far and run the risk of getting caught during bad weather. A previous study
432 from Nepal shows that comb building in *A. cerana* colonies accelerated in the vicinity of
433 mustard *Brassica spp.* and buckwheat *Fagopyrum esculentum*, two mass-flowering crop
434 species grown in Jumla (Pokhrel *et al.*, 2006). It is also important to ensure adequate
435 nesting sites for both wild-nesting honeybee colonies and other wild pollinators; these may
436 include old trees and logs, piles of sticks, and bare sloping earth banks. Due to the
437 increasing occurrence of unpredictable weather, which is likely to become more common in
438 the future under climate change, beekeepers may benefit from using well-insulated log hives
439 or modified log top-bar hives which buffer colonies from extreme temperature fluctuations
440 and are resistant to attack by pine martens (Saville *et al.*, 2000). We discourage the use of
441 all chemical pesticides, especially during the flowering season. Additionally, it is essential
442 that beekeeping efforts in this region must utilise the native *Apis cerana* species and avoid
443 import of *Apis mellifera* which might exacerbate the decline of the native bees and
444 pollinators through spread of disease and competition for diminishing floral
445 resources (Paini, 2004; Theisen-Jones & Bienefeld, 2016) .

446 The household survey and our key informant interview indicated that beekeepers have
447 limited knowledge about the importance of bees for crop production. Thus an important
448 priority in the region should be to increase public awareness of the importance of insect
449 pollination through a widespread education and outreach program. Moreover, a training
450 and extension programme to promote management of bee colonies in movable comb hives
451 would be of great value and could build on past successes with the Jumla top-bar hive - an
452 adapted form of the traditional log hive (Saville *et al.*, 2000). We know that *Apis cerana*
453 *cerana* has been negatively affected by the brood diseases (e.g., Thai sacbrood and

454 European foulbrood) since the 1990s (Saville, 2000c) and it is likely that more recent
455 agrochemical use in Jumla is exacerbating this. However, the current prevalence of diseases
456 and agrochemical use is unknown and the contribution of these factors to bee decline is
457 not clear, so an expert assessment of bee disease prevalence and the relative contribution of
458 pesticide poisoning as well as bee disease in this region should be undertaken.

459 **Conclusions**

460 Our study indicates that the native and semi-domesticated honeybee *Apis cerana cerana* is
461 declining in western Nepal. The exact reasons for the decline are unknown, but the
462 respondents of our survey point to climate change, unpredictable weather patterns and
463 reduced floral food resources as the main drivers. Further studies should be conducted to
464 clarify the reasons for the decline, as well as the magnitude and extent of it. Based on the
465 perceptions of respondents, the decline may already have had negative consequences for
466 crops in the region as well as declining revenue from honey production. It is likely that the
467 reported declines in honeybee populations and honey yields are indicative of a wider
468 decline in wild pollinators in the region, especially if the causes of the decline are connected
469 to climate change and reduced floral resource availability. To mitigate further declines in
470 the honeybee *Apis cerana* and wild pollinators, we strongly advocate for promotion of
471 beekeeping with the indigenous *Apis cerana cerana*, the use of flowering hedgerows and
472 field margins in proximity to crop fields and beehives, as well as the maintenance native
473 habitat areas to enhance food supplies and nesting sites for pollinators. We also
474 recommend the use of well-insulated log or top-bar log hives to buffer bees against extreme

475 temperature fluctuations, which are expected to become worse with climate change.

476 **Acknowledgements**

477 This work was supported by the Natural Environment Research Council (NERC)
478 [NE/T013621/1], the National Science Foundation (NSF) and the Academy of Finland
479 (AKA); coordinated through the Belmont Forum. Further funding was provided by the
480 Bristol Centre for Agricultural Innovation. We thank the data collectors from Jumla and
481 the 5 taxonomists from Tribhuvan University who helped with insect identification. We
482 would like to acknowledge all the beekeepers and farmers who participated in our survey
483 and willingly shared their farming and beekeeping practices and experiences with us.

484 **Author contributions**

485 Conceptualization: S.K, T.T, N.S., J.M., T.R; Funding Acquisition: J.M, T.T; Formal
486 Analysis: S.K. with inputs from T.T, and A.C.; Investigation: S.K, M.R, N.S;
487 Methodology: S.K, T.T, N.S, J.M, T.R; Project Administration: S.K, T.T, S.S;
488 Visualization: S.K; T.T; Writing – Original Draft Preparation: S.K, T.T; Writing – Review
489 and Editing: All authors

490 **Data availability statement**

491 The data and R code to conduct the analyses can be found on GitHub via zenodo (doi's
492 will be added upon publication).

493 References

494 Aldercotte, A.H., Simpson, D.T. & Winfree, R. (2022). Crop visitation by wild bees
495 declines over an 8-year time series: A dramatic trend, or just dramatic between-year
496 variation? *Insect Conservation and Diversity*, 15, 522–533.

497 Baude, M., Kunin, W.E., Boatman, N.D., Conyers, S., Davies, N., Gillespie, M.A.K.,
498 Morton, R.D., Smart, S.M. & Memmott, J. (2016). Historical nectar assessment reveals
499 the fall and rise of floral resources in Britain. *Nature*, 530, 85–88.

500 Biesmeijer, J., Roberts, S., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T.,
501 Schaffers, A., Potts, S., Kleukers, R., Thomas, C. & Settele, J. (2006). Parallel declines
502 in pollinators and insect-pollinated plants in Britain and the Netherlands. *Science*, 313,
503 351–354.

504 Cameron, S., Lozier, J., Strange, J., Koch, J., Cordes, N., Solter, L. & Griswold, T. (2011).
505 Patterns of widespread decline in North American bumble bees. *Proceedings of the
506 National Academy of Sciences*, 108, 662–667.

507 Central Bureau of Statistics and UNICEF Nepal (2020). Nepal multiple indicator cluster
508 survey 2019, survey findings report. Tech. rep., Kathmandu, Nepal.

509 Clarke, D. & Robert, D. (2018). Predictive modelling of honey bee foraging activity using
510 local weather conditions. *Apidologie*, 49, 386–396.

511 Couvillon, M.J., Schürch, R. & Ratnieks, F.L.W. (2014). Waggle Dance Distances as
512 Integrative Indicators of Seasonal Foraging Challenges. *PLoS ONE*, 9, e93495.

513 Crane, E. (1999). *The world history of beekeeping and honey hunting*. Routledge, New
514 York.

515 Danner, N., Molitor, A.M., Schiele, S., Härtel, S. & Steffan-Dewenter, I. (2016). Season
516 and landscape composition affect pollen foraging distances and habitat use of honey
517 bees. *Ecol Appl*, 26, 1920–1929.

518 Devkota, K. (2020). Beekeeping: Sustainable Livelihoods and Agriculture Production in
519 Nepal. In: *Modern Beekeeping* (ed. Ranz, R.E.R.). IntechOpen, Rijeka. Section: 6.

520 Devkota, K., Egan, P.A., Dos Santos, C.F. & Blochtein, B. (2022). Beekeeping Livelihood
521 Development in Nepal: Value-Added Opportunities and Professional Support Needs.
522 *Journal of Economic Entomology*, 115, 706–714.

523 Dicks, L., Breeze, T., Ngo, H., Senapathi, D., An, J., Aizen, M., Basu, P., Buchori, D.,
524 Galetto, L., Garibaldi, L. & Gemmill-Herren, B. (2021). A global-scale expert
525 assessment of drivers and risks associated with pollinator decline. *Nature Ecology and
526 Evolution*, 5, 1453–1461.

527 Garibaldi, L.A., Carvalheiro, L.G., Vaissière, B.E., Gemmill-Herren, B., Hipólito, J.,
528 Freitas, B.M., Ngo, H.T., Azzu, N., Sáez, A., Åström, J., An, J., Blochtein, B., Buchori,
529 D., García, F.J.C., Oliveira Da Silva, F., Devkota, K., Ribeiro, M.D.F., Freitas, L.,
530 Gaglianone, M.C., Goss, M., Irshad, M., Kasina, M., Filho, A.J.P., Kiill, L.H.P.,
531 Kwapong, P., Parra, G.N., Pires, C., Pires, V., Rawal, R.S., Rizali, A., Saraiva, A.M.,
532 Veldtman, R., Viana, B.F., Witter, S. & Zhang, H. (2016). Mutually beneficial pollinator
533 diversity and crop yield outcomes in small and large farms. *Science*, 351, 388–391.

534 Goulson, D. & Nicholls, E. (2016). The Canary in the Coalmine; Bee Declines as an
535 Indicator of Environmental Health. *Science Progress*, 99, 312–326.

536 Goulson, D., Nicholls, E., Botías, C. & Rotheray, E.L. (2015). Bee declines driven by
537 combined stress from parasites, pesticides, and lack of flowers. *Science*, 347.

538 Hayes, L. & Grüter, C. (2023). When should bees be flower constant? An agent-based
539 model highlights the importance of social information and foraging conditions. *Journal
540 of Animal Ecology*, 92, 580–593.

541 Isaacs, R. & Kirk, A.K. (2010). Pollination services provided to small and large highbush
542 blueberry fields by wild and managed bees. *Journal of Applied Ecology*, 47, 841–849.

543 Karbassioon, A., Yearlsey, J., Dirilgen, T., Hodge, S., Stout, J.C. & Stanley, D.A. (2023).
544 Responses in honeybee and bumblebee activity to changes in weather conditions.
545 *Oecologia*, 201, 689–701.

546 Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen,
547 C. & Tscharntke, T. (2007a). Importance of pollinators in changing landscapes for world
548 crops. *Proceedings of the royal society B: biological sciences*, 274, 303–313.

549 Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen,
550 C. & Tscharntke, T. (2007b). Importance of Pollinators in Changing Landscapes for
551 World Crops. *Proceedings of the royal society B: Biological Sciences*, 274, 303–313.

552 Müller, J., Hothorn, T., Yuan, Y., Seibold, S., Mitesser, O., Rothacher, J., Freund, J.,
553 Wild, C., Wolz, M. & Menzel, A. (2023). Weather explains the decline and rise of insect
554 biomass over 34 years. *Nature*, pp. 1–6.

555 Nat Schouten, C. & John Lloyd, D. (2019). Considerations and Factors Influencing the
556 Success of Beekeeping Programs in Developing Countries. *Bee World*, 96, 75–80.

557 Nolan, W. (1925). The brood-rearing cycle of the honeybee. *Bull. U.S. Dep. Agric. Dep.*,
558 1349, 1–55.

559 Osterman, J., Aizen, M.A., Biesmeijer, J.C., Bosch, J., Howlett, B.G., Inouye, D.W., Jung,
560 C., Martins, D.J., Medel, R., Pauw, A., Seymour, C.L. & Paxton, R.J. (2021). Global
561 trends in the number and diversity of managed pollinator species. *Agriculture,
562 Ecosystems & Environment*, 322, 107653.

563 Paini, D.R. (2004). Impact of the introduced honey bee (*Apis mellifera*) (Hymenoptera:
564 Apidae) on native bees: A review. *Austral Ecology*, 29, 399–407.

565 Partap, U. & Partap, T. (2002). Warning signals from the apple valleys of the hindu
566 kush-himalayas: productivity concerns and pollination problems.

567 Pokhrel, S., Thapa, R., Neupane, F. & Shrestha, S. (2006). Absconding Behavior and
568 Management of *Apis cerana* F. Honeybee in Chitwan, Nepal. *Journal of the Institute of
569 Agriculture and Animal Science*, 27, 77–86.

570 Potts, S., Biesmeijer, J., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W. (2010a).
571 Global pollinator declines: trends, impacts and drivers. *Trends in ecology and evolution*,
572 25, 345–353.

573 Potts, S., Imperatriz-Fonseca, V., Ngo, H., Aizen, M., Biesmeijer, J., Breeze, T., Dicks, L.,
574 Garibaldi, L., Hill, R., Settele, J. & Vanbergen, A. (2016). Safeguarding pollinators and
575 their values to human well-being. *Nature*, 540, 220–229.

576 Potts, S.G., Roberts, S.P., Dean, R., Marris, G., Brown, M.A., Jones, R., Neumann, P. &
577 Settele, J. (2010b). Declines of managed honey bees and beekeepers in europe. *Journal
578 of apicultural research*, 49, 15–22.

579 Powney, G., Carvell, C., Edwards, M., Morris, R., Roy, H., Woodcock, B. & Isaac, N.
580 (2019). Widespread losses of pollinating insects in Britain. *Nature communications*, 10,
581 1–6.

582 Quinlan, G.M., Miller, D.A.W. & Grozinger, C.M. (2023). Examining spatial and temporal
583 drivers of pollinator nutritional resources: evidence from five decades of honey bee colony
584 productivity data. *Environmental Research Letters*, 18, 114018.

585 R Core Team (2019). *R: A Language and Environment for Statistical Computing*. R
586 Foundation for Statistical Computing, Vienna, Austria.

587 Ribbands, C. (1951). The flight range of the honey-bee. *J. Anim. Ecol.*, 20, 220–226.

588 Roslin, T., Antão, L., Hällfors, M., Meyke, E., Lo, C., Tikhonov, G., Delgado, M.d.M.,
589 Gurarie, E., Abdonova, M., Abduraimov, O., Adrianova, O., ... & Ovaskainen, O.
590 (2021). Phenological shifts of abiotic events, producers and consumers across a
591 continent. *Nature Climate Change*, 11, 241–248.

592 Roulston, T.H. & Goodell, K. (2011). The Role of Resources and Risks in Regulating Wild
593 Bee Populations. *Annual Review of Entomology*, 56, 293–312.

594 Sabin, T.P., Krishnan, R., Vellore, R., Priya, P., Borgaonkar, H.P., Singh, B.B. & Sagar, A.
595 (2020). Climate Change Over the Himalayas. In: *Assessment of Climate Change over
596 the Indian Region* (eds. Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M.,
597 Kulkarni, A. & Chakraborty, S.). Springer Singapore, Singapore, pp. 207–222.

598 Saville, N.M. (2000a). Apitherapy in community-based health care in nepal. In: *Proceeding*
599 *of the Seventh IBRA Conference on Tropical Bees: Management and Diversity, and Fifth*
600 *Asian Apicultural Association Conference; Chiang Mai, Thailand*. International Bee
601 Research Association, Cardiff, UK.

602 Saville, N.M. (2000b). *Participatory rural appraisal investigations on beekeeping in remote*
603 *Himalayan villages of West Nepal. Proceeding of the Seventh IBRA Conference on*
604 *Tropical Bees: Management and Diversity, and Fifth Asian Apicultural Association*
605 *Conference; Chiang Mai, Thailand*. International Bee Research Association, Cardiff, UK.

606 Saville, N.M. (2000c). *Proceeding of the Seventh IBRA Conference on Tropical Bees:*
607 *Management and Diversity, and Fifth Asian Apicultural Association Conference; Chiang*
608 *Mai, Thailand*. Battling with bee brood disease in *Apis cerana* in W. Nepal - some
609 findings. International Bee Research Association, Cardiff, UK.

610 Saville, N.M. & Upadhyaya, S.N. (2000). *Asian Bees and Beekeeping: Progress of Research*
611 *and Development: International Centre for Integrated Mountain Development.*
612 *Indigenous Knowledge of Beekeeping in Jumla, Western Nepal (chapter 66)*. In: *Asian*
613 *Bees and Beekeeping: Progress of Research and Development: International Centre for*
614 *Integrated Mountain Development*. Oxford and IBH.

615 Saville, N.M., Upadhyaya, S.N., Shukla, A.N. & Pradhan, S. (2000). *Effect of hive design on*
616 *internal hive temperature: a new application of data loggers. Indigenous Knowledge of*
617 *Beekeeping in Jumla, Western Nepal (chapter 66)*. In: *Asian Bees and Beekeeping:*
618 *Progress of Research and Development: International Centre for Integrated Mountain*
619 *Development*. Oxford and IBH.

620 Shrestha, U.B., Shrestha, A.M., Aryal, S., Shrestha, S., Gautam, M.S. & Ojha, H. (2019).
621 Climate change in Nepal: a comprehensive analysis of instrumental data and people's
622 perceptions. *Climatic Change*, 154, 315–334.

623 Steward, P., Shackelford, G., Carvalheiro, L., Benton, T., Garibaldi, L. & Sait, S. (2014).
624 Pollination and biological control research: are we neglecting two billion smallholders.
625 *Agriculture and Food Security*, 3, 1–13.

626 Theisen-Jones, H. & Bienenfeld, K. (2016). The asian honey bee (*apis cerana*) is
627 significantly in decline. *Bee World*, 93, 90–97.

628 Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. & Prentice, I.C. (2005). Climate
629 change threats to plant diversity in europe. *Proceedings of the National Academy of*
630 *Sciences*, 102, 8245–8250.

631 Timberlake, T., Cirtwill, A.R., Sapkota, S., Bhusal, D., Devkota, K., Karki, R., Joshi, D.,
632 Saville, N.M., Kortsch, S., Baral, S., Roslin, T. & Memmott, J. (2023). Agricultural
633 specialisation increases the vulnerability of pollination services for smallholder farmers.
634 *Journal of Applied Ecology*, submitted.

635 Timberlake, T.P., Cirtwill, A.R., Baral, S.C., Bhusal, D.R., Devkota, K., Harris-Fry, H.A.,
636 Kortsch, S., Myers, S.S., Roslin, T., Saville, N.M., Smith, M.R., Strona, G. & Memmott,
637 J. (2022). A network approach for managing ecosystem services and improving food and
638 nutrition security on smallholder farms. *People and Nature*, 4, 563–575.

639 Van Klink, R., Bowler, D., Gongalsky, K., Swengel, A., Gentile, A. & Chase, J. (2020).
640 Meta-analysis reveals declines in terrestrial but increases in freshwater insect
641 abundances. *Science*, 368, 417–420.

642 Warrit, N., Ascher, J., Basu, P., Belavadi, V., Brockmann, A., Buchori, D., Dorey, J.B.,
643 Hughes, A., Krishnan, S., Ngo, H.T., Williams, P., Zhu, C.D., Abrol, D., Bawa, K.,
644 Bhatta, C., Borges, R.M., Bossert, S., Cervancia, C., Chatthanabun, N., Chesters, D.,
645 Chinh, P.H., Devkota, K., Duc, H.P., Ferrari, R., Garibaldi, L., Ge, J., Ghosh, D.,
646 Huang, D., Jung, C., Klein, A.M., Koch, J.B.U., Krichilsky, E., Kunte, K., Ling, T.C.,
647 Liu, S., Liu, X., Luo, A., Luo, S., Mu, J., Nidup, T., Niu, Z., Nur-Zati, A.M., Olsson,
648 S.B., Otis, G.W., Ouyang, F., Peng, Y.Q., Priawandiputra, W., Proshchalykin, M.,
649 Raffiudin, R., Rameshkumar, A., Ren, Z., Suruliraj, A., Sane, S., Shi, X., Sinu, P.A.,
650 Smith, D.R., Soh, Z.W., Somananthan, H., Sritongchuay, T., Stewart, A.B., Sun, C.,
651 Tang, M., Thanoosing, C., Tscharntke, T., Vereecken, N., Wang, S., Wayo, K., Wongsiri,
652 S., Zhou, X., Xie, Z., Zhang, D., Zou, Y., Zu, P. & Orr, M. (2023). Opportunities and
653 challenges in Asian bee research and conservation. *Biological Conservation*, 285, 110173.

654 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R.,
655 Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E.,
656 Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K.,
657 Vaughan, D., Wilke, C., Woo, K. & Yutani, H. (2019). Welcome to the tidyverse.
658 *Journal of Open Source Software*, 4, 1686.

659 Winfree, R., Williams, N.M., Dushoff, J. & Kremen, C. (2007). Native bees provide
660 insurance against ongoing honey bee losses. *Ecology Letters*, 10, 1105–1113.

661 Woodard, S.H. & Jha, S. (2017). Wild bee nutritional ecology: predicting pollinator
662 population dynamics, movement, and services from floral resources. *Current Opinion in
663 Insect Science*, 21, 83–90.

664 Zattara, E.E. & Aizen, M.A. (2021). Worldwide occurrence records suggest a global decline
665 in bee species richness. *One Earth*, 4, 114–123.