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HIGHLIGHTS

Sexes arose in brown algae due to ceased recombination of a male-determining gene-containing region
U/V sex chromosomes evolve via gene gain and act as ‘cradles’ of genomic novelty
Emergence of XX/XY chromosomes involved demotion of the V-master sex-determining gene

Introgression of female-specific genes into a male background allowed hermaphroditism to arise

SUMMARY

Sex chromosomes fall into three classes: XX/XY, ZW/ZZ and U/V systems. The rise, evolution and demise of
U/V systems have remained enigmatic to date. Here, we analyze genomes spanning the entire brown algal
phylogeny to decipher their sex-determination evolutionary history. The birth of U/V sex chromosomes
evolved more than 250 million years ago, when a pivotal male-determinant located in a discrete region in
proto-U and proto-V chromosomes ceased recombining. Over time, nested inversions led to step-wise
expansions, accompanying increasing morphological complexity and sexual differentiation of brown
seaweeds. Unlike XX/XY and ZW/ZZ, U/V evolve mainly by gene gain, showing minimal degeneration. They are
structurally dynamic, and act as genomic 'cradles' fostering the birth of new genes. Our analyses show that
hermaphroditism arose from ancestral males that acquired U-specific genes by ectopic recombination, and
that in the transition from a U/V to an XX/XY system, V-specific genes moved down the genetic hierarchy of
sex determination. Both events lead to the demise of U and V and erosion of their specific genomic
characteristics. Taken together, our findings offer a comprehensive model of U/V sex chromosome evolution.
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INTRODUCTION

Sexual reproduction ensures the generation of new genetic combinations in nearly all eukaryotic
species. The core mechanisms of sexual reproduction (meiosis and syngamy) are conserved, yet the pathways
that determine the male and female identities are remarkably labile across eukaryotes?. Genetic
determination of sex is mediated by sex chromosomes, whose programmatic domain is a sex-determining
region (SDR) that carries the sex-determining factor(s) and usually does not recombine in the heterogametic
sex. The SDR can be as small as a single locus or as large as an entire chromosome?. Sex chromosomes originate
from autosomes (i.e., any chromosome that is not a sex chromosome) and have independently and repeatedly
evolved in different lineages. They are subject to unique evolutionary forces, including sex-specific selection,
asymmetrical sheltering of deleterious mutations, hemizygosity, and dosage compensation?. They also play
prominent roles in evolutionary processes such as speciation and adaptation®, and are thought to be
associated with the evolution of anisogamy and with the regulation of key life cycle transitions®.

Knowledge about the biology and evolution of sex chromosomes stems from a few well-studied model
organisms, notably mammals, birds, fish and Drosophila®. While studies so far have primarily focused on
diploid sex determination systems (the classical XX/XY or ZW/ZZ systems), haploid phase sex-determination
systems (U/V systems) such as those of mosses and brown, red and green algae’® remain largely unexplored.
Although U/V, XX/XY and ZW/ZZ systems share several core features, there are important differences between
them that have broad evolutionary and genomic implications®. Comparing the evolutionary trajectories of
XX/XY, ZW/ZZ and U/V chromosomes, together with comparisons with species that lack sex chromosomes
entirely, offer opportunities to assess the relative importance of the forces driving the evolution of each
system. However, only a few U/V sex chromosomes have been sequenced to date, namely the U/V system of
Ceratodon®®, a peat moss (Sphagnum)*, Marchantia** and the U chromosome of Syntrichia caninervis*3, all
belonging to the Archeaplastida (land plant) lineage. Consequently, we currently lack a broad-scale
comparison across several U/V sex chromosome systems that would inform a reconstruction of their
evolutionary history.

In this context, brown algae (Phaeophyceae) represent exceptional models for investigating the origins and
evolution of sex chromosomes. They span a bewildering variety of reproductive systems, life cycles and sex
chromosome systems in a single lineage!®. The maintenance of this range of variability in a single group is
unique among Eukaryotes, and clearly points to a complex evolutionary history of their underlying sex-
determination systems.

Here, we exploit a range of brown algal species and outgroups with diverse types of sexual systems to study
the origin, evolution and demise of the U/V sex chromosomes. We show that separate sexes arose in the
brown seaweeds >250 million years ago (Mya), when a small region in the proto-U and proto-V chromosomes
that encodes expression of a master male-sex determinant stopped recombining. This event was followed by
lineage-specific and step-wise expansion of the sex-locus that accompanied both the increased morphological
complexity and the degree of sexual dimorphism. Brown algal U/V sex chromosomes are structurally highly
dynamic, except for the genes specifically involved in sex determination and differentiation, evolve primarily
by gene gain and act as ‘cradles’ for genomic novelty. Emergence of a diploid XX/XY sex chromosome system
from the ancestral U/V involved movement of master sex determining gene(s) down in the sex-determination
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hierarchy. Finally, we show that repeated transitions from U/V to hermaphroditism occurred via introgression
of female SDR genes into a male background, leading to the demise of the sex chromosomes. Our work,
therefore, has allowed the reconstruction of the evolutionary history of U/V sex chromosomes and opens new
avenues to the study of this ecologically relevant eukaryotic lineage.

RESULTS

Identification and characterization of brown algal sex chromosomes

Brown seaweed are eukaryotic organisms spanning a rich variety of morphologies, life cycles and
sexual systems®%15, Using high-quality reference genomes (Denoeud et al, submitted), supplemented with
genetic and HiC physical maps (see methods), we generated chromosome or near-chromosome level genome
assemblies of nine representative brown algal species. Collectively, and together with the outgroup species
Schizocladia ischiensis®, these span the phylogenetic, morphological and reproductive diversity of brown
seaweeds™ (Fig. 1A). Overall, our analyses reveal that brown algae have a relatively stable karyotype (27-33
chromosomes) and a well conserved macrosynteny (i.e., similar blocks of genes located in the same relative
positions in the genome across species) (Fig. 1A).

Using comparative genomic approaches combined with experimental validation of sex-linkage using PCR (see
methods) we identified the SDR on the sex chromosomes for each of the dioicous species (Fig. 1A). Consistent
with dioicy being the ancestral state in the brown algal lineage?, the synteny analysis demonstrated that all
species with a U/V sexual system shared the same sex chromosome, including the early-diverging species
Dictyota dichotoma. Based on these data, we conclude that the recombination suppression event that gave
rise to the U/V sex chromosomes occurred at least >250 Mya, at the origin of the Phaeophyceae®™’. We note
that neither Fucus serratus nor the monoicous (co-sexual) species Chordaria linearis and Desmarestia
dudresnayi have a U/V sexual system, yet they still conserve the chromosome that is homologous to the U/V
sex chromosome in the dioicous species (hereafter referred to as ‘sex-homolog’).

In the outgroup S. ischiensis, we found very low synteny with the sex-homolog and patterns of fusion-with-
mixing'® between the homologs of chromosomes 4 and 9 as well as between chromosomes 23 and 24 of D.
dichotoma (Fig. 1A; Fig. S1). Such fusion-with-mixing events are believed to represent irreversible states of
chromosome evolution®®, and therefore, S. ischiensis likely represents a divergent karyotype, rather than a
proxy karyotype of the last brown algal common ancestor. Because sexual reproduction of S. ischiensis has
never been observed in culture, its sexual system is currently unknown.

We next examined the SDRs on the U and V sex chromosomes by comparing male and female genomes for all
dioicous species (see methods). The V-SDR differed markedly across species, both in terms of gene content,
total size and relative size compared to the pseudo-autosomal region (PAR), a region that is homologous across
sex chromosomes and is involved in their recombination during meiosis (Fig. 1B, Table S1). We found the
smallest SDR sizes in the Ectocarpales (S. promiscuus and Ectocarpus sp.7) (Fig. 1B-C), and noticed that genes
that correspond to PAR genes in Ectocarpus. sp.7 and S. promiscuus were present in the V-SDR of early-
diverging brown algae such as D. dichotoma and D. herbacea. Similarly, the size of the female SDR is different
in Ectocarpus sp. 7 and D. herbacea, with a subset of PAR genes in Ectocarpus sp. 7 also incorporated in the
SDR of D. herbacea (Fig. 1C). In addition, the V-SDR of D. herbacea and D. dichotoma had undergone
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Figure 1. Brown algae share an ancestral sex chromosome. (A) Macrosynteny plot between brown algal genomes of six dioicous
species (green), two monoicous species (red), one dioecious species (blue) and the outgroup species (yellow). The syntenic blocks
corresponding to the V sex chromosome are highlighted in red. The size of each genome is displayed inside brackets. (B) Microsynteny
plot of the V chromosomes in five dioicous species, showing the regions that belong to the male sex-determining region (blue) and the
PAR (green) for each species. (C) Microsynteny plot of the U chromosomes in two dioicous species, showing the regions that belong to
the female sex-determining region (peach) and the PARs (green) for both species. (D) Microsynteny plot between the U and V
chromosomes of Ectocarpus sp. 7 and D. herbacea. (E) Synteny between the U and V gametologs in the SDRs of Ectocarpus sp. 7 and
D. herbacea. The matching shades within the SDR are colored according to the number of synonymous substitutions per synonymous
site (Ks) for each gametolog pair. (F) Identification of evolutionary strata in the male SDR of Ectocarpus sp. 7 and D. herbacea according
to the Ks values of gametolog pairs and the position of the male (V) genes in the SDR.
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rearrangements and inversions whereas the SDR in U. pinnatifida had relocated from the center to the
periphery of the V chromosome (Fig. 1B). Furthermore, we identified a large inversion in the female SDR of
Ectocarpus sp. 7 and D. herbacea (Fig. 1C) and between the V and U chromosomes within the same species
(Fig. 1D). Taken together, and despite an overall high level of macrosynteny, our findings reveal that SDRs in
brown algae undergo dynamic structural changes through evolution.

Upon analysis of synonymous substitutions per site (Ks) across male and female gametologs, we noticed that
the SDR of Ectocarpus sp. 7 is composed of several highly-divergent gametologs in two (presumably older)
‘evolutionary strata’ and three gametolog pairs in a more recent evolutionary stratum (Fig. 1D-E, Table S2). In
contrast, the SDR of D. herbacea contained more gametolog pairs with relatively high Ks values and more
recently diverged SDR genes, forming at least four ‘evolutionary strata’ (Fig. 1D-E). The gametolog Ks values
are broadly concordant between the orthologs in Ectocarpus sp. 7 and D. herbacea (Table S2), indicating that
the accumulation of synonymous substitutions can be considered a proxy of evolutionary distance in
comparable species. Nonetheless, the SDR Ks values do not group together as they do in XX/XY sexual systems,
where they form well-defined ‘evolutionary strata’®. Instead, the shuffling of gene order within the SDR and
dynamic movement of genes in and out of the SDR**?! likely diluted the ancestral SDR arrangement in the
extant species, limiting our ability to clearly define evolutionary strata based on gene position (Fig. 1F). The
occurrence of recently evolved evolutionary strata in D. herbacea combined with an inverted pattern between
male and female is consistent with an expansion of the SDR in brown algae caused by nested inversion events
that suppress recombination. Indeed, when comparing Ectocarpus sp. 7 and E. crouaniorum, we note that the
male SDRs are inverted with respect to each other (Fig. S2), indicating that inversions are persistent even
between closely-related taxa.

Together, these results indicate that despite the macro-synteny stability across brown algal genomes, the
structure of U/V sex chromosomes is highly divergent. The frequent chromosomal inversions and gene
movement into and out of the SDR likely played a pivotal role in the evolution of the brown algal SDRs.

Lineage-specific expansion of the SDR is associated with increased gamete dimorphism

The presence of larger SDRs in early diverged brown algae such as D. dichotoma and smaller SDRs in
later diverged orders such as Ectocarpales could indicate that gene loss may have the reduced SDR physical
size. However, different brown algae lineages could also have independently expanded their SDRs, while the
SDR size of Ectocarpales remained stable. To understand SDR size dynamics across species, we performed an
ancestral state reconstruction of SDR gene content. Considering that U and V are expected to evolve similarly

202223 and overall better data quality for male species, we focused our

due to their inheritance patterns
investigation on the V-chromosome. We found that V-SDR evolution is mostly driven by lineage-specific
expansions of an ancestral SDR that contained a small number of genes in the common ancestor (Fig. 2A).
Remarkably, within the ancestral state reconstruction, male gametologs with higher Ks values were mostly
supported as ancestral male SDR genes, whereas male gametologs that were independently acquired into the
SDR displayed the lowest Ks values in D. herbacea (Table S2, see Fig. 1E). However, we note that some
gametologs did not follow this pattern, highlighting that defining evolutionary strata for brown algae based

solely on Ks values is challenging.
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Figure 2. Lineage-specific expansion of the V-SDR is associated with increased sexual dimorphism. (A) Ancestral state reconstruction
of V-SDR gene content across the brown algal phylogeny, showing the expected number of genes in the SDR (circles on the right side
of each node), the number of SDR genes that were retained compared to the previous node (blue), the genes that were incorporated
into the SDR (green) and the genes that were lost or that were translocated outside of the SDR (red). The ancestral state reconstruction
of gamete dimorphism (based on 14) shows a transition from oogamy to anisogamy in the Ectocarpales alongside with changes in the
SDR gene content. (B) Differences in the size of the male SDR between brown algal species based on the total sequence length, the
relative size of the SDR compared to the length of the V chromosome and the number of protein-coding genes retained within the
SDR. The bars are colored according to the level of gamete dimorphism in each species (based on 14). (C) Schematic view of the location
of the 7 ancestral V-SDR genes (blue: retained in the SDR; green: contained within the pseudoautosomal region or the sex-homolog;
yellow: autosomal; red: Unknown genomic localition; grey: lost). Bold: HMG-sex. See also Table S4.
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The SDRs of Ectocarpus sp. 7 and D. herbacea contain genes that are homologous between the U and V
chromosomes, suggesting that these haplotypes descend from a common ancestral autosomal region. Even
though SDR gene numbers differ, they share the same ratio of roughly 50% gametologs and 50% sex-specific
(i.e. genes only found on the male or female SDR; Table S3). In contrast, the male SDR of D. herbacea contains
a higher number of sex-specific genes, but this excess was driven by a recent insertion of viral sequences into
the male SDR (Table S3). Thus, genes present in one sex only were either acquired after the divergence of the
U and the V regions or lost by the counterpart haplotype.

Intriguingly, SDR size was strongly associated with the level of gamete sexual dimorphism for the five studied
species. Specifically, oogamous species, in which male and female gamete size differs significantly (e.g., U.
pinnatifida or D. herbacea) have larger SDRs than species with modest gamete size differences (anisogamy,
e.g. Ectocarpus sp. 7) (Fig. 2A-B). Importantly, we noticed that most of the SDR genes in the oogamous species
were acquired independently for each lineage, hence, expansions likely occurred independently and
concomitant with changes in gamete size (Fig. 2A; Fig. S3). Previous work suggested that oogamy is ancestral
in brown algae'® and that a transition from oogamy towards anisogamy occurred in the Ectocarpales.
However, our observations rather indicate an independent acquisition of oogamy from an anisogamous
ancestor (Fig. 2A-B). In contrast, the SDR of the Ectocarpales acquired fewer genes, and likely resembles the
ancestral SDR state more closely.

In our initial reconstruction, we retrieved 12 genes that were present in the ancestral V- SDR (see methods).
However, we found on our gene tree analyses that five of those genes were present in several brown algal
species as parallel and independent SDR expansions (Fig. $3) and that the ancestral SDR contained seven genes
(Fig. 2C). These seven genes comprised six gametologs and one male-restricted gene, all associated with
crucial aspects of sex determination (Fig. 2C, Table S4). For example, the master male sex-determining gene
HMG-sex (Luthringer et al., in review) is always present in the male SDR, consistent with it being the initial
trigger that favored progressive recombination suppression through inversions. Another gene encodes a
transmembrane protein with a putative sugar-binding and cell-adhesion domain (Ec-13_001840 in Ectocarpus
sp.7), identified as a gametolog in the female SDR (Ec-sdr_f_000170). Considering that gamete recognition in
brown algae is mediated by unknown carbohydrate-binding receptors? this gene is an interesting candidate
for this function. In addition, we found a homolog of STE20 serine/threonine kinase (Ec-13_001910 in
Ectocarpus sp.7) as part of the ancestral SDR in brown algae, whose homolog in yeast is involved in the
transcriptional activation cascade of mating-type genes after pheromone recognition®. Other ancestral SDR
genes associated with signal transduction include a casein kinase (Ec-13_001990), a MEMO-like domain
protein (Ec-13_001810) and a GTPase activating protein (Ec-13_001710).

The six genes that belong to gametolog pairs showed no evidence of degenerative evolution and remained
functional in both male and female Ectocarpus. In D. herbacea, four of the genes are retained in the male and
female SDR, while the fifth had become male-specific and the sixth completely lost in both sexes, indicative of
a mild level of degradation. Taken together, and despite being evolutionary old, haploid sex chromosomes in
brown algae undergo less gene loss relative to XX/XY and ZW/ZZ systems, and evolve mainly by gene gain (Fig.
2A).

Consistent with roles in sexual development, the majority of SDR genes (58-100% of SDR genes depending on
the species) were expressed at substantial levels (log2(TPM+1) > 1) during the fertile gametophyte stage
5
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(Table S5). Furthermore, we conducted a comparative analysis of gene expression (mature gametophyte
phase), in which we contrasted genes that became independently acquired in the sex-determining regions in
each species with the single-copy autosomal paralogs present across different species. Notably, the expression
levels of the newly sex-linked genes remain comparable to their autosomal counterparts (Fig. S4), suggesting
that the autosomal biological activity may become co-opted to perform a male-specific function in the V-SDR
genetic setting.

Interestingly, whilst the size of the SDR correlated well with the level of gamete dimorphism (see above), we
found no correlation between the amount of autosomal sex-biased gene (SBG) expression and differences in
gamete size across males and females (Table S6), in agreement with a study of a small subset of brown algal
species®®, Notably, species with low sexual dimorphism and smaller SDRs actually exhibited the highest
proportion of SBG (Fig. S5A). Intriguingly, we observed an enrichment of male-biased genes (MBG) within the
PAR across all species, except in D. dichotoma (Fig. S5B).

Most of the ancestral SDR genes were also present in the genomes of algae that do not have a U/V sexual
system, namely the monoicous species C. linearis and D. dudresnayi, the dioecious species F. serratus and in
the outgroup S. ischiensis (Fig. 2C, Table S4). Hence, the ancestral SDR genes may play important roles even
in the absence of a U/V sex-chromosome system. Notably, all the non-dioicous brown algal species retain most
of these genes on their sex-homolog chromosomes, as expected from the strong conserved synteny in
Phaeophyceae. However, the SDR orthologs in S. ischiensis are scattered throughout the genome, possibly as
a consequence of fusion-with-mixing events.

Altogether, our analyses indicate that the U/V system in brown seaweeds is highly dynamic, and evolved
mainly by lineage-specific gene gains that took place concomitant with increased sexual dimorphism. The
brown seaweed U/V system appears to have undergone sparse degeneration. We detect a set of genes that
has been conservatively sex-linked across the evolution of the dioicous brown algae, implying that these genes
have a key role in sex determination and/or differentiation.

Structural and evolutionary features of haploid sex chromosomes

Our chromosome-level assemblies allowed us to evaluate the genomic characteristics that
differentiated the SDR and the PARs from the rest of the genome. When compared to the autosomes, and as
typical of non-recombining regions?’, protein-coding genetic sequences (i.e., exons) were depleted in brown
algal SDRs (Table S7) whereas repetitive elements were enriched (Fig. 3A, Table S8). Within the repetitive
element classification, we found that ‘unclassified’ transposable elements in the sex chromosome were
enriched in S. promiscuus, and to a lesser extent, in Ectocarpus sp. 7 (Fig. 3A; Fig. S6; Table S9). In contrast,
the SDR of species that experienced genome expansions (U. pinnatifida, D. herbacea, D. dichotoma) were
colonized by LTRs elements, which appear to be the main drivers of genome expansion in brown algae (Fig.
3A; Fig. S6; Table S9).

In addition, we detected fewer conserved sex chromosome orthologs between species than expected by
chance (Chi-squared test, p-value < 10, Table S10), an observation possibly related to increased number of
evolutionary young (taxonomically-restricted) genes (TRGs) in these regions, as we demonstrated previously
for Ectocarpus sp.7%%. Therefore, we examined the cause of reduced sex chromosome synteny by performing
a phylostratigraphic analysis?®>* to evaluate the relative ages of each gene. We found that genes in the
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different age categories were not randomly distributed across chromosomes (Kruskal-Wallis test, p-values <10
40 for all species). Consistently, the sex chromosomes of dioicous species were enriched in young genes and
depleted in older, highly conserved genes (Fig. 3B; Table S11). Intriguingly, the gene age categories that were
enriched in the sex chromosomes belong to taxonomic categories that are not shared between the analyzed
taxa (species, genus and family-level gene ages; Figs. $7-S11), suggesting that the pattern of TRG enrichment
in the sex chromosomes arose independently in each lineage.

In a previous study, we proposed a theoretical model to explain how TRG accumulation through generation-
antagonistic selection favors the retention of young sporophyte-beneficial loci in the sex chromosome of
Ectocarpus®. Here, we examined if genes with a generation-(sporophyte)-biased expression accumulated in
the sex chromosome of the other dioicous species. Indeed, we found that not only were generation-biased
genes (sporophyte-biased, as reported in %) enriched in the sex chromosome of Ectocarpus, this pattern was
also obvious in the sex chromosome of the kelp U. pinnatifida. In contrast, the pattern was less clear in S.
promiscuus and D. dichotoma (Table S12). Importantly however, we note that these latter species are unlikely
to experience ‘generation-antagonism’ either because both generations are phenotypically similar (D.
dichotoma), or the sporophyte generation is significantly reduced compared to the gametophyte generation
(S. promiscuus)**?,

New genes can emerge from ancestrally non-genic regions through mutation(s) that either create coding
potential through de novo birth processes®!, through selection-driven sequence divergence that changes the
gene beyond the point of recognition to other homologs®? or via a constant accumulation of neutral mutations
leading to failure of detecting homology*3. To explore these possibilities, we first estimated the synonymous
substitution rate (Ks) between orthologs in other closely-related species and searched for differences in Ks
values between chromosomes and between the different genomic compartments (SDR, PAR, autosomes). We
reasoned that if synonymous mutations behave neutrally®**3*, then the rate of synonymous substitution (Ks)
can be employed as a proxy for the point mutation rate3®%. Consistently, the V sex chromosomes for all
dioicous brown algal species were associated with higher Ks values (Fig. 3A; Table S13), suggesting that the
mutation rate is substantially higher in these genomic regions compared to autosomes. We were intrigued to
see that the enrichment of young genes and higher Ks values appear to be localized in the PARs of Ectocarpus
sp. 7 and S. promiscuus (Fig. S7-S8), but noted that this pattern extends to the entire sex chromosome in
species with large SDRs such as U. pinnatifida, D. herbacea and D. dichotoma (Fig. S9-S11).

Together, these analyses indicate that brown algal U/V chromosomes accumulate transposable elements and
have decreased gene density, as has been observed for the non-recombining regions of XX/XY and ZW/ZZ
systems. They also appear to have the remarkable ability to spawn gene novelty, likely due to their unique
structural and evolutionary features.

Transition from haploid to diploid sexual systems in the Fucales

While ancestral sex determination in most brown algae is based on haploid U/V sex chromosomes,
several algal lineages have independently lost this system and evolved either a diploid sex determination
system (XX/XY)*® or monoicy (i.e., in which the same haploid individual can produce male and female
gametes)?®. We therefore investigated the evolutionary trajectory of brown algal genomes following the ‘loss’
of the U/V sex chromosome system.
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Figure 3. Genomic features of sex chromosomes compared with autosomes. (A) Circos plots displaying tracks for the following
genomic features: 0) chromosome compartments: autosomes, PARs and SDR; 1) relative gene ages, 2) Ks values, 3) proportion of gene
density (red) against repeat density (blue) and 4) repetitive element classification. (B) Violin plots and physical distribution of relative
gene ages across one autosome and the V sex chromosomes of Ectocarpus sp. 7, S. promiscuus, D. herbacea, U. pinnatifida, D.
dichotoma. The SDR of the sex chromosome is highlighted with a grey shadow.
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The Fucales, which are important components of the coastal areas across the globe, are the one of the two
brown algal lineage that transitioned to a diploid life cycle3®, with many Fucales species having separate sexes
in the diploid stage of the life cycle (XX/XY sex determination®). We first set out to identify the Y chromosome
of the dioecious Fucus serratus. Verbal models state that transition from haploid U/V systems to diploid sexual
systems should occur via a stage of epigenetic sex determination, followed by emergence of a neo-sex
chromosome?. Therefore, it is possible that the ancestral V chromosome does not necessarily correspond to
the sex chromosome of the Fucales. In order to identify sex-linked regions in F. serratus, we employed a range
of sex chromosome detection pipelines including high coverage genome sequencing of males and females,
combined with RAD-seq data generated for 12 males and 12 females from a field population (see methods for
details). None of these efforts led to the identification of sex-linked sequences, implying that the SDR of F.
serratus is likely to be very small and undifferentiated. This result is consistent both with a very young Y
chromosome having arisen in the Fucales following the transition to diploid life cycle, and also with the high
turnover in terms of sexual system in this lineage®. Indeed, theory predicts that switching to monoecy from
dioecy is only possible if the SDR is not very differentiated®..

Synteny analysis (see Fig 1) indicated that F. serratus retains a chromosome that is homologous to the V
chromosome of the ancestral U/V species. In addition, the conserved SDR genes from the ancestral U/V
systems included the V-specific male-determining gene (HMG-sex; Luthringer et al., in review) and several
other V-linked genes (see Fig. 2C). Although none of the ex-SDR genes were sex-linked in F. serratus, HMG-sex
and four additional ancestral SDR genes (homologs of Ec-13_001990, Ec-13_002040, Ec-13_001840 and Ec-
13_002040 in Ectocarpus sp.7) had a strong male-biased expression pattern (Fig 4A, Table $14), being silenced
in F. serratus females. Remarkably, these ancestral V-SDR genes were also silenced in female strains of three
other Fucales species (Ascophyllum nodosum, Fucus ceranoides and Fucus vesiculosus; Table $15). Thus, whilst
the ancestral V-linked genes are no longer sex-linked in the Fucales, they are still likely participating in the
genetic cascade of male sex determination and/or differentiation.

Consistent with the lack of a differentiated sex chromosome, we did not observe any specific structural feature
in any of the chromosomes of F. serratus, which transitioned from U/V to an XX/XY dioecious system
approximately 65 Mya'’. In particular, we did not observe any trace of TRGs accumulating in Fucus
chromosomes (as described above for U/V systems) nor higher Ks values or higher TE content on the sex-
homolog or in any other chromosome (Fig.4B; Fig. S12; Tables $7-S11, S13).

Fate of U/V sex chromosomes following transition to co-sexuality

Next, we used our genomic datasets to assess the fate of sex chromosomes once they are in a co-
sexuality context and to understand the origin of monoicous algal species. We found that the large majority
of genes in the sex-homologs of both C. linearis and D. dudresnayi are male-derived, indicating that they
originate from a male genomic background (Fig. 5A-B). In C. linearis, fifteen SDR orthologs have a male origin
and only two a female origin (Fig. 5A, Table S16). The sex-homolog of C. linearis contains several
rearrangements that span both the regions belonging to the ancestral PARs and the ancestral SDR (Fig. 5A).
Most of the SDR orthologs remained in a syntenic region within the sex-homolog, with one male ortholog
being translocated within the same chromosome (ortholog of Ec-13_001490) and another male ortholog
translocated to a different chromosome (ortholog of Ec-13_002020). Notably, most SDR orthologs lost during

the transition to monoicy display their corresponding gametologs or retain closely-related autosomal paralogs
8
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Figure 4. Transition from haploid to diploid sex determination. (A) Expression of ancestral V-SDR genes in the diploid species F.
serratus. Gene expression of mature algae (using 3 males and 3 females, see methods) is given as log2(TPM+1) and bars represent
standard deviation of the mean. (B) Circos plot of F. serratus displaying tracks for the following genomic features: 0) chromosome
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distinguishing patterns in its sex-homolog or in any other chromosome (see Fig. S12 and Tables S7-511, S13).
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within the genome of C. linearis (Table S16). Nonetheless, all these genes belong to multigene families in both
Ectocarpus sp.7 and C. linearis. Therefore, it remains unclear if the expression of the lost SDR genes in C.
linearis would be compensated by a gene family member.

Interestingly, the only two SDR orthologs of female origin are framed by PAR orthologs that separate them
from the other SDR-derived genes. Together, these observations indicate that C. linearis descended from a
male genomic background that acquired its female-derived SDR genes through at least three non-homologous
recombination events (Fig. 5A).

Similarly, the sex-homolog in D. dudresnayi also includes chromosomal rearrangements, with at least two
inversion events within the region that is homologous to the male SDR in D. herbacea (Fig. 5B), and with 20
SDR orthologs of male origin and only 5 of female origin (Table S17). The two most recently acquired SDR
genes in D. herbacea are also present in the monoicous D. dudresnayi, but these two genes were integrated
into the SDR of D. herbacea after diverging from D. dudresnayi. Similarly, we found at least three viral
insertions in the male SDR of D. herbacea that are absent in the sex-homolog of D. dudresnayi, suggesting that
these insertions are male-exclusive and occurred after the two species had diverged. As with C. linearis, most
of the genes that were lost during the transition to monoicy had a putative gametolog or a paralog
compensation (Table S17). One of the female SDR genes in D. dudresnayi appears close to the PAR region in a
similar fashion to C. linearis, while two other female genes were translocated and conserved elsewhere in the
genome.

Next, we examined the expression pattern of ancestral male SDR genes present in the sex-homologs of C.
linearis and D. dudresnayi. Both C. linearis and D. dudresnayi retain a copy of HMG-sex, confirming its crucial
role in the male developmental pathway in the monoicous species (Luthringer et al., in review). Remarkably,
these genes are expressed during the reproductive stages of both species (Table S18), suggesting that
ancestral SDR genes play a key role in reproduction - even in the absence of a U/V sex-chromosome system.
Interestingly, all non-dioicous brown algal species retain most of these genes in a strongly conserved synteny
pattern on their sex-homolog chromosomes. Conversely, most of the female genes were lost in the monoicous
species, with the exception of one female gene, orthologous to a protein with unknown function in Ectocarpus
sp.7 (Ec-sdr_f_000220.1) that is actively expressed during fertility (Table S5).

Together, these results indicate that monoicous species require a male genomic background to retain all the
necessary features of a functional sexual phenotype and likely arose from an ancestral male that acquired
female SDR genes via ectopic recombination.

Lastly, we examined if high TE content, TRG enrichment and high Ks values on the sex chromosome are
features exclusive to U/V sex-determination systems or if they form a broader pattern common to all sexual
systems in brown algae. Indeed, we detected TE content enrichment and younger TRGs on the sex-homolog
in D. dudresnayi, although the Ks values were not higher in this chromosome when compared to the rest of
the genome (Fig. 5C; Fig. S13; Tables $7-S11, S13). Due to the recent loss of the U/V system in D. dudresnayi,
its evolutionary footprint is still present in the sex-homolog, such as TRG enrichment, although the
evolutionary dynamics is gradually being lost after splitting from D. herbacea and becoming monoicous, as
shown by the Ks values.
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Figure 5. Fate of sex chromosomes during transitions from dioicy to co-sexuality. (A) Comparison of the sex-homolog in C. linearis
against the U and V chromosomes of Ectocarpus sp. 7. (B) Comparison of the sex-homolog in D. dudresnayi against the U and V
chromosomes of D. herbacea. The color code represents the identity of the genes alongside the chromosomes, while the shapes
represent the evolutionary fate of each SDR gene in the monoicous genome. The matching shades between the SDRs and the sex
homolog are either color-coded by their ancestral background or they appear as transparent dotted shades if the gametolog of the
other sex was retained. (C) Circos plot of D. dudresnayi displaying tracks for the following genomic features: 0) chromosome
compartments: autosomes and sex-homolog; 1) relative gene ages, 2) Ks values, 3) proportion of gene density (red) against repeat
density (blue) and 4) repetitive element classification. D. dudresnayi retains the gene cradle pattern in the sex-homolog, but its Ks
values are no longer different to those of the other chromosomes (see also Fig. S13 and Tables S7-S11, S13).
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DISCUSSION

Structure and synteny level of brown algal sex chromosomes

Our genomic and experimental data allowed us to identify the sex chromosomes or sex-homologs in
nine representative brown algal species and one outgroup. We revealed a high degree of synteny conservation
across species (with the exception of the outgroup S. ischiensis), consistent with previous analyses in
Metazoans, where synteny is highly conserved alongside the emergence of animal multicellularity®.
Macrosynteny conservation between distantly-related species is thought to be maintained through an
interplay between constrains in cis-regulatory interactions within chromosomes and selection against

18,42,43

disruptions during meiotic pairing , mechanisms that may also be playing a role in brown algae as they

also evolved complex multicellularity.

Despite synteny conservation of brown algal autosomes, the evolution of the sex chromosomes, and
particularly the SDR in the U/V chromosomes, is structurally dynamic. Chromosomal inversions occurred
frequently throughout the brown algal phylogeny and appear to have played a pivotal role in the evolution of
brown algal SDRs. Chromosomal inversions were likely responsible for the initial recombination suppression
in the proto-sex chromosomes, as well as the subsequent expansion events of the SDR into the bordering
PARs. The structural dynamism in the SDR is likely driven by TE-mediated chromosomal rearrangements*,
since the sex chromosome is enriched in TEs relative to the rest of the genome. As described in other systems,
including mating type chromosomes in fungi**, TE accumulation was likely a consequence of the initial
recombination suppression in the SDR*’ which possibly initiated a positive feedback loop between the
accumulation of TEs in the sex chromosome and the subsequent rearrangement and expansion of the SDR.

Sexual dimorphism and the evolution of the SDR

Classical XX/XY and ZW/ZZ sex chromosome models suggest that sexual dimorphism may be shaped
by sexually antagonistic selection, which in turn may drive the expansion of the SDR, favoring the evolution of

4849 although other models have also recently been proposed®®>3. We found that

new evolutionary strata
brown algal species with higher gamete sexual dimorphism are prone to expand their SDR boundaries, which
would be consistent with higher sexual dimorphism involving a larger number of genes under sexually
antagonistic selection®*. Coincidentally, species with larger SDRs and higher level of gamete dimorphism are
also morphologically more complex compared to the species with small SDRs®®. This may reflect an interplay
between morphological complexity, the retention and acquisition of sex-specific genes in the SDR and the

emergence of sexual dimorphic traits.

Oogamy is thought to be the ancestral state in brown algae, but this trait seems to be labile!*. Our analysis is
concordant with a scenario in which several transitions to oogamy occurred independently in different
lineages from a less dimorphic ancestor, and that the increase in gamete dimorphism was accompanied by
expansion of the sex locus. Levels of gamete dimorphism were correlated with larger SDRs but there was no
correlation with the levels of sex biased gene expression — therefore, our results suggest that sexual
differentiation in these organisms may be driven by genes within the SDR to a higher degree than by autosomal
sex-biased gene expression. Previous studies in other brown algae?® and in plants® support this idea, since
they too did not find a link between sex-biased gene expression and level of sexual dimorphism.
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U/V accumulate TEs but show mild genetic degeneration

The current models of XX/XY and ZW/ZZ systems state that the suppression of recombination
between sex chromosomes is followed by the accumulation of mutations and degeneration of the
heterozygous chromosome (Y or W) due to a lower efficacy of selection in non-recombining regions of
the genome®®, although more recent models of degeneration by regulatory evolution®” or neutral models>%>2
do not require selective interference nor sexual antagonism to explain sex chromosome differentiation. Our
analysis of the U/V chromosomes reveal important differences to XX/XY and ZW/ZZ evolutionary
trajectories. U/V structure changes quickly throughout time through multiple inversion events,
the accumulation of TEs and reduction of gene density. While the accumulation of TEs can be explained by
the suppression of recombination in the SDR, the low gene density is not necessarily related with
degenerative evolution and gene loss. Rather, it seems that the SDR expanded by an accumulation of TEs,
which moved the genes apart from each other, lowering the overall gene density. Unlike the Y and W
chromosomes, gene loss events in the U/V SDRs are an uncommon phenomenon. We found that Ectocarpus
sp. 7 retained gametolog pairs for all the six ancestral V-SDR genes, while D. herbacea also retained most of
these genes as gametologs. These data are indicative of a mild degeneration rate of the U/V systems, as
previously predicted by Bull?2. Contrary to XX/XY and ZW/ZZ systems, our ancestral state reconstruction
analysis shows that the SDR on every brown algal lineage had more gene gain events than losses.
Considering that U/V chromosomes perform their sex-determining activity during the haploid stage, SDR
genes are expected to be under haploid purifying selection, leading to a more efficient purge of

deleterious mutations compared to diploid systems>®°,

Surprisingly, the accumulation of TEs appears to behave differently in the U/V sex chromosomes
when compared to the autosomes. Scytosiphon and Ectocarpus have the smallest genome sizes in our
analysis and display an enrichment of unclassified TEs, particularly in the SDR but also extending into the
PARs. In contrast, species with larger genomes no longer have this pattern, and it is even reversed as LTRs
expanded throughout the genome. While RNA transposons like the LTRs have an unbiased insertion pattern
throughout the genome, DNA transposons display local hopping, meaning that they tend to insert
themselves in the vicinity of the donor locus®. It is plausible that these unclassified TEs represent novel
or degraded DNA transposons that flourished in the SDR and subsequently expanded to the PARs through
local hopping. This signal would be subsequently lost in the species with large genomes, as LTRs started
colonizing the genome, with a higher conservation in the SDR due to suppressed recombination.

U/V sex chromosomes are gene nurseries

We found strong signals of young TRG accumulation on the U/V sex chromosomes of the dioicous
brown algae, extending previous observations in Ectocarpus sp. 7%. Therefore, U/V sex chromosomes
may function as ‘cradles’ for evolutionary novelty. What could be the mechanism underlying the U/
V sex chromosomes ‘cradle’ pattern? Sex chromosomes in Ectocarpus are enriched in repression-
associated chromatin marks (e.g., H3K79me2) associated with transposons®!, likely to suppress TE
transposition in this chromosome. Heterochromatic regions have been suggested to display higher
mutation rates due to the limited access of the DNA repair machinery to correct errors during
replication®2. Accordingly, we found consistently higher mutation rates in the sex chromosome. It is
therefore possible that the TE and heterochromatic landscape of the sex chromosomes favor the
emergerdde of young TRGs. These genes would
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then be retained in the sex chromosome by ‘generation-antagonistic selection’, which would selectively
maintain genes that bring an advantage to the sporophyte generation?. This mechanism requires differential
selective pressures between the gametophyte and the sporophyte stages, and would therefore require a
dimorphic life cycle where gametophyte and sporophyte generations would have considerable phenotypic
differences. Notably, D. dichotoma does not display generation dimorphism?*, and, accordingly, does not
display a clear pattern of sporophyte-biased gene expression enrichment in the sex chromosome.
Furthermore, S. promiscuus has a highly reduced (in terms of size and morphological complexity) sporophyte
stage'® where selective pressures should be limited, which is the other species where we could not find
sporophyte-biased gene expression in the sex chromosome. Thus, the gene cradle pattern could be reinforced
through generation-antagonistic selection, but higher mutation rates alone appear to be sufficient to initiate
this pattern in species without sporophyte-biased gene expression.

The gene cradle pattern is visible only in species with U/V sex chromosomes, and it is considerably diluted in
D. dudresnayi where the transition to co-sexuality occurred very recently. Moreover, the cradle pattern is
absent in F. serratus. The Fucales lineage diverged from the ancestral U/V brown algae 65 Mya?’, suggesting
that losing the U/V system for an extended amount of evolutionary time results in the disappearance of the
gene cradle pattern. Even though there are no clear markers with which to define the Y chromosome in F.
serratus, none of its chromosomes are overrepresented in TRGs. Therefore, the gene cradle pattern seems to
be very specific to the U/V system in brown algae and to the type of life cycle of these organisms.

While details of the proximate and evolutionary mechanisms underlying TRG emergence remain to be
defined®™3, our data suggest a complex interplay between complex life cycles, heterochromatic landscape,
presence of TEs, and higher mutation rates that would favor the emergence of novelty.

Genomic consequences of the loss of U/V system

The evolution of the XX/XY system in F. serratus is associated with a transition towards a fully diploid life cycle
in Fucales*“°, The transition from a U/V towards a diploid sexual system likely involved a stage of epigenetic

sex determination®*°

, implying that the XX/XY system of the Fucales is fairly young compared to the 180-
million-year-old Y chromosome in mammals or the 140-million-year-old W chromosome in birds®3. A small and
undifferentiated Y-specific region could explain our inability to detect the sex chromosome in F. serratus. We
were nonetheless able to find all the ancestral V-SDR genes in the sex-homolog of Fucus, and several of these
genes displayed a male-biased gene expression across several Fucales species, particularly HMG-sex that acts
as the master male-sex determining factor in the U/V system. Our results indicate that HMG-sex and possibly
other ancestral V-SDR genes are still involved in the male differentiation pathway, but likely changed their
position downwards into the sex differentiation cascade. These results therefore support and extend the
“bottom-up” hypothesis of sex determination, where downstream components of sex differentiation are
evolutionarily conserved between taxa, and where master-sex determining genes can be pushed downwards

in the cascade and be replaced by new master regulators®*.

Monoicous brown algae were previously reported to display a transcriptomic profile that is closer to that of
ancestral females?®. However, our results clearly show that co-sexuality in C. linearis and D. dudresnayi arose
from a male ancestor with acquired female genes. It is likely that the female developmental program is more
pleiotropic, where the expression of male-biased genes tends to be tissue-specific while female-biased genes
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tend to be broadly expressed®. This might explain the similarity of the transcriptional profiles between
females and hermaphrodites in the brown algae. The male developmental pathway may require more
elements from the V-SDR for its proper activation, such as the master determinant factor HMG-sex**%
(Luthringer et al., in review), which would explain the convergent transition to monoicy from a male
background. Importantly, we identified a female gene that is consistently present in both monoicous species,
as well as in the U-SDR of Ectocarpus and Desmarestia, suggesting that this gene may be relevant for the

determination of the female developmental pattern in the brown algae.

Hypothetical model for the evolution of haploid sex chromosomes

Here, we reconstructed the evolutionary history of the brown algal U/V system and formulate a hypothetical
model for the evolution of haploid sex chromosomes (Figure 6). The U/V chromosomes of the brown algae
descend from an ancestral autosome that contained HMG-sex and other important genes that would later
represent the ancestral SDR. This region underwent an inversion event that initiated the differentiation of the
SDR between the U and V chromosomes. The SDR subsequently expanded through the accumulation of TEs
and nested inversions in each algal lineage, engulfing genes that were previously contained in the PARs. The
increase in size of the SDR was further caused by acquisition of genes from autosomes. It is possible that these
autosomal genes were under sexual antagonistic selection and conflict would be solved by full sex linkage of
these loci. Expansions of the SDR were, accordingly, correlated with increased sexual dimorphism as each
brown algal lineage evolved. Genes relevant for sex were retained within the SDR. It is possible that the
continuous expansion of TEs was limited by heterochromatinization in the sex chromosome by recruiting
repressive chromatin marks, which would indirectly decrease the levels of DNA repair in the sex chromosome
and lead to the emergence of young TRGs that would accumulate through generation-antagonistic selection.
The demise of the U/V sex chromosomes occurs in species that switch towards XX/XY or to monoicy. In the
derived XX/XY system, the conserved sex-determining gene from the ancestral V sex chromosome is no longer
the master male-determinant, and has moved down the sex-determination hierarchy. Transition to co-
sexuality (monoicy) arose via introgression of female SDR genes in a haploid male genetic background. Finally,
the demise of the U/V sex chromosomes is accompanied by a gradual loss of the genomic and evolutionary
footprints of the sex chromosome, such as the accumulation of TEs and the enrichment of young TRGs, raising
the possibility that recombination resumes in these genomic regions.
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Figure 6. Hypothetical model for U/V sex chromosome evolution. U/V sex chromosomes arose from an ancestral autosome, via
suppression of recombination that likely occurred via an inversion. The SDR expanded into neighboring pseudoautosomal regions (PAR)
via inversions, but also by recruitment of genes from autosomes; expansion occurred in a lineage-specific fashion, concomitant with
increased sexual dimorphism of the different species. SDR genes are maintained within the SDR if they have roles in sex, whereas
genes with no role in sex are lost. Faster substitution rates, likely driven by the heterochromatic context of the sex chromosome may
promote the rise of young genes, which are selectively maintained on the sex chromosome if they have advantages to the sporophyte
generation. In species that switch to a diploid life cycle, the U/V system disappears, but the genes that are in the V-specific region
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SUPPLEMENTAL FIGURES

Inter-genomic comparison: Dictyota dichotoma vs Schizocladia ischiensis (1,828 gene pairs)
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Figure S1. Macrosynteny plot between S. ischiensis and D. dichotoma using 1,828 orthologs. We highlight two fusion-with-mixing
events (red squares) between chromosomes 4 and 9, and between chromosomes 23 and 24 in D. dichotoma.
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Figure S2. Male SDR synteny between Ectocarpus sp. 7 and Ectocarpus crouaniorum. Note the recent inversion event within the SDR.
The arrows in the boxes represent the orientation of each gene within the chromosome.
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Figure S3. Detection of independently-acquired V-SDR genes across species. (A) Ancestral state reconstruction of the male SDR before
accounting for independent gene acquisition. (B) Gene trees showing the independent acquisition of SDR gametologs across species
that were previously interpreted as part of the ancestral male SDR genes.
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Figure S4. Expression of genes (log2(TPM+1)) that entered the SDR independently in different species. Expression is measured in
mature male and female gametophytes, hashing marks missing orthologs, stars inside the cells indicate that the gene is inside the male
non-recombining region (V-SDR). Orthogroups containing orthologs in less than three species or with multicopy genes were excluded
from this analysis. M: male; F: female.
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Figure S5. Sex-biased gene expression per dioicous species. (A) Proportion of sex biased genes in each of the five dioicous species.
MBG: male-biased genes; FBG: female biased genes. (B) Number of sex-biased genes in the pseudoautosomal regions of sex
chromosomes (SDR excluded), male-biased genes are shown in blue and female-biased genes in red. Stars above the bars mark
significant enrichment of the sex-biased genes on the PAR (Chi-square test, **p<0.01, ***p<0.001).
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Figure S7. Gene ages across the Ectocarpus sp.7 genome. (A) Distribution of relative gene ages across the chromosomes of Ectocarpus
sp. 7. The SDR of the sex chromosome (chr 13) is highlighted with a red box. (B) The sex chromosome (red) has a significantly higher
proportion of young genes and a lower proportion of old genes when compared to the autosomes (green; see Table S11). (C) Mosaic
plot showing that the species-level (rank 15) and the genus-level (rank 14) genes are responsible for the enrichment of young genes in
the sex chromosome. (D) The Ks values are significantly higher in the PARs of the sex chromosome when compared to the autosomes
or the SDR (see Table S13).
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Figure S8. Gene ages across the S. promiscuus genome. A) Distribution of relative gene ages across the chromosomes of Scytosiphon
promiscuus. The SDR of the sex chromosome (chr 13) is highlighted with a red box. (B) The sex chromosome (red) has a significantly
higher proportion of young genes and a lower proportion of old genes when compared to most of the autosomes (green; see Table
S11). (C) Mosaic plot showing that the species-level (rank 14) genes are responsible for the enrichment of young genes in the sex
chromosome. (D) The Ks values are significantly higher in the PARs of the sex chromosome when compared to the autosomes or the
SDR (see Table S13).
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Figure S9. Gene ages across the U. pinnatifida genome. (A) Distribution of relative gene ages across the chromosomes of Undaria
pinnatifida. The SDR of the sex chromosome (chr 23) is highlighted with a red box. (B) The sex chromosome (red) has a significantly
higher proportion of young genes and a lower proportion of old genes when compared to most of the autosomes (green; see Table
S11). (C) Mosaic plot showing that the ALE-clade genes (rank 11) are responsible for the enrichment of young genes in the sex
chromosome. (D) The Ks values are significantly higher in the sex chromosome when compared to the autosomes (see Table S13),
showing similar values in the PARs and in the SDR.
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Figure S10. Gene ages across the D. herbacea genome. (A) Distribution of relative gene ages across the chromosomes of Desmarestia
herbacea. The SDR of the sex chromosome (chr 03) is highlighted with a red box. (B) The sex chromosome (red) has a significantly
higher proportion of young genes and a lower proportion of old genes when compared to most of the autosomes (green; see Table
S11). (C) Mosaic plot showing that the genus-level (rank 11) genes are responsible for the enrichment of young genes in the sex
chromosome. (D) The Ks values are significantly higher in the sex chromosome when compared to half of the autosomes (see Table
$13). Non-significance of Ks values across chromosomes may be driven by the conflation with the Ks values in Desmarestia dudresnayi.
The SDR displays higher Ks values compared to the PARs or the autosomes.
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Figure S11. Gene ages across the D. dichotoma genome. (A) Distribution of relative gene ages across the chromosomes of Dictyota
dichotoma. The SDR of the sex chromosome (chr 02) is highlighted with a red box. (B) The sex chromosome (red) has a significantly
higher proportion of young genes and a lower proportion of old genes when compared to most of the autosomes (green; see Table
S11). (C) Mosaic plot showing that the species-level (rank 11) and the DFI-clade-level (rank 9) genes are responsible for the enrichment
of young genes in the sex chromosome. Ks values were not calculated for D. dichotoma, due to a saturation of synonymous mutations
with the closest species in the PhaeoExplorer database (Halopteris paniculata).
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Figure S12. Gene ages across the F. serratus genome. (A) Distribution of relative gene ages across the chromosomes of Fucus serratus.

(B) The sex-homolog in F. serratus (LG15; red) shows no significant differences in gene age distribution when compared to the rest of

the chromosomes (green; see Table S11). (C) Mosaic plot showing no discernible pattern of gene age distribution in any of the

chromosomes. (D) The Ks values are similar in the sex-homolog when compared to the other chromosomes (see Table S13).
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Figure S13. Gene ages across the D. dudresnayi genome. (A) Distribution of relative gene ages across the chromosomes of
Desmarestia dudresnayi. (B) The sex-homolog in D. dudresnayi (chr 03; red) has a significantly higher proportion of young genes
and a lower proportion of old genes when compared to most of the other chromosomes (green; see Table S11). (C) Mosaic plot
showing that the species-level genes (rank 12) are responsible for the enrichment of young genes in the sex-homolog. (D) The Ks

values are similar in the sex-homolog when compared to the other chromosomes (see Table $13).
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METHODS

Biological material

Scytosiphon promiscuus, Dictyota dichotoma, Undaria pinnatifida and Desmarestia dudresnayi haploid
gametophytes were cultivated in the laboratory conditions as in ®’. We cultivated the gametophytes at 14°C
with a photoperiod of 12:12 h light:dark an irradiance of 25umol photons.m-2.s-1. The media consisted of
filtered natural seawater (NSW), which was autoclaved and enriched with half-strength Provasoli nutrient
solution (Provasoli-enriched seawater; PES)®’. We grew the first biomass in 140mm Petri dishes and the
gametophytes were later transferred to 1L flask with gentle aeration. The gametophytes were fragmented
once a month and the media were changed every two weeks to promote biomass production. Prior to freezing,
gametophytes were treated with antibiotics for 3 days with a gentle agitation and under the same culture
conditions. The first day, gametophytes were treated with a mix Streptomycin (2g/L of PES), Penicillin G (0.5g/L
of PES) and Chloramphenicol (0.1g/L of PES); the next day with Ampicilin (1g/L of PES) and finally the last day
with Kanamycin (1g/L of PES). Between each day of treatment and before freezing, gametophytes were rinsed
with 500mL of NSW to remove the traces of antibiotic.

Samples for fucoid algae sexual and vegetative tissue were collected in the intertidal zone during low
tides in June 2012 from Viana do Castelo (F. vesiculosus, A. nodosum) and Caminha (Rio Minho; F. ceranoides),
northern Portugal. Sexual phenotypes were verified in the field by sectioning and observing receptacles under
a field microscope. Tissue samples were flash-frozen in liquid nitrogen on the shore and transported to the
laboratory in a cryoshipper, after which they were lyophilized and stored dry at room temperature on silica
crystals. See Table S22 for list of strains used in this study.

DNA and RNA extraction and sequencing

Genomic DNA was isolated from algal tissue (¥100mg) by grinding into fine powder under liquid
nitrogen and subsequent cell lysis in 500uL of Genomic Lysis Buffer (OMNIPREP for plant kit) for 1 hour at
60°C. The lysate was cleaned up with 200uL of chloroform and DNA was precipitated in EtOH. The DNA pellet
was digested in CF buffer (Macherey-Nagel) for 45 min at 65°C and purified using NucleoBond AXG20 Mini
columns according to the user manual (Macherey-Nagel). Final high molecular weight gDNA was quantified
(Qubit), analyzed for purity (Nanodrop) and checked for size distribution (Femto Pulse System) before
preparing the sequencing libraries. We sequenced the libraries using an Oxford Nanopore Technologies (ONT)
MinlON Mk1B. We prepared the ONT libraries using an SQK-LSK110 library preparation kit for R9.4.1 flow cells
and an SQK-LSK114 library preparation kit for R10.4.1 flow cells. Two libraries were sequenced for Desmarestia
dudresnayi on R9.4.1 flowcells and a third library was sequenced on a R10.4.1 flowcell.

RNA was isolated from mature gametophytes of Undaria pinnatifida and Scytosiphon promiscuus
following modified procedure of Qiagen RNAeasy kit26 and the TruSeq RNA Library Prep Kit v2 was used to
sequence the transcriptomes in an Illumina NextSeq 2000 platform (150bp, PE reads). Extraction of total RNA
from fucoid algae (F. vesiculosus, A. nodosum and F. ceranoides) was performed following 65 and RNA libraries
were sequenced on lllumina HiSeq 2000 machine (100 bp, PE reads).

Genome assembly and annotation
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Whole-genome assemblies and annotations of S. promiscuus male, D. dichotoma male, D. herbacea
male and female, E. crouanorium male, C. linearis, S. ischiensis and F. serratus male were obtained from
Denoeud et al, (submitted). We also downloaded the male genomes of Ectocarpus sp. 7°® and Undaria
pinnatifida® which were already assembled at a chromosome level. For Desmarestia dudresnayi, we
performed a de novo genome sequencing and annotation. Base calling was done using ONT Guppy’® with the
configuration files dna_r9.4.1_450bps_sup.cfg and dna_r10.4.1_e8.2_400bps_sup.cfg and the options --
trim_adapters —trim_primers, yielding 17.4 Gbp of data in 2,871,152 reads. We merged all the reads and
analyzed them using Kraken v2.1.27* and the bacteria database (downloaded 08-2022) to remove potential
contaminant sequences. All data classified as bacterial reads by Kraken were screened using blastN v2.13.0+72
(-evalue 0.001 -num_alignments 20) against the NCBI genbank bacterial database (downloaded 11-2023). The
blastN output was visualized in MEGAN v6.23.473, and all the reads that were declared as bacterial were
extracted and removed from further analyses. We obtained 1,908,772 decontaminated reads with an average
length of 5.1Kbp (9.8 Gbp of data, 20x coverage), which were deposited on the NCBI Sequence Read Archive
(see Table S22).

The decontaminated reads were assembled de novo using flye v2.9.1-b17807* with the options ‘--
nano-raw -g 450m -t 28 -i 3 --scaffold’. The draft assembly consisted of 1,032 contigs with a total size of 425
Mbp, an N50 of 46 Mbp and an L50 of 29 contigs. We used TransposonPSI
(http://transposonpsi.sourceforge.net/) to predict the transposable elements and RepeatScout’ to predict
the simple repeats in the genome assembly. Both predictions were combined to soft-mask the repetitive
content in the genome assembly using bedtools maskfasta’®. We mapped the RNA-seq data of Desmarestia
dudresnayi from the PhaeoExplorer database (Deneoud et al, submitted) to the soft-masked genome assembly
using STAR”’. We used BRAKER alongside the RNA-seq data’® to predict the protein-coding genes in the soft-
masked genome assembly.

Hi-C library preparation and sequencing for chromosome-level assemblies

We generated Hi-C libraries for three male genomes (Scytosiphon promiscuus, Desmarestia herbacea
and Dictyota dichotoma) and two female genomes (Ectocarpus sp. 7 and Desmarestia herbacea). Fresh algal
tissue was cross-linked for 20 minutes at room temperature in a solution of 2% formaldehyde with filtered
natural sea water (NSW) and then transferred into a 400 mM Glycine solution with filtered NSW for five
minutes to quench the formaldehyde. The samples were then stored at -80°C until use. The Hi-C libraries were
prepared as follows. The samples were de-frosted in 1 mL of 1x Dpnll buffer with protease inhibitors (Roche
cOmplete™), transferred to Precellys VKOS5 lysis tubes (Bertin Technologies, Rockville, MD) and disrupted using
the Precellys apparatus with five grinding cycles of 30 seconds at 7,800 rpm followed by 20 second pauses.
SDS was added to the lysate at 0.5% final concentration and samples were incubated for 10 minutes at 62°C,
followed by the addition of Triton-X100 to a final concentration of 1% and 10 minutes of incubation at 37°C
under gentle shaking. We added 500 U of Dpnll to 4.6 mL of the digestion mixture and incubated the samples
for two hours at 37°C under gentle shaking (180 rpm in an inclined rack to prevent sedimentation), followed
by the addition of another 500 U of Dpnll and an overnight incubation under the same conditions. The digested
samples were centrifuged at 4°C for 20 minutes at 16,000xg. The supernatant was discarded and the pellet
was incubated for biotinylation at 37°C for an hour under a constant shaking (300 rpm) in a 500 ml biotinylation
mix with a concentration of 1x ligation buffer, 0.09 mM of dATP-dGTP-dTTP, 0.03 mM of Biotin-14-dCTP and
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0.64 U/mL of Klenow fragments. After biotinylation, the samples were incubated for three hours at room
temperature in a 1.2 mL ligation reaction with a concentration of 1x ligation buffer, 100 mg/mL of BSA, 1 mM
of ATP and 0.4 U/mL of T4 DNA Ligase. The samples were then incubated overnight at 65°C after adding 20pl
of 0.5M EDTA, 80ul of 10% SDS and 1.6 mg of Proteinase K. DNA was extracted with 1 volume of
phenol/cholorform/isoamyl (24:24:1) alcohol, followed by 30 seconds of vortex at top speed and a five-minute
centrifugation at top speed. We precipitated the DNA by adding 1/10 volume of 3M NaAC pH5 and two
volumes of cold EtOH 100%, followed by a 30-minute incubation at -80°C and a 20-minute centrifugation at
14,000xg and 4°C. The DNA pellet was washed with 1mL of EtOH 70%, then dried at 37°C for 10 minutes and
resuspended in 100ul 1x TE buffer with 1mg/ml of RNase. DNA was sheared to 250-500bp fragments using
Covaris 5220, purified with AMPure beads (0.6X) (Beckman) and eluted in 20l 10mM Tris pH8.0. Biotinylated
but not ligated DNA fragments were first removed by T4 DNA polymerase treatment (final concentration=300
U/pellet; NEB), and the biotin-labeled fragments were selectively captured by Dynabeads MyOne Streptavidin
C1 (Invitrogen). The libraries were prepared using NEB Ultra Il library preparation system and sequenced on
the NextSeq2000 lllumina platform (2x150 bp) (Table S22).

We scaffolded the genomes from Denoeud et al, (submitted) into chromosome-level assemblies using
the Hi-C data. Additionally, the female SDR of Ectocarpus p. 7 was previously merged into a single scaffold
without knowing the correct order of the contigs®®, so we separated these contigs to reorganize them in the
correct order using Hi-C data. We filtered the low-quality Hi-C reads using Trimmomatic’
(ILLUMINACLIP:2:30:10 LEADING:25 TRAILING:25 SLIDINGWINDOW:4:15 MINLEN:75 AVGQUAL:28). We
mapped the Hi-C reads against each genome assembly using BWA-mem?® as implemented in the Juicer
pipeline® to generate a contact map, which was then fed to 3D-DNA®? to scaffold the genomes into
chromosomes. The obtained scaffolds were manually inspected against the contact maps to solve the limits
of each chromosome using Juicebox®. The PhaeoExplorer gene annotations (Denoeud et al, submitted) were
lifted into the new assemblies using Liftoff®®, while the annotation of transposable elements was performed
using RepeatModeler2®. We scaffolded the genomes of Ectocarpus crouaniorum and Desmarestia dudresnayi
into chromosomes using a reference-guided assembly with RagTag®® against the chromosome-level
assemblies of Ectocarpus sp. 7 and Desmarestia herbacea, respectively.

Discovery of the UV sex determination regions

Male sex determining regions (V-SDR) in S. promiscuus, U. pinnatifida, D. herbacea and D. dichotoma,
as well as female sex determining region (U-SDR) in D. herbacea were analyzed following a YGS approach
developed by Carvalho and Clark®” and coverage analysis described previously®. The YGS method principle is
to identify male or female sex-linked scaffolds by comparing kmer frequencies between reference genome
assembly and kmers generated from DNAseq reads of the opposite sex. Regions in the male reference genome
with low density coverage of female kmers will indicate candidate male SDR sequences, similarly, female
genomic scaffolds with low coverage in male kmers will denote female SDR region. First, fifteen base pair kmer
sequences were generated from respective lllumina reads (Table $22) using Jellyfish count (-m 15 -s 10G -C --
quality-start=33 --min-quality=20) and converted to fasta format with Jellyfish dump (--lower-count=5)%.
Next, non-overlapping 100kb sliding windows of the reference chromosome genome assemblies were created
using segkit® and used as input for the YGS.pl script together with the fasta kmer files produced in the previous
step. Genomic windows with a minimum of 70% of unmatched single copy kmers were then retained as
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candidate male or female SDR sequences. These regions were further validated by the coverage analysis. In
detail, the short lllumina reads coming from males and females of each investigated species were trimmed
with Trimmomatic’ (see above) and mapped to the reference genome, for which the SDR was to be studied,
using HISAT2%! (default settings). Bam files produced by HISAT2 were used as input for Mosdepth® to calculate
coverage in 100kb windows along the genome sequence (-m -n -b 100000 --fast-mode -Q 30). Read mapping
depth in genomic windows was normalized by the genome-wide mean for each sex and the coverage in
genomic intervals was then compared between males and females. Because V-SDR-linked sequences are
present only in males, we expect them to have similar read coverage as autosomal regions in males, but little
or no coverage in females (and conversely for the U-SDR sequences). The comparison focused on regions
within male reference genomes where the coverage in males fell within the range of 75% to 125% of the
genome average, while the coverage in females remained below 50% of the genome average. These findings
were then cross-referenced with the results obtained from the YGS analysis. The reverse strategy was applied
to female U-SDR regions for a comprehensive evaluation. Both, coverage and kmer analysis, identified
identical genomic regions (Table S1).

Genetic mapping and search for the sex chromosome in Fucus serratus

Three different sets of materials were used in this study: (i) twelve male and twelve female field
samples hereafter denoted the 24-individual natural population; (ii) 157 sporophyte progeny population
derived from a cross between one male sample and one female sample collected from the field and (iii) three
male and three female samples collected from the field for whole-genome sequencing. The 157-progeny
population and 24-individual natural population were genotyped by double digest RAD sequencing approach
(ddRAD-seq). Briefly, individual genomic DNA was digested with the restricted enzymes Pstl and Hhal to obtain
fragments that were size selected between 400 and 800 bp before sequencing on in lllumina HiSeq 2500
platform (paired-end 2 x 125 bp). See *3 for detailed protocol of the ddRAD-seq.

We performed whole-genome sequencing on Illumina HiSeq 2500 (2x 150 bp paired-end) for the three
male and three female samples. For ddRAD-seq data, raw reads were cleaned and trimmed with Trimmomatic
as above and mapped to the draft genome of Fucus serratus male. For the progeny population, genotypes
were called from the obtained bam files, using the Stacks pipeline (v2.5)%. The obtained vcf files were filtered
with vcftools® and bcftools®® (max missing per locus:30%, max missing per sample:40%, max mean
coverage:30, minQG:20).

The filtered vcf file of the progeny population was used to construct a genetic map with Lep-MAP3%’,
Briefly, ParentCall2 module was used to call parental genotypes, SeparateChromosomes2 module was used
to split the markers into linkage groups and OrderMarkers2 module was used to order the markers within
each linkage group using 30 iterations per group and finally computing genetic distances. Phased data were
converted to informative genotypes with the script map2genotypes.awk.

We used different approaches to identify the SDR in Fucus serratus:

Coverage analysis: We combined whole-genome sequence data from the three males and three
females alongside the ddRAD-seq data of the 24-individual natural population, mapping both datasets to the
F. serratus male genome assembly using bwa-mem?°. Coverage analyses have been done in several ways:
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- Using SATC (sex assignment through coverage)®, a method that uses sequencing depth distribution
across scaffolds to jointly identify: (i) male and female individuals, and (ii) sex-linked scaffolds. This
identification is achieved by projecting the scaffold depths into a low-dimensional space using principal
component analysis and subsequent Gaussian mixture clustering. Male and female whole genome sequences
were used for this analysis.

- Using the method SexChrCov described in *° with the 24-individual natural population.

- Using the method DifCover!® which identifies regions in a reference genome for which the read
coverage of one sample is significantly different from the read coverage of another sample when aligned to a
common reference genome. The 24-individual natural population was used for this analysis.

- Using soap.coverage v2.7.9%%! to calculate the coverage (number of times each site was sequenced
divided by the total number of sequenced sites) of each scaffold in each sample. For each scaffold, the male
to female (M:F) fold change coverage was calculated as log2(average male coverage) — log2(average female
coverage). The 24-individual natural population was used for this analysis.

Fsr and sex-biased heterozygosity. This approach has been previously used to find sex linked genomic
regions in several studies'®?1%, Using the 24-individual natural population, Fsr was calculated using vcftools®.
Sex-biased heterozygosity was defined as the log10 of the male heterozygosity:female heterozygosity, where
heterozygosity is measured as the fraction of sites that are heterozygous. This ratio is expected to be zero for
autosomal scaffolds and elevated on young sex scaffolds due to excess heterozygosity in males.

Identification of eventual female scaffolds that failed to map to the male reference genome. Vcftools
and bedtools were used to extract female regions that did not map to the reference genome, consistently in
the three re-sequenced female samples.

All candidate contigs were tested by PCR in 4 males and 4 females.
Synteny analyses, SDR evolutionary strata and transitions to co-sexuality

Whole-genome synteny comparisons were performed for each pair of chromosome-level assemblies
using MCscan!®, both between different species, between sex chromosomes in the same species and between
hermaphrodites and their closest relatives with U/V chromosomes. The putative gametologs between sex
chromosomes that were predicted with MCscan were reassessed using OrthoFinder'® and best reciprocal
DIAMOND?® hits,

We calculated the number of synonymous substitutions per synonymous site (Ks) for each pair of male
and female gametologs as a proxy to assess the relative time at which both genes diverged from each other.
The amino acid sequences of each pair of gametologs were aligned with MAFFT'%” and subsequently aligned
into codons using pal2nal'®. The Ks values were calculated using the model by Yang & Nielsen'® as
implemented in KaKs_calculator v2.0'%°,

We evaluated the male or female identity of the genes in the co-sexual species whose orthologs were
found within the SDR in their closest non-co-sexual relatives. For this, we compared the results obtained with
MCscan'® against the orthogroup prediction performed with OrthoFinder!®®, with best reciprocal DIAMOND?°®
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hits and by calculating gene trees for each orthogroup using an amino acid alignment with MAFFT%” and gene
tree reconstructions using FastTree!!?,

Ancestral reconstruction of the male SDR

We searched for ortholog genes within the V-SDR of five species (Ectocarpus sp. 7, Scytosiphon
promiscuus, Undaria pinnatifida, Desmarestia herbacea and Dictyota dichotoma) in our OrthoFinder results.
Once we determined the evolutionary relationship of the genes within the V-SDR, we used the software
Count!? to estimate the ancestral content of the V-SDR throughout a phylogeny and determine the most likely
scenario of V-SDR evolution in the brown algae. We employed posterior probabilities under a phylogenetic
birth-and-death model with independent gain and loss rates across each branch in the phylogeny. We
modeled the independent gain and loss rates through 10 gamma categories and performed 1000 optimization
rounds with a convergence threshold on the likelihood > 0.1 to find the most fitting model for the data. The
branch lengths in the tree that were used for the ancestral state reconstruction were retrieved from the
molecular clock analysis performed by 1*. We distinguished between conserved V-SDR genes that are ancestral
and parallel acquisitions of the same gene in the V-SDR by analyzing gene trees between male and female
genomes, in addition to female transcriptome assemblies of Dictyota dichotoma and Undaria pinnatifida.
Sequence alignments were done using MAFFT'®” with default settings and uploaded to
http://www.phylogeny.fr/ platform. Alignments were further curated using Gblocks'*?® (Min. seq. for flank

pos.: 85%, Max. contig. nonconserved pos.: 8, Min. block length: 10). Trees were produced by PhyML** with
default model and visualized in TreeDyn'>. Approximate Likelihood-Ratio test (aLRT) was chosen as statistical
test for branch support. We inferred the function of the ancestral V-SDR genes through the annotation of
genes in Ectocarpus sp. 7 belonging to that orthogroup.

Genomic content across chromosomes

We used closely-related genome assemblies available in the PhaeoExplorer database (Deneoud et al,
submitted) to assess the depletion of orthologs in the sex chromosome. We predicted one-to-one orthologs
using OrthoFinder'® between the following species pairs: Ectocarpus sp. 7 with Ectocarpus siliculosus,
Scytosiphon promiscuus with Chordaria linearis, Undaria pinnatifida with Saccharina japonica, Fucus serratus
with Fucus distichus, Desmarestia herbacea with Desmarestia dudresnayi, and Dictyota dichotoma with
Halopteris paniculata (Table S19). We calculated the expected number of detectable orthologs for each
chromosome and compared it against the observed number of detected orthologs using chi-squared tests. We
performed Benjamini-Hochberg corrections to the p-values of the chi-squared tests to control the false
discovery rate (FDR) in the analysis®®.

GenEra®® was used by running DIAMOND in ultra-sensitive mode’® against the NCBI NR database and
all the PhaeoExplorer proteins (Deneoud et al, submitted) to perform a phylostratigraphic analysis (e-value
threshold of 10®°) and calculate the relative ages of each gene in each genome (Table S20). The gene age
categories outside of the brown algae and Schizocladia ischiensis were based on the taxonomic classification
of each species within the NCBI Taxonomy database!!’, while the gene ages within the brown algae were
manually assessed to reflect the evolutionary relationships obtained in the PhaeoExplorer maximum likelihood
tree (Deneoud et al, submitted). We performed Wilcoxon rank-sum tests in R*® to assess nonrandom
differences in gene age distributions between pairs of chromosomes (Table S11). We performed Benjamini-
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Hochberg corrections to the p-values of the Wilcoxon rank-sum tests to control the FDR in the analysis?¢. The
gene ages responsible for these differences were found by evaluating the standardized residuals using mosaic
plots (Figs. S7-S13). The relative gene ages in Fig. 3B and in Figs. S7-S13 were plotted against the chromosome-
level assemblies using karyoploteR*,

We used the Ks values between pairs of species as a proxy for neutral mutation rates across six of the
seven chromosome-level assemblies by using the most closely related genome assemblies available in the
PhaeoExplorer database (Deneoud et al, submitted). We used the same set of one-to-one orthologs detected
between species pairs as for the ortholog-depletion test (Table $19). However, the evolutionary distance
between Dictyota dichotoma and Halopteris paniculata was so high that synonymous substitutions were
already saturated, preventing us from calculating reliable Ks values for this species. The amino acid sequences

of each pair of orthologs were alighed with MAFFT'% and subsequently aligned into codons using pal2nal®,

109 3s implemented in KaKs_calculator v2.0°.

The Ks values were calculated using the model by Yang & Nielsen
We also evaluated the difference in Ks values between the autosomes and the sex chromosomes through DFR-
corrected Wilcoxon rank sum tests (Table S13). We calculated the protein-coding density, the density of
transposable elements and the taxonomic identity of these transposable elements within 100 kb non-
overlaping windows across each chromosome using bedtools’® (Table S21). The differences in protein-coding
space, TE content and TE classification between the autosomes and the sex chromosomes were also
performed using DFR-corrected Wilcoxon rank sum tests (Tables S7-S9). All the genomic features were plotted

using shinyCircos-V2.0*%°.
Gene expression analysis

We used kallisto v.0.44.0™! to calculate gene expression levels using 31-base-pair-long k-mers and
1000 bootstraps. Transcript abundances were then summed within genes using the tximport package!?? to
obtain the expression level for each gene in TPM. Differential expression analysis was done in DESeq2
package'® in R v.4.3.1, applying FC>=2 and Padj<0.05 cut-offs. Sex biased gene expression analysis in
Ectocarpus sp. 7, Scytosiphon promiscuus, Undaria pinnatifida, Desmarestia herbacea and Dictyota dichotoma
was estimated between mature male and female gametophytes (gametophytes baring reproductive
structures). To discover genes with sporophyte biased expression in Ectocarpus sp.7, Scytosiphon promiscuus,
Undaria pinnatifida and Dictyota dichotoma we first calculated the differential expression between male
gametophytes and sporophytes, as well as female gametophytes and sporophytes. Genes that showed
significant sporophyte-biased expression (FC>=2, padj<0.05) in both comparisons were considered
sporophyte-biased.

A total of 314.2 M RNA-seq reads from F. vesiculosus male, female and vegetative tissue were
assembled de novo with rnaSPAdes®* using kmer values of 33 and 49. Assembly quality was assessed by
(pseudo)mapping reads back onto the resulting assembly and retaining “good” contigs as defined using

72 against a

TransRate'”® with default settings. The resulting 159,108 contigs were aligned with BLASTx
database of Stramenopile proteins and those with top hits against brown algae (Phaeophyceae) were retained
as the final curated reference transcriptome (36,394 contigs, N50 = 1770 bp). Transcript expression levels were
determined by mapping the reads from all samples against the reference transcriptome using Bowtie2?® and
the RSEM-EBSeq'?’ pipeline and relative expression values were recorded as transcripts per million (TPM). All
samples used in the gene expression analysis can be found in Table S22.
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