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Abstract  

Lifespan is influenced by complex interactions between genetic and environmental factors. 

Studying those factors in model organisms of a single genetic background limits their 

translational value for humans. Here, we mapped lifespan determinants in 85 genetically 

diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed 

molecular profiles – transcriptome, proteome, and lipidome – and life-history traits, including 

lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations 

in lifespan, which positively correlated with developmental time. Among the top candidates 

obtained from multi-omics data integration and QTL mapping, we validated known and novel 

longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to 

humans using UK Biobank data and showed that variants in RICTOR and GFM1 are 

associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, 

and liver diseases. We organized our dataset as a resource (https://lisp-

lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets. 
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Introduction 

An intricate interplay of genetic, epigenetic, and environmental factors collectively 

determines the lifespan of an organism (Govindaraju et al., 2015). Over the past few 

decades, extensive research has been carried out to decipher the underlying mechanisms 

governing longevity with gain- and loss-of-function (G/LOF) studies in different model 

organisms. However, a prevalent limitation in the evaluation of the effects of mutations and 

environmental perturbations is the predominant reliance on animal models with a single 

genetic background for analysis (Li and Auwerx, 2020). This restricts the translational value 

and generalizability of these studies (Nadeau and Auwerx, 2019; Williams and Auwerx, 

2015). Although such a strategy should ideally be employed in vertebrate models, the scope 

of the experimental testing in multiple genetic backgrounds combined with the ethical 

hurdles associated with such massive animal experimentation make this approach 

unrealistic. To overcome these constraints, the roundworm C. elegans has emerged as an 

attractive model for aging research, offering one of the best compromises between the 

simplicity of cell models and the complexity of vertebrate models (Gao et al., 2018b). In this 

regard, worm genetic reference populations (GRPs), such as the recombinant inbred lines 

(RILs) (Gao et al., 2018a; Li et al., 2010; Rockman et al., 2010; Vinuela et al., 2010) and 

recombinant inbred advanced intercross lines (RIAILs) (Andersen et al., 2015; Rockman and 

Kruglyak, 2009), have been increasingly used in the past years. These panels consist of 

inbred strains derived from crosses between two genetically divergent parental strains 

(Andersen et al., 2015; Thompson et al., 2015). With this study design, the recombination 

between the parental strains allows for fine mapping of quantitative trait genes (QTGs) — 

genes that explain the variation in certain quantitative traits (Evans et al., 2021). Furthermore, 

the availability of genotype data, and the ability to reproduce identical individuals, allow for 

the in-depth interrogation of quantitative traits at the systems level in several environmental 

conditions and at multiple physiological levels.  

Here, we used a worm GRP consisting of 85 genetically diverse RIAILs derived from crosses 

between two parental strains, i.e., QX1430 (with an N2 Bristol background) and CB4856 
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(Hawaii) (Andersen et al., 2015; Gao et al., 2022). To investigate the alleles contributing to 

subtle variations in longevity-related phenotypes across this worm GRP, we measured their 

transcriptome, proteome, lipidome, and lifespan (Figure 1). In addition, we employed a high 

throughput fully automated microfluidic-based robotic phenotyping platform (see Nagi 

Bioscience SA https://nagibio.ch/), to collect other life-history phenotypes including body size, 

developmental dynamics, activity, as well as parameters related to worm reproduction and 

fertility. Integration of these omics and phenotypic data allowed the identification of a genetic 

locus associated with lifespan variations in these RIAILs. Within these loci, we identified gfm-

1, rict-1 and mltn-1 as candidate longevity regulators and further validated gfm-1 and mltn-1 

as bona-fide longevity regulators through loss-of-function studies. To assess the clinical 

significance of these candidate longevity genes in humans, we explored the UK Biobank 

data to show that variants in the human GFM1 and RICTOR genes correlate with a variety of 

age-related disorders, such as heart disease, dementia, diabetes, kidney failure, liver 

disease and death. While our study focused on longevity regulation, we generated an 

extensive map of the molecular and phenotypic landscape in the RIAILs population. This 

resource will be valuable for subsequent in silico hypothesis generation and we have made it 

publicly available through an interactive open-access web resource (https://lisp-

lms.shinyapps.io/RIAILs/). 

Results 

85 RIAILs exhibit extensive variations in the lifespans and life-history traits 

To determine the extent to which genetic background can influence longevity, we first 

assessed the lifespans of 85 RIAILs by manually scoring them on plates as described 

previously (Gao et al., 2022). The range of average lifespan of RIAILs was from 13 to 21 

days (Figure 2A). Although the majority of RIAIL average lifespans lay between those of the 

parentals, nine strains’ lifespans were shorter lived than CB4856 and four strains lived 

longer than N2, suggesting the presence of transgressive segregation (Figures 2A and 2B). 

Also, we observed a similar pattern for early (25% dead and 75% alive), mid (50% mortality), 
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and late (75% dead and 25% alive) time to mortality (Figure 2C), that is, the age in days at 

which 25%, 50%, or 75% of the worms died, respectively. Studies in different organisms 

have shown that diverse trade-offs dominate life-history traits (Blueweiss et al., 1978; 

Maklakov and Chapman, 2019; Thomas Flatt (ed.), 2011). As a consequence, various 

organisms display correlations among different life history traits, such as lifespan and 

fecundity (Luckinbill et al., 1984), development and lifespan (Marchionni et al., 2020), body 

size and longevity (Blanco and Sherman, 2005; Bou Sleiman et al., 2022; de Magalhaes et 

al., 2007). We therefore monitored a number of life-history traits across the early life stage of 

the RIAILs (approximately 100 h after egg hatching), including maximum body size, 

developmental time, sexual maturity (emergence of the 1st egg), fertility (rate of egg 

accumulation), embryonic viability (emergence of the 1st larvae, following the emergence of 

the 1st egg), and the rate of progeny accumulation, using an innovative whole-organism high-

content screening technology (see https://nagibio.ch/) (Atakan et al., 2018) (Figures 2D-2E 

and S1). RIAIL strains displayed large variations in early life-history phenotypes, including 

developmental dynamics, reproduction (Figure 2D), and activity (Figure 2E). The N2 strain 

had a protracted growth period, characterized by delayed attainment of maximal body size 

and greater overall body size when compared to the CB4856 strain (Figures 2D and S1A). 

Both strains had comparable timing of reproductive maturation and showed no significant 

disparities in various fertility measures (Figures 2D and S1C-S1D). 

Longer lifespan is associated with slow development and late egg emergence 

Early life-history traits can potentially provide insights into the developmental trajectory and 

long-term outcomes of organisms (Bou Sleiman et al., 2022; Miller, 2002). To obtain an 

overview of associations between the phenotypic traits and lifespan traits, we pooled 

phenotypes and performed pairwise correlation analysis between all traits (Figure 2F). We 

found that, worm developmental time (r2 = 0.37, p < 0.001), reflecting the worm growth 

dynamics, and egg emergence (time to the moment when a worm lays its first egg, r2 = 0.42, 
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p < 0.001), reflecting sexual maturity, were the most associated with 25% mortality (Figures 

2F-2G). Both body size and progeny emergence (time until the first progeny of a worm is 

detected) were strongly correlated with developmental time (r2 = 0.52, p < 0.001 and r2 = 

0.58, p < 0.001 respectively). In addition to the phenotypic readouts on worm development 

and reproduction, we also evaluated the most common shapes of worms in each population 

(Figures 2E and S2A). Four main categories of shapes were defined as follows: two regular 

wild-type shapes in liquid (shape 2 - active; shape 3 - swimming) and two extreme shapes 

(shape 1 - straight; shape 4 - supercoiled) (Figure 2E). Since worms adopt different shapes 

over time, the shape metric reflects the percentage of time worms spent in each shape 

category. We observed a negative association between shape 1 (straight) and the duration 

before the first progeny appeared. Conversely, there is a positive correlation between shape 

2 (active movement) and the time it took for the first progeny to emerge (Figures 2F and 2H). 

However, none of the shapes directly correlated with the lifespan traits (Figures 2F and S2B). 

In combination, these findings corroborate that early life-history traits, such as delayed 

development, are an evolutionary cost of longevity.  

Early life transcriptome unveils potential pathways influencing lifespan traits 

To explore connections between the transcriptome at the early life (L4) stage and longevity, 

we performed an association analysis between the expression levels of ~20,000 transcripts 

and three measures of time to mortality: 25%, 50%, and 75% (Figures 3A and S3). Notably, 

a substantial proportion of these transcripts exhibited significant associations (unadjusted p-

values) with time to 25% mortality, while associations with those of 50% and 75% time of 

mortality and average lifespan were less pronounced (Figure 3B). Specifically, 1,951 

transcripts correlated significantly with 25% mortality (1,028 positives and 923 negatives), 

while 894 transcripts were significantly linked to 50% mortality (636 positives and 258 

negatives), and 189 transcripts showed significant associations with 75% mortality (109 

positives and 80 negatives) in the RIAIL population (Figure 3C). The predominant correlation 

of transcripts with early mortality might stem from the fact that the transcript profiles were 
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extracted from L4/young adult worms. Additionally, 504 transcripts were nominally 

significantly associated with the average lifespan in RIAILs (Table S1). None of the 

associations between transcripts and lifespan traits remained significant after multiple testing 

corrections; therefore, we explored the possibility of significant disparities at the pathway 

level using gene set enrichment analysis (GSEA) to find out if there is any collective impact 

of the transcripts (Figure 3D). We found 938 pathways significantly enriched for 25% 

mortality (81 positive and 857 negative), 701 (105 positive and 596 negative) for those 

associated with 50% mortality, and 58 (32 positive and 26 negative) for 75% mortality 

respectively (Figure S3 and Table S2). Given the early life transcriptome was more strongly 

associated with 25% mortality than other lifespan traits (Figure 3B), we investigated the 

enriched pathways associated with this metric. The majority of 25% mortality-enriched 

biological processes were negatively associated with lifespan and were primarily involved in 

chromosome organization, cytoskeleton organization, cellular lipid metabolism, cell division, 

DNA repair, and protein metabolic processes (Figure 3D). Among the top 30 enriched 

pathways, two pathways were positively associated with 25% mortality, namely neuropeptide 

signaling and G protein-coupled receptor signaling. Although it was among the top 30, the 

geneset “determination of adult lifespan” was among those significantly inversely associated 

with early mortality (q-value < 0.01) (Figure 3E and Table S2). Lower expression of genes 

within this geneset was associated with a longer time to reach 25% mortality (Figure 3F). 

Taken together, the early life transcriptome showed significant associations with lifespan at 

the pathway level, particularly with 25% mortality. Our data indicate that various biological 

processes and pathways can influence early mortality and potentially affect longevity. 

Quantitative assessment of correlations between protein pathways and different 

lifespan traits 

As proteome analysis offers a more direct perspective on cellular function, complementing 

the information obtained through transcriptome analysis, we measured the protein profiles of 

RIAILs and detected >6,500 proteins following the removal of non-detectable peptides and 
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rigorous quality control measures (Figure S4A and Table S3). In contrast to the mRNA-

lifespan association analysis, the number of proteins showing significant association with 25% 

mortality (non-adjusted p-values) was comparable to those linked with 50%, 75% mortality, 

and the average lifespan (Figures S4B-S4C). When investigating the top pathways enriched 

for 25% mortality, we found seven pathways, including vesicle-mediated transport, Golgi 

vesicle transport, actomyosin structure organization, and supramolecular fiber organization, 

that positively correlated with the 25% mortality (Figure S4D and Table S3). The negatively 

associated pathways were mostly related to DNA metabolism and cell cycle regulation 

(Figure S4D and Table S3). In addition, we examined the pathways enriched at both the 

mRNA and protein levels (Figures 3D and S4D). Gene sets involved in DNA damage 

response, DNA repair, and cell cycles overlapped at both mRNA and protein levels and were 

negatively correlated with lifespan traits. Consistent with these results, cell cycle, and 

associated genome integrity pathways were reported to be negatively associated with 

cellular turnover, a measure of cell and tissue longevity (Seim et al., 2016), whereas 

enhanced DNA repair capacity has been suggested in long-lived species (Cortopassi and 

Wang, 1996; Ma et al., 2016).  

Cardiolipins (CLs), triglycerides (TGs), phosphatidylinositol (PIs) were positively and 

phosphatidylethanolamines (PEs)  were negatively correlated with lifespan traits   

Perturbations in circulating lipid levels due to genetic, lifestyle, and environmental factors 

can heighten the risk of developing age-related disorders, such as cardiovascular and 

metabolic diseases (Harshfield et al., 2021). To determine possible links between lipids and 

lifespan, we integrated lifespan traits with lipid profiles measured in the RIAIL cohort (Figure 

4A). The first two dimensions of a principal component analysis (18.2% and 11.7% of 

variance explained, respectively) did not visually segregate strains by lifespan (Figure 4B). 

We then examined lipid-lifespan correlations (unadjusted p-values of less than 0.05) and 

highlighted distinct correlation profiles between lipids and different lifespan metrics (Figures 

4C and 4D). Cardiolipins (CLs), comprised mainly of polyunsaturated acyl chains, were 
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among the lipids that displayed a positive correlation with average lifespan and 75% 

mortality (Figure 4C and Table S4). The levels of CLs consistently decline in aged worms 

and rats (Gao et al., 2017; Smidak et al., 2017), supporting the concept that higher levels of 

CLs may be advantageous for health and longevity. Phosphatidylinositols (PIs) were among 

the primary lipid classes positively associated with average lifespan and 75% mortality, while 

many triglycerides (TGs) correlated positively with 25% mortality (Figure 4C). In contrast, 

numerous phosphatidylethanolamines (PEs) and PE-derivatives (e.g. plasmanyl-PE and 

plasmenyl-PE) exhibited a negative correlation with all the lifespan traits (Figure 4D and 

Table S4). Over-representation analysis of the different lipid classes confirmed that TGs, 

CLs, and PIs were positively associated with lifespan traits, while PEs were negatively 

associated (Figure S5). 

Lifespan variations are not dependent on overall genomic composition nor 

mitochondrial haplotype 

As the parental strain CB4856 worms have a shorter lifespan compared to the other parental 

strain N2 (Figures 2A-2B) (Gao et al., 2022), we asked whether the allelic proportion of each 

parental genome in the RIAILs could partly explain the variations observed in the lifespan 

traits. While we observed a considerable variation in parental allele distributions across the 

RIAIL genomes (Figure S6A), the phylogenic tree based on genetic distance between the 

strains did not cluster strains according to their lifespan (Figure S6B). For instance, strains 

QX580 and QX594 are highly genetically related (Figure S6B, next to the N2 strain), yet 

QX580 has a relatively longer lifespan in comparison to QX594, which displays a relatively 

shorter lifespan. The lifespan of CB4856 was previously found to be significantly influenced 

by variants in the mitochondrial DNA (mtDNA) (Dingley et al., 2014). We therefore separated 

the RIAILs by their mitochondrial genotypes but found no significant associations between 

the mitotype and the average lifespan (Figure S6C). A previous study using a different, small 

set of RIAILs found a positive correlation between the CB4856 mitotype and lifespan, as well 

as a negative correlation between N2 mitotype and lifespan (Zhu et al., 2015). However, we 
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found no such correlation in either the CB4856 or N2 mitotype background in these RIAILs 

(Figure S6D). Taken together, these data underscore the necessity for a more refined 

approach to pinpoint specific loci that determine lifespan. 

Identification of a lifespan QTL on Chromosome II 

Next, we sought to leverage the genetic diversity of the RIAIL population to map their 

associations with lifespan traits and potentially uncover novel genetic regulators of lifespan. 

Through variant calling using RNA-seq data (Figure S7), we generated a genetic map for the 

RIAIL population (Figure S8). We then performed quantitative trait loci (QTL) mapping of 

lifespan traits and detected a significant QTL on Chr. II for average lifespan (Figure 5A). We 

detected a suggestive QTL in the same locus for 25%,50%, and 75% mortality. We observed 

a decrease in the LOD score for this locus, from 4.13 for average lifespan to 3.83 for 50% 

mortality, and finally to 3.28 for 75% mortality (Table S5). Upon examining the average 

lifespan of the RIAILs for the two genotypes at this locus, we found that strains with the 

CB4856 genotype have longer lifespans compared to strains carrying the N2 genotype 

(Figure 5B). In other words, the allele associated with a longer lifespan comes from the 

shorter-lived CB4856 strain, suggesting that complex gene-gene interactions overcome any 

single-locus effect on lifespan in the RIAILs. 

We further explored other life-history traits and detected four significant QTLs: one for 

progeny emergence (the time when the 1st progeny is observed) on Chr. V:12,125,475, one 

for egg emergence (the time when the 1st egg is observed, indicating sexual maturity) on Chr. 

V:20,279,818, and two for shapes straight and supercoil, both on Chr. X (X: 11,549,662 and 

X:12,745,016 respectively) (Figure 5A and Table S5). When examining the locus at 

V:12,125,475, we found that RIAIL strains with the N2 genotype exhibited a longer time for 

progeny emergence compared to those with the CB4856 genotype (Figure 5C). Furthermore, 

despite observing a correlation between developmental time and lifespan traits (Figures 2F-

2G), we did not detect any significant or shared QTL between the two traits, suggesting that 

this correlation does not necessarily imply a common genetic regulation. 
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Exploration of lifespan QTL identified gfm-1 as the top candidate gene 

To identify potential mediators of the effect of the lifespan QTL, we performed differential 

expression analysis between RIAIL strains with the CB4856 genotype at that locus 

compared to those with the N2 genotype. Although only a limited number of genes were 

differential expressed (adjusted p-value < 0.05, Table S5), GSEA revealed significant 

differences at the pathway level (Figure 5D). We noted a greater number of significantly 

positively enriched genesets related to cellular components compared to biological 

processes (Figure 5D). Neuropeptide signaling and G protein-coupled receptor signaling 

pathways were significantly up-regulated in strains carrying the CB4856 marker, which 

exhibited an extended lifespan. The cellular component results highlight a significant 

upregulation of genes involved in organellar/mitochondrial ribosome-associated with the 

genetic variation at this lifespan locus (Figure 5D).  

The lifespan QTL encompassed eight genes. To prioritize the most likely candidate 

modulators of lifespan, we considered a wide range of factors (Figure 5E), namely whether 

there were any genetic variants in the gene between N2 and CB4856, whether any of these 

were mis-/nonsense mutations, the presence of cis-e/pQTLs defined as genomic loci near 

the gene of interest (in cis) that explain the variation in expression levels of mRNA (eQTL) or 

protein (pQTL) in of that gene, whether the gene was differentially expressed between 

strains with N2 vs. CB4856 genotypes, prior knowledge of the gene being associated with 

aging (in GenAge, a curated database of genes associated with age-related processes, 

(Tacutu et al., 2018)) or lifespan (PubMed searching for “lifespan”), and whether the gene 

was correlated with lifespan at the mRNA or protein level. Most of the genes had some 

genetic variants, many with missense or nonsense variants as well, but among these, only 

rict-1 met additional criteria as it has been reported to be associated with both aging and 

lifespan. rict-1 encodes a key component of the mTORC2 complex and loss-of-function 

mutations have previously been shown to increase the lifespan of C. elegans in specific 

conditions (Mizunuma et al., 2014; Soukas et al., 2009). In addition, we were interested in 
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gfm-1, as mitochondria play a key role in longevity regulation and gfm-1 is a known 

mitochondrial gene, encoding the G elongation factor mitochondrial 1. 

RNAi of gfm-1 prolonged lifespan by activating the UPRmt 

To examine the causal relationship between these candidate genes unveiled hitherto and 

longevity modulation, we knocked down the candidate genes by feeding worms with RNAi 

bacteria targeting each candidate gene, starting from the maternal phase, and measured 

their lifespans (Figure 6A). Knockdown of gfm-1 showed the most significant lifespan 

extension compared to the other candidate genes (p-value < 0.0001) (Figure 6A). Besides 

gfm-1, our survival analysis revealed that knocking down of mltn-1 (molting cycle MLT-10-

like protein, (Meli et al., 2010)) also significantly prolonged lifespan (p-value < 0.001), albeit 

to a lower extent. Conversely, the knockdown of rict-1 resulted in a shorter lifespan. This is 

potentially due to the adverse effects of RNAi treatment from an early developmental stage 

as previous studies exposed worms to rict-1 RNAi bacteria exclusively during adulthood to 

bypass the developmental functions of TORC2 and observed a prolonged lifespan 

(Mizunuma et al., 2014; Robida-Stubbs et al., 2012).  

To further characterize the mechanism of gfm-1 RNAi-mediated longevity, we conducted 

several functional assays. We assessed the effect of gfm-1 RNAi on lifespan and healthspan 

with a dilution of RNAi bacteria, including 10%, 25%, 50%, 75%, and 100% (control RNAi 

was used to supply to a final 100% of RNAi for all conditions). Worms exposed to different 

amounts of gfm-1 RNAi showed a dose-dependent lifespan extension (Figure 6B) and 

reduction of age-related paralysis (Figure 6C). Because gfm-1 encodes a mitochondrial 

translation elongation factor, we considered whether the mitochondrial stress response 

(MSR), through components such as the mitochondrial unfolded protein response (UPRmt), 

was involved in longevity changes observed with gfm-1 knockdown. Indeed, gfm-1 RNAi 

robustly increased the GFP expression of hsp-6p::gfp worms and significantly upregulated 

the expression of the UPRmt genes, including atfs-1, hsp-6, and gpd-2 (Figures 6D-6E). In 

line with this, mitochondrial respiration was also reduced upon gfm-1 knock down in a dose-
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dependent manner (Figure 6F). These results confirmed the beneficial effect of 

mitochondrial inhibition and UPRmt activation on healthy aging and longevity (Durieux et al., 

2011; Houtkooper et al., 2013).  

Furthermore, we investigated the potential mechanism of mltn-1 RNAi-induced longevity by 

examining whether any of the established longevity pathways contribute to the observed 

lifespan extension (Figure S9). We fed mltn-1 RNAi to worms with mutations mimicking 

caloric restriction (eat-2 mutant and sir-2.1 overexpression worms) (Lakowski and Hekimi, 

1998; Tissenbaum and Guarente, 2001), insulin/IGF-1 signaling (daf-2 mutant) (Kenyon et 

al., 1993), AMPK signaling (aak-2 mutant) (Schulz et al., 2007) and oxidative stress 

response (skn-1 mutant) (Lehrbach and Ruvkun, 2016) (Figure S9). Of note, mltn-1 RNAi 

prolonged the lifespan of worms overexpressing sir-2.1 overexpression and skn-1 mutants, 

indicating that mltn-1 RNAi regulates longevity independent of sirtuin-induced caloric 

restriction and oxidative stress response (Figures S9B and S9E). However, mltn-1 RNAi did 

not further extend the lifespan of eat-2 and daf-2 mutants (Figures S9B and S9C), and the 

lifespan extension induced by mltn-1 RNAi was almost completely abolished in aak-2 mutant 

worms (Figure S9D). These results suggest that the knockdown of mltn-1 extends worm 

lifespan in an AMPK-dependent manner and potentially mimics caloric restriction. Taken 

together, these findings further reinforced the assertion that our approach enabled us to 

identify novel inducers of longevity. 

Variants in human GFM1 and RICTOR elevated risk of cardiovascular conditions, 

dementia, diabetes, kidney, liver diseases, and death  

Age-related diseases play a significant role in shaping longevity (Franceschi et al., 2018). To 

explore the human relevance of our newly identified longevity genes, we took advantage of 

the UK Biobank, a large-scale population-based cohort study with extensive health and 

medical information (Bycroft et al., 2018). While mltn-1 is a C. elegans-specific gene, we 

identified GFM1 and RICTOR as the human orthologs of worm gfm-1 and rict-1, and then 

used Cox proportional-hazards models (Borgan, 2001; Cox, 1972; Therneau, 2023) to 
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investigate whether variants within these genes were associated with disease risk (Figure 

7A). In addition, given that rict-1 is the gene encoding the mTORC2 component Rictor, we 

also investigated the potential association of human RICTOR with diseases in the UK 

Biobank (Figure 7A). We explored the association between single nucleotide polymorphisms 

(SNPs) in GFM1 and RICTOR (selection based on criteria outlined in the STAR method) and 

the lifelong incidence of 19 diseases as well as all-cause mortality (referred to as “Death”) 

(Tables S6 and S7). 21 GFM1 SNPs showed an association with 13 diseases and death 

(Benjamini-Hochberg adjusted p-value < 0.05), and 59 RICTOR SNPs correlated with 18 

diseases and death. All associations showed an increased risk for diseases with the 

alternate (minor) allele. The majority of GFM1 SNPs were linked to myocardial infarction, 

cardiomyopathy, heart failure, Alzheimer’s disease/dementia, diabetes, kidney failure, liver 

disease, and death. Similarly, RICTOR SNPs were associated with these diseases as well 

as cerebrovascular disease, vascular dementia, and Parkinson’s disease (Figure 7B). Taken 

together, the identification of these SNPs of GFM1 and RICTOR offers new insights into the 

genetic underpinnings of many age-related disease diseases. Specifically, our results 

highlight distinct genomic regions implicated in the predisposition to cardiomyopathy and 

heart failure for GFM1, and heart failure and aortic aneurysm for RICTOR, diseases that 

negatively affect survival in humans. 

Discussion 

Here we present a multi-omics atlas of the worm RIAILs, as a resource to understand the 

regulation of longevity. The observed difference in average lifespan between the parental 

strains was consistent with previous studies (Gao et al., 2022; Lee et al., 2016). The RIAIL 

strains exhibited extensive lifespan variation with some strains exceeding that of the 

parentals suggesting the presence of transgressive segregation (Rieseberg et al., 1999). 

Research across species has revealed consistent trade-offs that influence lifespan and life-

history traits, with correlations observed between key phenotypic traits such as lifespan and 

fecundity (Luckinbill et al., 1984), development time and fecundity (Ghalambor et al., 2004), 
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development time and lifespan (Marchionni et al., 2020), as well as body size and longevity 

(Bou Sleiman et al., 2022; de Magalhaes et al., 2009). However, research exploring the 

correlations between longevity and early life history traits in wild C. elegans populations is 

relatively scarce (Anderson et al., 2011; Lee et al., 2016). We therefore tracked various life-

history phenotypes during the early life stage of the RIAILs, gathering data on developmental 

progression, reproductive capability, fertility, and behavioral activity. Only developmental 

time and egg emergence – both reflecting sexual maturity – had a weak to moderate 

correlation with lifespan, which is in line with the absence of any overlapping QTL between 

early life history and lifespan traits. These data are corroborated by a prior study in worms, 

which proposed that development, reproduction, and lifespan are under independent genetic 

regulation (Johnson, 1987), and work in D. melanogaster, where a disconnect between life-

history traits and lifespan was observed when examining variations in larval food conditions 

(Tu and Tatar, 2003; Zwaan et al., 1992). In a similar vein, fly selection experiments have 

yielded inconsistent results in terms of discovering genetic correlations between 

development time, body size, and longevity (Chippindale et al., 1994; Hoedjes et al., 2019; 

Zwaan et al., 1995a, b).  

Subsequently, we investigated whether multi-omic molecular characteristics, such as gene 

expression, protein, or lipid abundance, could be linked to lifespan in the RIAILs. We did not 

detect any significant correlations between individual transcript/protein/lipid and lifespan 

traits following multiple testing corrections possibly due to small marginal effects or more 

complex gene interactions. These correlations, however, strengthened and reached 

statistical significance when we performed the gene set enrichment analysis on genes 

ranked by the mRNA-lifespan associations, supporting the presence of numerous biological 

pathways that are potentially involved in the modulation of RIAIL lifespans. The lack of 

significant associations at the individual transcript level may not negate the possibility of a 

functional impact and physiological relevance at the pathway level, where complex 

interactions and synergistic effects may come into play. For instance, neuropeptide signaling 

and G protein-coupled receptor (GPCR) signaling were particularly notable among the 
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pathways that were positively associated with lifespan traits. This finding aligns with prior 

studies, where one demonstrated the role of the neuropeptide signaling pathway in 

extending C. elegans lifespan (Frakes et al., 2020; Savini et al., 2022), and another 

highlighted the influence of the GPCR pathway on longevity across humans and various 

animal models including worms (Lagunas-Rangel, 2022). Moreover, when we examined the 

genetic determinants of lifespan by QTL mapping, neuropeptide signaling and GPCR 

pathways were also upregulated dependent on the genotype at the identified lifespan locus 

on Chromosome II. This consistent pattern suggests that the association between the 

transcriptome and lifespan was influenced by this specific lifespan locus. While we identified 

intriguing gene sets associated with lifespan traits at the transcript level, these associations 

were not replicated in the analysis between protein expression and lifespan traits. The 

discrepancy between the transcriptomic and proteomic levels could be attributed to several 

factors, such as post-transcriptional regulation, protein turnover, limitations in the proteomic 

detection methods (Schubert et al., 2017), or differential effect of natural variation on the 

proteome (Kamkina et al., 2016). These discrepancies emphasize the importance of 

considering multiple omics layers to obtain a comprehensive understanding of biological 

processes and their role in determining phenotypic outcomes.  

Alterations in circulating lipid concentrations, triggered by genetic influences, lifestyle 

choices, and environmental conditions, can escalate the risk of age-associated disorders 

(Harshfield et al., 2021). We therefore also collected full lipidomic profiles of RIAILs and 

investigated whether complex lipids might also be associated with specific lifespan traits. We 

found that TGs, CLs, and PIs were over-represented in positive lipid-lifespan associations, 

while PEs were enriched in negative lipid-lifespan associations. It is notable that CLs, 

comprised mainly of polyunsaturated fatty acid chains, were found to be among those 

positively associated with lifespan traits. CLs are mitochondria-specific phospholipids 

essential for preserving mitochondrial integrity (Falabella et al., 2021). Due to their special 

cellular confinement, CLs are closely related to the maintenance of mitochondrial function, 

which connects CLs to longevity and the progression of age-related disease (Dai et al., 
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2021). This aligns with our findings that indicate a positive correlation between CLs and 

various lifespan traits. In contrast, the level of PEs consisting of less saturated fatty acids 

exhibited a negative correlation with lifespan traits. Although PEs are the second most 

prevalent glycerophospholipid in eukaryotic cells and positively regulate autophagy and 

lifespan in yeast and mammalian cells (Calzada et al., 2016; Rockenfeller et al., 2015), 

decreased levels of PE were associated with lower beta-amyloid accumulation in both 

mammalian cells and flies (Nesic et al., 2012), suggesting a complex role of PEs in 

regulating age-related effects and longevity. 

In addition to the multi-omic characterization of the RIAIL population, we performed QTL 

mapping and identified candidate lifespan loci on Chr. II, with strains carrying the CB4856 

genotype showing longer lifespans compared to those with the N2 genotype at this locus. 

This finding was particularly interesting considering that the N2 parental strain displayed a 

significantly longer lifespan compared to the CB4856 strain. RNAi against the seven 

candidate genes in that locus found that knockdown of gfm-1 and mltn-1 led to significant 

lifespan extensions. Our analyses suggest that the dose-dependent lifespan extension and 

reduction of age-related paralysis through gfm-1 inhibition could be mediated by the 

modulation of the mitochondrial stress response. Although we did not detect an mRNA or 

protein QTL for gfm-1 within the same lifespan locus, the experimental findings were in line 

with this gene encoding the G elongation factor mitochondrial 1 and the upregulation of gene 

sets associated with mitochondrial ribosomes at this locus in the RIAILs population. Given 

that mltn-1 is specific to C. elegans, its translational relevance to human studies is uncertain. 

Another candidate that is known as a longevity gene is rict-1. As an essential component of 

the TORC2 complex, rict-1 (Rictor) is vital for development, which likely explains why worms 

subjected to rict-1 RNAi have shortened lifespans. Several studies, however, have 

demonstrated an increased lifespan in worms fed with rict-1 RNAi when TORC2 activity is 

attenuated specifically during adulthood (Mizunuma et al., 2014; Robida-Stubbs et al., 2012). 

To evaluate the potential clinical relevance of the selected candidate genes that are 

conserved in humans, we took advantage of the UK biobank and demonstrated that variants 
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in the human GFM1 and RICTOR genes were associated with several age-related and 

metabolic diseases, including heart disease, dementia, diabetes, renal failure, liver disease, 

all of which contribute to shorter life expectancy due to their detrimental effects on cardiac, 

metabolic and overall health and organ function.  

In summary, our study unveiled a specific genetic locus that plays a role in determining 

lifespan variation within the RIAIL population. Furthermore, we identified known and novel 

longevity modulators, including rict-1, gfm-1, and mltn-1, which we validated experimentally. 

The comprehensive multi-layered characterization of the RIAIL population is now also made 

accessible through an open-access web resource (https://lisp-lms.shinyapps.io/RIAILs/), 

which provides a valuable tool for investigating the intricate relationships between 

biochemical and whole-body phenotypes and for hypothesis generation for the scientific 

community. 

Limitations of the study 

We note several limitations and future directions of our work. First, the relatively low sample 

size of worms (60 worms/strain) used for lifespan analysis restricts our ability to get an 

accurate estimate of late-life mortality, especially for the maximal lifespan of the strain 

(Brooks et al., 1994; Carey et al., 1992). This likely undermines our statistical power in 

evaluating the associations between traits and late-lifespan phenotypes. Second, the life-

history trait screening was done in liquid culture using the microfluidics device, while the 

lifespan assays were performed on plates; we can hence not exclude a possible influence of 

different culture conditions on traits. Third, the gathered molecular characteristics 

encompass aggregated data at the strain level and are limited to a single early time point. 

However, expanding the data collection to include later time points would enable the 

exploration of age-related dynamics associated with these traits. Finally, the experimental 

validations of gfm-1, rict-1, and mltn-1 were conducted using RNAi knockdown in the N2 

Bristol background. Moving forward, an important avenue for further investigation would 
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involve utilizing CRISPR technology to examine the specific variant of gfm-1 in the RIAILs 

population.  
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Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Bacterial and virus strains  
Escherichia coli: OP50 Caenorhabditis 

Genetics Center 
RRID:WB-STRAIN:OP50 

Escherichia coli: HT115 (DE3) Caenorhabditis 
Genetics Center 

RRID:WB-STRAIN:HT115(DE3) 

Y81G3A.4 RNAi Ahringer II-8H23 
col-86 RNAi Vidal 11029-F11 
rict-1 RNAi Vidal 11038-B10 
pqn-32 RNAi Ahringer II-8J03 
gfm-1 RNAi Vidal 10015-F6 
bath-45 RNAi Vidal 11032-F1 
mltn-1 RNAi Ahringer II-10C18 
Chemicals, peptides, and recombinant proteins 
5-Fluorouracil (5-FU) Sigma-Aldrich Cat# F6627 
Ampicillin sodium salt Sigma-Aldrich Cat# A9518 
Carbenicillin disodium salt Sigma-Aldrich Cat# C1389 
IPTG AppliChem Cat# A1008,0005 
TriPure Isolation Reagent Roche Cat# 11667165001 
Methanol (Optima™ LC/MS Grade) Fisher Chemical Cat# A454SK-4 
Methyl tert-butyl ether (MTBE) Sigma-Aldrich Cat# 443808 
18MΩ MilliQ water Made in house  
Stainless metal bead (5mm diameter) Qiagen Cat# 69989 
Acetonitrile (Optima™ LC/MS Grade) Fisher Chemical Cat# A955-4 
Urea Sigma-Aldrich Cat# U5378 
Tris(2-carboxyethyl)phosphine Sigma-Aldrich Cat# C4706 
2-chloroacetamide Sigma-Aldrich Cat# C4706 
Formic acid, Pierce™ Thermo Scientific Cat# PI28905 
Trypsin Promega Cat# V5113 
96 well desalting plates (10 mg/well, 
StrataTM-X 33 μm Polymeric Reversed 
phase) 

Phenomenex Cat# 8E-S100-AGB 

Ammonium acetate (LiChropur™) Sigma-Aldrich Cat# 73594 
Acetic acid Sigma-Aldrich Cat# 695092 
Ammonium hydroxide Sigma-Aldrich Cat# 338818 
2-Propanol (Optima™ LC/MS grade) Fisher Chemical Cat# A461212 
Acetic acid Sigma-Aldrich Cat# 695092 
Critical commercial assays 
NucleoSpin RNA, Mini kit for RNA 
purification 

Macherey-Nagel Cat# 740955.250 

Seahorse Xfe96 Extracellular Flux 
Assay kit 

Agilent Cat# 102416-100 

RNA using the Reverse Transcription Kit Qiagen Cat# 205314 
LightCycler 480 SYBR Green I Master 
kit 

Roche Cat# 04887352001 

Quantitative colorimetric peptide assay, 
Pierce™ 

Thermo Scientific Cat# 23275 

Deposited data 
C. elegans RNA-seq data This paper The Shiny app; GSE252593 
C. elegans proteomics data This paper The Shiny app 
C. elegans lipidomics data This paper  The Shiny app 
Transcript – lifespan associations This paper Table S1 
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GSEA of transcript – lifespan 
associations 

This paper Table S2 

Protein – lifespan associations This paper Table S3 
Lipid – lifespan associations This paper Table S4 
QTL for lifespan and life history traits This paper Table S5 
UKBB database analysis This paper Table S6 and S7 
Experimental models: Organisms/strains 
C. elegans: N2 Bristol Caenorhabditis 

Genetics Center 
(CGC); 
https://cbs.umn.edu/cg
c/home  

CGC:10570 
RRID:WB-STRAIN: 
N2_(ancestral) 

C. elegans: CB4856 Hawaii Caenorhabditis 
Genetics Center 
(CGC); 
https://cbs.umn.edu/cg
c/home  

CGC:7525 
RRID:WB-STRAIN:CB4856 

C. elegans: 85 RIAILs, from 
QX1430xCB4856 RIAILs (QX240-
QX598) 

Andersen’s lab  
https://andersenlab.org
/Research/Reagents/  

 

C elegans: SJ4100 [zcIs13(hsp-
6p::GFP)] 

Caenorhabditis 
Genetics Center 
(CGC); 
https://cbs.umn.edu/cg
c/home 

CGC: 23223 
RRID:WB-STRAIN:SJ4100 

Oligonucleotides 
atfs-1 
Fw: GAATAAGCCTCTATGATCCGATG 

Sigma-Aldrich N/A 

atfs-1 
Rv: GGTTGAAGCTGGGAAAGTGA 

Sigma-Aldrich N/A 

hsp-6  
Fw: AGAGCCAAGTTCGAGCAGAT 

Sigma-Aldrich N/A 

hsp-6  
Rv: TCTTGAACAGTGGCTTGCAC 

Sigma-Aldrich N/A 

gpd-2 
Fw: AAGGCCAACGCTCACTTG AA 

Sigma-Aldrich N/A 

gpd-2 
Rv: GGTTGACTCCGACGACGA AC 

Sigma-Aldrich N/A 

pmp-3 
Fw: GTTCCCGTGTTCATCACTCAT 

Sigma-Aldrich N/A 

pmp-3 
Rv: ACACCGTCGAGAAGCTGTAGA 

Sigma-Aldrich N/A 

Software and algorithms 
GraphPad Prism v8 GraphPad Software, 

Inc. 
https://www.graphpad.com/scientific
software/prism/   

Maxquant (version 2.0.3.1) Max-Planck-Institute of 
Biochemistry 

https://www.maxquant.org/  

R (version 4.1.0) The R Foundation https://www.r-project.org/  
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Caenorhabditis elegans Natural 
Diversity Resource 

Caenorhabditis 
elegans Natural 
Diversity Resource 

https://elegansvariation.org  
Soft filtered variant file was retrieved 
from: 
http://storage.googleapis.com/elega
nsvariation.org/releases/20200815/v
ariation/WI.20200815.soft-
filter.vcf.gz.  
Hard filtered variant file was 
retrieved from: 
http://storage.googleapis.com/elega
nsvariation.org/releases/20200815/v
ariation/WI.20200815.hard-
filter.vcf.gz.  

Adobe Illustrator 2023 Adobe https://www.adobe.com/products/illu
strator.html  

survival survival https://cran.r-
project.org/web/packages/survival/ 

FastQC FastQC https://www.bioinformatics.babraha
m.ac.uk/projects/fastqc/  

MultiQC MultiQC https://multiqc.info/  
Genome Analysis Toolkit (GATK) Genome Analysis 

Toolkit (GATK) 
https://gatk.broadinstitute.org/ 

onemap onemap https://cran.r-
project.org/web/packages/onemap/i
ndex.html 

polycor polycor https://cran.r-
project.org/web/packages/polycor/in
dex.html 

reshape2 reshape2 https://cran.r-
project.org/web/packages/reshape2/
index.html 

DESeq2 DESeq2 https://bioconductor.org/packages/re
lease/bioc/html/DESeq2.html  

edgeR edgeR https://bioconductor.org/packages/re
lease/bioc/html/edgeR.html 

qtl2 qtl2 https://cran.r-
project.org/web/packages/qtl2/ 

limma limma https://bioconductor.org/packages/re
lease/bioc/html/limma.html 

FactoMineR FactoMineR https://cran.r-
project.org/web/packages/FactoMin
eR/index.html 

DirichletReg DirichletReg https://cran.r-
project.org/web/packages/DirichletR
eg/index.html  

plotly plotly https://cran.r-
project.org/web/packages/plotly/inde
x.html 

cowplot cowplot https://cran.r-
project.org/web/packages/cowplot/in
dex.html 

RColorBrewer RColorBrewer https://cran.r-
project.org/web/packages/RColorBr
ewer/index.html 

openxlsx openxlsx https://cran.r-
project.org/web/packages/openxlsx/i
ndex.html 

dplyr dplyr https://CRAN.R-
project.org/package=dplyr 
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xlsx xlsx https://CRAN.R-
project.org/package=xlsx 
 

clusterProfiler clusterProfiler https://bioconductor.org/packages/re
lease/bioc/html/clusterProfiler.html 

enrichplot enrichplot https://bioconductor.org/packages/re
lease/bioc/html/enrichplot.html 

ggrepel ggrepel https://cran.r-
project.org/web/packages/ggrepel/in
dex.html 

ggplot2 ggplot2 https://cran.r-
project.org/web/packages/ggplot2/in
dex.html 

UpSetR UpSetR https://cran.r-
project.org/web/packages/UpSetR/in
dex.html 

lme4 lme4 https://cran.r-
project.org/web/packages/lme4/inde
x.html 

coxme coxme https://cran.r-
project.org/web/packages/coxme/  

lmerTest lmerTest https://cran.r-
project.org/web/packages/lmerTest/i
ndex.html  

GenomicFeatures GenomicFeatures https://bioconductor.org/packages/re
lease/bioc/html/GenomicFeatures.ht
ml 

org.Ce.eg.db org.Ce.eg.db https://bioconductor.org/packages/re
lease/data/annotation/html/org.Ce.e
g.db.html 

BSgenome.Celegans.UCSC.ce11 BSgenome.Celegans.
UCSC.ce11 

https://bioconductor.org/packages/re
lease/data/annotation/html/BSgeno
me.Celegans.UCSC.ce11.html 

bslib bslib https://cran.r-
project.org/web/packages/bslib/  

shiny shiny https://cran.r-
project.org/web/packages/shiny/  

shinyWidgets shinyWidgets https://cran.r-
project.org/web/packages/shinyWidg
ets/  

shinydashboard shinydashboard https://cran.r-
project.org/web/packages/shinydash
board/  

shinydashboardPlus shinydashboardPlus https://cran.r-
project.org/web/packages/shinydash
boardPlus/  

shinyalert shinyalert https://cran.r-
project.org/web/packages/shinyalert/  

shinybusy shinybusy https://cran.r-
project.org/web/packages/shinybusy
/  

shinycssloaders shinycssloaders https://cran.r-
project.org/web/packages/shinycsslo
aders/  

biomaRt 2.58.0 biomaRt https://bioconductor.org/packages/re
lease/bioc/html/biomaRt.html 

stringr 1.5.1 stringr https://cran.r-
project.org/package=stringr 

purrr 1.0.2 purrr https://cran.r-
project.org/package=purrr 
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data.table 1.14.8 data.table https://cran.r-
project.org/package=data.table 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Bacterial strains and C. elegans strains  

The Bristol strain (N2) and Hawaii strain (CB4856) were used as the wild-type strains, and 

SJ4100 [zcIs13(hsp-6p::GFP)], DA465 [eat-2(ad465)], [sir-2.1(ok434)], CB1370 [daf-

2(e1370)], RB754 [aak-2(ok524)], and GR2245 [skn-1(mg570)] were obtained from the 

Caenorhabditis Genetics Center (CGC; Minneapolis, MN). E. coli OP50 and HT115 strains 

were also obtained from the CGC. RNAi clones against Y81G3A.4, col-86, rict-1, pqn-32, 

gfm-1, bath-45, and mltn-1, were obtained from the Ahringer and Vidal libraries and verified 

by sequencing before use (detailed in the Key Resource Table). Worms were cultured and 

maintained at 20°C and fed with E. coli OP50 on Nematode Growth Media (NGM) plates 

unless otherwise indicated.  

METHOD DETAILS 

Lifespan and paralysis measurements 

Lifespan was measured as described (Mouchiroud et al., 2011). In general, 5-10 L4 worms 

of each worm strain were transferred onto RNAi plates (containing 2 mM IPTG and 25 

mg/mL carbenicillin) seeded with E. coli HT115 bacteria or RNAi bacteria. After the F1 

progenies reached the last larval stage L4, worms were then transferred onto RNAi plates 

containing 10 µM 5FU. Approximately 60 worms were used for each condition and scored 

every other day. For the validation experiments of the candidate genes, 80 worms were used 

for each condition.  

Paralysis was manually assessed through the previously described poking method (McColl 

et al., 2012), with a minimum of 80 worms analyzed per condition. 

Phenotyping by microfluidics  
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The phenotypic readouts reflecting development, growth dynamics, fertility, and reproduction 

of different RIAIL strains were collected with the SydLab robotic microfluidic-based platform 

developed by Nagi Bioscience SA, which allows high-throughput and high-content C. 

elegans screenings. A synchronized population of C. elegans was injected into microfluidic 

chips at the L1 larval stage. Worms were confined within dedicated microfluidic chambers 

and were continuously fed with freeze-dried E. coli OP50 solution. The images of each 

chamber were recorded every hour for the whole duration of the experiment. At the end of 

the experiment the collected images were processed by a set of software modules (also 

developed by Nagi Bioscience) based on machine learning algorithms, allowing a fully 

automated and standardized way for feature extraction and data analysis. The experiments 

were performed at 23°C. 

Sample collection for RNA-seq, proteomics, and lipidomics analyses 

Worms of each RIAIL strain were cultured on plates seeded with E. coli OP50, and then 

worm eggs were obtained by alkaline hypochlorite treatment of gravid adults. A 

synchronized L1 population was obtained by culturing the egg suspension in sterile M9 

butter overnight at room temperature. Approximately 2000 L1 worms of each RIAIL strain 

were transferred onto plates seeded with E. coli HT115. L4 worms were harvested after 2.5 

days with M9 buffer and washed three times. Worm pellets were immediately submerged in 

liquid nitrogen for snap-freezing and stored at -80°C until use.  

RNA extraction and RNA-seq data analysis 

On the day of the RNA extraction, 1 mL of TriPure Isolation Reagent was added to each 

sample tube. The samples were then frozen and thawed quickly eight times with liquid 

nitrogen and a 37 ºC water bath to rupture worm cell membranes. Total worm RNA was 

extracted by using a column-based kit from Macherey-Nagel. RNA-seq was performed by 

BGI with the BGISEQ-500 platform. FastQC (version 0.11.9) was used to verify the quality of 

the reads (de Sena Brandine and Smith, 2019). Low-quality reads were removed and no 

trimming was needed. Alignment was performed against worm genome (WBcel235 sm-

toplevel) following the STAR (version 2.73a) manual guidelines (Dobin et al., 2013). The 
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STAR gene-counts for each alignment were analyzed for differentially expressed genes 

using the R package DESeq2 (version1.32.0)(Love et al., 2014) using a generalized-linear 

model. Count data were normalized to counts per million (CPM) using edgeR (version 3.36.0) 

for visualizations of expression data. Biological process (BP) overrepresentation analysis 

and Gene Set Enrichment Analysis (GSEA) were performed using Clusterprofiler (version 

4.2.2) and org.Ce.eg.db (version 3.14.0). A principal component analysis was also 

generated to explore the primary variation in the data (Lê et al., 2008; Risso et al., 2014). 

For RT-qPCR, worms were collected and total RNA was extracted as described for the RNA-

seq sample preparation. cDNA synthesis was conducted from total RNA by the Reverse 

Transcription Kit (Qiagen, Cat# 205314). qPCR was performed using the Light Cycler 480 

SYBR green I Master kit (Roche, Cat# 04887352001). The primers used for RT-qPCR are 

listed in the Key Resource Table. pmp-3 was used as housekeeping controls. 

Lipid extraction  

The extraction procedures have been described previously (Zhu et al., 2023). All reagents 

were chilled on ice and samples were maintained at ≤ 4°C during the extraction procedure. A 

metal bead was added to each sample. Next, 500 µL M1 (tert-Butyl methyl ether:Methanol = 

3:1, v:v) was added to each tube and vortexed for 2 minutes. 325 µL M2 (H2O: Methanol = 

3:1, v:v) was added to each tube. Samples were vortexed briefly. Then, samples were flash-

freezed in liquid nitrogen and thawed on ice. This step was done three times to facilitate cell 

breakage. Samples were transferred to a bead-beater and shaken at 1/25 s frequency for 5 

min, and this process was done three times. The samples were then centrifuged for 10 min 

at 12,500 g at 4˚C. For downstream lipid analysis, 200 µL of the organic layer (upper phase) 

was transferred to a glass autosampler vial and dried by vacuum centrifugation. Remaining 

protein pellets on the bottom were kept on ice until further digestion. 

Once dried, organic extracts intended for lipid analysis were resuspended in 100 µL 65:30:5 

Isopropanol:Acetonitrile:Water and vortexed for 20 s prior to analysis by Liquid 

chromatography–mass spectrometry (LC-MS). Aqueous extracts intended for metabolomic 
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analysis were resuspended in 50 µL 1:1 Acetonitrile (ACN):Water and also vortexed for 20 s 

prior to analysis by LC-MS. 

Protein digestion  

Remaining protein pellets on the bottom were washed with 1 mL ACN and centrifuged at 10 

kg for 3 min at 4 ˚C. Supernatant ACN was aspirated and the protein pellets sit for 10-15 min 

at room temperature, or vacuum dried briefly to dry up the liquid in the bottom of the tube. 

300 μL lysis buffer (8M urea with 100 mM tris(2-carboxyethyl)phosphine, 40 mM 

chloroacetamide and 100 mM tris (pH = 8.0) was added to each sample and vortex till the 

protein pellets were fully dissolved. 5 μg LysC was added to each sample with 

protein:enzyme ratio 70:1 (digestion lasted overnight at room temperature). Trypsin at 70:1 

protein:enzyme was added to each sample after diluting the lysis buffer to 2 M urea and 

digestion lasted for six hours at room temperature. Desalting was carried out with 96 well 

desalting plates. A blank well between any two samples was reserved to avoid cross 

contamination. Desalting started with equilibrating the desalting wells with 1 mL 100% ACN, 

followed by 1 mL 0.2% FA. Acidified peptide mixture was loaded to the 96 well desalting 

plate, followed by 2 mL 0.2% FA wash. Peptides were eluted into a 96-well collection plate 

with 600 μL 80% ACN with 0.2% FA. Peptides were vacuum dried down and stored in -80˚C 

freezer until resuspension with 0.2% FA. After resuspension, peptide concentration was 

measured using a quantitative colorimetric peptide assay. 

LC-MS setup 

Proteomics: Peptides were separated on an in-house prepared high pressure reversed 

phase C18 column (Shishkova et al., 2018). Briefly, a 75-360 μm inner-outer diameter bare-

fused silica capillary was packed with 1.7 μm diameter, 130 Å pore size, Bridged Ethylene 

Hybrid C18 particles (Waters) under high pressure of 25K psi to a final length of ~40 cm. 

The column was installed onto a Thermo Ultimate 3000 nano LC and heated to 50 °C for all 

runs. Mobile phase buffer A was composed of water with 0.2% FA. Mobile phase B was 

composed of 70% ACN with 0.2% FA. Samples were separated with a 120 min LC method: 

peptides were loaded onto the column for 13 min at 0.37 μL/min. Mobile phase B increased 
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from 0 to 6% in 13 min, then to 53% B at 104 min, 100% B at 105 min and held for 4 min at 

100% B, decreased to 0% B at 110 min, and a 10 min re-equilibration at 0% B. 

Eluting peptide fragments were ionized by electrospray ionization and analyzed on a Thermo 

Orbitrap Eclipse. Survey scans of precursors were taken from 300 to 1350 m/z at 240�000 

resolution. Maximum injection time was 50 ms and automatic gain control (AGC) target was 

1E6 ions. Tandem MS was performed using an isolation window of 0.5 Th with a dynamic 

exclusion time of 10 s. Selected precursors were fragmented using a normalized collision 

energy level of 25%. MS2 AGC target was set at 2E4 ions with a maximum injection time of 

14 ms. Scan range was 150-1350 m/z. Scans were taken at the Turbo speed setting and 

only peptides with a charge state of +2 or greater were selected for fragmentation. 

Lipidomics: Extracted lipids were separated on an Acquity CSH C18 column (100 mm x 2.1 

mm x 1.7 µm particle size; Waters) at 50°C using the following gradient: 2% mobile phase B 

from 0-2 min, increased to 30% B over next 1 min, increased to 50% B over next 1 min, 

increased to 85% over next 14 min, increased to 99% B over next 1 min, then held at 99% B 

for next 7 min (400 µL/min flow rate). Column re-equilibration of 2% B for 1.75 min occurred 

between samples. For each analysis 10 µL/sample was injected by autosampler. Mobile 

phase A consisted of 10 mM ammonium acetate in 70:30 (v/v) acetonitrile:milliQ H2O with 

250 µL/L acetic acid. Mobile phase B consisted of 10 mM ammonium acetate in 90:10 (v/v) 

isopropanol:ACN with 250 µL/L acetic acid. 

The LC system (Vanquish Binary Pump, Thermo Scientific) was coupled to a Q Exactive 

Orbitrap mass spectrometer through a heated electrospray ionization (HESI II) source 

(Thermo Scientific). Source and capillary temperatures were 300°C, sheath gas flow rate 

was 25 units, aux gas flow rate was 15 units, sweep gas flow rate was 5 units, spray voltage 

was |3.5 kV| for both positive and negative modes, and S-lens RF was 90.0 units. The MS 

was operated in a polarity switching mode; with alternating positive and negative full scan 

MS and MS2 (Top 2). Full scan MS were acquired at 17,500 resolution with 1 x 106 AGC 

target, max ion accumulation time of 100 ms, and a scan range of 200-1600 m/z. MS2 scans 

were acquired at 17,500 resolution with 1 x 105 AGC target, max ion accumulation time of 50 
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ms, 1.0 m/z isolation window, stepped normalized collision energy (NCE) at 20, 30, 40, and 

a 10.0 s dynamic exclusion. 

The LC system (Vanquish Binary Pump, Thermo Scientific) was coupled to a Q Exactive HF 

Orbitrap mass spectrometer through a heated electrospray ionization (HESI II) source 

(Thermo Scientific). Source and capillary temperatures were 350°C, sheath gas flow rate 

was 45 units, aux gas flow rate was 15 units, sweep gas flow rate was 1 unit, spray voltage 

was 3.0 kV for both positive and negative modes, and S-lens RF was 50.0 units. The MS 

was operated in a polarity switching mode; with alternating positive and negative full scan 

MS and MS2 (Top 10). Full scan MS were acquired at 60K resolution with 1 x 106 AGC 

target, max ion accumulation time of 100 ms, and a scan range of 70-900 m/z. MS2 scans 

were acquired at 45K resolution with 1 x 105 AGC target, max ion accumulation time of 100 

ms, 1.0 m/z isolation window, stepped NCE at 20, 30, 40, and a 30.0 s dynamic exclusion. 

Data analysis for proteomics and lipidomics  

Proteomics: LC-MS files for proteomics were searched in Maxquant (version 2.0.3.1). 

Original outputs from Maxquant were inspected and potential contaminant proteins, protein 

groups that contain proteins identified with decoy peptide sequence, and those identified 

only with modification site were removed. LFQ intensities were used as the quantification 

metric.  

Lipidomics: LC-MS files for lipidomics were processed using Compound Discoverer 3.1 

(Thermo Scientific) and LipiDex (Hutchins et al., 2018). All peaks with a 1.4-23 min retention 

time and 100 Da to 5000 Da MS1 precursor mass were aggregated into compound groups 

using a 10 ppm mass tolerance and 0.4 retention time tolerance. Peaks were excluded if 

peak intensity was less than 2 x 106, peak width was greater than 0.75 min, signal-to-noise 

ratio was less than 1.5, or intensity was < 3-fold greater than blank. MS2 spectra were 

searched against an in-silico generated spectral library containing 35,000 unique molecular 

compositions of 48 distinct lipid classes (Hutchins et al., 2019). Spectra matches with a dot 

product score > 500 and reverse dot product score > 700 were retained for further analysis. 

Lipid MS/MS spectra that contained < 75% interference from co-eluting isobaric lipids, eluted 
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within a 3.5 median absolute retention time deviation (M.A.D. RT) of each other, and were 

found within at least 4 processed files were used for identification at the individual fatty acid 

substituent levels of structural resolution. If individual fatty acid substituents were unresolved, 

then identifications were made with the sum of the fatty acid substituents. Peak intensities 

were normalized with the peptide amount to correct for different amounts of starting 

materials across the RIAIL panel.  

Survival analysis and lifespan traits extraction 

The survfit function of the survival (version 3.5-0) R package was used to analyze survival 

data. The following formula was used “survival::Surv(Age_of_death, status) ~ Strain” with 

default parameters. Parental strains (N2 and CB4856) lifespan from each batch was 

compared to check for possible batch effects. No batch correction was performed. The 

quantile function was used to obtain the average lifespan as well as the 25%, 50% and 75% 

mortality. 

Life-history trait batch correction 

The lmer function of the lmerTest (version 3.1-3) R package was used to adjust for batch 

effects in data collection. The following formula was used “value ~ (1|batch/channel)” with 

default parameters. 

Statistical analyses 

In the analysis of continuous variables across groups, we computed p-values using two-

sided Student's t-tests to ascertain statistical significance (Figures 5B, 5C, and S6C). To 

explore relationships among variables we used Pearson correlations (Figures 2F, 2G, 3F, 

and S8A). Resulting p-values (where applicable) were corrected for multiple testing using the 

Benjamini–Hochberg false discovery rate.  

Dirichlet regression analysis 

The DirichletReg (version 0.7-1) R package was used to analyze the shape proportion data 

and generate visualizations (Figures 2H and S2). Univariate analysis among variables was 

performed with default parameters following package documentation. 

Variant calling and genetic map construction 
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Using the RNA-seq data, we performed variant calling employing the Genome Analysis 

Toolkit (GATK) (version 4.2.4.0) (Brouard et al., 2019) following their best practices workflow 

(Figure S7) (Van der Auwera et al., 2013) to genotype the 85 RIAILs strains. In brief, RNA-

seq reads were mapped to the reference genome using STAR and prepared for variant 

calling (Mark Duplicates, SplitNCigarReads, Base Quality Recalibration). Then short variants 

(SNPs and Indels) were called using GATK’s HaplotypeCaller. Next, we exploited the design 

of the study (parental replicates and strain under control and treated conditions) to obtain a 

high-confidence set of germline variants. Comparison of identified variants with publicly 

available variant information for C. elegans (https://www.elegansvariation.org/) and previous 

genetic work on the RIAILs allowed us to perform quality control checks on the obtained 

variants (Figures S7 and S8). We then used the onemap (version 2.8.2) (Margarido et al., 

2007) software to construct a genetic map for subsequent QTL mapping. For comparison to 

known variants (Figure S7B), variants for the CB4856 strain were retrieved from the 

“Caenorhabditis elegans Natural Diversity Resource” (https://elegansvariation.org/). Soft 

filtered variant file was retrieved from 

http://storage.googleapis.com/elegansvariation.org/releases/20210121/variation/WI.2021012

1.hard-filter.vcf.gz. Hard filtered variant file was retrieved from 

http://storage.googleapis.com/elegansvariation.org/releases/20210121/variation/WI.2021012

1.soft-filter.vcf.gz. These variants were then filtered for the CB4856 strain keeping only 1/1 

variants with high impact consequence. 

Association mapping and gene-set enrichment analysis 

We used the lmekin function of the coxme R package as it allows one to model the 

correlation structure of the random effects. Analysis of deviance for lmekin from 

https://aeolister.wordpress.com/2016/07/07/likelihood-ratio-test-for-lmekin/ was used to 

calculate Likelihood ratio between the null model “value ~ 1 + (1|kinshipCov)” and the model 

of interest “value ~ 1 + predictorValue + (1|kinshipCov)”. An INT transformation was to 

transform the data before mapping. The Benjamini-Hochberg procedure was selected for 
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multiple-testing correction. As the traits mapped are not independent, such a correction 

would be over-correcting. GSEA analysis was performed using Clusterprofiler (version 4.2.2) 

and org.Ce.eg.db (version 3.14.0). The used gene list was ranked by the signed LOD-value 

obtained from the association mapping analysis. 

Lipid class over-representation analysis 

All measured lipid species were used to define lipid class sets. These were used along with 

the enricher function from the clusterProfiler (version 4.2.2) R package to conduct lipid class 

enrichment analysis (Figure S5), which is designed to accept customized annotations 

through the TERM2GENE parameter. The Benjamini-Hochberg procedure was selected for 

multiple-testing correction. Enrichment was tested for each lifespan trait (average lifespan, 

25%, 50% and 75% mortality) for two groups of lipids: positively associated (non-adjusted p-

value < 0.05 & association coefficient > 0) and negatively associated (non-adjusted p-value 

< 0.05 & association coefficient < 0). 

Quantitative trait locus (QTL) mapping 

The qtl2 (version 0.34) R package (Broman et al., 2019) was used to perform QTL mapping 

of all phenotypic and molecular traits. An INT transformation was used to transform the data 

before mapping. Gene codes were encoded as N2 = 1, CB4856 = 2 and heterozygotic 

(N2/CB4856) = 3. Crosstype was specified as “risib”. Pseudomarkers were inserted into the 

genetic map with a step of 1 and default values for other parameters. Conditional genotype 

probabilities, kinship and genome scans were performed using qtl2 package functions with 

default parameters. Significance thresholds for each trait were obtained through permutation 

testing using the scan1perm qtl2 function with 1000 permutations. Finally, the find_peaks 

function was used to identify significant QTLs with a threshold of 0.05 and a drop of 0.5. 

Lifespan locus differential analysis and gene-set enrichment analysis 

Concerning Figures 5B and 5C, RIAIL strains were split into two groups based on their 

genotype at position 13,121,591 on Chr. II and 12,125,475 on Chr. V. Using the package 

limma (version 3.50.1) we performed differential expression analysis between the two 

groups of RIAILs. GSEA analysis was performed using Clusterprofiler (version 4.2.2) and 
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org.Ce.eg.db (version 3.14.0). The Benjamini-Hochberg procedure was selected for multiple-

testing correction. The used gene list was ranked by the signed p-value obtained from the 

differential expression analysis. 

UK Biobank GFM1 and RICTOR SNP-disease time-to-event analysis 

The time-to-event analysis was performed in the UK Biobank, a population cohort of 

~500,000 participants from the United Kingdom (Sudlow et al., 2015) (project 48020). The 

sample analyzed was restricted to participants of European ancestry (as determined in Pan-

UKBB, https://pan.ukbb.broadinstitute.org) who were unrelated, as determined by their 

inclusion in the original calculation of the genetic principal components (field 22020). Time-

to-event was measured from birth to the first occurrence of the event. We selected 19 

diseases to include as events in addition to death, listed in the table below. Variants were 

selected from whole-exome sequencing, where at least 5 minor alleles were detected. These 

selection criteria resulted in 339’967 individuals and 821 and 577 SNPs for GFM1 and 

RICTOR, respectively. 

The time-to-event analysis was done with Cox proportional hazards in R using the Coxph 

function from the survival packages (Borgan, 2001; Therneau, 2023). The top 40 genetic 

principal components, sex, and the batch (specifically the initial 50k released, field 32050) 

were included as covariates. In some cases, the maximum likelihood of the method failed to 

converge, generally due to no events being recorded in individuals with alternate alleles, in 

which case the results were marked as unreliable for that SNP-event combination. These 

were retained only for the purpose of multiple-testing correction, which was performed using 

the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). 

Event ICD10 code(s) Number 
of events 

Myocardial infarction I21, I22, I24 18,016 
Cardiomyopathy I42 2,584 
Heart failure I50 14,097 
Chronic ischaemic heart disease I25 37,124 
Aortic aneurysm and dissection I71 3,733 
Cerebrovascular disease G45, I60-I64, I67, I68 23,710 
Vascular dementia F01 1,493 
Parkinson disease G20, G23 3,228 
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Secondary parkinsonism G21 226 
Alzheimer’s disease/dementia F00, F02, F03, G30 5,582 
Multiple sclerosis and other demyelinating diseases of 
the central nervous system 

G35, G37 2,036 

Insulin-dependent diabetes mellitus E10 3420 
Non-insulin-dependent diabetes mellitus E11, E13, E14 31,663 
Acute pancreatitis K85 3,391 
Acute renal failure N17 17,241 
Chronic renal failure N18 20,369 
Alcoholic liver disease K70 1,627 
Fibrosis and cirrhosis of the liver K74 2,044 
Other inflammatory liver diseases K75 2,242 
Death - 25,915 
 

Figures and visualizations 

Data visualization was performed using ggplot2 (version 3.4.2). The resulting p-values 

(where applicable) were corrected for multiple testing using the Benjamini–Hochberg false 

discovery rate.  Clusterprofiler (version 4.2.2) was used to generate graph representations of 

enrichment results (Figures 3D and S4D). The R package enrichplot (version 1.14.2) was 

used to generate running GSEA plots (Figure 3E). UpSetR (version 1.4.0) was used to 

generate upset plots (Figures 3C, S3, and S4C). 

Data availability 

The RNA-Seq data generated in this study have been deposited in the GEO database 

(GSE252593). The remaining data generated in this study are provided in the Source Data 

files. Scripts for analysis and figure generation have been deposited in a GitHub 

(https://github.com/auwerxlab/Project_RIAILs) repository along with additional data used in 

this work. 

Fluorescent image for assessing the UPRmt activation 

RNAi bacteria were cultured overnight in lysogeny broth (LB) medium containing 100 mg/mL 

ampicillin at 37°C. Then the bacteria were five times concentrated and seeded onto RNAi 

plates. Random L4/young adult worms were picked onto the RNAi bacteria-seeded plates 

and cultured at 20°C until their progenies reached the young adult stage. 6 - 10 worms were 

then randomly picked in a drop of 20 mM tetramisole (Cat. T1512, Sigma) and then aligned 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.15.575638doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/


 37

on an empty NGM plate. Fluorescent images, with the same exposure time for each 

condition, were captured using a Nikon SMZ1000 microscope. 

Real-time quantitative PCR (RT-qPCR) 

For qRT-PCR, worms were cultured and total RNA was extracted as described for the RNA-

seq sample preparation. cDNA synthesis was performed using the Qiagen Reverse 

Transcription Kit (205314) from the extracted RNA samples. The qPCR was then conducted 

with the Roche Light Cycler 480 SYBR Green I Master kit (Cat. 04887352001). The specific 

primers utilized are detailed in the key resources table, with pmp-3 primers serving as 

housekeeping controls. 

OCR measurements by Seahorse 

Oxygen consumption rate (OCR) was assessed using the Seahorse XF96 (Seahorse 

Bioscience), following the protocol outlined in (Koopman et al., 2016). Briefly, a synchronized 

culture of ~100 worms was harvested on day 1 of adulthood with sterile M9 buffer. After 

three washes in the M9 buffer, the worms were transferred to a 96-well Seahorse plate, 

where their OCR was measured six times to determine mitochondrial activity for each 

condition at basal level and another six times measurement after adding 10 µM FCCP as the 

final concentration. 

QUANTIFICATION AND STATISTICAL ANALYSIS  

No statistical methods were applied to pre-determine worm sample size. Comparison 

between more than two groups was assessed by using a One-way ANOVA test. Prism 8 

(GraphPad Software) was used for statistical analysis of all lifespan, qRT-PCR, OCR, and 

paralysis experiments. Variability in panels is given as the s.e.m. All p<0.05 were considered 

to be significant. (****p<0.0001; ***p<0.001; **p<0.01; *p<0.05; n.s., not significant. For 

lifespan, and OCR measurement in worms, sample size was determined based on the 

known variability of the experiments. All experiments were done non-blinded.   
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Figure legends 

Figure 1. Overview of the study design. 85 recombinant intercross advanced inbred lines 

(RIAILs) derived from the crossing of QX1430 (N2 Bristol background, with deletions of 

confounder genes) and CB4856 strain (Hawaii) were used. Lifespan, early life-history traits, 

transcriptome, proteome, and lipidome were collected for each strain. We applied a systems 

genetics approach to study relations between different phenotypes and molecular traits to 

identify candidate lifespan genes. After prioritization of the candidate genes, we validated 

them through wet lab experiments and human population genetics (e.g. UK Biobank). We 

collected data from all RIAILs using three pipelines. In the first, worms were cultured and 

scored for their lifespans; in the second, they were cultured in a microfluidic device for ~100 

h to collect early life-history traits, including body size, moving shapes, developmental 

parameters, reproduction, and fertility; and in the last, they were cultured to reach L4/young 

adulthood, and collected for multi-omics measurements (transcriptomics, proteomics, and 

lipidomics). Examples of variants: SNV: single-nucleotide variant. INDEL: insertions and 

deletions. GSEA: gene set enrichment analysis; Chr. I-X: chromosome I to X; LC-MS: liquid 

chromatography–mass spectrometry; L1- L4: larval stage 1 to 4; YA: young adulthood; GA: 

gravid adulthood. Max. Lifespan: maximum lifespan; Avg. Lifespan: average lifespan. 

 

Figure 2. RIAILs exhibit extensive variation in lifespan and life-history traits. (A) Bar 

plot showing the average lifespan of 85 RIAIL strains (60 worms/strain) and two wild-type 

parental strains (600 worms/strain). Grey bars: RIAILs; Orange bar: N2 (Bristol); Blue bar: 

CB4856 (Hawaii, HW). Examples of strains with different average lifespans are labeled. (B) 

Examples of differences in the average lifespan of RIAILs (QX537, QX520, and QX597; grey) 

and parental N2 (orange) and CB4856 (blue) strains. (C) Violin plots of the RIAIL lifespan 

traits. Dots represent the average value of the trait for the two parental strains. (D) Violin 

plots of early life-history phenotypic traits. Dev. time: developmental time; Egg acc.: egg 

accumulation; Prog. acc.: progeny accumulation (E) Violin plots of the activity life-history 

phenotypic traits. Shape 1: straight; Shape 2: active; Shape 3: swimming; Shape 4: supercoil. 
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(F) Pearson correlation between lifespan and physiological traits. Stars represent non-

adjusted p-values (*: adjusted BH p-value < 0.05). LS: lifespan. Mort: mortality. (G) 

Correlation of 25% mortality with developmental time, body size, and the time to the 1st egg, 

respectively. R: Pearson correlation coefficients p: p-values. (H) Scatter plots of time spent 

in 2 moving shapes and time to the 1st progeny of each RIAIL strain. The p-value indicates 

the coefficient in the linear model. Related to Figures S1 and S2. 

 

Figure 3. Quantitative assessment of transcriptome-lifespan associations. (A) 

Schematic pipeline of mRNA-lifespan association mapping and gene set enrichment 

analysis (GSEA). (B)  Line histogram of non-adjusted p-values of mRNA-lifespan 

associations for the different lifespan traits. The distribution of mRNA-lifespan associations 

showed a higher density of significant associations (non-adjusted p-values) for the 25% 

mortality trait. The Y-axis represents the density of p-values. The red dashed vertical line 

represents a p-value of 0.05. Color represents the different lifespan traits. (C) The upset plot 

of positively- (red) and negatively- (blue) associated genes with 25%, 50%, and 75% 

mortality in the RIAILs with a non-adjusted p-value smaller than 0.05. (D) Graph 

representing the top 30 biological process gene sets enriched. GSEA of mRNA-25% 

mortality associations. Genes were ranked by the signed logarithm of the odds (LOD) score 

of mRNA-25% mortality association. Color represents positive (red) or negative (blue) 

normalized enrichment score (NES). All gene sets in the figure had a significant q-value. 

Genesets in bold: overlapping genesets in both mRNA and protein levels. (E) The running 

GSEA plot of “determination of adult lifespan” (GO:0008340). adj. p: adjusted p-value. (F) 

Heatmap of Pearson correlation of transcripts enriching for GO:0008340 with 25% mortality 

in the RIAILs. Star represents a non-adjusted p-value < 0.05. Related to Figure S3 and 

Tables S1 and S2. 

 

Figure 4. Quantitative assessment of lipidome-lifespan associations. (A) Diagram of 

lipid-lifespan association mapping and lipid-class over-representation. (B) Principal 
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component analysis (PCA) representation of RIAIL strains based on all LC-MS measured 

lipids at L4/young adulthood. Color represents z-score of the average lifespan of each RIAIL 

strain. (C-D) Bar plots of the number of lipids with significant association (non-adjusted p-

value < 0.05) and positive (C) or negative (D) association coefficient. CL: cardiolipin. PE: 

phosphatidylethanolamine. PE-derivatives: including Lyso-PE, plasmanyl-PE, plasmenyl-PE. 

PI: phosphatidylinositol. TG: triglycerides. PC: phosphatidylcholines. PC-derivatives: PC[OH] 

and plasmanyl-PC. Cer[AS]: ceramideAS. Cer[NS]: ceramideNS. Cer[AP]: ceramideAP. SP: 

Sphingolipid. Methyl-PA: methylphosphatidic acid. Related to Figure S5 and Table S4. 

 

Figure 5. Identification of a lifespan-modulating locus on Chromosome II and 

prioritization of candidate genes. (A) QTL mapping of lifespan and life-history traits 

identifies two significant QTL on Chr. II, and V for average lifespan, and time to 1st progeny, 

respectively. The vertical axis shows the logarithm of the odds (LOD score). The horizontal 

axis represents the genomic position in mega-basepair (Mbp). Dashed and solid grey lines 

represent suggestive (p < 0.1) and significant (p < 0.05) thresholds, respectively. (B) Boxplot 

of the average lifespan of RIAILs with CB4856 or N2 genotype at position 13,121,591 on Chr. 

II. (C) Boxplot of time to 1st progeny of RIAIL strains with CB4856 or N2 genotype at position 

12,125,475 on Chr. V. The p-value represents the comparison of the two groups calculated 

using a two-tailed Student’s t-test. (D) Gene set enrichment analysis based on differential 

transcriptome analysis at position 13,121,591 on Chr. II. Only the top 15 significant and 

positively enriched genesets for biological process terms (upper) and cellular component 

terms (lower) are shown. Color represents -log10(adjusted p-value). BP: Biological process. 

CC: Cellular component. NES: normalized enrichment score. Interesting gene sets were 

highlighted in bold. (E) Candidate genes are prioritized under the confidence region of the 

loci on Chr. II. Genes under the lifespan QTL peak were annotated if: a gene has one or 

more variants in CB4856; a gene has one or more missense or modifier variants in CB4856; 

the gene is differentially expressed between N2 and CB4856 (absolute log2 (fold change) > 1 

and adjusted p-value < 0.05); the gene has been annotated in GenAge 
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(https://genomics.senescence.info/genes/index.html) for involvement in the aging; the gene 

has been found in a paper with “lifespan” as a keyword in Pubmed; the transcript/protein of 

the gene correlates with average lifespan; the gene/protein has an expression cis-eQTL or a 

protein cis-pQTL; the RNAi clone with the right sequence is available from at least one of the 

libraries (Ahringer and Vidal libraries). Grey color: not available (mRNA or protein not 

measured). Top candidate genes, rict-1 and gfm-1 are highlighted in red and bold. *: known 

longevity gene. Related to Figures S7, S8 and Table S5. 

 

Figure 6. RNAi of gfm-1 induced UPRmt activation and prolonged lifespan in C. 

elegans. (A) Lifespan of worms fed with ev (control RNAi) (black) or candidate gene RNAi 

(red).  P-values represent a comparison with the controls calculated using the log-rank test. 

n.s.: not significant. (B) RNAi of gfm-1 extends worm lifespan in an RNAi dose-dependent 

manner. Worms fed with ev (control RNAi) or 10%-100% gfm-1 RNAi; control RNAi was 

used to supply to a final 100% of RNAi. (C) Age-related paralysis of worms fed with ev or 

10%-100% gfm-1 RNAi. Error bars denote SEM. Statistical analysis was performed by one-

way ANOVA followed by Tukey post-hoc test (*p < 0.05; ***p < 0.001). (D) RNAi of gfm-1 

induced the UPRmt (hsp-6p::gfp reporter) in a dose-dependent manner. Worms fed with ev or 

10%-100% gfm-1 RNAi. Scale bar: 0.5 µm. (E) RT-qPCR results of mRNA levels (n = 4 

biological replicates) in worms fed with ev, or 10%-100% gfm-1 RNAi. Statistical analysis of 

RT-qPCR results was performed by one-way ANOVA followed by Tukey post-hoc test (**p < 

0.01; ***p < 0.001). Values in the figure are mean ± SEM. (F) RNAi of gfm-1 reduced both 

basal and max. oxygen consumption rate (OCR) compared to those of controls on day 1 of 

adulthood. Values in the figure represent mean ± SEM. Statistical analysis of RT-qPCR 

results was performed by one-way ANOVA followed by Tukey post-hoc test (*p < 0.05; **p < 

0.01; ***p < 0.001). Related to Figure S9. 

 

Figure 7. Exploration of human GFM1 and RICTOR SNP association with disease 

incidence in the UK Biobank. (A) The workflow of disease risk associations between 
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GFM1/RICTOR variants and life-long incidence of diseases and all-cause mortality with Cox 

proportional-hazard models. (B) Identification of 21 and 59 SNP-disease associations (BH-

Adjusted p value < 0.05) for GFM1 (colored by light red) and RICTOR (colored by light blue). 

19 diseases (including cardiovascular diseases, dementia, diabetes, renal failure, and liver 

disease) and death are pre-selected. The variant-disease associations for each disease are 

ranked by BH-adjusted p-value, and only the most significant one is shown in the plot. ***: 

BH-adjusted p-value < 0.001; **: BH-adjusted p-value < 0.01; *: BH-adjusted p-value < 0.05. 

The Hazard ratio calculated by Coxproportional-hazard models is indicated in the X-axis. 

Related to Tables S6 and S7. 
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