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Abstract

Lifespan is influenced by complex interactions between genetic and environmental factors.
Studying those factors in model organisms of a single genetic background limits their
translational value for humans. Here, we mapped lifespan determinants in 85 genetically
diverse C. elegans recombinant intercross advanced inbred lines (RIAILS). We assessed
molecular profiles — transcriptome, proteome, and lipidome — and life-history traits, including
lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations
in lifespan, which positively correlated with developmental time. Among the top candidates
obtained from multi-omics data integration and QTL mapping, we validated known and novel
longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to
humans using UK Biobank data and showed that variants in RICTOR and GFM1 are
associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney,
and liver diseases. We organized our dataset as a resource (https://lisp-

Ims.shinyapps.io/RIAILS/) that allows interactive explorations for new longevity targets.

Keywords: C. elegans, genetic reference populations, longevity, life-history traits, multi-
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Introduction

An intricate interplay of genetic, epigenetic, and environmental factors collectively
determines the lifespan of an organism (Govindaraju et al., 2015). Over the past few
decades, extensive research has been carried out to decipher the underlying mechanisms
governing longevity with gain- and loss-of-function (G/LOF) studies in different model
organisms. However, a prevalent limitation in the evaluation of the effects of mutations and
environmental perturbations is the predominant reliance on animal models with a single
genetic background for analysis (Li and Auwerx, 2020). This restricts the translational value
and generalizability of these studies (Nadeau and Auwerx, 2019; Williams and Auwer,
2015). Although such a strategy should ideally be employed in vertebrate models, the scope
of the experimental testing in multiple genetic backgrounds combined with the ethical
hurdles associated with such massive animal experimentation make this approach
unrealistic. To overcome these constraints, the roundworm C. elegans has emerged as an
attractive model for aging research, offering one of the best compromises between the
simplicity of cell models and the complexity of vertebrate models (Gao et al., 2018b). In this
regard, worm genetic reference populations (GRPs), such as the recombinant inbred lines
(RILS) (Gao et al., 2018a; Li et al., 2010; Rockman et al., 2010; Vinuela et al., 2010) and
recombinant inbred advanced intercross lines (RIAILs) (Andersen et al., 2015; Rockman and
Kruglyak, 2009), have been increasingly used in the past years. These panels consist of
inbred strains derived from crosses between two genetically divergent parental strains
(Andersen et al., 2015; Thompson et al., 2015). With this study design, the recombination
between the parental strains allows for fine mapping of quantitative trait genes (QTGs) —
genes that explain the variation in certain quantitative traits (Evans et al., 2021). Furthermore,
the availability of genotype data, and the ability to reproduce identical individuals, allow for
the in-depth interrogation of quantitative traits at the systems level in several environmental
conditions and at multiple physiological levels.

Here, we used a worm GRP consisting of 85 genetically diverse RIAILs derived from crosses

between two parental strains, i.e., QX1430 (with an N2 Bristol background) and CB4856
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(Hawaii) (Andersen et al., 2015; Gao et al., 2022). To investigate the alleles contributing to
subtle variations in longevity-related phenotypes across this worm GRP, we measured their
transcriptome, proteome, lipidome, and lifespan (Figure 1). In addition, we employed a high
throughput fully automated microfluidic-based robotic phenotyping platform (see Nagi

Bioscience SA https://nagibio.ch/), to collect other life-history phenotypes including body size,

developmental dynamics, activity, as well as parameters related to worm reproduction and
fertility. Integration of these omics and phenotypic data allowed the identification of a genetic
locus associated with lifespan variations in these RIAILs. Within these loci, we identified gfm-
1, rict-1 and mltn-1 as candidate longevity regulators and further validated gfm-1 and mitn-1
as bona-fide longevity regulators through loss-of-function studies. To assess the clinical
significance of these candidate longevity genes in humans, we explored the UK Biobank
data to show that variants in the human GFM1 and RICTOR genes correlate with a variety of
age-related disorders, such as heart disease, dementia, diabetes, kidney failure, liver
disease and death. While our study focused on longevity regulation, we generated an
extensive map of the molecular and phenotypic landscape in the RIAILs population. This
resource will be valuable for subsequent in silico hypothesis generation and we have made it
publicly available through an interactive open-access web resource (https:/lisp-

Ims.shinyapps.io/RIAILS/).

Results

85 RIAILs exhibit extensive variations in the lifespans and life-history traits

To determine the extent to which genetic background can influence longevity, we first
assessed the lifespans of 85 RIAILs by manually scoring them on plates as described
previously (Gao et al., 2022). The range of average lifespan of RIAILs was from 13 to 21
days (Figure 2A). Although the majority of RIAIL average lifespans lay between those of the
parentals, nine strains’ lifespans were shorter lived than CB4856 and four strains lived
longer than N2, suggesting the presence of transgressive segregation (Figures 2A and 2B).

Also, we observed a similar pattern for early (25% dead and 75% alive), mid (50% mortality),
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and late (75% dead and 25% alive) time to mortality (Figure 2C), that is, the age in days at
which 25%, 50%, or 75% of the worms died, respectively. Studies in different organisms
have shown that diverse trade-offs dominate life-history traits (Blueweiss et al., 1978;
Maklakov and Chapman, 2019; Thomas Flatt (ed.), 2011). As a consequence, various
organisms display correlations among different life history traits, such as lifespan and
fecundity (Luckinbill et al., 1984), development and lifespan (Marchionni et al., 2020), body
size and longevity (Blanco and Sherman, 2005; Bou Sleiman et al., 2022; de Magalhaes et
al., 2007). We therefore monitored a number of life-history traits across the early life stage of
the RIAILs (approximately 100 h after egg hatching), including maximum body size,
developmental time, sexual maturity (emergence of the 1% egg), fertility (rate of egg
accumulation), embryonic viability (emergence of the 1% larvae, following the emergence of
the 1% egg), and the rate of progeny accumulation, using an innovative whole-organism high-

content screening technology (see https://nagibio.ch/) (Atakan et al., 2018) (Figures 2D-2E

and S1). RIAIL strains displayed large variations in early life-history phenotypes, including
developmental dynamics, reproduction (Figure 2D), and activity (Figure 2E). The N2 strain
had a protracted growth period, characterized by delayed attainment of maximal body size
and greater overall body size when compared to the CB4856 strain (Figures 2D and S1A).
Both strains had comparable timing of reproductive maturation and showed no significant

disparities in various fertility measures (Figures 2D and S1C-S1D).

Longer lifespan is associated with slow development and late egg emergence

Early life-history traits can potentially provide insights into the developmental trajectory and
long-term outcomes of organisms (Bou Sleiman et al., 2022; Miller, 2002). To obtain an
overview of associations between the phenotypic traits and lifespan traits, we pooled
phenotypes and performed pairwise correlation analysis between all traits (Figure 2F). We

found that, worm developmental time (> = 0.37, p < 0.001), reflecting the worm growth

dynamics, and egg emergence (time to the moment when a worm lays its first egg, r* = 0.42,
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p < 0.001), reflecting sexual maturity, were the most associated with 25% mortality (Figures
2F-2G). Both body size and progeny emergence (time until the first progeny of a worm is
detected) were strongly correlated with developmental time (* = 0.52, p < 0.001 and r* =
0.58, p < 0.001 respectively). In addition to the phenotypic readouts on worm development
and reproduction, we also evaluated the most common shapes of worms in each population
(Figures 2E and S2A). Four main categories of shapes were defined as follows: two regular
wild-type shapes in liquid (shape 2 - active; shape 3 - swimming) and two extreme shapes
(shape 1 - straight; shape 4 - supercoiled) (Figure 2E). Since worms adopt different shapes
over time, the shape metric reflects the percentage of time worms spent in each shape
category. We observed a negative association between shape 1 (straight) and the duration
before the first progeny appeared. Conversely, there is a positive correlation between shape
2 (active movement) and the time it took for the first progeny to emerge (Figures 2F and 2H).
However, none of the shapes directly correlated with the lifespan traits (Figures 2F and S2B).
In combination, these findings corroborate that early life-history traits, such as delayed

development, are an evolutionary cost of longevity.

Early life transcriptome unveils potential pathways influencing lifespan traits

To explore connections between the transcriptome at the early life (L4) stage and longevity,
we performed an association analysis between the expression levels of ~20,000 transcripts
and three measures of time to mortality: 25%, 50%, and 75% (Figures 3A and S3). Notably,
a substantial proportion of these transcripts exhibited significant associations (unadjusted p-
values) with time to 25% mortality, while associations with those of 50% and 75% time of
mortality and average lifespan were less pronounced (Figure 3B). Specifically, 1,951
transcripts correlated significantly with 25% mortality (1,028 positives and 923 negatives),
while 894 transcripts were significantly linked to 50% mortality (636 positives and 258
negatives), and 189 transcripts showed significant associations with 75% mortality (109
positives and 80 negatives) in the RIAIL population (Figure 3C). The predominant correlation

of transcripts with early mortality might stem from the fact that the transcript profiles were
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extracted from L4/young adult worms. Additionally, 504 transcripts were nominally
significantly associated with the average lifespan in RIAILs (Table S1). None of the
associations between transcripts and lifespan traits remained significant after multiple testing
corrections; therefore, we explored the possibility of significant disparities at the pathway
level using gene set enrichment analysis (GSEA) to find out if there is any collective impact
of the transcripts (Figure 3D). We found 938 pathways significantly enriched for 25%
mortality (81 positive and 857 negative), 701 (105 positive and 596 negative) for those
associated with 50% mortality, and 58 (32 positive and 26 negative) for 75% mortality
respectively (Figure S3 and Table S2). Given the early life transcriptome was more strongly
associated with 25% mortality than other lifespan traits (Figure 3B), we investigated the
enriched pathways associated with this metric. The majority of 25% mortality-enriched
biological processes were negatively associated with lifespan and were primarily involved in
chromosome organization, cytoskeleton organization, cellular lipid metabolism, cell division,
DNA repair, and protein metabolic processes (Figure 3D). Among the top 30 enriched
pathways, two pathways were positively associated with 25% mortality, namely neuropeptide
signaling and G protein-coupled receptor signaling. Although it was among the top 30, the
geneset “determination of adult lifespan” was among those significantly inversely associated
with early mortality (g-value < 0.01) (Figure 3E and Table S2). Lower expression of genes
within this geneset was associated with a longer time to reach 25% mortality (Figure 3F).
Taken together, the early life transcriptome showed significant associations with lifespan at
the pathway level, particularly with 25% mortality. Our data indicate that various biological

processes and pathways can influence early mortality and potentially affect longevity.

Quantitative assessment of correlations between protein pathways and different
lifespan traits

As proteome analysis offers a more direct perspective on cellular function, complementing
the information obtained through transcriptome analysis, we measured the protein profiles of

RIAILs and detected >6,500 proteins following the removal of non-detectable peptides and
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rigorous quality control measures (Figure S4A and Table S3). In contrast to the mMRNA-
lifespan association analysis, the number of proteins showing significant association with 25%
mortality (non-adjusted p-values) was comparable to those linked with 50%, 75% mortality,
and the average lifespan (Figures S4B-S4C). When investigating the top pathways enriched
for 25% mortality, we found seven pathways, including vesicle-mediated transport, Golgi
vesicle transport, actomyosin structure organization, and supramolecular fiber organization,
that positively correlated with the 25% mortality (Figure S4D and Table S3). The negatively
associated pathways were mostly related to DNA metabolism and cell cycle regulation
(Figure S4D and Table S3). In addition, we examined the pathways enriched at both the
MRNA and protein levels (Figures 3D and S4D). Gene sets involved in DNA damage
response, DNA repair, and cell cycles overlapped at both mRNA and protein levels and were
negatively correlated with lifespan traits. Consistent with these results, cell cycle, and
associated genome integrity pathways were reported to be negatively associated with
cellular turnover, a measure of cell and tissue longevity (Seim et al., 2016), whereas
enhanced DNA repair capacity has been suggested in long-lived species (Cortopassi and

Wang, 1996; Ma et al., 2016).

Cardiolipins (CLs), triglycerides (TGs), phosphatidylinositol (Pls) were positively and
phosphatidylethanolamines (PEs) were negatively correlated with lifespan traits

Perturbations in circulating lipid levels due to genetic, lifestyle, and environmental factors
can heighten the risk of developing age-related disorders, such as cardiovascular and
metabolic diseases (Harshfield et al., 2021). To determine possible links between lipids and
lifespan, we integrated lifespan traits with lipid profiles measured in the RIAIL cohort (Figure
4A). The first two dimensions of a principal component analysis (18.2% and 11.7% of
variance explained, respectively) did not visually segregate strains by lifespan (Figure 4B).
We then examined lipid-lifespan correlations (unadjusted p-values of less than 0.05) and
highlighted distinct correlation profiles between lipids and different lifespan metrics (Figures

4C and 4D). Cardiolipins (CLs), comprised mainly of polyunsaturated acyl chains, were
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among the lipids that displayed a positive correlation with average lifespan and 75%
mortality (Figure 4C and Table S4). The levels of CLs consistently decline in aged worms
and rats (Gao et al., 2017; Smidak et al., 2017), supporting the concept that higher levels of
CLs may be advantageous for health and longevity. Phosphatidylinositols (PIs) were among
the primary lipid classes positively associated with average lifespan and 75% mortality, while
many triglycerides (TGs) correlated positively with 25% mortality (Figure 4C). In contrast,
numerous phosphatidylethanolamines (PEs) and PE-derivatives (e.g. plasmanyl-PE and
plasmenyl-PE) exhibited a negative correlation with all the lifespan traits (Figure 4D and
Table S4). Over-representation analysis of the different lipid classes confirmed that TGs,
CLs, and PlIs were positively associated with lifespan traits, while PEs were negatively

associated (Figure S5).

Lifespan variations are not dependent on overall genomic composition nor
mitochondrial haplotype

As the parental strain CB4856 worms have a shorter lifespan compared to the other parental
strain N2 (Figures 2A-2B) (Gao et al., 2022), we asked whether the allelic proportion of each
parental genome in the RIAILs could partly explain the variations observed in the lifespan
traits. While we observed a considerable variation in parental allele distributions across the
RIAIL genomes (Figure S6A), the phylogenic tree based on genetic distance between the
strains did not cluster strains according to their lifespan (Figure S6B). For instance, strains
QX580 and QX594 are highly genetically related (Figure S6B, next to the N2 strain), yet
QX580 has a relatively longer lifespan in comparison to QX594, which displays a relatively
shorter lifespan. The lifespan of CB4856 was previously found to be significantly influenced
by variants in the mitochondrial DNA (mtDNA) (Dingley et al., 2014). We therefore separated
the RIAILs by their mitochondrial genotypes but found no significant associations between
the mitotype and the average lifespan (Figure S6C). A previous study using a different, small
set of RIAILs found a positive correlation between the CB4856 mitotype and lifespan, as well

as a negative correlation between N2 mitotype and lifespan (Zhu et al., 2015). However, we
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found no such correlation in either the CB4856 or N2 mitotype background in these RIAILs
(Figure S6D). Taken together, these data underscore the necessity for a more refined
approach to pinpoint specific loci that determine lifespan.

Identification of a lifespan QTL on Chromosome |l

Next, we sought to leverage the genetic diversity of the RIAIL population to map their
associations with lifespan traits and potentially uncover novel genetic regulators of lifespan.
Through variant calling using RNA-seq data (Figure S7), we generated a genetic map for the
RIAIL population (Figure S8). We then performed quantitative trait loci (QTL) mapping of

lifespan traits and detected a significant QTL on Chr. Il for average lifespan (Figure 5A). We

detected a suggestive QTL in the same locus for 25%,50%, and 75% mortality. We observed

a decrease in the LOD score for this locus, from 4.13 for average lifespan to 3.83 for 50%
mortality, and finally to 3.28 for 75% mortality (Table S5). Upon examining the average
lifespan of the RIAILs for the two genotypes at this locus, we found that strains with the
CB4856 genotype have longer lifespans compared to strains carrying the N2 genotype
(Figure 5B). In other words, the allele associated with a longer lifespan comes from the
shorter-lived CB4856 strain, suggesting that complex gene-gene interactions overcome any
single-locus effect on lifespan in the RIAILs.

We further explored other life-history traits and detected four significant QTLs: one for
progeny emergence (the time when the 1% progeny is observed) on Chr. V:12,125,475, one
for egg emergence (the time when the 1% egg is observed, indicating sexual maturity) on Chr.
V:20,279,818, and two for shapes straight and supercoil, both on Chr. X (X: 11,549,662 and
X:12,745,016 respectively) (Figure 5A and Table S5). When examining the locus at
V:12,125,475, we found that RIAIL strains with the N2 genotype exhibited a longer time for
progeny emergence compared to those with the CB4856 genotype (Figure 5C). Furthermore,
despite observing a correlation between developmental time and lifespan traits (Figures 2F-
2G), we did not detect any significant or shared QTL between the two traits, suggesting that

this correlation does not necessarily imply a common genetic regulation.
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Exploration of lifespan QTL identified gfm-1 as the top candidate gene

To identify potential mediators of the effect of the lifespan QTL, we performed differential
expression analysis between RIAIL strains with the CB4856 genotype at that locus
compared to those with the N2 genotype. Although only a limited number of genes were
differential expressed (adjusted p-value < 0.05, Table S5), GSEA revealed significant
differences at the pathway level (Figure 5D). We noted a greater number of significantly
positively enriched genesets related to cellular components compared to biological
processes (Figure 5D). Neuropeptide signaling and G protein-coupled receptor signaling
pathways were significantly up-regulated in strains carrying the CB4856 marker, which
exhibited an extended lifespan. The cellular component results highlight a significant
upregulation of genes involved in organellar/mitochondrial ribosome-associated with the
genetic variation at this lifespan locus (Figure 5D).

The lifespan QTL encompassed eight genes. To prioritize the most likely candidate
modulators of lifespan, we considered a wide range of factors (Figure 5E), namely whether
there were any genetic variants in the gene between N2 and CB4856, whether any of these
were mis-/nonsense mutations, the presence of cis-e/pQTLs defined as genomic loci near
the gene of interest (in cis) that explain the variation in expression levels of MRNA (eQTL) or
protein (pQTL) in of that gene, whether the gene was differentially expressed between
strains with N2 vs. CB4856 genotypes, prior knowledge of the gene being associated with
aging (in GenAge, a curated database of genes associated with age-related processes,
(Tacutu et al., 2018)) or lifespan (PubMed searching for “lifespan”), and whether the gene
was correlated with lifespan at the mRNA or protein level. Most of the genes had some
genetic variants, many with missense or nonsense variants as well, but among these, only
rict-1 met additional criteria as it has been reported to be associated with both aging and
lifespan. rict-1 encodes a key component of the mTORC2 complex and loss-of-function
mutations have previously been shown to increase the lifespan of C. elegans in specific

conditions (Mizunuma et al., 2014; Soukas et al., 2009). In addition, we were interested in

11
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gfm-1, as mitochondria play a key role in longevity regulation and gfm-1 is a known

mitochondrial gene, encoding the G elongation factor mitochondrial 1.

RNAI of gfm-1 prolonged lifespan by activating the UPR™

To examine the causal relationship between these candidate genes unveiled hitherto and
longevity modulation, we knocked down the candidate genes by feeding worms with RNAI
bacteria targeting each candidate gene, starting from the maternal phase, and measured
their lifespans (Figure 6A). Knockdown of gfm-1 showed the most significant lifespan
extension compared to the other candidate genes (p-value < 0.0001) (Figure 6A). Besides
gfm-1, our survival analysis revealed that knocking down of mltn-1 (molting cycle MLT-10-
like protein, (Meli et al., 2010)) also significantly prolonged lifespan (p-value < 0.001), albeit
to a lower extent. Conversely, the knockdown of rict-1 resulted in a shorter lifespan. This is
potentially due to the adverse effects of RNAI treatment from an early developmental stage
as previous studies exposed worms to rict-1 RNAI bacteria exclusively during adulthood to
bypass the developmental functions of TORC2 and observed a prolonged lifespan
(Mizunuma et al., 2014; Robida-Stubbs et al., 2012).

To further characterize the mechanism of gfm-1 RNAi-mediated longevity, we conducted
several functional assays. We assessed the effect of gfm-1 RNAI on lifespan and healthspan
with a dilution of RNAI bacteria, including 10%, 25%, 50%, 75%, and 100% (control RNAI
was used to supply to a final 100% of RNAI for all conditions). Worms exposed to different
amounts of gfm-1 RNAiI showed a dose-dependent lifespan extension (Figure 6B) and
reduction of age-related paralysis (Figure 6C). Because gfm-1 encodes a mitochondrial
translation elongation factor, we considered whether the mitochondrial stress response
(MSR), through components such as the mitochondrial unfolded protein response (UPR™),
was involved in longevity changes observed with gfm-1 knockdown. Indeed, gfm-1 RNAI
robustly increased the GFP expression of hsp-6p::gfp worms and significantly upregulated
the expression of the UPR™ genes, including atfs-1, hsp-6, and gpd-2 (Figures 6D-6E). In

line with this, mitochondrial respiration was also reduced upon gfm-1 knock down in a dose-
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dependent manner (Figure 6F). These results confirmed the beneficial effect of
mitochondrial inhibition and UPR™ activation on healthy aging and longevity (Durieux et al.,
2011; Houtkooper et al., 2013).

Furthermore, we investigated the potential mechanism of mltn-1 RNAi-induced longevity by
examining whether any of the established longevity pathways contribute to the observed
lifespan extension (Figure S9). We fed mitn-1 RNAi to worms with mutations mimicking
caloric restriction (eat-2 mutant and sir-2.1 overexpression worms) (Lakowski and Hekimi,
1998; Tissenbaum and Guarente, 2001), insulin/IGF-1 signaling (daf-2 mutant) (Kenyon et
al., 1993), AMPK signaling (aak-2 mutant) (Schulz et al., 2007) and oxidative stress
response (skn-1 mutant) (Lehrbach and Ruvkun, 2016) (Figure S9). Of note, mltn-1 RNAI
prolonged the lifespan of worms overexpressing sir-2.1 overexpression and skn-1 mutants,
indicating that mltn-1 RNAI regulates longevity independent of sirtuin-induced caloric
restriction and oxidative stress response (Figures S9B and S9E). However, mitn-1 RNAi did
not further extend the lifespan of eat-2 and daf-2 mutants (Figures S9B and S9C), and the
lifespan extension induced by mltn-1 RNAi was almost completely abolished in aak-2 mutant
worms (Figure S9D). These results suggest that the knockdown of mltn-1 extends worm
lifespan in an AMPK-dependent manner and potentially mimics caloric restriction. Taken
together, these findings further reinforced the assertion that our approach enabled us to

identify novel inducers of longevity.

Variants in human GFM1 and RICTOR elevated risk of cardiovascular conditions,
dementia, diabetes, kidney, liver diseases, and death

Age-related diseases play a significant role in shaping longevity (Franceschi et al., 2018). To
explore the human relevance of our newly identified longevity genes, we took advantage of
the UK Biobank, a large-scale population-based cohort study with extensive health and
medical information (Bycroft et al., 2018). While mltn-1 is a C. elegans-specific gene, we
identified GFM1 and RICTOR as the human orthologs of worm gfm-1 and rict-1, and then

used Cox proportional-hazards models (Borgan, 2001; Cox, 1972; Therneau, 2023) to
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investigate whether variants within these genes were associated with disease risk (Figure
7A). In addition, given that rict-1 is the gene encoding the mTORC2 component Rictor, we
also investigated the potential association of human RICTOR with diseases in the UK
Biobank (Figure 7A). We explored the association between single nucleotide polymorphisms
(SNPs) in GFM1 and RICTOR (selection based on criteria outlined in the STAR method) and
the lifelong incidence of 19 diseases as well as all-cause mortality (referred to as “Death”)
(Tables S6 and S7). 21 GFM1 SNPs showed an association with 13 diseases and death
(Benjamini-Hochberg adjusted p-value < 0.05), and 59 RICTOR SNPs correlated with 18
diseases and death. All associations showed an increased risk for diseases with the
alternate (minor) allele. The majority of GFM1 SNPs were linked to myocardial infarction,
cardiomyopathy, heart failure, Alzheimer's disease/dementia, diabetes, kidney failure, liver
disease, and death. Similarly, RICTOR SNPs were associated with these diseases as well
as cerebrovascular disease, vascular dementia, and Parkinson’s disease (Figure 7B). Taken
together, the identification of these SNPs of GFM1 and RICTOR offers new insights into the
genetic underpinnings of many age-related disease diseases. Specifically, our results
highlight distinct genomic regions implicated in the predisposition to cardiomyopathy and
heart failure for GFM1, and heart failure and aortic aneurysm for RICTOR, diseases that

negatively affect survival in humans.

Discussion

Here we present a multi-omics atlas of the worm RIAILs, as a resource to understand the
regulation of longevity. The observed difference in average lifespan between the parental
strains was consistent with previous studies (Gao et al., 2022; Lee et al., 2016). The RIAIL
strains exhibited extensive lifespan variation with some strains exceeding that of the
parentals suggesting the presence of transgressive segregation (Rieseberg et al., 1999).
Research across species has revealed consistent trade-offs that influence lifespan and life-
history traits, with correlations observed between key phenotypic traits such as lifespan and

fecundity (Luckinbill et al., 1984), development time and fecundity (Ghalambor et al., 2004),
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development time and lifespan (Marchionni et al., 2020), as well as body size and longevity
(Bou Sleiman et al., 2022; de Magalhaes et al., 2009). However, research exploring the
correlations between longevity and early life history traits in wild C. elegans populations is
relatively scarce (Anderson et al., 2011; Lee et al., 2016). We therefore tracked various life-
history phenotypes during the early life stage of the RIAILs, gathering data on developmental
progression, reproductive capability, fertility, and behavioral activity. Only developmental
time and egg emergence — both reflecting sexual maturity — had a weak to moderate
correlation with lifespan, which is in line with the absence of any overlapping QTL between
early life history and lifespan traits. These data are corroborated by a prior study in worms,
which proposed that development, reproduction, and lifespan are under independent genetic
regulation (Johnson, 1987), and work in D. melanogaster, where a disconnect between life-
history traits and lifespan was observed when examining variations in larval food conditions
(Tu and Tatar, 2003; Zwaan et al., 1992). In a similar vein, fly selection experiments have
yielded inconsistent results in terms of discovering genetic correlations between
development time, body size, and longevity (Chippindale et al., 1994; Hoedjes et al., 2019;
Zwaan et al., 1995a, b).

Subsequently, we investigated whether multi-omic molecular characteristics, such as gene
expression, protein, or lipid abundance, could be linked to lifespan in the RIAILs. We did not
detect any significant correlations between individual transcript/protein/lipid and lifespan
traits following multiple testing corrections possibly due to small marginal effects or more
complex gene interactions. These correlations, however, strengthened and reached
statistical significance when we performed the gene set enrichment analysis on genes
ranked by the mRNA-lifespan associations, supporting the presence of numerous biological
pathways that are potentially involved in the modulation of RIAIL lifespans. The lack of
significant associations at the individual transcript level may not negate the possibility of a
functional impact and physiological relevance at the pathway level, where complex
interactions and synergistic effects may come into play. For instance, neuropeptide signaling

and G protein-coupled receptor (GPCR) signaling were particularly notable among the
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pathways that were positively associated with lifespan traits. This finding aligns with prior
studies, where one demonstrated the role of the neuropeptide signaling pathway in
extending C. elegans lifespan (Frakes et al.,, 2020; Savini et al., 2022), and another
highlighted the influence of the GPCR pathway on longevity across humans and various
animal models including worms (Lagunas-Rangel, 2022). Moreover, when we examined the
genetic determinants of lifespan by QTL mapping, neuropeptide signaling and GPCR
pathways were also upregulated dependent on the genotype at the identified lifespan locus
on Chromosome Il. This consistent pattern suggests that the association between the
transcriptome and lifespan was influenced by this specific lifespan locus. While we identified
intriguing gene sets associated with lifespan traits at the transcript level, these associations
were not replicated in the analysis between protein expression and lifespan traits. The
discrepancy between the transcriptomic and proteomic levels could be attributed to several
factors, such as post-transcriptional regulation, protein turnover, limitations in the proteomic
detection methods (Schubert et al., 2017), or differential effect of natural variation on the
proteome (Kamkina et al., 2016). These discrepancies emphasize the importance of
considering multiple omics layers to obtain a comprehensive understanding of biological
processes and their role in determining phenotypic outcomes.

Alterations in circulating lipid concentrations, triggered by genetic influences, lifestyle
choices, and environmental conditions, can escalate the risk of age-associated disorders
(Harshfield et al., 2021). We therefore also collected full lipidomic profiles of RIAILs and
investigated whether complex lipids might also be associated with specific lifespan traits. We
found that TGs, CLs, and Pls were over-represented in positive lipid-lifespan associations,
while PEs were enriched in negative lipid-lifespan associations. It is notable that CLs,
comprised mainly of polyunsaturated fatty acid chains, were found to be among those
positively associated with lifespan traits. CLs are mitochondria-specific phospholipids
essential for preserving mitochondrial integrity (Falabella et al., 2021). Due to their special
cellular confinement, CLs are closely related to the maintenance of mitochondrial function,

which connects CLs to longevity and the progression of age-related disease (Dai et al.,
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2021). This aligns with our findings that indicate a positive correlation between CLs and
various lifespan traits. In contrast, the level of PEs consisting of less saturated fatty acids
exhibited a negative correlation with lifespan traits. Although PEs are the second most
prevalent glycerophospholipid in eukaryotic cells and positively regulate autophagy and
lifespan in yeast and mammalian cells (Calzada et al., 2016; Rockenfeller et al., 2015),
decreased levels of PE were associated with lower beta-amyloid accumulation in both
mammalian cells and flies (Nesic et al., 2012), suggesting a complex role of PEs in
regulating age-related effects and longevity.

In addition to the multi-omic characterization of the RIAIL population, we performed QTL
mapping and identified candidate lifespan loci on Chr. II, with strains carrying the CB4856
genotype showing longer lifespans compared to those with the N2 genotype at this locus.
This finding was particularly interesting considering that the N2 parental strain displayed a
significantly longer lifespan compared to the CB4856 strain. RNAi against the seven
candidate genes in that locus found that knockdown of gfm-1 and mitn-1 led to significant
lifespan extensions. Our analyses suggest that the dose-dependent lifespan extension and
reduction of age-related paralysis through gfm-1 inhibition could be mediated by the
modulation of the mitochondrial stress response. Although we did not detect an mRNA or
protein QTL for gfm-1 within the same lifespan locus, the experimental findings were in line
with this gene encoding the G elongation factor mitochondrial 1 and the upregulation of gene
sets associated with mitochondrial ribosomes at this locus in the RIAILs population. Given
that mltn-1 is specific to C. elegans, its translational relevance to human studies is uncertain.
Another candidate that is known as a longevity gene is rict-1. As an essential component of
the TORC2 complex, rict-1 (Rictor) is vital for development, which likely explains why worms
subjected to rict-1 RNAi have shortened lifespans. Several studies, however, have
demonstrated an increased lifespan in worms fed with rict-1 RNAi when TORC2 activity is
attenuated specifically during adulthood (Mizunuma et al., 2014; Robida-Stubbs et al., 2012).
To evaluate the potential clinical relevance of the selected candidate genes that are

conserved in humans, we took advantage of the UK biobank and demonstrated that variants
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in the human GFM1 and RICTOR genes were associated with several age-related and
metabolic diseases, including heart disease, dementia, diabetes, renal failure, liver disease,
all of which contribute to shorter life expectancy due to their detrimental effects on cardiac,
metabolic and overall health and organ function.

In summary, our study unveiled a specific genetic locus that plays a role in determining
lifespan variation within the RIAIL population. Furthermore, we identified known and novel
longevity modulators, including rict-1, gfm-1, and mitn-1, which we validated experimentally.
The comprehensive multi-layered characterization of the RIAIL population is now also made

accessible through an open-access web resource (https://lisp-Ims.shinyapps.io/RIAILS/),

which provides a valuable tool for investigating the intricate relationships between
biochemical and whole-body phenotypes and for hypothesis generation for the scientific

community.

Limitations of the study

We note several limitations and future directions of our work. First, the relatively low sample
size of worms (60 worms/strain) used for lifespan analysis restricts our ability to get an
accurate estimate of late-life mortality, especially for the maximal lifespan of the strain
(Brooks et al., 1994; Carey et al.,, 1992). This likely undermines our statistical power in
evaluating the associations between traits and late-lifespan phenotypes. Second, the life-
history trait screening was done in liquid culture using the microfluidics device, while the
lifespan assays were performed on plates; we can hence not exclude a possible influence of
different culture conditions on traits. Third, the gathered molecular characteristics
encompass aggregated data at the strain level and are limited to a single early time point.
However, expanding the data collection to include later time points would enable the
exploration of age-related dynamics associated with these traits. Finally, the experimental
validations of gfm-1, rict-1, and mltn-1 were conducted using RNAi knockdown in the N2

Bristol background. Moving forward, an important avenue for further investigation would
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involve utilizing CRISPR technology to examine the specific variant of gfm-1 in the RIAILs

population.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Escherichia coli: OP50 Caenorhabditis RRID:WB-STRAIN:OP50
Genetics Center

Escherichia coli: HT115 (DES3) Caenorhabditis RRID:WB-STRAIN:HT115(DE3)
Genetics Center

Y81G3A.4 RNAI Ahringer 11-8H23

col-86 RNAI Vidal 11029-F11

rict-1 RNAI Vidal 11038-B10

pan-32 RNAI Ahringer 11-8J03

gfm-1 RNAI Vidal 10015-F6

bath-45 RNAI Vidal 11032-F1

mitn-1 RNAI Ahringer 11-10C18

Chemicals, peptides, and recombinant proteins

5-Fluorouracil (5-FU) Sigma-Aldrich Cat# F6627

Ampicillin sodium salt Sigma-Aldrich Cat# A9518

Carbenicillin disodium salt Sigma-Aldrich Cat# C1389

IPTG AppliChem Cat# A1008,0005

TriPure Isolation Reagent Roche Cat# 11667165001

Methanol (Optima™ LC/MS Grade) Fisher Chemical Cat# A454SK-4

Methyl tert-butyl ether (MTBE) Sigma-Aldrich Cat# 443808

18MQ MilliQ water Made in house

Stainless metal bead (5mm diameter) Qiagen Cat# 69989

Acetonitrile (Optima™ LC/MS Grade) Fisher Chemical Cat# A955-4

Urea Sigma-Aldrich Cat# U5378

Tris(2-carboxyethyl)phosphine Sigma-Aldrich Cat# C4706

2-chloroacetamide Sigma-Aldrich Cat# C4706

Formic acid, Pierce™ Thermo Scientific Cat# PI128905

Trypsin Promega Cat# V5113

96 well desalting plates (10 mg/well, Phenomenex Cat# 8E-S100-AGB

Strata™-X 33 pym Polymeric Reversed

phase)

Ammonium acetate (LiChropur™) Sigma-Aldrich Cat# 73594

Acetic acid Sigma-Aldrich Cat# 695092

Ammonium hydroxide Sigma-Aldrich Cat# 338818

2-Propanol (Optima™ LC/MS grade) Fisher Chemical Cat# A461212

Acetic acid Sigma-Aldrich Cat# 695092

Critical commercial assays

NucleoSpin RNA, Mini kit for RNA Macherey-Nagel Cat# 740955.250

purification

Seahorse Xfe96 Extracellular Flux Agilent Cat# 102416-100

Assay kit

RNA using the Reverse Transcription Kit | Qiagen Cat# 205314

LightCycler 480 SYBR Green | Master Roche Cat# 04887352001

kit

Quantitative colorimetric peptide assay, | Thermo Scientific Cat# 23275

Pierce™

Deposited data

C. elegans RNA-seq data This paper The Shiny app; GSE252593

C. elegans proteomics data This paper The Shiny app

C. elegans lipidomics data This paper The Shiny app

Transcript — lifespan associations This paper Table S1
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GSEA of transcript — lifespan This paper Table S2

associations

Protein — lifespan associations This paper Table S3

Lipid — lifespan associations This paper Table S4

QTL for lifespan and life history traits This paper Table S5

UKBB database analysis This paper Table S6 and S7

Experimental models: Organisms/strains

C. elegans: N2 Bristol Caenorhabditis CGC:10570
Genetics Center RRID:WB-STRAIN:
(CGC); N2_(ancestral)

https://cbs.umn.edu/cq
c/home

C. elegans: CB4856 Hawaii

Caenorhabditis
Genetics Center
(CGO);
https://cbs.umn.edu/cg
c/home

CGC:7525
RRID:WB-STRAIN:CB4856

C. elegans: 85 RIAILs, from
QX1430xCB4856 RIAILs (QX240-

Andersen’s lab
https://andersenlab.org

QX598) [Research/Reagents/

C elegans: SJ4100 [zcls13(hsp- Caenorhabditis CGC: 23223

6p::GFP)] Genetics Center RRID:WB-STRAIN:SJ4100
(CGO);

https://cbs.umn.edu/cq
c/home

Oligonucleotides

atfs-1 Sigma-Aldrich N/A
Fw: GAATAAGCCTCTATGATCCGATG

atfs-1 Sigma-Aldrich N/A
Rv: GGTTGAAGCTGGGAAAGTGA

hsp-6 Sigma-Aldrich N/A
Fw: AGAGCCAAGTTCGAGCAGAT

hsp-6 Sigma-Aldrich N/A
Rv: TCTTGAACAGTGGCTTGCAC

gpd-2 Sigma-Aldrich N/A
Fw: AAGGCCAACGCTCACTTG AA

gpd-2 Sigma-Aldrich N/A
Rv: GGTTGACTCCGACGACGA AC

pmp-3 Sigma-Aldrich N/A
Fw: GTTCCCGTGTTCATCACTCAT

pmp-3 Sigma-Aldrich N/A

Rv: ACACCGTCGAGAAGCTGTAGA

Software and algorithms

GraphPad Prism v8

GraphPad Software,
Inc.

https://www.graphpad.com/scientific
software/prism/

Maxquant (version 2.0.3.1)

Max-Planck-Institute of
Biochemistry

https://www.maxguant.org/

R (version 4.1.0)

The R Foundation

https://www.r-project.org/
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Caenorhabditis elegans Natural
Diversity Resource

Caenorhabditis
elegans Natural
Diversity Resource

https://elegansvariation.org

Soft filtered variant file was retrieved
from:
http://storage.googleapis.com/elega
nsvariation.org/releases/20200815/v
ariation/W1.20200815.soft-
filter.vcf.gz.

Hard filtered variant file was
retrieved from:
http://storage.googleapis.com/elega
nsvariation.org/releases/20200815/v
ariation/W1.20200815.hard-
filter.vcf.qz.

Adobe lllustrator 2023

Adobe

https://www.adobe.com/products/illu
strator.html

survival

survival

https://cran.r-
project.org/web/packages/survival/

FastQC

FastQC

https://www.bioinformatics.babraha
m.ac.uk/projects/fastqc/

MultiQC

MultiQC

https://multigc.info/

Genome Analysis Toolkit (GATK)

Genome Analysis
Toolkit (GATK)

https://gatk.broadinstitute.org/

onemap

onemap

https://cran.r-
project.org/web/packages/onemap/i

ndex.html

polycor

polycor

https://cran.r-
project.org/web/packages/polycor/in

dex.html

reshape?2

reshape?2

https://cran.r-
project.org/web/packages/reshape?/

index.html

DESeq2

DESeq2

https://bioconductor.org/packages/re
lease/bioc/html/DESeq2.html

edgeR

edgeR

https://bioconductor.org/packages/re
lease/bioc/html/edgeR.html

qti2

qtl2

https://cran.r-
project.org/web/packages/qti2/

limma

limma

https://bioconductor.org/packages/re
lease/bioc/html/limma.html

FactoMineR

FactoMineR

https://cran.r-
project.org/web/packages/FactoMin

eR/index.html

DirichletReg

DirichletReg

https://cran.r-
project.org/web/packages/DirichletR

eqgl/index.html

plotly

plotly

https://cran.r-
project.org/web/packages/plotly/inde

x.html

cowplot

cowplot

https://cran.r-
project.org/web/packages/cowplot/in

dex.html

RColorBrewer

RColorBrewer

https://cran.r-
project.org/web/packages/RColorBr

ewer/index.html

openxlsx

openxlsx

https://cran.r-
project.org/web/packages/openxisx/i

ndex.html

dplyr

dplyr

https://CRAN.R-
project.org/package=dplyr
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xIsx

xIsx

https://CRAN.R-
project.org/package=xlIsx

clusterProfiler

clusterProfiler

https://bioconductor.org/packages/re
lease/bioc/html/clusterProfiler.html

enrichplot

enrichplot

https://bioconductor.org/packages/re
lease/bioc/html/enrichplot.html

ggrepel

ggrepel

https://cran.r-
project.org/web/packages/ggrepel/in
dex.html

ggplot2

ggplot2

https://cran.r-
project.org/web/packages/ggplot2/in
dex.html

UpSetR

UpSetR

https://cran.r-
project.org/web/packages/UpSetR/in
dex.html

Ime4

coxme

Ime4

coxme

https://cran.r-
project.org/web/packages/Ime4/inde
x.html

https://cran.r-
project.org/web/packages/coxme/

ImerTest

ImerTest

https://cran.r-
project.org/web/packages/ImerTest/i
ndex.html

GenomicFeatures

GenomicFeatures

https://bioconductor.org/packages/re
lease/bioc/html/GenomicFeatures.ht
ml

org.Ce.eg.db

org.Ce.eg.db

https://bioconductor.org/packages/re
lease/data/annotation/html/org.Ce.e
g.db.html

BSgenome.Celegans.UCSC.cell

BSgenome.Celegans.

UCSC.cell

https://bioconductor.org/packages/re
lease/data/annotation/html/BSgeno
me.Celegans.UCSC.cell.html

bslib

bslib

https://cran.r-
project.org/web/packages/bslib/

shiny

shiny

https://cran.r-
project.org/web/packages/shiny/

shinyWidgets

shinyWidgets

https://cran.r-
project.org/web/packages/shinyWidg

ets/

shinydashboard

shinydashboard

https://cran.r-
project.org/web/packages/shinydash
board/

shinydashboardPlus

shinydashboardPlus

https://cran.r-
project.org/web/packages/shinydash

boardPlus/

shinyalert

shinybusy

shinyalert

shinybusy

https://cran.r-
project.org/web/packages/shinyalert/
https://cran.r-
project.org/web/packages/shinybusy
/

shinycssloaders

shinycssloaders

https://cran.r-
project.org/web/packages/shinycsslo
aders/

biomaRt 2.58.0 biomaRt https://bioconductor.org/packages/re
lease/bioc/html/biomaRt.html

stringr 1.5.1 stringr https://cran.r-
project.org/package=stringr

purrr 1.0.2 purrr https://cran.r-

project.org/package=purrr
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data.table 1.14.8 data.table https://cran.r-
project.org/package=data.table

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains and C. elegans strains

The Bristol strain (N2) and Hawaii strain (CB4856) were used as the wild-type strains, and
SJ4100 [zcls13(hsp-6p::GFP)], DA465 [eat-2(ad465)], [sir-2.1(ok434)], CB1370 [daf-
2(e1370)], RB754 [aak-2(0k524)], and GR2245 [skn-1(mg570)] were obtained from the
Caenorhabditis Genetics Center (CGC; Minneapolis, MN). E. coli OP50 and HT115 strains
were also obtained from the CGC. RNAI clones against Y81G3A.4, col-86, rict-1, pgn-32,
gfm-1, bath-45, and mltn-1, were obtained from the Ahringer and Vidal libraries and verified
by sequencing before use (detailed in the Key Resource Table). Worms were cultured and
maintained at 20°C and fed with E. coli OP50 on Nematode Growth Media (NGM) plates

unless otherwise indicated.

METHOD DETAILS

Lifespan and paralysis measurements

Lifespan was measured as described (Mouchiroud et al., 2011). In general, 5-10 L4 worms
of each worm strain were transferred onto RNAI plates (containing 2 mM IPTG and 25
mg/mL carbenicillin) seeded with E. coli HT115 bacteria or RNAi bacteria. After the F1
progenies reached the last larval stage L4, worms were then transferred onto RNAI plates
containing 10 uM 5FU. Approximately 60 worms were used for each condition and scored
every other day. For the validation experiments of the candidate genes, 80 worms were used
for each condition.

Paralysis was manually assessed through the previously described poking method (McColl
et al., 2012), with a minimum of 80 worms analyzed per condition.

Phenotyping by microfluidics
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The phenotypic readouts reflecting development, growth dynamics, fertility, and reproduction
of different RIAIL strains were collected with the SydLab robotic microfluidic-based platform
developed by Nagi Bioscience SA, which allows high-throughput and high-content C.
elegans screenings. A synchronized population of C. elegans was injected into microfluidic
chips at the L1 larval stage. Worms were confined within dedicated microfluidic chambers
and were continuously fed with freeze-dried E. coli OP50 solution. The images of each
chamber were recorded every hour for the whole duration of the experiment. At the end of
the experiment the collected images were processed by a set of software modules (also
developed by Nagi Bioscience) based on machine learning algorithms, allowing a fully
automated and standardized way for feature extraction and data analysis. The experiments
were performed at 23°C.

Sample collection for RNA-seq, proteomics, and lipidomics analyses

Worms of each RIAIL strain were cultured on plates seeded with E. coli OP50, and then
worm eggs were obtained by alkaline hypochlorite treatment of gravid adults. A
synchronized L1 population was obtained by culturing the egg suspension in sterile M9
butter overnight at room temperature. Approximately 2000 L1 worms of each RIAIL strain
were transferred onto plates seeded with E. coli HT115. L4 worms were harvested after 2.5
days with M9 buffer and washed three times. Worm pellets were immediately submerged in
liquid nitrogen for snap-freezing and stored at -80°C until use.

RNA extraction and RNA-seq data analysis

On the day of the RNA extraction, 1 mL of TriPure Isolation Reagent was added to each
sample tube. The samples were then frozen and thawed quickly eight times with liquid
nitrogen and a 37 °C water bath to rupture worm cell membranes. Total worm RNA was
extracted by using a column-based kit from Macherey-Nagel. RNA-seq was performed by
BGI with the BGISEQ-500 platform. FastQC (version 0.11.9) was used to verify the quality of
the reads (de Sena Brandine and Smith, 2019). Low-quality reads were removed and no
trimming was needed. Alignment was performed against worm genome (WBcel235 sm-

toplevel) following the STAR (version 2.73a) manual guidelines (Dobin et al., 2013). The
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STAR gene-counts for each alignment were analyzed for differentially expressed genes
using the R package DESeq2 (versionl1.32.0)(Love et al., 2014) using a generalized-linear
model. Count data were normalized to counts per million (CPM) using edgeR (version 3.36.0)
for visualizations of expression data. Biological process (BP) overrepresentation analysis
and Gene Set Enrichment Analysis (GSEA) were performed using Clusterprofiler (version
4.2.2) and org.Ce.eg.db (version 3.14.0). A principal component analysis was also
generated to explore the primary variation in the data (Lé et al., 2008; Risso et al., 2014).
For RT-gPCR, worms were collected and total RNA was extracted as described for the RNA-
seq sample preparation. cDNA synthesis was conducted from total RNA by the Reverse
Transcription Kit (Qiagen, Cat# 205314). gPCR was performed using the Light Cycler 480
SYBR green | Master kit (Roche, Cat# 04887352001). The primers used for RT-qPCR are
listed in the Key Resource Table. pmp-3 was used as housekeeping controls.

Lipid extraction

The extraction procedures have been described previously (Zhu et al., 2023). All reagents
were chilled on ice and samples were maintained at < 4°C during the extraction procedure. A
metal bead was added to each sample. Next, 500 pL M1 (tert-Butyl methyl ether:Methanol =
3:1, viv) was added to each tube and vortexed for 2 minutes. 325 pL M2 (H,O: Methanol =
3:1, v:v) was added to each tube. Samples were vortexed briefly. Then, samples were flash-
freezed in liquid nitrogen and thawed on ice. This step was done three times to facilitate cell
breakage. Samples were transferred to a bead-beater and shaken at 1/25 s frequency for 5
min, and this process was done three times. The samples were then centrifuged for 10 min
at 12,500 g at 4°C. For downstream lipid analysis, 200 uL of the organic layer (upper phase)
was transferred to a glass autosampler vial and dried by vacuum centrifugation. Remaining
protein pellets on the bottom were kept on ice until further digestion.

Once dried, organic extracts intended for lipid analysis were resuspended in 100 pL 65:30:5
Isopropanol:Acetonitrile:Water and vortexed for 20 s prior to analysis by Liquid

chromatography—mass spectrometry (LC-MS). Agqueous extracts intended for metabolomic
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analysis were resuspended in 50 pL 1:1 Acetonitrile (ACN):Water and also vortexed for 20 s
prior to analysis by LC-MS.

Protein digestion

Remaining protein pellets on the bottom were washed with 1 mL ACN and centrifuged at 10
kg for 3 min at 4 °C. Supernatant ACN was aspirated and the protein pellets sit for 10-15 min
at room temperature, or vacuum dried briefly to dry up the liquid in the bottom of the tube.
300 L lysis buffer (8M urea with 100 mM tris(2-carboxyethyl)phosphine, 40 mM
chloroacetamide and 100 mM tris (pH = 8.0) was added to each sample and vortex till the
protein pellets were fully dissolved. 5 pg LysC was added to each sample with
protein:enzyme ratio 70:1 (digestion lasted overnight at room temperature). Trypsin at 70:1
protein:enzyme was added to each sample after diluting the lysis buffer to 2 M urea and
digestion lasted for six hours at room temperature. Desalting was carried out with 96 well
desalting plates. A blank well between any two samples was reserved to avoid cross
contamination. Desalting started with equilibrating the desalting wells with 1 mL 100% ACN,
followed by 1 mL 0.2% FA. Acidified peptide mixture was loaded to the 96 well desalting
plate, followed by 2 mL 0.2% FA wash. Peptides were eluted into a 96-well collection plate
with 600 uL 80% ACN with 0.2% FA. Peptides were vacuum dried down and stored in -80°C
freezer until resuspension with 0.2% FA. After resuspension, peptide concentration was
measured using a quantitative colorimetric peptide assay.

LC-MS setup

Proteomics: Peptides were separated on an in-house prepared high pressure reversed
phase C18 column (Shishkova et al., 2018). Briefly, a 75-360 um inner-outer diameter bare-
fused silica capillary was packed with 1.7 um diameter, 130 A pore size, Bridged Ethylene
Hybrid C18 particles (Waters) under high pressure of 25K psi to a final length of ~40 cm.
The column was installed onto a Thermo Ultimate 3000 nano LC and heated to 50 °C for all
runs. Mobile phase buffer A was composed of water with 0.2% FA. Mobile phase B was
composed of 70% ACN with 0.2% FA. Samples were separated with a 120 min LC method:

peptides were loaded onto the column for 13 min at 0.37 pL/min. Mobile phase B increased
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from 0 to 6% in 13 min, then to 53% B at 104 min, 100% B at 105 min and held for 4 min at
100% B, decreased to 0% B at 110 min, and a 10 min re-equilibration at 0% B.

Eluting peptide fragments were ionized by electrospray ionization and analyzed on a Thermo
Orbitrap Eclipse. Survey scans of precursors were taken from 300 to 1350 m/z at 24001000
resolution. Maximum injection time was 50 ms and automatic gain control (AGC) target was
1E6 ions. Tandem MS was performed using an isolation window of 0.5 Th with a dynamic
exclusion time of 10 s. Selected precursors were fragmented using a normalized collision
energy level of 25%. MS2 AGC target was set at 2E4 ions with a maximum injection time of
14 ms. Scan range was 150-1350 m/z. Scans were taken at the Turbo speed setting and
only peptides with a charge state of +2 or greater were selected for fragmentation.
Lipidomics: Extracted lipids were separated on an Acquity CSH C18 column (100 mm x 2.1
mm x 1.7 um patrticle size; Waters) at 50°C using the following gradient: 2% mobile phase B
from 0-2 min, increased to 30% B over next 1 min, increased to 50% B over next 1 min,
increased to 85% over next 14 min, increased to 99% B over next 1 min, then held at 99% B
for next 7 min (400 puL/min flow rate). Column re-equilibration of 2% B for 1.75 min occurred
between samples. For each analysis 10 pL/sample was injected by autosampler. Mobile
phase A consisted of 10 mM ammonium acetate in 70:30 (v/v) acetonitrile:milliQ H20 with
250 pL/L acetic acid. Mobile phase B consisted of 10 mM ammonium acetate in 90:10 (v/v)
isopropanol:ACN with 250 pL/L acetic acid.

The LC system (Vanquish Binary Pump, Thermo Scientific) was coupled to a Q Exactive
Orbitrap mass spectrometer through a heated electrospray ionization (HESI IlI) source
(Thermo Scientific). Source and capillary temperatures were 300°C, sheath gas flow rate
was 25 units, aux gas flow rate was 15 units, sweep gas flow rate was 5 units, spray voltage
was |3.5 kV| for both positive and negative modes, and S-lens RF was 90.0 units. The MS
was operated in a polarity switching mode; with alternating positive and negative full scan
MS and MS2 (Top 2). Full scan MS were acquired at 17,500 resolution with 1 x 10° AGC
target, max ion accumulation time of 100 ms, and a scan range of 200-1600 m/z. MS2 scans

were acquired at 17,500 resolution with 1 x 10°> AGC target, max ion accumulation time of 50
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ms, 1.0 m/z isolation window, stepped normalized collision energy (NCE) at 20, 30, 40, and
a 10.0 s dynamic exclusion.

The LC system (Vanquish Binary Pump, Thermo Scientific) was coupled to a Q Exactive HF
Orbitrap mass spectrometer through a heated electrospray ionization (HESI IlI) source
(Thermo Scientific). Source and capillary temperatures were 350°C, sheath gas flow rate
was 45 units, aux gas flow rate was 15 units, sweep gas flow rate was 1 unit, spray voltage
was 3.0 kV for both positive and negative modes, and S-lens RF was 50.0 units. The MS
was operated in a polarity switching mode; with alternating positive and negative full scan
MS and MS2 (Top 10). Full scan MS were acquired at 60K resolution with 1 x 10° AGC
target, max ion accumulation time of 100 ms, and a scan range of 70-900 m/z. MS2 scans
were acquired at 45K resolution with 1 x 10°> AGC target, max ion accumulation time of 100
ms, 1.0 m/z isolation window, stepped NCE at 20, 30, 40, and a 30.0 s dynamic exclusion.
Data analysis for proteomics and lipidomics

Proteomics: LC-MS files for proteomics were searched in Maxquant (version 2.0.3.1).
Original outputs from Maxquant were inspected and potential contaminant proteins, protein
groups that contain proteins identified with decoy peptide sequence, and those identified
only with modification site were removed. LFQ intensities were used as the quantification
metric.

Lipidomics: LC-MS files for lipidomics were processed using Compound Discoverer 3.1
(Thermo Scientific) and LipiDex (Hutchins et al., 2018). All peaks with a 1.4-23 min retention
time and 100 Da to 5000 Da MS1 precursor mass were aggregated into compound groups
using a 10 ppm mass tolerance and 0.4 retention time tolerance. Peaks were excluded if
peak intensity was less than 2 x 106, peak width was greater than 0.75 min, signal-to-noise
ratio was less than 1.5, or intensity was < 3-fold greater than blank. MS2 spectra were
searched against an in-silico generated spectral library containing 35,000 unique molecular
compositions of 48 distinct lipid classes (Hutchins et al., 2019). Spectra matches with a dot
product score > 500 and reverse dot product score > 700 were retained for further analysis.

Lipid MS/MS spectra that contained < 75% interference from co-eluting isobaric lipids, eluted
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within a 3.5 median absolute retention time deviation (M.A.D. RT) of each other, and were
found within at least 4 processed files were used for identification at the individual fatty acid
substituent levels of structural resolution. If individual fatty acid substituents were unresolved,
then identifications were made with the sum of the fatty acid substituents. Peak intensities
were normalized with the peptide amount to correct for different amounts of starting
materials across the RIAIL panel.

Survival analysis and lifespan traits extraction

The survfit function of the survival (version 3.5-0) R package was used to analyze survival
data. The following formula was used “survival::Surv(Age_of death, status) ~ Strain” with
default parameters. Parental strains (N2 and CB4856) lifespan from each batch was
compared to check for possible batch effects. No batch correction was performed. The
guantile function was used to obtain the average lifespan as well as the 25%, 50% and 75%
mortality.

Life-history trait batch correction

The Imer function of the ImerTest (version 3.1-3) R package was used to adjust for batch
effects in data collection. The following formula was used “value ~ (1|batch/channel)” with
default parameters.

Statistical analyses

In the analysis of continuous variables across groups, we computed p-values using two-
sided Student's t-tests to ascertain statistical significance (Figures 5B, 5C, and S6C). To
explore relationships among variables we used Pearson correlations (Figures 2F, 2G, 3F,
and S8A). Resulting p-values (where applicable) were corrected for multiple testing using the
Benjamini—-Hochberg false discovery rate.

Dirichlet regression analysis

The DirichletReg (version 0.7-1) R package was used to analyze the shape proportion data
and generate visualizations (Figures 2H and S2). Univariate analysis among variables was
performed with default parameters following package documentation.

Variant calling and genetic map construction
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Using the RNA-seq data, we performed variant calling employing the Genome Analysis
Toolkit (GATK) (version 4.2.4.0) (Brouard et al., 2019) following their best practices workflow
(Figure S7) (Van der Auwera et al., 2013) to genotype the 85 RIAILSs strains. In brief, RNA-
seq reads were mapped to the reference genome using STAR and prepared for variant
calling (Mark Duplicates, SplitNCigarReads, Base Quality Recalibration). Then short variants
(SNPs and Indels) were called using GATK’s HaplotypeCaller. Next, we exploited the design
of the study (parental replicates and strain under control and treated conditions) to obtain a
high-confidence set of germline variants. Comparison of identified variants with publicly
available variant information for C. elegans (https://www.elegansvariation.org/) and previous
genetic work on the RIAILs allowed us to perform quality control checks on the obtained
variants (Figures S7 and S8). We then used the onemap (version 2.8.2) (Margarido et al.,
2007) software to construct a genetic map for subsequent QTL mapping. For comparison to
known variants (Figure S7B), variants for the CB4856 strain were retrieved from the

“Caenorhabditis elegans Natural Diversity Resource” (https.//elegansvariation.org/). Soft

filtered variant file was retrieved from

http://storage.googleapis.com/elegansvariation.org/releases/20210121/variation/W1.2021012

1.hard-filter.vcf.gz. Hard filtered variant file was retrieved from

http://storage.googleapis.com/elegansvariation.org/releases/20210121 /variation/W1.2021012

1.soft-filter.vcf.gz. These variants were then filtered for the CB4856 strain keeping only 1/1

variants with high impact consequence.

Association mapping and gene-set enrichment analysis

We used the Imekin function of the coxme R package as it allows one to model the
correlation structure of the random effects. Analysis of deviance for Imekin from

https://aeolister.wordpress.com/2016/07/07/likelihood-ratio-test-for-Imekin/ was used to

calculate Likelihood ratio between the null model “value ~ 1 + (1]|kinshipCov)” and the model
of interest “value ~ 1 + predictorValue + (1]kinshipCov)”. An INT transformation was to

transform the data before mapping. The Benjamini-Hochberg procedure was selected for
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multiple-testing correction. As the traits mapped are not independent, such a correction
would be over-correcting. GSEA analysis was performed using Clusterprofiler (version 4.2.2)
and org.Ce.eg.db (version 3.14.0). The used gene list was ranked by the signed LOD-value
obtained from the association mapping analysis.

Lipid class over-representation analysis

All measured lipid species were used to define lipid class sets. These were used along with
the enricher function from the clusterProfiler (version 4.2.2) R package to conduct lipid class
enrichment analysis (Figure S5), which is designed to accept customized annotations
through the TERM2GENE parameter. The Benjamini-Hochberg procedure was selected for
multiple-testing correction. Enrichment was tested for each lifespan trait (average lifespan,
25%, 50% and 75% mortality) for two groups of lipids: positively associated (nhon-adjusted p-
value < 0.05 & association coefficient > 0) and negatively associated (non-adjusted p-value
< 0.05 & association coefficient < 0).

Quantitative trait locus (QTL) mapping

The qtl2 (version 0.34) R package (Broman et al., 2019) was used to perform QTL mapping
of all phenotypic and molecular traits. An INT transformation was used to transform the data
before mapping. Gene codes were encoded as N2 = 1, CB4856 = 2 and heterozygotic
(N2/CB4856) = 3. Crosstype was specified as “risib”. Pseudomarkers were inserted into the
genetic map with a step of 1 and default values for other parameters. Conditional genotype
probabilities, kinship and genome scans were performed using qtl2 package functions with
default parameters. Significance thresholds for each trait were obtained through permutation
testing using the scanlperm qgtl2 function with 1000 permutations. Finally, the find_peaks
function was used to identify significant QTLs with a threshold of 0.05 and a drop of 0.5.
Lifespan locus differential analysis and gene-set enrichment analysis

Concerning Figures 5B and 5C, RIAIL strains were split into two groups based on their
genotype at position 13,121,591 on Chr. Il and 12,125,475 on Chr. V. Using the package
limma (version 3.50.1) we performed differential expression analysis between the two

groups of RIAILs. GSEA analysis was performed using Clusterprofiler (version 4.2.2) and
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org.Ce.eg.db (version 3.14.0). The Benjamini-Hochberg procedure was selected for multiple-
testing correction. The used gene list was ranked by the signed p-value obtained from the
differential expression analysis.

UK Biobank GFM1 and RICTOR SNP-disease time-to-event analysis

The time-to-event analysis was performed in the UK Biobank, a population cohort of
~500,000 participants from the United Kingdom (Sudlow et al., 2015) (project 48020). The
sample analyzed was restricted to participants of European ancestry (as determined in Pan-

UKBB, https://pan.ukbb.broadinstitute.org) who were unrelated, as determined by their

inclusion in the original calculation of the genetic principal components (field 22020). Time-
to-event was measured from birth to the first occurrence of the event. We selected 19
diseases to include as events in addition to death, listed in the table below. Variants were
selected from whole-exome sequencing, where at least 5 minor alleles were detected. These
selection criteria resulted in 339967 individuals and 821 and 577 SNPs for GFM1 and
RICTOR, respectively.

The time-to-event analysis was done with Cox proportional hazards in R using the Coxph
function from the survival packages (Borgan, 2001; Therneau, 2023). The top 40 genetic
principal components, sex, and the batch (specifically the initial 50k released, field 32050)
were included as covariates. In some cases, the maximum likelihood of the method failed to
converge, generally due to no events being recorded in individuals with alternate alleles, in
which case the results were marked as unreliable for that SNP-event combination. These
were retained only for the purpose of multiple-testing correction, which was performed using

the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

Event ICD10 code(s) Number
of events

Myocardial infarction 121, 122, 124 18,016
Cardiomyopathy 142 2,584
Heart failure 150 14,097
Chronic ischaemic heart disease 125 37,124
Aortic aneurysm and dissection 171 3,733
Cerebrovascular disease G45, 160-164, 167, 168 23,710
Vascular dementia FO1 1,493
Parkinson disease G20, G23 3,228
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Secondary parkinsonism G21 226
Alzheimer’s disease/dementia F00, FO2, F03, G30 5,582
Multiple sclerosis and other demyelinating diseases of G35, G37 2,036
the central nervous system

Insulin-dependent diabetes mellitus E10 3420
Non-insulin-dependent diabetes mellitus E11, E13, E14 31,663
Acute pancreatitis K85 3,391
Acute renal failure N17 17,241
Chronic renal failure N18 20,369
Alcoholic liver disease K70 1,627
Fibrosis and cirrhosis of the liver K74 2,044
Other inflammatory liver diseases K75 2,242
Death - 25,915

Figures and visualizations

Data visualization was performed using ggplot2 (version 3.4.2). The resulting p-values
(where applicable) were corrected for multiple testing using the Benjamini—Hochberg false
discovery rate. Clusterprofiler (version 4.2.2) was used to generate graph representations of
enrichment results (Figures 3D and S4D). The R package enrichplot (version 1.14.2) was
used to generate running GSEA plots (Figure 3E). UpSetR (version 1.4.0) was used to
generate upset plots (Figures 3C, S3, and S4C).

Data availability

The RNA-Seq data generated in this study have been deposited in the GEO database
(GSE252593). The remaining data generated in this study are provided in the Source Data
files. Scripts for analysis and figure generation have been deposited in a GitHub

(https://github.com/auwerxlab/Project RIAILS) repository along with additional data used in

this work.

Fluorescent image for assessing the UPR™ activation

RNAI bacteria were cultured overnight in lysogeny broth (LB) medium containing 100 mg/mL
ampicillin at 37°C. Then the bacteria were five times concentrated and seeded onto RNAI
plates. Random L4/young adult worms were picked onto the RNAIi bacteria-seeded plates
and cultured at 20°C until their progenies reached the young adult stage. 6 - 10 worms were

then randomly picked in a drop of 20 mM tetramisole (Cat. T1512, Sigma) and then aligned
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on an empty NGM plate. Fluorescent images, with the same exposure time for each
condition, were captured using a Nikon SMZ1000 microscope.

Real-time quantitative PCR (RT-gPCR)

For gRT-PCR, worms were cultured and total RNA was extracted as described for the RNA-
seq sample preparation. cDNA synthesis was performed using the Qiagen Reverse
Transcription Kit (205314) from the extracted RNA samples. The gPCR was then conducted
with the Roche Light Cycler 480 SYBR Green | Master kit (Cat. 04887352001). The specific
primers utilized are detailed in the key resources table, with pmp-3 primers serving as
housekeeping controls.

OCR measurements by Seahorse

Oxygen consumption rate (OCR) was assessed using the Seahorse XF96 (Seahorse
Bioscience), following the protocol outlined in (Koopman et al., 2016). Briefly, a synchronized
culture of ~100 worms was harvested on day 1 of adulthood with sterile M9 buffer. After
three washes in the M9 buffer, the worms were transferred to a 96-well Seahorse plate,
where their OCR was measured six times to determine mitochondrial activity for each
condition at basal level and another six times measurement after adding 10 pM FCCP as the

final concentration.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were applied to pre-determine worm sample size. Comparison
between more than two groups was assessed by using a One-way ANOVA test. Prism 8
(GraphPad Software) was used for statistical analysis of all lifespan, gRT-PCR, OCR, and
paralysis experiments. Variability in panels is given as the s.e.m. All p<0.05 were considered
to be significant. (****p<0.0001; ***p<0.001; **p<0.01; *p<0.05; n.s., not significant. For
lifespan, and OCR measurement in worms, sample size was determined based on the

known variability of the experiments. All experiments were done non-blinded.
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Figure legends

Figure 1. Overview of the study design. 85 recombinant intercross advanced inbred lines
(RIAILS) derived from the crossing of QX1430 (N2 Bristol background, with deletions of
confounder genes) and CB4856 strain (Hawaii) were used. Lifespan, early life-history traits,
transcriptome, proteome, and lipidome were collected for each strain. We applied a systems
genetics approach to study relations between different phenotypes and molecular traits to
identify candidate lifespan genes. After prioritization of the candidate genes, we validated
them through wet lab experiments and human population genetics (e.g. UK Biobank). We
collected data from all RIAILs using three pipelines. In the first, worms were cultured and
scored for their lifespans; in the second, they were cultured in a microfluidic device for ~100
h to collect early life-history traits, including body size, moving shapes, developmental
parameters, reproduction, and fertility; and in the last, they were cultured to reach L4/young
adulthood, and collected for multi-omics measurements (transcriptomics, proteomics, and
lipidomics). Examples of variants: SNV: single-nucleotide variant. INDEL: insertions and
deletions. GSEA: gene set enrichment analysis; Chr. I-X: chromosome | to X; LC-MS: liquid
chromatography—mass spectrometry; L1- L4: larval stage 1 to 4; YA: young adulthood; GA:

gravid adulthood. Max. Lifespan: maximum lifespan; Avg. Lifespan: average lifespan.

Figure 2. RIAILs exhibit extensive variation in lifespan and life-history traits. (A) Bar
plot showing the average lifespan of 85 RIAIL strains (60 worms/strain) and two wild-type
parental strains (600 worms/strain). Grey bars: RIAILs; Orange bar: N2 (Bristol); Blue bar:
CB4856 (Hawaii, HW). Examples of strains with different average lifespans are labeled. (B)
Examples of differences in the average lifespan of RIAILs (QX537, QX520, and QX597; grey)
and parental N2 (orange) and CB4856 (blue) strains. (C) Violin plots of the RIAIL lifespan
traits. Dots represent the average value of the trait for the two parental strains. (D) Violin
plots of early life-history phenotypic traits. Dev. time: developmental time; Egg acc.: egg
accumulation; Prog. acc.: progeny accumulation (E) Violin plots of the activity life-history

phenotypic traits. Shape 1: straight; Shape 2: active; Shape 3: swimming; Shape 4: supercoil.
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(F) Pearson correlation between lifespan and physiological traits. Stars represent non-
adjusted p-values (*: adjusted BH p-value < 0.05). LS: lifespan. Mort: mortality. (G)
Correlation of 25% mortality with developmental time, body size, and the time to the 1% egg,
respectively. R: Pearson correlation coefficients p: p-values. (H) Scatter plots of time spent
in 2 moving shapes and time to the 1% progeny of each RIAIL strain. The p-value indicates

the coefficient in the linear model. Related to Figures S1 and S2.

Figure 3. Quantitative assessment of transcriptome-lifespan associations. (A)
Schematic pipeline of mRNA-lifespan association mapping and gene set enrichment
analysis (GSEA). (B) Line histogram of non-adjusted p-values of mRNA-lifespan
associations for the different lifespan traits. The distribution of mRNA-lifespan associations
showed a higher density of significant associations (non-adjusted p-values) for the 25%
mortality trait. The Y-axis represents the density of p-values. The red dashed vertical line
represents a p-value of 0.05. Color represents the different lifespan traits. (C) The upset plot
of positively- (red) and negatively- (blue) associated genes with 25%, 50%, and 75%
mortality in the RIAILs with a non-adjusted p-value smaller than 0.05. (D) Graph
representing the top 30 biological process gene sets enriched. GSEA of mMRNA-25%
mortality associations. Genes were ranked by the signed logarithm of the odds (LOD) score
of mMRNA-25% mortality association. Color represents positive (red) or negative (blue)
normalized enrichment score (NES). All gene sets in the figure had a significant g-value.
Genesets in bold: overlapping genesets in both mRNA and protein levels. (E) The running
GSEA plot of “determination of adult lifespan” (GO:0008340). adj. p: adjusted p-value. (F)
Heatmap of Pearson correlation of transcripts enriching for GO:0008340 with 25% mortality
in the RIAILs. Star represents a non-adjusted p-value < 0.05. Related to Figure S3 and

Tables S1 and S2.

Figure 4. Quantitative assessment of lipidome-lifespan associations. (A) Diagram of

lipid-lifespan association mapping and lipid-class over-representation. (B) Principal
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component analysis (PCA) representation of RIAIL strains based on all LC-MS measured
lipids at L4/young adulthood. Color represents z-score of the average lifespan of each RIAIL
strain. (C-D) Bar plots of the number of lipids with significant association (non-adjusted p-
value < 0.05) and positive (C) or negative (D) association coefficient. CL: cardiolipin. PE:
phosphatidylethanolamine. PE-derivatives: including Lyso-PE, plasmanyl-PE, plasmenyl-PE.
PI: phosphatidylinositol. TG: triglycerides. PC: phosphatidylcholines. PC-derivatives: PC[OH]
and plasmanyl-PC. Cer[AS]: ceramideAS. Cer[NS]: ceramideNS. Cer[AP]: ceramideAP. SP:

Sphingolipid. Methyl-PA: methylphosphatidic acid. Related to Figure S5 and Table S4.

Figure 5. Identification of a lifespan-modulating locus on Chromosome Il and
prioritization of candidate genes. (A) QTL mapping of lifespan and life-history traits
identifies two significant QTL on Chr. Il, and V for average lifespan, and time to 1% progeny,
respectively. The vertical axis shows the logarithm of the odds (LOD score). The horizontal
axis represents the genomic position in mega-basepair (Mbp). Dashed and solid grey lines
represent suggestive (p < 0.1) and significant (p < 0.05) thresholds, respectively. (B) Boxplot
of the average lifespan of RIAILs with CB4856 or N2 genotype at position 13,121,591 on Chr.
1. (C) Boxplot of time to 1% progeny of RIAIL strains with CB4856 or N2 genotype at position
12,125,475 on Chr. V. The p-value represents the comparison of the two groups calculated
using a two-tailed Student’s t-test. (D) Gene set enrichment analysis based on differential
transcriptome analysis at position 13,121,591 on Chr. IIl. Only the top 15 significant and
positively enriched genesets for biological process terms (upper) and cellular component
terms (lower) are shown. Color represents -logio(adjusted p-value). BP: Biological process.
CC: Cellular component. NES: normalized enrichment score. Interesting gene sets were
highlighted in bold. (E) Candidate genes are prioritized under the confidence region of the
loci on Chr. Il. Genes under the lifespan QTL peak were annotated if: a gene has one or
more variants in CB4856; a gene has one or more missense or modifier variants in CB4856;
the gene is differentially expressed between N2 and CB4856 (absolute log, (fold change) > 1

and adjusted p-value < 0.05); the gene has been annotated in GenAge
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(https://genomics.senescence.info/genes/index.html) for involvement in the aging; the gene
has been found in a paper with “lifespan” as a keyword in Pubmed; the transcript/protein of
the gene correlates with average lifespan; the gene/protein has an expression cis-eQTL or a
protein cis-pQTL; the RNAI clone with the right sequence is available from at least one of the
libraries (Ahringer and Vidal libraries). Grey color: not available (mMRNA or protein not
measured). Top candidate genes, rict-1 and gfm-1 are highlighted in red and bold. *: known

longevity gene. Related to Figures S7, S8 and Table S5.

Figure 6. RNAi of gfm-1 induced UPR™ activation and prolonged lifespan in C.
elegans. (A) Lifespan of worms fed with ev (control RNAI) (black) or candidate gene RNAI
(red). P-values represent a comparison with the controls calculated using the log-rank test.
n.s.: not significant. (B) RNAIi of gfm-1 extends worm lifespan in an RNAi dose-dependent
manner. Worms fed with ev (control RNAI) or 10%-100% gfm-1 RNAI; control RNAi was
used to supply to a final 100% of RNAI. (C) Age-related paralysis of worms fed with ev or
10%-100% gfm-1 RNAI. Error bars denote SEM. Statistical analysis was performed by one-
way ANOVA followed by Tukey post-hoc test (*p < 0.05; **p < 0.001). (D) RNAI of gfm-1
induced the UPR™ (hsp-6p::gfp reporter) in a dose-dependent manner. Worms fed with ev or
10%-100% gfm-1 RNAI. Scale bar: 0.5 um. (E) RT-gPCR results of mRNA levels (n = 4
biological replicates) in worms fed with ev, or 10%-100% gfm-1 RNAI. Statistical analysis of
RT-gPCR results was performed by one-way ANOVA followed by Tukey post-hoc test (**p <
0.01; ***p < 0.001). Values in the figure are mean = SEM. (F) RNAI of gfm-1 reduced both
basal and max. oxygen consumption rate (OCR) compared to those of controls on day 1 of
adulthood. Values in the figure represent mean + SEM. Statistical analysis of RT-gPCR
results was performed by one-way ANOVA followed by Tukey post-hoc test (*p < 0.05; **p <

0.01; **p < 0.001). Related to Figure S9.

Figure 7. Exploration of human GFM1 and RICTOR SNP association with disease

incidence in the UK Biobank. (A) The workflow of disease risk associations between
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GFM1/RICTOR variants and life-long incidence of diseases and all-cause mortality with Cox
proportional-hazard models. (B) Identification of 21 and 59 SNP-disease associations (BH-
Adjusted p value < 0.05) for GFM1 (colored by light red) and RICTOR (colored by light blue).
19 diseases (including cardiovascular diseases, dementia, diabetes, renal failure, and liver
disease) and death are pre-selected. The variant-disease associations for each disease are
ranked by BH-adjusted p-value, and only the most significant one is shown in the plot. ***:
BH-adjusted p-value < 0.001; **: BH-adjusted p-value < 0.01; *: BH-adjusted p-value < 0.05.
The Hazard ratio calculated by Coxproportional-hazard models is indicated in the X-axis.

Related to Tables S6 and S7.

42


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575638; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Reference

Andersen, E.C., Shimko, T.C., Crissman, J.R., Ghosh, R., Bloom, J.S., Seidel, H.S., Gerke, J.P., and
Kruglyak, L. (2015). A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis
elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains. G3
(Bethesda) 5, 911-920.

Anderson, J.L., Reynolds, R.M., Morran, L.T., Tolman-Thompson, J., and Phillips, P.C. (2011).
Experimental evolution reveals antagonistic pleiotropy in reproductive timing but not life span in
Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 66, 1300-1308.

Atakan, H.B., Cornaglia, M., Mouchiroud, L., Auwerx, J., and Gijs, M.A.M. (2018). Automated high-
content phenotyping from the first larval stage till the onset of adulthood of the nematode
Caenorhabditis elegans. Lab Chip 19, 120-135.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B
(Methodological) 57, 289-300.

Blanco, M.A., and Sherman, P.W. (2005). Maximum longevities of chemically protected and non-
protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech Ageing
Dev 126, 794-803.

Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., and Sams, S. (1978). Relationships
between body size and some life history parameters. Oecologia 37, 257-272.

Borgan, @. (2001). Modeling Survival Data: Extending the Cox Model. Terry M. Therneau and Patricia
M. Grambsch, Springer-Verlag, New York, 2000. No. of pages: xiii + 350. Price: $69.95. ISBN 0-387-
98784-3. Statistics in Medicine 20, 2053-2054.

Bou Sleiman, M., Roy, S., Gao, A.W., Sadler, M.C., von Alvensleben, G.V.G., Li, H., Sen, S., Harrison,
D.E., Nelson, J.F., Strong, R., et al. (2022). Sex- and age-dependent genetics of longevity in a
heterogeneous mouse population. Science 377, eabo3191.

Broman, K.W., Gatti, D.M., Simecek, P., Furlotte, N.A., Prins, P., Sen, S., Yandell, B.S., and Churchill,
G.A. (2019). R/qgtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and
Multiparent Populations. Genetics 211, 495-502.

Brouard, J.S., Schenkel, F., Marete, A., and Bissonnette, N. (2019). The GATK joint genotyping
workflow is appropriate for calling variants in RNA-seq experiments. J Anim Sci Biotechnol 10, 44.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A., Vukcevic, D.,
Delaneau, O., O'Connell, J., et al. (2018). The UK Biobank resource with deep phenotyping and
genomic data. Nature 562, 203-209.

Calzada, E., Onguka, O., and Claypool, S.M. (2016). Phosphatidylethanolamine Metabolism in Health
and Disease. Int Rev Cell Mol Biol 321, 29-88.

Chippindale, A.K., Hoang, D.T., Service, P.M., and Rose, M.R. (1994). The Evolution of Development
in Drosophila Melanogaster Selected for Postponed Senescence. Evolution 48, 1880-1899.

Cortopassi, G.A., and Wang, E. (1996). There is substantial agreement among interspecies estimates
of DNA repair activity. Mech Ageing Dev 91, 211-218.

Cox, D.R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society Series
B (Methodological) 34, 187-220.

Dai, Y., Tang, H., and Pang, S. (2021). The Crucial Roles of Phospholipids in Aging and Lifespan
Regulation. Front Physiol 12, 775648.

43


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575638; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

de Magalhaes, J.P., Costa, J., and Church, G.M. (2007). An analysis of the relationship between
metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J
Gerontol A Biol Sci Med Sci 62, 149-160.

de Magalhaes, J.P., Curado, J., and Church, G.M. (2009). Meta-analysis of age-related gene
expression profiles identifies common signatures of aging. Bioinformatics 25, 875-881.

de Sena Brandine, G., and Smith, A.D. (2019). Falco: high-speed FastQC emulation for quality control
of sequencing data. F1000Res 8, 1874.

Dingley, S.D., Polyak, E., Ostrovsky, J., Srinivasan, S., Lee, I., Rosenfeld, A.B., Tsukikawa, M., Xiao,
R., Selak, M.A., Coon, J.J., et al. (2014). Mitochondrial DNA variant in COX1 subunit significantly
alters energy metabolism of geographically divergent wild isolates in Caenorhabditis elegans. Journal
of molecular biology 426, 2199-2216.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.

Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of electron transport
chain-mediated longevity. Cell 144, 79-91.

Evans, K.S., van Wijk, M.H., McGrath, P.T., Andersen, E.C., and Sterken, M.G. (2021). From QTL to
gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation.
Trends Genet 37, 933-947.

Falabella, M., Vernon, H.J., Hanna, M.G., Claypool, S.M., and Pitceathly, R.D.S. (2021). Cardiolipin,
Mitochondria, and Neurological Disease. Trends Endocrinol Metab 32, 224-237.

Frakes, A.E., Metcalf, M.G., Tronnes, S.U., Bar-Ziv, R., Durieux, J., Gildea, H.K., Kandahari, N.,
Monshietehadi, S., and Dillin, A. (2020). Four glial cells regulate ER stress resistance and longevity
via neuropeptide signaling in C. elegans. Science 367, 436-440.

Franceschi, C., Garagnani, P., Morsiani, C., Conte, M., Santoro, A., Grignolio, A., Monti, D., Capri, M.,
and Salvioli, S. (2018). The Continuum of Aging and Age-Related Diseases: Common Mechanisms
but Different Rates. Front Med (Lausanne) 5, 61.

Gao, A\W.,, Chatzispyrou, I.A., Kamble, R., Liu, Y.J., Herzog, K., Smith, R.L., van Lenthe, H., Vervaart,
M.A.T., van Cruchten, A., Luyf, A.C., et al. (2017). A sensitive mass spectrometry platform identifies
metabolic changes of life history traits in C. elegans. Scientific reports 7, 2408.

Gao, AW., El Alam, G., Lalou, A., Li, T.Y., Molenaars, M., Zhu, Y., Overmyer, K.A., Shishkova, E.,
Hof, K., Bou Sleiman, M., et al. (2022). Multi-omics analysis identifies essential regulators of
mitochondrial stress response in two wild-type C. elegans strains. iScience 25, 103734.

Gao, A.W., Sterken, M.G., Uit de Bos, J., van Creij, J., Kamble, R., Snoek, B.L., Kammenga, J.E., and
Houtkooper, R.H. (2018a). Natural genetic variation in C. elegans identified genomic loci controlling
metabolite levels. Genome Res 28, 1296-1308.

Gao, AW., Uit de Bos, J., Sterken, M.G., Kammenga, J.E., Smith, R.L., and Houtkooper, R.H.
(2018b). Forward and reverse genetics approaches to uncover metabolic aging pathways in
Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 1864, 2697-2706.

Ghalambor, C.K., Reznick, D.N., and Walker, J.A. (2004). Constraints on adaptive evolution: the
functional trade-off between reproduction and fast-start swimming performance in the Trinidadian
guppy (Poecilia reticulata). Am Nat 164, 38-50.

Govindaraju, D., Atzmon, G., and Barzilai, N. (2015). Genetics, lifestyle and longevity: Lessons from
centenarians. Appl Transl Genom 4, 23-32.

44


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575638; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Harshfield, E.L., Fauman, E.B., Stacey, D., Paul, D.S., Ziemek, D., Ong, R.M.Y., Danesh, J.,
Butterworth, A.S., Rasheed, A., Sattar, T., et al. (2021). Genome-wide analysis of blood lipid
metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci.
BMC Med 19, 232.

Hoedjes, K.M., van den Heuvel, J., Kapun, M., Keller, L., Flatt, T., and Zwaan, B.J. (2019). Distinct
genomic signals of lifespan and life history evolution in response to postponed reproduction and larval
diet in Drosophila. Evol Lett 3, 598-609.

Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R.W., and
Auwerx, J. (2013). Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497,
451-457.

Hutchins, P.D., Russell, J.D., and Coon, J.J. (2018). LipiDex: An Integrated Software Package for
High-Confidence Lipid Identification. Cell Syst 6, 621-625 e625.

Hutchins, P.D., Russell, J.D., and Coon, J.J. (2019). Mapping Lipid Fragmentation for Tailored Mass
Spectral Libraries. J Am Soc Mass Spectrom 30, 659-668.

Johnson, T.E. (1987). Aging can be genetically dissected into component processes using long-lived
lines of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United
States of America 84, 3777-3781.

Kamkina, P., Snoek, L.B., Grossmann, J., Volkers, R.J., Sterken, M.G., Daube, M., Roschitzki, B.,
Fortes, C., Schlapbach, R., Roth, A., et al. (2016). Natural Genetic Variation Differentially Affects the
Proteome and Transcriptome in Caenorhabditis elegans. Mol Cell Proteomics 15, 1670-1680.

Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that
lives twice as long as wild type. Nature 366, 461-464.

Koopman, M., Michels, H., Dancy, B.M., Kamble, R., Mouchiroud, L., Auwerx, J., Nollen, E.A., and
Houtkooper, R.H. (2016). A screening-based platform for the assessment of cellular respiration in
Caenorhabditis elegans. Nat Protoc 11, 1798-1816.

Lagunas-Rangel, F.A. (2022). G protein-coupled receptors that influence lifespan of human and
animal models. Biogerontology 23, 1-19.

Lakowski, B., and Hekimi, S. (1998). The genetics of caloric restriction in Caenorhabditis elegans.
Proceedings of the National Academy of Sciences of the United States of America 95, 13091-13096.

Lé, S., Josse, J., and Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis.
Journal of Statistical Software; Vol 1, Issue 1 (2008).

Lee, Y., Hwang, W., Jung, J., Park, S., Cabatbat, J.J., Kim, P.J., and Lee, S.J. (2016). Inverse
correlation between longevity and developmental rate among wild C. elegans strains. Aging 8, 986-
999.

Lehrbach, N.J., and Ruvkun, G. (2016). Proteasome dysfunction triggers activation of SKN-1A/Nrfl by
the aspartic protease DDI-1. Elife 5.

Li, H., and Auwerx, J. (2020). Mouse Systems Genetics as a Prelude to Precision Medicine. Trends
Genet 36, 259-272.

Li, Y., Breitling, R., Snoek, L.B., van der Velde, K.J., Swertz, M.A., Riksen, J., Jansen, R.C., and
Kammenga, J.E. (2010). Global genetic robustness of the alternative splicing machinery in
Caenorhabditis elegans. Genetics 186, 405-410.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
RNA-seq data with DESeg2. Genome Biol 15, 550.

45


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575638; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Luckinbill, L.S., Arking, R., Clare, M.J., Cirocco, W.C., and Buck, S.A. (1984). Selection for Delayed
Senescence in Drosophila Melanogaster. Evolution 38, 996-1003.

Ma, S., Upneja, A., Galecki, A., Tsai, Y.M., Burant, C.F., Raskind, S., Zhang, Q., Zhang, Z.D.,
Seluanov, A., Gorbunova, V., et al. (2016). Cell culture-based profiling across mammals reveals DNA
repair and metabolism as determinants of species longevity. Elife 5.

Maklakov, A.A., and Chapman, T. (2019). Evolution of ageing as a tangle of trade-offs: energy versus
function. Proc Biol Sci 286, 20191604.

Marchionni, S., Sell, C., and Lorenzini, A. (2020). Development and Longevity: Cellular and Molecular
Determinants - A Mini-Review. Gerontology 66, 223-230.

Margarido, G.R., Souza, A.P., and Garcia, A.A. (2007). OneMap: software for genetic mapping in
outcrossing species. Hereditas 144, 78-79.

McColl, G., Roberts, B.R., Pukala, T.L., Kenche, V.B., Roberts, C.M., Link, C.D., Ryan, T.M., Masters,
C.L., Barnham, K.J., Bush, A.l, et al. (2012). Utility of an improved model of amyloid-beta (Abeta(1)(-
)(4)(2)) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease. Mol
Neurodegener 7, 57.

Meli, V.S., Osuna, B., Ruvkun, G., and Frand, A.R. (2010). MLT-10 defines a family of DUF644 and
proline-rich repeat proteins involved in the molting cycle of Caenorhabditis elegans. Mol Biol Cell 21,
1648-1661.

Miller, R.A. (2002). Extending life: scientific prospects and political obstacles. Milbank Q 80, 155-174.

Mizunuma, M., Neumann-Haefelin, E., Moroz, N., Li, Y., and Blackwell, T.K. (2014). mTORC2-SGK-1
acts in two environmentally responsive pathways with opposing effects on longevity. Aging cell 13,

869-878.

Mouchiroud, L., Molin, L., Kasturi, P., Triba, M.N., Dumas, M.E., Wilson, M.C., Halestrap, A.P.,
Roussel, D., Masse, |., Dalliere, N., et al. (2011). Pyruvate imbalance mediates metabolic
reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging
cell 10, 39-54.

Nadeau, J.H., and Auwerx, J. (2019). The virtuous cycle of human genetics and mouse models in
drug discovery. Nature reviews Drug discovery 18, 255-272.

Nesic, I., Guix, F.X., Vennekens, K., Michaki, V., Van Veldhoven, P.P., Feiguin, F., De Strooper, B.,
Dotti, C.G., and Wabhle, T. (2012). Alterations in phosphatidylethanolamine levels affect the generation
of Abeta. Aging cell 11, 63-72.

Rieseberg, L.H., Archer, M.A., and Wayne, R.K. (1999). Transgressive segregation, adaptation and
speciation. Heredity (Edinb) 83 ( Pt 4), 363-372.

Risso, D., Ngai, J., Speed, T.P., and Dudoit, S. (2014). Normalization of RNA-seq data using factor
analysis of control genes or samples. Nat Biotechnol 32, 896-902.

Robida-Stubbs, S., Glover-Cutter, K., Lamming, D.W., Mizunuma, M., Narasimhan, S.D., Neumann-
Haefelin, E., Sabatini, D.M., and Blackwell, T.K. (2012). TOR signaling and rapamycin influence
longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell metabolism 15, 713-724.

Rockenfeller, P., Koska, M., Pietrocola, F., Minois, N., Knittelfelder, O., Sica, V., Franz, J., Carmona-
Gutierrez, D., Kroemer, G., and Madeo, F. (2015). Phosphatidylethanolamine positively regulates
autophagy and longevity. Cell death and differentiation 22, 499-508.

Rockman, M.V., and Kruglyak, L. (2009). Recombinational landscape and population genomics of
Caenorhabditis elegans. PLoS Genet 5, e1000419.

46


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575638; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Rockman, M.V., Skrovanek, S.S., and Kruglyak, L. (2010). Selection at linked sites shapes heritable
phenotypic variation in C. elegans. Science 330, 372-376.

Savini, M., Folick, A., Lee, Y.T., Jin, F., Cuevas, A., Tillman, M.C., Duffy, J.D., Zhao, Q., Neve, LA,
Hu, P.W., et al. (2022). Lysosome lipid signalling from the periphery to neurons regulates longevity.
Nature cell biology 24, 906-916.

Schubert, O.T., Rost, H.L., Collins, B.C., Rosenberger, G., and Aebersold, R. (2017). Quantitative
proteomics: challenges and opportunities in basic and applied research. Nat Protoc 12, 1289-1294.

Schulz, T.J., Zarse, K., Voigt, A., Urban, N., Birringer, M., and Ristow, M. (2007). Glucose restriction
extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing
oxidative stress. Cell metabolism 6, 280-293.

Seim, I., Ma, S., and Gladyshev, V.N. (2016). Gene expression signatures of human cell and tissue
longevity. NPJ Aging Mech Dis 2, 16014.

Shishkova, E., Hebert, A.S., Westphall, M.S., and Coon, J.J. (2018). Ultra-High Pressure (>30,000 psi)
Packing of Capillary Columns Enhancing Depth of Shotgun Proteomic Analyses. Anal Chem 90,
11503-11508.

Smidak, R., Kofeler, H.C., Hoeger, H., and Lubec, G. (2017). Comprehensive identification of age-
related lipidome changes in rat amygdala during normal aging. PloS one 12, e0180675.

Soukas, A.A., Kane, E.A,, Carr, C.E., Melo, J.A., and Ruvkun, G. (2009). Rictor/TORC2 regulates fat
metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes & development 23, 496-
511.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J.,
Landray, M., et al. (2015). UK biobank: an open access resource for identifying the causes of a wide
range of complex diseases of middle and old age. PLoS Med 12, e1001779.

Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., Diana, E., Lehmann, G.,
Toren, D., Wang, J., et al. (2018). Human Ageing Genomic Resources: new and updated databases.
Nucleic Acids Res 46, D1083-D1090.

Therneau, T.M. (2023). A Package for Survival Analysis in R (Springer).

Thomas Flatt (ed.), A.H.e. (2011). Mechanisms of Life History Evolution: The Genetics and
Physiology of Life History Traits and Trade-Offs (Oxford University Press).

Thompson, O.A., Snoek, L.B., Nijveen, H., Sterken, M.G., Volkers, R.J., Brenchley, R., Van't Hof, A,,
Bevers, R.P., Cossins, A.R., Yanai, I., et al. (2015). Remarkably Divergent Regions Punctuate the
Genome Assembly of the Caenorhabditis elegans Hawaiian Strain CB4856. Genetics 200, 975-989.

Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in
Caenorhabditis elegans. Nature 410, 227-230.

Tu, M.P., and Tatar, M. (2003). Juvenile diet restriction and the aging and reproduction of adult
Drosophila melanogaster. Aging cell 2, 327-333.

Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A,
Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. (2013). From FastQ data to high confidence
variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 11
10 11-11 10 33.

Vinuela, A., Snoek, L.B., Riksen, J.A., and Kammenga, J.E. (2010). Genome-wide gene expression
regulation as a function of genotype and age in C. elegans. Genome Res 20, 929-937.

47


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575638; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Williams, E.G., and Auwery, J. (2015). The Convergence of Systems and Reductionist Approaches in
Complex Trait Analysis. Cell 162, 23-32.

Zhu, Y., Jen, A., Overmyer, K.A., Gao, A.W., Shishkova, E., Auwerx, J., and Coon, J.J. (2023). Mass
Spectrometry-Based Multi-omics Integration with a Single Set of C. elegans Samples. Anal Chem 95,
10930-10938.

Zhu, Z., Lu, Q., Zeng, F., Wang, J., and Huang, S. (2015). Compatibility between mitochondrial and
nuclear genomes correlates with the quantitative trait of lifespan in Caenorhabditis elegans. Scientific
reports 5, 17303.

Zwaan, B., Bijlsma, R., and Hoekstra, R.F. (1995a). Artificial Selection for Developmental Time in
Drosophila Melanogaster in Relation to the Evolution of Aging: Direct and Correlated Responses.
Evolution 49, 635-648.

Zwaan, B., Bijlsma, R., and Hoekstra, R.F. (1995b). Direct Selection on Life Span in Drosophila
Melanogaster. Evolution 49, 649-659.

Zwaan, B.J., Bijlsma, R., and Hoekstra, R.F. (1992). On the developmental theory of ageing. Il. The
effect of developmental temperature on longevity in relation to adult body size in D. melanogaster.
Heredity (Edinb) 68, 123-130.

48


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

\\

g’ /
Start Geriome QX515 - QX520 - QX533
e, 85 Recombinant intercross \ AN
el iaiing advanced inbred lines (RIAILs) QX490 - QX498 ---- QX508
- -
l L1 L2 L3 L4/YA GA Lifespan
Egg &—o—¢ < ¢ ¢ ¢
25% Mortality <—
[ | <{Body size 50% Mortality <—
~—— © >~ < Moving shape | } 75% Mortality <
~————— < Development RNA-seq LC-MS LC-MS Max. Lifespan <
el Rep_rpductlon Avg. Lifespan <
5 '.«..V‘\../«— Fertility !
N/ A4

B

Phenome

k (piQ ()

N O~

g
Proteome Lipidome Lifespan
SN

// \\
—

( (O]
\¢> él’ §
A : g
A .\\. -1 ilk - j -
i N d\o~ ?/ § A N
Trait 2 | Chr. I-X
Variant Analysis  Multi-layered GSEA QTL mappings

Association

Candidate lifespan regulators

|

Experimental biﬂba ‘klm

validation Bioinformatic investigations
via UK Biobank


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

A
- QX597 - N2'CB4856:8))%§9 Lifespan | 58
T 9o DXOBL o QX520 N2 5 31004 QX597 " — o N2 a0
0 / | lII'““l'I“III ill > | D b e — 25 /O ~ 3 —
2 ~15 / l||||lIIHI"IIIHIIN“IIll.|||||||||u|lllll I Z 75 2 ) ~ o CB4856
& —15][ it 5 = 50% el 25
S $10 2 501k g g2
28 B asp L e —e==— 53
T 0 & O . 75%] —— g
> a x y . y a
< : 0 10 20 30 15 20 25 o,
Strains (ranked) Lifespan (Days) Age (Days)
D E F -0.4 0 04
Development & Reproduction Activity [ R B
Shape 4 *
2.5 Shape 3 * | %
2 s S ) Shape 2 *
3 0 g - e Shape 1 * * %
D Prog. acc. * | *
'\_‘2 5 Egg acc. * %
’ . : o Time to 18t prog. |_|* * * k| |*
() O O o ¢ S Shapes:
N Time to 15t egg |ENENEN* | &8 * *
é 7 GEJ T & @ 1 2 3 4 I Body sgg * * *
= 2 = A = o \ \ Dev. time & | % |* * % | % *
a 8 w2 Max. LS || L# =
o
75% Mort. | * *|*| |*
Avg. LS * x| [*
50% Mort. *| [ *
25% Mort. *| [*] [*
—— prre—eea———
E5353E 88288500
G =Sg=x=0 50088588
o © o S ~ de e ey
2 _— Be h=38 o HENnNG
o AN W0 N~ o Q
S 5 2 £o
= ® B =
R . - 77 e
g 5 . . . ‘___ * . L] N 40 oe
556065704 5 6 755 65 75 | 65 75 85I 65 75 85
Dev. Body Time to Time to Time to
time size 15t egg 1% progeny 1% progeny


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

A = «WNM A
g sori20% ‘ | e
é 759% MRNA expression |85¥RIXT§
- (n=~11k) !
Lifespan ¥
B > I GSEA
=1p 9 Rank genes NS
5 . 87| signed LOD [?> =i, Z .,
= B score ‘//‘ \jg;.,/-f_ll"
o
=

MRNA - 25% Mortality

BP - GSEA
‘ Positive mMRNA-Lifespan Geneset

(72}
O
. Negative mRNA-Lifespan Geneset 3;;)
Y
o
*

' G protein—coupled
receptor signaling pathway

neuropeptide .

signaling pathway system process

RINA progessing germ cell'development

mRNA processing chromatin organization
intracellular protein transport

microtubule cytoskeleton organization nematode

‘ ® larval development
O Q. ctoar dvision
‘ Hclear division larval development

o ubiquitin—dependent protein catabolism
mitotic cell cycle

. o macromglecule catabolism
regulation %mltotlc cell cycle

DNA metabolisn. DINAvgcombination
‘ . DNA repair
cellular response to DNA damage stimulus
F
e

O Density m

0.05 025 050 0.7 o IS
> value ] 75%.
8004732
400|337

256 Gene Count
= S 16 1327 o 1500 =
3 m OO O 25%,°
c "= gzl
CIC.) O O ;| 5%|__
0]

. Negative

E
Geneset GO:0008340
Determination of adult lifespan
0 I adj. p < 0.001
-0.2 T~ -
£ -04 !
3 TIITIMNL ] |||||||||||||||||||1||uu|||| 2
< S dj. ] :
S, ol 29-P0014 o
c5 S /O ©
O o5 = N
o Cw) 0.3 ~———’ NS
2 T O T T T .
= |
S 04 o~ adj.p0163 -
i/ TN~ 01|
0 ———————————————————— . s |
B |.||.||.||||]IIIIIIIIIIIIIIIIIIIII||||I|_||_||||.| :
=9
25 o
c £ I
© _5 T T
o 5000 10000

[[TTFEEEAIL I

Rank in Ordered Dataset

N\\NFN\\\\@\\\\\\\\FCO\\C’)F\\FF NFFFFFFNV‘\NFNWV-(V)L{)NF\\\\\\NN(‘)K}NFN'\(O(UVV'V"F\N
bl ALELL by LLATE Y SLb b Llb L L Lo L LT Ll M GLLSTAL LTI LD 4L
S T RO S L X O T S OO N 0 R QS S R o P S s 0SS5 2 ST 0 503 STI T oos
COSOC S0 TTEBTTD ! DS o0 -0~I= S 05OINSET P OSSO0 CSgScenO A G
Q ES" 5% " qogs® 8 Eae™8 Bo" B ST 08 Q= =eeE
S o
)

MRNA correlation

with 25% Mortality

[ . .
-0.2 0 0.2


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

Number of lipids

—_ —_ N
© 00 o o o
L 1 1 1 1

B
A
| | : \\E\\’@th/
AL |
Lipids | 85 RIAILs
n=871)
n=871)
>
® Lipid-class
o
3 g_> Over-representation
=
=

v

[f Lipid-Lifespan4

[f Lipid-Lifespan

Lipid PCA
@
20;
—~ O Co o‘
X 10; QX520
: oxe
N . 8 O .< o ©
= —10- (axsa7] O QX57 .O
= O
—20- (9 @)
20 -10 0 10 20 30
Dim 1 (18.2%)
Average lifespan z-score I =]
-3 0 3

Negative association

with lifespan traits

D
Positive association
with lifespan traits
o 304
S
o
« 204
o
@
e 2 10-
] =
z
T I T 0'
50% Avg. 75% 25%  50%

25%

Lifespan

Avg.
Lifespan

CL PE PE-derivatives

TG PC PC-derivatives
I N

Cer Cer Cer
[AS] [NS] [AP] SP Methyl-PA

Pl

75%


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

Chromosome (Mbp)

Chr. 11: 13121591

LOD Score

| L[ o  om | wv ] v | X | p < 0.001
3 m ————m——M — ' !
2 | 25% Mortality c | %
1] 3 | Ed
oL e 2 =
j n oco
4 | Avg. Lifespan l g": ]
2& """"" . <
0 L ] A o || | °©
N2 CB4856
3
ffffffffffffff marker marker
2| 75% Mortality Chr. V: 12125475
1] L C r.V:
0L YA p < 0.001
;I ——————SSNSNE=wm_w——=.——., =1
2 - <)
{ Developmental time D 1
1. / = i =
0 s | =
3_ 7777777777777777777777777777777777777777777777777777777 .1‘ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 3 i fe o) 50
2 ] Time to 1%t progeny | 2 .
— Sttt N2 CB4856
gg marker marker
e _
N ©
. < . L < x O VN
neuropeptide signaling pathway - 8 SwoYF Y ST
G protein—coupled receptor signaling pathway { @ Selection criteria §¢ 'IG ': g g& S
> 8t 853U &
cc Has >=1 variant(s) EEEEEE N
organellar ribosome - hasmissormodvariant EEECEE N
mitochondrial ribosome - N2vsCBmMRNADEOOOEROOOO
intrinsic component of ER membrane A GenAge JOEOOOOO
integral component of ER membrane A Pubmed “Lifespan” OO OO O OO
ribosomal subunit - Corr. Lifespan & mMRNA OB OO O OOO
ribosome - Corr. Lifespan & ProteinEEE O CEE E
organellar large ribosomal subunit { @ cis-eQTLOmMODOO00O0
large ribosomal subunit 4 @ ccs-pQTLEEEEENE
mitochondrial protein—containing complex {1 @ . Mitochondrial DO O OEODODO
cell surface { @ RNAiclone available e B EEERECO N
endoplasmic reticulum subcompartment | @ ~Log. (adj. p-value)
endoplasmic reticulum membrane | @ L m criteri {
nuclear outer membrane—ER membrane { @ .2i[ e erleria presan
extracellular region Gene ratio O criteria absent
organelle subcompartment -|: c @ B n.a/not measured
NES 1.5 25 03 0.5 0.7


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

T 100+ iy 100- By 100+ —ey 100,
< g80- — Y81G3A4 80- — col-86 80+ —rict-1 804 — pqn-32
3 601 60- 60- 60.
£ 40 40- 40- ‘218-
S 28' n.s. 28' n.s 28' p<0.01 olns.
D_ T T T 1 T T 1 T T 1 1 T T T 1
0 10 20 30 40 0 10 20 30 40 0O 10 20 30 40 O 10 20 30 40
Days Days Days Days
$100 1 —ev 100- —ev 100+
S 80- —gfm-1 80 — bath-45 807 — mitn-1
#» 60- 60 60-
£ 404 401 40
o 28' p<0.000 28' ns. 28'p<o_001
% "0 10 20 30 40 50 0 10 20 30 40 0 10 20 30 40
Days Days Days
B 100 C 100-
3 804 —0 g0l gfm-1 RNAI
< 10% = o0
3 60- 25% @ 60 e 10%
- [72] [ J D * [0)
S 40 - 50% 5 4093 2 ok égof’
O = L *kk 0
S 20+ 75% S oot Fy 75%
gfm-1 RNAI — 100% ®» 100%
0 T T 1 O__|_|'_|_|_ (R
0 10 20 30 40
Days
D E
gfm-1 RNAI
0 10% 25% 50% 75% 100% . atfs-1 hsp-6 gpd-2
()] *k% *k% *k%
%2- " 34 1 2.54 Mon ——
P | o = *% o - - Fad
S 14 L. 1-5'1*
— - o o g
e |° 1™ 7 1%
< n ¢ 05'
- h67 §0||||||0llllll O e e e e |
R = gfm-1 RNAi @ 0 ©10% » 25% = 50% « 75% «100%
F *k%k | *
50 4 x|
= . gfm-1 RNAI
g B *k* O 0
= ; *k*
E 59 = o w2 B 10%
2 & - Khk * H *%% O 25%
2 c =k M. 50%
[e) - y
- 1o-ﬂ’ REzi FWH = 75%
S 2 Hll&ly T = 100%
\Q_/ 0 T T

Basal OCR

Max. OCR


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101]
(which was not certified by peer review) is th

‘ﬁuar¥ 16, 2024. The copyright holder for this preprint

! HAQ 1B [G135A3K; this version posted
g author/funder, who has-grarted-ioRx| i pécehsplay the preprint in perpetuity. It is made
( vﬂléﬁle‘t&%ﬁkc -BY 4.0 Internation@l li

A
A}

Al

C. elegans - .
_ Human : Candidate gene
itespan |, Il roogue | — | __, | Cox proportional-hazards e
candidate gene (GFM1/RICTOR) model ) ) )
(gfm-1/rict-1) affecting disease ris

GFM1 RICTOR

Myocardial infarction - * %
Cardiomyopathy - kK k%
Heart failure - (** -
Chronic ischaemic heart disease - * *
Aortic aneurysm and dissection - o *
Cerebrovascular disease - *
Vascular dementia - *
Parkinson disease - -
Secondary parkinsonism - * G

Alzheimer's disease/dementia - @

Multiple sclerosis and other demyelinating |
diseases of the central nervous system

Insulin—dependent diabetes mellitus -

Non-insulin-dependent diabetes mellitus - *x
Acute pancreatitis - Xx xxx
Acute renal failure - *@v**
Chronic renal failure - * *
Alcoholic liver disease - *
Fibrosis and cirrhosis of liver *k *
Other inflammatory liver diseases - o

Death - x  kk%

00 05 1.0 15 20 25

Log.,(Hazard ratio)


https://doi.org/10.1101/2024.01.15.575638
http://creativecommons.org/licenses/by/4.0/

