

Manuscript Title: Personal Mastery Attenuates the Association between Greater Perceived Discrimination and Lower Amygdala and Anterior Hippocampal Volume in a Diverse Sample of Older Adults

Running Title: Personal Mastery, Discrimination, and the MTL System

Author names: Michael A. Rosario^{1,2,3*}, Razan Alotaibi^{2,3}, Alan O. Espinal-Martinez², Amara Ayoub², Aletha Baumann⁴, Uraina Clark⁵, Yvette Cozier^{6,7}, & Karin Schon^{1,2,3}

**corresponding author*

Author affiliations:

¹Graduate Program for Neuroscience, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, MA 02118, USA;

²Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA;

³Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, 7th Floor, Boston, MA 02215, USA;

⁴Department of Psychology, University of the Virgin Islands, RR02 Box 10000, St. Croix, USVI 00823, USA;

⁵Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

⁶Slone Epidemiology Center, Boston University, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, MA 02118, USA;

⁷Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA;

Keywords: perceived discrimination, amygdala, anterior hippocampus, personal mastery, older adults, structural MRI

Abstract

There is limited research investigating whether perceived discrimination influences brain structures that subserve episodic memory, namely the hippocampus and amygdala. Our rationale for examining these regions build on their known sensitivity to stress and functional differences along the long-axis of the hippocampus, with the anterior hippocampus and amygdala implicated in emotional and stress regulation. We defined perceived discrimination as the unfair treatment of one group by a dominant social group without the agency to respond to the event. A potential moderator of perceived discrimination is personal mastery, which we operationally defined as personal agency. Our primary goals were to determine whether perceived discrimination correlated with amygdala and anterior hippocampal volume, and if personal mastery moderated these relationships. Using FreeSurfer 7.1.0, we processed T1-weighted images to extract bilateral amygdala and hippocampal volumes. Discrimination and personal mastery were assessed via self-report (using the Experiences of Discrimination and Sense of Control questionnaires, respectively). Using multiple regression, greater perceived discrimination correlated with lower bilateral amygdala and anterior hippocampal volume, controlling for current stress, sex, education, age, and intracranial volume. Exploratory subfield analyses showed these associations were localized to the anterior hippocampal CA1 and subiculum. As predicted, using a moderation analysis, personal mastery attenuated the relationship between perceived discrimination and amygdala and anterior hippocampal volume. Here, we extend our knowledge on perceived discrimination as a salient psychosocial stressor with a neurobiological impact on brain systems implicated in stress, memory, and emotional regulation, and provide evidence for personal mastery as a moderating factor of these relationships.

Introduction

The hippocampus and amygdala are part of the medial temporal lobe (MTL) system and have been well-established for their exquisite sensitivity to the impact of chronic psychosocial and physical stress^{1–3}. The hippocampus can be functionally and structurally delineated along its long-axis, with the anterior portion implicated in affective function and posterior portion pivotal to spatio-cognitive tasks^{4,5}. The hippocampus is directly structurally connected to the amygdala⁶, and work within a larger structural and functional network to regulate stress and emotions^{2,7,8}. Recent work reported greater psychosocial stress correlating with alterations in hippocampal and amygdala volume in humans^{3,9}. Parallel findings in rodent and nonrodent models using foot shocks, chronic restraint, and social stress paradigms have emphasized the sensitivity of these two brain regions to chronic stress^{1,2,8–12}. For example, chronic stress exposure results in dendritic pruning and synapse loss in the amygdala and hippocampus, as well as apoptosis of adult-born neurons in the dentate gyrus subregion of the hippocampus^{1,2,8–12}. Of particular importance and currently understudied is the role that psychosocial stress, namely perceived discrimination, has on amygdala and hippocampal structure and its implications for and translation to human health and well-being.

Here, we define perceived discrimination as the experience of unfair treatment of one group by a dominant social group along both singular and intersectional identities, with limited or no agency to respond to the event^{13–15}. A subjugated identity can be defined along many social axes (e.g., race, gender, sexual orientation, disability, age, class, etc.). Although these identities are social constructs, perceived discrimination has dire consequences for biopsychological health and well-being^{14,16–18}. More experiences of discrimination have been associated with increased depression and anxiety¹⁹ and higher inflammation^{18,20}. Within the last decade, perceived

discrimination has been well-characterized through cross-sectional and longitudinal research to have negative consequences for neurocognitive health²¹⁻²⁶. In healthy Black older adults, greater perceived discrimination was associated with poorer global cognition, episodic memory and perceptual speed performance²². Longitudinal analyses conducted using the Health and Retirement Study in a diverse, nationally representative sample of older adults found that greater perceived discrimination predicted reductions in executive function, processing speed, and visuospatial construction performance²⁷. Research conducted through the Black Women's Health Study found that among older Black women, greater self-reported perceived discrimination predicted lower subjective memory for those who experienced more discrimination²⁸.

A rapidly growing literature has turned its focus to investigate how perceived discrimination influences brain function and structure. In a cross-sectional lifespan study greater perceived discrimination predicted aberrant amygdala functional connectivity among a diverse sample²¹. Separately, during a task designed to assess neural responses to traumatic emotional images, more racial discrimination predicted greater functional activity in regions important for emotional regulation and attention among Black women²³. Furthermore, independent of experiences of trauma and post-traumatic stress disorder, more perceived discrimination correlated with reduced fractional anisotropy, a measure of white matter structural integrity, in a number of white matter pathways among trauma-exposed Black women²⁴. More recently, greater perceived discrimination was associated with lower hippocampal volume and greater white matter hyperintensities among older adults²⁵. These findings expose the importance of characterizing the impact of perceived discrimination on neurocognitive integrity to determine how the sociocultural environment influences brain health. Altogether, the above findings

provide ample evidence for the negative impact of perceived discrimination on neurocognitive health.

Complementing this literature, studies investigating moderators of these relationships are critical to understanding targets for intervention. Sense of control, a correlate of self-efficacy, moderated physical and psychological health^{29–31}. Sense of control, measured using the Midlife Development Inventory (MIDI) Sense of Control scale, can be divided into two independent constructs, perceived constraints and personal mastery³⁰. Personal mastery (i.e., internally perceived control over an event) and perceived constraints (i.e., externally perceived imposed obstacles) predicts well-being^{30,31}. Research conducted by Pruessner and colleagues (2005), demonstrated that among younger and older adults, greater sense of control predicted larger hippocampal volume³². Moreover, in older adults, sense of control attenuated the impact of physiological stress on both global brain volume and cognitive decline³². Here, we focus on personal mastery and adapt its definition by defining it as an individual's self-perceived agency over their everyday life. It has been previously reported that greater, versus lower, personal mastery enables individuals to extricate themselves from unsolvable tasks³³. In a sample of older African American and Afro-Caribbean adults, personal mastery partially explained how perceived discrimination correlated with psychological distress suggesting that understanding the impact of personal mastery is critical in the study of perceived discrimination on psychological distress³⁴. Considered altogether, the perceived discrimination and sense of control literature provides evidence for a direct impact of psychosocial stress on brain health and suggests a moderating role of personal mastery on brain structure.

The current study's goal was to investigate the relationship between perceived discrimination and MTL brain structures that are vulnerable to chronic stress and important for

stress and emotional regulation. Thus, based on the extant literature we hypothesized that greater perceived discrimination would predict lower amygdala and anterior hippocampal volume. We also hypothesized that greater personal mastery would attenuate the aforementioned relationship. Here, we provide evidence for the relationship between psychosocial stress, perceived discrimination, and smaller brain volume, and a moderating role of personal mastery on these relationships. Our results complement a quickly growing literature on the relationship between perceived discrimination and neurocognitive health and provide evidence of the beneficial role of personal agency.

Materials and Methods

Participants

Data for this study was compiled from two pilot projects (study 1: Alzheimer's Association Research Grant Chronic Stress and Aging Study; study 2: Boston University Alzheimer's Disease Center (ADC) Pilot Grant) investigating the impact of experiences of perceived discrimination on brain structure in older adults (n = 36, 55 – 86 years; 58% women).

Participants from Study 1 were recruited from the greater Boston area via flyers and advertisements in local papers. Participants from Study 2 were recruited through the Boston University ADC Health Outreach Program for the Elderly (HOPE) Study. Data collection began in 2018 and was ended in March 2020 due to the COVID-19 pandemic.

Study 1: Inclusion criteria included being between 50 to 80 years of age, identifying as non-Latinx Black/African (Black) American or White/European (White) American, fluent in English, a non-smoker, and a resident of the Greater Boston Area. Participants were excluded if they had any major signs or symptoms suggestive of neurological or psychiatric conditions, or disorders that are known to affect the medial temporal hippocampal system (e.g., epilepsy, clinical diagnosis of depression, post-traumatic stress disorder, etc.), or conditions that affect HPA axis function (e.g., Cushing's disease).

Study 2: Inclusion criteria included being between 50 and 85 years of age, identify as non-Hispanic Black or White Americans, an ADC research diagnosis of "Control" (i.e., cognitively unimpaired), available MRI data (a T1-weighted structural scan), and fluent in English. Eligible participants were contacted by the ADC staff to determine interest in this research. Similar to Study 1, participants were excluded if they had any major signs or symptoms suggestive of neurological or psychiatric conditions, or disorders known to affect the medial temporal

hippocampal system (e.g., epilepsy, clinical diagnosis of depression, post-traumatic stress disorder, etc.), or conditions that affect HPA axis function (e.g., Cushing's disease).

All participants provided informed, written consent using procedures approved by the Boston Medical Campus Institutional Review Board, and this research was conducted under the guidelines of the Declaration of Helsinki. Data is available upon reasonable request and upon establishment of a formal data sharing agreement.

Experiences of Discrimination

The Williams Major Discrimination questionnaire is a survey tool that has been extensively used in epidemiological studies to assess subjective interpersonal, perceived social discrimination¹⁵ across the lifetime. Respondents are posed a series of 9 questions related to everyday situations and asked to indicate whether they experienced discrimination and subsequently assign the reason for which they were discriminated against (e.g., sex, race, nationality, class, sexual orientation, etc.). Sample questions include: *At any time in your life, have you ever been unfairly fired; Have you ever been unfairly stopped, searched, questioned, physically threatened or abused by the police?* Following the work of Barnes and colleagues (2012), scores were summed for a minimum score of 0 and a maximum score of 9²². Higher scores reflect more experiences of discrimination.

Perceived Stress Scale

We used the Perceived Stress Scale (PSS)³⁵ to control for potential confounds of everyday life stress on stress due to perceived social discrimination. The PSS is a 10-item questionnaire that assesses how stressful an individual perceived their life to be over the course of the previous month. Participants were asked to select how much they agreed with each statement using a 5-point Likert scale ranging from *Never* to *Very Often*. Some example

questions included: “In the last month, how often have you been upset because of something that happened unexpectedly?”; “In the last month, how often have you felt difficulties were piling up so high that you could not overcome them?”. PSS scores were calculated as the averaged sum of all items after reverse-scoring positively phrased items. Higher scores indicate greater perceived stress.

Sense of Control

We used the MIDI Sense of Control questionnaire, a 12-item scale, to investigate the moderating influence of sense of control^{29,30}. Specifically, we used the personal mastery subscale to determine whether respondents self-perceived agency in responding to their experiences. Questions included items such as: *I can do just about anything I set my mind to, Other people determine most of what I can and cannot do*. Personal mastery was used as a proxy for personal agency. Higher scores reflect greater personal mastery.

Magnetic Resonance Image Acquisition and Image Analysis

MRI Acquisition

Participants from both projects were scanned at the Boston University Chobanian & Avedisian School of Medicine Center for Biomedical Imaging using the same Alzheimer’s Disease Neuroimaging Initiative pulse sequences, collected on a 3T Philips Achieva scanner with an 8-channel head coil. We obtained high-resolution T1-weighted structural scans (multi-planar rapidly acquired gradient echo images; SENSitivity Encoding P reduction: 1.5, S reduction: 2; TR = 6.7 ms, TE = 3.1 ms, flip angle = 9°, field of view = 25 cm, Matrix Size = 256 × 254, 150 slices, resolution = 0.98 mm × 0.98 mm × 1.22 mm).

Regions of Interest

We conducted all automatic segmentations using FreeSurfer 7.1.0, a well-documented and free software available for download online (<http://surfer.nmr.mgh.harvard.edu/>)³⁶. In brief, FreeSurfer is a standardized, automatic segmentation tool that probabilistically approximates subcortical and archicortical volume based on postmortem brain structure analyses³⁷. Pre-processing includes motion correction and averaging³⁸, non-brain tissue removal³⁹, intensity normalization⁴⁰, gray matter white matter boundary tessellation, Talairach transformation, and segmentation of white matter and deep gray matter volume^{36,41}. We used the *recon-all* command to obtain hippocampus and amygdala volumes. We also obtained hippocampal subfield volume which were generated using a probabilistic tool based on ultra-high-resolution *ex vivo* MRI data⁴². This also provided delineations of anterior and posterior hippocampus⁴². We had no hypothesis regarding laterality thus regions were assessed bilaterally. Finally, we used estimated intracranial volume (EICV), which was calculated based on the transformation of each individual participant's T1 volume to the atlas template space for normalization⁴³.

Statistical Analyses

Statistical analyses were conducted using R (4.0.0) and RStudio (1.2.5042). Primary outcome variables were tested for normality using the Shapiro-Wilk test, and were normally distributed. Continuous variables were summarized by mean, range, and standard deviation. Sex was summarized by percentage. For descriptive purposes, demographic characteristics were grouped by sex (men and women) and racial group (Black and White) and were analyzed with the Wilcoxon rank-sum test due to unequal sample sizes.

We used multiple regression analyses, controlling for sex, education, current stress, and EICV. Continuous predictor variables were standardized by mean-centering and scaling by 2 standard deviations⁴⁴. Personal mastery and perceived constraints (grouped into three levels as

the mean ± 1 standard deviation) served as the moderating variables in the moderation analyses, calculated using the *Interact* package in R.. Statistical significance was set at $p_{FDR} < .05$, using the false discovery rate (FDR) for multiple comparison correction. In our exploratory analyses (described below) we did not correct for multiple comparisons, but provided confidence intervals, F statistics, and adjusted- R^2 for comparison in addition to p -values⁴⁵.

Results

Participant Characteristics

Participant characteristics for the overall sample are described in Table 1. For descriptive purposes, participant characteristics are also listed by race and by sex. Wilcoxon rank-sum tests showed that Black participants were younger, had fewer years of education, endorsed greater perceived discrimination and slightly higher perceived stress. Personal mastery in men and women differed at the trend level with women endorsing greater personal mastery.

Association between perceived discrimination and amygdala volume and anterior hippocampal volume

Using multiple regression analyses, we tested whether perceived discrimination correlated with bilateral amygdala and anterior hippocampal volumes, controlling for current stress, sex, education, age, and EICV. Higher perceived discrimination correlated with lower bilateral amygdala ($\beta = -180.43$, CI [-323.21, -37.66], $t(30) = -2.59$, $p_{FDR} = .03$; model: $F(6,29) = 3.22$, $R^2_{adj} = .28$) and anterior hippocampal ($\beta = -148.93$, CI [-297.85, -0.0006], $t(30) = -2.05$, $p_{FDR} = .05$; model: $F(6,29) = 2.22$, $R^2_{adj} = .17$) volume (see Figure 1). Perceived discrimination did not correlate with posterior hippocampus volume ($\beta = -60.80$, CI [-147.81, 22.20], $t(30) = -1.51$, $p = .14$; model: $F(6,29) = 3.14$, $R^2_{adj} = .27$). We also tested whether perceived discrimination predicted volume in our regions of interest stratified by racial group and by sex and found no significant correlations (see Supplementary Table 1).

Exploratory analyses by hemisphere and hippocampal subfield

We explored the relation of perceived discrimination to amygdala and anterior hippocampal volume by hemisphere. Perceived discrimination was associated with lower left but not right

amygdala volume (see Table 2). Additionally, perceived discrimination did not correlate with left nor right anterior hippocampal volume (see Table 2).

We further tested for the association between perceived discrimination and hippocampal subfield volume. Based on voxel size resolution, we combined the DG/CA3/CA4 subregions then tested for associations between perceived discrimination and bilateral anterior and posterior subfield volumes (DG/CA3/CA4, CA1, and subiculum). Greater perceived discrimination correlated with lower anterior but not posterior CA1 volume (see Table 3). There were no associations between perceived discrimination and anterior nor posterior DG/CA3/CA4 volume (see Table 3). Finally, we found that perceived discrimination negatively predicted anterior but not posterior subiculum (see Table 3).

Based on significant results in the anterior hippocampus, we next explored the relationship between perceived discrimination and anterior hippocampal subfields by hemisphere. Perceived discrimination significantly correlated with left anterior CA1 ($\beta = -65.79$, CI [-130.12, -1.45], $t(31) = -2.09$, $p = .05$, model: $F(5,30) = 1.95$, $R^2_{adj} = .12$) and subiculum volume ($\beta = -29.00$, CI [-51.13, -6.88], $t(31) = -2.68$, $p = .01$, model: $F(5,30) = 2.15$, $R^2_{adj} = .14$). Perceived discrimination did not significantly predict right anterior CA1 or subiculum, nor left nor right DG/CA3/CA4 volume (see Supplemental Table 2).

Personal mastery attenuates the relationship between perceived discrimination and anterior hippocampal and amygdala volumes

We conducted moderation analyses separately by personal mastery and perceived constraints since they are purported to test independent effects of sense of control³¹. Personal mastery, but not perceived constraints (see Supplemental Table 3), interacted with perceived discrimination to predict bilateral amygdala ($\beta = 450.96$, CI [5.43, 896.48], $t(29) = 2.07$, $p = .05$; model: $F(7,28) =$

3.55, , $R^2_{\text{adj}} = .34$) and anterior hippocampus ($\beta = 498.20$, CI [27.38, 969.02], $t(29) = 2.17$, $p = .04$; model: $F(7,28) = 2.44$, $R^2_{\text{adj}} = .22$) volume, such that personal mastery attenuated the relationship between discrimination and regional volumes (see Figures 2, 3). We conducted a post-hoc test of simple slopes for each region of interest in Table 4.

Discussion

This study's primary objective was to investigate whether perceived discrimination, a salient psychosocial stressor, predicted amygdala and anterior hippocampal volume among older adults. We also sought to understand the moderating role of personal mastery on these relationships. We tested the hypothesis that higher perceived discrimination would correlate with lower amygdala and anterior hippocampal volume. Moreover, we tested whether higher levels of personal mastery would attenuate these relationships. We determined that more experiences of perceived discrimination correlated with lower amygdala and anterior hippocampal volume. We then demonstrated that higher personal mastery attenuated these relationships. We conducted exploratory analyses examining these regions by hemisphere and by hippocampal subfields. Greater perceived discrimination correlated only with left amygdala volume. Additional exploratory analyses showed greater perceived discrimination correlated with smaller anterior CA1 and subiculum volume. Moreover, when we explored these associations by hemisphere, these associations were lateralized to the left hemisphere.

Perceived discrimination is correlated with amygdala and anterior hippocampal volume

The amygdala and anterior hippocampus are well-characterized in their role in emotional and stress regulation^{2,46}. We thus hypothesized that these regions may be particularly sensitive to the impact of perceived discrimination, a chronic psychosocial stressor. We specifically limited our focus to the amygdala and anterior hippocampus given their roles in modulating hypothalamic-pituitary-adrenal axis function, responsible for modulating the stress response, and their recruitment in emotional regulation^{4,47}. Although longitudinal research is needed to measure causality or directionality between perceived discrimination and human neurocognition, we can use the extant literature to investigate how perceived discrimination impacts brain structure. It is well-established in animal models of stress that these brain regions undergo structural

reorganization during stressful events^{2,48}. For example, among tree shrews exposure to a dominant conspecific resulted in dendritic atrophy in the hippocampal CA3¹ and psychosocial stress exposure impaired hippocampus-dependent memory and was associated with smaller hippocampal volume⁴⁹. In comparison, among humans, greater overall stress predicted lower hippocampal volume¹¹. More recently, perceived discrimination predicted aberrant amygdala functional connectivity²¹ and reductions in hippocampal volume²⁵. Adding to this literature, we found that perceived discrimination negatively correlated with amygdala volume and had a localized relationship with the anterior hippocampus. In our supplemental analyses we found that when stratified by racial group and sex, perceived discrimination did not correlate with amygdala and anterior hippocampal volume. Despite differences in the stress response by sex we found no sex effect of perceived discrimination^{2,58}.

Inflammation provides one potential neurobiological pathway by which we may see a deleterious impact of perceived discrimination on neurocognitive health. This may include changes to underlying neural architecture and cognitive ability. Greater perceived discrimination has been associated with greater inflammation in humans^{18,50-54}. Greater inflammation, in turn, has also been shown to compromise cognition in older adults^{52,55}. Complementing this research, in rodents, inducing an inflammatory response in the hippocampus has been shown to impair hippocampal-dependent function^{56,57}. Together, this suggests a role for inflammation as a neurobiological mechanism underlying the link between perceived discrimination and neurocognitive health. Seminal work conducted by Geronimus and colleagues (2006) found that Black Americans showed greater allostatic load, a composite physiological measure of biological dysregulation in response to chronic stress, compared to White Americans⁵⁹. When the groups were broken down by both race and sex, there was a significant difference whereby Black

women showed the highest allostatic load across the lifespan, followed by Black men, White women, and White men. Allostatic load has been examined as a mechanism underlying the impact of chronic stress on health, including its influence on the plasticity of the human brain^{3,60}. Future research should collect physiological measures of allostatic load, including measures of inflammation, in order to determine whether allostatic load may mediate the relationship between perceived discrimination and brain structure in aging.

Finally, for our exploratory analyses, we anticipated that there would be a primary effect of perceived discrimination on the DG/CA3/CA4 due to its neuroplastic role in the production and maintenance of adult-born neurons and its sensitivity to stress^{12,61}. However, greater perceived discrimination correlated with lower CA1 and subiculum volume. The hippocampal CA1 and subiculum subregions are engaged in the encoding and retrieval of episodic memories^{62,63}. In healthy aging we see a reduction of both volume and neurons in the CA1 and subiculum in humans, and this effect is increased in Alzheimer's disease⁶⁴. Our exploratory results suggest that the CA1 and subiculum may be negatively impacted by perceived discrimination and provide a novel avenue of research on the sensitivity of hippocampal subfields in large-scale research on perceived discrimination. Additionally, research conducted within the context of perceived discrimination should use tasks that tax the function of these dissociable regions in order to confirm conjectures of functional impairment associated with greater perceived discrimination.

Personal mastery attenuates the relationship between perceived discrimination and amygdala and anterior hippocampal volume

Although these neurobiological mechanisms play a part in explaining the harmful effects of perceived discrimination, it does not fully explain individual differences in how a person may

respond to a stressful experience, or the agency they feel during this experience. A framework developed by Fani and Khalsa (2022), may explain, in part, some of these differences⁶⁵. They hypothesize that in those experiencing racial discrimination, there may be a disruption of bodily and cognitive function as a result of experiencing and perceiving discrimination. Here, we found that as personal mastery increased, the relationships observed between perceived discrimination and amygdala and anterior hippocampus was negated. The amygdala and hippocampus are implicated in a number of disease states, including depression and may be disrupted as a result of rumination^{66,67}. We hypothesize that personal mastery may interrupt greater rumination via feeling greater agency during the discriminatory experience. Despite our results, the role of personal mastery may be more complicated depending on previous life experience⁶⁸. In a study of childhood trauma and emotional reactivity to daily events, in participants who experienced childhood trauma, greater personal mastery predicted lower perceived sense of well-being⁶⁸. Altogether, these results suggest a more intricate model of the impact of personal mastery on brain health, and this may be complicated by experiences earlier in life.

Limitations

Despite our *a priori* focus on the MTL, a potential limitation of the study, and a subject for future investigation, is to study regions of interest outside of the MTL additionally recruited in stress and emotional regulation². For example, the ventromedial prefrontal cortex, has been posited to inhibit amygdala function in stress and emotional dysregulation^{69–71}. A second limitation is that our approach to understanding perceived discrimination is coarse in that we ask participants to retrospectively report experiences of discrimination and did not inquire about frequency of events, which may induce potential recall bias into our study. Future studies should consider strategies such as ecological momentary assessment which provide more

comprehensive, real-time metrics to evaluate experiences of discrimination⁷³, or group-specific studies that focus on experiences of discriminatory factors that do not depend on conscious awareness⁷⁴. Due to our smaller sample size, we were unable to parse out differences related to different identities (e.g., race, socioeconomic status, gender) or their intersection⁷² which may individually or interactively contribute to our findings. We were also unable to determine whether personal mastery was driven by one group. This could have critical implications for translation: if data suggest that these effects occur only in one gender/race (i.e., one needs to be male or white in order to gain benefits from personal mastery), it might be counterproductive to tell marginalized people to take more control of their experiences if 1) they do not receive stress-related impacts neurocognition, and 2) what they really need is to experience less discrimination. Finally, while we characterize the relationship between perceived discrimination and brain volume, it is critical to assess cognitive and emotional function dependent on these brain regions to determine whether there is a corresponding negative impact of perceived discrimination on factors such as learning and memory performance, as has been seen for global cognition²².

Characterizing how perceived discrimination impacts brain health is imperative to health equity. In a rapidly aging population, it is integral that we understand the ways in which historical experiences of racism, misogyny, ableism, and other forms of discrimination impact brain health and well-being. Without an understanding of how the sociocultural environment “gets under the skin” to influence brain health we are unable to create interventions that may help ameliorate the impact of perceived discrimination, including interventions through health and public policy.

Acknowledgements

This work was supported in part by the Alzheimer's Association Research Grant (KS), a Robert Wood Johnson Foundation Health Policy Research Scholars grant (MAR), an NIH F99 Training Grant (MAR) (1F99NS124143-01A1), and the Boston University Clinical and Translational Science Institute (UL-TR000157). A portion of these data were previously reported and presented (<https://doi.org/10.1002/alz.045394>). We would also like to thank our participants for engaging in this research with us.

Contributions

K.S., Y.C., and M.A.R. designed the study and developed the methodology. M.A.R. analyzed the data and wrote the first draft of the manuscript. M.A.R., R.A. A.E., and A.A. collected the data. K.S., Y.C., A.B., U.C., R.A., A.E., and A.A. provided critical feedback for revision of the manuscript.

Corresponding author

Correspondence to Michael A. Rosario

Competing interests

The author(s) declare no competing interests or conflicts of interest.

Data Availability Statement

Data available upon reasonable request and upon establishment of a formal data sharing agreement.

1. Magariños AM, McEwen BS, Flügge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. *J Neurosci* [Internet]. Society for Neuroscience; 1996 May 15 [cited 2019 Aug 25];16(10):3534–40. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/8627386> PMID: 8627386
2. McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. *Neuropsychopharmacology*. Nature Publishing Group; 2016. p. 3–23. PMID: 26076834
3. McEwen BS. Brain on stress: How the social environment gets under the skin. *Proc Natl Acad Sci U S A*. 2012 Oct 16;109(SUPPL.2):17180–17185. PMID: 23045648
4. Poppenk J, Evensmoen HR, Moscovitch M, Nadel L. Long-axis specialization of the human hippocampus. *Trends in Cognitive Sciences*. 2013. PMID: 23597720
5. Fanselow MS, Dong H-W. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? *Neuron* [Internet]. Cell Press; 2010 Jan 14 [cited 2019 Sep 21];65(1):7–19. Available from: <https://www.sciencedirect.com/science/article/pii/S0896627309009477>
6. Saunders RC, Rosene DL, Van Hoesen GW. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. *J Comp Neurol*. 1988;271(2):185–207. PMID: 2454247
7. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: From animal models to human behavior. *Neuron*. 2005;48(2):175–187. PMID: 16242399
8. Phelps EA. Human emotion and memory: Interactions of the amygdala and hippocampal complex. *Curr Opin Neurobiol*. 2004;14(2):198–202. PMID: 15082325

9. Lupien SJ, Juster RP, Raymond C, Marin MF. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. *Frontiers in Neuroendocrinology*. Academic Press Inc.; 2018. p. 91–105. PMID: 29421159
10. Fuchs E, Flugge G, Czéh B. Remodelling of Neuronal Networks by Stress. *Front Biosci [Internet]*. 2006 [cited 2019 Aug 25];11:2746–2758. Available from: <https://www.researchgate.net/publication/7062971>
11. Gianaros PJ, Jennings JR, Sheu LK, Greer PJ, Kuller LH, Matthews KA. Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. *Neuroimage*. 2007 Apr 1;35(2):795–803. PMID: 17275340
12. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, Chen B, Hen R. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. *Nature [Internet]*. NIH Public Access; 2018 [cited 2019 Oct 14];559(7712):98–102. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/29950730> PMID: 29950730
13. Ong AD, Fuller-Rowell T, Burrow AL. Racial Discrimination and the Stress Process. *J Pers Soc Psychol [Internet]*. 2009 [cited 2019 Oct 14];96(6):1259–1271. Available from: <http://doi.apa.org/getdoi.cfm?doi=10.1037/a0015335> PMID: 19469600
14. Bailey ZD, Krieger N, Agénor M, Graves J, Linos N, Bassett MT. Structural racism and health inequities in the USA: evidence and interventions. *The Lancet*. 2017. PMID: 28402827
15. Krieger N, Smith K, Naishadham D, Hartman C, Barbeau EM. Experiences of discrimination: Validity and reliability of a self-report measure for population health research on racism and health. *Soc Sci Med*. 2005. p. 1576–1596. PMID: 16005789
16. Zahodne LB, Sol K, Kraal Z. Psychosocial Pathways to Racial/Ethnic Inequalities in Late-

Life Memory Trajectories. *Journals Gerontol - Ser B Psychol Sci Soc Sci. Gerontological Society of America*; 2019 Feb 15;74(3):409–418.

17. Zahodne LB, Manly JJ, Smith J, Seeman T, Lachman ME. Socioeconomic, health, and psychosocial mediators of racial disparities in cognition in early, middle, and late adulthood. *Psychol Aging*. American Psychological Association Inc.; 2017 Mar 1;32(2):118–130.
18. Lewis TT, Aiello AE, Leurgans S, Kelly J, Barnes LL. Self-reported experiences of everyday discrimination are associated with elevated C-reactive protein levels in older African-American adults. *Brain Behav Immun*. 2010 Mar;24(3):438–443.
19. Williams DR, Williams-Morris R. Racism and mental health: The African American experience. *Ethn Heal* [Internet]. Taylor & Francis Group; 2000 Aug [cited 2019 Oct 14];5(3–4):243–268. Available from:
<https://www.tandfonline.com/doi/full/10.1080/713667453> PMID: 11105267
20. Simons RL, Lei M-K, Beach SRH, Barr AB, Simons LG, Gibbons FX, Philibert RA. Discrimination, segregation, and chronic inflammation: Testing the weathering explanation for the poor health of Black Americans. *Dev Psychol* [Internet]. 2018 Oct [cited 2019 Aug 26];54(10):1993–2006. Available from:
<http://doi.apa.org/getdoi.cfm?doi=10.1037/dev0000511>
21. Clark US, Miller ER, Hegde RR. Experiences of Discrimination Are Associated With Greater Resting Amygdala Activity and Functional Connectivity. *Biol Psychiatry Cogn Neurosci Neuroimaging* [Internet]. Elsevier; 2018 Apr 1 [cited 2019 Aug 25];3(4):367–378. Available from:
<https://www.sciencedirect.com/science/article/pii/S2451902217302100> PMID: 29628069

22. Barnes LL, Lewis TT, Begeny CT, Yu L, Bennett DA, Wilson RS. Perceived discrimination and cognition in older African Americans. *J Int Neuropsychol Soc*. 2012 Sep;18(5):856–865.
23. Fani N, Carter SE, Harnett NG, Ressler KJ, Bradley B. Association of Racial Discrimination with Neural Response to Threat in Black Women in the US Exposed to Trauma. *JAMA Psychiatry*. 2021;78(9):1005–1012. PMID: 34319369
24. Fani N, Harnett NG, Bradley B, Mekawi Y, Powers A, Stevens JS, Ressler KJ, Carter SE. Racial Discrimination and White Matter Microstructure in Trauma-Exposed Black Women. *Biol Psychiatry*. Elsevier Inc; 2022;91(3):254–261. PMID: 34776124
25. Zahodne LB, Sharifian N, Kraal AZ, Morris EP, Sol K, Zaheed AB, Meister L, Mayeux R, Schupf N, Manly JJ, Brickman AM. Longitudinal associations between racial discrimination and hippocampal and white matter hyperintensity volumes among older Black adults. *Soc Sci Med*. Elsevier Ltd; 2023;316(August 2021). PMID: 35164975
26. Glymour MM, Manly JJ. Lifecourse social conditions and racial and ethnic patterns of cognitive aging. *Neuropsychol Rev*. 2008;18(3 SPEC. ISS.):223–254. PMID: 18815889
27. Zahodne LB, Morris EP, Sharifian N, Zaheed AB, Kraal AZ, Sol K. Everyday Discrimination and Subsequent Cognitive Abilities Across Five Domains. *Neuropsychology*. 2020; PMID: 32744838
28. Coogan P, Schon K, Li S, Cozier Y, Bethea T, Rosenberg L. Experiences of racism and subjective cognitive function in African American women. *Alzheimer's Dement Diagnosis, Assess Dis Monit [Internet]*. John Wiley & Sons, Ltd; 2020 Jan 21 [cited 2020 Jul 29];12(1):1–8. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1002/dad2.12067>

29. Lachman ME, Weaver SL. Sociodemographic variations in the sense of control by domain: Findings from the MacArthur studies of midlife. *Psychol Aging* [Internet]. 1998 Dec [cited 2020 Nov 24];13(4):553–562. Available from: [/record/1998-11674-003](#) PMID: 9883456
30. Lachman ME, Firth KMP. The adaptive value of feeling in control during midlife. *How Heal are we? A Natl study well-being midlife.* 2004;
31. Gore JS, Griffin DP, McNierney D. Does Internal or External Locus of Control Have a Stronger Link to Mental and Physical Health? *Psychol Stud (Mysore).* 2016;
32. Pruessner JC, Baldwin MW, Dedovic K, Renwick R, Mahani NK, Lord C, Meaney M, Lupien S. Self-esteem , locus of control , hippocampal volume , and cortisol regulation in young and old adulthood. 2005;28:815–826.
33. Aspinwall LG, Richter L. Optimism and self-mastery predict more rapid disengagement from unsolvable tasks in the presence of alternatives. *Motiv Emot.* 1999;
34. Muruthi JR, Muruthi BA, Thompson Cañas RE, Romero L, Taiwo A, Ehlinger PP. Daily discrimination, church support, personal mastery, and psychological distress in black people in the United States. *Ethn Heal.* 2022;
35. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. *J Health Soc Behav* [Internet]. 1983 Dec [cited 2019 Nov 25];24(4):385–396. Available from: <http://www.jstor.org/stable/2136404?origin=crossref> PMID: 6668417
36. Fischl B. FreeSurfer. *NeuroImage.* Academic Press; 2012. p. 774–781. PMID: 22248573
37. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. *Proc Natl Acad Sci U S A* [Internet]. National Academy of Sciences; 2000 Sep 26 [cited 2020 Jul 22];97(20):11050–11055. Available from: www.pnas.org

PMID: 10984517

38. Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: A robust approach. *Neuroimage*. 2010; PMID: 20637289
39. Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. A hybrid approach to the skull stripping problem in MRI. *Neuroimage*. 2004; PMID: 15219578
40. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in mri data. *IEEE Trans Med Imaging*. 1998; PMID: 9617910
41. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. *Neuron*. 2002; PMID: 11832223
42. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, Fischl B, Van Leemput K. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. *Neuroimage*. 2015; PMID: 25936807
43. Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. *Neuroimage*. 2004; PMID: 15488422
44. Gelman A. Scaling regression inputs by dividing by two standard deviations. *Stat Med*. 2008; PMID: 17960576
45. Rubin M. Do p values lose their meaning in exploratory analyses? It depends how you

define the familywise error rate. *Rev Gen Psychol.* 2017;21(3):269–275.

46. Herman JP, Cullinan WE. Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. *Trends Neurosci.* 1997; PMID: 9023876

47. McEwen BS, Gianaros PJ. Stress- and allostatic-induced brain plasticity. *Annu Rev Med.* 2011; PMID: 20707675

48. Fuchs E, Flügge G. Chronic social stress: Effects on limbic brain structures. *Physiol Behav.* 2003;79(3):417–427. PMID: 12954436

49. Ohl F, Michaelis T, Vollmann-Honsdorf GK, Kirschbaum C, Fuchs E. Effect of chronic psychosocial stress and long-term cortisol treatment on hippocampus-mediated memory and hippocampal volume: A pilot-study in tree shrews. *Psychoneuroendocrinology.* 2000; PMID: 10725612

50. Paalani M, Lee JW, Haddad E, Tonstad S. Determinants of inflammatory markers in a bi-ethnic population. *Ethn Dis [Internet]. NIH Public Access;* 2011 [cited 2019 Aug 26];21(2):142–9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21749016> PMID: 21749016

51. Yaffe K, Lindquist K, Penninx BW, Simonsick EM, Pahor M, Kritchevsky S, Launer L, Kuller L, Rubin S, Harris T. Inflammatory markers and cognition in well-functioning African-American and white elders. *Neurology [Internet]. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology;* 2003 Jul 8 [cited 2019 Aug 26];61(1):76–80. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/12847160> PMID: 12847160

52. Zahodne LB, Kraal AZ, Sharifian N, Zaheed AB, Sol K. Inflammatory mechanisms underlying the effects of everyday discrimination on age-related memory decline. *Brain Behav Immun. Academic Press Inc.;* 2019 Jan 1;75:149–154.

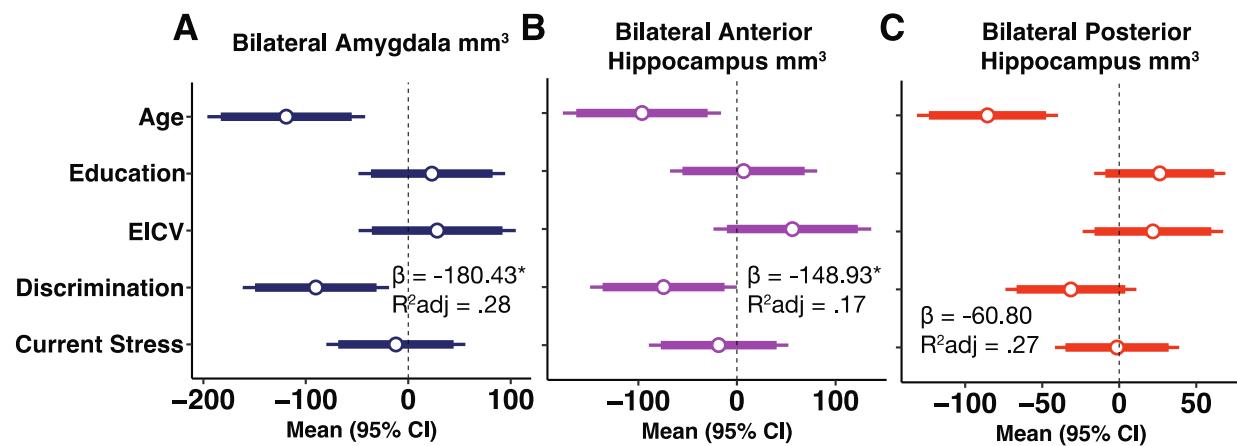
53. Cuevas AG, Ong AD, Carvalho K, Ho T, Chan SW (Celine), Allen JD, Chen R, Rodgers J, Biba U, Williams DR. Discrimination and systemic inflammation: A critical review and synthesis. *Brain Behav Immun.* Elsevier; 2020;89(February):465–479. PMID: 32688027
54. Stepanikova I, Bateman LB, Oates GR. Systemic Inflammation in Midlife: Race, Socioeconomic Status, and Perceived Discrimination. *Am J Prev Med.* 2017;52(1):S63–S76. PMID: 27989295
55. Boots EA, Castellanos KJ, Zhan L, Barnes LL, Tussing-Humphreys L, Deoni SCL, Lamar M. Inflammation, Cognition, and White Matter in Older Adults: An Examination by Race. *Front Aging Neurosci.* 2020;12(October):1–11.
56. Czerniawski J, Guzowski JF. Acute neuroinflammation impairs context discrimination memory and disrupts pattern separation processes in hippocampus. *J Neurosci.* 2014; PMID: 25209285
57. Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. *Brain Behav Immun.* 2015; PMID: 25451612
58. McLaughlin KJ, Baran SE, Conrad CD. Chronic stress- and sex-specific neuromorphological and functional changes in limbic structures. *Mol Neurobiol.* 2009;40(2):166–182. PMID: 19653136
59. Geronimus AT, Hicken M, Keene D, Bound J. “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. *Am J Public Health.* 2006; PMID: 16380565
60. McEwen BS. Stress, adaptation, and disease allostasis and allostatic load. *Ann N Y Acad Sci.* 2007;162(1):1–15. PMID: 17920000

Sci [Internet]. John Wiley & Sons, Ltd (10.1111); 1998 May 1 [cited 2019 Aug 26];840(1):33–44. Available from: <http://doi.wiley.com/10.1111/j.1749-6632.1998.tb09546.x> PMID: 9629234

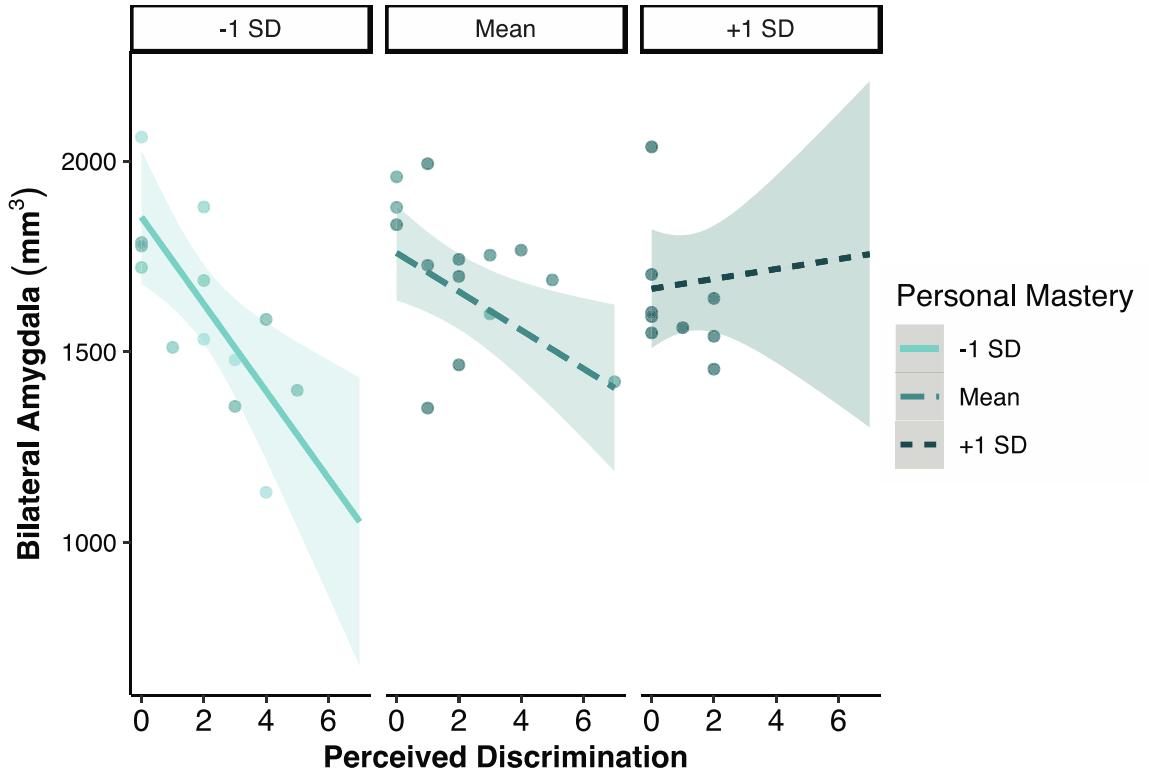
61. Belarbi K, Rosi S. Modulation of adult-born neurons in the inflamed hippocampus. *Front Cell Neurosci* [Internet]. Frontiers; 2013 Sep 6 [cited 2019 Oct 15];7:145. Available from: <http://journal.frontiersin.org/article/10.3389/fncel.2013.00145/abstract>
62. Eldridge LL, Engel SA, Zeineh MM, Bookheimer SY, Knowlton BJ. A dissociation of encoding and retrieval processes in the human hippocampus. *J Neurosci*. 2005; PMID: 15800182
63. Ledergerber D, Moser EI. Memory Retrieval: Taking the Route via Subiculum. *Current Biology*. 2017. PMID: 29161563
64. Šimić G, Kostović I, Winblad B, Bogdanović N. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. *J Comp Neurol*. 1997; PMID: 9067838
65. Fani N, Khalsa SS. The role of racial discrimination in dissociation and interoceptive dysfunction. *Neuropsychopharmacology*. Springer US; 2022;48(1):225–227. PMID: 35922550
66. Belzung C, Willner P, Philippot P. Depression: From psychopathology to pathophysiology. *Current Opinion in Neurobiology*. 2015. PMID: 25218233
67. Cooney RE, Joormann J, Eugène F, Dennis EL, Gotlib IH. Neural correlates of rumination in depression. *Cogn Affect Behav Neurosci*. 2010; PMID: 21098808
68. Infurna FJ, Rivers CT, Reich J, Zautra AJ. Childhood trauma and personal mastery: Their influence on emotional reactivity to everyday events in a community sample of middle-

aged adults. *PLoS One*. 2015; PMID: 25849572

69. Myers-Schulz B, Koenigs M. Functional anatomy of ventromedial prefrontal cortex: Implications for mood and anxiety disorders. *Molecular Psychiatry*. 2012. PMID: 21788943


70. Andrewes DG, Jenkins LM. The Role of the Amygdala and the Ventromedial Prefrontal Cortex in Emotional Regulation: Implications for Post-traumatic Stress Disorder. *Neuropsychology Review*. 2019. PMID: 30877420

71. Hanson JL, Knodt AR, Brigidi BD, Hariri AR. Lower structural integrity of the uncinate fasciculus is associated with a history of child maltreatment and future psychological vulnerability to stress. *Dev Psychopathol*. Cambridge University Press; 2015 Nov 1;27:1611–1619.


72. Crenshaw K. Mapping the Margins: Intersectionality, Identity Politics, and Violence against Women of Color. *Stanford Law Rev*. 1991;

73. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. *Annual Review of Clinical Psychology*. 2008. PMID: 18509902

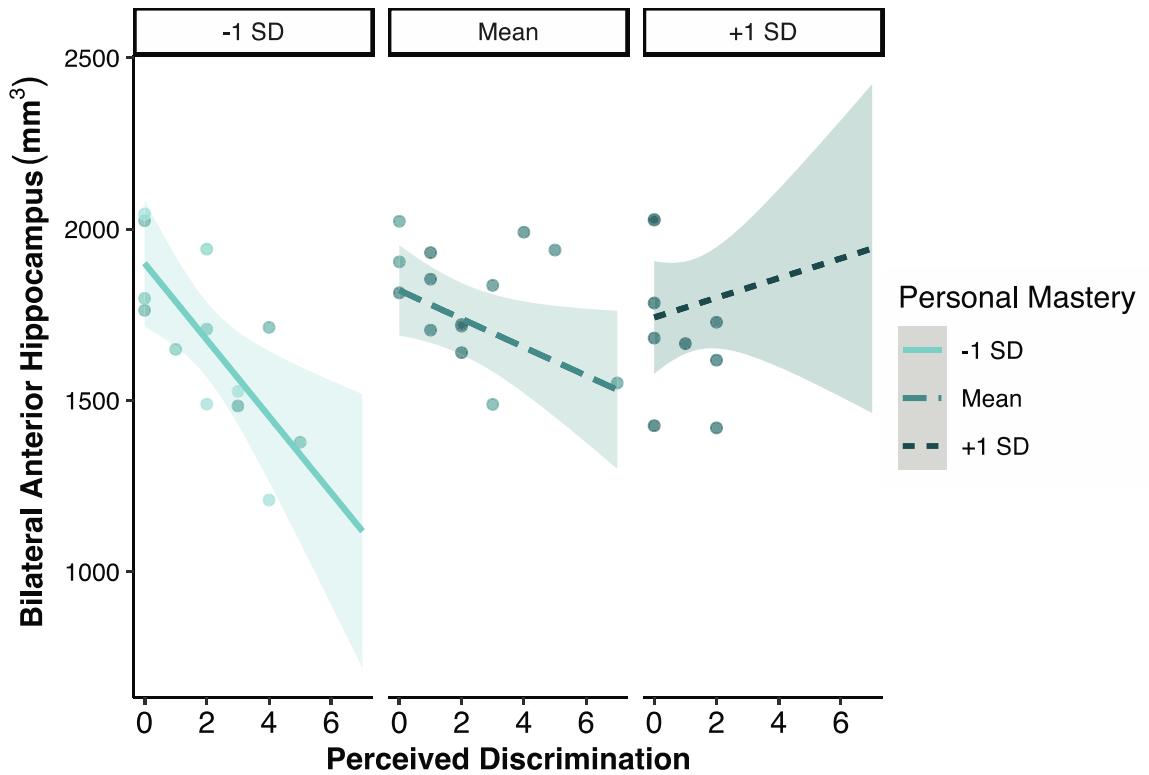

74. Neblett EW. Racism and health: Challenges and future directions in behavioral and psychological research. *Cult Divers Ethn Minor Psychol*. 2019;25(1):12–20. PMID: 30714763

Figure 1. Forest plots representing multiple regression analyses with covariates, correlating perceived discrimination with A) bilateral amygdala volume, B) bilateral anterior hippocampus volume, and C) bilateral posterior hippocampus volume. Beta coefficients and adjusted- R^2 are presented for each model, with 95% (inner 90%) confidence intervals. (* $p < .05$)

Figure 2. Perceived discrimination and personal mastery interacted to predict bilateral amygdala volume such that as personal mastery increased, the relationship between perceived discrimination and bilateral amygdala volume was attenuated.

Figure 3. Perceived discrimination and personal mastery interacted to predict bilateral amygdala volume such that as personal mastery increased, the relationship between perceived discrimination and bilateral amygdala volume was attenuated.

Variables	Overall	Black	White	Male	Female
	N = 36	N = 11	N = 25	N = 15	N = 21
	M (SD)	M (SD)	M (SD)	M (SD)	M (SD)
Age (years)	70.8 (6.8)	66.23 (8.3)	72.8 (5.0) *	69.2 (8.5)	72.0 (5.3)
Education	16.4 (2.1)	14.8 (1.7)	17.1 (2.0) **	16.4 (2.1)	16.4 (2.2)
Personal Mastery	22.1 (5.7)	20.1 (6.6)	23.0 (5.2)	20.7 (5.2)	23.0 (6.0) †
Perceived Constraints	46.6 (10.1)	45.6 (8.2)	47.0 (10.9)	45.5 (7.5)	47.3 (11.7)
Perceived Stress	11.4 (8.3)	16.6 (10.5)	9.1 (6.0) †	11.3 (8.1)	11.5 (8.6)
Perceived discrimination	1.8 (1.8)	2.8 (2.0)	1.3 (1.5) *	2.1 (2.3)	1.5 (1.3)

Table 1. Participant Demographics. Significant results are denoted by dagger and asterisks († < .10, * < .05, ** < .01).

ROI	β	95% CI	$t(30)$	p	$F(6,29)$	R^2_{adj}
Left Amygdala	-199.46	-344.69, 54.23	-2.81	<.01**	3.56	.31
Right Amygdala	-161.41	-337.11, 14.29	-1.88	.07	1.92	.14
Left Hippocampus	-170.77	-355.00, 13.47	-1.90	.07	2.40	.19
Right Hippocampus	-127.08	-285.68, 31.52	-1.64	.11	1.15	.03

Table 2. Exploratory analyses of amygdala and anterior hippocampal volume by

hemisphere. Significant results are bolded (**p < .01)

ROI	β	95% CI	<i>t</i> (31)	<i>p</i>	<i>F</i> (5,30)	R^2_{adj}
Anterior CA1	-57.32	-109.34, -5.30	-2.25	.03*	2.06	.13
Anterior DG/CA3/CA4	-21.72	-62.67, 19.23	-1.08	.29	1.79	.10
Anterior Subiculum	-21.95	-37.71, -6.19	-2.84	<.01**	2.29	.16
Posterior CA1	-5.28	-21.17, 10.60	-.68	.50	1.49	.07
Posterior DG/CA3/CA4	-7.75	-38.29, 22.79	-.52	.61	1.90	.11
Posterior Subiculum	-10.73	-25.96, 4.49	-1.44	.16	4.50	.33

Table 3. Exploratory analyses of bilateral hippocampal subregion volume. Significant results are bolded. (**p* < .05, ***p* < .01)

Bilateral Amygdala	β	<i>p</i>	95% CI
-1 <i>SD</i>	-114.11	< .01**	-186.16, -42.05
At the mean	-50.58	.01**	-89.17, -11.99
+1 <i>SD</i>	12.95	.73	-62.32, 88.22
Bilateral Anterior Hippocampus	β	<i>p</i>	95% CI
-1 <i>SD</i>	-111.65	.01**	-187.80, -35.51
At the mean	-41.47	.05*	-82.25, -.69
+1 <i>SD</i>	28.72	.47	-50.82, 108.26

Table 4. A test of simple slopes showed that the relationship between perceived discrimination and our regions of interest was attenuated at one standard deviation below (lower personal mastery – mean score of 16.35) and at the mean (average levels of personal mastery – mean score of 22.08) of personal mastery. **p* ≤ .05, ***p* ≤ .01