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Abstract

Transposable elements (TEs) are major components of plant genomes, profoundly impacting the
fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic
understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore
Technologies’ direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three
natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-
studied ONSEN retrotransposon family, we identified Copia-35 as a second heat-responsive
retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis
revealed distinct expression patterns of individual TE copies and suggest different mechanisms
regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition,
analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as
AMUP?Y and potentially to the quantitative modulation of flowering time. Unexpectedly, our results
indicate that for both families, the upregulation of flanking genes is not directly initiated by

transcription from their 3’ LTRs. These findings highlight the inter- and intraspecific expressional
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diversity linked to retrotransposon activation under stress, providing insights into their potential

roles in plant adaptation and evolution at elevated temperatures.

Key-words: Arabidopsis thaliana, heat stress, Oxford Nanopore Sequencing, transposable

element, ONSEN, retrotransposon, natural genetic diversity, APUMY, adaptation, flowering time
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Introduction

Transposable elements (TEs) have a profound impact on genome architectures of plants. In crops
such as maize, wheat, and barley, TEs account for a majority of the genome, ranging from 64% to
more than 80% (Jiao et al. 2017; Wicker et al. 2017; Wicker et al. 2018). Due to their potentially
deleterious effects, most TEs are silenced by DNA methylation and through packaging into a
heterochromatin state. In particular, one of the most studied plant-specific TE silencing
mechanisms is the RNA-directed DNA methylation (RdADM) pathway (Matzke and Mosher 2014).
The canonical RADM pathway features two plant-specific RNA polymerases (Pol IV and Pol V),
which, via complex processes, facilitate DNA methylation and, ultimately, the silencing of TEs.
Despite widespread silencing, some TEs are still able to transpose in the wild, hereby creating
genetic diversity among populations of a given species. For example, a recent study identified
~23,000 TE insertion polymorphisms (TIPs) across 1047 natural accessions (Baduel et al. 2021)
in Arabidopsis thaliana, in which TEs account for ~21% of the genome (Berardini et al., 2015).
Abiotic as well as biotic stresses can provide the conditions that allow specific TE families
to evade the host's silencing mechanisms (Negi et al. 2016). One of the best characterized stress-
responsive plant TEs is the retrotransposon (RT) ONSEN (or ATCOPIA78) in A. thaliana (Pecinka
et al. 2010; Tittel-Elmer et al. 2010; Ito et al. 2011; Ito et al. 2013). ONSEN contains identical long
terminal repeats (LTRs) on both ends, as well as coding sequences for gag, the reverse transcriptase
and other enzymes, which are essential for its transposition process (Wicker et al. 2007). When
A. thaliana seedlings are treated with heat, ONSEN becomes transcriptionally active, and, upon
loss of major epigenetic regulators (Ito et al. 2011) or a transient chemical demethylation (Thieme
et al. 2017), it transposes at high frequency, resulting in the stable inheritance of novel ONSEN

copies.
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A particularly interesting feature of ONSEN is the fact that its insertions can also confer
neighboring genes with heat responsiveness (Ito et al. 2011; Baduel et al. 2021; Roquis et al. 2021),
leading to a reshuffling of transcriptional networks. The heat-induced transcription of ONSEN
flanking genes is attributed to heat-responsive elements in ONSEN's LTRs. These elements recruit
heat shock factors that engage the transcription machinery as trimers, resulting in an upregulation
of downstream genes (Wu 1995; Cavrak et al. 2014). The finding that ONSEN can mediate the
expression of flanking regions under heat stress has evolutionary implications since numerous
studies have confirmed insertion polymorphisms of ONSEN among natural populations (Cavrak
et al. 2014; Masuda et al. 2016; Quadrana et al. 2016; Baduel et al. 2021) as well as an insertion
bias towards exons and H2A.Z enriched regions (Quadrana et al. 2019; Roquis et al. 2021).

Since the initial discovery of ONSEN (Ito et al. 2011), additional heat-responsive TEs have
been identified in A. thaliana. Two comprehensive experiments using RNA-Seq revealed that in
the Col-0 ecotype, both ONSEN and ROMANIATS (referred to as Copia-35 in Repbase) (Pietzenuk
et al. 2016; Sun et al. 2020) display heat-dependent transcription. However, while ONSEN has
been studied in detail, our understanding of Copia-35 remains limited. A few studies have focused
on a particular copy of Copia-35, ATITE43225, owing to its role in modulating the expression of
its 3’ flanking gene APUMY9, which encodes the RNA-binding protein Arabidopsis PUMILIO9
that triggers the decay of target mRNA (Sanchez and Paszkowski 2014; Hristova et al. 2015).
However, the natural diversity of the APUM9Y locus, and more specifically the role of Copia-35 in
driving its expression under heat stress, have not been examined across multiple natural accessions,
meaning that our current understanding of the TE contribution to heat-responsiveness is superficial

at best.
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While technical bottlenecks have been largely responsible for this knowledge gap, the
advent of next-generation sequencing now allows to decipher the natural genetic diversity linked
to TEs. The availability of polished genome assemblies, produced by long-read sequencing,
provides access to the complete sequences of insertions, thereby facilitating a more comprehensive
analysis of the genetic features of these insertions. In terms of characterizing the effects of TEs,
RNA-Seq has allowed us to survey the entire transcriptome at once, irrespective of the limitations
to perceptible phenotypic traits. Technical hurdles persist, however, as the task of aligning short
reads from RNA-Seq to multi-copy TEs remains challenging (Lanciano and Cristofari 2020),
particularly when the TE copies exhibit a high degree of identity. As a result, transcriptional studies
of TEs using RNA-Seq are either based on consensus sequences such as SalmonTE (Jeong et al.
2018) or distribute reads evenly to all copies (Jin et al. 2015). In this context, the breakthrough
recently brought by Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, which
generates longer reads, has begun to drastically reduce alignment ambiguities, hereby facilitating
the detection of TE expression at the single insertion level. As such, ONT has recently succeeded
in improving existing TE annotations. For example, ONT's cDNA sequencing on a A. thaliana
mutant with transcriptionally reactivated TEs has allowed to identify and annotate the active TE
loci (Panda & Slotkin, 2020). Similarly, long reads generated by ONT recently enabled the
identification of chimeric gene-transposon transcripts in 4. thaliana (Berthelier et al. 2023), further
highlighting the advantage of this powerful sequencing technique.

In this study, we examined the patterns of TE expression among natural accessions of heat-
stressed A. thaliana (particularly between individual TE insertions) and the subsequent effects of
TE activation on neighboring genes, by combining the powers of RNA-Seq and Oxford Nanopore

Technologies’ (ONT) direct cDNA sequencing. For this purpose, we chose a relict (Cvi-0), a

Page 5 of 30


https://doi.org/10.1101/2024.01.15.575637
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575637; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

97  nonrelict (Col-0) and an admixture (Ler-1) accession (Alonso-Blanco et al. 2016). Importantly,
98  each of these accessions previously had polished chromosomal-level PacBio assemblies and
99  annotated genes. Using ONT direct cDNA, we were also able to precisely profile the transcription
100 of heat-activated TEs for the first time in plants. As such, our work not only elucidates the
101 fundamental mechanisms of the stress-induced transcription of TEs but also helps understanding
102 their role as a source of transcriptional novelty and important drivers of evolution.

103

104

105 Results

106  Global comparison of ONT and RNA-seq datasets

107  We grew Col-0, Ler-1 and Cvi-0 plants under controlled or heat stress conditions and performed
108  RNA-sequencing with classical illumina short-read RNAseq and ONT. We first assessed the data
109  quality of our RNA- and ONT-seq runs (Supplementary Table S1). To verify the effectiveness of
110 the heat stress treatment, we performed a Principal Coordinate Analysis (PCoA) analysis on gene
111 expression using all samples. We found a clear separation of samples based on their treatment and
112 genotype (Fig. 1a), indicating that the applied heat stress induced an accession-specific stress
113 response. Most importantly, this showed that our ONT data was reproducible, and that differences
114  between sequencing technologies did not overshadow global gene expression estimates.

115

116  Activity of heat-responsive TEs differs across accessions

117 We first aimed to identify TE candidates responsive to heat stress in each of the accessions. For
118  this purpose, we used a consensus sequence-guided approach. Based on the library from Repbase

119  (Bao et al., 2015), which contains 1,136 A4. thaliana specific TE consensus sequences, we
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120  measured the transcriptional abundance of TEs in our RNA-Seq data using SalmonTE. Notably,
121 in the Repbase library, the LTR and the internal consensus of LTR retrotransposons were
122 constructed separately, enabling us to distinguish the expression of LTR vs. internal sequences.
123 To reduce noise and to only focus on high-confidence TEs that would react to heat stress, we

124 applied a stringent filter of log2 fold change > 2 and padj < 10°!°, and a baseMean exceeding
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Figure 1. Expression of ONSEN and Copia-35 a) PCoA analysis on gene expression in all sequenced samples.
b-d) SalmonTE analysis with RNA-Seq data. Labeled consensus sequences in solid outlines represents
candidates that have a base mean value that is greater than 100,000. Copia-35 consensus sequences in b and
c are labeled in dashed boxes due to below-cutoff base mean. e) Annotation of ONSEN and Copia-35 full-
length copies in the three accessions. Reference insertions and TIPs are marked. f) and g) Expression of TE

per copy measured using RNA-Seq (four replicates) and ONT direct cDNA sequencing, respectively.
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125 100,000. We found that in all three accessions, the internal (ATCOPIA78 I) and the LTR
126  (ATCOPIA78LTR) segments of ONSEN were significantly upregulated and with a high baseMean
127 (Fig. 1b-d), confirming the robustness of ONSEN's activation under heat stress. Importantly, in
128  addition to the well-known case of ONSEN, we also found Copia-35 in Cvi-0 that emerged as a
129 top candidate, passing the same stringent filters as ONSEN (Fig. 1d). In Cvi-0, both Copia-35 AT-
130 /and Copia-35_AT-LTR showed a high level of expression and even greater statistical significance
131  when compared to the activation of the ONSEN family.

132

133 Variations of expression of individual TE insertions

134 After assessing the global expression of ONSEN and Copia-35 based on consensus sequences and
135 RNA-Seq data, we combined the ONT direct cDNA- (ONT in short) and RNA-seq data to explore
136  variations in expression among individual full-length TE copies of the same family. We first
137 generated high confidence annotations of the two identified heat-responsive retrotransposon
138 families ONSEN and Copia-35 in all three accessions. In total, we identified six full-length ONSEN
139 copies in Ler-1 and three in Cvi-0, as well as three full-length Copia-35 copies in both accessions
140  (Fig. le, Table S2 and 3). For Col-0, we adopted the TAIR10 annotation IDs for the full-length
141 ONSEN and three Copia-35 elements. However, we refined their annotations to include both LTRs.
142 Interestingly, we found all full-length ONSEN insertions in Ler-1 and Cvi-0 to be polymorphic,
143 representing TIPs (Fig. le). For Copia-35, one TIP was identified on chromosome 3 of Cvi-0,
144 whereas all other full-length Copia-35 insertions in Ler-1 and Cvi-0 were shared with Col-0 (Fig.
145 le).

146 Subsequently, we aligned the RNA-Seq and ONT reads to their respective genomic

147 assemblies, considering only uniquely mapped reads for downstream analysis. Overall, the pattern
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148 of expression levels was generally highly consistent between the RNA-seq and ONT for a given
149 accession (e.g., ONSEN 5 was the most expressed copy in Col-0, as was ONSEN 30 in Ler-1,
150  according to both datasets) (Fig. 1f-g). Both RNA-Seq and ONT revealed a significant variation
151  of expression levels between individual ONSEN and Copia-35 copies (Fig. 1f-g). In accordance
152 with our consensus-based analysis, we found a specifically high activity of Copia-35 in Cvi-0
153  compared to the other two accessions. Indeed, the least transcribed copy in Cvi-0, Cvi0-Copia35-
154 5, reached expression levels resembling those of the most expressed Copia-35 copies in the other
155  two accessions. In addition, both RNA-seq and ONT datasets revealed similar expression levels
156  of both TE-families in Cvi-0, with the highest expression level approximating 400 RPKM. Note
157 that ONSEN 7 was not included in further analyses as it harbors a large insertion, which together

158  with its low expression level (Fig. 1e), suggests that this copy is not functional.

159

160  ONT allows for a high-resolution profiling of ONSEN and Copia-35

161  Given the substantial differences in abundance of per-copy expression of ONSEN and Copia-35,
162 we investigated the expression of individual copies in detail with ONT. Using the alignment of
163 one of the most active and autonomous ONSEN copies (ONSEN 1) (Cavrak et al. 2014; Roquis et
164 al.2021), we found that, under heat stress, active full-length ONSEN copies have two transcription
165  starting sites (TSS), namely S1 and S2, one within each of their LTRs (Fig 2a, Fig. S2-4). Moreover,
166  we identified two transcription termination sites, E1 and E2. E1 is located just after the detected
167  gag domain and E2 is situated at the 3° LTR. A read from S1 to E2 thus represents a full-length
168 mRNA that serves as a precursor for subsequent reverse transcription to ONSEN. Importantly, the

169  RNA-Seq data failed to resolve the transcription starts and ends (Fig. 2b).
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171 Figure 2. Transcriptional profile of ONSEN a) Long read alignment of ONSEN [. Blue reads indicate matching
172 orientation to the TE annotation (sense), while red reads indicate opposite orientation (antisense). b) Read depth of
173 ONSEN I in RNA-Seq data c-d) Principles of an aligned TE fraction vs read length plot. ¢) Read-through reads of a
174 TE annotation can be divided into four groups. 1) alignments that cover the entire TE annotation (purple). 2)
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177 B respectively. The symbol § indicates the distance between a transcription starting site outside of a TE annotation and
178 the TE. The symbol k indicates the distance between the transcription starting site to one end of the TE. d) Example
179 of a Transposon-Read Alignment Length Analysis (TRALA) plot, in which a is plotted against B ¢) TRALA plot of
180 16 full length ONSEN copies.
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182 We also found that the 5' LTR acts as a more dominant promoter than the 3' LTR driving
183 the selective expression of the gag-polypeptide or of the entire element, respectively. To quantify
184  the difference in strength, we counted the number of reads from S1 and S2 for active ONSEN
185  copies of all accessions (Table S2). We assumed that reads with starting sites between S1 and S2
186  were also transcribed from S1. This assumption was based on the rationale that many mRNA
187  molecules were not fully sequenced to their 5’ ends, as suggested from the continuous distribution
188 of reads across the entire elements (Fig. 2a), likely due to limitations of the reverse transcriptase
189 during ONT library preparation. We found that the 5° LTR accounts for 71.3% to 100% of the
190  ONSEN transcripts, except for ONSEN 4, where the 3’ LTR accounts for 71.2% of the total
191  transcription.

192 To assess the global variations of full-length ONSEN copies, we implemented a graphical
193 analysis by plotting the aligned read length of an ONT read against the length covered by a TE
194  annotation (Fig. 2c, d), which we refer to as Transposon-Read Alignment Length Analysis

195 (TRALA) plot (Fig. 2d). As aforementioned, for most ONSEN copies, reads were initiated from
196  S1 and therefore contained in the annotation, appearing as dots on the diagonal line. However,
197  ONSEN 4, Cvi0-ONSEN-27, and Cvi0-ONSEN-49 form a horizontal line at the bottom due to

198 substantial amounts of reads initiated from S2, hence directly driving the expression of their

199  flanking regions. Moreover, the TRALA plots revealed differences in the abundance of antisense
200 transcription substantiating the expressional diversity among individual ONSEN copies (Fig. 2e).
201 We found that, like ONSEN, when exposed to heat stress, full-length copies of Copia-35
202 show a continuous distribution of reads and have TSS S1 and S2 within each of their LTRs (Fig.
203 3a, Fig. S5-7). In contrast to ONSEN, we identified three termination sites: E1, E2, and E3 in

204  Copia-35. E1 is located between the 5’ LTR and the gag-polypeptide, E2 is between the integrase
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Figure 3. Expression of Copia-35 profiled with long reads. a) Long reads alignment of Cvi0-Copia35-15. Blue
reads indicate matching orientation to the TE annotation (sense). b) Read depth of Cvi0-Copia35-15 in RNA-Seq
data. ¢c) TRALA plot of nine full length Copia-35 copies d) Alignment of full length Copia-35 copies in Col-0,
Ler-1, and Cvi-0. LTR boundaries are marked by yellow triangles. Col-0 copies are numbered 1-3; numbers on
sequences of other accessions correspond to these Col-0 copies conserved among accessions. The Cvi-0 TIP is

labeled as copy No. 4.
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207  Copia-35 cDNA. As shown for the most active Copia-35 copy (Cvi0-Copia35-15) and in contrast
208  to the ONT data, RNA-Seq again failed to identify the transcription start and end points (Fig. 3b).
209  Notably, the high-resolution provided by the ONT data also revealed that some of the reads

210  aligning to Copia-35 were spliced between S1 and E1 (Fig. 3a, Fig. S4-6).

211 The TRALA plot of all nine Copia-35 copies revealed that most reads are contained within
212 the Copia-35 annotations (Fig. 3c), with the exception of Cvi0-Copia35-15 and Cvi0O-Copia35-16,
213 which both show the existence of read-through transcripts. In addition to substantial differences
214 between the number of transcripts per copy, the dots on the diagonal line in the TRALA plots of
215 most Copia-35 copies in Col-0 and Ler-1 contained large gaps, suggesting that not the entire length
216  of the element is transcribed. To investigate whether obvious structural differences were
217  responsible for this discrepancy between copies, we aligned all full-length Copia-35 elements. We
218  found that despite having greater expression, the full-length copies in Cvi-0 exhibited no major
219 structural differences compared to copies in Ler-1 and Col-0 (Fig. 3d). For example, Cvi0-
220  Copia35-16 and Lerl-Copia35-10 showed different expression levels under heat stress, but were
221  identical in terms of structure, except for a small deletion in Cvi0-Copia35-16 at around 5000 bp.
222 Notably, we observed that the most active copy Cvi0-Copia-35-15 that is also a TIP carried an
223 insertion in both its LTRs.

224

225  Both ONSEN and Copia-35 confer heat responsiveness to their flanks

226 Itis well established that full-length ONSEN elements can trigger the expression of adjacent genes
227  under heat-stress (Ito et al. 2011; Roquis et al. 2021), a pattern we confirmed in our RNA-Seq data.
228  Among the seven full-length ONSEN copies in Col-0, three caused the upregulation of both their

229 5’ and 3’ flanking genes, and a fourth triggered the upregulation of the 3’ genes only (Fig. 4a).
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230  This pattern was also observed with two copies in Cvi-0 with the upregulation of flanking genes
231 on both sides of Cvi-0-ONSEN-27 and Cvi-0-ONSEN-49 showing a log2fold change > 2 and padj
232 < 10*(Fig. 4a), while in Ler-1, this was only observed for Ler/-ONSEN-23 in the 3’ direction.

233 Since we found Copia-35 expression in all three accessions, we next investigated whether

234 this, by analogy with ONSEN, also induced expression of its flanking genes. Our data confirmed
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Figure 4. Upregulation of ONSEN and Copia-35 flanking genes. a) Volcano plots highlighting genes adjacent to
ONSEN and Copia-35 with the following criteria: log2(fold change) > 2, baseMean > 100, and padj < 10*.
Highlighted genes are labeled with the names of their corresponding TE. b) Relationship between a gene's
distance to its corresponding TE and RPKM. ONSEN genes are depicted in cyan, and Copia-35 genes in coral.
5’ flanking genes (triangles) and 3’ flanking genes (circles) are denoted. ¢) Length distribution of S2 reads across
13 TEs. S2 reads reaching their 3* genes are marked in coral. d) A comparison of the RPKM of the 3’ intergenic
regions (located between the TE and its 3° gene) against the RPKM of the corresponding upregulated 3’ gene, as
described in a. Only upregulated 3’ genes reached by reads originating in the S2 of the TE are included in the

analysis.
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235  that the expression of Cvi0-Copia35-15 and CviO-Copia35-16, two predominantly expressed
236 copies in Cvi-0, led to a significant upregulation of their 3’ flanking genes (Fig. 4a). Notably, while
237 Cvi0-Copia35-16 was shared between the three accessions (Fig. 3d) the upregulation of its 3° gene

238 was only observed in Cvi-0.

239 To determine whether the distance between the TE and the flanking genes could explain
240  the observed patterns in Fig. 4a, we further plotted the distance between each gene and its
241  associated TE against the gene's RPKM. We uncovered a localized effect of TE-mediated gene
242 activation under heat stress with closer genes showing a stronger heat response (Fig. 4b). To test
243 whether the upregulation of flanking genes could also be explained by the detected read-out
244 transcription from the 3’-LTR of some TE copies (Fig. 2a, Fig. 3a, Fig. S1-S6 and Table S2), we
245 plotted the length of all S2 reads of TE copies that exhibit transcription from their 3° LTR (Fig.
246 4c). For most copies, the length of S2 reads ranged between 0-2 kb. However, for some insertions
247  we found that S2 reads were spanning up to 4.5 kb of the flanking region, even reaching the 3’
248  gene in seven cases (Fig 4d). To assess the importance of those reads in driving gene expression,
249 we sought to quantify the relative transcription level of the intergenic region between the TE and
250  the 3’ flanking gene (Table S2-3). This analysis showed that the expression of the intergenic region
251  was either similar or lower than the actual gene expression. We further noted that the transcription
252 of highly expressed flanking genes such as AT1G58130 and ATCVI-3G20890 was independent
253 from the abundance of reads aligning to the flanking region (Fig. 4d), suggesting that the cis-

254 regulatory effect of the TE is the main driver of their heat response.

255 Among the genes that were solely upregulated by the cis-regulatory effect of the TE (Fig.

256  4a, Table S2-3), we detected APUMY, a well-characterized gene that plays an important role in

Page 15 of 30


https://doi.org/10.1101/2024.01.15.575637
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575637; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

257  development (Xiang et al. 2014; Hristova et al. 2015). Indeed, APUMY was highly expressed in
258  response to heat in Col-0 and Ler-1 but not in Cvi-0, where the Copia-35 insertion was missing
259 (Fig. 3d, Fig. 4a). Because the transcriptional changes of APUMY9 under heat stress may have
260  phenotypic consequences and thus play a role in adaption, we further determined how frequently
261  this TAP of Copia-35 in the flanking region of APUMY occurred in natural accessions. After
262 validating our approach using the available PacBio assemblies (Fig. S7, Table S4), we screened
263 genomic reads of 1030 available accessions for the presence of this copy. Overall, we detected
264  TAPs in 340 accessions, belonging to all genetic groups of A. thaliana (Fig. 5a). Surprisingly,
265  TAPs were found in accessions geographically close to those carrying the Copia-35 insertion at
266  the APUMY locus.

267 Since our analysis showed that the expression of APUM9 under heat stress was clearly
268  associated with the presence of Copia-35 (Fig. 4a, Fig. 5b) and knowing that APUM?9 is involved
269  in regulating flowering time (Nyiko et al. 2019), we tested the possibility that the presence of
270  Copia-35 may affect this important trait when plants are exposed to different temperatures. By
271  analyzing publicly available data, we found significant differences of flowering time at 10 (FT10,
272 p-value <0.001) and 16 °C (FT16, p-value < 0.01) depending on the presence of Copia-35 in the

273 flanking region of APUM9 (Fig. 5c, d).
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Figure 5. APUM?9 locus and flowering time of natural accessions of 4. thaliana. a) Distribution map of the Copia-
35 TAP at the APUM?9 locus, with accessions color-coded by genetic group. b) Normalized RNA-Seq coverage
for the APUMY gene across three accessions. Solid lines represent heat-stressed samples, while dashed lines
represent controls. Normalized coverage is averaged over four replicates. Average flowering time at 10°C (¢) and
16°C (d) depending on the detection of a Copia-35 TAP at the APUM?9 locus. Reference indicates no TAP was
detected.

274

275

276 Discussion

277 TE activity is an important source of transcriptional novelty (Rebollo et al. 2012) and a

278  major driver of genome evolution. The genetic diversity arising from TE mobility has been
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279 documented in wild plants, including 4. thaliana (Quadrana et al. 2016; Baduel et al. 2021) and
280  Brachypodium distachyon (Stritt et al. 2020), as well as in crops like rice (Huang et al. 2008;
281  Carpentier et al. 2019; Castanera et al. 2021), maize (Stitzer et al. 2021), and wheat (Wicker et al.
282 2022). While ONT long read sequencing has recently been shown to be effective to study TE
283 expression in Arabidopsis mutants impaired for TE silencing (Panda and Slotkin 2020; Berthelier
284 et al. 2023), the availability of high-quality assemblies now makes it possible to investigate the
285  diversity of individual, highly similar TEs in multiple natural accessions of the same species. Using
286  heat as an abiotic stress, our analysis revealed multiple layers of significant expressional diversity

287  linked to stress-inducible TEs in 4. thaliana.

288 Besides confirming the heat-responsiveness of the well-studied ONSEN family, the use of
289 three different natural genetic backgrounds allowed for the in-depth characterization of Copia-35,
290  a second retrotransposon family with an increased activity under heat stress. Despite sharing heat
291  as environmental trigger, our data revealed striking differences between both families. Indeed,
292 while none of the ONSEN copies is conserved between all three accessions, we only detected one
293 TIP of Copia-35 in the relict accession Cvi-0. These findings support the view that ONSEN 1is
294 highly dynamic (Baduel et al. 2021), and could indicate a reduced mobility of Copia-35 in Ler-1
295 and Col-0 compared to Cvi-0. This argument is further strengthened by the fact that Copia-35
296  elements in Col-0 are lacking the ability to transpose, pointing towards a non-autonomous nature

297  in this accession (Pietzenuk et al., 2016).

298 In response to heat treatment, both ONT and RNA-seq data showed that the transcription
299  of Copia-35 was relatively low in Col-0 and Ler-1 but reached high expression levels, similar to
300  those of ONSEN, in Cvi-0. Our ONT data further confirmed the presence of full-length transcripts

301  that could serve as a template for the reverse transcription resulting in the transposition of Copia-
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302 35 in Cvi-0. These results show that the genome of Cvi-0 harbors two independent and potentially
303 mobile TE families, synchronically activated by the same environmental trigger. Whether
304  additional factors, such as specific insertion preferences as observed for ONSEN (Quadrana et al.
305  2019; Roquis et al. 2021) or their epigenetic regulation by different pathways, are defining separate
306  ‘niches’ (Kidwell and Lisch, 1997; Venner et al., 2009) allowing for a coexistence of both families,

307 remains to be elucidated.

308 The strong variation in the activity of Copia-35, which is equally abundant in all three
309  accessions but differentially expressed, is in line with previous work (Mari-Ordoéfiez et al. 2013;
310  Thieme et al. 2017; Nozawa et al. 2022), and suggests that factors other than copy number
311  determine the overall activity of a TE-family. For instance, Copia-35 expression increases in
312 mutants deficient in epigenetic silencing (Y okthongwattana et al. 2010) while the loss of RA(DM
313  alone (i.e without abiotic stress), does not activate ONSEN (Ito et al. 2011), highlighting
314  differences in the factors governing the activities of both families. Notably, recent work showed
315  that natural variations in the strength of epigenetic silencing under heat stress leads to increased
316  activation of ONSEN in the Kyoto accession that displays reduced methylation in the CHH context
317  (Nozawa et al. 2022). In this regard, it is noteworthy that the relic accession Cvi-0 that displayed
318 ahigh activity of both TEs in our study is globally hypomethylated compared to Col-0 (Kawakatsu

319  etal. 2016).

320 The high resolution of the ONT data also revealed striking qualitative expressional
321  differences between both families. Most importantly, we revealed the presence of an additional
322 transcription termination site for Copia-35 compared to ONSEN. This could imply mechanistic
323 variations in the lifecycle of the two families. Analogous to retroviruses, LTR-RT require specific

324 amounts of the structural GAG nucleocapsid, the catalytic polyprotein and the full-length transcript
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325  that serves as a template for reverse transcription to complete their lifecycle (Schulman 2013).
326  Besides mechanisms affecting translation (Clare et al. 1988; Matthews et al. 1997; Havecker and
327  Voytas 2003) subgenomic TE expression and splicing resulting in different transcript pools
328  underly the fine-tuning of retrotransposon protein abundances (Chang et al. 2013). The role of
329  alternative splicing is perfectly illustrated by its importance for regulating protein abundances of
330 the Arabidopsis Copia-type retrotransposon EVADE (Oberlin et al. 2017). Our work, however,
331  paints a more nuanced picture. While we detected the presence of a few spliced transcripts
332 produced by Copia-35, our ONT analysis suggests the presence of short subgenomic transcripts
333 that may indicate that the diverse RNA pools needed to complete the TE-lifecycle are obtained
334  using a splicing-independent mechanism. These findings therefore open new avenues for
335  elucidating the fundamental processes of plant retrotransposon mobility. This is particular crucial,
336 because while ONSEN has been studied in detail (Ito et al. 2011; Cavrak et al. 2014; Thieme et al.
337 2017; Baduel et al. 2021) our current mechanistic understanding of plant TEs is overwhelmingly
338  based on studies using few genetic backgrounds, and in the case of heat-responsive TEs, mainly

339  on Col-0.

340 The influence of TEs on the expression of their flanking regions is well-documented
341  (Butelli et al. 2012; Makarevitch et al. 2015; Rech et al. 2022). Here, we confirmed that ONSEN
342 mediates a heat-dependent upregulation of flanking regions (Ito et al. 2011; Roquis et al. 2021)
343 and further revealed that Copia-35 can also confer heat-responsiveness to its neighboring genes,
344 in addition to the previously reported APUMY locus in Col-0 (Pietzenuk et al. 2016), in multiple
345  accessions. The ONT data further allowed us to unambiguously discriminate between read-out
346  transcription and the indirect upregulation of genes via the cis-regulatory effect mediated by the

347  recruitment of the transcription machinery to the TE (Zhao et al. 2018; Fagny et al. 2020;
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348 Deneweth et al. 2022). The formation of TE-gene fusion transcripts is a common phenomenon in
349 Arabidopsis (Lockton and Gaut 2009; Berthelier et al. 2023) and we indeed detected read-out
350  transcription originating from the 3° LTRs of both ONSEN and Copia-35 TE families under heat-
351  stress. However, our data suggests that the cis-regulatory effect is the main driver of TE-mediated
352 expression of the flanking genes. Interestingly, one of the genes that has previously been shown to
353  be affected by Copia-35 (Pietzenuk et al. 2016) is APUM?Y, which is involved in early embryonic
354  development, with a putative role in basal heat tolerance (Nyiko et al. 2019). In addition, an
355  overexpression of APUMY results in abnormal leaf morphology and a delayed flowering
356  phenotype (Nyiko et al. 2019). Despite its importance in development, the natural diversity of the
357  APUMY locus and more specifically the role of Copia-35 in driving its expression under heat stress,
358 had not been studied across multiple natural accessions. Our data revealed that on a population
359  scale, accessions without the Copia-35 insertion at the APUM?Y locus tend to flower earlier. The
360  timing of flowering is crucial for a population to survive. Despite their selfish nature, major
361  (epi)genetic effects linked to transposition events are generally viewed as a driving force of plant
362 evolution (Lisch 2013), capable of facilitating rapid adaptation (Hof et al. 2016; Thieme et al.
363 2022), and the link between transposition and modulation of flowering time in A. thaliana has been
364  suggested previously (Thieme et al. 2017; Quadrana et al. 2019; Baduel et al. 2021). Flowering
365  time is a complex trait driven by multiple loci with small quantitative effects (Kinoshita and
366  Richter 2020). The fact that heat triggers the upregulation of Copia-35, resulting in an activation
367 of APUMY, and that the experimentally induced overexpression of APUMY9 in Col-0 results in
368  delayed flowering (Nyiko et al. 2019), indeed indicates a quantitative effect of this insertion on

369  flowering time.
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370 Overall, our study revealed a great expressional diversity linked to heat-responsive LTR-
371  retrotransposons in A. thaliana. These findings strongly advocate for the use of ONT in studies
372 aiming at understanding both the fundamental mechanisms of LTR-retrotransposon mobility and
373 their adaptive consequences across multiple natural accessions. With the increasing availability of
374  high-quality genomes, similar studies should soon allow us to drastically improve our

375  understanding of the role of TEs in plants that are densely packed with TEs.

376

377 Materials and Methods

378  Heat stress experiments, RNA extractions and sequencing

379 Seeds of Col-0, Ler-1 and Cvi-0 were first stratified on 2 Murashige and Skoog (MS) plates for 7
380  days at 4°C and then grown under controlled conditions (16 h light at 24°C, 8 hours dark at 22°C)
381  in a Aralab 600 growth chamber (Rio de Mouro, Portugal). After 7 days of growth, plants were
382 heat-stressed at 37°C for 24 h and 16 h light in a second Aralab 600 growth chamber. Seedlings
383  from control and heat treatment were sampled simultaneously at the end of the stress period. For
384  the ONT direct cDNA sequencing, 20 seedings per accession per treatment were pooled together
385  for mRNA extraction using oligo-dT beads (#61011) (Thermo Fisher Scientific, Waltham, USA).
386  The Functional Genomic Centre at Ziirich performed library preparation and sequencing. Final
387  cDNA libraries were sequenced on ONT Flow Cells (R 9.4.1) (Oxford, UK).

388 For the illumina RNA-Seq samples, plants were grown and stressed under the same
389  conditions. Four biological replicates (pools of at least nine seedlings) per condition for each
390  accession were extracted using the QIAGEN RNeasy plant mini kit (#74904) (Venlo, Netherlands).

391  Novogene UK performed the library prep and sequencing.
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392 TE annotation

393  For ONSEN, full-length copies (Cavrak et al. 2014) were used to generate annotations using
394  RepeatMasker (version 4.1.1) (repeatmasker.org) with the following options: -a -xsmall -gccalc -
395  nolow. We only conducted the rest of the analysis on the remaining seven functional copies. In
396  addition, TE consensus sequences of A. thaliana from RepBase28.03 (Bao et al. 2015) were used
397  to annotate all other TEs using the same command. ROMANIATS consensus sequence was
398  reconstructed by Repbase in 2018 and its name was reverted to Copia-35
399  (girinst.org/2018/vol18/issue9/Copia-35 AT-L.html). For clarity, this article abandoned the legacy
400 name of ROMANIATS and refers to the family as Copia-35. In the case of full-length copies of
401 Copia-35 in Col-0, we adopted their TAIR10 names, ATIE51360, ATIE43225 and AT3TE51895,
402  even after reannotation. For the remaining accessions, the elements were named based on the
403  format: Accession-TE family-Annotation ID. NCBI conserved domain search (CDD v3.20) (Lu et
404 al. 2019) was used to annotate protein domains in TE sequences.

405

406  RNA-seq analysis

407  Fastp (version 0.23.2) (Chen 2023) was used to trim adapters and remove low complexity reads
408  using the following options: --qualified quality phred 15 --unqualified percent limit 40 --
409 n_base limit 10  --low_complexity filter = --correction  --detect adapter for pe  --
410  overrepresentation_analysis --dedup --dup_calc accuracy 6. Ribosomal RNA was then removed

411  using bbduk.sh (version 39.01) from the BBTools suite (sourceforge.net/projects/bbmap/) with the

412 options k=31 hdist=1.
413 Cleaned reads were then mapped to their respective genome assemblies using STAR

414  (version 2.7.10b) (Dobin et al. 2012) with options: --alignlntronMax 5000 -
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415 outFilterMultimapNmax 100 —winAnchorMultimapNmax 100. The genome assembly and gene
416  annotation of Col-0 (release 10) was downloaded from the Arabidopsis Information Resource
417  (TAIR) (Berardini et al. 2015). The genome assemblies and gene annotation of Ler-1 and Cvi-0
418  were downloaded from the 1001 genomes webpage (Jiao and Schneeberger 2020).

419 We employed RPKM (Reads Per Kilobase of transcript, per Million mapped reads), a
420  commonly used unit of measurement to quantify gene and TE expression levels and normalize the
421  expression levels across replicates. Pair-ended fragments were counted using featureCounts (Liao
422 etal. 2013) against the TE or gene annotations, with the following options: -B -p -P -O.

423 Cleaned RNA-Seq data were also analyzed by SalmonTE (version 0.4) (Jeong et al. 2017) to
424  measure global expression of TEs. The 4. thaliana TE consensus library was downloaded from
425  Repbase (version 28.03.2023) (Bao et al., 2015) and used as the custom library for SalmonTE.
426  Default options of SalmonTE’s “quant” and “test” program were used to quantify expression and
427  perform statistical analyses.

428

429  Basecalling and mapping of ONT data

430  Basecalling was performed on the passed fast5 files using Guppy (version 6.1.2) with default
431  options. Guppy is developed by ONT and available via their community website

432 (community.nanoporetech.com). Stranding was then directly performed on the passed output from

433 basecalling using Pychopper (version 2.5.0) (github.com/epi2me-labs/pychopper). Primer
434 configuration for stranding was set to "+:SSP,-VNP|-:VNP,-SSP" and rescued reads were not used.

435 Porechop (version 0.2.4) (github.com/rrwick/Porechop) was then used to remove sequencing

436 adapters from ONT reads. Finally, ONT reads were mapped to their respective genome assemblies

437  using minimap2 (version 2.24) (Li 2018) with options -ax splice -uf -k14.
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438  Mapping of whole-genome sequencing (WGS) data

439  The WGS data of 1,135 A. thaliana accessions was downloaded from the National Center for
440  Biotechnology Information Sequence Read Archive (NCBI SRA) under project PRINA273563
441  (Alonso-Blanco et al. 2016). Fastp (version 0.23.2) (Chen 2023) was used to trim adapters and
442 remove low complexity reads using the following options: --qualified quality phred 15 --
443 unqualified percent limit 40 --n base limit 10 --low complexity filter --correction --
444  detect adapter for pe --overrepresentation analysis --dedup --dup calc accuracy 6. BWA-MEM
445  (version 0.7.17) (Li 2013) was used to map the genomic reads to the APUM9 locus of Col-0.

446

447  TAP detection at the AMUPY locus

448  Data retrieved from the 1001genomes project (Alonso-Blanco et al. 2016) was used to screen for
449  TE Absence Polymorphisms (TAPs) at the APUMY locus. BWA-mem (version 0.7.17) (Li 2013)

450  and detettore (version 2.0.3) (github.com/cstritt/detettore) was used in tandem to first map the

451  reads, and then perform TAP calling using default options.

452

453 Flowering time analysis

454  Flowering time at 16°C (FT16) and 10°C (FT10) recorded by the 1001genomes project (Alonso-
455  Blanco et al. 2016) were used to test the association between the number of TAPs and flowering
456  time.

457

458

Page 25 of 30


https://github.com/cstritt/detettore
https://doi.org/10.1101/2024.01.15.575637
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.15.575637; this version posted January 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

450 Data access

460  Raw RNA-seq and base-called ONT data were uploaded to the European Nucleotide Archive

461  (ENA) under project PRIEB64476. The scripts used for the statistics and figure generation were

462  deposited into https:/github.com/GroundB/Natural-diversity-of-heat-induced-transcription-of-

463  retrotransposons-in-Arabidopsis-thaliana.
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