

3

4 Marie-France Martin<sup>1</sup>, Boris Bonaventure<sup>2</sup>, Nia E. McCray<sup>1</sup>, Olve B. Peersen<sup>3</sup>, Kathryn Rozen-  
5 Gagnon<sup>4</sup>, Kenneth A. Stapleford<sup>1,\*</sup>

6

7

8

<sup>8</sup> <sup>1</sup> Department of Microbiology, New York University Grossman School of Medicine, New York,  
<sup>9</sup> New York, USA

10 <sup>2</sup> Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York,  
11 USA

12 <sup>3</sup>Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO,  
13 USA

14 <sup>4</sup>Department of Molecular Genetics, University of Toronto, Toronto, Canada

15

16

17 \*Corresponding author: Kenneth A. Stapleford, Email: Kenneth.stapleford@nyulangone.org

18

19

20

21

22

23 **Abstract**

24 Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required  
25 for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not  
26 well-defined. Previous work using chikungunya virus (CHIKV) has established the importance of  
27 the nsP4 residue cysteine 483 in maintaining viral genetic fidelity. Given the location of residue  
28 C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and  
29 surrounding subdomains would also contribute to polymerase function. To test this hypothesis,  
30 we designed a panel of nsP4 variants via homology modeling based on the Coxsackievirus B3 3  
31 polymerase. We rescued each variant in both mammalian and mosquito cells and discovered  
32 that the palm domain and ring finger subdomain contribute to polymerase host-specific  
33 replication and genetic stability. Surprisingly, in mosquito cells, these variants in the ring finger  
34 and palm domain were replication competent and produced viral structural proteins, but they  
35 were unable to produce infectious progeny, indicating a yet uncharacterized role for the  
36 polymerase in viral assembly. Finally, we have identified additional residues in the nsP4 palm  
37 domain that influence the genetic diversity of the viral progeny, potentially via an alteration in  
38 NTP binding and/or discrimination by the polymerase. Taken together, these studies highlight  
39 that distinct nsP4 subdomains regulate multiple processes of the alphavirus life cycle, placing  
40 nsP4 in a central role during the switch from RNA synthesis to packaging and assembly.

41

42

43

44

45 **Author Summary**

46 Chikungunya virus (CHIKV) is a re-emerging alphavirus transmitted to humans by mosquitoes  
47 and causing frequent explosive outbreaks. Its replication relies on a polymerase that  
48 incorporates a significant number of errors in the new genomes, making it a good candidate to  
49 develop vaccines or antiviral strategies. However, little is known on alphavirus polymerase  
50 function in alternate hosts. To begin to understand how the CHIKV polymerase nsP4 functions,  
51 we designed a panel of nsP4 variants taking advantage of the conservation of polymerase  
52 structure across positive strand RNA viruses. We discovered that the palm domain and ring  
53 finger of the polymerase were involved in host-specific RNA replication, genetic stability, and  
54 virus assembly. In addition, we demonstrated that the palm domain directly impacted the  
55 generation of viral genetic diversity. Taken together, these findings add further evidence to the  
56 crucial impact of the core palm domain of CHIKV polymerase not only on the replication of the  
57 RNA itself, but also on the genetic stability of the protein, as well as its involvement in viral  
58 assembly.

59

60

61

62

63

64

65

66

67 **Introduction**

68 Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus, belonging to the  
69 *Togaviridae* family and the *Alphavirus* genus. Alphaviruses, which include both arthritogenic  
70 viruses like CHIKV and Mayaro virus (MAYV), and encephalitic viruses like Sindbis virus (SINV)  
71 and Venezuelan Equine Encephalitis virus (VEEV), can cause devastating disease and explosive  
72 outbreaks. Despite the severity of these diseases, there are limited vaccines or therapeutic  
73 strategies targeting alphaviruses. This fact, coupled with global climate change driving mosquito  
74 spread and the significant economic and social burden of alphaviral disease, highlights the need  
75 to better study how alphaviruses replicate at the molecular level (1–4).

76 CHIKV is an enveloped virus that possesses a ~12 kb positive-sense single-stranded RNA  
77 genome flanked by a capped 5'-untranslated region (UTR) and a polyadenylated 3'-UTR. The  
78 genome contains two open-reading frames (ORF). The first ORF encodes for the nonstructural  
79 polyprotein P1234, that gives rise upon cleavage to the nonstructural proteins nsP1, nsP2, nsP3,  
80 and nsP4. The second ORF is under the control of an internal subgenomic promoter and  
81 encodes for the structural proteins capsid, E3, E2, 6K/TF and E1 (5). nsP1 is the  
82 methyl/guanylyltransferase responsible for capping new viral genomes (6), membrane  
83 curvature during replication complex formation (7) and anchoring of the replication complexes,  
84 also called spherules, at the plasma membrane (8,9). nsP2 has protease, helicase and NTPase  
85 activities (10–12) and controls fidelity in synergy with nsP4 (13). nsP3 possesses both a N-  
86 terminal ADP-ribose binding and hydrolase activities (14), as well as a hyper-variable C-terminal  
87 domain involved in binding cellular co-factors (15). Finally, nsP4 is the RNA-dependent RNA

88 polymerase (RdRp) and possesses acetyltransferase activity (16), which is required to generate  
89 the polyadenylated tail at the 3' end of the new viral genomes.

90 In addition to RNA polymerization, CHIKV nsP4 is a key contributor to the intrinsic viral  
91 fidelity as the cysteine 483 of nsP4 has been previously involved in the polymerase fidelity (13,  
92 17,18). Fidelity is characterized by the ability of a polymerase to incorporate, based on a  
93 template, the correct nucleotide over a non-correct nucleotide during replication. Mutations at  
94 the position 483 of nsP4 result in varying phenotypes depending on the nature of the  
95 introduced residue. Whereas C483Y confers a high-fidelity phenotype to the polymerase (17),  
96 substitution with a glycine, C483G, results in a low-fidelity polymerase variant (18).

97 Interestingly, both high- and low-fidelity polymerase variants are attenuated in mosquitoes and  
98 mice (17,18), highlighting the fine tuning of polymerase fidelity.

99 Recent work has unraveled the structures of alphavirus nsP4 and the replication  
100 complex (19,20). The elegant study by Tan *et al*, demonstrated that CHIKV active replication  
101 complex is composed of a dodecameric ring of nsP1 sitting at the neck of each spherule, at the  
102 center of which, one nsP2 molecule takes place on the cytoplasmic side, itself faced by one  
103 nsP4 molecule on the spherule side (19). Whereas these studies provide important structural  
104 insight on the CHIKV polymerase, nsP4 function is still not well-characterized. We suspect that  
105 the involvement of additional residues in nsP4 polymerization and fidelity remain to be  
106 elucidated.

107 In this study, we took advantage of the structural conservation of positive-sense RNA  
108 virus RdRp and the power of homology-based modeling to further understand CHIKV nsP4  
109 function. Using the Coxsackievirus B3 (CVB3) 3 polymerase, a well-studied model for positive-

110 sense RNA virus polymerase studies (4,5), we hypothesized that nsP4 residues in close vicinity  
111 to the active site of the polymerase, the GDD motif, and the previously characterized C483  
112 residue could play important roles for polymerase function. To this end, we designed a set of 18  
113 nsP4 variants targeting conserved residues among alphaviruses and investigated how these  
114 variants contribute to replication and virion production in mammalian and mosquito cells.  
115 Using the full-length virus, we demonstrated that the CHIKV nsP4 palm domain and ring finger  
116 participate in host-specific replication and polymerase genetic stability. In addition, we  
117 demonstrated that introducing mutations in nsP4 affects viral assembly and impairs the  
118 generation of infectious progeny. Finally, we used deep-sequencing as an unbiased and high-  
119 throughput approach to elucidate how nsP4 variants impact the viral genetic diversity upon  
120 replication. We showed that mutating residues L383 and W486 in the palm domain and more  
121 specifically in close proximity to the C483 residue had important effect on the genetic diversity,  
122 presumably by affecting the binding and/or discrimination of NTPs during replication. Taken  
123 together, this study provides novel insight into nsP4 function, describing for the first time a role  
124 in viral assembly, and pinpoints important replication regulatory residues located in the palm  
125 domain of the polymerase.

126 **Results**

127 **The CHIKV nsP4 palm and ring finger contribute to host-specific replication and polymerase**  
128 **genetic stability.**

129 Previous studies showed that the nsP4 residue C483, located in the palm domain (**Fig**  
130 **1A**), played a key role for both polymerase fidelity and host-specific replication and virulence  
131 (13,17,18). We hypothesized that other nsP4 residues would also play important roles for nsP4  
132 function and CHIKV life cycle. To test this hypothesis, we used homology modeling to design  
133 polymerase variants based on the Coxsackievirus B3 3D polymerase (CVB3 3D<sup>pol</sup>). As the crystal  
134 structure of the CHIKV polymerase has not been solved yet, we modeled nsP4 variants on the  
135 closely related alphavirus O'nyong'nyong viral protein which is 91% identical at the amino acid  
136 level (21) (**Fig. 1, S1 Fig**). This panel of CHIKV variants targets nsP4 residues conserved among  
137 alphaviruses (**Fig 1B**) including I312, L368 and T440 which correspond to known residues in  
138 CVB3 3D pol affecting polymerase fidelity (22,23), respectively I176, I230 and S299. In addition,  
139 we speculate that surrounding CHIKV nsP4 residues I372 (Y234 in CVB3 3D pol), L383 (W245 in  
140 CVB3 3D pol), L442 (I301 in CVB3 3D pol) and W486 (Y351 in CVB3 3D pol) could be involved in  
141 polymerase activity due to their respective orientations and locations, either in close vicinity to  
142 the GDD motif or the C483 residue (**Fig 1A**). A total of 18 nsP4 variants were designed by  
143 mutating 7 amino acids for further investigations.

144 As CHIKV replicates both in mammals and mosquitoes in nature, we wanted to  
145 investigate the impact of each nsP4 variant on CHIKV replication in both hosts (**Fig 2**). To do so,  
146 we selected as model cell lines, the hamster BHK-21 cells for the mammalian host, and the  
147 *Aedes albopictus* C6/36 clone cell line for the mosquito host. First, we tried to rescue each nsP4

148 variant by transfecting the *in vitro* transcribed full-length CHIKV nsP4 variant RNA into BHK-21  
149 or C6/36 cells. This approach has the advantage to synchronize replication and eliminate any  
150 confounding effects of virus entry. At 48 hours post transfection (hpt), we titered the  
151 supernatant by plaque assay on Vero cells to determine infectious viral particles production,  
152 quantified extracellular CHIKV genomic RNA by RT-qPCR, and Sanger sequenced the nsP4  
153 variant to address genetic stability.

154 In BHK-21 cells (**Table 1**, **Fig 2A and C**), nine out of eighteen nsP4 variants produced  
155 infectious virus (I312V, L368F, L368V, L383F, T440S, C483G, C483Y, W486F and W486Y). Virus  
156 production (**Fig 2A**) was correlated with the presence of extracellular RNA (**Fig 2C**), while nsP4  
157 variants that did not produce infectious virus showed viral RNA levels similar to the replicase-  
158 dead GNN variant, used as a negative control (**Fig 2C**). However, the sequencing of the nsP4  
159 region in CHIKV genomes from the rescued variants showed that only three of them, C483Y,  
160 W486L and W486Y, were genetically stable (**Table 1**). Every other nsP4 rescued variant showed  
161 either a partial or a total reversion to the WT residue at 48 hpt (depicted as a solid symbol in **Fig**  
162 **2**). It is likely that the variants that reverted had a decreased fitness, resulting in the selection of  
163 revertant virus over the course of the rescue. By looking at the specific codon changes during  
164 reversion, we noticed that the majority of revertant viruses presented only one nucleotide  
165 change compared to nsP4 WT with the exception of nsP4 W486F (**Table 1**). Indeed, this variant  
166 reverted by changing two nucleotides, from UUC (F) to UGG (W) with tryptophan being  
167 encoded by a unique UGG/TGG codon. Surprisingly, although nsP4 L368F and nsP4 L368V both  
168 reverted in BHK-21 cells, the reversion was achieved through two different codons, respectively  
169 CUU and UUG, suggesting potentially less stringent codon usage at residue 368.

170 In mosquito cells (**Table 1, Fig 2B, D, and E**), seven variants produced infectious virus  
171 (I312V, L368F, L368V, L383F, C483Y, W486F and W486Y). As we observed in BHK-21 cells,  
172 extracellular CHIKV RNA correlated with the presence of infectious virus in C6/36 cells (**Fig 2D**).  
173 However, in these cells nsP4 variants L368V, L383A, L383Y, L442A, as well as C483G released  
174 extracellular viral RNA (**Fig 2D**) in the absence of infectious viral particles (**Fig 2B**), suggesting  
175 these variants are able to synthesize RNA, yet not form infectious particles. It must be noted  
176 that no CPEs was observed in these conditions at the moment of the harvest, contrary to the  
177 nsP4 WT, L383F, C483Y and W486Y conditions (data not shown), excluding the possibility of  
178 intracellular content release upon cell death. Importantly, sequencing revealed that six rescued  
179 variants were genetically stable with the exception of nsP4 I312V which reverted once upon  
180 two rescue events in this cell type (**Table 1**). To better visualize the results from C6/36 cells, we  
181 correlated infectious viral particle production and extracellular viral RNA release in mosquito  
182 cells (**Fig 2E**) and highlighted genetically stable variants with no infectious particles but high  
183 levels of extracellular RNA (**Fig 2E, dashed circles**).

184 Together, these results reinforce host species greatly influence CHIKV variant replication  
185 and genetic stability. Mosquito cells tend to provide a less constrained environment for  
186 polymerase activity, while a mammalian host seems to be applying a more stringent selection.  
187 Moreover, these studies highlight critical residues involved in polymerase function as no variant  
188 of the I372 residue produced infectious virus in either cell type (**Table 1, Fig 2A and B**), even if  
189 substitutions were made with other comparable hydrophobic amino acids. This suggests the  
190 presence of an important selective pressure denoting an essential role for an isoleucine at  
191 position 372 in RdRp activity across species. Similarly, neither of the nsP4 variants L368Y,

192 L383A, L383Y, or L442A produced infectious virus in either cell type (**Table 1, Fig 2A and B**).  
193 However, contrary to nsP4 L383A and L383Y, the L383F variant did produce viral progeny  
194 despite the close similarity between these two amino acid substitutions and the conservation of  
195 a hydrophobic residue at this position (**Fig 1B**).

196

197 **The nsP4 palm domain contributes to infectious particle production.**

198 Given that in C6/36 cells several of the CHIKV nsP4 variants led to no infectious particles  
199 production but release high levels of extracellular RNA (**Fig 2**), we wanted to confirm that these  
200 nsP4 variants were capable to replicate in the cells by assessing intracellular viral RNA and  
201 protein levels (**Fig 3**). Viral RNA was quantified by RT-qPCR on total RNA extracts from  
202 transfected cells corresponding to Figure 2. In mammalian cells, only the C483Y and W486Y  
203 nsP4 variants, which were also the ones that did not revert to the WT residue, had similar levels  
204 of intracellular RNA to WT CHIKV (**Fig 3A**). The other nsP4 variants showed similar viral RNA  
205 levels to the negative control, nsP4 GNN, with nsP4 L383F and C483G showing an in-between  
206 phenotype, but reverting to WT CHIKV. Intracellular viral protein levels were assessed by  
207 immunoblot for nsP4 and the structural proteins capsid and E2 at 48 hpt from the supernatants  
208 of Figure 2. Overall, in BHK-21 cells (**Fig 3C, S2A and B**), the presence of nsP4, capsid and E2  
209 correlated with intracellular RNA levels, yet again many of these variants reverted to the WT  
210 residues (**red stars on Fig 3C, S2A and B**). Interestingly, the nsP4 variant W486F, which did not  
211 revert in this experiment, led to WT levels of nsP4, less capsid production but had an even  
212 lower level of E2 accumulation. This could be explained by the chronologically differential  
213 processing of capsid and the envelope glycoproteins, capsid being processed before E2 during

214 the replication cycle, thus suggesting that nsP4 W486F is likely delayed in its replication  
215 comparing to nsP4 WT.

216 In mosquito cells, most of the genetically stable CHIKV nsP4 variants we have been able  
217 to rescue had intracellular viral RNA levels above the nsP4 GNN control (**Fig 3B**), including the  
218 nsP4 variants, L368F, L368V, L383A, and L442A. Of these variants, nsP4 L383A and L442A were  
219 associated with an absence of infectious viral particle release, and the nsP4 variants L368F and  
220 L368V with a low level of infectious progeny when rescued (**Fig 2B**). This indicates that these  
221 variants are replication competent but defective in virion production. As in mammalian cells,  
222 the presence of intracellular viral proteins was assessed in mosquito cells with an immunoblot  
223 against nsP4, capsid and E2. Importantly, we observed the production of nsP4, capsid, and E2  
224 by nsP4 variants that did not produce consistently infectious particles, namely nsP4 L368F,  
225 L368V, L383A, L383Y, L442A and C483G (**Fig 3D, S3A and B**). Taken together these results show  
226 that while nsP4 variants are not making infectious particles, they are producing viral  
227 nonstructural and structural proteins, suggesting an impairment in viral production. This  
228 indicates a role for nsP4 in the proper assembly or secretion of infectious particles and  
229 emphasize again the impact of the host specie on viral replication.

230

231 **CHIKV nsP4 variants L368F, L368V and L442A have impaired infectious progeny release and**  
232 **intracellular protein accumulation.**

233 Failing of producing viral particles may be explained by a delay in virion production. To  
234 assess if the nsP4 variants that do not produce viral particles had delayed replication, we  
235 performed growth curves in C6/36 cells (**Fig 4**), focusing on the nsP4 variants that produce few

236 or no infectious particles (L368F, L368V, L383A, L383F, L383Y, L442A, and C483G). Cells were  
237 transfected with the nsP4 variant *in vitro* transcribed full-length RNA, culture supernatants  
238 were harvested at 24, 48, and 72 hpt, and infectious viral particles were titered by plaque assay.  
239 We observed that nsP4 variants L368F (**Fig 4A**), and L383F (**Fig 4B**) were delayed or attenuated  
240 in virion production with kinetics comparable to the nsP4 variant C483G (**Fig 4C**), which is  
241 known to be attenuated in insect cells (18). Interestingly, the CHIKV nsP4 variants L368V (**Fig**  
242 **4A**), L383A (**Fig 4B**), L383Y (**Fig 4B**), and L442A (**Fig 4C**) did not produce infectious particles even  
243 at the late time point of 72 hpt, indicating the lack of virion production was not due to a  
244 replication delay.

245 Although several variants do not produce infectious virus, it is possible they secrete  
246 noninfectious particles. To test the hypothesis of a noninfectious viral structure release we used  
247 the supernatants from mosquito cells transfected with the nsP4 variants L368F, L368V, L383A,  
248 L383Y, L442A and C483G at 48hpt in Figure 2, and concentrated them with Amicon Ultra  
249 centrifugal filters (**Fig 4F**). We then addressed the presence of structural proteins capsid, E1 and  
250 E2 by immunoblotting (**Fig 4G, S4A and B**). Interestingly, capsid protein was detected for the  
251 nsP4 variants L368F, L368V and L442A, alongside nsP4 WT (**Fig 4G**). Nevertheless, no E1 or E2  
252 could be recovered in this specific experiment, whereas a small amount of E2 protein appears  
253 for nsP4 L368V in another independent experiment (**Fig S4A**). This suggest that nsP4 variants  
254 L368F, L368V and L442A produce noninfectious particles containing the viral capsid (**Fig 4G**) and  
255 likely viral RNA as we detected in **Fig 2D**. The detection of intracellular viral structural proteins  
256 as shown in **Fig 3D** and **Fig 4E** exclude the possibility that these nsP4 variants fail to express the  
257 viral glycoprotein. These observations are of special importance as they point towards a role of

258 CHIKV polymerase in viral assembly, likely via interaction of the newly synthesized genomes  
259 with capsid.

260 Finally, to explore any potential issues with nsP4 variant structural protein expression  
261 and subcellular localization in C6/36 cells, we performed immunofluorescence at 24 hpt on  
262 each assembly defective variant, staining for nsP4 (**Fig 4D**) and capsid, E2, and actin (**Fig 4E, Fig**  
263 **S5**). Staining of uninfected mock and nsP4 GNN negative controls are shown in **Fig S5**. For all  
264 the attenuated nsP4 variants (L368F, C483G, W486F and W486Y) or the ones which do not  
265 produce infectious particles (L368V, L383A, L383Y and L442A), intracellular polymerase  
266 expression was similar to nsP4 WT (**Fig 4D**). However, the nsP4 variants L368V and L383Y nsP4  
267 presented as a diffuse staining in contrast to punctate nsP4 staining for the nsP4 WT virus.  
268 Looking then at structural proteins and actin expression (**Fig 4E, Fig S5C**), we noted several  
269 interesting observations. First, nsP4 WT, L368F, L368V, and L383A all expressed capsid and E2  
270 proteins, even if with some difference in intensity correlating with the western blot (**Fig 3D**).  
271 Interestingly, nsP4 C483G expressed capsid, but no E2 glycoprotein. This is in line with the  
272 delayed replication observed in **Fig 4C**, which is in alignment with the molecular biology of  
273 CHIKV where E2 protein is processed after capsid during the viral replication cycle. On the other  
274 hand, at 24hpt the nsP4 variant L383Y do not express capsid or E2 (**Fig 4E, Fig S5C**), an  
275 observation that correlate with the absence of infectious particles being released even at a late  
276 time-point such as 72 hpt (**Fig 4B**). Finally, we observed an important expression of E2 but very  
277 few of capsid for the nsP4 variant L442A at 24hpt (**Fig 4E, Fig S5C**), whereas both proteins are  
278 correctly expressed at 48hpt (**Fig 3D, Fig S3**). Coupling these observations with actin fibers  
279 expression, we could gain insight into the potential biology of the nsP4 variants. Indeed, nsP4

280 L368F and L368V showed an actin expression pattern comparable to the non-infected cells,  
281 with a notable actin accumulation at the junction of infected cells with either infected or non-  
282 infected cells in the case of L368F, similarly to nsP4 WT (**Fig 4E, Fig S5C**). Of note, it seems that  
283 both nsP4 variants, as nsP4 WT, were able to produce intercellular extensions that have been  
284 described as actin and tubulin positive and of more than 10  $\mu$ m long (24) (see scale bar on **Fig**  
285 **4E, Fig S5**). These CHIKV-induced extensions have been recently shown to be required for cell-  
286 to-cell viral spread and to participate in CHIKV's ability to escape circulating neutralizing  
287 antibodies (25). In addition, they require the presence of both capsid and E2 proteins for their  
288 formation. Interestingly, the F-actin network appears to be disorganized for the nsP4 variants  
289 L383A and L442A, and its expression less important for the nsP4 variant L383Y (**Fig 4E, Fig S5C**).  
290 A disorganization of the F-actin network could potentially be linked to a defect in the transport  
291 of E2 towards the plasma membrane or other viral assembly step.

292 Putting together these observations with their growth curves, we speculate that the  
293 poor actin network could be linked to the failure to produce infectious viral progeny, as actin is  
294 known to be important for viral assembly.

295

296 **Residues in the nsP4 C483 pocket affect virus growth, genetic diversity of the progeny, and**  
297 **the substitution profile of the polymerase.**

298 By having an intrinsic error rate, RdRps are generating viral diversity while maintaining  
299 genomic integrity. The CHIKV nsP4 residue C483 resides in the polymerase palm subdomain and  
300 has been shown to regulate virus fidelity and host specific growth (17,18). Given that several of  
301 the nsP4 residues we rescued and were genetically stable (L383 and W486) are in close

302 proximity to residue C483, we hypothesized these residues would also be important for viral  
303 growth and genetic diversity.

304 First, we addressed virus growth kinetics as described previously (**Fig 5**). In BHK-21 cells  
305 (**Fig 5A and B**), the dead-replicase nsP4 GNN did not produce viral progeny, the nsP4 C483Y  
306 variant replicated similarly to nsP4 WT, and the nsP4 W486Y variant showed delayed  
307 replication, with infectious viral particles not being released until 48 hpt (**Fig 5A**). To address  
308 whether viral proteins were correctly expressed and localized during infection, we looked by  
309 immunofluorescence at CHIKV nsP4 cellular expression and localization at 24 hpt (**Fig 5B**).  
310 CHIKV nsP4 WT, C483Y, and W486Y displayed a punctuated cytoplasmic nsP4 expression  
311 suggesting that nsP4 was behaving similarly between the variants. These results indicate that  
312 the CHIKV nsP4 W486Y variant has delayed growth kinetics in BHK-21 cells, at least not due to  
313 an altered expression or subcellular localization of nsP4. In C6/36 cells (**Fig 5C and D**), we found  
314 that the C483Y variant grew like WT CHIKV, yet W486F and W486Y viral productions were  
315 delayed and produced viral progeny only at 48 or 72 hpt (**Fig 5C**). These results are in line with  
316 the delayed growth of the nsP4 L383F variant in C6/36 cells (**Fig 4B**). When we looked at nsP4  
317 expression by immunofluorescence, we found that the C483Y variant behaved like WT CHIKV  
318 while the nsP4 W486Y variant showed more cytoplasmic staining (**Fig 5D**).

319 To assess the impact of polymerase variants on the genetic diversity of the resulting  
320 progeny, we performed full-genome amplicon-based deep sequencing on representative  
321 replicates of nsP4 variants at residues L383, C483, and W486 in the C483 pocket (**Fig 6A, Fig S6**).  
322 Based on the deep sequencing, we called viral variants and quantified their frequency per  
323 position in CHIKV genome in each condition. Nonsynonymous mutations are highlighted in gray,

324 synonymous mutations in salmon and mutations in non-coding regions in blue (**Fig 6B-H, Table**  
325 **S1**). In BHK-21 cells (**Fig 6B-D**), as expected, the high-fidelity nsP4 variant C483Y led to a  
326 reduced number of minor variants compared to the WT polymerase (**Fig 6C**, quantified in **Fig**  
327 **7A**). Indeed, C483Y, as a high-fidelity variant, presents a significantly lower mutation frequency,  
328 thus directly impacting the subsequent genetic diversity of the new viral populations. In  
329 contrast, the nsP4 variant W486Y generated more diversity than nsP4 WT, as we see with the  
330 production of a higher number of variants (**Fig 6D**, quantified in **7A**). Interestingly, the nsP4  
331 W486F variant, which reverted in a minority of rescue events, tended to generate less genetic  
332 diversity than nsP4 WT (**Fig S7A and B**), suggesting a regulator switch similar to what was  
333 shown for C483Y vs C483G (18). In mosquito cells, the nsP4 variant C483Y was consistently  
334 associated with less genetic diversity than nsP4 WT (**Fig 6F**). Surprisingly, the polymerase  
335 variant W486Y replication resulted in a more important genetic diversity in mammalian cells  
336 than in mosquito cells (**Fig 6H**). In addition to minor variants, we also quantified the Root Mean  
337 Square Deviation (RMSD), and the ratio of nonsynonymous to synonymous mutations (dN/dS  
338 ratio) between nsP4 variants and cell types (**Fig 7B, C, F and G**). As a control, we found that the  
339 high-fidelity nsP4 C483Y variant showed a lower RMSD in both cell types (**Fig 7B and F**)  
340 confirming what has previously been reported (17,18,26). For the nsP4 variants L383F and  
341 W486Y, we found slightly increased diversity compared to nsP4 WT, as measured by RMSD for  
342 nsP4 W486Y in BHK-21 cells (**Fig 7B**) and nsP4 L383F in C6/36 cells (**Fig 7F**). Regardless, while we  
343 do find general trends, none of these were statistically significant.  
344 In both cell types, we observed the presence across all samples, except for nsP4 WT in  
345 BHK-21 cells, of a nsP2 protease domain variant I502V or I502R (**Fig 6, green circle**).

346 Interestingly, the nsP2 I502V variant is strongly selected in the context of the nsP4 L383F  
347 variant with a frequency of 77.3% in the first independent biological replicate and 7% in the  
348 second (**Fig 6G**). We also observed a second-site mutation in nsP4, V209I (**red circle**), common  
349 to the W486Y and F variants (**Fig 6D and H, Fig S7A**). The residue V209 locates in proximity to  
350 the residue W486, and both are facing the same nsP2 helicase domain loop (**Fig S7G**), likely  
351 compensating for the introduced substitution at position 486 in nsP4. Finally, in C6/36 cells, we  
352 observed a significant number of minor variants in the 3'UTR for nsP4 WT and nsP4 C483Y (**Fig**  
353 **6E-F, blue circles**). However, these variants were not present in the nsP4 L383F, W486Y, or  
354 W486F conditions, suggesting that these residues have specific interactions with the CHIKV  
355 3'UTR during replication.

356 To gain further insight into the molecular biology of the polymerase variants, we analyze  
357 the mutation dynamics in the deep-sequenced viral populations and quantified the rate of  
358 transition events (substitution of a purine for another one, A to G or G to A substitutions, or a  
359 pyrimidine to another one, C to T/U or T/U to C substitutions) and transversion events  
360 (substitution of a purine for a pyrimidine or conversely). Even if there are twice as many as  
361 transversion combinations possible during replication, transitions are generally favored at a  
362 higher frequency because they use a purine and a pyrimidine in the polymerase active site and  
363 they tend to generate more synonymous and conservative mutations than transversions, thus  
364 limiting their overall impact on viral fitness (27). Importantly, the nsP4 variant L383F in C6/36  
365 cells (**Fig 7H**) presented an increased frequency of transition events (60.02%) while the C483Y  
366 and W486Y variant lead to a decreased frequency of transversion events (respectively 45.75%

367 and 44.51%) than the WT polymerase (56.06%) (**Fig 7H**). This phenotype is also observed for the  
368 W486F variant in BHK-21 cells (with 63.78% vs 41.33% for nsP4 WT) (**Fig S7E**).  
369 In a second time, we analyzed the nucleoside frequency changes in each condition and cell type  
370 (**Fig 7I and J**). In mammalian cells, the nsP4 variants C483Y and W486Y presented distinct  
371 patterns of nucleoside changes. The nsP4 C483Y variant showed increased A to G ( $17.38\% \pm$   
372  $8.39\%$ ) and C to A ( $19.94\% \pm 22.57\%$ ) substitutions, whereas the W486Y variant generated  
373 more G to A ( $28.33\% \pm 2.25\%$ ) and A to U ( $18.75\% \pm 11.51\%$ ) substitutions than nsP4 WT  
374 (respectively  $9.09\% \pm 6.63\%$  for A to G ;  $4.92\% \pm 1.15\%$  for C to A ;  $14.76\% \pm 3.46\%$  for G to A  
375 and  $11.29\% \pm 2.58\%$  for A to U) (**Fig 7G**). These increases were notably compensated in the  
376 case of nsP4 W486Y by a reduced representation of U to C ( $1.55\% \pm 2.69\%$ ) and U to G  
377 substitutions ( $0.78\% \pm 1.34\%$ ) compared to the WT polymerase ( $6.25\% \pm 6.25\%$  and  $1.44\% \pm$   
378  $2.51\%$  respectively). This result was also seen with the W486F variant which presented a  
379 strikingly distinct pattern of nucleoside changes with no U to C, no U to G and no C to G  
380 changes, as well as a disproportion of G to A ( $27.88\% \pm 4.08\%$  vs  $14.76\% \pm 3.46\%$  for nsP4 WT)  
381 and C to U ( $19.87\% \pm 4.53\%$  vs  $11.23\% \pm 2.20\%$  for nsP4 WT) substitutions (**Fig S7F**). In  
382 mosquito cells, the variants C483Y, L383F, W486Y also displayed altered nucleoside change  
383 frequencies compared to the WT polymerase (**Fig 7J**). In particular, all nsP4 variants produced  
384 few U to C changes ( $16.92\% \pm 7.96\%$  for nsP4 WT vs  $8.10\% \pm 8.91\%$  for nsP4 L383F,  $16.51\% \pm$   
385  $3.16\%$  for nsP4 C483Y and  $8.33\% \pm 7.21\%$  for nsP4 W486Y), while nsP4 C483Y produced more A  
386 to G substitutions ( $23.66\% \pm 6.94\%$ ) and W486Y again favored A to U changes ( $22.73\% \pm$   
387  $13.11\%$ ), as in mammalian cells, compared to nsP4 WT (respectively  $21.46\% \pm 24.74\%$  and  
388  $7.58\% \pm 8.44\%$ ).

389 These changes in the frequency of substitution events show that, in addition to affect the  
390 proper viral replication and genetic diversity of the progeny, introducing mutations in the  
391 polymerase strongly affect the error bias of nsP4.

392 Taken together, these results suggest an alteration of the NTP discrimination and/or  
393 binding by the polymerase variants L833F, W486F and W486Y, affecting the nature of the  
394 errors introduced by the viral polymerase upon replication. Finally, the changes in viral diversity  
395 observed in the nsP4 variants have strong implications for the viral progeny and may explain, at  
396 least in part, the alterations of viral growth.

397

398 **Discussion**

399 Alphaviruses are significant human health threats, yet there are no or limited  
400 therapeutic strategies available. One potential broad-spectrum antiviral target is the highly  
401 conserved RNA-dependent RNA polymerase, highlighting the need to understand how the  
402 alphavirus polymerase functions. In this study, we took advantage of the Coxsackievirus B3  
403 (CVB3) 3 polymerase, a well-characterized model for positive-sense RNA virus polymerase  
404 study, and the predictive power of homology-modeling to unravel unknown key CHIKV  
405 polymerase activity and fidelity determinants. With this objective, we predicted a set of  
406 variants from seven conserved CHIKV nsP4 residues based on the CVB3 3D<sup>pol</sup> structure. We  
407 hypothesize they may play critical roles in nsP4 replication and function and in the changes  
408 taking place within the polymerase during active site closure and catalysis.

409 When we tried to rescue each nsP4 variant in mammalian cells, we found that only the  
410 variants C483Y, W486L and W486Y remained genetically stable. As previously established

411 (17,18), nsP4 C483Y is a high-fidelity variant of the polymerase and as such it is expected that it  
412 stays genetically stable. Given the stability of nsP4 W486Y, we hypothesize that this nsP4  
413 variant is associated with either an increased or a similar fidelity to nsP4 WT and/or that the  
414 substitution with a tryptophan at position 486 of the polymerase is relatively well tolerated by  
415 the polymerase. Interestingly, CHIKV nsP4 variants I312V and L368F were not genetically stable  
416 in mammalian cells, whereas the corresponding CVB3 3D pol variants were stable in human  
417 cells (22). More specifically, in CVB3, these variants were associated with a slighter or a  
418 significantly higher mutation rate compared to the WT, even if they were still replicating with  
419 the same efficiency as the WT polymerase (22).

420 On the contrary, in mosquito cells, all rescued nsP4 variants with the exception of the  
421 nsP4 I312V variant were genetically stable. The I312 residue is located close to the polymerase  
422 ring finger (**Fig 1A and Fig 8**). The finger subdomains are highly flexible subdomains involved in  
423 conformational changes during polymerization that maintain the active closed structure of the  
424 catalytic site and are required for RNA template binding (9,28). Given that the I312V variant  
425 was unstable in both mammalian and mosquito cells, it suggests a potential key role for the ring  
426 finger in both species. Regardless, the increase in genetic stability over mammalian cells is  
427 interesting as it has been shown that the mosquito host leads to a strong purifying selection on  
428 viral populations as a consequence of a series of consecutive severe biological bottlenecks (29).

429 Strikingly, in both cell lines, no nsP4 variant from the residue I372 and T440 could be  
430 rescued, nor did they produced intracellular RNA or viral proteins, indicating a strict  
431 requirement for these polymerase residues in RNA synthesis. I372 is in the conserved motif A  
432 and in immediate proximity to the catalytic aspartic acid residue at position 371 involved in the

433 coordination of the magnesium cations during catalysis (**Fig 1B, Fig 8A and B**) (9, 6, 20). This  
434 observation underlines the strong evolutionary constraints taking place in close vicinity to the  
435 polymerase active site, an idea supported by the Protein Contact Atlas predicted interactions  
436 that indicates strong atomic level interactions between the I372 residue and the catalytic  
437 residues D371 and D466 (data not shown) (30). Importantly, motif A has been described to  
438 align with motif C upon binding of the correct dNTP, initiating the closed and active RdRp  
439 conformation required for polymerization (28), thus emphasizing the pressure on this specific  
440 region of the protein (**Fig 8A**).

441 Interestingly, in mosquito cells, variants of nsP4 residues L368, L383, and L442 produce  
442 extracellular and intracellular viral RNA and proteins, yet do not produce infectious virus  
443 particles, suggesting a role for this region of nsP4 in particle assembly. While we did not find  
444 viral glycoproteins in the supernatant for these variants, we confirmed the presence of  
445 intercellular extensions for nsP4 WT, as being established as actin/tubulin positive and of more  
446 than 10  $\mu$ m in length (24). These extensions were also harbored by nsP4 variants L368F and  
447 L368V that showed WT-like structural protein expression patterns. In contrast, the variants  
448 L383A and L442A, despite expressing structural proteins, displayed altered actin distribution.  
449 This observation is of particular interest as it has been shown that HIV (31,32), Influenza A virus  
450 (33) and flaviviruses (34) subvert the actin network at their own advantage in order to redirect  
451 viral components towards the plasma membrane for viral assembly, although it seems that it  
452 could be negatively affecting the step of budding itself (35).

453 Residue L368 is interesting as it is located just before the conserved motif A in the palm  
454 subdomain but is also quite structurally isolated from both the catalytic site pocket and the

455 C483 pocket (**Fig 8B**). In addition, residue L442 is located inside motif B, involved in the binding  
456 of the RNA template (28), allowing us to speculate that even a slight change in amino acid side  
457 chain length, as in between a leucine and an alanine, has a dramatic impact on the correct  
458 positioning of the template in the polymerase. Interestingly, the L383 residue directly faces the  
459 L442 residue (**Fig 8B**). Importantly, networks of isoleucine, leucine and valine residues (ILV  
460 clusters) have been described as crucial for stability in high-energy partially folded protein  
461 states (36), that are likely observed in RdRp upon catalysis, but hard to capture by experimental  
462 biology (37).

463 Another explanation to the non-rescue of several nsP4 variants in mosquito cells was  
464 either a delay in viral production and/or the generation of non-infectious viral particles, also  
465 known as defective viral genomes (DVGs). DVGs are sub-viral particles that generally contain  
466 truncations of the viral genome, rendering it unable to undergo a full replication cycle except  
467 with the presence of a helper virus, able to complement the lost viral function (38). When these  
468 particles are interfering with viral replication, they are named defective interfering particles  
469 (DIPs). A study by Poirier *et al.*, has shown using the low-fidelity SINV polymerase C482G, the  
470 analog of the C483G variant for CHIKV nsP4, that by recombining at higher rates than the WT,  
471 the polymerase produces large amounts of DIPs (39). In our hands, CHIKV nsP4 C483G was not  
472 able to be well rescued in mosquito cells contrary to mammalian cells, likely via lethal  
473 mutagenesis, this low-fidelity polymerase incorporating too many errors in the genome for it to  
474 be viable.

475 Nonetheless, the idea of an nsP4 role in assembly is intriguing. Putting back the nsP4  
476 variants studied in this work in the context of the replication complex solved by Tan *et al* (**Fig**

477 **8B**), residues L368, L383, and L442 locate to the cytoplasmic side of the spherule near the  
478 interface of the helicase domain of nsP2 with nsP4. While this structure lacks other viral  
479 proteins including nsP3, we could hypothesize that these sites also contain the viral capsid and  
480 glycoproteins to facilitate assembly. Indeed, a likely proximity between viral replication  
481 complexes and viral assembly sites has been evoked (40,41) and could facilitate packaging of  
482 genomic RNA. Interestingly, genomic RNA is selectively packaged in the nucleocapsid whereas  
483 present small amounts in the cell during replication compared to the subgenomic RNA. It has  
484 been described that viral packaging requires both RNA-protein interactions and protein-protein  
485 interactions involving respectively, and chronologically, genomic RNA-capsid, capsid/capsid  
486 then capsid/E2 interactions (42). Moreover, work with Venezuelan Equine Encephalitis virus  
487 (VEEV) and Semliki Forest virus (SFV) has suggested that nsP2 could be involved in this  
488 presentation, as it contains packaging signal sequences (43) and seems to regulate viral  
489 assembly of infectious virions and tightly interacts with the helix I of capsid protein (44). In  
490 addition, nsP2 has been shown to interact genetically and physically with nsP4 (13,19,45).  
491 Finally, intrinsically disordered domains, through the high flexibility they confer to proteins, are  
492 interesting candidates that could mediate these suggested interactions. Both capsid and nsP4  
493 N-terminal domains are intrinsically disordered regions, respectively already demonstrated to  
494 play roles in gRNA binding during assembly (42,46) and active polymerization (9,47). Although  
495 our study did not provide experimental evidence of nsP4 being part of the viral assembly  
496 complex, further work is needed to investigate this plausible polymerase role in the late  
497 replication steps.

498                   Finally, as RdRps are replicating the genome and intrinsically incorporating errors at the  
499                   same time, they are generating important genetic diversity. Except for the coronaviruses, most  
500                   RNA viruses do not possess a proof-reading activity (48,49). This is why we wondered if  
501                   mutations in the palm domain of the polymerase, especially those in close proximity to the  
502                   C483 residue, a universal alphaviruses fidelity determinant, will affect the genetic diversity of  
503                   the progeny. To this end, using deep sequencing of the progeny of variants at residues L383,  
504                   C483, and W486 in both cell types, we observed a reduced genetic diversity for the high-fidelity  
505                   variant C483Y in both cell types, which was expected due to the low mutation frequency of this  
506                   variant (17). Interestingly, when we looked at the variant frequency across the genome in each  
507                   condition, we noted the presence of a second-site mutation in nsP4 (V209I) in both mammalian  
508                   and mosquito cells for the nsP4 W486 variants. The nsP4 residue V209 is located close to the  
509                   residue W486, and both residues are facing the same nsP2 helicase domain loop. Importantly,  
510                   as the viral protease (11) as well as the helicase (12), unwinding the RNA strands during  
511                   replication, nsP2 is a component of the core replicase complex and works with nsP4 to control  
512                   replication fidelity (13). nsP2 sits on the ring of nsP1 molecules on the cytoplasmic side of the  
513                   replication complex and is facing nsP4, itself buried in the spherule (19). Interestingly the  
514                   substitution between the original valine and an isoleucine at the position 209 of nsP4 is  
515                   shortening the distance between nsP4 and this helicase domain nsP2 loop, thus likely  
516                   reinforcing their interaction. Another mutation of interest happened to be in nsP2 (I502), again  
517                   in both cell types but this time associated to all polymerase variants, including the nsP4 WT in  
518                   mosquito cells. Strikingly, this substitution at position 502 between the original isoleucine and a  
519                   valine or an arginine (**Fig 6C-H**), appears to be strongly selected in the nsP4 variant L383F in the

520 context of mosquito cells. The I502 residue is located in the protease domain of nsP2 that also  
521 hosts residues associated with several other minor variants in nsP2, including the variants  
522 L708P. To conclude, these observations emphasize the previously characterized functional link  
523 between nsP4, the RdRp, and nsP2, the viral helicase and protease of CHIKV.

524 While our work describes important domains for CHIKV nsP4 function, genetic stability,  
525 replication through alternate hosts, and particle assembly, it possesses several limitations. First,  
526 the cell lines we selected for this study are particularly permissive to CHIKV infection and more  
527 broadly to arboviral infections. Indeed, BHK-21 cells are defective at producing interferon (50)  
528 and C6/36 cells do not have a competent RNAi pathway due to a defect in Dicer-2 (51,52). Thus,  
529 looking at nsP4 variants replication in RNAi- or interferon-competent cells, like U4.4 cells, also  
530 derived from *Aedes albopictus* mosquitoes, or human fibroblasts will give us insight into the  
531 impact of this immune selective pressure on viral replication itself. In addition, temperature  
532 could play a major role on the replication rate and virus stability. As BHK-21 and C6/36 cells  
533 grow at 37°C and 28°C respectively, future studies addressing the role of temperature will be  
534 important to understand nsP4 biology. Finally, via our targeted approach of designing a specific  
535 panel of mutants, we only have a partial view of functional residues in the polymerase.  
536 Expanding outside of the palm domain and ring finger will be key for understanding how nsP4  
537 functions.

538 In conclusion, these studies investigate how discrete domains of the CHIKV polymerase  
539 function in the complete alphavirus life cycle. We identified novel determinants required for  
540 polymerase genetic stability and found a previously unknown role for nsP4 in viral assembly.  
541 Furthermore, it underlines the differential selective pressures encountered by the polymerase

542 during infection. Importantly, we demonstrated that the palm domain of the polymerase plays  
543 a crucial role in the generation of subsequent viral genetic diversity, likely via its role in binding  
544 and/or discriminating NTPs during RNA synthesis. Future work is now required using *in vivo*  
545 models for a more integrated and comprehensive overview, and, in particular, to provide  
546 insight on the attenuation of these viruses in their natural environment giving the alteration of  
547 the resulting genetic diversity observed *in vitro*. As we highlighted important host-specific  
548 pressures, it would be interesting to see if our observations on CHIKV nsP4 could be expanded  
549 to other alphaviruses, notably to alphaviruses known to circulate in *Culex spp.* species (SINV,  
550 RRV or VEEV) or to have birds as a natural reservoir (SINV, RRV).

551

## 552 **Materials and Methods**

### 553 **Cell lines**

554 Baby hamster kidney cells (BHK-21 CCL-10, ATCC) were grown in Dulbecco's Modified Eagle  
555 Medium (DMEM, Corning, #10-017-CV) supplemented with 10% fetal bovine serum (FBS,  
556 Atlanta Biologicals), 1% N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES, Gibco,  
557 #15630080) and 1% MEM nonessential amino acids (MEM-NEAA, Gibco, #11140050). *Aedes*  
558 *albopictus* cell clone C6/36 (CRL-1660, ATCC) was grown in Leibovitz's medium (L-15, Corning,  
559 #10-045-CV) supplemented with 10% FBS, 1% tryptose phosphate broth (Gibco, #18050039)  
560 and 1% MEM-NEEA, Gibco, # 11140050). Vero cells (CCL-81, ATCC) were grown in DMEM  
561 supplemented with 10% newborn calf serum (NBCS, Sigma). All the cell lines were maintained  
562 at 37°C under controlled CO<sub>2</sub> atmosphere (5%) with the exception of C6/36 maintained at 28°C.  
563 Each cell line was tested monthly for mycoplasma using the Lookout Mycoplasma PCR

564 detection kit (Sigma-Aldrich, # MP0035) and confirmed mycoplasma free. BHK-21 and C6/36  
565 cells of passage 10 or less were used for every experiment (or alternatively less than 1-month  
566 old, maintained cells).

567

568 **Homology modeling**

569 An initial model for the CHIKV nsp4 structure was developed by a combination of homology  
570 modeling and threading onto the Coxsackievirus B3 polymerase structure (PDB: 3DDK), using  
571 the programs I-TASSER (53), Swiss-model (54), and Phyre (55). This approach provided a  
572 reasonable model for the conserved active site motifs in the palm domain that allowed us to  
573 identify residues likely to generate fidelity-modulating variants based on our prior work with  
574 coxsackievirus B3 polymerase (23). Residues were chosen based on their proximity to the pre-  
575 existing C483Y variant (17) or having locations likely to impact the palm domain-based  
576 movement of motif A that underlies the active site closure mechanism of positive-strand RNA  
577 virus polymerases (28, 56). The locations of these residues were later validated when the  
578 structures of Sindbis and Ross River virus and ONNV (12) polymerases were solved.

579

580 **Molecular biology and plasmid mutagenesis**

581 To generate wild-type (WT) chikungunya virus (CHIKV) (Strain 06-049; AM258994) and nsP4  
582 variants, a modified chikungunya virus (CHIKV) infectious clone containing an AvrII restriction  
583 site at the 3' end of the subgenomic promoter was used (pCHIK-FLIC-AvrII) (57). The nsP4  
584 variants were introduced into a small cloning vector via site-directed mutagenesis using the  
585 primers in Table2 and Sanger sequenced to confirm the variant. The AgeI/AvrII restriction

586 fragment was then subcloned from each nsP4 variant into pCHIK-FLIC-AvrII and each plasmid  
587 was Sanger sequenced to confirm the nsP4 variants.

**Table 2: Mutagenesis primers used in this study.**

| CHIKV nsP4 variant | Primer Pair                                                                                                   |
|--------------------|---------------------------------------------------------------------------------------------------------------|
| I312V              | Forward - ACCTAAGGTGCAGGTT <b>GTACAGGCGGCTGAACCT</b><br>Reverse - AGGGTTCAGCCGCT <b>GTACAACCTGCACCTTAGGT</b>  |
| L368F              | Forward - GCCAGGAGACACTGTT <b>TCGAAACGGACATAGCCT</b><br>Reverse - AGGCTATGTCCGTT <b>CGAAAACAGTGTCTCCTGGC</b>  |
| L368V              | Forward - GCCAGGAGACACTGTT <b>GTGAAACGGACATAGCCT</b><br>Reverse - AGGCTATGTCCGTT <b>CCACAACAGTGTCTCCTGGC</b>  |
| L368Y              | Forward - GCCAGGAGACACTGTT <b>TACGAAACGGACATAGCCT</b><br>Reverse - AGGCTATGTCCGTT <b>CGTAAACAGTGTCTCCTGGC</b> |
| I372A              | Forward - TGTTTGAAACGGAC <b>GCAGCCTCCTTGATAAGA</b><br>Reverse - TCTTATCAAAGGAGG <b>CTGCGCTCCTTCCAAAACA</b>    |
| I372F              | Forward - TGTTTGAAACGGACT <b>TCGCCTCCTTGATAAGA</b><br>Reverse - TCTTATCAAAGGAGG <b>CGAAGTCCGTTTCCAAAACA</b>   |
| I372L              | Forward - TGTTTGAAACGGAC <b>CTAGCCTCCTTGATAAGA</b><br>Reverse - TCTTATCAAAGGAGG <b>CTAGGTCGTTTCCAAAACA</b>    |
| I372Y              | Forward - TGTTTGAAACGGACT <b>ACGCCTCCTTGATAAGA</b><br>Reverse - TCTTATCAAAGGAGG <b>CGTAGTCCGTTTCCAAAACA</b>   |
| L383A              | Forward - GAGCCAAGATGATT <b>CAAGCTGCGCTTACTGCTTG</b><br>Reverse - TCAAAGCAGTAAG <b>CGCAGCTGAATCATCTGGCTC</b>  |
| L383F              | Forward - GAGCCAAGATGATT <b>CATTGCGCTTACTGCTTG</b><br>Reverse - TCAAAGCAGTAAG <b>CGCAGATGAATCATCTGGCTC</b>    |
| L383Y              | Forward - GAGCCAAGATGATT <b>CATATGCGCTTACTGCTTG</b><br>Reverse - TCAAAGCAGTAAG <b>CGCAGATGAATCATCTGGCTC</b>   |
| T440S              | Forward - AACTCTGTCGTC <b>ACTTCATTGTTAACATCACCA</b><br>Reverse - TGGTATGTTAAC <b>ATGAGTTGACGAACAGAGTT</b>     |
| L442A              | Forward - GTTCGTCAACAC <b>ATTGGCAAAACATCACCATGCCA</b><br>Reverse - TGGCGATGGT <b>GATGTTGCCAATGTGTTGACGAAC</b> |
| C483G              | Forward - GAATTGATGGCAG <b>CCAGATATGCCACTGGATGAA</b><br>Reverse - TTCATCCAAGTGG <b>CAACCTGGCTGCCATCAATT</b>   |
| C483Y              | Forward - GAATTGATGGCAG <b>CCAGATATGCCACTGGATGAA</b><br>Reverse - TTCATCCAAGTGG <b>CATACTGGCTGCCATCAATT</b>   |
| W486F              | Forward - AGCCAGATGTGCC <b>ACTTTCATGAACATGGAAGTGA</b><br>Reverse - TCACTCCATGTT <b>CATGAAAGTGGCACATCTGGCT</b> |
| W486L              | Forward - AGCCAGATGTGCC <b>ACTTTGATGAACATGGAAGTGA</b><br>Reverse - TCACTCCATGTT <b>CATCAAAGTGGCACATCTGGCT</b> |
| W486Y              | Forward - AGCCAGATGTGCC <b>ACTTACATGAACATGGAAGTGA</b><br>Reverse - TCACTCCATGTT <b>CATGTAAGTGGCACATCTGGCT</b> |

588  
589 To generate virus, full-length WT CHIKV and nsP4 variants were generated by linearization of 10  
590 µg of plasmid overnight with NotI restriction enzyme. The next day, the linearized product was  
591 purified by phenol:chloroform extraction and ethanol precipitation and re-suspended in RNase

592 free water. The purified product was then *in vitro* transcribed using the mMessage mMachine  
593 SP6 kit (Invitrogen, # AM1340) following manufacturer's instructions. *In vitro* transcribed RNA  
594 was purified by phenol:chloroform extraction and ethanol precipitation and finally re-  
595 suspended in RNase free water. After Nanodrop 2000 Spectrophotometer (ThermoScientific)  
596 quality control and concentration measurement, every RNA was diluted to 1  $\mu$ g/ $\mu$ L and  
597 aliquoted before storage at -80°C.

598

### 599 **Biosafety**

600 All experiments with WT CHIKV and CHIKV nsP4 variants were performed in a biosafety level 3  
601 (BSL3) laboratory at NYU Grossman School of Medicine (New York, NY USA).

602

### 603 **Plaque assay**

604 Viral infectious particle progeny was quantified by titration on Vero cells in 12-well plates.  
605 Briefly, Vero cells were seeded at a concentration of 350,000 cells/well. The next day, ten-fold  
606 dilutions of each supernatant were made in DMEM and 200  $\mu$ L of virus was added to each well.  
607 Cells were incubated during 1 hr at 37°C. After virus adsorption, 1.5 mL of pre-warmed plaquing  
608 medium made of DMEM-2% NBCS-1% Antibiotic-Antimycotic 100X (Invitrogen, # 15240062)  
609 was added per well. Plates were incubated for 3 days at 37°C. Plates were then fixed with 1.5  
610 mL of 4% formalin per well (Fisher Scientific, # SF1004) for 1 hr at room temperature. After  
611 fixation, formalin and agarose plugs were removed, followed by crystal violet (Sigma-Aldrich, #  
612 HT90132) staining for 15 mins. Finally, plates were washed in diluted bleach (10% Clorox  
613 bleach, Fisher Scientific, # 50371500) and left open 24 hours to dry at room temperature. The

614 number of plaques by dilution where plaques were observed in each condition was then  
615 counted and the number of infectious viral particles per initial inoculum determined.

616

617 **RNA extraction and RT-qPCR**

618 For extracellular RNA quantification, RNA extraction was performed using the PureLink  
619 RNA mini kit (Invitrogen, # 12183025). Briefly, samples in Trizol were incubated at room  
620 temperature for 5 mins. Then, 0.2 mL of chloroform per 1 mL of Trizol reagent used was added  
621 and the tube was vigorously shaken for 15 secs, followed by 3 mins incubation at room  
622 temperature. Samples were then centrifuged at 12,000 x g for 15 mins at 4°C. The colorless  
623 upper phase was then transferred onto a new tube and mixed with an equal volume of 75%  
624 ethanol. Samples were then vortexed and transferred onto a column. Several washes with the  
625 kit buffers were then performed according to manufacturer's instructions. Finally, after drying  
626 of the membrane, 100 µL of RNase-water was added on each column to elute extracellular RNA  
627 before storage at -80°C.

628 For intracellular RNA quantification, RNA extraction was performed using Trizol reagent  
629 (Invitrogen, # 15596026). Briefly, after cell lysis into Trizol, 1/5<sup>th</sup> of the total volume of  
630 chloroform was added in each sample and vortexed for 10 secs, followed by 5 mins incubation  
631 at room temperature. Samples were then centrifuged at 12,000 x g for 15 mins at 4°C to allow  
632 for phase separation. Following the spin, the upper aqueous phase was transferred to a new  
633 tube containing 500 µL of molecular grade isopropanol (Absolute isopropanol molecular grade,  
634 Fisher Scientific, # 67-63-0) and 1 µL of Glycoblue co-precipitant (Invitrogen, # AM9515). RNA  
635 was precipitated overnight at -20°C. The next day, the samples were vortexed and then

636 centrifuged at 12,000 x g for 20 mins at 4°C. Supernatant was removed, and the RNA pellet was  
637 washed two times with 700 µL of 75% molecular grade ethanol (Absolute ethanol molecular  
638 grade, Fisher Scientific, # BP28184). Finally, ethanol was completely removed, and the pellet  
639 was resuspended in 100 µL of RNase free water. Samples were normalized to 100 ng/µL with  
640 RNase free water. RNA quality and concentration was then checked on a Nanodrop 2000  
641 Spectrophotometer (ThermoScientific) before storing samples at -80°C.

642 For RT-qPCR, the number of viral genomes/mL was quantified in a transparent 96-well  
643 plate by TaqMan RT-qPCR on the previously extracted RNA (see above). To do so, the TaqMan  
644 RNA-to-Ct One-Step-RT-PCR kit (Applied Biosystems, # 4392938) was used along with CHIKV  
645 primers and a FAM-probe targeting the nonstructural protein 4 (CHIKV Fwd IOLqPCR-6856F:  
646 TCACTCCCTGCTGGACTTGATAGA / CHIKV Rev IOLqPCR-6981R:  
647 TTGACGAACAGAGTTAGGAACATACC / CHIKV probe IOLqPCR6919-FAM:  
648 AGGTACGCGCTTCAAGTTGGCG). The following mix was done for each reaction: 12.5 µL of  
649 Taqman RT-qPCR mix 2X, 6.25 µL of RNase-free water, 0.25 µL of CHIKV Fwd IOLqPCR-6856F,  
650 0.25 µL of CHIKV Rev IOLqPCR-6981R, 0.15 µL of CHIKV probe IOLqPCR6919-FAM, 0.63 µL of  
651 Taqman enzyme mix and 5 µL of sample. A standard curve was generated for each plate using  
652 ten-fold dilutions of *in vitro* transcribed CHIKV RNA. Each experimental sample and standard  
653 curve dilution was done in technical duplicates. The plate was then sealed, centrifuged briefly  
654 and ran on a QuantiStudio 3 real-time machine (Applied Biosystems). The amount of CHIKV RNA  
655 molecules per mL of sample was determined via the associated standard curve.

656

657 **Virus replication kinetics**

658 BHK-21 and C6/36 cells were seeded in a 24-well plate at a respective concentration of 75,000  
659 cells/well or 150,000 cells/well to be 70-80% confluent the next day for transfection. 24 hours  
660 later, a total of 0.5 µg of RNA per well was transfected with Lipofectamine MessengerMAX  
661 Transfection Reagent (Invitrogen, # LMRNA001) at a respective ratio of 1:2  
662 (RNA:Lipofectamine). After liposome formation, each mix was added dropwise on top of the  
663 corresponding wells and cell culture medium was left according to manufacturer's instructions.  
664 The next day, all the supernatant was removed and kept for plaque assay. Cells were then  
665 washed 3 times with 1X phosphate buffered saline (PBS) and fresh complete cell medium was  
666 added back. Plates were then incubated at the corresponding temperature according to the cell  
667 type. At 48 hpt, 60 µL of supernatant was taken and kept for plaque assay before to add back  
668 60 µL of fresh complete media and incubate back the plates. Finally, at 72 hpt, all the  
669 supernatant was removed and kept for plaque assay and extracellular RNA extraction.

670

#### 671 **Immunofluorescence staining and confocal microscopy**

672 BHK-21 and C6/36 cells were seeded in a 24-well plate on 12 mm round coverslips (Round  
673 German coverslip 12 mm, Bellco Glass, # 1943-10012A) at a respective concentration of 75,000  
674 cells/well or 150,000 cells/well to be 70-80% confluent the next day for transfection. 24 hours  
675 later, cells were transfected with 0.5 µg of *in vitro* transcribed RNA as described above. 24  
676 hours later, the wells were fixed by adding on top of the supernatant 10% formaldehyde  
677 (Formaldehyde Aqueous Solution EM grade, 32%, Liquid Electron Microscopy Sciences, #  
678 15700) at a volume-to-volume ratio for 1 hour at room temperature. After fixation, the

679 supernatant was removed, and cells were washed 3 times with Phosphate-Buffered Salt  
680 solution 1X (Corning, ref: 21031CV) before proceeding to the immunofluorescence staining.  
681 Free aldehyde groups from formaldehyde were neutralized with 50 mM ammonium  
682 chloride (NH<sub>4</sub>Cl) for 10 mins at room temperature. After several PBS washes, cells were  
683 permeabilized 0.1% Triton X100 (Triton X-100, Fisher BioReagents, # BP151100) for 15 mins and  
684 then blocked with 2% bovine serum albumin (BSA, Millipore Sigma, # H2519) for 30 mins at  
685 room temperature. Cells were then incubated via inversion of the coverslip on 30 µL of primary  
686 antibodies diluted at 1:300 in the 2% BSA solution, for 1 hour at room temperature in a wet  
687 chamber. After incubation, coverslips were put back in the plate, washed several times with  
688 PBS and then incubated with fluorophore-conjugated secondary antibodies, diluted at 1:1000,  
689 for 45 mins. The following primary antibodies were used: anti-CHIKV nsP4 (rabbit, a gift  
690 provided by Dr. Andres Merits at the University of Tartu, Estonia), anti-CHIKV E2 (mouse, the  
691 following reagent was obtained through BEI Resources, NIAID, NIH: Monoclonal Anti-  
692 Chikungunya Virus E2 Envelope Glycoprotein, Clone CHIK-263 (produced *in vitro*), NR-44003),  
693 anti-CHIKV Capsid (rabbit, CHIK-122; provided by Dr. Andres Merits) and anti-Phalloidin-A488  
694 (F-actin, ActinGreen 488 Ready Probes reagent, Invitrogen, # R37110). Coupled antibodies  
695 were always incubated after the non-coupled ones, if used in the staining. As secondary  
696 antibody, either a goat anti-rabbit IgG-Alexa 488 (Invitrogen, # A-11008), a donkey anti-mouse  
697 IgG-Alexa 488 (Invitrogen, # A-31570), a goat anti-rabbit Alexa 647 (Invitrogen, # A-21244) or a  
698 donkey anti-mouse Alexa 555 (Invitrogen, # A-31570) were used. Finally, cells were labeled with  
699 DAPI (Invitrogen, # D3571) and coverslips mounted in ProLong Diamond Antifade (Molecular  
700 Probes, ref: P36965) on slides (SuperFrost End Slide 1 mm thick, Electron Microscopy Sciences,

701 # 71867-01). After drying, coverslips were sealed using transparent nail polish. Slides were then  
702 stored at -80°C until acquisition on a Zeiss LSM880 confocal microscope (Carl Zeiss). Images  
703 were finally analyzed with the Fiji (Image J) software.

704

## 705 **Western Blotting**

706 To analyze intracellular proteins, BHK-21 and C6/36 cells were seeded in duplicate in a 6-well  
707 plate at a respective concentration of 300,000 cells/well or 600,000 cells/well to be 70-80%  
708 confluent the next day for transfection. 24 hours later, a total of 2.5 µg of RNA per well was  
709 transfected with Lipofectamine MessengerMAX Transfection Reagent (Invitrogen, # LMRNA001)  
710 at a respective ratio of 1:2 (RNA:Lipofectamine). After liposomes formation, each mix was  
711 added dropwise on top of the corresponding wells and cell culture medium was left 24 hours  
712 before being removed and replaced with fresh complete media until the end of the experiment.  
713 Both supernatant and cells were harvested 48 hours post-transfection to perform plaque assay,  
714 intra- and extra-cellular RT-qPCR, Western Blotting and deep-sequencing.

715 For western blotting, the wells of each 6-well plate were scrapped on ice in PBS after  
716 keeping the supernatant for plaque assay and RT-qPCR on viral progeny. Cells were then  
717 centrifuged at 5,000 rpm for 5 mins at 4°C. PBS was removed and 60 µL of lysis buffer (1X TBS, 1  
718 mM EDTA, 1% Triton X-100, 1% protease inhibitor) added into each tube. After 1 hour of  
719 incubation at 4°C, 60 µL of 2x Laemmli buffer with 10% 2-®-mercaptoethanol was added per  
720 tube for a final volume of 120 µL. Lysates were then heat-denatured for 10 mins at 95°C and  
721 spun for 5 mins at 10,000 x g before storage at -20°C. For SDS-PAGE, samples were thawed at  
722 room temperature and 10 µL of sample per well was loaded in a 15-well gel of a given

723 acrylamide concentration depending on the protein blotted subsequently (10% acrylamide for  
724 nsPs and E2, 12% acrylamide for Capsid). After 50 mins of migration, the proteins on the gels  
725 were transferred onto an activated polyvinylidene difluoride (PVDF) membrane (Immobilon  
726 from Millipore, # IPFL00005) and then blocked with 1X TBS-0.1% Tween-20-5% dry milk for 1  
727 hour at room temperature on a rocker. The membrane was then transferred into the  
728 corresponding primary antibody (1:5000 dilution) and incubated during 1 hour at room  
729 temperature or overnight at 4°C. Blots were incubated with the following primary antibodies:  
730 anti-CHIKV nsP4 (rabbit, provided by Dr. Andres Merits), anti-CHIKV E1 (rabbit, a gift provided  
731 by Dr. Gorben Pijlman at the University of Wageningen, Netherlands), anti-CHIKV E2 (mouse,  
732 CHIK-48; a gift provided by Dr. Michael Diamond at Washington University at St. Louis, USA),  
733 anti-CHIKV Capsid (rabbit, CHIK-122), and actin (mouse monoclonal, Invitrogen, # ACTN05 C4).  
734 Three washes for 5 mins with 1X TBS-Tween-20 were performed and the membranes were  
735 finally incubated with the corresponding secondary antibody (1:10000 dilution). Depending on  
736 the host species of the primary antibody, either a goat anti-mouse-HRP antibody (Invitrogen,  
737 ref: 31430) or an anti-rabbit IgG-HRP antibody (Invitrogen, ref: 31460) was used. After another  
738 round of washes, the membrane was subjected to revelation via addition of chemiluminescent  
739 substrate reagents (Pierce SuperSignal WestPico Plus, ThermoScientific, ref: 34580) at a ratio of  
740 1:1. Both a chemiluminescent and a colorimetric image were taken for each membrane and  
741 antibody revelation. Subsequently, membranes were stained with Coomassie blue and dried at  
742 room temperature to keep a trace of the protein content of each sample. Images were analyzed  
743 using ImageLab (version 6.0.1).

744

745 **Purification of supernatants for western blot on extracellular proteins**

746 To isolate proteins from the supernatants, Amicon columns were used (Amicon Ultra-0.5  
747 Centrifugal Filter Units, cut-off of 10,000 kDa, Millipore Sigma, ref: UFC501024). After thawing  
748 the supernatants, 500 µL of each sample was added on each column and then spun for 15 mins  
749 at 14,000 x g at room temperature according to manufacturer's instructions. The flow-through  
750 was then discarded and each column inverted on a new tube to be reverse spun down for 15  
751 mins at 1,000 x g at room temperature. A final volume of 20 µL purified proteins was recovered,  
752 and the proteins were transferred to a new tube before adding 50 µL of lysis buffer. Samples  
753 were incubated 1 hour at 4°C and then 50 µL of 2x Laemmlli with 10% ®-mercaptoethanol.  
754 Finally, each sample was heat denatured for 10 mins at 95°C and then frozen down at -20°C  
755 until SDS-PAGE as described above.

756

757 **CHIKV full genome PCR and Sanger sequencing**

758 For Sanger sequencing, the purified extracellular RNA was first used to generate cDNA (Maxima  
759 H Minus First Strand cDNA Synthesis Kit, Thermo Scientific, ref: K1652). 1 µL of random primers  
760 and 1 µL of dNTPs were mixed with 13 µL of extracted RNA per reaction in a PCR tube. Samples  
761 were first subjected to a PCR step at 65°C for 5 mins then chilled on ice and spun before adding  
762 a mix of 4 µL of RT buffer and 1 µL of reverse transcriptase enzyme (Maxima H RT) per reaction.  
763 The samples were then put at 25°C for 10 mins to allow annealing of the random hexamer  
764 primers, followed by 30 mins at 50°C for synthesis of the cDNA. Finally, the reaction is  
765 terminated by heating at 85°C for 5 mins. Generated cDNA is then stored at -20°C until use.  
766 To generate CHIKV amplicons, all cDNA reactions were subjected to a specific PCR reaction for

767 CHIKV genome amplification with the Phusion PCR kit (Phusion High-Fidelity DNA polymerase  
768 kit, Thermo Scientific, ref: F530L). 5 pairs of primers were used to span all CHIKV genome (Table  
769 3, CHIKV PCR primers), namely F1 / F2 / F2.5 / F3 and F4. A 50  $\mu$ L reaction was made for each  
770 sample as follow: 10  $\mu$ L of 5X Phusion HF buffer, 1  $\mu$ L of 10 mM dNTPs, 5  $\mu$ L of 10  $\mu$ M forward  
771 primer, 5  $\mu$ L of 10  $\mu$ M reverse primer, 0.5  $\mu$ L of Phusion DNA polymerase and 4  $\mu$ L of cDNA. The  
772 following PCR program was then applied: an initial denaturation at 98°C for 30 secs, then 35  
773 cycles of a denaturation step at 98°C for 10 secs, annealing of the primers at 51°C for 30 secs  
774 and extension of the product at 72°C for 2 mins. A final extension at 72°C for 10 mins was then  
775 performed followed by a cool down at 4°C. Amplification of the fragments was then checked on  
776 a 1% agarose gel run at 120 volts for 35 mins. All positive samples were purified with the  
777 NucleoSpin Gel and PCR Clean-up kit by Macherey-Nagel (ref: 740609.50S). Briefly, DNA was  
778 bound onto the column and spun at 11,000 x g for 30 secs. Flow-through was discarded and the  
779 column was washed 2 times before drying with a spin at 11,000 x g during 1 min. DNA was then  
780 eluted and quantified on a Nanodrop 2000 Spectrophotometer (ThermoScientific).  
781 Purified samples were Sanger sequenced at Genewiz (Azenta) using a specific set of primers  
782 (**Table 3**, CHIKV Sanger sequencing primers).

**Table 3: Primers used for Sanger sequencing.**

| PRIMERS           | Fragment | Primer name   | Sequence 5' – 3'       |
|-------------------|----------|---------------|------------------------|
| CHIKV PCR primers | F1       | IOLCHIK1417F  | GAGGACTAGAACATCAAATGG  |
|                   | F1       | IOLCHIK4151R  | CACTGTTCTTAAAGGACTC    |
|                   | F2       | IOLCHIK3161F  | GCATACTCACCTGAAGTAGCC  |
|                   | F2       | IOLCHIK4807R  | CATCATCCACCGGGCATTTC   |
|                   | F2.5     | IOLCHIK6023F  | TCATCATACCAAATTACCGACG |
|                   | F2.5     | IOLCHIK8000R  | GGTTTCATTACTTGTCCCCC   |
|                   | F3       | IOLCHIK7203F  | TTAAACTGGGCAAACCGC     |
|                   | F3       | IOLCHIK9807R  | GCCTCTGGTATGTGGCCGC    |
|                   | F4       | IOLCHIK9486F  | CAACGAGCCGTATAAGTATTGG |
|                   | F4       | IOLCHIK11341R | CTATTCAAGGGTTGCGTAG    |
|                   |          | IOLCHIK6444F  | CACTACAGGAAGTACCAATGG  |

|                                        |  |              |                        |
|----------------------------------------|--|--------------|------------------------|
| CHIKV Sanger sequencing primers (nsP4) |  | IOLCHIK7428R | TATTTAGGACCGCCGTACAAAG |
|----------------------------------------|--|--------------|------------------------|

783

784 **Deep sequencing library preparation**

785 Deep sequencing library preparation and sequencing was performed at the NYU Genome  
786 Technology Center. The full length CHIKV genome was amplified as described above and  
787 fragments F1 / F2 / F2.5 / F3 and F4 of a given sample were mixed to obtain an equimolar  
788 amplicon mix spanning the whole genome. Each mix was then purified using the NucleoSpin Gel  
789 and PCR Clean-up kit by Macherey-Nagel (ref: 740609.50S). DNA was then eluted and  
790 quantified at a Nanodrop 2000 Spectrophotometer (ThermoScientific). A total of 25 ng of  
791 sample was put in each well of a 96-wp and adjusted with purified water to a final volume of 15  
792 µL per well. Library preparations were made using the Nextera Flex Prep HT kit (Illumina) and  
793 samples were then sequenced on the Illumina NovaSeq X-Plus (300 cycles).

794

795 **Deep sequencing analysis**

796 Sequencing raw fasta files were trimmed using Trimmomatic V0.39 and aligned using STAR  
797 version 2.7 (58) against the reference genome CHIKV strain La Reunion 06-049 (GenBank  
798 accession no. AM258994). The aligned SAM sequences were converted in BAM files, sorted,  
799 and indexed using Samtools which version v1.18 (59). Deduplication was then done by  
800 Picard.jar Mark Duplicates v3.1 (60). Variants were called using iVar (61). Minority variants at a  
801 given nucleotide position with a coverage depth of 500x or above (**Fig S5**) were selected with a  
802 minimum quality score of 20. An additional Fisher test was performed to check for strand bias  
803 and reads were excluded if the test turned true. Only variants present at least in technical or

804 biological duplicates were retained. A conservative threshold of 0.01 (1%) was chosen. The  
805 RMSD was calculated on the common variants of each nsP4 variant according to Li. *et al*, 2010  
806 ANDES: Statistical tools for the Analyses of Deep Sequencing (62) and represents the variance at  
807 each nucleotide position across the whole genome. All analysis code can be found on GitHub as  
808 the following web link: [https://github.com/bbonaventure/CHIKV\\_fidelity/tree/main](https://github.com/bbonaventure/CHIKV_fidelity/tree/main)

809

810 **Protein structure analysis**

811 The CHIKV replication complex structure containing the O'nyong'nyong virus nsP4 structure  
812 (91% similarity to CHIKV (21)) used in this paper is the one solved by Tan Y. B. *et al*, *Science*  
813 *Advances* (2022), PDB: 7Y38. The structure was visualized using PyMOL (version 2.5.2).

814

815 **Alphavirus sequence alignment and consensus sequence analysis**

816 For nsP4 alignment and WebLogo generation, 12 representative members of the *Alphavirus*  
817 genus were selected based on Tan Y. B. *et al*, *Science Advances* (2022). Specifically, nsP4 protein  
818 sequences were first aligned using the multiple sequence alignment algorithm MUSCLE (EMBL-  
819 EBI). Following are their GenBank accession numbers: CHIKV: NC\_004162, ONNV: AF079456.1,  
820 SFV: NC\_003215, SINV: NC\_001547, RRV: GQ433354.1, MAYV: NC\_003417.1, BFV:  
821 MN689034.1, VEEV: L01442.2, EEEV: EF151502.1, WEEV: MN477208.1, EILV: NC\_018615.1,  
822 GETV: NC\_006558.1. Using the generated multiple sequence alignment of nsP4, a consensus  
823 sequence logo was designed via WebLogo with the default color scheme. The height of each  
824 stack of letters represents the sequence conservation at the indicated position and the height  
825 of each symbol within the stack represents its relative frequency.

826

827 **Statistical analysis**

828 Statistical analysis was performed using GraphPad Prism (version 9.3.1). Mann-Whitney *t* test  
829 was performed against CHIKV wild-type condition, with *p* values < 0.05 considered significant.  
830 All experiments were done in two or three independent biological experiments and in two  
831 internal technical duplicates (details could be found in the legends of the figures). Error bars  
832 show +/- SEM or SD as specified in each figure's legend.

833

834 **Data availability statement**

835 Deep sequencing data have been deposited at the Sequence Read Archive (NIH) and is available  
836 under the following BioProject ID PRJNA1051608.

837 **Acknowledgments**

838 We thank all the members of the Stapleford lab for their helpful comments and suggestions on  
839 this project. We thank Drs. Ludovic Desvignes, Dominick Papandrea and Alison Gilchrist for their  
840 support with the NYU ABSL3 high-containment laboratory and Dr. Yan Deng from the NYU  
841 Microscopy laboratory for his support with the use of the Zeiss LSM880 microscope. We also  
842 thank the Genomic Technology center (NYU, New York, RRID: SCR\_017929) for the library  
843 preparation and for running the deep sequencing. This work was supported by a start-up  
844 package from the NYU Grossman School of Medicine, NIH/NIAID R01 AI162774-01 (K.A.S.). MFM  
845 is supported by a Jan Vilcek/David Goldfarb Fellowship from the New York University  
846 Department of Microbiology, New York University (NYC, USA).

847 **Author's contribution**

848 Conceived and designed the experiments: MFM, OBP, KRG, KAS

849 Performed the experiments: MFM, NEM

850 Analyzed the data: MFM, NEM, BB, KAS

851 Contributed reagents/material/analysis tools: BB

852 Wrote the paper: MFM, KAS

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869 **References**

870 1. Hahn MB, Eisen L, McAllister J, Savage HM, Mutebi JP, Eisen RJ. Updated Reported Distribut  
871 ion of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in  
872 the United States, 1995–2016. *Journal of Medical Entomology*. 2017 Sep 1;54(5):1420–4.

873 2. Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. *Nat Rev Microbiol*.  
874 2010 Jul;8(7):491–500.

875 3. Feldstein LR, Ellis EM, Rowhani-Rahbar A, Hennessey MJ, Staples JE, Halloran ME, et al.  
876 Estimating the cost of illness and burden of disease associated with the 2014–2015  
877 chikungunya outbreak in the U.S. Virgin Islands. Maheu-Giroux M, editor. *PLoS Negl Trop Dis*.  
878 2019 Jul 19;13(7):e0007563.

879 4. Costa LB, Barreto FKDA, Barreto MCA, Santos THPD, Andrade MDMOD, Farias LABG, et al.  
880 Epidemiology and Economic Burden of Chikungunya: A Systematic Literature Review.  
881 *TropicalMed*. 2023 May 31;8(6):301.

882 5. Kril V, Aïqui-Reboul-Paviet O, Briant L, Amara A. New Insights into Chikungunya Virus  
883 Infection and Pathogenesis. *Annu Rev Virol*. 2021 Sep 29;8(1):327–47.

884 6. Ahola T, Kääriäinen L. Reaction in alphavirus mRNA capping: formation of a covalent complex  
885 of nonstructural protein nsP1 with 7-methyl-GMP. *Proceedings of the National Academy of  
886 Sciences*. 1995 Jan 17;92(2):507–11.

887 7. Gottipati K, Woodson M, Choi KH. Membrane binding and rearrangement by chikungunya  
888 virus capping enzyme nsP1. *Virology*. 2020 May;544:31–41.

889 8. Jones R, Bragagnolo G, Arranz R, Reguera J. Capping pores of alphavirus nsP1 gate  
890 membranous viral replication factories. *Nature*. 2021 Jan 28;589(7843):615–9.

891 9. Tan YB, Lello LS, Liu X, Law YS, Kang C, Lescar J, et al. Crystal structures of alphavirus  
892 nonstructural protein 4 (nsP4) reveal an intrinsically dynamic RNA-dependent RNA  
893 polymerase fold. *Nucleic Acids Research*. 2022 Jan 25;50(2):1000–16.

894 10. Vasiljeva L, Merits A, Auvinen P, Kääriäinen L. Identification of a Novel Function of the  
895 AlphavirusCapping Apparatus. *Journal of Biological Chemistry*. 2000 Jun;275(23):17281–7.

896 11. Russo AT, White MA, Watowich SJ. The Crystal Structure of the Venezuelan Equine  
897 Encephalitis Alphavirus nsP2 Protease. *Structure*. 2006 Sep;14(9):1449–58.

898 12. Das PK, Merits A, Lulla A. Functional Cross-talk between Distant Domains of  
899 Chikungunya Virus Non-structural Protein 2 Is Decisive for Its RNA-modulating Activity\*.  
900 *Journal of Biological Chemistry*. 2014 Feb 28;289(9):5635–53.

901 13. Stapleford KA, Rozen-Gagnon K, Das PK, Saul S, Poirier EZ, Blanc H, et al. Viral  
902 Polymerase-Helicase Complexes Regulate Replication Fidelity To Overcome Intracellular  
903 Nucleotide Depletion. *Journal of Virology*. 2015 Oct 22;89(22):11233–44.

904 14. Abraham R, Hauer D, McPherson RL, Utt A, Kirby IT, Cohen MS, et al. ADP-ribosyl-  
905 binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation  
906 of virus replication. *Proc Natl Acad Sci USA* [Internet]. 2018 Oct 30 [cited 2023 Oct  
907 24];115(44). Available from: <https://pnas.org/doi/full/10.1073/pnas.1812130115>

908 15. Meshram CD, Agback P, Shiliaev N, Urakova N, Mobley JA, Agback T, et al. Multiple Host  
909 Factors Interact with the Hypervariable Domain of Chikungunya Virus nsP3 and Determine  
910 Viral Replication in Cell-Specific Mode. López S, editor. *J Virol.* 2018 Aug 15;92(16):e00838-  
911 18.

912 16. Tomar S, Hardy RW, Smith JL, Kuhn RJ. Catalytic Core of Alphavirus Nonstructural  
913 Protein nsP4 Possesses Terminal Adenylyltransferase Activity. *Journal of Virology.* 2006 Oct  
914 15;80(20):9962–9.

915 17. Coffey LL, Beeharry Y, Bordería AV, Blanc H, Vignuzzi M. Arbovirus high fidelity variant  
916 loses fitness in mosquitoes and mice. *Proceedings of the National Academy of Sciences.* 2011  
917 Sep 20;108(38):16038–43.

918 18. Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux AB, Saleh MC, et al.  
919 Alphavirus Mutator Variants Present Host-Specific Defects and Attenuation in Mammalian  
920 and Insect Models. Kramer LD, editor. *PLoS Pathog.* 2014 Jan 16;10(1):e1003877.

921 19. Tan YB, Chmielewski D, Law MCY, Zhang K, He Y, Chen M, et al. Molecular architecture  
922 of the Chikungunya virus replication complex. *Science Advances.* 2022 Nov  
923 30;8(48):eadd2536.

924 20. Freire MCLC, Basso LGM, Mendes LFS, Mesquita NCMR, Mottin M, Fernandes RS, et al.  
925 Characterization of the RNA-dependent RNA polymerase from Chikungunya virus and  
926 discovery of a novel ligand as a potential drug candidate. *Sci Rep.* 2022 Jun 22;12(1):10601.

927 21. Solignat M, Gay B, Higgs S, Briend L, Devaux C. Replication cycle of chikungunya: A re-  
928 emerging arbovirus. *Virology*. 2009 Oct 25;393(2):183–97.

929 22. Gnädig NF, Beaucourt S, Campagnola G, Bordería AV, Sanz-Ramos M, Gong P, et al.  
930 Coxsackievirus B3 mutator strains are attenuated in vivo. *Proceedings of the National  
931 Academy of Sciences*. 2012 Aug 21;109(34):E2294–303.

932 23. Campagnola G, McDonald S, Beaucourt S, Vignuzzi M, Peersen OB. Structure-Function  
933 Relationships Underlying the Replication Fidelity of Viral RNA-Dependent RNA Polymerases.  
934 Kirkegaard K, editor. *J Virol*. 2015 Jan;89(1):275–86.

935 24. Martinez MG, Kielian M. Intercellular Extensions Are Induced by the Alphavirus  
936 Structural Proteins and Mediate Virus Transmission. Whelan SPJ, editor. *PLoS Pathog*. 2016  
937 Dec 15;12(12):e1006061.

938 25. Yin P, Davenport BJ, Wan JJ, Kim AS, Diamond MS, Ware BC, et al. Chikungunya virus  
939 cell-to-cell transmission is mediated by intercellular extensions in vitro and in vivo. *Nat  
940 Microbiol*. 2023 Sep;8(9):1653–67.

941 26. Weiss CM, Liu H, Riemersma KK, Ball EE, Coffey LL. Engineering a fidelity-variant live-  
942 attenuated vaccine for chikungunya virus. *npj Vaccines*. 2020 Oct 14;5(1):1–13.

943 27. Lyons DM, Lauring AS. Evidence for the Selective Basis of Transition-to-Transversion  
944 Substitution Bias in Two RNA Viruses. *Molecular Biology and Evolution*. 2017 Dec  
945 1;34(12):3205–15.

946 28. Gong P, Peersen OB. Structural basis for active site closure by the poliovirus RNA-  
947 dependent RNA polymerase. *Proceedings of the National Academy of Sciences*. 2010 Dec  
948 28;107(52):22505–10.

949 29. Coffey LL, Forrester N, Tsetsarkin K, Vasilakis N, Weaver SC. Factors shaping the adaptive  
950 landscape for arboviruses: implications for the emergence of disease. *Future Microbiology*.  
951 2013 Feb;8(2):155–76.

952 30. Kayikci M, Venkatakrishnan AJ, Scott-Brown J, Ravarani CNJ, Flock T, Babu MM.  
953 Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. *Nat  
954 Struct Mol Biol*. 2018 Feb;25(2):185–94.

955 31. Liu B, Dai R, Tian CJ, Dawson L, Gorelick R, Yu XF. Interaction of the Human  
956 Immunodeficiency Virus Type 1 Nucleocapsid with Actin. *J Virol*. 1999 Apr;73(4):2901–8.

957 32. Thomas A, Mariani-Floderer C, López-Huertas MR, Gros N, Hamard-Péron E, Favard C, et  
958 al. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle  
959 Release in CD4 T Cells. *Journal of Virology*. 2015 Jul 21;89(16):8162–81.

960 33. Bedi S, Ono A. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly.  
961 *Viruses*. 2019 Jan;11(1):46.

962 34. Zhang Y, Gao W, Li J, Wu W, Jiu Y. The Role of Host Cytoskeleton in Flavivirus Infection.  
963 *Virol Sin*. 2019 Feb;34(1):30–41.

964 35. Dibsy R, Bremaud E, Mak J, Favard C, Muriaux D. HIV-1 diverts cortical actin for particle  
965 assembly and release. *Nat Commun.* 2023 Oct 31;14(1):6945.

966 36. Kathuria SV, Chan YH, Nobrega RP, Özen A, Matthews CR. Clusters of isoleucine, leucine,  
967 and valine side chains define cores of stability in high-energy states of globular proteins:  
968 Sequence determinants of structure and stability. *Protein Science.* 2016;25(3):662–75.

969 37. Shu B, Gong P. Structural basis of viral RNA-dependent RNA polymerase catalysis and  
970 translocation. *Proceedings of the National Academy of Sciences.* 2016 Jul 12;113(28):E4005–  
971 14.

972 38. Vignuzzi M, López CB. Defective viral genomes are key drivers of the virus–host  
973 interaction. *Nat Microbiol.* 2019 Jul;4(7):1075–87.

974 39. Poirier EZ, Mounce BC, Rozen-Gagnon K, Hooikaas PJ, Stapleford KA, Moratorio G, et al.  
975 Low-Fidelity Polymerases of Alphaviruses Recombine at Higher Rates To Overproduce  
976 Defective Interfering Particles. *Journal of Virology.* 2016 Feb 11;90(5):2446–54.

977 40. Mendes A, Kuhn RJ. Alphavirus Nucleocapsid Packaging and Assembly. *Viruses.* 2018  
978 Mar;10(3):138.

979 41. Jose J, Taylor AB, Kuhn RJ. Spatial and Temporal Analysis of Alphavirus Replication and  
980 Assembly in Mammalian and Mosquito Cells. *mBio.* 2017 Feb 14;8(1):10.1128/mbio.02294-  
981 16.

982 42. Lulla V, Kim DY, Frolova EI, Frolov I. The Amino-Terminal Domain of Alphavirus Capsid  
983 Protein Is Dispensable for Viral Particle Assembly but Regulates RNA Encapsidation through  
984 Cooperative Functions of Its Subdomains. *Journal of Virology*. 2013 Nov 15;87(22):12003–19.

985 43. White CL, Thomson M, Dimmock NJ. Deletion Analysis of a Defective Interfering Semliki  
986 Forest Virus RNA Genome Defines a Region in the nsP2 Sequence That Is Required for  
987 Efficient Packaging of the Genome into Virus Particles. *J Virol*. 1998 May;72(5):4320–6.

988 44. Kim DY, Atasheva S, Frolova EI, Frolov I. Venezuelan Equine Encephalitis Virus nsP2  
989 Protein Regulates Packaging of the Viral Genome into Infectious Virions. *J Virol*. 2013 Apr  
990 15;87(8):4202–13.

991 45. Rana J, Rajasekharan S, Gulati S, Dudha N, Gupta A, Chaudhary VK, et al. Network  
992 mapping among the functional domains of Chikungunya virus nonstructural proteins.  
993 *Proteins: Structure, Function, and Bioinformatics*. 2014;82(10):2403–11.

994 46. Forsell K, Suomalainen M, Garoff H. Structure-function relation of the NH<sub>2</sub>-terminal  
995 domain of the Semliki Forest virus capsid protein. *Journal of Virology*. 1995 Mar;69(3):1556–  
996 63.

997 47. Rupp JC, Jundt N, Hardy RW. Requirement for the Amino-Terminal Domain of Sindbis  
998 Virus nsP4 during Virus Infection. *J Virol*. 2011 Apr;85(7):3449–60.

999 48. Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: An RNA  
1000 proofreading machine regulates replication fidelity and diversity. *RNA Biology*. 2011  
1001 Mar;8(2):270–9.

1002 49. Smith EC, Blanc H, Vignuzzi M, Denison MR. Coronaviruses Lacking Exoribonuclease  
1003 Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential  
1004 Therapeutics. Diamond MS, editor. PLoS Pathog. 2013 Aug 15;9(8):e1003565.

1005 50. Andzhabaridze OG, Bogomolova NN, Boriskin YS, Bektemirova MS, Drynov ID.  
1006 Comparative study of rabies virus persistence in human and hamster cell lines. Journal of  
1007 Virology. 1981 Jan;37(1):1–6.

1008 51. Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, et al. C6/36  
1009 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response. O'Neill SL,  
1010 editor. PLoS Negl Trop Dis. 2010 Oct 26;4(10):e856.

1011 52. Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B, Ebel GD, et al.  
1012 Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent  
1013 and –Incompetent Mosquito Cells. O'Neill SL, editor. PLoS Negl Trop Dis. 2010 Oct  
1014 26;4(10):e848.

1015 53. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein  
1016 structure and function prediction. Nat Protoc. 2010 Apr;5(4):725–38.

1017 54. Schwede T. SWISS-MODEL: an automated protein homology-modeling server. Nucleic  
1018 Acids Research. 2003 Jul 1;31(13):3381–5.

1019 55. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for  
1020 protein modeling, prediction and analysis. Nat Protoc. 2015 Jun;10(6):845–58.

1021 56. Peersen O. A Comprehensive Superposition of Viral Polymerase Structures. *Viruses*.  
1022 2019 Aug 13;11(8):745.

1023 57. Carrau L, Rezelj VV, Noval MG, Levi LI, Megrian D, Blanc H, et al. Chikungunya Virus  
1024 Vaccine Candidates with Decreased Mutational Robustness Are Attenuated *In Vivo* and Have  
1025 Compromised Transmissibility. Dermody TS, editor. *J Virol*. 2019 Sep 15;93(18):e00775-19.

1026 58. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast  
1027 universal RNA-seq aligner. *Bioinformatics*. 2013 Jan 1;29(1):15–21.

1028 59. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence  
1029 Alignment/Map format and SAMtools. *Bioinformatics*. 2009 Aug 15;25(16):2078–9.

1030 60. Picard Tools - By Broad Institute [Internet]. [cited 2023 Nov 20]. Available from:  
1031 <https://broadinstitute.github.io/picard/>

1032 61. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An  
1033 amplicon-based sequencing framework for accurately measuring intrahost virus diversity  
1034 using PrimalSeq and iVar. *Genome Biology*. 2019 Jan 8;20(1):8.

1035 62. Li K, Venter E, Yooseph S, Stockwell TB, Eckerle LD, Denison MR, et al. ANDES: Statistical  
1036 tools for the ANalyses of DEep Sequencing. *BMC Research Notes*. 2010 Jul 15;3(1):199.

1037

1038

1039

1040 **Figure captions**

1041 **Fig 1. CHIKV nsP4 variant location and conservation.** (A) Top: CHIKV nsP4 linear structure  
1042 schematic colored from its N-terminus (dark blue) to its C-terminus (red). Subdomains of the  
1043 protein are indicated below in capital letters and conserved positive-sense RNA virus  
1044 polymerase motifs are delimited and indicated in white capital letters onto each subdomain.  
1045 Each mutated residue is indicated at the top of the protein with a tick. Schematic made with  
1046 BioRender. Bottom: O'nyong'nyong (ONNV) nsP4 3D structure (PDB: 7Y38) annotated with  
1047 subdomains (black). Mutated residues displayed on nsP4 3D structure with their side chain  
1048 color-coded as follow from their N-ter to C-ter position in nsP4: I312 (dark blue), L368 (medium  
1049 blue), I372 (turquoise), L383 (medium green), T440 (yellow), L442 (orange), GDD motif (grey),  
1050 C483 (red), W486 (brown). (B) WebLogo of mutated residues among alphaviruses generated  
1051 using the multiple sequence alignment of nsP4 via MUSCLE (EMBL-EMI; see Methods). The  
1052 height of each stack of letters represents the sequence conservation at the indicated position  
1053 and the height of each symbol within the stack represents its relative frequency. A patch of five  
1054 amino acids total was selected, with each mutated residue at the center of it framed by a red  
1055 square (if outside of a conserved motif) or blue (if inside a conserved motif). Each color  
1056 represents amino acids of similar properties.

1057

1058 **Fig 2. CHIKV nsP4 variants replicate in a host-specific fashion.** BHK-21 (left side) or C6/36 (right  
1059 side) cells were transfected in a 6-well plate with *in vitro* transcribed full-length CHIKV RNA of  
1060 each variant and incubated for 48 hours at 37°C and 28°C respectively. (A and B) Culture  
1061 supernatants of each condition were harvested at 48 hpt and infectious virus was quantified by

1062 plaque assay on Vero cells. **(C and D)** RNA was extracted from culture supernatants and CHIKV  
1063 genomes were quantified by RT-qPCR. Genetically stable or reverted nsP4 variants are  
1064 respectively depicted with a solid black symbol or an empty symbol on **A to D**. **(E)** A linear  
1065 regression analysis was performed on infectious viral particles and extracellular viral genomic  
1066 RNA for C6/36 cells. A grey shade is highlighting the nsP4 variants behaving like the negative  
1067 control, nsP4 GNN, and dashed circles are pointing to clusters of similar variants. For all panels,  
1068 each symbol represents an independent biological experiment, in technical transfection  
1069 duplicate, with solid symbols showing the nsP4 variants that reverted to the WT residue and  
1070 clear symbols the variants that did not revert. A Mann-Whitney *t* test was performed against  
1071 nsP4 WT for all data and data with statistical significance was labeled as follow: \* P<0.05, \*\*  
1072 P<0.01. Graphs show the average and SEM of three independent experiments with internal  
1073 transfection duplicates on all panels.

1074

1075 **Fig 3. Intracellular RNA and protein accumulation of nsP4 variants in mammalian and**  
1076 **mosquito cells.** The cells from each technical duplicate transfections in Figure 2 were used for  
1077 these analyses. BHK-21 cells (left side) or C6/36 cells (right side) cells were transfected in a 6-  
1078 well plate with *in vitro* transcribed full-length CHIKV nsP4 variants and incubated for 48 hours at  
1079 37°C and 28°C respectively. **(A and B)** Cells were harvested, and intracellular RNA purified to  
1080 quantify the amount of CHIKV RNA per µg of total RNA by RT-qPCR. Each symbol represents an  
1081 independent biological experiment with solid symbols showing the nsP4 variants that reverted  
1082 to the WT residue and clear symbols the variants that didn't revert. A Mann-Whitney *t* test was  
1083 performed against nsP4 WT and data with statistical significance was labeled as follow: \*

1084 P<0.05, \*\* P<0.01. Graphs show the average and SEM of two independent experiments in  
1085 technical duplicates. **(C and D)** Cells were transfected with WT CHIKV or each variant *in vitro*  
1086 transcribed RNA as above (and corresponding to Fig 2) and were lysed at 48 hpt for SDS-PAGE  
1087 and immunoblotting for the structural proteins Capsid and E2 (top of a membrane), nsP4  
1088 (middle of a membrane) and the house-keeping gene actin (bottom of a membrane) with  
1089 molecular weights on the left side as a reference. The nsP4 variants were split onto two distinct  
1090 membranes, ran in the same tank, with all three controls, Mock, nsP4 WT and nsP4 GNN, were  
1091 ran on each gel and the nsP4 variants organized from the N-ter (left of the membrane) to the C-  
1092 ter (right of the membrane) of nsP4. Membranes are representative of three independent  
1093 experiments. The red star highlights the nsP4 variants that reverted in the specific experiment  
1094 shown here. The western blots of other experiments can be found in Fig S2 and S3.

1095

1096 **Fig 4. Growth curve and cellular viral protein expression of defective nsP4 variants in**  
1097 **mosquito cells.** C6/36 cells were transfected in a 24-wll plate with *in vitro* transcribed full-  
1098 length CHIKV genetically stable nsP4 variants and incubated at 28°C. Supernatants were taken  
1099 at 24hpt, 48 hpt and 72 hpt and infectious particles were quantified on Vero cells by plaque  
1100 assay **(A, B, and C)**. Each panel shows all the nsP4 variants corresponding to the same residue  
1101 with nsP4 WT (black) as a positive control. For all panels, a Mann-Whitney *t* test was performed  
1102 against nsP4 WT and data with statistical significance was labeled as follow: \* P<0.05, \*\*  
1103 P<0.01. Graphs show the average and SD of three independent experiments with internal  
1104 transfection duplicates on all panels. **(D and E)** Supernatants from C6/36 cells transfected with  
1105 *in vitro* transcribed full-length CHIKV nsP4 variants that did not show any infectious viral

1106 particles, but intracellular viral proteins were harvested at 48 hpt (corresponding to Fig 2).

1107 Extracellular proteins were purified with Amicon columns (**D**, schematic made with BioRender).

1108 Denatured proteins were subjected to a western blotting (**E**) and analyzed for the presence of

1109 the structural proteins capsid (top), E2 (middle) and E1 (bottom). (**F and G**) C6/36 cells were

1110 seeded onto coverslips and transfected with *in vitro* transcribed full-length CHIKV nsP4 variants

1111 then incubated for 24 hours at 28°C. Cells were fixed and stained nsP4 (green) and DAPI (blue)

1112 or for Capsid (light blue), E2 (red), Actin (purple) and DAPI (blue) respectively (**D**) and (**E**) and

1113 images acquired on a confocal microscope. nsP4 variants were sorted between the control

1114 (WT), the variants that have delayed replication (L368F and C483G) and the abortive variants

1115 (L368V, L383A, L383Y and L442A). Images are representative of two independent experiments

1116 for all panels. Scale bar: 20  $\mu$ m. Images of negative control mock and nsP4 GNN transfected

1117 cells as well as additional nsP4 variant images can be found in Fig **S5**.

1118

1119 **Fig 5. Growth curve and cellular nsP4 expression of stable nsP4 variants in mammalian cells**

1120 **and mosquito cells.** BHK-21 cells (**A and B**) or C6/36 cells (**C and D**) were transfected in a 24-

1121 well plate with *in vitro* transcribed full-length CHIKV genetically stable nsP4 variants and

1122 incubated at 37°C and 28°C respectively. Supernatants were taken at 24hpt, 48 hpt and 72 hpt

1123 and infectious particles quantified on Vero cells by plaque assay (**A and C**). Each panel show the

1124 nsP4 variants corresponding with both nsP4 WT (black) and nsP4 GNN (grey) as controls. For all

1125 panels, a Mann-Whitney *t* test was performed against nsP4 WT and data with statistical

1126 significance was labeled as follow: \* P<0.05, \*\* P<0.01. Graphs show the average and SD of

1127 three independent experiments with internal transfection duplicates on all panels. BHK-21 cells

1128 (B) or C6/36 cells (D) were seeded onto coverslips and transfected with *in vitro* transcribed full-  
1129 length CHIKV nsP4 variants then incubated for 24 hours at 37°C. Cells were fixed and stained for  
1130 nsP4 (green) and DAPI (blue) and images acquired on a confocal microscope. Images are  
1131 representative of two independent experiments for all panels. Scale bar: 20 μm.

1132

1133 **Fig 6. Mutation in the palm subdomain of nsP4 impacts viral genetic diversity.** (A) Zoom on  
1134 the C483 pocket in the palm subdomain of nsP4 (PDB: 7Y38) viewed on PyMol. The side chains  
1135 of the residues of interest are shown. L383F is colored in green, C483 is colored in red, and  
1136 W486 is colored in brown. Supernatants from three independent biological replicates of the  
1137 genetically stable variants from the L383, C483 and W486 residues in both cell types  
1138 (corresponding to the Fig 2) were subjected to deep sequencing. The bioinformatic analysis was  
1139 performed using a conservative threshold of 1% for the variant calling. Variant frequency by  
1140 nucleotide position along the genome is mapped for BHK-21 cells (left side) and C6/36 cells  
1141 (right side). Shown are the minority variant frequencies for BHK-21 cells nsP4 WT (B), nsP4  
1142 C483Y (C), nsP4 W486Y (D) and for C6/36 cells nsP4 WT (E), nsP4 C483Y (F), nsP4 L383F (G) and  
1143 nsP4 W486Y (H). Nonsynonymous mutations are colored in grey, synonymous mutations in  
1144 salmon and non-coding mutations in blue. The variants of interest nsP2 I502V and nsP4 V209I  
1145 are highlighted in a dashed circle, respectively colored in green or red. A schematic of CHIKV  
1146 genome is depicted at the bottom of the graphs.

1147

1148 **Fig 7. Mutating the palm subdomain alters the type of nucleotide changes made by the**  
1149 **polymerase.** The BHK-21 cells (A) or C6/36 cells (D) absolute number of minority variants is

1150 presented. The Root Mean Square Deviation (RMSD), a measure of the average diversity  
1151 generated by the nsP4 variants at each position across the genome, is depicted in (B) for the  
1152 BHK-21 cells and in (E) for the C6/36 cells. The dN/dS ratio for each variant in BHK-21 cells (C) or  
1153 C6/36 cells (F) is shown. For all panels, a Mann-Whitney *t* test was performed against nsP4 WT  
1154 but no data reached statistical significance. Graphs show the average and SEM of three  
1155 biological independent experiments. Analysis of the specific nucleotide changes frequency  
1156 corresponding to each polymerase variants in BHK-21 cells (G) or C6/36 cells (H) is presented.  
1157 Each substitution type is associated to a given color: red for U to C, orange for G to A, yellow for  
1158 G to U, grey for C to A, light blue for A to G, pink for A to U, dark blue for C to U, purple for A to  
1159 C, mauve for U to A, medium blue for G to C, green for C to G and brown for U to G. For all  
1160 panels, a Mann-Whitney *t* test was performed against nsP4 WT but no data reached statistical  
1161 significance. Graphs show the SEM of three biological independent experiments. The  
1162 percentage of transitions and transversions events is shown for BHK-21 cells (I) and C6/36 (J).  
1163

1164 **Fig 8. nsP4 variants are close to crucial conserved enzymatic activity motifs and the helicase**  
1165 **nsP2 in the context of the core replicase complex. (A)** nsP4 3D structure (PDB: 7Y38) showing  
1166 in color each of the conserved positive-sense RNA-dependent RNA polymerase motifs and their  
1167 respective function. Motif A is depicted in blue, motif B in purple, motif C in yellow, motif D in  
1168 orange, motif E in green, motif F in pink, and motif G in red. **(B)** nsP4 in the context of the core  
1169 replicase complex (PDB: 7Y38). A zoom on nsP4 and the different pockets corresponding to the  
1170 nsP4 variants is shown. The residues L383, C483 and W486 are located at the interface between  
1171 nsP4 and nsP2. Schematic made with Biorender.

1172 **Supplementary information**

1173

1174 **Supplemental Table 1: Minority variants found in this study.**

1175

1176 **S1 Fig. Alphaviruses nsP4 protein alignment.**

1177 Twelve representative members of the *Alphavirus* genus (CHIKV, ONNV, SFV, SINV, RRV, MAYV,  
1178 BFV, VEEV, EEEV, WEEV, EILV, GETV) were selected and nsP4 protein sequences were aligned  
1179 using the multiple sequence alignment algorithm MUSCLE (EMBL-EMI). Each color represents  
1180 amino acid with the same physicochemical properties (red: small hydrophobic including  
1181 aromatic except Y; bleu: acidic; magenta: basic except H; green: hydroxyl, sulfhydryl, amine,  
1182 glycine; grey: unusual amino acid). Symbols at the bottom of each amino acid indicates the  
1183 conservation level of the position. An asterisk indicates positions which have a single, fully  
1184 conserved residue. A colon indicates conservation between groups of strongly similar  
1185 properties. A period indicates conservation between groups of weakly similar properties.

1186

1187 **S2 Fig. Intracellular viral proteins in mammalian cells.** Intracellular proteins from transfected  
1188 BHK-21 cells from a first independent biological experiment (**A**) and a second independent  
1189 biological experiment (**B**) were harvested at 48 hpt. Proteins were separated by SDS-PAGE,  
1190 transferred to PVDF, and immunoblotted for the structural proteins capsid and E2 (top of a  
1191 membrane), nsP4 (middle of a membrane) and the house-keeping gene actin (bottom of a  
1192 membrane) with molecular weights on the left side as a reference. The nsP4 variants were split  
1193 onto two distinct membranes, ran in the same tank, with all three controls, Mock, nsP4 WT and

1194 nsP4 GNN, were ran on each gel and the nsP4 variants organized from the N-ter (left of the  
1195 membrane) to the C-ter (right of the membrane) of nsP4. The red star highlights the nsP4  
1196 variants that reverted in the specific experiment shown here.

1197

1198 **S3 Fig. Intracellular viral proteins in mosquito cells.** Intracellular proteins from transfected  
1199 C6/36 from a first independent biological experiment (**A**) and a second biological experiment  
1200 (**B**) were harvested at 48 hpt. Proteins were separated by SDS-PAGE, transferred to PVDF, and  
1201 immunoblotted for the structural proteins Capsid and E2 (top of a membrane), nsP4 (middle of  
1202 a membrane) and the house-keeping gene actin (bottom of a membrane) with molecular  
1203 weights on the left side as a reference. The nsP4 variants were split onto two distinct  
1204 membranes, ran in the same tank, with all three controls, Mock, nsP4 WT and nsP4 GNN, were  
1205 ran on each gel and the nsP4 variants organized from the N-ter (left of the membrane) to the C-  
1206 ter (right of the membrane) of nsP4. The red star highlights the nsP4 variants that reverted in  
1207 the specific experiment shown here.

1208

1209 **S4 Fig. Extracellular viral proteins in mosquito cells.** Supernatants from C6/36 cells transfected  
1210 with *in vitro* transcribed full-length CHIKV nsP4 variants that did not show any infectious viral  
1211 particles, but intracellular viral proteins were harvested at 48 hpt. Extracellular proteins were  
1212 purified with Amicon columns. Denatured proteins were subjected to a SDS-PAGE and western  
1213 blotting to for the presence of the structural proteins capsid (top), E2 (middle) and E1 (bottom).  
1214 A first independent biological experiment is shown in (**A**) and a second one in (**B**). The  
1215 corresponding Coomassie blue is presented at the bottom of each Western Blot.

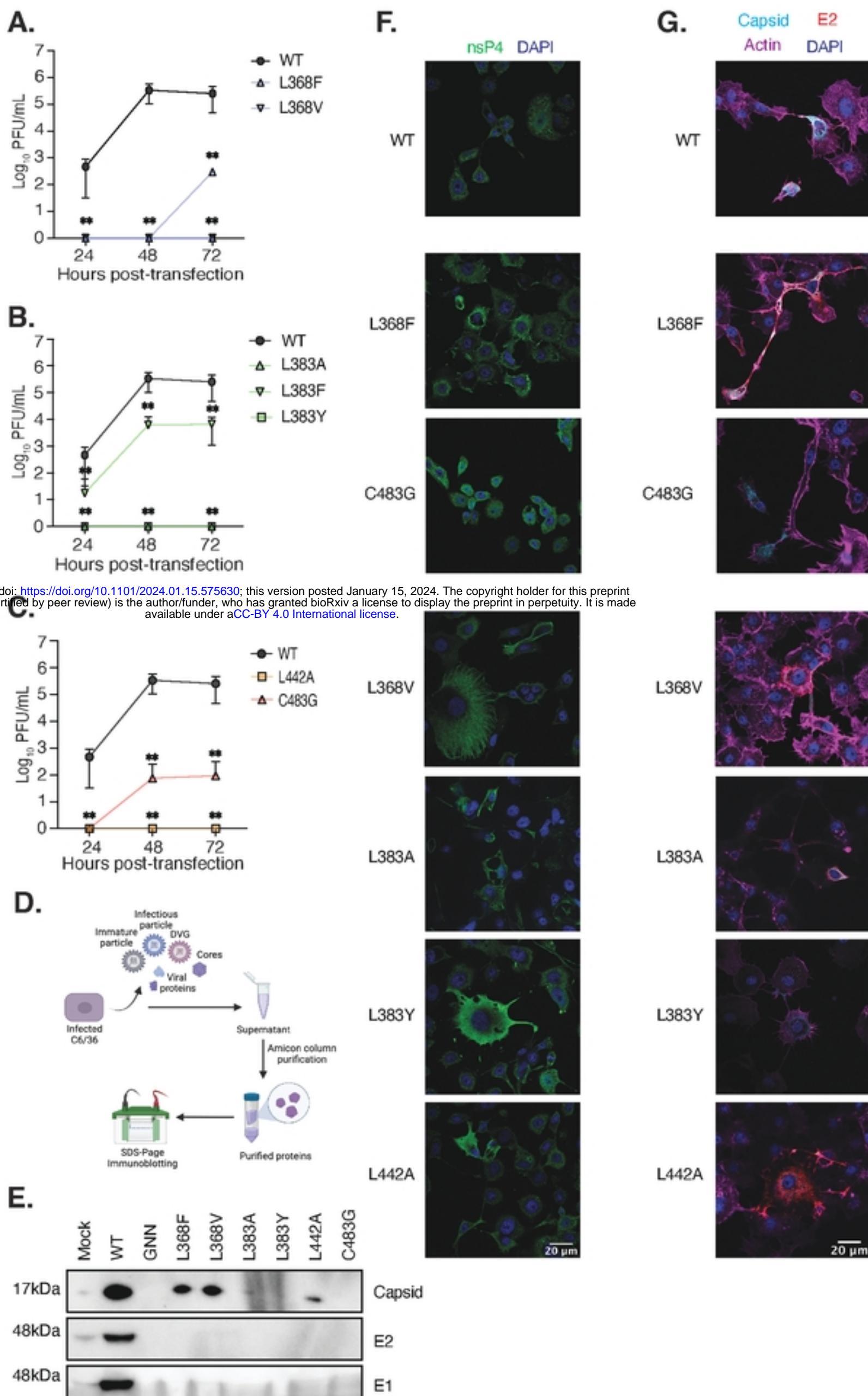
1216 **S5 Fig. Immunofluorescence negative controls and additional variant images. (A)** Mock  
1217 transfected BHK-21 cells and **(B)** BHK-21 cells transfected with the replication-dead nsP4 GNN  
1218 variant stained for nsP4 and DAPI. **(C and D)** Mock transfected C6/36 cells or C6/36 cells  
1219 transfected with nsP4 variants and stained for nsP4, capsid, E2, and actin.

1220

1221 **S6 Fig. Deep sequencing depth in mammalian and mosquito cells.** BHK-21 cells **(A, B, C and D)**  
1222 and C6/36 **(E, F, G and H)** deep sequencing depth (total reads) is depicted per nucleotide  
1223 position along the genome. Shown in BHK-21 cells is nsP4 WT **(A)**, nsp4 C483Y **(B)**, nsP4 W486F  
1224 **(C)**, nsP4 W486Y **(D)** and in C6/36 cells is nsP4 WT **(E)**, nsP4 L383F **(F)**, nsP4 C483Y **(G)** and nsP4  
1225 W486Y **(H)**. Each color represents one independent biological experiment or replicate.

1226

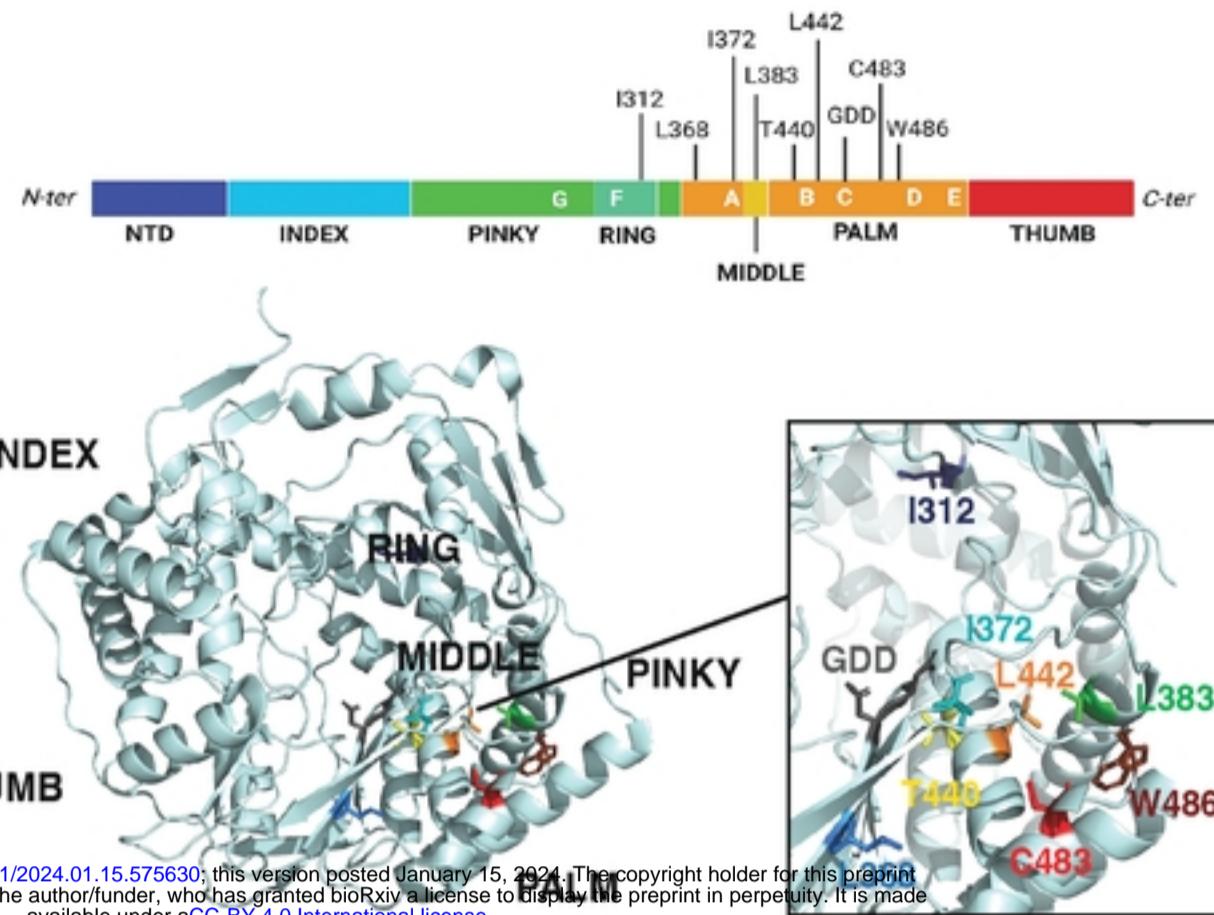
1227 **S7 Fig. Deep sequencing analysis of nsP4 W486F in mammalian cells.** Supernatants from  
1228 transfection duplicates of the genetically stable W486F variant in BHK-21 cells (corresponding  
1229 to the Fig 2) were subjected to deep sequencing. The bioinformatic analysis was performed  
1230 using a conservative threshold of 1% for the variant calling. **(A)** Variant frequency by nucleotide  
1231 position along the genome for the nsP4 W486F variant. Nonsynonymous mutations are colored  
1232 in grey, synonymous mutations in salmon and non-coding mutations in blue. The variants of  
1233 interest nsP2 I502V and nsP4 V209I are highlighted in a dashed circle, respectively colored in  
1234 green or red. A schematic of CHIKV genome is depicted at the bottom of the graph. **(B)** Absolute  
1235 number of minority variants showing nsP4 WT, nsP4 C483Y, nsP4 W486F and nsP4 W486Y  
1236 variants. The corresponding dN/dS ratio is depicted in **(C)** and the Root Mean Square Deviation  
1237 (RMSD) in **(D)**. The RMSD is a measure of the average diversity generated by the nsP4 variants


1238 at each position across the genome. For all panels, a Mann-Whitney *t* test was performed  
1239 against nsP4 WT but no data reached statistical significance. Graphs show the average and SEM  
1240 of the two technical replicates. The percentage of transitions and transversions events is shown  
1241 in (E). Analysis of the specific nucleotide changes frequency corresponding to nsP4 WT, nsP4  
1242 C483Y, nsP4 W486F and nsP4 W486Y in BHK-21 cells is presented in (F). Each substitution type  
1243 is associated to a given color: red for U to C, orange for G to A, yellow for G to U, grey for C to A,  
1244 light blue for A to G, pink for A to U, dark blue for C to U, purple for A to C, mauve for U to A,  
1245 medium blue for G to C, green for C to G and brown for U to G. (G) Zoom on the core replicase  
1246 3D structure (PDB: 7Y38) and the potential interactions between nsP4 V209 (depicted in pink)  
1247 and residues from a nsP2 loop (depicted in turquoise). W486 is depicted in brown. Potential  
1248 interaction between the nsP4 V209 side chain and either nsP2 K396 or nsP2 E399 is presented.  
1249 For all panels, a Mann-Whitney *t* test was performed against nsP4 WT but no data reached  
1250 statistical significance. Graphs show the average and SEM of three biological independent  
1251 experiments.

1252

1253

1254


1255



bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.15.575630>; this version posted January 15, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 4

**A.**



bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.15.575630>; this version posted January 15, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

**B.**



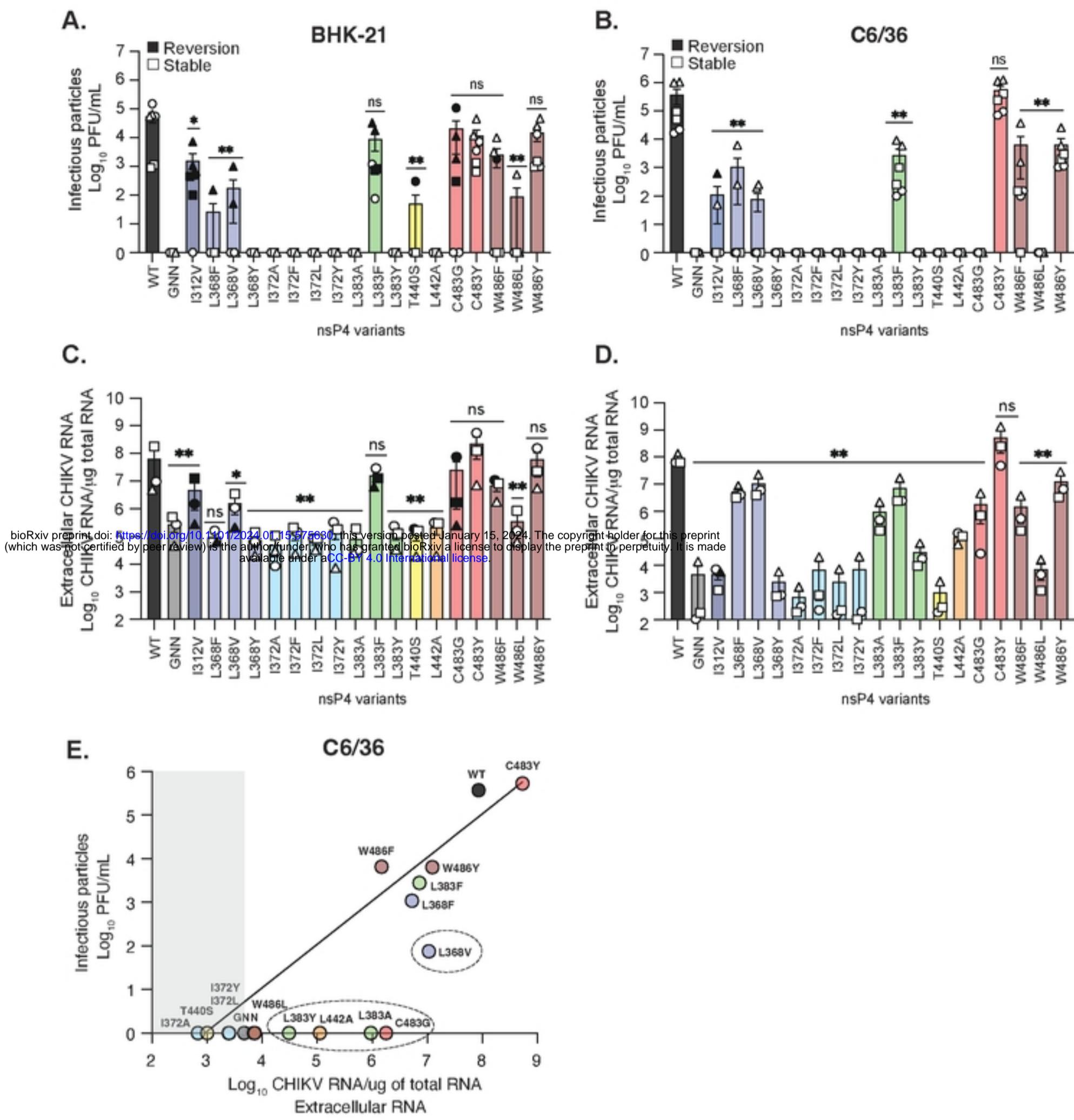



Figure 2

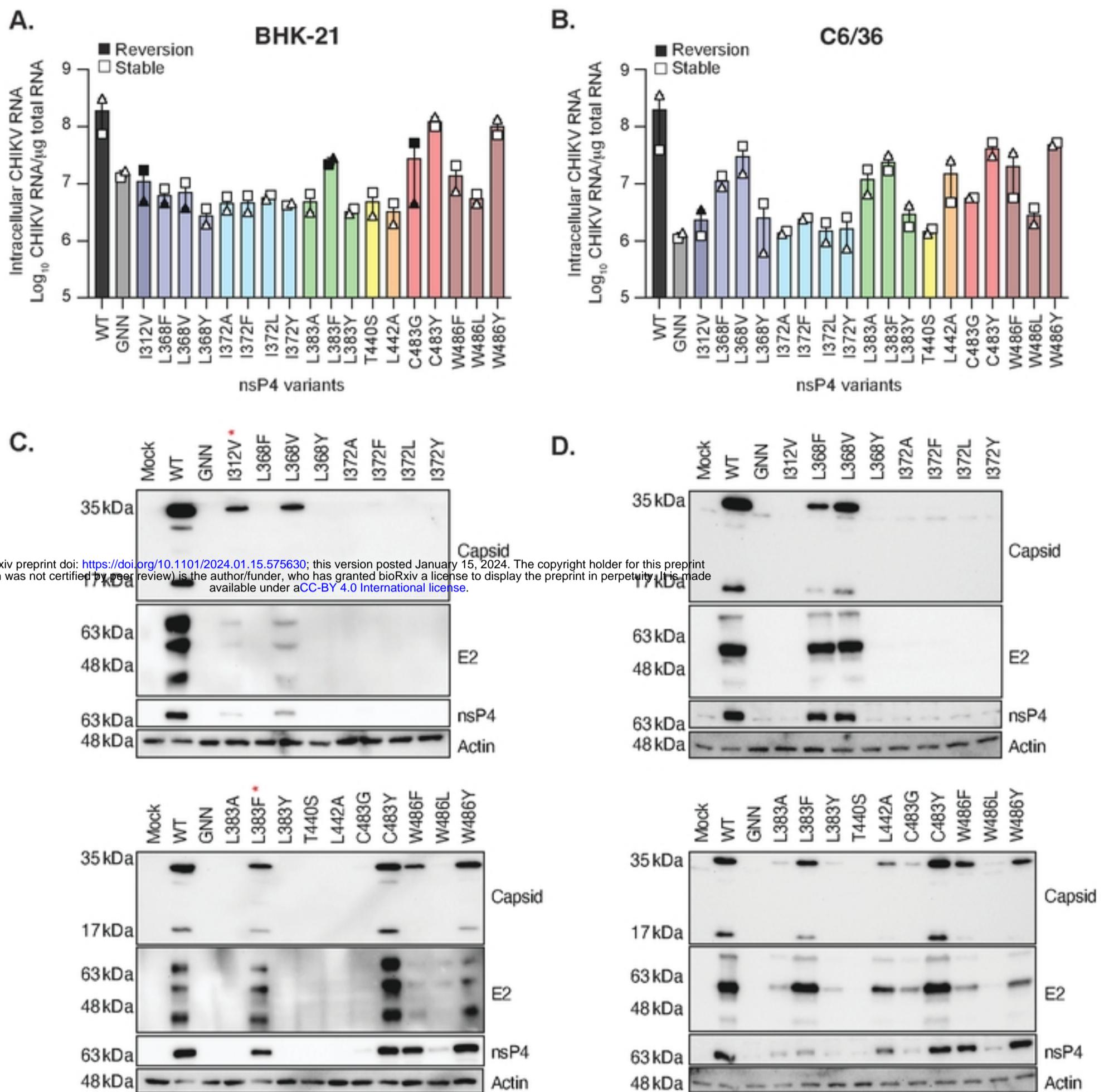



Figure 3

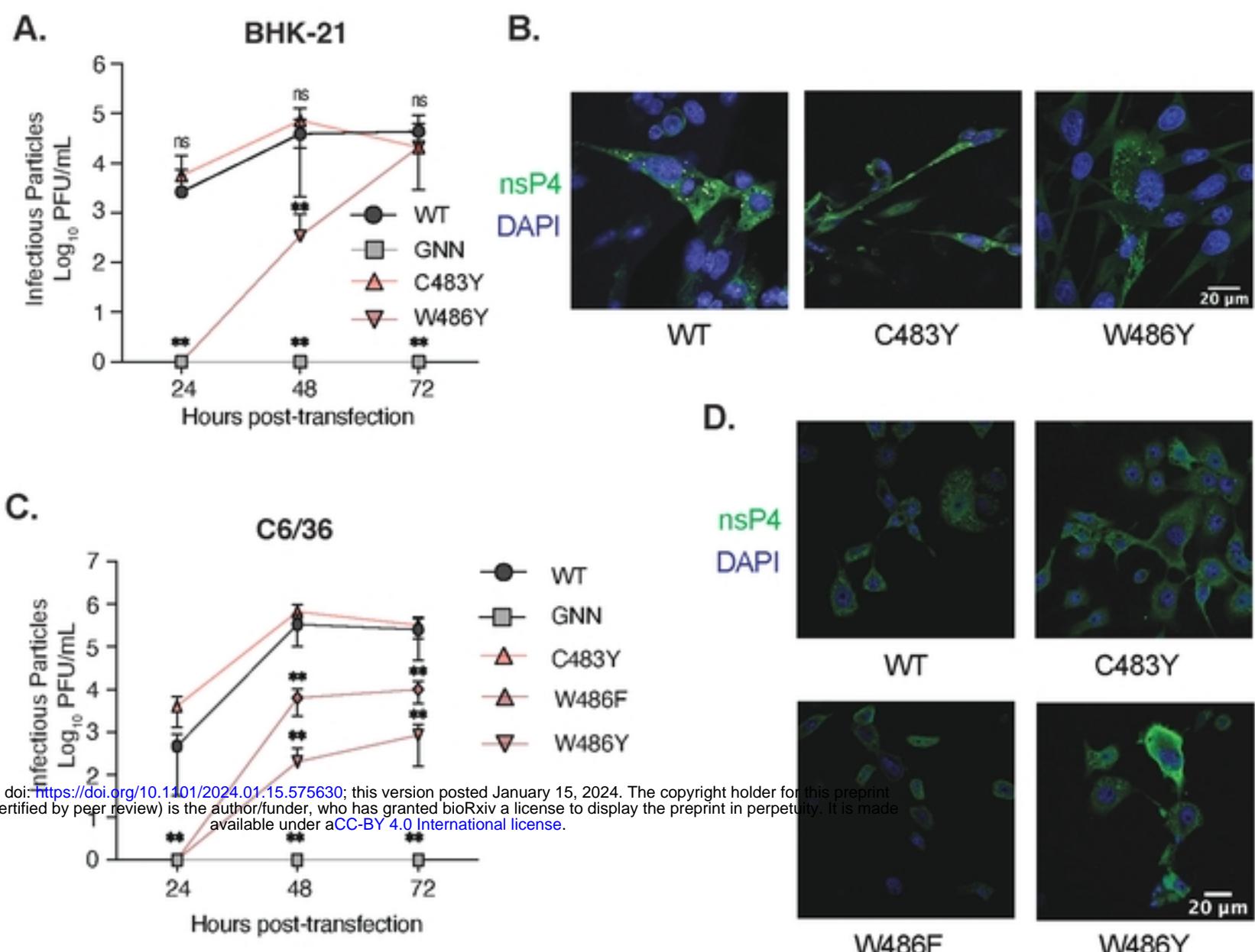



Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.15.575630>; this version posted January 15, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

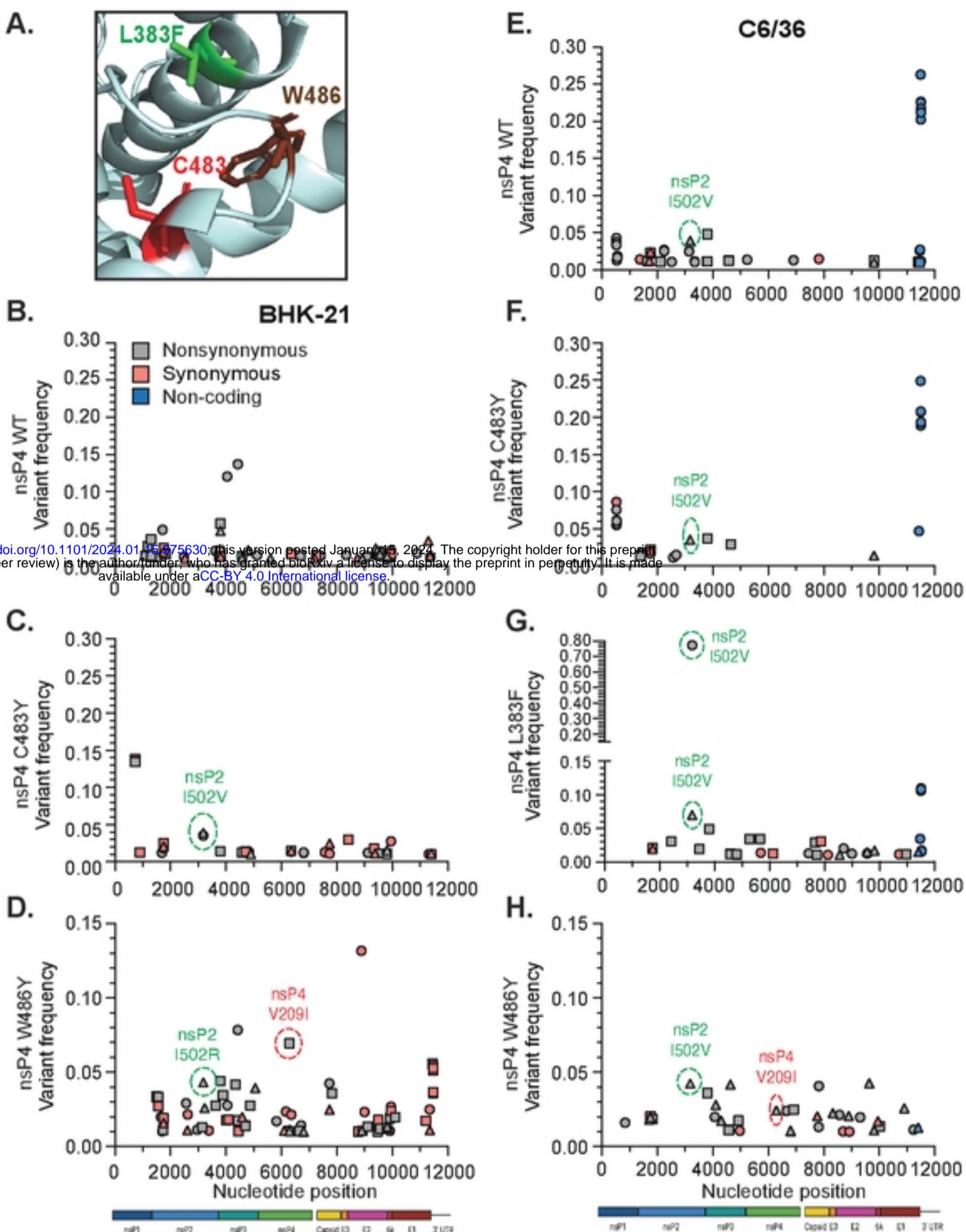



Figure 6

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.15.575600>; this version posted January 15, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

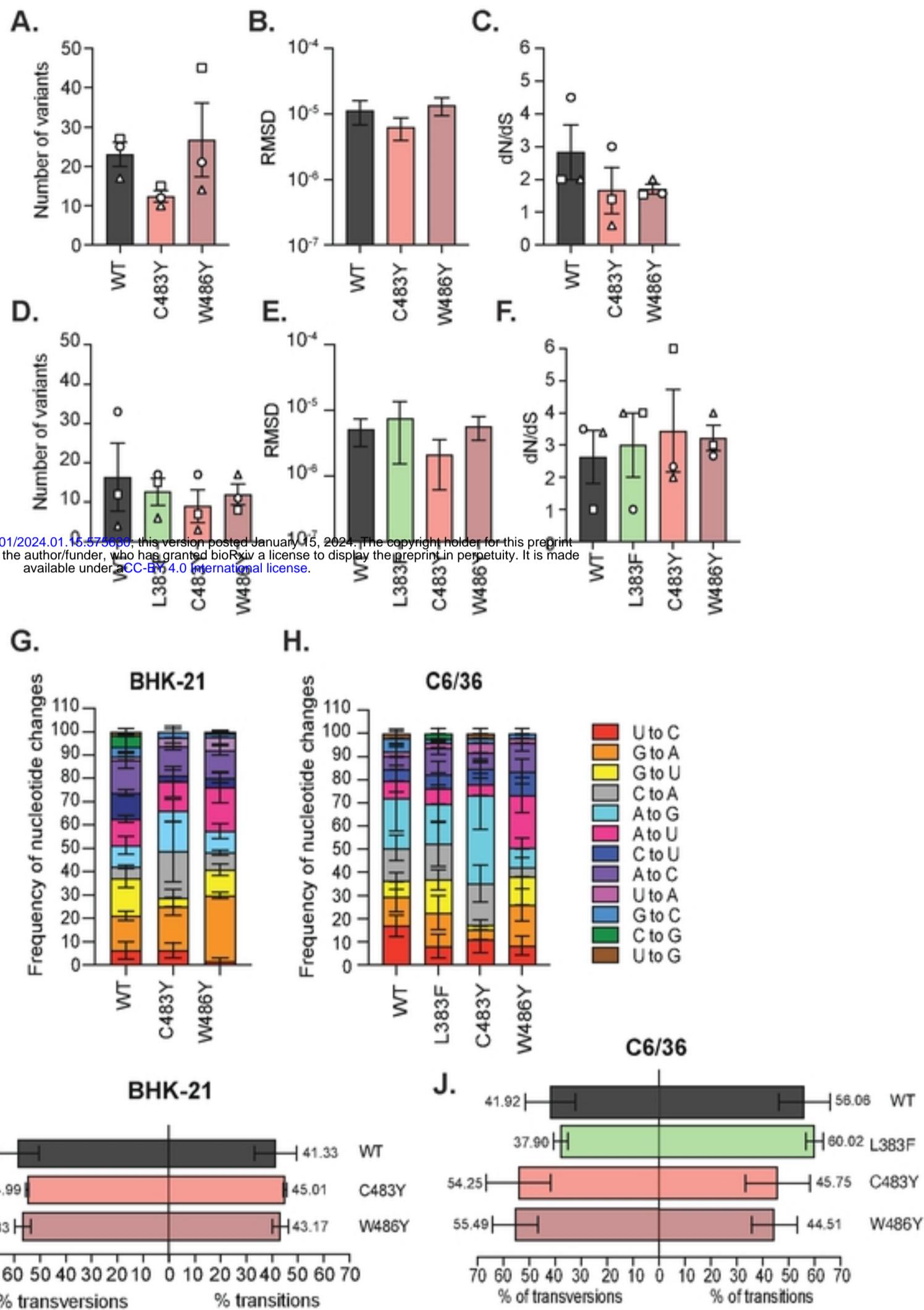
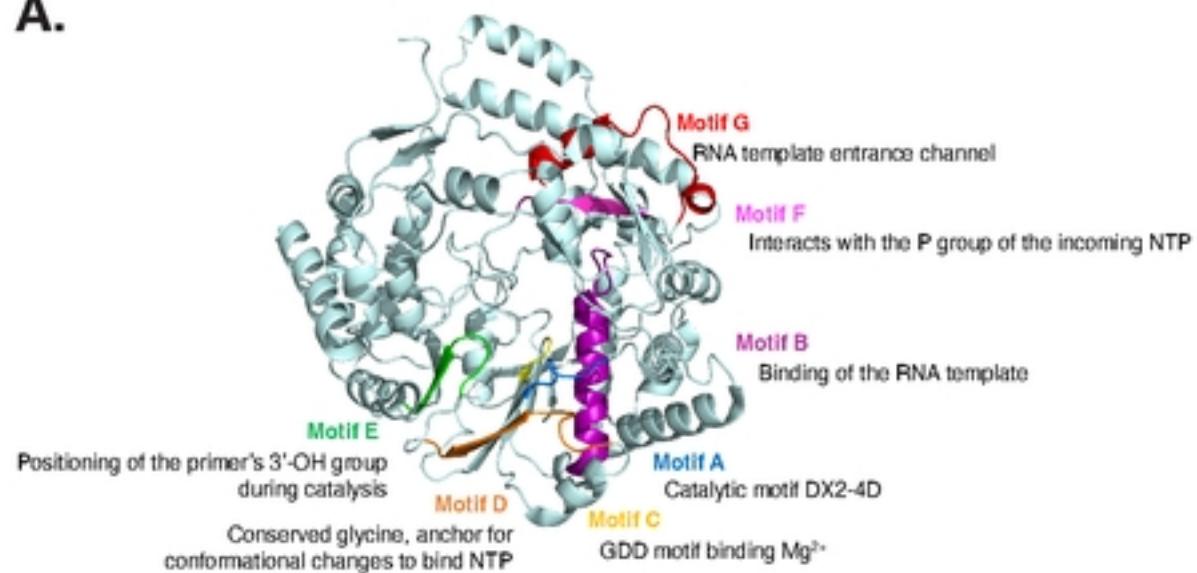
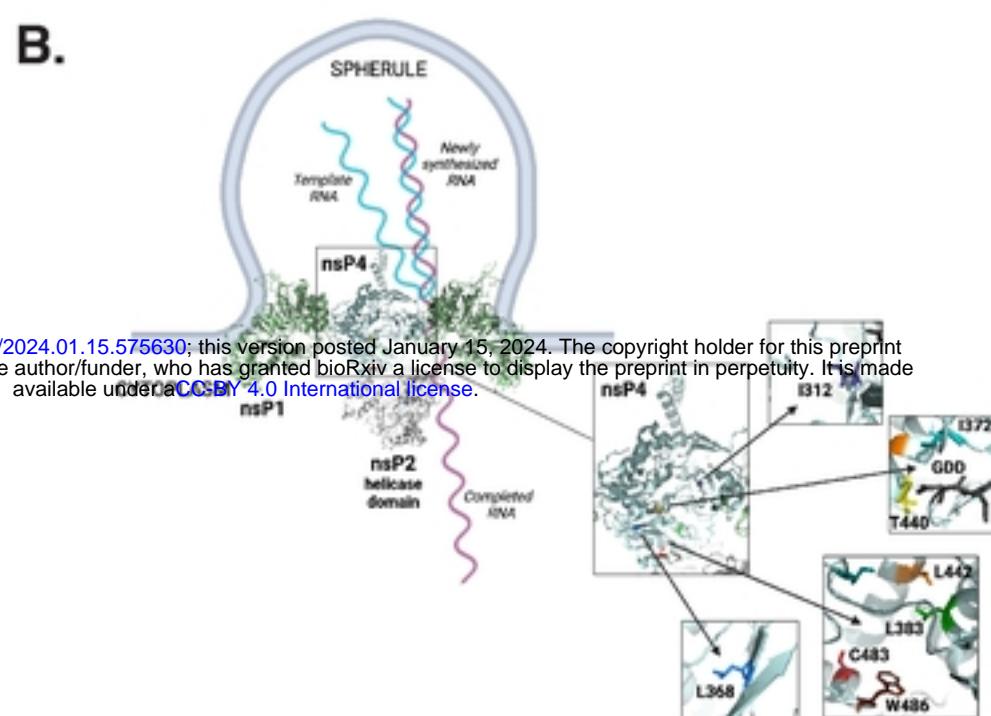





Figure 7

**A.**



**B.**



**Figure 8**

| nsP4 variant                                                                                                                                                                                                                                                                                                                                                                                                | % of replicates being rescued |       | Genetic stability |               | % of revertant amongst rescued viruses |       | Reversion genotype |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|-------------------|---------------|----------------------------------------|-------|--------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                             | BHK-21                        | C6/36 | BHK-21            | C6/36         | BHK-21                                 | C6/36 | BHK-21             | C6/36              |
| I312V                                                                                                                                                                                                                                                                                                                                                                                                       | 83                            | 33    | Reverted to I     | Reverted to I | 100                                    | 50    | GTA (V) to ATA (I) | GTA (V) to ATA (I) |
| L368F                                                                                                                                                                                                                                                                                                                                                                                                       | 16                            | 33    | Reverted to L     | Stable        | 100                                    | 0     | TTT (F) to CTT (L) | Stable             |
| L368V                                                                                                                                                                                                                                                                                                                                                                                                       | 33                            | 33    | Reverted to L     | Stable        | 100                                    | 0     | GTG (V) to TTG (L) | Stable             |
| L368Y                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| I372A                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| I372F                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| I372L                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| I372Y                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| L383A                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| bioRxiv preprint doi: <a href="https://doi.org/10.1101/2024.01.15.575630">https://doi.org/10.1101/2024.01.15.575630</a> ; this version posted January 15, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. |                               |       |                   |               |                                        |       |                    |                    |
| L383F                                                                                                                                                                                                                                                                                                                                                                                                       | 100                           | 100   | Reverted to L     | Stable        | 66                                     | 0     | TTT (F) to CTT (L) | Stable             |
| L383Y                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| T440S                                                                                                                                                                                                                                                                                                                                                                                                       | 16                            | 0     | Reverted to T     | Not rescued   | 16                                     | N/A   | TCA (S) to ACA (T) | N/A                |
| L442A                                                                                                                                                                                                                                                                                                                                                                                                       | 0                             | 0     | Not rescued       | Not rescued   | N/A                                    | N/A   | N/A                | N/A                |
| C483G                                                                                                                                                                                                                                                                                                                                                                                                       | 66                            | 0     | Reverted to C     | Not rescued   | 66                                     | N/A   | GGT (G) to TGT (C) | N/A                |
| C483Y                                                                                                                                                                                                                                                                                                                                                                                                       | 100                           | 100   | Stable            | Stable        | 0                                      | 0     | Stable             | Stable             |
| W486F                                                                                                                                                                                                                                                                                                                                                                                                       | 50                            | 83    | Reverted to W     | Stable        | 33                                     | 0     | TTC (F) to TGG (W) | Stable             |
| W486L                                                                                                                                                                                                                                                                                                                                                                                                       | 16                            | 0     | Stable            | Not rescued   | 16                                     | N/A   | Stable             | N/A                |
| W486Y                                                                                                                                                                                                                                                                                                                                                                                                       | 100                           | 100   | Stable            | Stable        | 0                                      | 0     | Stable             | Stable             |

N/A : non applicable