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Abstract: Recently, large-scale scRNA-seq datasets have been generated to understand the
complex and poorly understood signaling mechanisms within microenvironment of Alzheimer’s
Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine.
Though a set of targets have been identified, however, it remains a challenging to infer the core
intra- and inter-multi-cell signaling communication networks using the scRNA-seq data,
considering the complex and highly interactive background signaling network. Herein, we
introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular
signaling pathways and signaling communications among multi-cell types. Compared with
existing models, the novel and unique design of PathFinder is based on the divide-and-conquer
strategy, which divides the complex signaling networks into signaling paths, and then score and
rank them using a novel graph transformer architecture to infer the intra- and inter-cell signaling
communications. We evaluated PathFinder using scRNA-seq data of APOE4-genotype specific
AD mice models and identified novel APOE4 altered intra- and inter-cell interaction networks
among neurons, astrocytes, and microglia. PathFinder is a general signaling network inference

model and can be applied to other omics data-driven signaling network inference.
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Introduction

Single-cell RNA sequencing data (scRNA-seq) technologies become popular in recent years
because of their ability to profile gene expression and analyze cell composition in the single cell
resolution'. On the one hand, by profiling and annotating scRNA-seq data, researchers can
analyze differentially expressed genes in each cell population and sub-populations to understand
which gene is altered in certain conditions. On the other hand, scRNA-seq data also shows great
potential in discovering intra- and inter-cellular communication. However, there are only limited
methods for discovering active signaling pathways or intra-cellular communication using scRNA-
seq data. The existing models for doing this are mainly based on correlation, regression, and
Bayesian analysis®, and the direct interaction signaling cascades usually were ignored in those
methods because only a small set of genes have gene expression changes between different
conditions®. For example, the CellPhoneDB® can model the interactions between the ligands from
one cell type to the receptors from another cell type. However, it cannot model the downstream
signaling. CCCExplorer’ can discover both the ligand-receptor interaction and downstream
signaling network by modeling differentially expressed genes. NicheNet® takes a further step to
integrate various interaction databases and train a predictive model to predict the interaction
potential between the ligand and downstream targets. However, it only applies a statistical model,
which cannot generate a clear communication path. CytoTalk® applies the Steiner-tree to discover
the de-novo signal transduction network from gene co-expression. However, the discovered
signaling is based on co-expression and the physical interaction cascade is still unknown.

In the past few years, graph neural networks (GNNs) become famous due to their great
performance on node and graph representation and classification tasks. For instance,
GraphSAGE' first proposed a general framework for learning the node representation in an
inductive way. GAT'! incorporates the attention mechanism in GNN to actively learn how to
aggregate all the information in graphs. The DGCNN'? model proposed sortPooling to efficiently

sort nodes and learn graph features for graph classification. GIN™ proved that the normal
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message passing GNNs can only be at most as expressive as the 1-dimensional Wifelier-Lehman
test (1-WL test) on learning graph structure and proposed a new GNN algorithm that is equally
powerful as the 1-WL test. More recently, researchers have tried to generalize the transformer
architecture™ into graph learning fields as it already shows superior power in learning both text

and image data. Many works '>?°

show great potential for applying the transformer on the graph
data. They either nest GNN architectures in the transformer layer, design specific attention
mechanisms, or design novel encoding mechanisms to incorporate the graph structure into the
transformer model. However, how to leverage GNNs to discover the intra- and inter-cell
communication network is unknown as GNNs are typically a black-box model and it is hard to
interpret the prediction results.

In this work, we present a novel framework called PathFinder to discover both intra- and inter-cell
communication networks with a novel Graph transformer-based neural network. Given the
scRNA-seq expression data and the condition (control/test), the PathFinder first samples a series
of predefined paths through the prior gene-gene interaction database. Then, the PathFinder
model takes the scRNA-seq expression data and the predefined path list as input to predict the
condition of each cell. Through the training, the path important score will be learned to indicate
the relative importance of each path in separating between the control and test conditions. To
learn different types of communication like up-regulated or down-regulated networks, the novel
regularization term is introduced to regularize the learned path scores to be close to the prior
scores. After training. The path score will be sorted and the intra-communication network for each
cell type will be generated by extracting the top K important paths. To generate the inter-cell
communication network between the ligand cell and receptor cell, the intra-cell communication
network will be collected for the receptor cell, and the ligand list will be extracted from the
differential expressed gene list in the ligand cell. Finally, the ligands are linked to the intra-cell
network with the ligand-receptor interaction database. The overall procedure of generating both

intra- and inter-cell communication networks using PathFinder is shown in Figure 1. To our best


https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.13.575534; this version posted January 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

knowledge, this is the first method to apply deep learning and graph transformers to discover
signaling networks in scRNA-seq data. The advantages of PathFinder are listed below: (1) The
model is designed based on a graph transformer, which has the great ability to learn both local-
and long-range signaling patterns from gene expression and large-scale networks. (2) it is
capable of identifying and providing the full signaling network between cells via cellular ligand and
receptor. (3) The proposed PathFinder is a general framework, where users have the flexibility to
input their own defined signaling paths or gene-gene interaction network database to identify
important signaling based on user interest. Furthermore, (4) it can separate and generate different
types of communication networks (Differential expressed/up-regulated/down-regulated), which
allows more precise downstream analysis. We applied the PathFinder to a mice cohort of AD
disease. The PathFinder not only achieves great prediction results but also generates intra- and
inter-cell communication networks that align well with the latest knowledge on the mechanism of

AD disease.

Results

scRNA-seq data of Alzheimer's disease cohort on mice.

To evaluate the proposed PathFinder method, scRNA-seq data of Alzheimer's disease is
collected from the Gene Expression Omnibus (GEO) database with accession
number GSE1645072". The raw data is processed using the Seurat R package?® and the process
procedure is done by following the previous study?'. Specifically, we select cell samples from two
different conditions, denoted as TAFE4_tam and TAFE4 oil. TAFE4_tam stands for mice with the
APOE4 gene be knocked out from astrocyte cells and TAFE4 oil stands for the mice with the
existence of APOEA4. It is well known that APOE4 is one of the most significant genetic risk factors
for late-onset AD. However, the detailed mechanisms behind the APOE4 are still unknown. By
analyzing the difference between the signaling pattern with and without APOE4, we can get a

deeper understanding of the effects of the APOE4 gene on brain cells. Concretely, the excitatory
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Figure 1. (Upper) Overview of PathFinder method to discover both intra- and inter-cell communication network. The
input scRNA expression data with both samples from the control condition and the test condition is used to construct the gene-
gene interaction network based on our large database. Next, the path sampler is used to generate all pre-defined path from the
interaction network. Then, the PathFinder model is trained to separate the cells from two different conditions. After the training,
the learned path score can indicate the importance of each path. Next, the top k paths are selected to generate the intra-cell
communication network. Finally, the Ligand-receptor database is used to link all picked ligands (like differential expressed
ligands) from ligand cells to the receptors in the intra-cell communication network of receptor cells to construct the inter-cell
communication network. (Lower) Model architecture of PathFinder. The PathFinder consists of three components: node
encoder, path encoder, and graph encoder. The node encoder is a stack of L layer of transformer with special encoding to
encode local graph structure information of each node. The path encoder take the output from each layer of node encoder to
learn long-range path embedding for each pre-defined path. Finally, the graph encoder aggregate information from each path
to generate graph embedding and make final prediction. In the graph encoder, the trainable path weight will be learned to assign
each path an importance score, which can be used to generate intra-cell communication networks.
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neuron (Ex), microglia (Mic), and astrocyte (Ast) of the TAFE4 group are collected from the
dataset with a total number of samples of 13604, 3874, and 734, respectively. Then, the
PathFinder method is applied to predict the condition of each cell (oil or tam) separately for each
cell type and generate both intra- and inter-cell communication networks between these three cell
types. The pre-defined path list including all the shortest paths starting from receptors and all
possible paths from the receptor to the target gene. For the shortest distance paths, we only select
paths with a minimum length of 3 (except all receptor direct regularizations, which has a length of
2) and a maximum length of 10. We compute the prior weight of each path based on the average
differential expression level of all genes in the path (more details in the Method section) for the
path score regularization. To ensure the robustness of the analysis, we only selected the top 8192
variable genes from the original dataset as input to the model, which resulted in the final number

of pre-selected paths being 1210.

PathFinder can effectively separate cells from different conditions by selecting
differentially expressed signaling paths.

To evaluate the performance of the PathFinder model, the model is applied to excitatory neurons,
astrocytes, and microglia cells separately to predict the conditions of each cell (tam/oil), denoted
as TAFE4 ex, TAFE4_mic, and TAFE4_ ast respectively. For each cell type, we repeat the
training 5 times with each time splitting the dataset into train, validation, and test subsets randomly
with a ratio of 0.7/0.1/0.2. We report the average performance and standard deviation on the test
set over all 5 runs. The detailed experimental setting can be found in the Method section. The

detailed results are shown in Table 1 and Figure 2a.
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a. Detailed evaluation results of PathFinder for all repeated runs.
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b. The comparison of the average differential expression level of paths extracted by PathFinder.
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Figure 2. Evaluation of the PathFinder model. (a) The detailed evaluation metrics on test dataset from all runs.
(b) The comparison of the average differential expression level of top paths sorted by PathFinder during the training.
The top 200 paths have higher differential expression level than others for all three cell types. (¢) The learned path
scores of PathFinder on different runs. All paths are ranked by the average score across all runs.
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Table 1: Evaluation results of the PathFinder model.

Accuracy Recall Precision Specificity F1 AUC

TAFE4_ex 0.67£0.01 0.71£0.04 0.66+0.02 0.64+0.05 0.68+0.01 0.73+0.01

TAFE4_mic 0.67£0.01 0.76+0.03 0.65+0.02 0.58+0.04 0.70+0.01 0.71+0.01

TAFE4_ast 0.62+0.04 0.75t+0.15 0.65t0.03 0.44+0.14 0.69+0.06 0.65+0.04

As can be seen, the PathFinder can successfully classify the majority of cells in the test dataset
into the correct condition. This means that after training, the model learned the most important
difference between the two conditions from a huge gene expression profile. Such differences can
be reflected in the important score of each path as the final prediction is made based on the
different predefined paths. Among all results, the standard deviation of the metrics for TAFE4_ast
is much larger than the other two cell types. We conjecture this is caused by the limited number
of cell samples in the TAFE4_ast group, which makes the model easily overfit to the training data.
Next, we evaluate the learned path score from each group. For each cell group, we first average
the learned path score from 5 repeated runs to get the final path score. Next, we average the
absolute fold-change level of all genes within each path to get an average differential expression
level for each path. Then, we compare the top 200 selected paths from the results of PathFinder
model to the rest of the paths. The results are shown in Figure 2b. We can see that for all three
different cell types, the selected top 200 paths from PathFinder have much higher average
differential expression level comparing to the rest of paths. The results indicate that PathFinder
is effective for ranking differential expressed paths through the training. This can be attributed to
two objective function used in the PathFinder. First, by minimizing the classification loss, the
model are forced to increase the score for paths that are useful for separating two different

conditions. It is intuitive that paths with higher average differential expression level are more


https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.13.575534; this version posted January 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

helpful for the prediction. Second, by minimizing the regularization loss, the model tends to give
a high score for paths with high prior weight, and the prior weight is positively related to the

average differential expression level.

Then, we evaluate the robustness and stability of the PathFinder. Concretely, we want the final
path score distribution (ranking) learned from PathFinder to be stable and robust even if we
slightly alter the training data. Since we randomly split the whole dataset for each repeated run,
we can directly compare the learned score for each run to achieve our goal. Therefore, we plot
the learned score for all paths and all runs with paths are sorted by the average score. The results
are shown in Figure 2c. We can see for all three cell types, the learned scores are very stable
across different runs, as paths with higher ranks always have higher scores. This means that
even if we slightly alter the training dataset, PathFinder model can still output almost the same
top k paths. The results successfully demonstrate the robustness of the PathFinder for extracting

important paths and constructing intra-communication networks.

Core intra-cell signaling networks associated with APOE4 genotype.

In this section, we evaluate the intra-cell communication networks discovered by PathFinder
model. Particularly, we want to know whether the discovered networks can reveal the recent
discovery of APOE4-driven AD or even indicate new findings. First, for all three cell types, the
final networks are generated by first averaging the path score learned from 5 repeated runs and
then ranking and selecting the top 300 paths from all paths to form the final networks. The
generated networks for all three cell types are shown in Figure 3. Next, we perform the
enrichment analysis on all generated networks using KEGG signaling pathways and Gene
Ontology (GO) terms. The enrichment results are shown in Figure 4a. Based on the results, we

find several key factors that are important to the development of APOE4-driven AD.
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Neuron inflammation: Numerous studies have shown that inflammation is highly activated and
plays a key role in the progress of AD**%®. From the enrichment results, we can see that many
inflammation-related pathways/GO terms are enriched across multiple cell types. For example,
cytokine-mediated signaling pathway, cellular response to cytokine stimulus, inflammatory
mediator regulation of TRP channels. This result aligns with the previous studies and further
confirms that the existence of APOE4 in the astrocyte stimulates the inflammatory response.
More specifically, several genes related to neuron inflammation are identified by PathFinder
across multiple cell types. STAT1 and STAT3 are identified as hub genes connected to multiple
targets in both the network of neurons and microglia. It has shown that STAT1 plays a key role in

h?"28. Moreover, the differential

the regulation of inflammatory response and cellular deat
expression analysis (Figure 4b) reveals that STAT1 is highly differential expressed in TAFE4

group, which further confirms the important role of STAT1.

Autophagy: Besides the inflammation, the Apoptotic and Apoptotic signaling pathway are
enriched in the neuron and the Microglia. The autophagy is a lysosome-dependent, homeostatic
process, in which organelles and proteins are degraded and recycled into energy. Autophagy has
been linked to Alzheimer’'s disease pathogenesis through its merger with the endosomal-
lysosomal system, which has been shown to play a role in the formation of the latter amyloid-
B plaques®. One hypothesis states that irregular autophagy stimulation results in
increased amyloid-B production®. The existence of the APOE4 may also affect the process of
autophagy and thus cause the acclamation of the amyloid-B of the AD’s brain. Particularly, genes
CLU and FOXO1 are identified in the intra-network of microglia. CLU is one of the top AD
candidate genes. Some study shows that it is a casual gene of AD-affected hippocampal
connectivity*'. Moreover, it is shown that CLU protein interacts with AB, reduces its aggregation,

and protects against its toxic effects*>. Many studies have shown that FOXO1 induces autophagy



in cardiomyocytes and cancer cells. FOXO1 was also reported to be a gene encodes transcription
factor that plays a role in autophagy modulation in neurons®?.
Lipid transportation: the regulation of lipid metabolic process and cellular response to lipid are
enriched in the intra-communication network of all three cell types. The enriched gene included:
NR1D1, EGR1, BRCA1. It has been proved that the APOE4 is involved in the lipid transport and
metabolism®. The existence of the APOE4 in the astrocyte may disturb the brain lipid composition
and thus affect the blood-brain barrier (BBB) function®. All these results confirm the influence of
the APOE4 in the progress of AD and the dysfunction and death of the neuron.
JAK-STAT signaling pathway: In the intra-communication network of the astrocyte, the receptor
signaling pathway via JAK-STAT is enriched with the corresponding gene: STAT3, SOCS3,
HMGA2, STAT1. The JAK-STAT signaling pathway has been reported to be the inducer of
astrocyte reactivity®®. The enrichment of the pathway indicates that the existence of the APOE4
in astrocytes can influent the function of the JAK-STAT signaling pathway and the pathway
reversely affects the activity of the astrocyte.
Core multi-cell inter-cell communication networks associated with APOE4 genotype.
To further understand the complex signaling flow and mechanism behind the APOE4 and AD
pathology, we further generate inter-cell communication networks between three different cell
types using the PathFinder, as shown in Figure 4c. First, we can see that compared to astrocytes,
microglia have much more interactions with neurons. This may indicate that the existence of
APOE4 in the astrocyte may activate the functionality of microglia and then cause abnormal
activities in the neurons.

Among all interactions, several interesting interactions appealed to the result. First, the
MIF secreted by the astrocyte interacts with the EGFR in the neuron and follows downstream
signaling. The MIF is a well-known proinflammatory cytokine that promotes the production of
other immune mediators. Increased expression of MIF can contribute to chronic

neuroinflammation and neurodegeneration®’. EGFR has been shown to be a potential target for



treating AD-induced memory loss®?°. The increased expression level of MIF could be the
signature of activated astrocytes and the MIF further triggers the expression of EGFR and
following downstream network in the neuron, which contributes to neuron inflammation and
degeneration.

Besides MIF in astrocyte, many ligands for EGFR receptor are also identified in Microglia,
including ICAM1, IGF1, HLA-A, CNTN2, PCDH15, FLRT2, TAC3, PTN, and PTPRC. The down-
regulation of PTPRC is reported to be contributed to the overproducing of A B and neuron loss*.
Another interaction is the NLGN1 which is expressed in neurons interact with the NRXN1 gene in
the astrocyte. The amyloid-$ oligomers are synaptotoxins that build up in the brains of patients
and are thought to contribute to memory impairment in AD. It has been shown that the interaction
neurexins (Nrxs) and neuroligins (NLs) is critical for synapse structure, stability, and function®’.
The dysregulation of the interaction between Nrxs and NLs may contribute to the formation of
amyloid-B oligomer. The EFNAS5 in the neuron is up-regulated in the neuron and interacts with the

EPHB1 and downstream STAT3 signaling in the astrocyte. This interaction is closely related to
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Figure 4. Analyses of the results. (a) KEGG and GO enrichment analysis on all discovered intra-
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the ephrin-B1-mediated stimulation. Analysis has shown that the ephrin-B1-mediated stimulation
induces a protective and anti-inflammatory signature in astrocytes and can be regarded as “help-
me” signal of neurons that failed in early amyotrophic lateral sclerosis (ALS)**. Such signals could

also play an important role in triggering inflammation and neuron degeneration in CNS system.

Conclusions and Discussions

In this work, we propose PathFinder, which is the first deep-learning model with a graph
transformer that can be used to extract both intra- and inter-cell communication network with
scRNA-seq data. Through a case study using an AD scRNA-seq dataset from mice, we evaluate
the effectiveness of PathFinder from multiple perspectives. First, the quantitative analysis confirm
that PathFinder obtains great performance in separating cells from different conditions by
leveraging the difference of expression patterns in the signaling paths. Further, the learned path
score is robust and consistent in repeat runs. We further evaluate the correctness of extracted
networks through extensive literature searches. The resulting network aligned well with many
recent discoveries on AD pathology, which further proved the effectiveness of the proposed
PathFinder. Also, the current version of PathFinder has a few potential limitations to be improved
in the future work. First, it requires many samples in training to produce reasonable results.
Second, it relies on the pre-defined paths from the database to learn and extract meaningful
patterns and is unable to discover new signaling flows. All these limitations are worth to further

investigate, and we will improve the model in our future work.

Methodology

Gene-gene interaction database collection and processing

To construct the gene-gene interaction database, the raw interaction data was collected from
NicheNet software.® The raw interaction data were divided into three types: ligand-receptor

network, signaling network, and gene-regulation network. The original network contains 12019



interactions/1430 genes, 12780 interactions/8278 genes, and 11231 interactions/8450 genes,
respectively. To construct the intra- and inter-network database, the data was further processed
by the following steps.

First, ligands and receptors were collected by gathering the source and target of the ligand-
receptor network. There are a total of 688 ligands and 857 receptors. Then, interactions in the
ligand-receptor network were divided into two types. If one interaction exists in both directions in
the database, we labeled it as bidirectional. Otherwise, we labeled it as directional. After
processing, there are 11880 directional interactions and 139 bidirectional interactions.

The gene-regulation network was processed as follows. First, 1639 transcriptional factors (TFs)
were collected from51. For convenience, TFs that exist in either ligand or receptor list were
removed. Finally, 1632 TFs were collected. Next, three different types of regulation were collected
in the gene-regulation interaction network, which are ligand regulation, receptor regulation, and
TF regulation. To label each interaction into one of three types, all the interactions in the network
were removed if the source gene was not in either ligand, receptor, or TF list. Then, the
interactions were labeled based on the type of source (e.g. if the source of interaction is a receptor,
we label it as receptor regulation). After processing, there are 1329 ligand-regulation interactions,
272 receptor-regulation interactions, and 6706 TF-regulation interactions.

Finally, the signaling network was processed as follows. First, all the interactions were removed
if they existed in either the ligand-receptor or the gene-regulation network. Then, the interactions
were divided into receptor-TF, receptor-signaling, signaling-TF, and signaling-signaling further.
To be more specific, if the source of interaction is in receptor list and target of interaction is in TF
list, the interaction was labeled as receptor-TF. If the source of interaction is in receptor list and
targetis not in TF list, the interaction was labeled as receptor-signaling. If the source of interaction
is not in receptor list and target of interaction in TF list, the interaction was labeled as signaling-
TF. If neither the source nor target of interaction are in the TF and receptor list, the interaction

was labeled as signaling-signaling. The interactions cannot be classified into one of above group



will be removed for connivence. Finally, there are 31 receptor-TF interactions, 524 receptor-
signaling interactions, 975 signaling-TF interactions, and 9745 signaling-signaling interactions.
Notations

A gene graph is denoted as G = (V,E), where V is the set of gene nodes with |V| = n, E is the
set of edges and E €V x V. The node feature set is denoted by X = [x,x,, ..., x,,]T € R™¢,
where x,, € R% is the feature vector of the node u. The graph structure is defined by an adjacency
matrix A € [0,1]™*", where A,,, = lindicate there is an edge from the node u to node v and 4., =
0 otherwise. Further, a set of paths sampled from graph is denoted as P = {p;,p;, ..., pp}, Where
pm is the m-th path, which is a list to store the nodes of the path in order. Paths can have different
lengths, and we denote the length of path m be [,,,.

Preliminary of transformer and Graphormer

The transformer is a powerful architecture in the deep learning field. It consists of multiple
transformer layers. Each transformer layer has two parts: a multi-head self-attention and a point-
wise feed-forward network (FFN) with residual connection applied between each part. Let H! ™! €
R™<hemb pe the embedding of nodes in layer [ — 1, and H. ! is the embedding of the node u in

layer [ — 1, the computation of multi-head self-attention is :

Ql,i — Hl_].Weri’ Kl — Hl_IWKl'i, Vl — Hl—1WVlri,
head; = Attention(Ql",K“,V“) = SoftMax \/d_ yLi,
k

0! = Concat(heady, ..., head,) W,
where W,", W', W' € Rhem»*di and W} € Rt4>*hems are all trainable weight matrix, h is the
number of heads, 0! € R™*"emb is the output from the multi-head self-attention in layer I. For
simplicity, we let h X dj, = h,n,. The output 0! will then be fed into a point-wise feed-forward
network. The computation of the point-wise feed-forward network is:

FFN(x) = ReLu(xW{ + b} )W} + b,



where W} € RhembXhemb W} € RhempXhemb ~pl € RZhemb and b} € RMemb are all trainable weight
matrix and bias. Notice that here we slightly modify the hidden size of the feed-forward network
of the original model.

However, the vanilla transformer cannot be used directly on the graph structure data as it lacks
critical part for encoding the topological information into model. To deal with this issue,
Graphormer proposed several novel encodings into the model. Specifically, they introduced
centrality encoding, spatial encoding and edge encoding. The centrality encoding is used to
embed the graph centrality information into the model. Given the input data X, the computation of
centrality encoding is:

H° =X+ Z{deg (G)}+ Z {deg* (G)},

where the Z~,Z* are all trainable embedding vectors and deg~(G),deg*(G): G - R™ are the
function to compute the in-degree and out-degree of each node in the graph G. The spatial and
edge encoding is used to encode the graph structure into the model. With the spatial and edge
encoding, the self-attention is revised as:

Ligti®

Nrm

where b is trainable embedding vectors to encode the spatial information at head i and

head; = SoftMax ( + bi{p(G)} + ci) v,

¢(G): G » R™ ™ is the function to compute the shortest path length between each two nodes. If

two nodes are not connected, a special value will be used. ¢ € R™*" is the edge embedding and
cl, = %Zﬁﬂ xenw}lT, where x,, is the edge feature of the n-th edge in the shortest path between

node u and node v and the w}, is trainable weight vector of n-th edge of head i. Note that both
the spatial and edge encoding are unique across different layers.

Architecture of the PathFinder

The PathFinder model consists of three components. Namely, the node encoder, path encoder,

and graph encoder. The overall architecture of the PathFinder model is shown in Figure 1-lower.



The architecture of the node encoder is similar to the Graphormer, which stacks L transformer
layer with centrality encoding, spatial encoding and edge encoding. The input to the PathFinder
is the expression value of each gene in a cell sample. However, we made several modifications
to the original architectures. First, the hidden size in the point-wise feed forward network is all
hemp in both two layers for simplicity. Second, the edge encoding in the PathFinder is modified.
In the original Graphormer, the edge encoding is computed by all the edges in the shortest path
between two nodes, which can capture long-range information in the graph. However, the
localized feature in the graph will be smoothed in such a manner. Instead, the PathFinder want
the node embedding learned from the node encoder to focus on the localized information in the
graph. Therefore, the direct edge encoding is proposed. The direct edge encoding is computed
by:
Ciw = Xyp W'

Where x,,, is the edge feature of the edge between node u and node v. If there isn't an edge
between two nodes, the direct edge encoding is set to a special vector for simplicity. By doing
this, the node encoder is good at learning node embedding with localized information. Finally, the
spatial encoding is also revised in the PathFinder. Since here the graph structure is identical for
all samples and the node order invariant is automatically held, we can learn a specific spatial
encoding for each pair of two nodes. Therefore, we design the node index encoding in the
PathFinder. The node index encoding is not computed from the length of the shortest path
between each pair of nodes but is directly learned for each pair of two genes. Namely, for each
pair of two genes, a unique encoding is learned for each head in each layer of the node encoder.
Next, the path encoder is responsible for learning gene signaling path embedding. Given the node
embedding in the graph and the pre-defined path list of the graph. The details of the pre-defined
path list are illustrated below. Suppose there are p unique paths in the path list P, where the

length of the m-th path is [,,, and the total number of nodes in the path list is k (count repeated



nodes in different paths). Denote the node embedding output from the layer [ as H!, we first learn
a path-specific embedding through:
U' = scatter(H)W;! + b},

where W} € R"emb*¥ and b}, € R* are all trainable weight matrix, scatter is a function to reorder
and scatter the node in the graph into the order of the pre-defined path list. U! € R¥** is the
learned path-specific embedding. Then, the positional encoding and edge encoding are
introduced to encode additional information for all paths. Let U! be the result embedding after the
special encodings. We have:

=l 1 !
Uni=Uni+ pi+ €1

Where U},; and U}, ; are the embedding of i-th node in the m-th path, p} is the learnable
positional encoding vector and its value only depends on the position i, eil,i+1 is the learnable edge
encoding to encode the edge type between i-th node and i + 1-th node. Next, the score of each
node within the path is computed by:
St = ScatterSoftMax(tanh(U'W; + bl )WL + bly),

where the W) € R“" | b}, € R", W}, € R™*", and bl, € R” are all trainable parameters.
ScatterSoftmax is the softmax function working on each path and each dimension. The S! € R¥*"
is the final  setimportant score for each node in each path. We let the r x u = h,,,,;, for simplicity.

After we obtain the S!, the path embedding is computed by:

P! = Flatten (ScatterSum(Sl * Ul))
The * is the point-wise product working on each set of important scores. That is, for each set of
important score, we do a point-wise product of that set of score and U, which result in total r sets.
The ScatterSum function is the summation on each path. The Flatten is the function to flatten the

embedding of all sets. The P! € RP*emb s the final path embedding in the layer .



In the original Graphormer, the graph embedding is learned by introducing a special node and
letting it connect to all the nodes in the graph. After forwarding, the embedding of that special
node is regarded as the graph embedding for the graph-level task. In PathFinder, we want to learn
the graph embedding from the path embedding. Meanwhile, we want to extract the important
paths from the model after we train the model given the graph-level task. To simultaneously
achieve both two goals, the graph encoder is proposed. The graph encoder consists of two parts,
the first part is a trainable path weight and the sigmoid function to assign each path with different
scores. The second part is the jumping knowledge network to combine the graph embedding in
each layer and compute the final embedding.
In PathFinder, the graph embedding is learned by integrating all the path embedding from each
layer, which requires an important score for each path. Normally, the score is computed based
on one sample. However, such a score is not robust and may vary a lot even given a minor
variation of the path embedding***°. To avoid the issue and learn a robust important score across
the whole dataset, the trainable path score M € R? is introduced. M is identical to all samples and
layers and learned through back propagation. The path important score is computed by:
I = Sigmoid(M),
where I € R? is the important score for each path. Next, the graph embedding of layer [ is
computed by:
gl = 1P},
where g' is the graph embedding of layer 1. The final step of the graph encoder is to integrate the
graph embedding of each layer and learn a final embedding. Here we utilize the idea of
JumpingKnowledge network*® and compute the final graph embedding by:
G = MaxPooling(Concat(g*, g2, ..., g*)),
where MaxPooling is the max pooling function and G € R"emb is the final graph embedding

learned by the PathFinder. Finally, the graph embedding is used to classify the cell sample into



the corresponding condition (control/test). The prediction is a typical binary prediction compute
by:

p = SoftMax(GW,),
Where W, € Rhemb X2 s the trainable projection matrix and p is the predicted distribution.
Training and Regularization of the PathFinder
To train the PathFinder model, the negative log likelihood (NLL) loss is applied. Let the p{ be the

predicted probability of the true condition of cell i, then the NLL loss is computed by:

N

Leiass = Z _log (pzc)

i=1
Where the N is the number of cells in the dataset. Meanwhile, to regularize the training of model
and learn biological meaningful paths from the model, the regularization term is introduced to the
path score M. Intuitively, the path that have higher total fold change should have higher path score.
Further, we designed three different regularization terms to generate different important paths by
introduce the prior path score. Specifically, these three regularizations are up-regulated path,
down-regulated path, and differential expressed path regularization. Let the fc;" be the log fold

change of gene j in path m, then the prior path score is computed by:

S = Normalization(mean(z fei'n
J

S wm = Normalization(mean(z —fc™)
J

Sdeg = Normalization(mean(z Ife™ D)
J

Where the S, Sgown, @nd Sge, are the prior path score for up-regulated, down-regulated and

differential expressed regularization respectively, Normalization is the min-max normalization
across all paths. Suppose we use the up-regulated prior score, the regularization loss is computed

by:



Lreg = DKL(I”SI%)
The final loss is:

L= Legss + BLreg
Where g is the weight of the regularization term.
Predefined path list
To train the PathFinder, the path list needs to be defined before the training. Given the collected
gene-gene interaction database, we designed several choices to generate a predefined path list.
The first choice is the shortest path. For this choice, the shortest path between each pair of genes
in the dataset will be computed and collected given the gene-gene interaction network. The
second choice is to generate all the possible paths that start from the receptor and end in the
target, which can also be done using the gene-gene interaction database. To constrain the path,
the minimum length of the path is set to be 3 unless the path is a receptor regulation interaction.
The maximum length of the path is set to be 10.
Experimental details
We conduct experiments to validate the effectiveness of PathFinder on TAFE_ex, TAFE_mic, and
TAFE_ast cell sample datasets. For each dataset, we randomly split datasets into
train/validation/test sets with a ratio of 0.7/0.1/0.2. We train the model using the train set and
validate the performance of the model using the validation set. Finally, we save the model that
achieves the best performance on the validation set and report the performance of the saved
model on the test set. We use the Area Under the Curve (AUC) as the performance metric for
selecting the best model. We repeat experiments on each dataset five times (with each time a
different random split on the dataset) and report the mean results and the standard deviation. The
model and training hyperparameters are described as follows: we set the number of layers as 6,

the hidden size h,,,;, as 128, the number of head, and the number of scores set r as 8. For each



experiment, we set the number of training epochs as 30, the learning rate as 0.0005, the dropout

rate as 0.1, the regularization weight 8 as 0.1 for TAFE_ex and TAFE_mic, and 1.0 for TAFE_ast.

Generation of the intra- and inter-cell communication network

After the PathFinder model is trained, the generation of an intra-cell communication network is
straightforward. Concretely, we first average the path weight learned from 5 repeated
experiments to get the final path weights. Next, the top K paths are extracted and combined to
generate the intra-cell communication network. The generation of the inter-cell communication
network is as follows. Let the cell that provides ligands be the ligand cell and the cell providing
receptors be the receptor cell. The intra-cell communication network is first generated. Then, the
ligands of the ligand cell and receptors of the receptor cell will be extracted from the intra-network
respectively. Then, the ligand-receptor pairs are selected given the ligand-receptor database.

Finally, the kept pairs will be linked and the inter-network is generated.
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