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Abstract
The use of large transcriptome datasets has greatly improved our understanding of the tumor
microenvironment (TME) and helped develop precise immunotherapies. The increasing popularity of
multi-omics sequencing, single-cell transcriptome sequencing (scRNA), and spatial transcriptome sequencing
has led to numerous new discoveries. However, these findings require clinical phenotypic validation with a
large sample size. To enhance the integration of multi-omics in advancing research on the tumor
microenvironment, we have developed a systematic and comprehensive analytical tool
(Immuno-Oncology Biological Research 2, IOBR2) based on our prior work. IOBR2 offers six modules for
TME analysis based on multi-omics data. These modules cover data preprocessing, TME estimation, TME
infiltrating patterns, cellular interactions, genome and TME interaction, and visualization for TME relevant
features, as well as modelling based on key features. IOBR2 integrates multiple vital microenvironmental
analysis algorithms and signature estimation methods, simplifying the analysis and downstream visualization
of the TME. In addition to providing a quick and easy way to construct gene signatures from single-cell data,
IOBR2 also provides a way to construct a reference matrix for TME deconvolution from single-cell RNAseq.
The analysis pipeline and feature visualization are user-friendly and provide a comprehensive description of
the complex TME, offering insights into tumor-immune interactions. A comprehensive gitbook
(https://iobr.github.io/book/) is available with a user-friendly manual and complete analysis workflow for each
module.
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Background
Studies of the tumour microenvironment using gene expression patterns from large bulk transcriptome
datasets have advanced the understanding and identification of the interactions within microenvironment and
aided in the development of more precise immunotherapy treatments for tumours. This progress includes the
utilization of gene signature scores, such as T cell-inflamed gene expression profile (GEP) [1], pan-fibroblast
TGFβ response signature (Pan-F-TBRS) [2], tertiary lymphoid structures (TLS) [3], and TMEscore [4], as well
as MFP, a model based on machine learning. Years of research have shown that transcriptome gene
expression signatures can adeptly characterise the tumour microenvironment and exhibit significant clinical
translational potential [5]. IOBR (Immune-Oncology Biological Research) was debuted in 2021 to describe the
systematic approach to tumour microenvironment profile and correlation [6]. This tool has enabled numerous
studies to come to fruition over the last few years. Simultaneously, we are continuously enhancing and
updating IOBR with the assistance of our users. The recent surge in single-cell RNA sequencing (scRNA-seq)
has enabled us to identify novel microenvironmental cells, tumour microenvironmental characteristics, and
tumour clonal signatures with higher accuracy [7]. It is necessary to scrutinize, confirm and depict these
features attained from high-dimensional single-cell information in bulk-seq with extended specimen sizes for
clinical phenotyping. We have developed a systematic analysis process for IOBR based on the needs of the
aforementioned studies.
Our team has developed a suit of highly effective functions for microenvironmental analysis. Furthermore,

we have integrated 8 key microenvironmental analysis algorithms into our framework, including CIBERSORT
[8], EPIC [9] and quanTIseq [10]. This integration makes it simple for users to conduct analyses and visualize
data using the IOBR process. However, the identification of new cells and functions has posed several
challenges to users attempting to customize parsing with newly acquired reference data. The advancement in
artificial intelligence and machine learning are driving researchers to focus on identifying patterns within tumour
microenvironments and exploring the clinical importance of microenvironmental features [11]. In addition,
screening important features, evaluating feature robustness, and constructing models have become pressing
concerns. To tackle these challenges, we compile additional algorithms with the aim of creating a
multidimensional analysis and visualization procedure focused on parsing data concerning the tumour
microenvironment.
Through the establishment of systematic modules for tumour microenvironment analysis, we have

successfully conducted multi-dimensional analyses of the tumour microenvironment. This involves data quality
control and processing, parsing the tumour microenvironment, exploring interactions within the tumour
microenvironment, as well as the interactions between the microenvironment and its genome, visualizing the
tumour microenvironment, and features screening and constructing models based on key features. We have
created a comprehensive gitbook with a user-friendly manual for researchers (https://iobr.github.io/book/). This
system is perfect for large-scale research in multi-omics related to the tumour microenvironment. It offers a
valuable and reproducible method for enhancing precision in diagnosis and treatment, guided by the tumour
microenvironment. Additionally, it enables experts to discover new therapeutic targets and overcome tumour
therapeutic resistance.

Method
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The framework of IOBR
Building upon the existing functions of IOBR, IOBR2 introduces additional analysis and visualization
capabilities, with its comprehensive implementation and functionalities thoroughly detailed in the tutorial
(https://iobr.github.io/book/) with a complete analysis pipeline [6]. The current version, IOBR 2.0, encompasses
six functional modules: 1) Transcriptome data prepare module (pre-procession of transcriptome data, as well
as pertinent batch statistical analyses); 2) TME deconvolution and signature estimation module (estimation of
signature scores and identification of phenotype relevant signatures, along with decoding immune contexture);
3) TME interaction module (clustering TME characteristics and analyzing receptor-ligand interactions); 4)
Genome and TME interaction module (analysis of signature associated mutations) ; 5) TME data visualization
and Statistical analysis module (visual representation and statistical examination of TME data); 6) TME
modeling module (fast model construction and the assessment of model performance).

Transcriptome data prepare
Data preparation
In line with the preprocessing workflow of transcriptomic data, we have integrated a variety of functionalities
into the IOBR2. IOBR2 supports users in retaining genes based on the maximum or average values of
repeated gene expressions. Additionally, we have developed an annotation function for annotating expression
matrices. The annotation files in IOBR include anno_hug133plus2, anno_rnaseq, and anno_illumina,
corresponding to annotations for HG-U133 Plus 2.0 microarray probes, RNAseq annotation data, and Illumina
microarray probes, respectively.
In IOBR2, we have established a function for differentially expressed genes (DEGs) analysis between two

groups. This function supports two analytical methods, limma [12] and Desq2 [13]. The limma employs a linear
model to assess changes in gene expression, correcting for multiple testing differences using an empirical
Bayesian method. Originally designed for microarray data, its utility has been extended to small-sample
RNA-seq data analysis. Desq2, specifically designed for RNA-seq data analysis, uses a negative binomial
distribution to model gene expression data, applying either the Wald test or likelihood ratio test to each gene to
detect expression differences. Users can choose the appropriate method based on their data type and
research needs. Additionally, IOBR2 supports DEG analysis for more than 2 groups. It leverages the Seurat R
package to identify significant markers across multiple groups within the dataset [14]. The methods available
for comparison include bootstrap, delong, and venkatraman, offering a range of options for comprehensive
analysis.
Users can also rapidly convert gene expression count data into Transcripts Per Million (TPM) value. During

the annotation and conversion processes, additional operations such as merging annotation data with the
expression matrices, removing unnecessary columns, transforming rows and columns, and handling duplicates
based on the specified method can be simultaneously implemented. For sequencing data from different
sources or batches, users can use IOBR to examine batch effects in the data and perform batch correction.
Furthermore, we have built a filtering function rapid analysis of gene expression data and identification of
outliers in the dataset.

TME deconvolution and signature estimation
Signature Estimation
To enhance the characterization of the TME in cancer cells and to deepen our understanding of tumor
immunity and its functional states, we have developed an estimation function an estimation function for
user-generated signatures or 323 reported signatures enrolled in IOBR (Supplementary Table S1). The
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extensive signature collection is categorized into three distinct groups: TME-associated, tumor-metabolism,
and tumor-intrinsic signatures. Additionally, IOBR supports the estimation of the signature gene sets derived
from the GO, KEGG, HALLMARK, and REACTOME databases. IOBR allows users to generate custom
signature lists aligned with their own biological discovery or exploratory needs, thereby streamlining the
estimation process and enabling systematic follow-up exploration. Users also have the option to generate
signature lists from single-cell differential analysis or the Msigdb database (gsea-msigdb.org) for their
subsequent research.
In the evaluation of signature scores, we incorporated three methodologies: Single-sample Gene Set
Enrichment Analysis (ssGSEA), Principal Component Analysis (PCA), and Z-score. ssGSEA is extensively
used to evaluate the enrichment or activity of specific gene sets within individual samples [15]. Each ssGSEA
enrichment score reflects the collective expression dynamics of a specific gene set in a single sample,
indicating whether the genes in the set are collectively upregulated or downregulated in expression.
Significantly, PCA calculates the principal components to reduce the dimensionality of data simultaneously
preserving the maximum variability of data for predictive model construction. Current signatures constructed
using PCA methodology include the Pan-F-TBRs [2] and the TMEscore [4, 16], two promising biomarkers for
predicting clinical outcomes and assessing the sensitivity of malignancies to treatments. Z-score, a statistical
metric, measures a score's deviation from the mean of a dataset in standard deviations.

TME Deconvolution
Different mechanisms in the tumor microenvironment (TME) are involved in mediating the immune response
and affect the efficacy of treatment. The important aspect is the cell-type composition of the TME, which is the
key elements shaping the intricate landscape of anti-tumor immunity [5]. Deciphering the cellular composition
of the TME is a significant technical challenge, addressed by various deconvolution algorithms, each with its
unique advantages and limitations [17, 18]. IOBR integrates eight open-source deconvolution methodologies:
CIBERSORT [8], ESTIMATE [19], quanTIseq [10], TIMER [20], IPS [21], MCPCounter [22], xCell [23], and
EPIC [9].
CIBERSORT is the most well-recognized method for identifies 22 immune cell types in TME, allowing

large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets with promising accuracy
[8]. Notably, IOBR leverages CIBERSORT's linear vector regression principle, allowing users to create custom
signatures and extending its input file compatibility to cell subsets derived from single-cell sequencing results.
ESTIMATE focuses on non-malignant components, like stromal and immune signatures, to assess tumor purity
[19]. The quanTIseq method quantifies 10 immune cell subsets from bulk RNA-seq data [10]. TIMER is adept
at quantifying the abundance of tumor-infiltrating immune compartments [20]. It offers six major analytic
modules, enabling detailed analysis of immune infiltration alongside other cancer molecular profiles. IPS
calculates 28 TIL subpopulations, including effector and memory T cells and immunosuppressive cells [21].
MCP-counter robustly quantifies the absolute abundance of eight immune and two stromal cell populations
within heterogeneous tissues, using transcriptomic data [22]. xCell offers an extensive analysis of 64 immune
cell types from RNA-seq data, including various cell subsets in bulk tumor tissues [23]. EPIC decodes the
proportion of immune and cancer cells from the expression of genes, comparing it to specific cell expression
profiles to accurately predict the cellular subpopulation landscape [9].

Signatures Derived From scRNA-seq Data
Moving beyond traditional bulk sequencing, validating the clinical relevance of cell types identified by
scRNA-seq becomes essential. To facilitate this, IOBR integrates CIBERSORT’s linear Support Vector
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Regression (SVR) with the Least Squares Estimate of Imbalance (LSEI) algorithms [24], enabling a
streamlined analysis of bulk RNA-seq data for the clinical validation of targets identified through
scRNA-seq data. In addition, IOBR2 allows the user to screen DEGs of cell-types based on “sce” projects
generated by the Seurat package [14], performing cellular deconvolution related to the research
objectives or constructing signature gene lists for IOBR2 scoring calculations.

TME interaction module
To facilitate a deeper analysis of the TME and identify distinct TME patterns in patients, we have developed a
clustering function based on the NbClust R package. This function enables unsupervised clustering analysis
using datasets generated by users or signature estimation scores from IOBR. Based on the results, IOBR can
determine the optimal number of clusters and assign each sample to a specific cluster.
Additionally, IOBR offers a function for analyzing ligand-receptor pairs within the TME. It evaluates 813 pairs of
ligand-receptor interactions based on gene expression patterns. These pairs are expressed in 25 cell types
that are present in the TME, encompassing immune cells, cancer cells, fibroblasts, endothelial cells, and
adipocytes [25]. Users provide transcriptomic data as input, allowing IOBR to generate group-specific,
system-based signatures of the TME. A pairwise Wilcoxon test is then employed to identify distinctive
signatures and ligand-receptor interactions between different groups.

Genome and TME interaction
IOBR not only focuses on systematic signature-phenotype studies but also expands its research scope to
include the exploration of interactions between transcriptomes, microenvironments, and genome profiles. It
accepts genome data in Mutation Annotation Format (MAF) [26] downloaded from the UCSC website or
user-generated mutation matrices as input for identifying mutations associated with specific signatures.
Additionally, IOBR supports the transformation of MAF data into a comprehensive mutation matrix. This matrix
contains data on distinct variation types, including insertion-deletion mutations (indels), single-nucleotide
polymorphisms (SNPs), and frameshift mutations, or it can integrate all these mutation types, offering users
flexible selection options. For the analysis of mutations significantly linked to targeted signatures, IOBR
employs the Wilcoxon rank-sum test in this module for batch analysis. Moreover, IOBR supports batch
visualization, allowing users to easily view and interpret the mutation status (mutation or non-mutation) of
specified genes or regions.

TME data visualization and Statistical analysis
Batch analysis and visualization of results from the TME deconvolution and signature estimation module are
pivotal features of IOBR2. To implement TME deconvolution and signature computation for potential clinical
translation, we have systematically categorized the collected signatures into 43 groups (Supplementary Table
S2), expanding upon the foundation of IOBR. These categories encompass TME cell populations (classified by
deconvolution methods, cell types, or scRNA-seq results), signatures of immune phenotypes, tumor
metabolism, HALLMARK and so on. Users can freely adjust the number of signatures within each group and
also utilize signatures documented in IOBR2 to construct new groups for research exploration. IOBR2 also
supports the construction of new signature groups based on immune-oncological research findings or specific
study objectives, enabling users to tailor their analysis to their unique research needs. Further, we integrate a
visualization function specifically for batch correlation analysis of signature groups, either user-generated or
enrolled in IOBR2. This function allows for visualizations based on specified groups, including boxplots and
heatmaps, and employs the Wilcoxon Rank Sum Test to compare statistical differences in signatures between
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groups. Moreover, IOBR2 is capable of presenting TME cell fractions as percentage bar charts in batch
visualization, supporting input of deconvolution results from "CIBERSORT", "EPIC" and "quanTIseq"
methodologies to further compare the TME cell distributions within one sample or among different samples.
To provide a more intuitive understanding of the TME and streamline the analysis process, IOBR2 has
introduced a range of new batch visualization and statistical functions. The batch analysis methods supported
by IOBR2 include batch Wilcoxon rank-sum test between two groups，batch calculation of hazard ratios and
confidence intervals for the specified signature, and batch analysis of correlation. IOBR2 supports computing
correlations between two features or genes, or between a target variable and multiple variables, visualizing
these correlations through heatmaps or scatter plots. It supports two correlation methods: Pearson correlation
coefficient or Spearman's rank correlation coefficient Furthermore, IOBR2 provides other independent analysis
and visualization functions, including KM survival analysis, GSEA, and PCA analysis. Notably, IOBR2 allows
users to perform GSEA based on user-generated signatures or signatures registered in IOBR2.
The TME data visualization and statistical analysis module of IOBR2 collectively enable easy integration and
visualization of the aforementioned deconvolution results, offering flexibility in selecting specific methodologies
of interest. This module permits systematic identification of phenotype-relevant signatures, cell fractions, or
signature genes, accompanied by corresponding batch statistical analyses and visualization options. Within
IOBR2, these methods are available for users to choose for targeted analysis or integration, complemented by
a range of visualization tools.

TME modeling
For effective application of the signatures in clinical interpretation, IOBR2 provides functions for feature
selection, robust biomarker identification, and model construction based on prior identified phenotype
associated signatures. Utilizing these features to build prognostic models holds promise for accurately and
cost-effectively predicting tumor patients' survival and treatment sensitivities. In addition, IOBR2 supports the
performance assessment of models predicting patient survival and treatment responses, offering valuable tools
for evaluating the efficacy and applicability of these models in clinical settings.

Availability of data and materials
IOBR R package can be available at https://github.com/IOBR/IOBR.

Results
To fully utilize transcriptomic data in uncovering immune-tumor interactions and their potential clinical
applications, we have expanded the capabilities of IOBR. Beyond integrating conventional analysis and deep
mining methods, we have extended our functionalities to include TME interaction analysis, providing a
comprehensive one-stop solution for analysis and visualization in transcriptome projects.
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Fig. 1 The graphical scheme describing the workflow of the IOBR2. IOBR2 encompasses transcriptome data
preparation, multiple deconvolution algorithms and signature estimation methods for microenvironment
analysis, TME pattern identification, analysis of interactions between the genome and TME, batch visualization
and statistical analysis, as well as TME modeling.

IOBR workflow
Based on prior research, we have enhanced the analytical and visualization capabilities in IOBR2. Utilizing
these advancements, we have structured the analytical workflow of IOBR into six functional modules:
Transcriptome data preparation module, TME deconvolution and signature estimation module, TME interaction
module, Genome and TME interaction module, TME data visualization and Statistical analysis module, and
TME modeling module. The schematic workflow and functional codes are depicted in Figures 1, 2, respectively.
Corresponding figures were dynamically generated following inputting function-specific parameters of pertinent
modules. Details of these six modules are illustrated in the Methods sections. Charts derived from IOBR reach
quality requirements of publication and can be flexibly modified locally. Drawing from previously published
studies, we have incorporated several example datasets into IOBR. The workflow and functionalities of IOBR
are further illustrated below using real-world data from these datasets.
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Fig. 2 IOBR2 is comprised of six analytic modules related to data preprocess and tumor immune
microenvironment. The functionalities of these modules include (1) preprocessing of transcriptome data; (2)
estimation of signature scores and identification of phenotype-relevant or user-constructed signatures, along
with decoding of TME contexture; (3) identification of TME patterns and analysis of ligand-receptor interactions;
(4) estimation of the specific mutation landscape associated with the signature of interest; (5) corresponding
batch visualization and statistical analyses; and (6) model construction.

Multi-group Transcriptome data prepare and DEG analysis
In multi-group transcriptomic studies, preprocessing of sequencing data remains a pivotal focus at the outset of
our analysis. For transcriptome sequencing data originating from various sequencing technologies or batches,
it's essential to preprocess the data following RNA-seq read alignment and gene quantification, ensuring
comparability across different datasets.
The remove_duplicate_genes and anno_eset functions eliminate redundant genes and annotate them,
allowing for the retention of duplicates based on either average or maximum values, depending on the data
characteristics. To mitigate the impact of outliers on subsequent analyses, the find_outlier_sample function is
used to remove outliers from the annotated data [27].
For transcriptome data derived from different sequencing technologies, batch effects can influence
downstream cohort-level analyses. The iobr_pca function, developed on the FactoMineR R package, facilitates
principal component analysis (PCA) of all samples, visualizing the results to identify variation patterns across
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different groups or batches. The remove_batcheffect function, built on the ComBat function from the sva R
package, is designed to eliminate batch effects across datasets when analyzing the tumor microenvironment
[28].
Differential expression analysis is crucial for identifying genes and pathways that behave differently under
specific biological conditions. Following gene annotation and batch effect removal, iobr_deg enables
differential gene expression analysis between two sample groups. This function employs methods including
Desq2 and limma [12, 13] – Desq2 for RNA-seq data and limma for microarray data – and visually presents
differences between groups through volcano plots or heatmaps, aiding in the identification of characteristic
genes in the data. Further, RNA-seq count data are converted into TPM using the count2tpm function for
subsequent analyses.
In summary, IOBR significantly streamlines the data preprocessing process and offers tailored solutions for
transcriptomic data from different batches or sequencing technologies. The iobr_pca and remove_batcheffect
functions facilitate visualization of sample clustering and batch effect removal. iobr_deg, utilizing Desq2 and
limma, conducts differential gene expression analysis between samples.

Elucidating TME Compositions and Gene Signatures Relevant to Therapeutic Outcomes
Contrasting with many existing approaches that calculate a single signature through a defined method
post-analysis, IOBR stands out in its ability to concurrently discern a series of gene signatures, either published
or user-generated, utilizing a variety of methodological choices. This capability is instrumental in effectively
mapping the interactions between the immune system and tumors. In this context, we extend the application of
IOBR to unravel the TME landscape within the growing body of bulk RNA-seq data.
Users can analyze different cell fractions within the Tumor Microenvironment (TME) and estimate multiple

gene signatures collected in IOBR using the deconvo_tme and calculate_sig_score functions.The
deconvo_tme function incorporates eight cell fraction deconvolution methods (as detailed in our methodology),
aiding in the identification and quantification of various cell types' relative abundance in the TME. This process
reveals the distribution and status of immune cells within the tumor milieu. Additionally, IOBR has amassed a
diverse range of gene signatures, including those related to the TME, metabolism, m6A, and others (see
methodology), while the calculate_sig_score function integrates ssGSEA, PCA, and z-score methods for gene
signature scoring in different contexts, allowing researchers to assess patients' gene expression characteristics
from various perspectives. Moreover, users can create customized gene signature lists for calculate_sig_score
using format_signatures and format_msigdb, enabling more flexible analysis of transcriptomic data based on
their research objectives. Further enhancing its capabilities, IOBR includes the iobr_cor_plot function, which
visualizes the relationship between different phenotypes and cell types in the TME and their response to
treatment using box plots and heatmaps.
Consequently, IOBR amalgamates a variety of deconvolution and scoring algorithms, streamlining the

analysis of different data phenotypes and cell type percentages. This facilitates a deeper understanding of
gene expression patterns, cellular distributions, and their roles in the context of tumor therapy.

Leveraging Signature Generated From scRNA-seq Analyses to Unravel bulk-seq data
Current single-cell analyses have unveiled substantial intratumoral cell state heterogeneity at an exceptionally
detailed level. Despite this, due to its straightforward methodology and cost-effectiveness, bulk RNA-seq data
continue to dominate as the primary approach for gene expression analysis and gene signature assessment.
The IOBR tool enables users to apply insights from single-cell derived signatures to examine tumor
heterogeneity through bulk RNA-seq data.
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Utilizing scRNA-seq data, IOBR allows users to identify cell-type-specific gene expression signatures from
cluster analyses reported in existing studies. Marker genes for each cell type are accurately identified through
differential expression analysis using the GenerateRef function within IOBR. Then, based on the prior
knowledge of cell-type-specific gene expression signatures, we can interpret bulk RNA-seq data by utilizing the
deconvo_tme function, which implements either the linear svr algorithm from CIBERSORT or the lsei algorithm.
Additionally, we employ the get_sig_sc function to acquire marker gene objects from single-cell differential
analysis, serving as inputs for the calculate_sig_score function, thereby enabling the calculation of
corresponding signature scores. IOBR is adept at enumerating TME populations, thereby validating findings
from single-cell studies and unveiling potential new clinical insights in the context of bulk RNA-seq data. This
application effectively links the expanding field of single-cell sequencing research with practical biological
insights.

Identifying TME patterns and analyzing intercellular interactions
The efficacy of a patient's treatment response is influenced not only by the infiltration of different cell types in
the microenvironment but also by the intricate network of interactions among these cells. Hence, to thoroughly
dissect the mechanisms underlying patient treatment responses and ultimately predict treatment outcomes,
IOBR enables patient classification based on cell infiltration and gene signatures. It also facilitates the analysis
of cellular interactions at the bulk RNA-seq level.
The tme_cluster function in IOBR is developed for profiling the tumor microenvironment, providing a clear

depiction of a patient's immune landscape. Utilizing data on TME cell infiltration and gene signature scores,
tme_cluster performs unsupervised clustering to identify optimal TME patterns. To delve deeper into how
intracellular signaling and intercellular interactions affect TME characteristics, we have developed the lr_cal
function, based on the compute_LR_pairs from the easier package. This function calculates interaction scores
for 813 LR pairs, using either count or TPM data. It aids in synthesizing a comprehensive overview of the TME
by integrating various types of prior knowledge.

Evaluating Mutations Associated With Specific Signatures and Delineating Pertinent Mutation
Landscapes
Examining the TME, charting genomic alterations, and understanding their interrelated mechanisms are crucial
for gaining insights that enhance patient classification and inform the development of personalized treatment
strategies. It is critical to recognize that specific gene mutations can trigger the onset of cancer, affecting how
cancer cells interact with the immune system and respond to immunotherapy across diverse cancer types.
Addressing this aspect, IOBR has developed specialized functions for genomic analysis, catering to the
intricate needs of understanding and interpreting these dynamics.
Within the IOBR framework, the make_mut_matrix function is designed to process genomic data in MAF and

transform it into a format that is suitable for the find_mutations function. Utilizing find_mutations involve the
simultaneous processing of genomic MAF data and a selected gene signature matrix. This function enables
users to delve into the relationships between specific genes or signatures and mutations. We are thus
equipped to investigate the differences in gene expression between wild-type and mutant samples of interest.
Furthermore, IOBR allows for an intuitive examination of genomic alterations in samples with high and low
gene or signature scores through a comprehensive tumor atlas, providing a clear visualization of the genomic
landscape associated with these varying scores, such as oncoplot and boxplot.

TME data visualization and Statistical analysis
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Furthermore, to streamline the analysis process, IOBR incorporates the iobr_cor_plot function, designed for
the efficient and rapid exploration of various datasets. This function dynamically generates statistical results
and effectively illustrates the correlation between signatures and specific phenotypes, such as therapeutic
responses or carcinogenic infection statuses. Additionally, IOBR offers the get_cor_matrix and get_cor
functions, capable of describing the Pearson correlation between two or more features. The sig_forest function
facilitates users to integrate the survival analysis output originated from the batch_surv function, and depicts a
forest plot with hazard ratios of multiple signatures. Currently, leveraging signatures to predict specific
phenotypes and survival benefits in response to therapy is a well-established approach in preclinical
bioinformatics analysis. The sig_roc function, built on the pROC R package, is adept at outlining AUC curves
for multiple signatures. The parameter compare method within this function enables users to assess the
statistical difference between any two signatures of interest with an optional method. Additionally, the time_roc
function, based on the timeROC R package, excels in creating time-independent ROC curves to evaluate the
predictive performance of various variables.
The sig_box function can be employed to examine the correlation between a categorical variable and a

specific signature, presenting a boxplot to show the statistical variance in signature scores across different
categories. Meanwhile, the sig_heatmap function visually demonstrates the differences in correlations between
features and categories through heatmaps.
Furthermore, IOBR efficiently visualizes relationships between signature genes and targeted variables (binary
or continuous) using similar methods. It is also capable of identifying signatures significantly correlated with a
specific signature of interest.
Considering that multiple signatures and signature genes may be enriched, IOBR includes a range of

functions for batch statistical analysis and visualization. This encompasses batch survival analysis for either
continuous signature scores or categorized phenotype subgroups, and the aforementioned batch correlation
analysis employs statistical tests such as the Wilcoxon test and Partial Correlation Coefficient (PCC).

Discussion
The rapid development and widespread application of sequencing technologies have enabled scientists to
dissect the tumor's immune microenvironment from multiple dimensions. Currently, RNA-seq has evolved into
a mature and cost-effective analytical technique. It is increasingly utilized to explore cancer-immune
interactions and characterize cancer cells and the tumor microenvironment. Computational methods using
transcriptomic profiling are instrumental in understanding tumor immunity and in characterizing prognostic and
predictive markers of immune therapy response [8].These methods provide valuable insights into immune
response predictive markers, such as estimates of tumor-immune cell infiltration and gene expression
signatures [29]. Furthermore, the advancement of single-cell sequencing technology offers high-resolution data
on immune cell populations and the ability to detect variations between individual cells and cell groups [7, 30].
By integrating and analyzing multi-omic data, including transcriptomics, single-cell, and genomics, we can
dissect the underlying gene regulatory mechanisms and unveil the landscape of the tumor microenvironment.
This deepens our understanding of the interactions and biological mechanisms between immune and tumor
cells [31, 32]. However, the complexity and growing volume of multi-omics data introduce new opportunities
and challenges in analyzing the tumor microenvironment.
In previous research, our team developed IOBR, a user-friendly and comprehensive analysis tool oriented

towards TME analysis [6]. IOBR assists users in efficiently and accurately parsing and visualizing the TME,
exploring clinically relevant features and biomarkers. In this study, we have further expanded IOBR’s analysis
and visualization capabilities. Building on a multi-omics approach with a focus on transcriptomics, IOBR
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comprehensively dissects the tumor immune microenvironment to unearth features related to tumor immunity
and immune therapy responses. IOBR2 offers six main functional modules. It goes beyond effective systemic
analysis of transcriptomic, genomic, and single-cell data by compiling a wide range of statistical and clinical
analysis methods. Additionally, IOBR2 integrates an array of visualization functions, enhancing model
construction and validation capabilities. IOBR2 provides a streamlined and efficient transcriptomic data
preprocessing workflow, including data quality control and processing. An estimation function for signatures
has been developed in IOBR2, alongside the integration of various cell deconvolution algorithms for rapid
parsing and characterization of the TME. Besides the signatures documented in IOBR, IOBR2 has
incorporated published single-cell signatures. It allows users to customize signatures and gene sets based on
their findings in bulk RNA-seq or scRNA-seq data and their oncological insights. Users can then validate their
findings in different transcriptomic datasets using IOBR2, including feature score computation and cell
deconvolution. Furthermore, unveiling TME patterns and intra-tumor interactions, providing comprehensive
descriptions of the TME, identifying effective biomarkers, and decoding the mechanisms behind patient
treatment responses to ultimately predict immunotherapy efficacy have always been critical research directions
[33]. Addressing this, IOBR2 has added a new module for TME interaction analysis. This module employs
clustering to determine TME patterns and analyzes the interactions of infiltrating cell receptor-ligand pairs
within the microenvironment, offering diverse perspectives on the TME. Additionally, IOBR2 provides various
visualization functions suitable for different scenarios, facilitating the batch visualization of TME features and
enabling rapid analysis of correlations between TME characteristics and clinical phenotypes. We have also
introduced feature screening and model construction functions, assisting clinicians in swiftly identifying targets
and biomarkers closely associated with patient treatment prognosis.

Conclusion
Immunotherapy has revolutionized cancer treatment in recent years. The role of TME in these therapies is
gaining increasing acknowledgment. The IOBR package offers a comprehensive downstream transcriptomic
analysis process for tumor microenvironment analysis. It synergistically combines scRNA-seq and genomic
data to present a multi-dimensional landscape of the TME. IOBR has multiple functions for microenvironment
analysis, including cell abundance analysis and signature score calculation. It can also analyze TME
interactions and integrate traditional analytical and modeling approaches, providing a comprehensive analysis
and visualization solution for transcriptome projects. IOBR is expected to continue playing a significant role in
the future with the ongoing advancements in multi-omics and artificial intelligence. It is ready to advance
research in cancer immunology and immuno-oncology, providing new understanding of tumor immunity and
responses to immunotherapy.
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