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Abstract 

 

Deciphering the structural variation across tumour genomes is crucial to determine the 

events driving tumour progression and better understand tumour adaptation and evolution. 

High grade serous ovarian cancer (HGSOC) is an exemplar tumour type showing extreme, 

but poorly characterised structural diversity. We comprehensively describe the mutational 

landscape driving HGSOC, exploiting a large (N=324), deeply whole genome sequenced 

dataset. We reveal two divergent evolutionary trajectories, affecting patient survival and 

involving differing genomic environments. One involves homologous recombination repair 

deficiency (HRD) while the other is dominated by whole genome duplication (WGD) with 

frequent chromothripsis, breakage-fusion-bridges and extra-chromosomal DNA. These 

trajectories contribute to structural variation hotspots, containing novel candidate driver 

genes with significantly altered expression. While structural variation predominantly drives 

tumorigenesis, we also find high mtDNA mutation loads associated with shorter patient 

survival, and acting in combination with alterations in the nuclear genome to impact 

prognosis and suggesting new strategies for patient stratification. 
 

Introduction 

High grade serous ovarian cancer (HGSOC) is the most common type of ovarian cancer. It 

usually presents with disease that has spread beyond the pelvis, and while initially sensitive 

to platinum-containing chemotherapy in 62% of cases, historically over 80% of cases relapse 

with a median overall survival of less than 5 years 1,2. The advent of first-line maintenance 

PARP inhibitor therapy is improving survival, particularly in patients whose tumours are 

homologous recombination repair deficient (HRD) 3. However, around 50% of tumours are 

not HRD 4 and the molecular drivers and therapeutic vulnerabilities in this patient subset with 

poorer prognosis are much less well characterised. 

Recent studies of the HGSOC mutational landscape have noted the problems caused by 

structural complexity at many loci, potentially obscuring driver events and useful biomarkers 
4. The genomic aberrations at these repeatedly mutated loci require whole genome 

sequencing (WGS) data to be accurately resolved, and their combined impact determined. 

However, recurrent aberrations at a number of genes have been repeatedly reported. Initial 

analyses of the HGSOC genome using exome sequencing noted high levels of copy number 

alterations (CNAs) and predicted driver variants in a number of genes including: TP53, NF1, 

RB1, CDK12, BRCA1, and BRCA2 5,6. An early WGS study (N=80) recovered a similar list of 

recurrently disrupted genes, and also reported amplification of the CCNE1 oncogene in 19% 

of samples 7. However, a more recent WGS study (N=118) identified less frequent driver 

alterations impacting additional genes, and reported recurrent deletions - rather than 

amplifications - at CCNE1 in 45% of patients 8. The same study also suggested that the 

majority of driver events in HGSOC are likely to be mediated by somatic structural variants 

(SVs) and copy number alterations (CNAs). Thus, the driver landscape in HGSOC remains 

controversial, highlighting the need for comprehensive analyses of the mutational complexity 

of HGSOC genomes and elucidation of its clinical impact, in larger WGS cohorts. 
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HGSOC is subject to catastrophic mutational events, generating whole genome duplication 

(WGD) 9,10, complex structural variants (cSV) such as chromothripsis or 8chromosome 

shattering9 11, the production of extrachromosomal circular DNA (ecDNA) 12 and other cSV 

types involving overlapping amplifications and inversions 13,14. However, the 

interdependencies between cSV types have not been studied in detail in any tumour type, 

including HGSOC, and their individual and joint impacts on patient survival remain poorly 

understood 15. HGSOC tumour cells are also known to possess particularly abundant 

mitochondria carrying frequent somatic mtDNA mutations, though the best powered studies 

to date have failed to find associations between mitochondrial perturbation and patient 

outcomes 16318. 

 

Epistatic interactions between somatic mutations, across different scales of size and 

complexity, are thought to emerge frequently between different driver mutations during 

tumorigenesis 19,20, but remain poorly studied using WGS data. Several previous studies 

have used deep WGS to characterise HGSOC tumour samples 5,7,21323 combined with gene 

expression profiling and other technologies, but have been constrained by modest sample 

sizes with limited power to detect recurrent mutations and any epistatic interactions between 

them. 

 

Here we uniformly process previous WGS datasets combined with that from new patient 

samples to construct the largest deeply sequenced WGS combined cohort to date (N=324). 

We comprehensively describe the mutational landscape of HGSOC to define candidate 

driver genes subject to recurrent somatic single nucleotide variants (SNV), SV or CNA and 

for the first time determine the diversity and interactions of mutations driving tumorigenesis. 

We reveal the divergent evolutionary trajectories adopted by different HGSOC tumours to 

generate structural diversity, and gain new insights into the interdependencies of cSV 

events. We also perform the first comprehensive study of mtDNA mutations in HGSOC, 

revealing their association with patient survival. Finally, we construct an overarching model 

for HGSOC prognosis based upon all features of the mutational landscape and identify the 

most influential features. 

 

Methods 

Scottish sample collection and preparation for WGS and RNAseq 

Scottish HGSOC samples (subsequently referred to as the SHGSOC cohort) were collected 

via local Bioresource facilities in Aberdeen, Dundee, Edinburgh and Glasgow as previously 

described 22. Clinical data for the SHGSOC cohort was retrieved from the Cancer Research 

UK Clinical Trials Unit Glasgow, the Edinburgh Ovarian Cancer Database and available 

electronic health records; the study received institutional review board approval from the 

Lothian Annotated Human BioResource (ethics reference 15/ES/0094-SR751) and NHS 

Greater Glasgow & Clyde Biorepository (ethics reference 22/WS/0020). HGSOC diagnosis 

was confirmed by formal expert pathology review (CSH) and samples were estimated to 

have >40% tumour cellularity by macroscopic visual assessment. Matched germline DNA 

was extracted from whole blood for each patient. Somatic and germline DNA was extracted 

from tumour and blood respectively as described previously 22. Somatic RNA was extracted 

from the same tumour sample as the DNA used for WGS. RNAseq was carried out by the 

Edinburgh Clinical Research Facility on an Illumina NExtSeq500 as previously described 22. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.12.575376doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.12.575376
http://creativecommons.org/licenses/by/4.0/


 

Sequence acquisition and availability 

WGS and RNA-seq reads were downloaded in compressed FASTQ format from the 

sequencing facility or in aligned BAM format (including unaligned reads) from the European 

Genome/Phenome Archive (Australian Ovarian Cancer Study (AOCS): EGAD00001000293, 

British Colombia Cancer Agency (BCCA): EGAD00001003268, MD Anderson (MDA): 

EGAD00001005240) and the Bionimbus Protected Data Cloud (The Cancer Genome Atlas 

(TCGA)). The reads obtained in BAM format were query-sorted and converted to FASTQ. 

The clinical information including survival end-points, age and FIGO (Fédération 

Internationale de Gynécologie et d9Obstétrique) stage at diagnosis is available for the AOCS 

and TCGA patients as part of the PCAWG project 24. Clinical information for the MDA and 

BCCA cohorts are available from the supplementary data of their respective publications 
21,23. The SHGSOC cohort are available via EGA at accession number EGAS00001004410. 

Primary processing of RNA-seq 

RNA-seq data was analysed using the Illumina RNA-seq best practice template. Briefly, 

reads were aligned to the hg38 reference genome and quality control was carried out. 

Salmon quant was used to quantify the expression of transcripts against the Ensembl 99 

hg38 RefSeq transcript database indexed using the salmon index (k-mers of length 31). 

Transcript-level abundance estimates were imported into R and summarised for further 

gene-level analyses. For differential expression analyses, raw expression counts were used 

by the DESeq2 package. Previously published RNA-seq data available for the AOCS 

(N=80), TCGA (N=31) and MDA (N=26) cohorts, together with novel RNA-seq data for the 

SHGSOC (N=69) cohort, generated for the present study as detailed above, were processed 

in this way from FASTQ. 

Primary processing of WGS 

Reads were aligned to the hg38 reference genome. Somatic and germline variant calling 

was performed using a bcbio 25 1.0.7 pipeline as previously described 22. Germline SNPs 

and indels (SNVs) were called with GATK 4.0.0.0 HaplotypeCaller. Germline SNVs reported 

in ClinVar 26 to disrupt the function of 12 HGSOC risk genes 27329 were recorded (Supp Table 

S2), and BRCA1/2 variants were found to be enriched in patient samples relative to 

comparable populations in gnomAD 30. Somatic SNVs and indels were called as a majority 

vote between Mutect2 1.1.5, Strelka2 and VarDict 2017.11 .23. Small variants were 

annotated with Ensembl Variant Effect Predictor v91 and filtered for oxidation artefacts by 

GATK 4.0.0.0 FilterByOrientationBias. Somatic structural variants were called with Manta 

1.2.1 and GRIDSS 2.7.3. Somatic copy number alterations (CNAs) were called with CNVkit 

0.9.2a0, CLImAT 1.2.2 and PURPLE 2.51. In both cases the intersect of the calls were taken 

forward as consensus calls. Consensus SVs were identified using viola-sv 1.0.0.dev10 31 

with a proximity threshold of 100bp. Consensus CNAs had at least 50% overlap between 

segments with the same direction of copy number change. Sample quality control was 

performed with Qsignature 0.1 to identify sample mix-ups and VerifyBamId 1.1.3 to identify 

sample contamination. Tumour cellularity was estimated using both CLImAT9s estimates and 

p53 variant allele frequency and CLImAT9s estimates were used throughout. To predict the 

level of HR deficiency in each tumour sample we implemented the HRDetect algorithm as 

published by Davies and Glodzik et al 32
 as previously described 22. 
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Clustering and classifying structural variation 

We sought to determine whether a given SV belonged in a cluster of SVs or occurred alone. 

SVs occurring in clusters are expected to be more likely to represent the consequence of 

complex mutational processes such as punctuated catastrophic events. To cluster SVs we 

used the same approach as used by the PCAWG consortium (clusterSV 33). This approach 

identifies groups of SVs that occur closer together on a given chromosome than you would 

expect for that SV type on that chromosome given the overall distribution of breakpoints. To 

compare the SV landscapes between cohorts, we classified the consensus SVs. SVs that 

were not clustered were classified according to type, size, and reciprocity, in the case of 

inversions and translocations. This approach created 18 categories: clustered SVs; (simple) 

deletions (<100bp, 100 3 1kb, 1kb-10kb, 10kb-100kb, 100kb -1Mb, >=1Mb), duplications 

(<1kb, 1kb-10kb, 10kb-100kb, 100kb -1Mb, 1Mb 3 10Mb, >=10Mb), inversions (large 

(>=1Mb) reciprocal, small (<1Mb) reciprocal, large (>=1Mb) unbalanced and small (>=1Mb) 

unbalanced), translocations (reciprocal or unbalanced). All size categories were verified 

using mixture modelling of size distributions for that SV type. 

Complex SV detection 

Eight categories of cSV were predicted: chromothripsis, ecDNA, breakage fusion bridges, 

tyfonas, pyrgo, rigma, chromoplexy and seismic amplification. ShatterSeek11 was used to 

call regions subject to chromothripsis 34 based upon MANTA SV calls and CNVkit CNA calls, 

and following the recommended thresholds for the number of interleaved SVs, the number of 

adjacent segments oscillating between CN states, the number of interchromosomal 

translocations, the fragment joints test, the chromosomal enrichment test and the 

exponential distribution of breakpoints test 11. Candidate ecDNAs were predicted using 

AmpliconArchitect 35 with default settings to call ecDNA based upon purity and ploidy 

adjusted somatic CN calls from PURPLE. The resulting graph and cycle output files were 

processed by AmpliconClassifier36 to identify amplicons with CN>4 and size >10kb as 

ecDNAs. The junction-balanced genome graph (JaBbA) inference algorithm was used to 

generate genome graphs13. The resulting graphs were assessed as known cSV classes 

within gGnome 37, including breakage fusion bridges, tyfonas, pyrgo, rigma and 

chromoplexy. We detected putative regions of seismic amplification using an established 

approach 14 and the default threshold for amplification (CN >= 5 for diploid samples, and CN 

>= 9 for samples with ploidy >2). A candidate seismic amplicon was defined as one that 

contains amplified CN segments linked by >=14 SV rearrangements, as recommended14. 

 

CNA signature quantification 

To robustly apply previously defined CN signatures 38 to higher resolution whole genome 

sequencing data, we filtered LogR and B allele frequencies from reads aligned to the whole 

genome to only include loci at Affymetrix Genome-Wide Human SNP Array 6.0 positions and 

recalled copy number using ASCAT 2.5.2 . We then quantified the exposures of each of the 

copy number signatures in our samples using CINSignatureQuantification 1.1.2 with 

unrounded total copy number, as recommended 38. Individual signature exposures were 

compared between samples with and without BRCA1/2 mutation using Wilcoxon rank-sum 

tests. 

Recurrently altered oncogenic pathways 

We examined the extent that disruption via SNVs, CNAs and SVs was enriched within 

previously published oncogenic signalling pathways39. We examined ten canonical 
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pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGF³ signalling, 

p53 and ³-catenin/Wnt. The extent of enrichment of each type of alteration in each pathway 

was considered separately and represented by an oncoplot of pathway enrichment by 

variant type per sample using the R package complexHeatmap 40. 

Identification of genomic regions of recurrent copy number alteration/structural 

variation 

Regions of the genome undergoing recurrent copy number alteration whether that be 

deletion or amplification were identified using GISTIC (v2.0.23). GISTIC compares the 

observed frequency of alteration in the region across all samples, combined with the 

observed magnitude of change, to the background expectation of frequency and magnitude 

of copy number alteration obtained by permuting genomic regions. We considered regions to 

be significantly recurrently deleted or amplified at a q-value < 0.05 and the region 

boundaries were defined to ensure 95% confidence that the reported region contained the 

recurrent event of interest. The CNA hotspot on chromosome X was identified by separate 

GISTIC analysis as GISTIC excludes chromosome X by default. GISTIC was applied to 

PURPLE segmentation calls only as these were more appropriately sized for use with 

GISTIC. More stringent filtering to consider only consensus calls within GISTIC peaks was 

applied downstream when investigating the impact of potential CNA drivers on expression. 

Broader chromosome-arm level recurrent gains and losses were also identified using 

GISTIC. 

 

Genomic regions of significant (FDR corrected p-value < 0.05) SV enrichment were 

identified using a negative binomial regression model of SV density throughout the genome 

split into 50kb bins with 1kb overlap. All types of SV were considered separately in addition 

to breakpoint density. This model was implemented using the Fishhook package 41, adjusting 

for mappability (scores in 1Mb bins), GC content, CpG islands 42, gene density (over 5 Mbp 

windows; GENCODE v41), the presence of repetitive elements (DNA transposons, SINE, 

LINE, short tandem repeats, and long tandem repeats), and fragile sites 43. Genomic regions 

with low mappability including callable sites with mappability score < 0.9 44 and blacklisted 

regions 45 were excluded. Chromosomal enrichments of SV classes were assessed using 

binomial tests of proportions accounting for chromosome length. 

 

Prediction of SNV mediated driver genes 

We inferred SNV driver variants across the coding (canonical transcripts only) and non-

coding genome separately for six genomic element types: promoter, 59 UTR, coding, 39 UTR, 

lncRNA and miRNA. We used four driver prediction methods: OncodriveCLUSTL 46, 

OncodriveFML 47, ActiveDriverWGS 48 and dNdScv 49, with differing approaches to driver 

identification. Prior to identification of driver variants, single nucleotide variants were filtered 

to remove variants with variant allele frequency (VAF) < 0.1. OncodriveCLUSTL v1.1.3 

identifies unexpected clustering of SNVs. We optimized the OncodriveCLUSTL hyper-

parameters (simulation window, smoothing window, and clustering window), selecting from a 

range of values for each, to maximise: the goodness of fit of observed p-values to the null 

distribution and the enrichment of known cancer genes in candidate driver elements. 

Otherwise we used default parameters and clusters were concatenated across genomic 

regions to identify candidate drivers at Q < 0.01. We used OncodriveFML v2.2.0 with default 

parameters to identify candidate variants based on bias in functional impact (Q < 0.01) and 

ActiveDriverWGS v1.2.0 to identify candidate variants based on mutational burden in 
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functionally defined elements of interest (FDR < 0.05). Lastly, for coding regions only, we 

used dNdScv with default parameters to identify candidate variants based on the ratio of 

synonymous to non-synonymous mutations (qglobal cv < 0.01). Overall there was poor 

agreement between candidate drivers across algorithms (Supp Table S11). The results of 

dNdScv are expected to be most conservative, since it requires sufficient numbers of 

nonsynonymous SNVs per gene and uses a rigorous proxy for the background mutation 

rate. Six known HGSOC driver genes identified by dNdScv plus two additional novel 

candidate genes identified by dNdScv and at least one other algorithm were taken forward 

as candidate SNV mediated driver genes, and the full list of candidates from all algorithms is 

provided. 

Prediction of CNA/SV mediated driver genes 

Genomic windows enriched for deletions, duplications, translocations, inversions and all 

breakpoints (at FDR < 0.05 by Fishhook) and CNA hotspots identified by GISTIC were 

intersected with COSMIC Cancer Gene Census (CGC) genes (version 96) and with the 

corresponding sample level consensus SV and CNA calls respectively. The CGC 50 is an 

established starting point for studies of cancer driver genes, containing 719 manually 

curated cancer driver genes, supported by functional validation studies and evidence of 

recurrent SNV/CNA in tumours. CGC genes in hotspots were tested for differential 

expression on occurrence of the SV/CNA type driving the hotspot using DESeq2. Samples in 

which the SV/CNA intersects the CGC gene were compared with those lacking an SV/CNA 

of that type in the gene being tested. Differential expression was tested separately in each of 

the four cohorts for which RNA seq data was available, and in a combined, batch corrected, 

table of expression values combining cohorts. An adjusted p-value of 0.05 for the gene being 

tested in the DESeq2 results was considered significant. The log2 fold change reported is 

that from the combined expression analysis, with the number of cohorts with a significant 

change reported as a replication score. An analysis of the FDR of this procedure suggested 

replication across cohorts maintained an FDR of less than 0.05. 

Analyses of mutual exclusivity and co-occurrence patterns across somatic alterations 

Complex SVs were clustered according to their prevalence across samples using 

hierarchical clustering. The major axes of variation in the prevalence matrix (excluding HRD 

and WGD) were identified using principal components analyses and the first two 

components were compared in the presence of WGD and HRD. Patterns of pairwise co-

occurrence and mutual exclusivity between complex SVs were explicitly tested based on 

weighted mutual information using SELECT 51 to extract significant pairwise relationships 

relative to expectation, whilst limiting the false discovery rate. This was repeated to consider 

all pairwise combinations of key nuclear somatic alterations, HRD and mtDNA mutations by 

mitochondrial complex. The fraction of tumour genome duplicated was compared in samples 

with and without breakage fusion bridges or chromothripsis. 

 

Calling mtDNA mutations and mtDNA copy number 

For each sample, reads aligned to the mitochondrial reference genome were extracted from 

the alignment files using Samtools (v1.12). To mitigate against the issue of mismapped 

reads originating from nuclear-encoded mitochondrial pseudogenes (known as NUMTs), 

which could introduce false positives into the variant calling, the RtN! algorithm was used to 

filter out putative NUMT reads, including those not represented in the human reference 

genome, retaining only those from authentic mtDNA 52. The retained reads were then 
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subjected to variant calling using VarScan2 (v2.4.4) 53 with the following parameters: --

strand-filter 1, --min-avg-qual 30 (minimum base quality 30), --min-coverage 2, --min-reads 

2, and --min-var-freq 0. VarScan2 was selected as the preferred variant caller based on our 

own benchmarking analysis and its successful use in previous studies 16,54. To estimate the 

number of copies of mtDNA in tumour and normal samples, we applied a formula derived 

from the pan-cancer analysis of whole-genomes study (PCAWG)16. 

 

To enhance the precision of our variant calls, we implemented a stringent set of filters. 

These filters excluded variants displaying significant strand bias (phred > 60), variants 

located within error-prone regions due to homopolymers (66-71, 300-316, 513-525, 3106-

3107, 12418-12425, 16182-16194), variants with limited supporting reads (<30), and 

variants with extremely low heteroplasmy (<0.25% VAF). Subsequently, SNVs and INDELs 

were annotated using Ensembl's Variant Effect Predictor (VEP) version 107, setting the --

distance parameter to 0. This annotation included pathogenicity predictions by SIFT 55 and 

PolyPhen2 56. To validate the effective removal of reads originating from NUMTs, mtDNA 

variants were called in RNA-sequencing (RNA-seq) samples that were matched with a 

subset of the tumour WGS samples (206 out of 324 samples), since NUMTs lack evidence 

of transcription. Our analysis revealed that 88.3% of variants called in the WGS samples 

could also be identified in the corresponding RNA-seq data, and this percentage increased 

to 97.3% for variants above 10% heteroplasmy. 

Multivariable analyses of the impact of molecular factors on overall survival 

The survival analyses considered 277 samples with complete overall survival time after 

diagnosis and tumour FIGO stage data. These samples were obtained from four cohorts 

(AOCS 80; BCCA 59; SHGSOC 110; TCGA 31). Overall survival times greater than 10 years 

were right censored (19 samples). The presence of: nine classes of complex SV (whole 

genome duplication, chromothripsis, pyrgo, chromoplexy, breakage fusion bridge, ecDNA, 

rigma, tyfonas, and seismic amplification); SNVs in eight candidate driver genes (TP53, NF1, 

RB1, BRCA1, BRCA2, CDK12, SLC35G5 and TAS2R43); CNA or SVs in eleven candidate 

driver genes (AXIN1, PCM1, WRN, FGFR1OP, LEPROTL1, DNMT3A, ARID1B, TCEA1, 

PTEN, CCNE1 (inversions and duplications), and CEP89 (deletions and duplications)); and 

deleterious mitochondrial mutations were tested for their impact on survival. Overall survival 

was modelled using a Cox proportional hazards regression model using the coxph method in 

the R package survival. The effect of each variable was examined individually and in 

combination using a multivariable model adjusted for age (greater than mean age at 

diagnosis), FIGO stage (3 or above), HR deficiency as assessed by HRDetect, and stratified 

by cohort. Effect estimates with 95% confidence intervals were presented as forest plots. In 

addition, we applied cross-validated elastic-net regularised Cox regression to perform 

variable selection using the cv.glmnet method in the R package glmnet, revealing the most 

informative variables in the reduced forest plot. 

Results 

 

Extreme structural diversity dominates the HGSOC genome 

 

The combined WGS cohort (N=324) constitutes the largest deeply sequenced (median 71X 

coverage; range: 52-136X; Supp Figure 1) primary HGSOC tumour dataset to date. WGS 

data from matched tumour and normal blood samples, and RNA-seq data from the same 
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tumours, were uniformly remapped and analysed to generate a harmonised dataset of 

consensus somatic mutation calls and gene expression for five HGSOC WGS sub-cohorts: 

SHGSOC (N=115 22), AOCS (N=80 7), BCCA (N=59 21), TCGA (N=44 5), and MDA (N=26 23). 

Although each sub-cohort was independently ascertained and sequenced, uniform 

processing and analysis revealed consistent mutational landscapes (Figure 1; Supp Figure 

2). These landscapes are dominated by somatic SVs and CNAs occurring with similar rates 

and genomic spans (Supp Figure 2) rather than by SNVs (Supp Figure 3). SVs and CNAs 

are dominated by large duplications, with duplications composing 89% of all CNAs (Figure 

1), consistent with previous studies 33.  A variety of complex SVs (cSVs) are also highly 

prevalent in this tumour type (Figure 1A; Supp Table S1), particularly chromoplexy (55% of 

samples), chromothripsis (31%), pyrgo (28%) and breakage-fusion-bridge events (BFB) 

(27%). Diverse ecDNA species were observed in a minority (16%) of tumours across sub-

cohorts and in 8% of tumours the predicted ecDNA structures contained an amplified 

oncogene (Supp Table S2). The only major difference in cSV occurrence between sub-

cohorts was a significant enrichment (OR: 9.28; Chi-squared p=4.1x10-13) of ecDNA in 

AOCS samples, which are enriched for chemoresistant and relapsed tumours. As expected, 

samples also show enrichment of low-frequency germline variants known to increase the risk 

of HGSOC (Supp Table S3). 

 

These events occur on a background of frequent HRD (56% of samples) and whole genome 

duplication (WGD; 49%). HRD and WGD are not mutually exclusive but are anti-correlated 

such that HRD is depleted in samples with WGD (odds ratio (OR) 0.56; Chi-squared 

p=0.015). HRD tumours are significantly enriched for deletions (Wilcoxon p-value <2.8x10-5) 

and WGD samples are significantly enriched for duplications (Wilcoxon p-value <1.8x10-8) as 

expected (Figure 2A, Supp Figure 3). The high frequency of CNAs provides insight into the 

underlying processes generating structural diversity, with dominant contributions of CNAs 

linked with HRD and chromosome mis-segregation, as reflected in the presence of known 

copy number signatures 38 as expected based on previous reports (Supp Figure 4; Supp 

Table S4).  

 

The burden of SVs and CNAs per sample across the cohort are predicted to disrupt the 

function of several thousand genes in each tumour (Figure 1B), representing a large 

predicted deleterious mutation load. Many genes are impacted in the majority of samples, 

but with the exception of TP53 they appear to be passenger rather than driver mutations 

(Figure 1C). For example, the top 10% of most heavily disrupted genes (N=1932) are only 

modestly enriched for genes with known roles in cancer (Cancer Gene Census 

(CGC)50)(OR: 1.5; Chi-squared p = 4.4x10-4). The majority of these genes appear to suffer 

collateral damage due to their proximity to SV/CNA hotspots. The compound phenotypic 

effects of high mutation rates at multiple levels of structural complexity on a given gene or 

pathway are challenging to predict. However, oncogenic signalling pathways 39 are likely to 

be disrupted in most samples, most prominently the RTK/RAS, NOTCH, Hippo and WNT 

pathways (Supp Figure 5). Intriguingly these pathways are often impacted by multiple 

pathogenic mutations, at multiple levels (SNV/SV/CNA) simultaneously, consistent with the 

presence of epistasis in tumour evolution, generating complex interactions between 

mutations in different genes in a pathway 19.  
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Figure 1: Structural complexity in HGSOC. (A) Structural variants are abundant across the combined cohort, reflected in the genomic 

span encompassed by SV and CNA calls and in the frequencies of translocations and complex events. Samples also show frequent HRD 

and WGD across tumour stages and cohorts. Pathogenic germline variants are relatively enriched in known HGSOC susceptibility genes. 

(B) Most protein-coding genes are disrupted by each class of variation across all samples (bar chart on left) but disrupted genes per 

sample (forest plot on right) are dominated by SVs and CNAs. Variants predicted to disrupt function are nonsynonymous SNVs of 

high/moderate impact and SVs or CNAs overlapping >=1 protein coding exon. (C) The most frequently disrupted genes overall are not 

enriched for known cancer genes, tend to be longer than average and to intersect recurrent CNA hotspots. The most frequently disrupted 

gene is TP53 where there is near ubiquitous mutation. NAALADL2 is an unusually long (1.37Mb) gene and is located within a common 

fragile site frequently altered across many tumour types (Li et al, 2020). 
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Non-random distribution of complex structural variation across the genome 

Both SVs and CNAs are non-randomly distributed across chromosomes in this cohort 

(Figure 2A; Supp Figures 6 and 7). We observed notable enrichments of all SV classes on 

chromosomes 8, 11, 12, 19 and 20 (Methods; Supp Figure 6A; Supp Table S5). 

Chromosome 19 also represents a novel hotspot for cSV in HGSOC as it is significantly 

enriched for BFB, chromothripsis, ecDNA and chromoplexy (Supp Figure 6B; Supp Table 

S5). Remarkably, this hotspot was seen across sub-cohorts, supporting the highly 

rearranged state of this chromosome as a general feature of HGSOC (Supp Table S5). The 

densities of SVs, chromothripsis and BFB on chromosome 19 peak at CCNE1 (Figure 2C), a 

known HGSOC oncogene subject to recurrent amplification 4,57. Samples with BFB events at 

this locus also acquire higher CCNE1 copy number amplifications than those with simple SV 

duplications (Supp Figure 8). CCNE1 expression is also higher in the presence of SV 

duplications of any type and particularly so in the albeit few tumours where ecDNA and 

BFBs co-occur (Fold change relative to simple SV duplication: 2.8 (95% CI: 1.7 - 4.6), adj. p-

value = 0.05) (Supp Table S6). This capability to amplify oncogenes beyond what is feasible 

via simple duplication events is likely of advantage to an evolving tumour. Similar effects as 

a result of ecDNA mediated amplification have been reported in other cancer types and are 

posited to lead to treatment resistance and subsequent poorer prognosis 58.	
 

We discovered additional genomic regions with significant enrichment of SVs - SV hotspots - 

at a number of loci across the genome (FDR < 0.05; Supp Table S7). In addition to the 

strongest signal across all SV types observed on chromosome 19, there are deletion and 

inversion hotspots on chromosome 2, a further inversion hotspot on chromosome 10 and 

multiple further loci enriched for SV breakpoints regardless of type throughout the genome. 

Moreover, we observe significant hotspots of breakpoints driven exclusively by 

translocations. We also determined CNA hotspots across the cohort based upon significant 

enrichment of variants in regions varying in size from tens of Kb up to multi-megabase 

regions encompassing entire chromosome arms (Methods; Supp Figure 9). Of 44 focal CNA 

hotspots examined, 25 were enriched for deletions and 19 for amplifications (Figure 2A Supp 

Table S8). The proportion of samples with CNAs at a given CNA hotspot varied from 4% to 

42% (n=12 to 136 out of 324) and from 23% to 88% (n=73 to 284) for deletion and 

amplification hotspots respectively (Figure 2B). This suggests that even a relatively low level 

of recurrence, of deletions in particular, across samples is unlikely by chance and therefore 

informative. Chromosome arm-level events are frequent in HGSOC 5, in particular arm-level 

losses occur across many chromosomes in high proportions of samples (Supp Figure 9). 

Although CNA hotspot regions do include genes with known roles in cancer 50, they occur 

approximately in the numbers expected by chance (deletion hotspots OR = 1.2, CI: 0.88-1.7 

Chi-squared p = 0.18; duplication hotspots OR = 1.4, CI: 0.99-1.96 p = 0.043). A critical 

question is therefore whether the expression patterns of such genes are altered, in response 

to the CNA burdens they incur, to affect the tumour phenotype. 
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Hotspots of structural alteration implicate novel candidate driver genes 

 

We adopted a novel approach to interrogate genes within CNA hotspots, exploiting the 

matched expression data available for the sub-cohorts making up the combined cohort to 

rigorously prioritise candidate drivers. We assume that CNA associated driver genes should 

show significant alterations in expression, consistent with the CNAs that impact them. For 

each cancer gene census gene present in a CNA hotspot (449 genes in total) we calculated 

the differential expression (DE) seen between samples with high copy number versus those 

with low copy number in each sub-cohort, and the associated false discovery rate (FDR) for 

DE genes seen across multiple sub-cohorts (Methods; Supp Table S9). Given the likely 

presence of confounding variation in the expression data (reflecting cellular heterogeneity 

and technical variation) these tests are necessarily conservative. Supporting this, we found 

that significantly lower expression of PTEN (a known tumour suppressor gene (TSG) in 

HGSOC) was associated with CNA deletion, but as this was seen in only one sub-cohort it 

failed to reach significance (FDR<0.05) and was excluded. Eight genes were identified as 

candidate drivers with several neighbouring genes altered simultaneously (Figure 2D). The 

expression of AXIN1 (16p deletion, lower expression), DNMT3A (2q duplication, higher 

expression) and TCEA1 (11q duplication, higher expression) all reflected the CNA burdens 

observed. Significantly lower expression of PCM1, WRN and LEPROTL1 were associated 

with deletion, and all three are located within the same 8p deletion hotspot. Similarly, 

ARID1B and FGFR1OP are both within a 6q deletion hotspot, and both show lower 

expression in response to CNA deletions. Notably, the 8p deletion hotspot has been 

reported in many other tumour types 59 and may confer multiple advantageous traits on 

tumours 60. The genes underlying these effects were unknown, though recent work has 

shown that WRN deletion increases cell growth in vitro, suggesting WRN is a novel 

haploinsufficient pan-cancer TSG underlying the 8p deletion hotspot 61. 

 

An analogous approach was taken to prioritise candidate genes based upon FDR corrected 

differential expression in SV hotspots (Figure 2D; Supp Table S10). Two genes emerged as 

SV associated driver candidates: significantly lower expression of PTEN (a known TSG in 

HGSOC) was associated with disruption by SV breakpoints, and higher expression of the 

HGSOC oncogene CCNE1 was associated with both duplications and inversions (including 

foldback inversions where an inversion co-occurs with a duplication). The CEP89 gene 

neighbouring CCNE1 also passed the FDR threshold as a driver candidate, but was 

associated with both duplications and deletions, suggesting it may simply be a marker for the 

complex disruptions accumulating at the CCNE1 locus rather than a driver in its own right. 

Genes and noncoding regions carrying recurrent SNVs were analysed using multiple driver 

prediction algorithms (Supp Figure 10; Supp Table S11) and recovered 6 known HGSOC 

driver genes (TP53, NF1, BRCA1, CDK12, BRCA2, RB1), plus another 2 genes with multiple 

paralogues: SLC35G5 which has been reported previously as a source of artefacts 62 and 

TAS2R43. Many of the recurrently mutated genes have been identified as likely false 

positives in previous studies63,64 and in common with a recent study 8, we found no 

convincing evidence of SNV drivers in noncoding regions (Supp Figure 10).  

 

The combined driver landscape - encompassing genes driven by SNVs, SVs and CNAs - is 

dominated by diverse structural alterations (Figure 3). The predicted pathogenic mutations 

(Figure 3A) reflect higher rates of alteration for known HGSOC genes than seen in previous 

studies lacking WGS data. As expected there appears to be improved diagnostic power for 
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WGS in structurally diverse tumours relative to exome or panel sequencing. However it is 

possible that the higher rates seen in Figure 3A are underestimated, since the total mutation 

loads (regardless of pathogenicity) seen at driver genes are even higher (Figure 3C). For 

example, NF1 pathogenic SNV/SV are seen in 15% of samples (Figure 1A), but in total 40% 

of samples show SNV/SV/CNA at NF1 (Figure 1C). Disruption of PTEN and RB1 have been 

reported as recurrent events in HGSOC 4,65 but the structural complexity seen at these loci 7 

may have obscured inactivating alterations in studies lacking WGS data. Our current data 

confirm that these tumour suppressors are frequently disrupted by structural alterations, with 

pathogenic genomic events of any kind seen in 14% (PTEN) and 14% (RB1) of samples. 

The overall rates of alteration to NF1, PTEN and RB1 are similar to those seen in another 

WGS project (N=118) ascertaining combined SNV/SV/CNA loads 24, which reported 

alteration rates of 24%, 14% and 19% respectively. Frequent pathogenic structural 

alterations to BRCA1 and BRCA2 are consistent with the role of SV/CNA mutations in HRD 
22. Overall, each HGSOC sample is predicted to contain 3.8 driver variants on average with 

only 1.3 contributed by SNVs and the remainder involving SVs and CNAs (Figure 3B), which 

is similar to recent estimates based on WGS data (24; HGSOC N=118). In addition, many 

candidate driver SVs are members of significant SV clusters (Figure 3B, 3C) 33, which often 

indicate cSV events such as chromothripsis, suggesting that these events may be acting as 

drivers in some contexts. As we have shown tumours which are HRD or WGD differ in their 

genome-wide burden of deletion and duplication respectively, however, this appears to have 

no bearing on either the number or distribution of drivers by mutation type (Supp Figure 11). 
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Figure 3: Diverse somatic mutation classes underlie HGSOC candidate driver genes. (A) Combined oncoplot indicates predicted driver genes 

(Methods) subject to recurrent pathogenic SNV/SV/CNA mutations predicted to impact function (SNVs annotated are nonsynonymous variants of HIGH or 

MODERATE impact by VEP; SVs or CNAs overlapping >=1 exon). The unbracketed percentage is the percentage of patients with a predicted pathogenic 

SNV/SV or CNA. For SNV/SVs this is either an SNV or a deletion, or in the case of the asterisked rows, representing genes associated with gain of 

function it is an SNV or duplication. The bracketed percentage is less conservative and is the percentage of patients with any annotated event. The vertical 

bar plot represents mutational burden of predicted deleterious SNVs/SVs.(B) The horizontal bar plot (left) represents the proportion of patients with 

different types of pathogenic driver mutations. The forest plot (right) represents the mean number of each type of driver mutation across tumours with at 

least one event and the standard deviation (whiskers), based on N=324 patients. (C) Total mutation frequencies in candidate driver genes. The 

proportions of patients with somatic alterations of any kind in each gene, whether predicted to be pathogenic or not. Clustered SVs are members of SV 

breakpoint clusters from ClusterSV (Li et al, 2020), the Multi-Hit category represents patients with >1 somatic alteration in the gene. 
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HRD and WGD underlie different evolutionary trajectories to structural diversity 

 

The chaotic HGSOC genome harbours frequent occurrences of most cSV types reported to 

date, presenting a disordered and, at first sight, uninterpretable picture. Using state-of-the-

art algorithms we have discovered high frequencies of known cSV types across the cohort, 

with chromoplexy, chromothripsis, pyrgo, rigma, BFB and ecDNA each seen in >10% of 

samples (Supp Table S1). This substantial WGS cohort is sufficiently powered to reveal 

significant biases in the patterns of cSV co-occurrence, a unique opportunity to study their 

genomic distributions and interactions in detail in patient samples, bringing clarity to our 

understanding of a tangled landscape.  

 

We define two evolutionary trajectories to complex structural diversity (Figure 4). Each of 

these trajectories represent a major axis of variation in the cSV landscape in HGSOC, 

reflecting the underlying genomic state of the tumour. One trajectory involves HRD (Figure 

4B, PC1) which is positively associated with chromoplexy, while the other involves WGD 

(Figure 4B, PC2) and a strong tendency to the acquisition of other cSV types (Figure 4B). 

Although these trajectories are not entirely mutually exclusive, it is evident that the divergent 

underlying genomic states of (i) deficiency in DNA repair and (ii) aneuploidy, are key aspects 

of HGSOC tumour biology which relate to different cSV profiles (Figure 4C). Striking patterns 

of mutual exclusivity exist between HRD and all cSV types except chromoplexy (Figure 4D). 

Particularly strong associations are seen between the fraction of the tumour genome 

duplicated and two highly disruptive cSV types - chromothripsis and BFB (Figure 4E). 

Abundant chromothripsis and BFB events account for disproportionate disruptions of 

genomic structure across the cohort, encompassing large fractions of the genome and 

causing many SV breakpoints in affected samples. The co-occurrence of these events with 

WGD suggests that WGD may buffer the particularly disruptive effects of these catastrophic 

events and limit their impacts on gene function.  

 

Extensive characterisation of the HR proficient group of HGSOC is of great clinical 

importance as these patients have fewer options for targeted treatment, with patients with 

HRD tumours benefitting more from PARP inhibition. We observe that patients with a greater 

number of predicted chromothripsis events than average in their tumour genomes - or 

severe chromothripsis - had better prognoses than those patients with fewer or no 

chromothripsis events (Supp Table S12). Other cSV types, including ecDNA, showed 

weaker evidence for association with survival (Supp Table S12), contrary to previous pan-

cancer reports 15 suggesting that the impact of ecDNA may differ in HGSOC from its impact 

in other tumour types.  
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Mitochondrial and nuclear mutations combine to impact patient survival 

 

Many tumour types, including HGSOC, are known to accumulate somatic SNVs in their 

mtDNA 16, but the consequences for mitochondrial (mt) function and patient survival remain 

unknown. We have found high mtDNA copy numbers and abundant somatic SNVs in tumour 

samples (Figure 5A; Supp Figure 12A; Supp Table S13), such that genes encoded in 

mtDNA suffer truncating and missense mutations at higher rates than in most other genes, 

including all known TSGs other than TP53 (Supp Figures 12B and 12C). The highest 

deleterious mutation loads accumulate at particular genes (Figure 5B) and are predicted to 

disproportionately affect the function of mitochondrial Complex I (CI) and Complex IV (CIV) 

genes (Figure 5C). Remarkably, the predicted deleterious SNV loads in mtDNA are also a 

novel biomarker of poor patient prognosis, and mutations of higher heteroplasmy showing 

the largest effects (Figure 5D; Figure 6E). Notably, no associations with survival were seen 

for synonymous SNVs or SNVs occurring in mitochondrial RNA genes (Figure 5E; Supp 

Figures 13C and D), demonstrating that the impact on patient survival is mediated via the 

compromised functions of protein-coding mitochondrial genes, particularly those in CI. 

 

Recent studies have reported deleterious somatic SNV loads in mitochondrial genes in 

renal, thyroid, and colorectal tumour types 18, but the associations of these loads with 

alterations to the nuclear genome are poorly studied. The rich mutational landscape of 

HGSOC described here provides an unusual opportunity to study these associations. 

Several trends emerge (Supp Figure 14) using a Bayesian inference approach 20 to study 

co-occurrence patterns across all somatic alterations. Firstly, within the mitochondrial 

genome there is an association between disrupted CI and CIII genes, suggesting specific 

alterations to mitochondrial metabolism. Secondly, these mitochondrial alterations 

significantly co-occur with WGD. Thirdly, this association appears to be attributable to WGD 

itself rather than the cSV (such as chromothripsis, BFB and ecDNA) that are correlated with 

WGD (Supp Fig 14A). In fact, the accumulation of somatic SNVs in most mitochondrial 

genes tends to be higher in the presence of WGD, and tends to be lower in tumours with 

HRD, suggesting less tolerance of disruptive mitochondrial DNA mutations in the presence 

of HRD (Supp Figure 14B). These interdependencies raise the question of whether the 

effects of mitochondrial mutation loads on survival are independent of the known influences 

of HRD, WGD and the many other somatic alterations of the nuclear genome. 
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Figure 5: mtDNA mutation loads are a novel biomarker of overall survival. (A) Somatic (inner ring) and germline (outer) SNV frequencies across the 

cohort in mitochondrial encoded genes (black: single nucleotide variants; red: indels). (B) Abundant somatic SNVs disproportionately impact protein-

coding genes in mtDNA. (C) SNVs categorized by VEP functional impact annotation include many protein altering variants expected to alter mitochondrial 

complex functions. (D) Overall survival Cox proportional hazards ratio increases with increasing heteroplasmy of deleterious mtDNA mutations (p-

value=0.0002). (E) Overall survival Cox proportional hazards ratio is stable with increasing heteroplasmy of synonymous mtDNA mutations (p-

value=0.91).  
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We examined the dominant mutational features of the nuclear and mitochondrial genomes 

identified here to identify the variables driving differential survival. We systematically 

examined the associations of all individual features with overall survival (OS) time after 

diagnosis, including the presence of genomic aberration in genes with demonstrable 

recurrent SNV/SV/CNA (Figure 3), cSV types (Figure 4), and deleterious mitochondrial 

SNVs (Figure 5). Of these 34 binary features we found that 8 were individually associated 

with overall survival using Cox proportional hazards models stratified by cohort (Figure 6A; 

Supp Table S12). As expected, these 8 features included the presence of HRD and tumour 

FIGO stage, which have well established effects on OS. Other individually significant 

features were CDK12 SNVs, deleterious mt SNVs, and the presence of severe 

chromothripsis. However, given the abundant interdependencies between these and other 

features (Supp Fig 14A) we employed integrative modelling to estimate the independent 

effects of all 34 features. Analysis using regularised Cox proportional hazards regression 

with an elastic net penalty, stratifying by cohort, revealed a refined model with redundant 

features pruned (Figure 6C; Supp Table S14). This model retained FIGO stage at diagnosis 

and HRD as well as 6 other features, of which 2 were significantly associated (adjusted 

p<0.05) in the multivariable model with overall survival. CDK12 SNVs (Figure 6D) and 

deleterious mitochondrial SNVs (Figure 6E) were associated with poorer prognosis whereas 

the presence of severe chromothripsis (Figure 6F) was modestly associated with better 

prognosis given the available sample size and adjustment for multiple testing (Supp Table 

S14). WRN deletion, CEP89 duplication at the CCNE1 locus and BRCA2 SNVs were also 

informative to the elastic net model although the evidence for their association with overall 

survival is limited in these data (Supp Figure 15).  
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Figure 6: Multivariable modelling of the impact of genomic features (31) of HGSOC on overall survival adjusted for baseline 

clinical factors. (A) Univariable modelling of 31 genomic features using a Cox Proportional hazards model adjusted for HRD, age at 

diagnosis and stage at diagnosis and stratified by cohort. Forest plot shows hazards ratios (log) and 95% confidence interval per feature. B) 

As (A) but hazards ratios from one multivariable model including all 31 genomic features plus adjustments. (C) Selected features from 
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Discussion 

 

We have shown that the global landscape of structural variation in HGSOC is shaped by the 

presence of HRD and WGD, leading to the emergence of hotspots, impacting thousands of 

genes recurrently across samples. Previous studies have identified similar genomic regions 

but have not refined these regions to identify candidate driver genes 5,7,66. Exploiting the 

independent sub-cohorts underlying the combined cohort, we predicted 8 novel HGSOC 

candidate driver genes (PCM1, WRN, LEPROTL1, ARID1B, FGFR1OP, AXIN1, DNMT3A, 

TCEA1) within these regions, showing significant differential expression across sub-cohorts 

in response to the CNA loads observed. Of these potential CNA-mediated driver events, only 

WRN (a DNA helicase involved in double strand break repair) deletion showed some 

evidence of an effect on patient survival. Supporting this conclusion, WRN has recently been 

reported as a haploinsufficient tumour suppressor gene, based upon analyses of pan-cancer 

CNA data not examined here and experiments in lung epithelial cells 61; we propose that it 

may also represent a novel therapeutic target in HGSOC. 

 

Other CNA-mediated driver gene candidates provide new insights into HGSOC biology. 

Over-expression of the de novo methyltransferase DNMT3A has been reported in previous 

studies of HGSOC 67 and, consistent with this, we have shown that the frequent CNA 

amplification of this gene results in significantly higher expression in many samples. This 

suggests a role for DNMT3A in the aberrant DNA methylation patterns seen in HGSOC, 

which are not currently well understood, but show promise as biomarkers for detection and 

prognostic testing 68. ARID1B is a core subunit of the SWI/SNF chromatin remodelling 

complex and has been reported to be inactivated in endometrial, endometrioid ovarian and 

clear cell ovarian cancer 69, though inactivation of a similar subunit of the same complex 

(ARID1A) is more frequent. However, to our knowledge ARID1B has not previously been 

reported to be frequently altered in HGSOC. Activation of the Wnt/³-catenin pathway has 

long been reported in epithelial ovarian cancers, and it has been speculated that reductions 

in the expression of inhibitors of this pathway, such as AXIN1, could be a mechanism 

underlying pathway activation 70. We have found recurrent CNA significantly altering AXIN1 

expression, but intriguingly the rates of deletions and amplifications across samples are 

similar. 

 

The extent of enrichment of SVs of all types, both simple and complex, on chromosome 19 

is striking. To our knowledge this is the first report of a chromosome-wide hotspot for 

complex structural variation. This enrichment is driven by patterns of fold back inversions at 

the CCNE1 locus 21,57 resulting in a higher level of amplification than possible by simple 

duplication and is achieved via complex mechanisms such as breakage fusion bridge cycles, 

ecDNA or chromothripsis. CCNE1 amplification has been proposed as an effective 

therapeutic target 71 however the mechanisms leading to amplification and in particular over-

expression of the gene are not fully understood. We show that SVs involving CCNE1 are 

associated with its increased expression and our data suggest that concurrent duplication of 

nearby gene CEP89, which likely reflects the same amplification events, may be linked with 

poorer prognosis.  

 

WGD is a common early event in many tumour types, including HGSOC, and has been 

associated with poor prognosis across cancer types 9. Our results confirm the association 

between WGD and genomic instability seen in cell line experiments 72, but extend this to 
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encompass most known cSV types in addition to simple structural variation. It has been 

hypothesised that WGD may also allow rapid tumour evolution via catastrophic events such 

as chromothripsis 73, and we conclude there is convincing evidence for this in HGSOC. We 

have shown those tumours undergoing WGD suffer frequent catastrophic events, particularly 

chromothripsis and BFB, and would be expected to evolve rapidly. This may represent an 

advantage for some WGD tumours, for example those acquiring BFB mediated 

amplifications of CCNE1, but appears to be a liability for those suffering the most severe 

chromothripsis events, where patient survival is improved (Figure 6). This is consistent with 

simulations suggesting that WGD may be selected to mitigate the accumulation of 

deleterious alterations suffered by tumours with high mutation rates 74. A recent study found 

that HGSOC samples frequently showed evidence of chromothripsis but these events rarely 

caused losses of tumour suppressor or DNA repair genes 11. Our results also suggest that 

these events do not generally fuel adaptive evolution and instead make up part of the 

deleterious mutation burden afflicting these tumours. The presence of chromothripsis 

appears to be buffered by WGD and tumours with the most severe events may suffer 

increased immunogenicity or compromised metabolism, leading to longer OS (Figure 6). 

Nevertheless, the frequent occurrence of WGD has clinical significance, since WGD itself 

has been reported to be a targetable vulnerability 75,76. This highlights the potential for new 

therapeutic opportunities in patients with WGD tumours which are generally HR proficient 

and currently more challenging to treat. Our knowledge of the cSV landscape is incomplete 

and the study of these variants is rapidly developing. Despite our increased power to 

characterise the cSV landscape in this larger cohort, the current known cSV types 

encompassed only a small fraction (13%) of the total SVs observed in the cohort. A higher 

proportion of SVs (27%) than those included in cSVs are clustered in the genome 33, which 

can indicate cSV. This suggests that as yet unstudied cSVs may occur in HGSOC. 

 

We show that CDK12 inactivation occurs at unexpectedly high levels in HGSOC, affecting 

up to 34% of samples in the cohort (Figure 3C) when all structural variation is added to the 

deleterious SNV/SV/CNA load affecting 16% of samples (Figure 3A). CDK12 loss in HGSOC 

leads to genomic instability, in the form of extensive tandem duplication 77 and reduced 

expression of DNA damage repair genes including HR genes such as BRCA1 78. The extent 

to which CDK12 loss confers sensitivity to single agent PARP inhibition remains contentious; 

in prostate cancer the tandem duplication resulting from biallelic CDK12 loss results in 

increased neoantigen generation and enhanced sensitivity to immunotherapy 79. We show 

that CDK12 mutation is associated with significantly worse overall survival (Figure 6D) and it 

is possible that these patients, with genetic CDK12 inhibition, may show major 

improvements in overall survival with PARPi treatment. 

 

Finally, we demonstrate that deleterious SNV loads predicted to disrupt mitochondrial gene 

function accumulate in HGSOC and are a novel biomarker of poorer OS, independent of 

other influential variables such as HRD. Recent studies have revealed driver roles for 

mtDNA mutations during tumorigenesis in particular tumour types, but the functional impact 

of these variants on mitochondrial function is under-studied 18. Notably, deleterious mtDNA 

mutations in colorectal tumours are associated with improved OS 17, highlighting the tumour 

type specific impacts of these mutations, and the pressing need for further studies. There 

are two clinical implications of our observations in HGSOC. Firstly, disrupted mitochondrial 

function may be a targetable feature, particularly in WGD tumours, and therapeutic 

strategies to rescue mitochondrial CI deficiency are already under investigation in the 
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context of cardiovascular disease 80. Secondly, our data suggests that HRD tumours are 

intolerant of deleterious mtDNA mutations, consistent with their sensitivity to disrupted 

oxidative phosphorylation metabolism 81. 

 

Overall, these data show that the genomic chaos seen in HGSOC obscures meaningful 

underlying patterns. Structural alterations are distributed non-randomly to generate hotspots 

harbouring known and novel driver genes. The diverse and frequent complex structural 

events observed relate to the presence of two genomic states, HRD and WGD, which 

generate structural diversity but also create vulnerabilities for tumours. Epitomising this 

dichotomy, tumours with WGD are more likely to possess CCNE1 amplifications enhancing 

proliferation, but are also more likely to suffer extreme chromothripsis, which appears to 

impair tumour development. Thus, WGD tumours walk a narrow path towards an optimal 

level of chromosomal instability which facilitates rapid growth without risking cell death. 

These heavily disrupted nuclear genomes are in turn associated with alterations to the 

mitochondrial genome, impacting patient survival, and revealing a new layer of potential 

therapeutic targets. 
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