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Abstract

Deciphering the structural variation across tumour genomes is crucial to determine the
events driving tumour progression and better understand tumour adaptation and evolution.
High grade serous ovarian cancer (HGSOC) is an exemplar tumour type showing extreme,
but poorly characterised structural diversity. We comprehensively describe the mutational
landscape driving HGSOC, exploiting a large (N=324), deeply whole genome sequenced
dataset. We reveal two divergent evolutionary trajectories, affecting patient survival and
involving differing genomic environments. One involves homologous recombination repair
deficiency (HRD) while the other is dominated by whole genome duplication (WGD) with
frequent chromothripsis, breakage-fusion-bridges and extra-chromosomal DNA. These
trajectories contribute to structural variation hotspots, containing novel candidate driver
genes with significantly altered expression. While structural variation predominantly drives
tumorigenesis, we also find high mtDNA mutation loads associated with shorter patient
survival, and acting in combination with alterations in the nuclear genome to impact
prognosis and suggesting new strategies for patient stratification.

Introduction

High grade serous ovarian cancer (HGSOC) is the most common type of ovarian cancer. It
usually presents with disease that has spread beyond the pelvis, and while initially sensitive
to platinum-containing chemotherapy in 62% of cases, historically over 80% of cases relapse
with a median overall survival of less than 5 years 2. The advent of first-line maintenance
PARRP inhibitor therapy is improving survival, particularly in patients whose tumours are
homologous recombination repair deficient (HRD) 3. However, around 50% of tumours are
not HRD * and the molecular drivers and therapeutic vulnerabilities in this patient subset with
poorer prognosis are much less well characterised.

Recent studies of the HGSOC mutational landscape have noted the problems caused by
structural complexity at many loci, potentially obscuring driver events and useful biomarkers
“. The genomic aberrations at these repeatedly mutated loci require whole genome
sequencing (WGS) data to be accurately resolved, and their combined impact determined.
However, recurrent aberrations at a number of genes have been repeatedly reported. Initial
analyses of the HGSOC genome using exome sequencing noted high levels of copy number
alterations (CNAs) and predicted driver variants in a number of genes including: TP53, NF1,
RB1, CDK12, BRCA1, and BRCA2 *>®. An early WGS study (N=80) recovered a similar list of
recurrently disrupted genes, and also reported amplification of the CCNE1 oncogene in 19%
of samples ’. However, a more recent WGS study (N=118) identified less frequent driver
alterations impacting additional genes, and reported recurrent deletions - rather than
amplifications - at CCNE1 in 45% of patients 8. The same study also suggested that the
maijority of driver events in HGSOC are likely to be mediated by somatic structural variants
(SVs) and copy number alterations (CNAs). Thus, the driver landscape in HGSOC remains
controversial, highlighting the need for comprehensive analyses of the mutational complexity
of HGSOC genomes and elucidation of its clinical impact, in larger WGS cohorts.
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HGSOC is subject to catastrophic mutational events, generating whole genome duplication
(WGD) ®'° complex structural variants (cSV) such as chromothripsis or ‘chromosome
shattering’ ', the production of extrachromosomal circular DNA (ecDNA) '? and other cSV
types involving overlapping amplifications and inversions '*'. However, the
interdependencies between cSV types have not been studied in detail in any tumour type,
including HGSOC, and their individual and joint impacts on patient survival remain poorly
understood '°. HGSOC tumour cells are also known to possess particularly abundant
mitochondria carrying frequent somatic mtDNA mutations, though the best powered studies
to date have failed to find associations between mitochondrial perturbation and patient
outcomes '8,

Epistatic interactions between somatic mutations, across different scales of size and
complexity, are thought to emerge frequently between different driver mutations during
tumorigenesis %, but remain poorly studied using WGS data. Several previous studies
have used deep WGS to characterise HGSOC tumour samples 522 combined with gene
expression profiling and other technologies, but have been constrained by modest sample
sizes with limited power to detect recurrent mutations and any epistatic interactions between
them.

Here we uniformly process previous WGS datasets combined with that from new patient
samples to construct the largest deeply sequenced WGS combined cohort to date (N=324).
We comprehensively describe the mutational landscape of HGSOC to define candidate
driver genes subject to recurrent somatic single nucleotide variants (SNV), SV or CNA and
for the first time determine the diversity and interactions of mutations driving tumorigenesis.
We reveal the divergent evolutionary trajectories adopted by different HGSOC tumours to
generate structural diversity, and gain new insights into the interdependencies of cSV
events. We also perform the first comprehensive study of mtDNA mutations in HGSOC,
revealing their association with patient survival. Finally, we construct an overarching model
for HGSOC prognosis based upon all features of the mutational landscape and identify the
most influential features.

Methods

Scottish sample collection and preparation for WGS and RNAseq

Scottish HGSOC samples (subsequently referred to as the SHGSOC cohort) were collected
via local Bioresource facilities in Aberdeen, Dundee, Edinburgh and Glasgow as previously
described 2. Clinical data for the SHGSOC cohort was retrieved from the Cancer Research
UK Clinical Trials Unit Glasgow, the Edinburgh Ovarian Cancer Database and available
electronic health records; the study received institutional review board approval from the
Lothian Annotated Human BioResource (ethics reference 15/ES/0094-SR751) and NHS
Greater Glasgow & Clyde Biorepository (ethics reference 22/WS/0020). HGSOC diagnosis
was confirmed by formal expert pathology review (CSH) and samples were estimated to
have >40% tumour cellularity by macroscopic visual assessment. Matched germline DNA
was extracted from whole blood for each patient. Somatic and germline DNA was extracted
from tumour and blood respectively as described previously ?2. Somatic RNA was extracted
from the same tumour sample as the DNA used for WGS. RNAseq was carried out by the
Edinburgh Clinical Research Facility on an lllumina NExtSeq500 as previously described %,
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Sequence acquisition and availability

WGS and RNA-seq reads were downloaded in compressed FASTQ format from the
sequencing facility or in aligned BAM format (including unaligned reads) from the European
Genome/Phenome Archive (Australian Ovarian Cancer Study (AOCS): EGAD00001000293,
British Colombia Cancer Agency (BCCA): EGAD00001003268, MD Anderson (MDA):
EGADO00001005240) and the Bionimbus Protected Data Cloud (The Cancer Genome Atlas
(TCGA)). The reads obtained in BAM format were query-sorted and converted to FASTQ.
The clinical information including survival end-points, age and FIGO (Fédération
Internationale de Gynécologie et d’Obstétrique) stage at diagnosis is available for the AOCS
and TCGA patients as part of the PCAWG project ?*. Clinical information for the MDA and
BCCA cohorts are available from the supplementary data of their respective publications
212 The SHGSOC cohort are available via EGA at accession number EGAS00001004410.

Primary processing of RNA-seq

RNA-seq data was analysed using the lllumina RNA-seq best practice template. Briefly,
reads were aligned to the hg38 reference genome and quality control was carried out.
Salmon quant was used to quantify the expression of transcripts against the Ensembl 99
hg38 RefSeq transcript database indexed using the salmon index (k-mers of length 31).
Transcript-level abundance estimates were imported into R and summarised for further
gene-level analyses. For differential expression analyses, raw expression counts were used
by the DESeq2 package. Previously published RNA-seq data available for the AOCS
(N=80), TCGA (N=31) and MDA (N=26) cohorts, together with novel RNA-seq data for the
SHGSOC (N=69) cohort, generated for the present study as detailed above, were processed
in this way from FASTQ.

Primary processing of WGS

Reads were aligned to the hg38 reference genome. Somatic and germline variant calling
was performed using a bcbio % 1.0.7 pipeline as previously described ?2. Germline SNPs
and indels (SNVs) were called with GATK 4.0.0.0 HaplotypeCaller. Germline SNVs reported
in ClinVar 2 to disrupt the function of 12 HGSOC risk genes %~ were recorded (Supp Table
S2), and BRCA1/2 variants were found to be enriched in patient samples relative to
comparable populations in gnomAD *°. Somatic SNVs and indels were called as a majority
vote between Mutect2 1.1.5, Strelka2 and VarDict 2017.11 .23. Small variants were
annotated with Ensembl Variant Effect Predictor v91 and filtered for oxidation artefacts by
GATK 4.0.0.0 FilterByOrientationBias. Somatic structural variants were called with Manta
1.2.1 and GRIDSS 2.7.3. Somatic copy number alterations (CNAs) were called with CNVKkit
0.9.2a0, CLImAT 1.2.2 and PURPLE 2.51. In both cases the intersect of the calls were taken
forward as consensus calls. Consensus SVs were identified using viola-sv 1.0.0.dev10 *'
with a proximity threshold of 100bp. Consensus CNAs had at least 50% overlap between
segments with the same direction of copy number change. Sample quality control was
performed with Qsignature 0.1 to identify sample mix-ups and VerifyBamld 1.1.3 to identify
sample contamination. Tumour cellularity was estimated using both CLIMAT’s estimates and
p53 variant allele frequency and CLIMAT’s estimates were used throughout. To predict the
level of HR deficiency in each tumour sample we implemented the HRDetect algorithm as
published by Davies and Glodzik et al 3 as previously described 2.
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Clustering and classifying structural variation

We sought to determine whether a given SV belonged in a cluster of SVs or occurred alone.
SVs occurring in clusters are expected to be more likely to represent the consequence of
complex mutational processes such as punctuated catastrophic events. To cluster SVs we
used the same approach as used by the PCAWG consortium (clusterSV *3). This approach
identifies groups of SVs that occur closer together on a given chromosome than you would
expect for that SV type on that chromosome given the overall distribution of breakpoints. To
compare the SV landscapes between cohorts, we classified the consensus SVs. SVs that
were not clustered were classified according to type, size, and reciprocity, in the case of
inversions and translocations. This approach created 18 categories: clustered SVs; (simple)
deletions (<100bp, 100 — 1kb, 1kb-10kb, 10kb-100kb, 100kb -1Mb, >=1Mb), duplications
(<1kb, 1kb-10kb, 10kb-100kb, 100kb -1Mb, 1Mb — 10Mb, >=10Mb), inversions (large
(>=1Mb) reciprocal, small (<1Mb) reciprocal, large (>=1Mb) unbalanced and small (>=1Mb)
unbalanced), translocations (reciprocal or unbalanced). All size categories were verified
using mixture modelling of size distributions for that SV type.

Complex SV detection

Eight categories of cSV were predicted: chromothripsis, ecDNA, breakage fusion bridges,
tyfonas, pyrgo, rigma, chromoplexy and seismic amplification. ShatterSeek'"' was used to
call regions subject to chromothripsis * based upon MANTA SV calls and CNVkit CNA calls,
and following the recommended thresholds for the number of interleaved SVs, the number of
adjacent segments oscillating between CN states, the number of interchromosomal
translocations, the fragment joints test, the chromosomal enrichment test and the
exponential distribution of breakpoints test . Candidate ecDNAs were predicted using
AmpliconArchitect *° with default settings to call ecDNA based upon purity and ploidy
adjusted somatic CN calls from PURPLE. The resulting graph and cycle output files were
processed by AmpliconClassifier*® to identify amplicons with CN>4 and size >10kb as
ecDNAs. The junction-balanced genome graph (JaBbA) inference algorithm was used to
generate genome graphs'®. The resulting graphs were assessed as known cSV classes
within gGnome ¥, including breakage fusion bridges, tyfonas, pyrgo, rigma and
chromoplexy. We detected putative regions of seismic amplification using an established
approach ' and the default threshold for amplification (CN >= 5 for diploid samples, and CN
>= 9 for samples with ploidy >2). A candidate seismic amplicon was defined as one that
contains amplified CN segments linked by >=14 SV rearrangements, as recommended’.

CNA signature quantification

To robustly apply previously defined CN signatures 8 to higher resolution whole genome
sequencing data, we filtered LogR and B allele frequencies from reads aligned to the whole
genome to only include loci at Affymetrix Genome-Wide Human SNP Array 6.0 positions and
recalled copy number using ASCAT 2.5.2 . We then quantified the exposures of each of the
copy number signatures in our samples using CINSignatureQuantification 1.1.2 with
unrounded total copy number, as recommended *. Individual signature exposures were
compared between samples with and without BRCA 1/2 mutation using Wilcoxon rank-sum
tests.

Recurrently altered oncogenic pathways
We examined the extent that disruption via SNVs, CNAs and SVs was enriched within
previously published oncogenic signalling pathways>®. We examined ten canonical
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pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFf signalling,
p53 and B-catenin/Wnt. The extent of enrichment of each type of alteration in each pathway
was considered separately and represented by an oncoplot of pathway enrichment by
variant type per sample using the R package complexHeatmap “°.

Identification of genomic regions of recurrent copy number alteration/structural
variation

Regions of the genome undergoing recurrent copy number alteration whether that be
deletion or amplification were identified using GISTIC (v2.0.23). GISTIC compares the
observed frequency of alteration in the region across all samples, combined with the
observed magnitude of change, to the background expectation of frequency and magnitude
of copy number alteration obtained by permuting genomic regions. We considered regions to
be significantly recurrently deleted or amplified at a g-value < 0.05 and the region
boundaries were defined to ensure 95% confidence that the reported region contained the
recurrent event of interest. The CNA hotspot on chromosome X was identified by separate
GISTIC analysis as GISTIC excludes chromosome X by default. GISTIC was applied to
PURPLE segmentation calls only as these were more appropriately sized for use with
GISTIC. More stringent filtering to consider only consensus calls within GISTIC peaks was
applied downstream when investigating the impact of potential CNA drivers on expression.
Broader chromosome-arm level recurrent gains and losses were also identified using
GISTIC.

Genomic regions of significant (FDR corrected p-value < 0.05) SV enrichment were
identified using a negative binomial regression model of SV density throughout the genome
split into 50kb bins with 1kb overlap. All types of SV were considered separately in addition
to breakpoint density. This model was implemented using the Fishhook package *', adjusting
for mappability (scores in 1Mb bins), GC content, CpG islands *?, gene density (over 5 Mbp
windows; GENCODE v41), the presence of repetitive elements (DNA transposons, SINE,
LINE, short tandem repeats, and long tandem repeats), and fragile sites **. Genomic regions
with low mappability including callable sites with mappability score < 0.9 ** and blacklisted
regions *° were excluded. Chromosomal enrichments of SV classes were assessed using
binomial tests of proportions accounting for chromosome length.

Prediction of SNV mediated driver genes

We inferred SNV driver variants across the coding (canonical transcripts only) and non-
coding genome separately for six genomic element types: promoter, 5’ UTR, coding, 3’ UTR,
IncRNA and miRNA. We used four driver prediction methods: OncodriveCLUSTL ¢,
OncodriveFML #7, ActiveDriverWGS *® and dNdScv *°, with differing approaches to driver
identification. Prior to identification of driver variants, single nucleotide variants were filtered
to remove variants with variant allele frequency (VAF) < 0.1. OncodriveCLUSTL v1.1.3
identifies unexpected clustering of SNVs. We optimized the Oncodrive CLUSTL hyper-
parameters (simulation window, smoothing window, and clustering window), selecting from a
range of values for each, to maximise: the goodness of fit of observed p-values to the null
distribution and the enrichment of known cancer genes in candidate driver elements.
Otherwise we used default parameters and clusters were concatenated across genomic
regions to identify candidate drivers at Q < 0.01. We used OncodriveFML v2.2.0 with default
parameters to identify candidate variants based on bias in functional impact (Q < 0.01) and
ActiveDriverWGS v1.2.0 to identify candidate variants based on mutational burden in
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functionally defined elements of interest (FDR < 0.05). Lastly, for coding regions only, we
used dNdScv with default parameters to identify candidate variants based on the ratio of
synonymous to non-synonymous mutations (qglobal cv < 0.01). Overall there was poor
agreement between candidate drivers across algorithms (Supp Table S11). The results of
dNdScv are expected to be most conservative, since it requires sufficient numbers of
nonsynonymous SNVs per gene and uses a rigorous proxy for the background mutation
rate. Six known HGSOC driver genes identified by dNdScv plus two additional novel
candidate genes identified by dNdScv and at least one other algorithm were taken forward
as candidate SNV mediated driver genes, and the full list of candidates from all algorithms is
provided.

Prediction of CNA/SV mediated driver genes

Genomic windows enriched for deletions, duplications, translocations, inversions and all
breakpoints (at FDR < 0.05 by Fishhook) and CNA hotspots identified by GISTIC were
intersected with COSMIC Cancer Gene Census (CGC) genes (version 96) and with the
corresponding sample level consensus SV and CNA calls respectively. The CGC *° is an
established starting point for studies of cancer driver genes, containing 719 manually
curated cancer driver genes, supported by functional validation studies and evidence of
recurrent SNV/CNA in tumours. CGC genes in hotspots were tested for differential
expression on occurrence of the SV/CNA type driving the hotspot using DESeq2. Samples in
which the SV/CNA intersects the CGC gene were compared with those lacking an SV/CNA
of that type in the gene being tested. Differential expression was tested separately in each of
the four cohorts for which RNA seq data was available, and in a combined, batch corrected,
table of expression values combining cohorts. An adjusted p-value of 0.05 for the gene being
tested in the DESeq2 results was considered significant. The log2 fold change reported is
that from the combined expression analysis, with the number of cohorts with a significant
change reported as a replication score. An analysis of the FDR of this procedure suggested
replication across cohorts maintained an FDR of less than 0.05.

Analyses of mutual exclusivity and co-occurrence patterns across somatic alterations
Complex SVs were clustered according to their prevalence across samples using
hierarchical clustering. The major axes of variation in the prevalence matrix (excluding HRD
and WGD) were identified using principal components analyses and the first two
components were compared in the presence of WGD and HRD. Patterns of pairwise co-
occurrence and mutual exclusivity between complex SVs were explicitly tested based on
weighted mutual information using SELECT ' to extract significant pairwise relationships
relative to expectation, whilst limiting the false discovery rate. This was repeated to consider
all pairwise combinations of key nuclear somatic alterations, HRD and mtDNA mutations by
mitochondrial complex. The fraction of tumour genome duplicated was compared in samples
with and without breakage fusion bridges or chromothripsis.

Calling mtDNA mutations and mtDNA copy number

For each sample, reads aligned to the mitochondrial reference genome were extracted from
the alignment files using Samtools (v1.12). To mitigate against the issue of mismapped
reads originating from nuclear-encoded mitochondrial pseudogenes (known as NUMTS),
which could introduce false positives into the variant calling, the RtN! algorithm was used to
filter out putative NUMT reads, including those not represented in the human reference
genome, retaining only those from authentic mtDNA °2. The retained reads were then
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subjected to variant calling using VarScan2 (v2.4.4) *® with the following parameters: --
strand-filter 1, --min-avg-qual 30 (minimum base quality 30), --min-coverage 2, --min-reads
2, and --min-var-freq 0. VarScan2 was selected as the preferred variant caller based on our
own benchmarking analysis and its successful use in previous studies '®**. To estimate the
number of copies of mtDNA in tumour and normal samples, we applied a formula derived
from the pan-cancer analysis of whole-genomes study (PCAWG).

To enhance the precision of our variant calls, we implemented a stringent set of filters.
These filters excluded variants displaying significant strand bias (phred > 60), variants
located within error-prone regions due to homopolymers (66-71, 300-316, 513-525, 3106-
3107, 12418-12425, 16182-16194), variants with limited supporting reads (<30), and
variants with extremely low heteroplasmy (<0.25% VAF). Subsequently, SNVs and INDELs
were annotated using Ensembl's Variant Effect Predictor (VEP) version 107, setting the --
distance parameter to 0. This annotation included pathogenicity predictions by SIFT *° and
PolyPhen2 *. To validate the effective removal of reads originating from NUMTs, mtDNA
variants were called in RNA-sequencing (RNA-seq) samples that were matched with a
subset of the tumour WGS samples (206 out of 324 samples), since NUMTs lack evidence
of transcription. Our analysis revealed that 88.3% of variants called in the WGS samples
could also be identified in the corresponding RNA-seq data, and this percentage increased
to 97.3% for variants above 10% heteroplasmy.

Multivariable analyses of the impact of molecular factors on overall survival

The survival analyses considered 277 samples with complete overall survival time after
diagnosis and tumour FIGO stage data. These samples were obtained from four cohorts
(AOCS 80; BCCA 59; SHGSOC 110; TCGA 31). Overall survival times greater than 10 years
were right censored (19 samples). The presence of: nine classes of complex SV (whole
genome duplication, chromothripsis, pyrgo, chromoplexy, breakage fusion bridge, ecDNA,
rigma, tyfonas, and seismic amplification); SNVs in eight candidate driver genes (TP53, NF1,
RB1, BRCA1, BRCA2, CDK12, SLC35G5 and TAS2R43); CNA or SVs in eleven candidate
driver genes (AXIN1, PCM1, WRN, FGFR10P, LEPROTL1, DNMT3A, ARID1B, TCEA1,
PTEN, CCNET1 (inversions and duplications), and CEP89 (deletions and duplications)); and
deleterious mitochondrial mutations were tested for their impact on survival. Overall survival
was modelled using a Cox proportional hazards regression model using the coxph method in
the R package survival. The effect of each variable was examined individually and in
combination using a multivariable model adjusted for age (greater than mean age at
diagnosis), FIGO stage (3 or above), HR deficiency as assessed by HRDetect, and stratified
by cohort. Effect estimates with 95% confidence intervals were presented as forest plots. In
addition, we applied cross-validated elastic-net regularised Cox regression to perform
variable selection using the cv.gimnet method in the R package glmnet, revealing the most
informative variables in the reduced forest plot.

Results
Extreme structural diversity dominates the HGSOC genome
The combined WGS cohort (N=324) constitutes the largest deeply sequenced (median 71X

coverage; range: 52-136X; Supp Figure 1) primary HGSOC tumour dataset to date. WGS
data from matched tumour and normal blood samples, and RNA-seq data from the same
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tumours, were uniformly remapped and analysed to generate a harmonised dataset of
consensus somatic mutation calls and gene expression for five HGSOC WGS sub-cohorts:
SHGSOC (N=115 2??), AOCS (N=80 "), BCCA (N=59 2"), TCGA (N=44 %), and MDA (N=26 ).
Although each sub-cohort was independently ascertained and sequenced, uniform
processing and analysis revealed consistent mutational landscapes (Figure 1; Supp Figure
2). These landscapes are dominated by somatic SVs and CNAs occurring with similar rates
and genomic spans (Supp Figure 2) rather than by SNVs (Supp Figure 3). SVs and CNAs
are dominated by large duplications, with duplications composing 89% of all CNAs (Figure
1), consistent with previous studies *. A variety of complex SVs (cSVs) are also highly
prevalent in this tumour type (Figure 1A; Supp Table S1), particularly chromoplexy (55% of
samples), chromothripsis (31%), pyrgo (28%) and breakage-fusion-bridge events (BFB)
(27%). Diverse ecDNA species were observed in a minority (16%) of tumours across sub-
cohorts and in 8% of tumours the predicted ecDNA structures contained an amplified
oncogene (Supp Table S2). The only major difference in cSV occurrence between sub-
cohorts was a significant enrichment (OR: 9.28; Chi-squared p=4.1x10") of ecDNA in
AOCS samples, which are enriched for chemoresistant and relapsed tumours. As expected,
samples also show enrichment of low-frequency germline variants known to increase the risk
of HGSOC (Supp Table S3).

These events occur on a background of frequent HRD (56% of samples) and whole genome
duplication (WGD; 49%). HRD and WGD are not mutually exclusive but are anti-correlated
such that HRD is depleted in samples with WGD (odds ratio (OR) 0.56; Chi-squared
p=0.015). HRD tumours are significantly enriched for deletions (Wilcoxon p-value <2.8x107°)
and WGD samples are significantly enriched for duplications (Wilcoxon p-value <1.8x107%) as
expected (Figure 2A, Supp Figure 3). The high frequency of CNAs provides insight into the
underlying processes generating structural diversity, with dominant contributions of CNAs
linked with HRD and chromosome mis-segregation, as reflected in the presence of known
copy number signatures *® as expected based on previous reports (Supp Figure 4; Supp
Table S4).

The burden of SVs and CNAs per sample across the cohort are predicted to disrupt the
function of several thousand genes in each tumour (Figure 1B), representing a large
predicted deleterious mutation load. Many genes are impacted in the majority of samples,
but with the exception of TP53 they appear to be passenger rather than driver mutations
(Figure 1C). For example, the top 10% of most heavily disrupted genes (N=1932) are only
modestly enriched for genes with known roles in cancer (Cancer Gene Census
(CGC)*)(OR: 1.5; Chi-squared p = 4.4x10™*). The majority of these genes appear to suffer
collateral damage due to their proximity to SV/CNA hotspots. The compound phenotypic
effects of high mutation rates at multiple levels of structural complexity on a given gene or
pathway are challenging to predict. However, oncogenic signalling pathways *° are likely to
be disrupted in most samples, most prominently the RTK/RAS, NOTCH, Hippo and WNT
pathways (Supp Figure 5). Intriguingly these pathways are often impacted by multiple
pathogenic mutations, at multiple levels (SNV/SV/CNA) simultaneously, consistent with the
presence of epistasis in tumour evolution, generating complex interactions between
mutations in different genes in a pathway *°.
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Figure 1: Structural complexity in HGSOC. (A) Structural variants are abundant across the combined cohort, reflected in the genomic
span encompassed by SV and CNA calls and in the frequencies of translocations and complex events. Samples also show frequent HRD
and WGD across tumour stages and cohorts. Pathogenic germline variants are relatively enriched in known HGSOC susceptibility genes.
(B) Most protein-coding genes are disrupted by each class of variation across all samples (bar chart on left) but disrupted genes per
sample (forest plot on right) are dominated by SVs and CNAs. Variants predicted to disrupt function are nonsynonymous SNVs of
high/moderate impact and SVs or CNAs overlapping >=1 protein coding exon. (C) The most frequently disrupted genes overall are not
enriched for known cancer genes, tend to be longer than average and to intersect recurrent CNA hotspots. The most frequently disrupted
gene is TP53 where there is near ubiquitous mutation. NAALADL2 is an unusually long (1.37Mb) gene and is located within a common
fragile site frequently altered across many tumour types (Li et al, 2020).
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Non-random distribution of complex structural variation across the genome

Both SVs and CNAs are non-randomly distributed across chromosomes in this cohort
(Figure 2A; Supp Figures 6 and 7). We observed notable enrichments of all SV classes on
chromosomes 8, 11, 12, 19 and 20 (Methods; Supp Figure 6A; Supp Table S5).
Chromosome 19 also represents a novel hotspot for cSV in HGSOC as it is significantly
enriched for BFB, chromothripsis, ecDNA and chromoplexy (Supp Figure 6B; Supp Table
S5). Remarkably, this hotspot was seen across sub-cohorts, supporting the highly
rearranged state of this chromosome as a general feature of HGSOC (Supp Table S5). The
densities of SVs, chromothripsis and BFB on chromosome 19 peak at CCNE1 (Figure 2C), a
known HGSOC oncogene subject to recurrent amplification *°”. Samples with BFB events at
this locus also acquire higher CCNE1 copy number amplifications than those with simple SV
duplications (Supp Figure 8). CCNE1 expression is also higher in the presence of SV
duplications of any type and particularly so in the albeit few tumours where ecDNA and
BFBs co-occur (Fold change relative to simple SV duplication: 2.8 (95% CI: 1.7 - 4.6), adj. p-
value = 0.05) (Supp Table S6). This capability to amplify oncogenes beyond what is feasible
via simple duplication events is likely of advantage to an evolving tumour. Similar effects as
a result of ecDNA mediated amplification have been reported in other cancer types and are
posited to lead to treatment resistance and subsequent poorer prognosis *.

We discovered additional genomic regions with significant enrichment of SVs - SV hotspots -
at a number of loci across the genome (FDR < 0.05; Supp Table S7). In addition to the
strongest signal across all SV types observed on chromosome 19, there are deletion and
inversion hotspots on chromosome 2, a further inversion hotspot on chromosome 10 and
multiple further loci enriched for SV breakpoints regardless of type throughout the genome.
Moreover, we observe significant hotspots of breakpoints driven exclusively by
translocations. We also determined CNA hotspots across the cohort based upon significant
enrichment of variants in regions varying in size from tens of Kb up to multi-megabase
regions encompassing entire chromosome arms (Methods; Supp Figure 9). Of 44 focal CNA
hotspots examined, 25 were enriched for deletions and 19 for amplifications (Figure 2A Supp
Table S8). The proportion of samples with CNAs at a given CNA hotspot varied from 4% to
42% (n=12 to 136 out of 324) and from 23% to 88% (n=73 to 284) for deletion and
amplification hotspots respectively (Figure 2B). This suggests that even a relatively low level
of recurrence, of deletions in particular, across samples is unlikely by chance and therefore
informative. Chromosome arm-level events are frequent in HGSOC 5, in particular arm-level
losses occur across many chromosomes in high proportions of samples (Supp Figure 9).
Although CNA hotspot regions do include genes with known roles in cancer *°, they occur
approximately in the numbers expected by chance (deletion hotspots OR = 1.2, CI: 0.88-1.7
Chi-squared p = 0.18; duplication hotspots OR = 1.4, Cl: 0.99-1.96 p = 0.043). A critical
question is therefore whether the expression patterns of such genes are altered, in response
to the CNA burdens they incur, to affect the tumour phenotype.
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Hotspots of structural alteration implicate novel candidate driver genes

We adopted a novel approach to interrogate genes within CNA hotspots, exploiting the
matched expression data available for the sub-cohorts making up the combined cohort to
rigorously prioritise candidate drivers. We assume that CNA associated driver genes should
show significant alterations in expression, consistent with the CNAs that impact them. For
each cancer gene census gene present in a CNA hotspot (449 genes in total) we calculated
the differential expression (DE) seen between samples with high copy number versus those
with low copy number in each sub-cohort, and the associated false discovery rate (FDR) for
DE genes seen across multiple sub-cohorts (Methods; Supp Table S9). Given the likely
presence of confounding variation in the expression data (reflecting cellular heterogeneity
and technical variation) these tests are necessarily conservative. Supporting this, we found
that significantly lower expression of PTEN (a known tumour suppressor gene (TSG) in
HGSOC) was associated with CNA deletion, but as this was seen in only one sub-cohort it
failed to reach significance (FDR<0.05) and was excluded. Eight genes were identified as
candidate drivers with several neighbouring genes altered simultaneously (Figure 2D). The
expression of AXINT (16p deletion, lower expression), DNMT3A (2q duplication, higher
expression) and TCEA1 (11q duplication, higher expression) all reflected the CNA burdens
observed. Significantly lower expression of PCM1, WRN and LEPROTL1 were associated
with deletion, and all three are located within the same 8p deletion hotspot. Similarly,
ARID1B and FGFR10P are both within a 6q deletion hotspot, and both show lower
expression in response to CNA deletions. Notably, the 8p deletion hotspot has been
reported in many other tumour types *® and may confer multiple advantageous traits on
tumours . The genes underlying these effects were unknown, though recent work has
shown that WRN deletion increases cell growth in vitro, suggesting WRN is a novel
haploinsufficient pan-cancer TSG underlying the 8p deletion hotspot °'.

An analogous approach was taken to prioritise candidate genes based upon FDR corrected
differential expression in SV hotspots (Figure 2D; Supp Table S10). Two genes emerged as
SV associated driver candidates: significantly lower expression of PTEN (a known TSG in
HGSOC) was associated with disruption by SV breakpoints, and higher expression of the
HGSOC oncogene CCNE1 was associated with both duplications and inversions (including
foldback inversions where an inversion co-occurs with a duplication). The CEP89 gene
neighbouring CCNE1 also passed the FDR threshold as a driver candidate, but was
associated with both duplications and deletions, suggesting it may simply be a marker for the
complex disruptions accumulating at the CCNE1 locus rather than a driver in its own right.
Genes and noncoding regions carrying recurrent SNVs were analysed using multiple driver
prediction algorithms (Supp Figure 10; Supp Table S11) and recovered 6 known HGSOC
driver genes (TP53, NF1, BRCA1, CDK12, BRCA2, RB1), plus another 2 genes with multiple
paralogues: SLC35G5 which has been reported previously as a source of artefacts 2 and
TAS2R43. Many of the recurrently mutated genes have been identified as likely false
positives in previous studies®*®* and in common with a recent study &, we found no
convincing evidence of SNV drivers in noncoding regions (Supp Figure 10).

The combined driver landscape - encompassing genes driven by SNVs, SVs and CNAs - is
dominated by diverse structural alterations (Figure 3). The predicted pathogenic mutations

(Figure 3A) reflect higher rates of alteration for known HGSOC genes than seen in previous
studies lacking WGS data. As expected there appears to be improved diagnostic power for
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WGS in structurally diverse tumours relative to exome or panel sequencing. However it is
possible that the higher rates seen in Figure 3A are underestimated, since the total mutation
loads (regardless of pathogenicity) seen at driver genes are even higher (Figure 3C). For
example, NF1 pathogenic SNV/SV are seen in 15% of samples (Figure 1A), but in total 40%
of samples show SNV/SV/CNA at NF1 (Figure 1C). Disruption of PTEN and RB1 have been
reported as recurrent events in HGSOC **° but the structural complexity seen at these loci *
may have obscured inactivating alterations in studies lacking WGS data. Our current data
confirm that these tumour suppressors are frequently disrupted by structural alterations, with
pathogenic genomic events of any kind seen in 14% (PTEN) and 14% (RB1) of samples.
The overall rates of alteration to NF1, PTEN and RB1 are similar to those seen in another
WGS project (N=118) ascertaining combined SNV/SV/CNA loads ?*, which reported
alteration rates of 24%, 14% and 19% respectively. Frequent pathogenic structural
alterations to BRCA1 and BRCAZ2 are consistent with the role of SV/CNA mutations in HRD
22 Qverall, each HGSOC sample is predicted to contain 3.8 driver variants on average with
only 1.3 contributed by SNVs and the remainder involving SVs and CNAs (Figure 3B), which
is similar to recent estimates based on WGS data (**; HGSOC N=118). In addition, many
candidate driver SVs are members of significant SV clusters (Figure 3B, 3C) 3, which often
indicate cSV events such as chromothripsis, suggesting that these events may be acting as
drivers in some contexts. As we have shown tumours which are HRD or WGD differ in their
genome-wide burden of deletion and duplication respectively, however, this appears to have
no bearing on either the number or distribution of drivers by mutation type (Supp Figure 11).
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HRD and WGD underlie different evolutionary trajectories to structural diversity

The chaotic HGSOC genome harbours frequent occurrences of most cSV types reported to
date, presenting a disordered and, at first sight, uninterpretable picture. Using state-of-the-
art algorithms we have discovered high frequencies of known cSV types across the cohort,
with chromoplexy, chromothripsis, pyrgo, rigma, BFB and ecDNA each seen in >10% of
samples (Supp Table S1). This substantial WGS cohort is sufficiently powered to reveal
significant biases in the patterns of cSV co-occurrence, a unique opportunity to study their
genomic distributions and interactions in detail in patient samples, bringing clarity to our
understanding of a tangled landscape.

We define two evolutionary trajectories to complex structural diversity (Figure 4). Each of
these trajectories represent a major axis of variation in the cSV landscape in HGSOC,
reflecting the underlying genomic state of the tumour. One trajectory involves HRD (Figure
4B, PC1) which is positively associated with chromoplexy, while the other involves WGD
(Figure 4B, PC2) and a strong tendency to the acquisition of other cSV types (Figure 4B).
Although these trajectories are not entirely mutually exclusive, it is evident that the divergent
underlying genomic states of (i) deficiency in DNA repair and (ii) aneuploidy, are key aspects
of HGSOC tumour biology which relate to different cSV profiles (Figure 4C). Striking patterns
of mutual exclusivity exist between HRD and all cSV types except chromoplexy (Figure 4D).
Particularly strong associations are seen between the fraction of the tumour genome
duplicated and two highly disruptive cSV types - chromothripsis and BFB (Figure 4E).
Abundant chromothripsis and BFB events account for disproportionate disruptions of
genomic structure across the cohort, encompassing large fractions of the genome and
causing many SV breakpoints in affected samples. The co-occurrence of these events with
WGD suggests that WGD may buffer the particularly disruptive effects of these catastrophic
events and limit their impacts on gene function.

Extensive characterisation of the HR proficient group of HGSOC is of great clinical
importance as these patients have fewer options for targeted treatment, with patients with
HRD tumours benefitting more from PARP inhibition. We observe that patients with a greater
number of predicted chromothripsis events than average in their tumour genomes - or
severe chromothripsis - had better prognoses than those patients with fewer or no
chromothripsis events (Supp Table S12). Other cSV types, including ecDNA, showed
weaker evidence for association with survival (Supp Table S12), contrary to previous pan-
cancer reports '° suggesting that the impact of ecDNA may differ in HGSOC from its impact
in other tumour types.
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HRD. (A) Abundance and co-occurrence of all complex events reveals two clusters of events defined by co-occurrence of HRD and chromoplexy,
and co-occurrence of WGD and other cSV types. (B) Main axes of variation (principal components) in complex structural variant landscape across
cohort. Heatmap represents feature loadings. HRD and WGD excluded from PCA. (C) HRD (PC1) and WGD (PC2) are associated with largest
axes of variation in complex structural variant landscape across samples. PC1 significantly lower in HRD samples. PC2 significantly higher in WGD
samples. (D) Biased co-occurrence and mutual exclusivity of cSV classes supports divergent tumour evolutionary trajectories with significant
association seen between HRD and chromoplexy, but exclusivity between HRD and all other features. Cell counts represent observed vs expected
counts of event co-occurrence in samples. (E) Association between the presence of chromothripsis and breakage fusion bridges (x-axis) and the
estimated fraction of the genome duplicated (y-axis) across all samples (Bonferroni corrected chi-squared p for chromothripsis=6.7x10-3; breakage
fusion bridges p=0.014).
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Mitochondrial and nuclear mutations combine to impact patient survival

Many tumour types, including HGSOC, are known to accumulate somatic SNVs in their
mtDNA '®, but the consequences for mitochondrial (mt) function and patient survival remain
unknown. We have found high mtDNA copy numbers and abundant somatic SNVs in tumour
samples (Figure 5A; Supp Figure 12A; Supp Table S13), such that genes encoded in
mtDNA suffer truncating and missense mutations at higher rates than in most other genes,
including all known TSGs other than TP53 (Supp Figures 12B and 12C). The highest
deleterious mutation loads accumulate at particular genes (Figure 5B) and are predicted to
disproportionately affect the function of mitochondrial Complex | (Cl) and Complex IV (CIV)
genes (Figure 5C). Remarkably, the predicted deleterious SNV loads in mtDNA are also a
novel biomarker of poor patient prognosis, and mutations of higher heteroplasmy showing
the largest effects (Figure 5D; Figure 6E). Notably, no associations with survival were seen
for synonymous SNVs or SNVs occurring in mitochondrial RNA genes (Figure 5E; Supp
Figures 13C and D), demonstrating that the impact on patient survival is mediated via the
compromised functions of protein-coding mitochondrial genes, particularly those in CI.

Recent studies have reported deleterious somatic SNV loads in mitochondrial genes in
renal, thyroid, and colorectal tumour types '8, but the associations of these loads with
alterations to the nuclear genome are poorly studied. The rich mutational landscape of
HGSOC described here provides an unusual opportunity to study these associations.
Several trends emerge (Supp Figure 14) using a Bayesian inference approach %° to study
co-occurrence patterns across all somatic alterations. Firstly, within the mitochondrial
genome there is an association between disrupted Cl and Clll genes, suggesting specific
alterations to mitochondrial metabolism. Secondly, these mitochondrial alterations
significantly co-occur with WGD. Thirdly, this association appears to be attributable to WGD
itself rather than the cSV (such as chromothripsis, BFB and ecDNA) that are correlated with
WGD (Supp Fig 14A). In fact, the accumulation of somatic SNVs in most mitochondrial
genes tends to be higher in the presence of WGD, and tends to be lower in tumours with
HRD, suggesting less tolerance of disruptive mitochondrial DNA mutations in the presence
of HRD (Supp Figure 14B). These interdependencies raise the question of whether the
effects of mitochondrial mutation loads on survival are independent of the known influences
of HRD, WGD and the many other somatic alterations of the nuclear genome.
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Figure 5: mtDNA mutation loads are a novel biomarker of overall survival. (A) Somatic (inner ring) and germline (outer) SNV frequencies across the
cohort in mitochondrial encoded genes (black: single nucleotide variants; red: indels). (B) Abundant somatic SNVs disproportionately impact protein-
coding genes in mtDNA. (C) SNVs categorized by VEP functional impact annotation include many protein altering variants expected to alter mitochondrial
complex functions. (D) Overall survival Cox proportional hazards ratio increases with increasing heteroplasmy of deleterious mtDNA mutations (p-
value=0.0002). (E) Overall survival Cox proportional hazards ratio is stable with increasing heteroplasmy of synonymous mtDNA mutations (p-
value=0.91).
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We examined the dominant mutational features of the nuclear and mitochondrial genomes
identified here to identify the variables driving differential survival. We systematically
examined the associations of all individual features with overall survival (OS) time after
diagnosis, including the presence of genomic aberration in genes with demonstrable
recurrent SNV/SV/CNA (Figure 3), cSV types (Figure 4), and deleterious mitochondrial
SNVs (Figure 5). Of these 34 binary features we found that 8 were individually associated
with overall survival using Cox proportional hazards models stratified by cohort (Figure 6A;
Supp Table S12). As expected, these 8 features included the presence of HRD and tumour
FIGO stage, which have well established effects on OS. Other individually significant
features were CDK12 SNVs, deleterious mt SNVs, and the presence of severe
chromothripsis. However, given the abundant interdependencies between these and other
features (Supp Fig 14A) we employed integrative modelling to estimate the independent
effects of all 34 features. Analysis using regularised Cox proportional hazards regression
with an elastic net penalty, stratifying by cohort, revealed a refined model with redundant
features pruned (Figure 6C; Supp Table S14). This model retained FIGO stage at diagnosis
and HRD as well as 6 other features, of which 2 were significantly associated (adjusted
p<0.05) in the multivariable model with overall survival. CDK12 SNVs (Figure 6D) and
deleterious mitochondrial SNVs (Figure 6E) were associated with poorer prognosis whereas
the presence of severe chromothripsis (Figure 6F) was modestly associated with better
prognosis given the available sample size and adjustment for multiple testing (Supp Table
S14). WRN deletion, CEP89 duplication at the CCNE1 locus and BRCA2 SNVs were also
informative to the elastic net model although the evidence for their association with overall
survival is limited in these data (Supp Figure 15).
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Figure 6: Multivariable modelling of the impact of genomic features (31) of HGSOC on overall survival adjusted for baseline
clinical factors. (A) Univariable modelling of 31 genomic features using a Cox Proportional hazards model adjusted for HRD, age at
diagnosis and stage at diagnosis and stratified by cohort. Forest plot shows hazards ratios (log) and 95% confidence interval per feature. B)
As (A) but hazards ratios from one multivariable model including all 31 genomic features plus adjustments. (C) Selected features from
elastic net penalised Cox PH regression model. Black diamonds are the median estimates from 10 cross-validations of elastic net. Kaplan-
Meier curves of presence (blue curve) and absence (red curve) of (D) CDK12 SNV, (E) deleterious mtDNA mutation (F) severe
chromothripsis.
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Discussion

We have shown that the global landscape of structural variation in HGSOC is shaped by the
presence of HRD and WGD, leading to the emergence of hotspots, impacting thousands of
genes recurrently across samples. Previous studies have identified similar genomic regions
but have not refined these regions to identify candidate driver genes >°¢. Exploiting the
independent sub-cohorts underlying the combined cohort, we predicted 8 novel HGSOC
candidate driver genes (PCM1, WRN, LEPROTL1, ARID1B, FGFR10P, AXIN1, DNMT3A,
TCEAT) within these regions, showing significant differential expression across sub-cohorts
in response to the CNA loads observed. Of these potential CNA-mediated driver events, only
WRN (a DNA helicase involved in double strand break repair) deletion showed some
evidence of an effect on patient survival. Supporting this conclusion, WRN has recently been
reported as a haploinsufficient tumour suppressor gene, based upon analyses of pan-cancer
CNA data not examined here and experiments in lung epithelial cells ®'; we propose that it
may also represent a novel therapeutic target in HGSOC.

Other CNA-mediated driver gene candidates provide new insights into HGSOC biology.
Over-expression of the de novo methyltransferase DNMT3A has been reported in previous
studies of HGSOC ©” and, consistent with this, we have shown that the frequent CNA
amplification of this gene results in significantly higher expression in many samples. This
suggests a role for DNMT3A in the aberrant DNA methylation patterns seen in HGSOC,
which are not currently well understood, but show promise as biomarkers for detection and
prognostic testing ®®. ARID1B is a core subunit of the SWI/SNF chromatin remodelling
complex and has been reported to be inactivated in endometrial, endometrioid ovarian and
clear cell ovarian cancer ®°, though inactivation of a similar subunit of the same complex
(ARID1A) is more frequent. However, to our knowledge ARID1B has not previously been
reported to be frequently altered in HGSOC. Activation of the Wnt/B-catenin pathway has
long been reported in epithelial ovarian cancers, and it has been speculated that reductions
in the expression of inhibitors of this pathway, such as AXIN1, could be a mechanism
underlying pathway activation "°. We have found recurrent CNA significantly altering AXIN1
expression, but intriguingly the rates of deletions and amplifications across samples are
similar.

The extent of enrichment of SVs of all types, both simple and complex, on chromosome 19
is striking. To our knowledge this is the first report of a chromosome-wide hotspot for
complex structural variation. This enrichment is driven by patterns of fold back inversions at
the CCNET1 locus 2" resulting in a higher level of amplification than possible by simple
duplication and is achieved via complex mechanisms such as breakage fusion bridge cycles,
ecDNA or chromothripsis. CCNE1 amplification has been proposed as an effective
therapeutic target ' however the mechanisms leading to amplification and in particular over-
expression of the gene are not fully understood. We show that SVs involving CCNET are
associated with its increased expression and our data suggest that concurrent duplication of
nearby gene CEP89, which likely reflects the same amplification events, may be linked with
poorer prognosis.

WGD is a common early event in many tumour types, including HGSOC, and has been
associated with poor prognosis across cancer types °. Our results confirm the association
between WGD and genomic instability seen in cell line experiments "2, but extend this to
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encompass most known cSV types in addition to simple structural variation. It has been
hypothesised that WGD may also allow rapid tumour evolution via catastrophic events such
as chromothripsis ", and we conclude there is convincing evidence for this in HGSOC. We
have shown those tumours undergoing WGD suffer frequent catastrophic events, particularly
chromothripsis and BFB, and would be expected to evolve rapidly. This may represent an
advantage for some WGD tumours, for example those acquiring BFB mediated
amplifications of CCNE1, but appears to be a liability for those suffering the most severe
chromothripsis events, where patient survival is improved (Figure 6). This is consistent with
simulations suggesting that WGD may be selected to mitigate the accumulation of
deleterious alterations suffered by tumours with high mutation rates "*. A recent study found
that HGSOC samples frequently showed evidence of chromothripsis but these events rarely
caused losses of tumour suppressor or DNA repair genes ''. Our results also suggest that
these events do not generally fuel adaptive evolution and instead make up part of the
deleterious mutation burden afflicting these tumours. The presence of chromothripsis
appears to be buffered by WGD and tumours with the most severe events may suffer
increased immunogenicity or compromised metabolism, leading to longer OS (Figure 6).
Nevertheless, the frequent occurrence of WGD has clinical significance, since WGD itself
has been reported to be a targetable vulnerability ">, This highlights the potential for new
therapeutic opportunities in patients with WGD tumours which are generally HR proficient
and currently more challenging to treat. Our knowledge of the cSV landscape is incomplete
and the study of these variants is rapidly developing. Despite our increased power to
characterise the cSV landscape in this larger cohort, the current known cSV types
encompassed only a small fraction (13%) of the total SVs observed in the cohort. A higher
proportion of SVs (27%) than those included in cSVs are clustered in the genome 33, which
can indicate cSV. This suggests that as yet unstudied cSVs may occur in HGSOC.

We show that CDK12 inactivation occurs at unexpectedly high levels in HGSOC, affecting
up to 34% of samples in the cohort (Figure 3C) when all structural variation is added to the
deleterious SNV/SV/CNA load affecting 16% of samples (Figure 3A). CDK12 loss in HGSOC
leads to genomic instability, in the form of extensive tandem duplication ’ and reduced
expression of DNA damage repair genes including HR genes such as BRCA1 ’®. The extent
to which CDK12 loss confers sensitivity to single agent PARP inhibition remains contentious;
in prostate cancer the tandem duplication resulting from biallelic CDK12 loss results in
increased neoantigen generation and enhanced sensitivity to immunotherapy "°. We show
that CDK12 mutation is associated with significantly worse overall survival (Figure 6D) and it
is possible that these patients, with genetic CDK12 inhibition, may show major
improvements in overall survival with PARPI treatment.

Finally, we demonstrate that deleterious SNV loads predicted to disrupt mitochondrial gene
function accumulate in HGSOC and are a novel biomarker of poorer OS, independent of
other influential variables such as HRD. Recent studies have revealed driver roles for
mtDNA mutations during tumorigenesis in particular tumour types, but the functional impact
of these variants on mitochondrial function is under-studied '®. Notably, deleterious mtDNA
mutations in colorectal tumours are associated with improved OS "7, highlighting the tumour
type specific impacts of these mutations, and the pressing need for further studies. There
are two clinical implications of our observations in HGSOC. Firstly, disrupted mitochondrial
function may be a targetable feature, particularly in WGD tumours, and therapeutic
strategies to rescue mitochondrial Cl deficiency are already under investigation in the
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context of cardiovascular disease . Secondly, our data suggests that HRD tumours are
intolerant of deleterious mtDNA mutations, consistent with their sensitivity to disrupted
oxidative phosphorylation metabolism ®'.

Overall, these data show that the genomic chaos seen in HGSOC obscures meaningful
underlying patterns. Structural alterations are distributed non-randomly to generate hotspots
harbouring known and novel driver genes. The diverse and frequent complex structural
events observed relate to the presence of two genomic states, HRD and WGD, which
generate structural diversity but also create vulnerabilities for tumours. Epitomising this
dichotomy, tumours with WGD are more likely to possess CCNE1 amplifications enhancing
proliferation, but are also more likely to suffer extreme chromothripsis, which appears to
impair tumour development. Thus, WGD tumours walk a narrow path towards an optimal
level of chromosomal instability which facilitates rapid growth without risking cell death.
These heavily disrupted nuclear genomes are in turn associated with alterations to the
mitochondrial genome, impacting patient survival, and revealing a new layer of potential
therapeutic targets.
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