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The body of ecological literature, which informs

much of our knowledge of the global loss of bio-

diversity, has been experiencing rapid growth in re-

cent decades. The increasing difficulty to synthe-

sise this literature manually has simultaneously re-

sulted in a growing demand for automated text min-

ing methods. Within the domain of deep learning,

large language models (LLMs) have been the sub-

ject of considerable attention in recent years by

virtue of great leaps in progress and a wide range

of potential applications, however, quantitative in-

vestigation into their potential in ecology has so

far been lacking. In this work, we analyse the abil-

ity of GPT-4 to extract information about inverte-

brate pests and pest controllers from abstracts of

a body of literature on biological pest control, us-

ing a bespoke, zero-shot prompt. Our results show

that the performance of GPT-4 is highly competi-

tive with other state-of-the-art tools used for taxo-

nomic named entity recognition and geographic lo-

cation extraction tasks. On a held-out test set, we

show that species and geographic locations are ex-

tracted with F1-scores of 99.8% and 95.3%, respec-

tively, and highlight that the model is able to distin-

guish very effectively between the primary roles of

interest (predators, parasitoids and pests). More-

over, we demonstrate the ability of the model to

effectively extract and predict taxonomic informa-

tion across various taxonomic ranks, and to auto-

matically correct spelling mistakes. However, we

do report a small number of cases of fabricated in-

formation (hallucinations). As a result of the cur-

rent lack of specialised, pre-trained ecological lan-

guage models, general-purpose LLMs may provide

a promising way forward in ecology. Combined with

tailored prompt engineering, such models can be

employed for a wide range of text mining tasks in

ecology, with the potential to greatly reduce time

spent on manual screening and labelling of the lit-

erature.
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Introduction

Much of our knowledge of the global loss of biodiver-

sity stems from large-scale syntheses of the ecological

literature (Cornford et al., 2022). Such syntheses under-

lie the establishment of global environmental databases

such as the WWF’s Living Planet Index (LPI, 2024),

the PREDICTS (Hudson et al., 2017), and the BioTIME

(Dornelas et al., 2018) databases, as well as the myriad

global reports such as those of the Intergovernmental

Science-Policy Platform on Biodiversity and Ecosystem

Services (IPBES, 2019) and the Living Planet Report

(Almond et al., 2022).

The body of ecological literature has simultaneously

been experiencing rapid growth in recent decades (Mc-

Callen et al., 2019; Anderson et al., 2021) and it is

becoming increasingly difficult to synthesise this liter-

ature manually (Cohen et al., 2012; Ananiadou et al.,

2009). Thus, there is a growing demand in the eco-

logical community for automated methods to assist in

such tasks. Text mining and natural language process-

ing (NLP) methods are expected to have significant po-

tential in automating tasks such as document classifica-

tion, named entity recognition and disambiguation, and

the extraction of relations between entities (Farrell et al.,

2022). Previous approaches have focused on the identi-

fication of species in the text using probabilistic machine

learning algorithms (Akella et al., 2012) or dictionary-

based approaches (Gerner et al., 2010); the extraction

of taxonomic terms and geographic locations (Millard

et al., 2020; Cornford et al., 2022); the extraction of tax-

onomic terms using deep learning (Le Guillarme and

Thuiller, 2022); the extraction of population trends us-

ing random forest and neural network classifiers (Corn-

ford et al., 2022); and the classification of relevant and

non-relevant scientific articles using logistic regression

and convolutional neural network approaches (Cornford

et al., 2021).

Within the domain of deep learning (DL) for NLP tasks,

large language models (LLMs) have been the subject

of considerable attention in recent years by virtue of

great leaps in progress and a wide range of poten-

tial applications (OpenAI, 2023a). This deep learning

revolution in NLP is primarily fuelled by the now ubiq-

uitous transformer architecture (Vaswani et al., 2023),

which underlies many new and innovative DL tools in

the natural sciences, such as the AlphaFold model
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for protein structure prediction (Jumper et al., 2021).

Recent, transformer-based LLMs are trained on large

amounts of input data to be able to generate realis-

tic texts and are able to provide question answering

and human-computer interaction via natural language

(Ouyang et al., 2022). Provided with the right prompts,

these models, furthermore, have been shown to exhibit

advanced reasoning and problem-solving capabilities

(Wei et al., 2023; Wang et al., 2023; Li et al., 2023; Ko-

jima et al., 2023; Zhou et al., 2023). In particular, Ope-

nAI’s fourth-generation Generative Pre-trained Trans-

former (GPT-4) has seen major improvements over pre-

vious models across a variety of benchmarks (OpenAI,

2023a). GPT-based models have already been investi-

gated for a wide range of text mining tasks for research,

including clinical (Hu et al., 2023), medical (Chen et al.,

2023; Fink et al., 2023) and agricultural (Zhao et al.,

2023), however, quantitative investigation into their po-

tential in ecology has so far been lacking.

GPT-4 represents the current state-of-the-art of large

language models and is easily accessed out of the

box using ChatGPT, making this an attractive choice

to demonstrate the potential of LLMs for automated in-

formation extraction and knowledge synthesis from sci-

entific text. However, it is important to note that, as

an alternative to closed access models such as Ope-

nAI’s GPT series, the landscape of open-source LLMs

is rapidly evolving and highly competitive (E.g., Touvron

et al., 2023; Zhang et al., 2022; Dey et al., 2023).This

availability of open-source LLMs is crucial for fostering

open and reproducible use of AI in ecology, ensuring

that the field advances in a sustainable and equitable

manner. Thus, while GPT-4 does not currently adhere

to open science standards, the methodology followed in

this paper is to be understood as a proof of concept for

the potential use of general-purpose LLMs in informa-

tion extraction tasks in ecology, which ideally transpire

in an open science context.

This work investigates the application of GPT-4 to a

body of ecological literature on biological pest con-

trol. The utilisation of natural enemies of pests, such

as arthropod predators and parasitoids, as biological

control agents can provide an effective way to reduce

pesticide usage, which is currently a major driver of

insect declines (Wagner et al., 2021; Sánchez-Bayo

and Wyckhuys, 2019; Cardoso et al., 2020). Biologi-

cal control has historically often relied on the introduc-

tion of non-native species (classical biocontrol), which

can be detrimental to native species and thus strain

local ecosystems and negatively affect biological di-

versity. Natural biological control, on the other hand,

utilises native species as biological control agents and

is typically achieved through the enhancement of nat-

ural habitat. Natural biological control helps directly

regulate the frequency of pest outbreaks (Letourneau,

2012; Tahvanainen and Root, 1972; Pimentel, 1961)

and, indirectly, can result in improved soil quality (Gun-

stone et al., 2021), increased crop yields (Gurr et al.,

2016; Dainese et al., 2019; Letourneau et al., 2011)

and increased abundances of other beneficial organ-

isms such as pollinators (Balzan et al., 2014; Grass

et al., 2016; Wratten et al., 2012), as a result of re-

duced pesticide usage and increased natural habitat.

Crucially, by strengthening the stability and resilience

of ecosystem services such as pest control, pollina-

tion and nutrient cycling, food production systems can

be better buffered against environmental and climatic

changes (Oliver et al., 2015; Brittain et al., 2013; Mar-

tin et al., 2019), which is of growing importance as the

impacts of climate change continue to intensify (IPCC,

2023).

The primary aim of this paper is to provide a thorough

analysis of the ability of GPT-4 to reliably extract infor-

mation from scientific abstracts to identify pests and

pest controllers. In addition to determining roles of

species (e.g., as pests or pest controllers), the model

is tasked with extracting their taxonomy and geographic

location, as well as role-specific information such as the

pest-type and the crop or plant that a pest affects. As

such, the task comprises multiple sub-tasks, which re-

quire both the capability to recognise and disambiguate

entities (named entity recognition), and to extract rela-

tions between entities (relation extraction). Rather than

fine-tuning the parameters of the model, we proceed to

optimise model performance through the fine-tuning of

the prompt itself. Performance is then analysed on each

sub-task of the query, indicating precision, recall and

F1 scores. To our knowledge, this is the first instance of

general-purpose, large language models such as GPT-4

being investigated for the potential automation of infor-

mation extraction and knowledge synthesis in ecology.

Methods

Data collection

In order to obtain relevant literature on potential pest

controllers and their hosts, we extracted a set of ab-

stracts from the academic indexing tool Scopus up until

the year 2020, using the following search-term:

TITLE-ABS-KEY("pest control" OR "biological control"

OR "pest management" OR "natural enem*") AND

(LIMIT-TO(DOCTYPE, "ar")) AND (LIMIT-TO(SUBJAREA,

"AGRI") OR LIMIT-TO(SUBJAREA, "ENVI")) AND (LIMIT-

TO(LANGUAGE, "English"))

The usage of Scopus ensured that all of the extracted

literature has undergone peer-review, which we judged

to be of importance, given that the underlying motive of

this work is to automate peer-reviewed knowledge syn-

thesis and meta analysis. The search-term used here

obtained a corpus of 58,791 abstracts. For this study,

we selected a subset of 100 abstracts to create a train-

ing set, which we used to fine-tune the prompt with re-

spect to GPT-4 output, and a further 100 abstracts to

create a held-out test set, which we used to analyse the

final performance of GPT-4 with the fine-tuned prompt.

We populated both of these sets by manually labelling
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the 200 abstracts (including titles and keywords) using

the columns shown in Table 1, including all invertebrate

species found at the species or genus level. We made

this selection of species due to our focus on pest con-

trol services of, and provided by, invertebrate animals

specifically. Invertebrates also comprise the vast major-

ity of species present in the abstracts selected for the

training set and the held-out test set.

We selected the 100 abstracts comprising the training

set on the basis of specifically including both predators

and parasitoids, in addition to pests, in order to fine-tune

the prompt on these roles as much as possible, as these

roles bear particular relevance to the topic of (natural)

biological pest control. The information on instances

of predators, parasitoids and pests was available from

a pre-screening procedure that was carried out in pre-

vious work for a total of 1520 abstracts, which identi-

fied and described genera present in these abstracts

and could thus indicate which abstracts contained (at

least one genera) of predators, parasitoids and pests.

The abstracts comprising the training data were then

selected from this subset at random on a rolling basis,

with an ongoing attempt to avoid extreme imbalances

between the number of predators, parasitoids and pests

(Fig. S1.1a). The 100 abstracts comprising the held-out

test set were selected randomly from the remaining ab-

stracts in the corpus. Pest species are common in the

corpus, which means that there is a relative increase in

the proportion of species labelled as pests in the test

set compared to the training set (Fig. S1.1b).

The training and test set consist of 14 columns (Table 1).

In the ’Role’ column, we determined whether a species

was mentioned as a predator, parasitoid or pest. If there

was no mention of these roles in the text, we looked for

any other broad category, such as herbivore, pollina-

tor, biological control agent, etc. Where specific roles

lacked, we looked for broader descriptions, such as

"was observed to predate/consume", "was reared from

host" or "infests maize fields" to arrive at an appropri-

ate role. Where even descriptions lacked and no other

indication was given in the abstract, the role was left

blank. In the ’Generalist/Specialist’ column, we deter-

mined whether a species was mentioned as a (dietary)

generalist or specialist. We required no specific evi-

dence for this column, only the mention of dietary gen-

eralism or specialism. For the ’Pest Controller’ column

to be ’true’, we required either a specific mention of a

species as functioning as a biological control agent, or

required a predator, parasitoid or natural enemy to be

stated to specifically feed or prey on a pest. In the ’Pest

Names’ column, we specified the names of the pests

controlled by a pest controller. In the ’Pest Type’ col-

umn, we decided to distinguish invertebrate pests from

plant pests (weeds), with the aim of identifying weed

controllers from other pest controllers. In the column

’Industry Type’ we determined if a pest species was

mentioned in association with a particular industry like

agriculture or forestry, and in the column ’Affects’ we

determined which crops or products were affected by

the pest, if mentioned in the abstract. The column ’De-

scription’ serves to provide both as a description of the

species in the abstract, and as a justification for the as-

sessment of the other columns. The ’Location’ column

refers to the location of the study, if mentioned, and was

unconstrained in geographical scale.

Prompt and objective

In the first step of the experiment, we applied GPT-4 to

each individual abstract (title, abstract and author key-

words) in the training set, with the instruction to find all

taxonomic entities present in the text that are mentioned

at the species- or genus level and returning a table with

columns as in Table 1. To achieve this, we instructed

GPT-4 with an initial prompt (Fig. S3.1). This prompt

follows a zero-shot prompting approach, detailing pre-

cisely how each column in the table should be filled out,

requiring both named entity recognition and relation ex-

traction capabilities.

Since the training and validation set were manually pop-

ulated with invertebrate species only, we decided to

prompt GPT-4 to neglect plants, bacteria, fungi and

pathogens in its output. While this does not exclude ver-

tebrate species per se, we proceed to analyse the per-

formance of the model on invertebrates only. The ability

of GPT-4 to abide by the constraint to neglect certain

entities in the text will be of interest in cases where gen-

erated output is desired to be limited to certain species

of interest, rather than providing an exhaustive table.

For large-scale studies, the increased completion time

of generating exhaustive tables may be substantial, and

the generation of long tabular output may be infeasible

due to the token limits posed by current state-of-the-art

large language models such as GPT-4. At the time of

this experiment, both the GPT-4’s input and generation

were limited to 2,048 tokens (OpenAI, 2023b), corre-

sponding to ca. 1536 words (OpenAI, 2023c).

As GPT-4 had not yet been released for API usage

at the time of the study, we proceeded to use the

ChatGPT web-interface (using the May 24 release of

GPT-4) and saved the tabular output manually to a

spreadsheet. This required a Plus membership with

OpenAI. We prompted the model with each abstract

in an individual session to ensure that there was

no information leakage across abstracts. We then

analysed the output for each abstract in the training

set, as obtained with the initial prompt (Fig. S3.1),

noting its errors across the various columns of the

table, and subsequently improved the prompt through

a series of changes that proved to remedy the error

in each particular case. This was achieved through a

combination of experimenting with the prompt design,

based on consultation of the prompt learning literature,

and inserting bespoke instructions and clarifications

into the prompt (e.g., "Don’t do X ", "Ensure that

Y "). Where uncertain how to proceed, we queried

GPT-4 itself as to how the prompt may be improved in
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Table 1. Columns of the data used in this study. Using these columns, we manually populated the training set (using the 100 abstracts selected for the training

set), and the test set (using the 100 abstracts selected for the test set): These constitute the ’manually labelled data’ in the training and test set. Consequently, we

instructed GPT-4 to generate a table with the same columns: These constitute the ’GPT-4 generated’ training and test set.

Column Explanation Clarification

1. Class Class name. Taxonomy (Latin).

2. Order Order name. Taxonomy (Latin).

3. Family Family name. Taxonomy (Latin).

4. Genus Genus name. Taxonomy (Latin).

5. Species Species name. Taxonomy (Latin).

6. Role The role that the species is ascribed

in the text (e.g., predator, parasitoid,

pest, herbivore, etc.).

Not limited to the given examples.

7. G/S Is the species mentioned as a gener-

alist or specialist?

This refers to dietary generalism and

specialism.

8. Pest Controller True or false: Is the species men-

tioned as a pest controller?

We define a pest controller as a natu-

ral enemy (i.e., predator or parasitoid)

of a pest. Biocontrol agents of pests

also suffice.

9. Pest Names For pest controllers: What pests does

it control?

May be given as a common name or

at any taxonomic scale, as mentioned

in the abstract.

10. Pest Type For pests and pest controllers: Is

the pest an invertebrate or plant (i.e.,

weed)?

Although plant species are not to be

returned as species in the table, they

may be mentioned in Column 9.

11. Industry Type For pests and pest controllers: What

industry is the pest associated with

(e.g., agriculture, forestry, freshwater,

etc.)?

Not limited to the given examples.

12. Affects For pests and pest controllers: What

crops, plants or products does the

pest affect?

This may be given as common names

or at any taxonomic scale, as men-

tioned in the abstract.

13. Description Thorough description of the species

as mentioned in the abstract and a

justification for the assessment.

Unconstrained in length.

14. Location Geographical location of the study, if

mentioned.

Name of the location as mentioned in

the abstract, unconstrained in scale.

order to avoid a particular error in the future. This was

done by following up on the output with "You made

the following error: X. How would I need

to change my prompt in order for you to fill

this out correctly next time?". We carried out

this fine-tuning process for the 100 abstracts in the

training data over the course of three full iterations.

We decided to iterate over the training set three times,

rather than once, in order to ensure that the continuous

changes made to the prompt yielded consistent results

and to allow for changes to be reverted if they proved

ineffective. All consecutive versions of the prompt over

the course of the fine-tuning process can be found in

Section 3 of the supplementary information .

Following fine-tuning against the training set, the prompt

assumed the design as shown in Fig. 1. This prompt is

split into three smaller prompts, the first of which serves

to identify all relevant species in the abstract, the sec-

ond of which serves to return these species in a table

with the appropriate columns filled out, and the third

of which asks GPT-4 to review the generated table and

make any corrections if necessary. We ran these three

prompts within the same session. This approach, of di-

viding a complex set of instructions into smaller tasks,

is known as least-to-most prompting (Zhou et al., 2023).

The prompt design follows a ’zero-shot’ approach as it

contains only instructions, rather than including any ex-

emplar prompt completions, which would have drasti-

cally increased the token length of the prompt. We at-

tempted to improve the reasoning ability of the model

by including the phrase "let’s think through the following

tasks step by step" (info-point 3; Kojima et al. (2023)),

and through the usage of chain-of-thought reasoning

(Wei et al., 2023) at several points in the prompt to
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Figure 1. The final prompt design after fine-tuning against the training set. The prompt is divided into three parts. The first part prompts GPT-4 to detect all relevant

species in the abstract, the second part prompts GPT-4 to return these in the table with the appropriate columns filled out, and the third part prompts GPT-4 to review

the generated table and make any corrections if necessary. The points labelled as ’C’ (and highlighted in grey rather than yellow) designate clarifications; these were

used to clarify specific terms such as pest and pest controller, and aimed to reduce persistent problems such as formatting errors and missing pest information in

some of the columns.
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demonstrate clearly to the model how it should think

about its tasks and what it must pay attention to (info-

points ’C’). These prompting techniques have all been

demonstrated to improve the reasoning capabilities of

GPT-3.5 (Zhou et al., 2023; Kojima et al., 2023; Wei

et al., 2023). The prompt also makes abundant usage

of specific examples and counter-examples to aid the

correct identification of particular roles of entities. We

applied this fine-tuned prompt to the training data once

more without any further changes in order to obtain final

results on the training set, and subsequently applied the

prompt to the held-out test set.

Extraction of taxonomy

As shown in Table 1, the first 5 columns of the

data reflect the taxonomy of the species or genus

(i.e., Class, Order, Family, Genus, Species). While

higher level taxonomic information can be extracted

from databases such as the Global Biodiversity Informa-

tion Facility (GBIF, 2023) for a given species or genus,

species names are frequently misspelled in the litera-

ture and genus names occasionally appear across dif-

ferent phyla, making it difficult to automatically extract

the correct taxonomy. We thus deemed it of interest to

investigate the ability of GPT-4 to (1) predict the missing

taxonomy of a given species or genus (i.e., from its train-

ing data) and (2) correct any obvious misspellings. To

this end, we filled out the taxonomy of each species (or

genus) in the training and test sets as they are stated

in the abstracts, if available. We refer to the task of

extracting this taxonomy as ’taxonomic named entity

recognition’. Where the taxonomy was not available in

the abstract, we searched for the species on GBIF and

the Encyclopedia of Life (EOL) (Parr et al., 2014) using

the genus and (if available) species name and filled this

out accordingly. We refer to the task of predicting this

missing taxonomy as ’higher level taxonomy prediction’.

This taxonomy concerns only the class, order and fam-

ily columns in the data sets as the genus and species

columns are needed to predict the missing taxonomy. In

both cases, the obtained taxonomic information is then

compared to the generated GPT-4 output. Since tax-

onomic named entity recognition and higher level tax-

onomy prediction comprise two very different tasks, we

evaluate performance of the model on these two groups

of taxonomic terms individually.

Mismatches. A mismatch between the manually labelled

taxonomy and the taxonomy returned by GPT-4 does

not necessarily mean that the GPT-4 prediction is

wrong. Taxonomy is frequently misspelled in the litera-

ture and conventions regarding taxonomic ranks are not

always used consistently. For example, Latin binomials

are often accompanied by a taxonomic annotation ’(X:

Y)’, where X typically refers to the order and Y typically

refers to the family of the species. However, authors fre-

quently present this annotation with phyla, class, sub-

orders or superfamilies instead, which means that the

manual extraction does not always extract the correct

class, order and family information. In order to deter-

mine the correct taxonomic ranks in case of a mismatch

between the term manually extracted from the abstract

and the GPT-4 generated term, we once again referred

to the GBIF and EOL databases. Through compari-

son with this reference taxonomy, we then determined

whether the manual label, the GPT-4 prediction, or both,

were mistaken. Conversely, a mismatch between tax-

onomy that was missing from the abstract and the tax-

onomy predicted by GPT-4 necessarily implies that the

GPT-4 prediction was mistaken, since the missing tax-

onomy was obtained from the GBIF and EOL databases

to begin with.

We proceed to divide the taxonomic mistakes made by

GPT-4 into two categories: Minor mistakes and major

mistakes. We define a minor mistake as a discrep-

ancy between the GPT-4 prediction and the manual la-

bel where the GPT-4 prediction nevertheless preserves

essential details. This includes predictions of incor-

rect taxonomic ranks that are nevertheless part of the

broader taxonomy as adjacent terms (e.g., the correct

suborder rather than order, phylum rather than class,

etc.), entries of ’sp’/’spp.’ rather than blank species en-

tries, inclusions of subspecies information, or common

names rather than Latin names (e.g., ’Insect’ rather than

’Insecta’). Conversely, we define major mistakes as dis-

crepancies where the GPT-4 prediction conveys infor-

mation that is inaccurate. This refers to incorrect taxo-

nomic terms that are not part of the broader taxonomy

of the species, and instances of blank entries where the

taxonomy is stated in the abstract. We refer to approxi-

mate taxonomic matches as matches that include both

exact matches and minor mistakes.

Analysis of species information

We focus our analysis of the remaining species informa-

tion (columns 6–14) on the species roles and the geo-

graphic locations. For these two sub-tasks, we measure

the performance of GPT-4 by computing the precision,

recall and F1-score (Eq. 1) of the model, and provide

confusion matrices to identify true positives, false posi-

tives, true negatives and false negatives for each label.

The F1-score serves to strike a balance between the

precision and the recall.

Precision =
TP

TP +FP

Recall =
TP

TP +FN

F1-score = 2 ·

Precision · Recall

Precision + Recall

TP : True Positives

FP : False Positives

FN : False Negatives

(1)
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True positives comprise all direct matches between the

manual labels and the GPT-4 predictions, as well as pre-

dictions in close agreement with the manual label (i.e.,

convey the same essential information). For species

roles, this is achieved by grouping all obtained roles into

9 distinct groups, with which we ensure that roles such

as ’biocontrol agent’ and ’biological control agent’ both

comprise the same essential role. Similarly, roles such

as ’parasitoid’ and ’larval parasitoid’ comprise the same

group, as do labels such as ’unclear’, ’not mentioned’

and blank entries. We group roles that are not of im-

mediate interest to this study as ’other’ (e.g., ’pollinator’,

’scavenger’, ’competitor’).

For geographical locations, ’close agreement’ between

labels can be understood as referencing the same ge-

ographic area, albeit at different scales. As such, we

count examples such as ’Northern New Zealand’ and

’New Zealand’, ’Manitoba, western Canada’ and ’Mani-

toba, Canada’, ’Eastern Newfoundland’ and ’Newfound-

land’ (taken from the training set) as the same essential

location. Naturally, when the essential location is lost

(e.g., a manual label of ’Australia’ and a prediction of

’North Island’) we no longer consider this a true positive

(indeed, this example would comprise a false negative,

as it missed the essential location, Australia).

Results

Species extraction

We found that splitting the instructions into two consecu-

tive prompts, in which the first prompt served to identify

all relevant species in the text and the second prompt

served to fill out the table, led to improvement in en-

tity extraction capability. While the initial prompt already

extracted 627 out of the 649 species (96.6% recall) in

the training data (with missing entries corresponding to

2 out of 100 abstracts), the split-prompt approach en-

sured that all 649 species were extracted in the first

part of the prompt. In the second part of the prompt,

however, GPT-4 remained challenged with returning all

previously found species in the final table, and as a

result a small number of species in the training data

were still missed in GPT-4’s output, with 631 out of 649

species (97.2% recall) extracted (Table 2a). However,

since these missing entries correspond to only 2 out of

100 abstracts in the training set, we obtain a mean re-

call per abstract of 99.5% (standard deviation = 4.4%)

(Table 2b). Importantly, we also observed 43 instances

of fabricated species entries (’hallucinations’) as rows

in the GPT-4 output for the training set, which occurred

across the same two abstracts where missing entries

were observed. This results in a total precision of 93.6%

and a mean precision per abstract of 99.1% (standard

deviation = 6.8%) (Table 2). For the test set, GPT-4 ex-

tracted 244 out of 245 species (99.6% recall), and we

observed no hallucinated species entries in the test set

(100% precision) (Table 2). Moreover, we found that

GPT-4 did not generate any entries for plants, bacteria,

fungi or pathogens in either the training set or the test

set and thus managed to abide by the constraint set on

the species extraction very effectively.

We hypothesised that the third step in the final prompt

design, in which we asked GPT-4 to thoroughly review

its output, would allow GPT-4 to pick up on its own mis-

takes, however, its success was found to be very lim-

ited. GPT-4 corrected its own mistakes only in the case

of a single abstract in the training set, corresponding

to 12 species entries. In this case, the model correctly

identified that it had left out columns 10 (’Pest Type’), 11

(’Industry Type’) and 12 (’Affects’) for the pest species in

the table and then proceeded to fill these out correctly.

In one case in the test set, the model claimed that it had

not identified a particular species as ’pest’, stating that

it had corrected this, although the species had, in fact,

been identified as a pest already. In two other cases,

the model returned reassurances other than ’No correc-

tions’ (although conveying the same message). Inter-

estingly, the model did not recognise missing entries or

hallucinations in the table.

The generated tables obtained from GPT-4 display vary-

ing degrees of accuracy and adherence to the prompted

instructions. However, in cases where the information in

the abstract is presented clearly and non-ambiguously,

strong performance can be observed (Fig. 2). Con-

versely, ambiguous usage of language (e.g., a preda-

tory species that acts as a pest) is prone to produce er-

roneous results (Fig. S1.2). The results in the following

sections are obtained from comparing the GPT-4 gener-

ated tables (using the fine-tuned prompt; Fig. 1) with the

manually labelled tables for all abstracts in the training

and the held-out test set. The species in the training and

test set that were missed by GPT-4 are omitted from the

remaining analysis as these species naturally cannot be

compared to GPT-4 predictions. This refers to 18 out of

642 entries in the training set and 1 out of 245 entries in

the test set. We also omit the 43 cases of hallucinations

in the training set from this further analysis, but discuss

these in the discussion.

Taxonomic named entity recognition

Here we assess the ability of GPT-4 to extract taxo-

nomic information present in the abstracts. We ob-

served only a small number of mismatches between

the manual labels and the GPT-4 predictions (Table 3).

Following comparison with the reference taxonomy ob-

tained from GBIF and EOL, we found that the majority

of mismatches were either cases where the GPT-4 pre-

diction was, in fact, correct, or where the mistake com-

prised only a minor mistake, rather than a major mis-

take (Table S2.3a). Indeed, we observed only 2 major

mistakes out of the 2276 total taxonomic terms (0.09%)

predicted by GPT-4 in the training set, and 3 major mis-

takes out of the 803 total taxonomic terms (0.37%) pre-

dicted by GPT-4 in the test set (Table S2.3a). Proportion

correct (PC) scores of approximate matches are found

to be between 98–100% across both the training and
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Table 2. Precision, recall and F1-score of the extraction of species (as rows in the final output table) by GPT-4, for the training set and the held-out test set. Scores

are presented as computed from the total number of predicted and manually extracted species entries (a), and as the mean per abstract (b). Support: The number of

species present in the manually labelled data set (a); the number of abstracts in the data set (b).

(a) Total

Precision (%) Recall (%) F1 (%) Support

Training set 93.6 97.2 95.3 649

Test set 100.0 99.6 99.8 245

(b) Mean per abstract

Precision (%) Recall (%) F1 (%) Support

Training set 99.1 ± 6.8 99.5 ± 4.4 99.3 ± 4.1 100

Test set 100.0 ± 0.0 99.0 ± 9.9 99.5 ± 5.0 100

Table 3. Accuracy of GPT-4 on the task of taxonomic named entity recognition. This refers to taxonomy that was available for extraction in the abstract. Accuracy is

presented for each taxonomic rank as the proportion correct (PC) of predictions that are exact matches versus the total number of taxonomic terms (PCexact), and as

the proportion correct of predictions that are approximate matches (which exclude major mistakes but retain minor mistakes) versus the total number of taxonomic

terms (PCapprox). We also computed the latter per-abstract (PC∗

approx) to avoid bias from abstracts with a large number of extracted species: The presented values

show the mean across abstracts with a spread of one standard deviation. Since the class column in both the training and the test set is heavily dominated by insect

species, we also provide information on the correct number of non-insects obtained in square brackets.

Class Order Family Genus Species

T
ra

in
in

g
s
e

t

PCexact (%) 97.9

(143/146) [2/2]

98.4

(377/383)

98.7

(443/449)

98.6

(622/631)

96.8

(611/631)

PCapprox (%) 100.0

(146/146) [2/2]

100.0

(383/383)

100.0

(449/449)

100.0

(649/649)

99.8

(648/649)

PC*
approx (%) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 1.2

T
e

s
t

s
e

t

PCexact (%) 100.0

(73/73) [3/3]

91.5

(107/117)

98.4

(121/123)

99.2

(243/245)

95.1

(233/245)

PCapprox (%) 100.0

(73/73) [3/3]

98.3

(115/117)

100.0

(123/123)

100.0

(244/244)

99.6

(243/244)

PC*
approx (%) 100.0 ± 0.0 99.0 ± 9.9 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 2.0

Table 4. Accuracy of GPT-4 on the task of higher level taxonomy prediction. This refers to taxonomy that was not stated in the abstract and thus had to be predicted

by GPT-4 based on its training data. Accuracy is presented for each taxonomic rank as the proportion correct (PC) of predictions that are exact matches versus the

total number of taxonomic terms (PCexact), and as the proportion correct of predictions that are approximate matches (which exclude major mistakes but retain minor

mistakes) versus the total number of taxonomic terms (PCapprox). We also computed the latter per-abstract (PC∗

approx) to avoid bias from abstracts with a large number

of extracted species: The presented values show the mean across abstracts with a spread of one standard deviation. Since the class column in both the training and

the test set is heavily dominated by insect species, we also provide information on the correct number of non-insects obtained in square brackets.

Class Order Family

T
ra

in
in

g
s
e

t

PCexact (%) 99.8

(484/485) [20/20]

98.8

(245/248)

90.1

(164/182)

PCapprox (%) 100.0

(485/485) [20/20]

99.5

(381/383)

92.9

(169/182)

PC*
approx (%) 100.0 ± 0.0 99.4 ± 4.1 98.6 ± 5.2

T
e

s
t

s
e

t

PCexact (%) 93.0

(159/171) [31/43]

96.9

(123/127)

94.2

(114/121)

PCapprox (%) 99.4

(170/171) [42/43]

98.4

(125/127)

96.7

(117/121)

PC*
approx (%) 99.0 ± 9.9 98.5 ± 11.1 99.4 ± 4.1
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Figure 2. Table generated by GPT-4 for an exemplar abstract (title, abstract and keywords) in the test set, using the fine-tuned prompt design (Fig. 1). This is an abstract discussing a predatory true bug found in India (Sahayaraj, 2008).

The generated table includes all four species mentioned in the abstract and correctly identifies R. marginatus as pest controlling predator and the remaining species as pests. The taxonomy is correctly extracted from the text, with the class

correctly predicted to be ’Insecta’. The order of R. marginatus has been correctly predicted to be Hemiptera rather than the suborder Heteroptera that is stated in the text. The description of R. marginatus as "polyphagous predator" is

translated into ’Generalist’ in column 7, although the "certain degree of host specificity" is perhaps neglected. The pest information (columns 9–12) is correctly filled out both for R. marginatus as pest controller and for the remaining species

as pests. The descriptions are thorough and factually correct and the location is correctly identified to be India for all four species.
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test set, whether computed across all taxonomic terms

(PCapprox) or across abstracts (PC∗

approx) (Table 3).

Mismatches in the genus and species columns where

the GPT-4 prediction was correct refer primarily to cases

of spelling corrections, while mismatches in the class,

order and family columns refer primarily to cases of

corrected ranks (e.g., the correct family as opposed to

the superfamily that was mentioned in the abstract), al-

though we also find spelling corrections in the family col-

umn. Spelling corrections, which occurred exclusively

in the family, genus and species ranks, comprised 12

cases in the training set and 4 cases in the test set. In

all cases, GPT-4 corrected the spelling mistake and re-

turned the correct term. While this does not evidence

that the all misspellings in the data were corrected by

the model, it does demonstrate that when a misspelling

was addressed, it was done correctly.

Higher level taxonomy prediction

For the task of higher level taxonomy prediction we ob-

served more mismatches than for taxonomic named en-

tity recognition (Table 4), and more of these comprised

major mistakes (Table S2.3b). We observe 15 major

mistakes out of the 915 total taxonomic terms (1.64%)

predicted by GPT-4 in the training set, and 7 major mis-

takes out of the 419 total taxonomic terms (1.67%) pre-

dicted by GPT-4 in the test set (Table S2.3a). While

the PC scores of approximate matches (PCapprox) can

be seen to lie between 98–100% for the class and or-

der, we observe a notable decline for the family rank in

both the training set and the test set (Table 4). This de-

cline, however, appears to be primarily a result of bias

towards a small number of abstracts in which many ma-

jor mistakes were made, and is thus not observed in the

scores per abstract (PC∗

approx).

Species Roles

GPT-4 captured the roles of species with a high degree

of accuracy, as assessed against both the training set

(Fig. 3a) and the test set (Fig. 3b). Crucially, while there

are a small number of cases of manually labelled preda-

tors, parasitoids and pests having been mislabelled by

GPT-4 as something else (e.g., as ’competitor’, ’prey’,

’host’, ’unclear’), there is no confusion between these

roles, either in the training set, or in the test set (em-

phasised by the dotted line).

Results on the test set are very comparable with results

on the training set, although some differences in preci-

sion and recall can be observed (Table 5b). In particular,

the precision for predator roles is reduced from 100% on

the training set to 80.4% on the test set. As we can see

from Fig. 3b, this reduction is primarily a result of GPT-

4 predictions of ’predator’ for terms that were manually

labelled as biological control agents, natural enemies or

were left blank (unclear). Recall of predator roles is only

marginally reduced on the test set as compared to the

training set. In both cases, false negatives are a result

of a comparatively small percentage of abstracts (Table

S2.1).

Performance for parasitoid roles on the test set matches

performance on the training set closely, with precision

and recall scores consistently between 97–100% and

an F1-score of 98.7–99.0% (Table 5). In both sets,

hyperparasitoids (parasitoids of other parasitoids) are

accurately distinguished. For pest roles, we observe

a substantial amount of confusion between pests and

’prey/host’, ’other’ and (in particular) ’unclear’, across

both the training and the test set (Fig. 3a and Fig. 3b).

We also observe a large variation (between the training

set and the test set) in precision and recall for this role

(Table 5).

Geographic locations

In addition to the roles of species, we investigated the

ability of GPT-4 to extract geographical information from

the abstracts. The results show that GPT-4 is able

to effectively extract geographic information, with few

false-positive and false-negative predictions for both the

training set and test set (Fig. 4). Indeed, locations

are predicted with 98.7% precision and 97.1% recall

on the training set, and 95.3% precision and recall on

the test set (Table 6a and Table 6b, respectively). Per

abstract, an average of 96.3% of manually labelled lo-

cations are correctly returned by the GPT-4 predictions

in both the validation set and the test set (Table S2.2).

No-locations (i.e., no location mentioned in the abstract

for the respective species) are generally predicted only

marginally worse, with the exception of a notably lower

precision on the training set (Table 6a), which stems

from a total of 14 false negative predictions (Fig. 4).

These occur across 4 abstracts, with most (9 out of 14)

comprising empty predictions, and the remaining (5 out

of 14) comprising predictions of insufficient information

which stem from a single abstract (predictions of "North

Island" rather than "Australia").

Discussion

The results presented here show that GPT-4 possesses

an effective ability to (1) extract taxonomic and geo-

graphic entities from abstracts, (2) identify the roles of

species from their descriptions in the abstract and (3)

extract relations between entities in the abstract, such

as between pest controllers and pests, and pests and

certain industries as well as their affected products.

However, a number of observations and caveats merit

discussion.

Hallucinations

The vast pool of information that GPT-4 is able to syn-

thesise appears to provide a notable strength, enabling

the model to recognise common usages of language

in ecology such as the conventions regarding taxo-

nomic ranks and the meaning of domain-specific vocab-

ulary. Moreover, it allows the model to make predictions

that go beyond merely the information provided in the
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(a) Training set

(b) Test set

Figure 3. Confusion matrix of the various roles ascribed to species, either as ’Manual label’ or as ’GPT-4 prediction’, for the training set. Values indicate the percentage

of total predictions across each row (recall) and below these the corresponding absolute numbers of predictions. The primary roles of interest (predator, parasitoid

and pest) are emphasised with a dotted line. ’B.C.A.’: Biological Control Agent. ’H. Parasitoid’: Hyperparasitoid. ’Nat. Enemy’: Natural enemy. ’Other’ includes terms

such as ’Pollinator’, ’Herbivore’, ’Leaf miner’, ’Scavenger’, ’Ectoparasite’ and ’Competitor’ and the term ’Unclear’ includes ’Not mentioned’, as well as empty entries.
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Table 5. Precision and recall obtained by GPT-4 for each role in the training set (a) and the held-out test set (b). Support: The number of instances of the respective

role in the manual labels. Weighted average: The average of the respective column, weighted by the support of each row. ’B.C.A.’: Biological Control Agent. ’H.

Parasitoid’: Hyperparasitoid. ’Nat. Enemy’: Natural enemy. ’Other’ includes terms such as ’Pollinator’, ’Herbivore’, ’Leaf miner’, ’Scavenger’, ’Ectoparasite’ and

’Competitor’ and the term ’Unclear’ includes ’Not mentioned’, as well as empty entries.

(a) Training set

Precision (%) Recall (%) F1 (%) Support

Predator 100.0 93.2 96.5 207

Parasitoid 99.5 97.9 98.7 195

Pest 95.3 81.2 87.7 149

B.C.A. 88.9 100.0 94.1 16

H. Parasitoid 100.0 92.9 96.3 14

Nat. Enemy NA NA NA 0

Prey/Host 14.3 50.0 22.2 4

Other 87.5 91.3 89.4 23

Unclear 24.0 52.2 32.9 23

Weighted average 94.7 90.2 92.0 631

(b) Test set

Precision (%) Recall (%) F1 (%) Support

Predator 80.4 89.1 84.5 46

Parasitoid 100.0 98.1 99.0 52

Pest 87.4 96.0 91.5 101

B.C.A. 87.5 63.6 73.7 11

H. Parasitoid 100.0 100.0 100.0 2

Nat. Enemy NA 0.000 NA 3

Prey/Host 60.0 42.9 50.0 7

Other 27.3 42.9 33.3 7

Unclear 40.0 13.3 20.0 15

Weighted average 82.4 84.4 82.7 244

(a) Training set (b) Test set

Figure 4. Confusion matrices of the geographic locations of the studies mentioned in the text, either as ’Manual label’ or as ’GPT-4 prediction’, for the training set

(a) and the held-out test set (b). Values indicate the percentage of total predictions across each row (recall) and below these the corresponding absolute numbers

of predictions. A true-positive prediction constitutes the prediction of a location that corresponds to, or is in close agreement with the manual label; a false-positive

constitutes the prediction of a non-empty location which does not correspond to the manual label; a true-negative constitutes a location correctly left blank (i.e., no

location was mentioned in the abstract); and a false-negative constitutes a location incorrectly left blank or conveying insufficient information (i.e., a location that was

mentioned in the abstract but not captured by GPT-4).

text, allowing it to correct spelling mistakes, disentangle

ambiguities, and provide appropriate roles of species

based on descriptions in the text.

The ability of GPT-4 to synthesise vast quantities of data

can also be a source of hallucinations, however. This

refers to cases of believable, but fabricated informa-

tion that have been observed to be produced by large

language model chatbots such as ChatGPT (Azamfirei

et al., 2023). We observed a total of 43 hallucinated

species as rows in the table output of GPT-4 (all in the

training set). While the first part of the prompt (Fig. 1)

consistently returned the correct set of species, a sub-

sequent mismatch was observed between this set and

the species returned in the final table. This was ob-

served exclusively in cases where GPT-4 was unable

to complete the entire table in one prompt-completion

and thus required multiple completions to finish the table

(through the usage of a ’continue generating’ function

available in the web-interface). We suspect that this re-

peated generation of output may be the cause for these

hallucinations, possibly as a result of a diminishment of

the model’s internal memory (Gong et al., 2023) of its
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Table 6. Precision and recall obtained by GPT-4 for geographic locations in the training set (a) and the held-out test set (b). Support: The number of locations and

non-locations present in the manual labels. Weighted average: The average of the respective column, weighted by the support of each row. ’Location’ refers to the

location associated with the study of the species and ’No location’ refers to the case where no location is mentioned in the abstract; If GPT-4 predicted a location

that did not correspond to the manually labelled location, this is designated a false-positive, and if GPT-4 predicted no location for a manually labelled location, this is

labelled as a false-negative.

(a) Training set

Precision (%) Recall (%) F1 (%) Support

Location 98.7 97.1 97.9 487

No location 90.8 95.8 93.2 144

Weighted average 96.9 96.8 96.9 631

(b) Test set

Precision (%) Recall (%) F1 (%) Support

Location 95.3 95.3 95.3 149

No location 92.6 92.6 92.6 95

Weighted average 94.3 94.3 94.3 244

earlier response to the first part of the prompt. Indeed,

the only cases of hallucinated species rows in GPT-4’s

output (across both training and test sets) were detected

in the two longest tables generated by GPT-4 (corre-

sponding to two abstracts in the training set), consisting

of 25 and 58 rows, respectively. Furthermore, all 18

species rows that were missed by GPT-4 in the training

set originate from these same two abstracts, and thus

the same mechanism may be responsible for these false

negatives. While hallucinations are concerning, it is ex-

pected that usage of GPT-4 with higher token-lengths for

prompt completion would alleviate this issue. For exam-

ple, updated versions of GPT-4 are stated to have maxi-

mum token-lengths of 8,192 and 32,768 tokens respec-

tively, while web-interface usage was limited to 2,048

tokens per generation at the time of writing (OpenAI,

2023b). The fact that the GPT-4 output for the test set

contained no tables larger than 12 rows in length may

thus explain why we observed no instances of halluci-

nated species entries in the test set.

Additionally, a small number of hallucinations were ob-

served for the ’Industry Type’ column in the generated

data sets, where associations of pests with agriculture

or forestry were stated without any basis in the text and

no clear basis outside of the text. This was observed

on 18 (out of 631) occasions in the training set and on

8 (out of 244) occasions in the test set. The appar-

ent inability of GPT-4 to state whether information was

drawn from inside the text or from outside the text, and if

so, from where outside the text, is a well-known caveat

of the model. However, new plug-ins are continuously

being released to address this problem and may have

utility in tasks such as demonstrated here. Connect-

ing GPT-4 to live internet sources, as exemplified by the

GPT-4-powered Microsoft Bing Chat, may also provide

an effective way to reduce hallucinations through the re-

liable citing of sources.

The proneness of large language models to fabricate

erroneous, but credible-sounding pieces of information

is the subject of increasing discussions in the broader

scientific community, with concerns over the accuracy,

reliability and accountability of scientific output obtained

with the usage of LLMs (Birhane et al., 2023). Thus,

although AI models are increasingly being used in sci-

ence and have begun delivering numerous scientific ad-

vances and discoveries (Wang et al., 2023), it is impor-

tant for scientists to be aware of the limitations of AI

tools, such as LLMs and other black-box, deep learning

based models, and the potential impact of these models

on reliability and reproducibility in science.

The problem of ambiguity

The task posed to GPT-4 in this work was, furthermore,

challenged by ambiguity. For example, the task of de-

ciding whether a predator can be safely inferred to be

a pest controller if it is mentioned jointly with a pest in

a biological control experiment, but there is no explicit

mention of predation on the pest, is highly ambiguous.

So, too, is the task of deciding whether a pest is associ-

ated with agriculture in cases where there is no explicit

mention of agriculture but the text includes terms often

associated with agriculture such as ’biological control’

and ’pesticide’. Capturing such roles and associations

correctly, while avoiding false positives (e.g., from non-

target species in pesticide experiments), is a difficult

task that is inherently limited by both the clarity and the

length of the text. Usage of LLMs such as GPT-4 for

text mining tasks in ecology must be partnered with an

aim to minimise these ambiguities. As LLMs become

more capable of processing large prompts, definitions

of terms and ’if-then’ clauses could be more extensively

included and be further refined. In the context of this

work, this could consist of including a set of definitions

for the various roles the model is instructed to identify

and a stricter protocol on how associations are to be

made (e.g., what information suffices for an "associa-

tion with agriculture"?).

Ambiguity in species roles. In the context of the species

roles, the 14 labels of ’predator’ that were not captured

by GPT-4 in the training set (Fig. 3a) refer to a single ab-

stract which mentions various species of silver fly "as-
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sociated with Chamaemyiidae-based biological control

programs". Although the abstract mentions no preda-

tory role, a predatory role was assumed during manual

labelling based on the fact that silver flies are known

predators – a piece of information evidently not available

to GPT-4 in this instance. In other instances, however,

GPT-4 does appear to have utilised information outside

of the abstract to obtain its returned roles: In the case of

one abstract, species that are described simply as nat-

ural enemies (and manually labelled as such) were la-

belled by GPT-4 as predators, which was consequently

validated by other internet sources. Also in the training

set, the only 4 manual labels of ’parasitoid’ that GPT-

4 failed to capture include one ambiguous case (where

the species in question is mentioned simply as a bio-

logical control agent but in close association with an-

other parasitoid, and thus perhaps GPT-4’s assessment

is correct), but in the 3 remaining cases a parasitoid role

is clearly stated in the text, and is, in fact, reiterated by

GPT-4 itself in the descriptions that it was instructed to

provide (column 13; Table 1). Why it described these

species as parasitoids but failed to state their roles as

such is unclear. In another case, where a hyperpar-

asitoid was labelled as a parasitoid, GPT-4 also notes

the species to be hyperparasitic in its description: Why

it was not labelled as such is, again, unclear.

In the test set, we observed a substantial reduction in

precision and recall for predator roles as compared with

the training set (Table 5). The drop in precision can

be seen to be a result of 10 false positive predictions,

which occur across 6 individual abstracts. One of these

cases refers to a species described as an ectoparasite

and manually labelled as such, but later in the abstract

is described (in a German translation) as a "predatory

enemy". Not only does this example highlight the impor-

tance of consistent usage of language (e.g., the adjec-

tive ’predatory’ to be distinct from ’parasitic’), but it also

demonstrates the capability of GPT-4 to seamlessly pro-

cess text in different languages. The remaining cases

refer to species described in the abstract simply as

natural enemies or biological control agents but which

may be inferred to be predators based on their taxon-

omy (e.g., spiders and beetles), or species described

as entomopathogenic nematodes (EPNs), for whom it

is unclear on what basis GPT-4 predicted a predatory

role. The drop in recall is a result of a single abstract

in which GPT-4 labelled one species as ’prey’ and four

species as ’competitor’, rather than correctly as preda-

tors. While the error of mislabelling a predator as prey

may appear substantial, the topic of this particular ab-

stract (intra-guild predation between native and invasive

spiders) provides an understandable point of confusion.

Finally, the ’pest’ labels missed by GPT-4 in the

training set comprise a total of 28 cases (across 8

abstracts), where GPT-4 chose instead to describe

the species as host, prey, herbivore or left their role

blank (i.e., ’unclear’). In none of these 28 cases, the

species are explicitly described as pests but were

manually inferred to be acting as pests as a result of

being the target of a biocontrol-related feeding trial

or an insecticide experiment. The difficulty for GPT-4

appears to arise when these species are described

in the text with adjectives such as ’prey’, ’host’ or

’herbivore’ and the broader context in which they are

mentioned in the text (e.g., as the target species of

an insecticide experiment) is neglected. While we

attempted to catch such cases with the prompt line

"the species must be mentioned explicitly

as a pest, or at least in association with

biological control, destruction,

infestation, etc." (Fig. 1), it may be worthwhile to

highlight the aforementioned cases more specifically in

the prompt.

The challenge of prompt design

The question of prompt design (or prompt engineering)

comprises a serious challenge to the adoption of large

language models in scientific research. Here, we pro-

ceeded to optimise the performance of the prompt de-

sign against a training set. Our optimisation approach

had two main caveats. The first relates to the reliance

on manual, trial-and-error based optimisation, which is

time-consuming and may be intractable for very large

data sets. The second relates to the problem of over-

fitting, which, although not well-defined in this context

(as there is no proper loss function), may arise if the

prompt is too tailored to the training set and fails to

generalise to the rest of the data. Regardless of the

optimisation strategy, however, designing the prompt to

take into account the various intricacies of the task (def-

initions, examples, counterexamples, clarifications, rea-

soning) is highly non-trivial and highly data-dependent,

as exemplified by the extensive prompt utilised in this

work. Furthermore, performance of GPT-4 was ob-

served to be a highly non-linear function of the prompt-

design, with small changes in the prompt leading to

large changes in the output (for better or for worse).

As opposed to extensive prompt engineering, a power-

ful alternative may be posed by the fine-tuning of the

actual parameters of the model. Also known as transfer

learning (Pan and Yang, 2010), fine-tuning allows users

to customise the pre-trained machine learning model to

their own use cases by re-training the model (or a sub-

set of parameters of the model) on a much smaller, be-

spoke data set. With many applications in image and

text classification (Weiss et al., 2016) , transfer learning

is already a rich and and active field in biomedicine, and,

to a lesser degree, ecology. OpenAI has released a

fine-tuning option for GPT-3.5, which is stated to "match,

or even outperform, base GPT-4-level capabilities on

certain narrow tasks" (Peng et al., 2023). Furthermore,

fine-tuning of GPT-3.5 is stated to allow for a shorten-

ing in prompts by as much as 90% as instructions can

be fine-tuned into the model itself. Fine-tuning may thus

provide a promising addition, or alternative, to prompt

engineering for large language models.
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Comparison with other tools

To put some of the results obtained in this work into a

broader perspective, a comparison can be made with

previous studies that have utilised text mining tools

for applications in ecology. Previous attempts to ex-

tract taxonomic terms from abstracts have resulted in

mean recall scores per abstract of 79.5% (Millard et al.,

2020) and 93.6% (Cornford et al., 2022) with the help of

the R package Taxize (Chamberlain and Szöcs, 2013),

while the extraction of geographic locations has been

achieved with a mean recall of 82.1% per abstract

(Cornford et al., 2022) with the help of the CLIFF-

CLAVIN geoparser model (D’Ignazio et al., 2014). Fur-

thermore, an extensive comparison of eight taxonomic

named entity recognition (NER) models over four gold

standard ecology corpora (Le Guillarme and Thuiller,

2022) reports scores for approximate matches ranging

between 78–96% (precision), 74–93% (recall) and 76–

91% (F1-score).

Comparison with these previous studies demonstrates

the capability of GPT-4 on similar tasks to be highly

competitive. If we can correctly assume the risk of

hallucinated species extractions to be minimised with

sufficiently large token lengths, we may assume such

hallucinated entries to pose a relatively low risk for fu-

ture endeavours, which are likely to incorporate longer

token lengths (both as input and for completion) as

large language models develop. As such, our results

on the test set, which did not suffer from hallucinated

species extractions, may offer a valuable demonstration

of the model’s potential performance. The extraction

of species from abstracts in the test set was achieved

with a total precision of 100%, recall of 99.6% and F1-

score of 99.8% (Table 2a). Investigating only the tax-

onomy of the extracted species, we report PC scores

on the test set of 98.3–100.0% for taxonomy that was

stated in the abstract (Table 3) and 96.7–99.4% for tax-

onomy that was not stated in the abstract (Table 4).

Geographic locations (as approximate matches) were

extracted from the test set with a precision, recall and

F1-score of 95.3% (Table 6b), which is only marginally

worse than the performance obtained from the training

set. We highlight that GPT-4 achieved these results

without prior training on these tasks, while simultane-

ously generating answers to multiple other tasks laid out

in the prompt, such as extracting appropriate species

roles, identifying pest controllers, pest names and as-

sociations, and providing thorough descriptions.

Conclusion

In this work, we explored the potential of the next gen-

eration of large language models for the automation of

knowledge synthesis in ecology through the application

of GPT-4 to a body of literature on pest control. To this

end, we prompted GPT-4 using a set of instructions in-

volving the extraction of species, taxonomy and geo-

graphical locations, the labelling of roles, recognition of

pest-controlling behaviour, pest types, pest associations

and mutual relations.

The results show that GPT-4 is highly capable of this

task, with performance on all investigated sub-tasks

largely congruent with the manual labels. Some of the

discrepancy appears to be a result of a certain degree

of ambiguity in the abstracts and in the task itself. We

thus restrained from speaking of ground-truth in this

work, since even manual labels are subject to ambigu-

ity and human error: Indeed, we observed a number of

cases where the predictions of GPT-4 were more accu-

rate than the manual labels. That being said, we also

observed cases of hallucinations, i.e. fabricated infor-

mation. In the case of hallucinated species entries in the

generated tables, this appears to be a symptom of the

limits (in terms of token-lengths) placed on the prompt

completion. In the case of individual pieces of fabricated

information, it is more difficult to identify root causes as

they may be more dependent on model parameters and

the original training data of GPT-4.

We hope that this work makes a valuable contribution to

the swiftly evolving domain of the automation of knowl-

edge syntheses in ecology by demonstrating the poten-

tial of the general-purpose LLM GPT-4 for such tasks.

Indeed, general-purpose LLMs may provide an inter-

esting way forward in ecology, since there is currently

a lack of specialised, pre-trained language models for

use in this domain. Combined with tailored prompt en-

gineering, such models can be used for a broad range

of tasks related to the extraction of information from

text, and have the potential to save a large amount of

time spent on manual labelling. Through their vast in-

formation base, these models can, in principle, be ap-

plied to literature spanning myriad languages, helping

to mitigate the widespread bias of the English language

in knowledge syntheses (Konno et al., 2020; Amano

et al., 2021) - although current LLM performance on un-

derrepresented languages has been found to be poor

(Laskar et al., 2023). Furthermore, their reliability may

be boosted through the integration of live internet ac-

cess and a growing number of plug-ins that address the

traceability of information. Additionally, an ability to han-

dle the full-texts of papers, rather than just abstracts, is

likely to be tractable in the near future and improve the

reliability of extracted information.

Finally, we reiterate that although we investigated the

application of GPT-4 to an instance of knowledge syn-

thesis of biological pest control, the conclusions of this

work are to be understood in the larger context of the

potential of general-purpose LLMs for the automation

of knowledge syntheses in ecology. In the spirit of

open science, such applications ideally transpire in an

open-source context, ensuring both open access and

reproducibility. While GPT-4 does not currently adhere

to such standards, we have nonetheless aimed in this

study to provide insight into the current state-of-the-art

of LLMs and their potential use for automated knowl-

edge synthesis in ecology.

Scheepens et al. | Large language models help facilitate the automated synthesis of information on potential pest controllers. | 15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.12.575330doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.12.575330
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments

Code and data availability. All code and data needed

to generate the figures in this paper are available

on Github: https://github.com/dscheepens/

GPT4-pest-controllers.

Author contributions. Daan Scheepens and Tim New-

bold conceived the ideas and designed methodology;

Daan Scheepens collected the data and carried out

the manual labelling, analysed the data and led the

writing of the manuscript. All authors contributed criti-

cally to the drafts and gave final approval for publication.

Competing interests. The authors declare that they

have no conflict of interest.

Bibliography
Akella, L. M., Norton, C. N., and Miller, H. (2012). Netineti: discovery of scientific names from

text using machine learning methods. BMC Bioinformatics, 13(1):211. doi: 10.1186/

1471-2105-13-211.

Almond, R., Grooten, M., Juffe Bignoli, D., and Petersen, T. Living planet report 2022 –

building a nature-positive society, (2022). WWF, Gland, Switzerland.

Amano, T., Berdejo-Espinola, V., Christie, A. P., et al. (2021). Tapping into non-english-

language science for the conservation of global biodiversity. PLOS Biology, 19(10):

e3001296–.

Ananiadou, S., Rea, B., Okazaki, N., et al. (2009). Supporting systematic reviews using text

mining. Social Science Computer Review - SOC SCI COMPUT REV, 27:509–523. doi:

10.1177/0894439309332293.

Anderson, S. C., Elsen, P. R., Hughes, B. B., et al. (2021). Trends in ecology and conservation

over eight decades. Frontiers in Ecology and the Environment, 19(5):274–282. doi:

https://doi.org/10.1002/fee.2320.

Azamfirei, R., Kudchadkar, S. R., and Fackler, J. (2023). Large language models

and the perils of their hallucinations. Critical Care, 27(1):120. doi: 10.1186/

s13054-023-04393-x.

Balzan, M. V., Bocci, G., and Moonen, A.-C. (2014). Augmenting flower trait diversity in

wildflower strips to optimise the conservation of arthropod functional groups for multiple

agroecosystem services. Journal of Insect Conservation, 18(4):713–728. doi: 10.1007/

s10841-014-9680-2.

Birhane, A., Kasirzadeh, A., Leslie, D., and Wachter, S. (2023). Science in the age

of large language models. Nature Reviews Physics, 5(5):277–280. doi: 10.1038/

s42254-023-00581-4.

Brittain, C., Kremen, C., and Klein, A.-M. (2013). Biodiversity buffers pollination from changes

in environmental conditions. Global Change Biology, 19(2):540–547. doi: https://doi.

org/10.1111/gcb.12043.

Cardoso, P., Barton, P. S., Birkhofer, K., et al. (2020). Scientists’ warning to humanity on

insect extinctions. Biological Conservation, 242:108426. doi: https://doi.org/10.

1016/j.biocon.2020.108426.

Chamberlain, S. and Szöcs, E. (2013). Taxize: Taxonomic search and retrieval in r.

F1000Research, 2:191. doi: 10.12688/f1000research.2-191.v1.

Chen, Q., Sun, H., Liu, H., et al. (2023). A comprehensive benchmark study on biomedical

text generation and mining with chatgpt. bioRxiv. doi: 10.1101/2023.04.19.537463.

Cohen, A. M., Ambert, K., and McDonagh, M. (2012). Studying the potential impact of auto-

mated document classification on scheduling a systematic review update. BMC Medical

Informatics and Decision Making, 12(1):33. doi: 10.1186/1472-6947-12-33.

Cornford, R., Deinet, S., De Palma, A., et al. (2021). Fast, scalable, and automated iden-

tification of articles for biodiversity and macroecological datasets. Global Ecology and

Biogeography, 30(1):339–347. doi: https://doi.org/10.1111/geb.13219.

Cornford, R., Millard, J., González-Suárez, M., et al. (2022). Automated synthesis of bio-

diversity knowledge requires better tools and standardised research output. Ecography,

2022(3):e06068. doi: https://doi.org/10.1111/ecog.06068.

Dainese, M., Martin, E. A., Aizen, M. A., et al. (2019). A global synthesis reveals biodiversity-

mediated benefits for crop production. Science Advances, 5(10):eaax0121. doi: 10.

1126/sciadv.aax0121.

Dey, N., Gosal, G., Zhiming, et al. Cerebras-gpt: Open compute-optimal language models

trained on the cerebras wafer-scale cluster, (2023).

Dornelas, M., Antão, L. H., Moyes, F., et al. (2018). Biotime: A database of biodiversity time

series for the anthropocene. Global Ecology and Biogeography, 27(7):760–786. doi:

https://doi.org/10.1111/geb.12729.

D’Ignazio, C., Bhargava, R., and Zuckerman, E. Cliff-clavin : Determining geographic focus

for news articles [ extended abstract ]. (2014). URL https://api.semanticscholar.

org/CorpusID:31483241.

Farrell, M. J., Brierley, L., Willoughby, A., et al. (2022). Past and future uses of text mining

in ecology and evolution. Proceedings of the Royal Society B: Biological Sciences, 289

(1975):20212721. doi: 10.1098/rspb.2021.2721.

Fink, M. A., Bischoff, A., Fink, C. A., et al. (2023). Potential of chatgpt and gpt-4 for data

mining of free-text ct reports on lung cancer. Radiology, 308(3):e231362. doi: 10.1148/

radiol.231362. PMID: 37724963.

GBIF. Gbif home page, (2023). URL https://www.gbif.org.

Gerner, M., Nenadic, G., and Bergman, C. M. (2010). Linnaeus: A species name

identification system for biomedical literature. BMC Bioinformatics, 11(1):85. doi:

10.1186/1471-2105-11-85.

Gong, D., Wan, X., and Wang, D. Working memory capacity of chatgpt: An empirical study,

(2023).

Grass, I., Albrecht, J., Jauker, F., et al. (2016). Much more than bees—wildflower plant-

ings support highly diverse flower-visitor communities from complex to structurally sim-

ple agricultural landscapes. Agriculture, Ecosystems & Environment, 225:45–53. doi:

https://doi.org/10.1016/j.agee.2016.04.001.

Gunstone, T., Cornelisse, T., Klein, K., et al. (2021). Pesticides and soil invertebrates: A

hazard assessment. Frontiers in Environmental Science, 9. doi: 10.3389/fenvs.2021.

643847.

Gurr, G., Lu, Z., Zheng, X., et al. (2016). Multi-country evidence that crop diversifica-

tion promotes ecological intensification of agriculture. Nature Plants, 2:16014. doi:

10.1038/nplants.2016.14.

Hu, Y., Ameer, I., Zuo, X., et al. Zero-shot clinical entity recognition using chatgpt, (2023).

Hudson, L. N., Newbold, T., Contu, S., et al. (2017). The database of the predicts (projecting

responses of ecological diversity in changing terrestrial systems) project. Ecology and

Evolution, 7(1):145–188. doi: https://doi.org/10.1002/ece3.2579.

IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovern-

mental Science-Policy Platform on Biodiversity and Ecosystem Services, (2019). URL

https://doi.org/10.5281/zenodo.6417333.

IPCC. Sections, pages 35–115. IPCC, Geneva, Switzerland, (2023). doi: 10.59327/

IPCC/AR6-9789291691647.

Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction

with alphafold. Nature, 596(7873):583–589. doi: 10.1038/s41586-021-03819-2.

Kojima, T., Gu, S. S., Reid, M., et al. Large language models are zero-shot reasoners, (2023).

Konno, K., Akasaka, M., Koshida, C., et al. (2020). Ignoring non-english-language studies

may bias ecological meta-analyses. Ecology and Evolution, 10(13):6373–6384. doi:

https://doi.org/10.1002/ece3.6368.

Laskar, M. T. R., Bari, M. S., Rahman, M., et al. A systematic study and comprehensive

evaluation of chatgpt on benchmark datasets, (2023).

Le Guillarme, N. and Thuiller, W. (2022). Taxonerd: Deep neural models for the recognition of

taxonomic entities in the ecological and evolutionary literature. Methods in Ecology and

Evolution, 13(3):625–641. doi: https://doi.org/10.1111/2041-210X.13778.

Letourneau, D. K. Integrated Pest Management – Outbreaks Prevented, Delayed, or

Facilitated?, chapter 18, pages 371–394. John Wiley & Sons, Ltd, (2012). ISBN

9781118295205. doi: https://doi.org/10.1002/9781118295205.ch18. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118295205.ch18.

Letourneau, D. K., Armbrecht, I., Rivera, B. S., et al. (2011). Does plant diversity benefit

agroecosystems? a synthetic review. Ecological Applications, 21(1):9–21. doi: https:

//doi.org/10.1890/09-2026.1.

Li, Y., Lin, Z., Zhang, S., et al. Making large language models better reasoners with step-

aware verifier, (2023).

LPI. Living planet index, (2024). URL www.livingplanetindex.org/.

Martin, E. A., Feit, B., Requier, F., et al. Chapter three - assessing the resilience of

biodiversity-driven functions in agroecosystems under environmental change. In Bo-

han, D. A. and Dumbrell, A. J., editors, Resilience in Complex Socio-ecological Sys-

tems, volume 60 of Advances in Ecological Research, pages 59–123. Academic Press,

(2019). doi: https://doi.org/10.1016/bs.aecr.2019.02.003. URL https:

//www.sciencedirect.com/science/article/pii/S0065250419300030.

McCallen, E., Knott, J., Nunez-Mir, G., et al. (2019). Trends in ecology: shifts in ecological

research themes over the past four decades. Frontiers in Ecology and the Environment,

17(2):109–116. doi: https://doi.org/10.1002/fee.1993.

Millard, J. W., Freeman, R., and Newbold, T. (2020). Text-analysis reveals taxonomic and

geographic disparities in animal pollination literature. Ecography, 43(1):44–59. doi:

https://doi.org/10.1111/ecog.04532.

Oliver, T. H., Isaac, N. J. B., August, T. A., et al. (2015). Declining resilience of ecosystem

functions under biodiversity loss. Nature Communications, 6(1):10122. doi: 10.1038/

ncomms10122.

OpenAI. Gpt-4 technical report, (2023).

OpenAI. Models documentation, (2023). URL https://platform.openai.com/docs/

models/gpt-4.

OpenAI. Tokenizer, (2023). URL https://platform.openai.com/tokenizer.

Ouyang, L., Wu, J., Jiang, X., et al. Training language models to follow instructions with

human feedback. In Koyejo, S., Mohamed, S., Agarwal, A., et al., editors, Advances in

Neural Information Processing Systems, volume 35, pages 27730–27744. Curran Asso-

ciates, Inc., (2022). URL https://proceedings.neurips.cc/paper_files/paper/

2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowl-

edge and Data Engineering, 22(10):1345–1359. doi: 10.1109/TKDE.2009.191.

Parr, C. S., Wilson, N., Leary, P., et al. (2014). The encyclopedia of life v2: Providing

global access to knowledge about life on earth. Biodiversity Data Journal, 2:e1079. doi:

10.3897/BDJ.2.e1079.

Peng, A., Wu, M., Allard, J., et al. Gpt-3.5 turbo fine-tuning and api updates, (2023). URL

https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates.

Pimentel, D. (1961). Species Diversity and Insect Population Outbreaks. Annals of the

Entomological Society of America, 54(1):76–86. doi: 10.1093/aesa/54.1.76.

Sahayaraj, K. (2008). Approaching and rostrum protrusion behaviours of rhynocoris margina-

tus on three prey chemical cues. Bull. Insectol, 61:233–237.

Sánchez-Bayo, F. and Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A

review of its drivers. Biological Conservation, 232:8–27. doi: https://doi.org/10.

1016/j.biocon.2019.01.020.

Scheepens et al. | Large language models help facilitate the automated synthesis of information on potential pest controllers. | 16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.12.575330doi: bioRxiv preprint 

https://github.com/dscheepens/GPT4-pest-controllers
https://github.com/dscheepens/GPT4-pest-controllers
https://api.semanticscholar.org/CorpusID:31483241
https://api.semanticscholar.org/CorpusID:31483241
https://www.gbif.org
https://doi.org/10.5281/zenodo.6417333
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118295205.ch18
www.livingplanetindex.org/
https://www.sciencedirect.com/science/article/pii/S0065250419300030
https://www.sciencedirect.com/science/article/pii/S0065250419300030
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/tokenizer
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://doi.org/10.1101/2024.01.12.575330
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tahvanainen, J. O. and Root, R. B. (1972). The influence of vegetational diversity on the pop-

ulation ecology of a specialized herbivore, phyllotreta cruciferae (coleoptera: Chrysomel-

idae). Oecologia, 10(4):321–346. doi: 10.1007/BF00345736.

Touvron, H., Martin, L., Stone, K., et al. Llama 2: Open foundation and fine-tuned chat

models, (2023).

Vaswani, A., Shazeer, N., Parmar, N., et al. Attention is all you need, (2023).

Wagner, D. L., Grames, E. M., Forister, M. L., et al. (2021). Insect decline in the anthro-

pocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences,

118(2):e2023989118. doi: 10.1073/pnas.2023989118.

Wang, X., Wei, J., Schuurmans, D., et al. Self-consistency improves chain of thought reason-

ing in language models, (2023).

Wei, J., Wang, X., Schuurmans, D., et al. Chain-of-thought prompting elicits reasoning in

large language models, (2023).

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey of transfer learning. Journal

of Big Data, 3(1):9. doi: 10.1186/s40537-016-0043-6.

Wratten, S. D., Gillespie, M., Decourtye, A., et al. (2012). Pollinator habitat enhancement:

Benefits to other ecosystem services. Agriculture, Ecosystems & Environment, 159:112–

122. doi: https://doi.org/10.1016/j.agee.2012.06.020.

Zhang, S., Roller, S., Goyal, N., et al. Opt: Open pre-trained transformer language models,

(2022).

Zhao, B., Jin, W., Ser, J. D., and Yang, G. Chatagri: Exploring potentials of chatgpt on

cross-linguistic agricultural text classification, (2023).

Zhou, D., Schärli, N., Hou, L., et al. Least-to-most prompting enables complex reasoning in

large language models, (2023).

Scheepens et al. | Large language models help facilitate the automated synthesis of information on potential pest controllers. | 17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.12.575330doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.12.575330
http://creativecommons.org/licenses/by-nc-nd/4.0/

