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The body of ecological literature, which informs
much of our knowledge of the global loss of bio-
diversity, has been experiencing rapid growth in re-
cent decades. The increasing difficulty to synthe-
sise this literature manually has simultaneously re-
sulted in a growing demand for automated text min-
ing methods. Within the domain of deep learning,
large language models (LLMs) have been the sub-
ject of considerable attention in recent years by
virtue of great leaps in progress and a wide range
of potential applications, however, quantitative in-
vestigation into their potential in ecology has so
far been lacking. In this work, we analyse the abil-
ity of GPT-4 to extract information about inverte-
brate pests and pest controllers from abstracts of
a body of literature on biological pest control, us-
ing a bespoke, zero-shot prompt. Our results show
that the performance of GPT-4 is highly competi-
tive with other state-of-the-art tools used for taxo-
nomic named entity recognition and geographic lo-
cation extraction tasks. On a held-out test set, we
show that species and geographic locations are ex-
tracted with F1-scores of 99.8% and 95.3%, respec-
tively, and highlight that the model is able to distin-
guish very effectively between the primary roles of
interest (predators, parasitoids and pests). More-
over, we demonstrate the ability of the model to
effectively extract and predict taxonomic informa-
tion across various taxonomic ranks, and to auto-
matically correct spelling mistakes. However, we
do report a small number of cases of fabricated in-
formation (hallucinations). As a result of the cur-
rent lack of specialised, pre-trained ecological lan-
guage models, general-purpose LLMs may provide
a promising way forward in ecology. Combined with
tailored prompt engineering, such models can be
employed for a wide range of text mining tasks in
ecology, with the potential to greatly reduce time
spent on manual screening and labelling of the lit-
erature.
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Introduction

Much of our knowledge of the global loss of biodiver-
sity stems from large-scale syntheses of the ecological
literature (Cornford et al.,2022). Such syntheses under-
lie the establishment of global environmental databases
such as the WWF’s Living Planet Index (LPI, 2024),
the PREDICTS (Hudson et al.,|2017), and the BioTIME
(Dornelas et al.,[2018) databases, as well as the myriad
global reports such as those of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES| 2019) and the Living Planet Report
(Almond et al.}|2022).

The body of ecological literature has simultaneously
been experiencing rapid growth in recent decades (Mc-
Callen et al., 2019; |Anderson et al., 2021) and it is
becoming increasingly difficult to synthesise this liter-
ature manually (Cohen et al.l 2012} |Ananiadou et al.|
2009). Thus, there is a growing demand in the eco-
logical community for automated methods to assist in
such tasks. Text mining and natural language process-
ing (NLP) methods are expected to have significant po-
tential in automating tasks such as document classifica-
tion, named entity recognition and disambiguation, and
the extraction of relations between entities (Farrell et al.}
2022). Previous approaches have focused on the identi-
fication of species in the text using probabilistic machine
learning algorithms (Akella et al., 2012) or dictionary-
based approaches (Gerner et al., [2010); the extraction
of taxonomic terms and geographic locations (Millard
et al., [2020; |Cornford et al., 2022); the extraction of tax-
onomic terms using deep learning (Le Guillarme and
Thuiller, |2022); the extraction of population trends us-
ing random forest and neural network classifiers (Corn-
ford et al., |2022); and the classification of relevant and
non-relevant scientific articles using logistic regression
and convolutional neural network approaches (Cornford
et al.,|2021).

Within the domain of deep learning (DL) for NLP tasks,
large language models (LLMs) have been the subject
of considerable attention in recent years by virtue of
great leaps in progress and a wide range of poten-
tial applications (OpenAl, [2023a). This deep learning
revolution in NLP is primarily fuelled by the now ubig-
uitous transformer architecture (Vaswani et al., 2023),
which underlies many new and innovative DL tools in
the natural sciences, such as the AlphaFold model
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for protein structure prediction (Jumper et al.l 2021).
Recent, transformer-based LLMs are trained on large
amounts of input data to be able to generate realis-
tic texts and are able to provide question answering
and human-computer interaction via natural language
(Ouyang et al., |2022). Provided with the right prompts,
these models, furthermore, have been shown to exhibit
advanced reasoning and problem-solving capabilities
(Wei et al., 2023} |Wang et al., [2023; |Li et al., |2023]; |Ko-
jima et al.| |2023; [Zhou et al., [2023). In particular, Ope-
nAl's fourth-generation Generative Pre-trained Trans-
former (GPT-4) has seen major improvements over pre-
vious models across a variety of benchmarks (OpenAl,
2023a). GPT-based models have already been investi-
gated for a wide range of text mining tasks for research,
including clinical (Hu et al., [2023), medical (Chen et al.,
2023; Fink et al., |2023) and agricultural (Zhao et al.,
2023), however, quantitative investigation into their po-
tential in ecology has so far been lacking.

GPT-4 represents the current state-of-the-art of large
language models and is easily accessed out of the
box using ChatGPT, making this an attractive choice
to demonstrate the potential of LLMs for automated in-
formation extraction and knowledge synthesis from sci-
entific text. However, it is important to note that, as
an alternative to closed access models such as Ope-
nAl's GPT series, the landscape of open-source LLMs
is rapidly evolving and highly competitive (E.g., Touvron
et al, [2023; |Zhang et al., [2022; |Dey et al., [2023).This
availability of open-source LLMs is crucial for fostering
open and reproducible use of Al in ecology, ensuring
that the field advances in a sustainable and equitable
manner. Thus, while GPT-4 does not currently adhere
to open science standards, the methodology followed in
this paper is to be understood as a proof of concept for
the potential use of general-purpose LLMs in informa-
tion extraction tasks in ecology, which ideally transpire
in an open science context.

This work investigates the application of GPT-4 to a
body of ecological literature on biological pest con-
trol. The utilisation of natural enemies of pests, such
as arthropod predators and parasitoids, as biological
control agents can provide an effective way to reduce
pesticide usage, which is currently a major driver of
insect declines (Wagner et al., |2021; |Sanchez-Bayo
and Wyckhuys, [2019; [Cardoso et al., [2020). Biologi-
cal control has historically often relied on the introduc-
tion of non-native species (classical biocontrol), which
can be detrimental to native species and thus strain
local ecosystems and negatively affect biological di-
versity. Natural biological control, on the other hand,
utilises native species as biological control agents and
is typically achieved through the enhancement of nat-
ural habitat. Natural biological control helps directly
regulate the frequency of pest outbreaks (Letourneaul
2012; [Tahvanainen and Root, [1972; |Pimentel, [1961)
and, indirectly, can result in improved soil quality (Gun-
stone et al [2021), increased crop yields (Gurr et al.,
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2016; Dainese et al., 2019; [Letourneau et al., 2011)
and increased abundances of other beneficial organ-
isms such as pollinators (Balzan et al., 2014; Grass
et al.l [2016} Wratten et al., 2012), as a result of re-
duced pesticide usage and increased natural habitat.
Crucially, by strengthening the stability and resilience
of ecosystem services such as pest control, pollina-
tion and nutrient cycling, food production systems can
be better buffered against environmental and climatic
changes (Oliver et al., 2015} [Brittain et al., 2013} [Mar-
tin et al. |2019), which is of growing importance as the
impacts of climate change continue to intensify (IPCC,
2023).

The primary aim of this paper is to provide a thorough
analysis of the ability of GPT-4 to reliably extract infor-
mation from scientific abstracts to identify pests and
pest controllers. In addition to determining roles of
species (e.g., as pests or pest controllers), the model
is tasked with extracting their taxonomy and geographic
location, as well as role-specific information such as the
pest-type and the crop or plant that a pest affects. As
such, the task comprises multiple sub-tasks, which re-
quire both the capability to recognise and disambiguate
entities (named entity recognition), and to extract rela-
tions between entities (relation extraction). Rather than
fine-tuning the parameters of the model, we proceed to
optimise model performance through the fine-tuning of
the prompt itself. Performance is then analysed on each
sub-task of the query, indicating precision, recall and
F1 scores. To our knowledge, this is the first instance of
general-purpose, large language models such as GPT-4
being investigated for the potential automation of infor-
mation extraction and knowledge synthesis in ecology.

Methods

Data collection

In order to obtain relevant literature on potential pest
controllers and their hosts, we extracted a set of ab-
stracts from the academic indexing tool Scopus up until
the year 2020, using the following search-term:
TITLE-ABS-KEY("pest control" OR "biological control"
OR ‘"pest management” OR "natural enem*) AND
(LIMIT-TO(DOCTYPE, "ar')) AND (LIMIT-TO(SUBJAREA,
"AGRI") OR LIMIT-TO(SUBJAREA, "ENVI")) AND (LIMIT-
TO(LANGUAGE, "English"))
The usage of Scopus ensured that all of the extracted
literature has undergone peer-review, which we judged
to be of importance, given that the underlying motive of
this work is to automate peer-reviewed knowledge syn-
thesis and meta analysis. The search-term used here
obtained a corpus of 58,791 abstracts. For this study,
we selected a subset of 100 abstracts to create a train-
ing set, which we used to fine-tune the prompt with re-
spect to GPT-4 output, and a further 100 abstracts to
create a held-out test set, which we used to analyse the
final performance of GPT-4 with the fine-tuned prompt.
We populated both of these sets by manually labelling
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the 200 abstracts (including titles and keywords) using
the columns shown in Table [T} including all invertebrate
species found at the species or genus level. We made
this selection of species due to our focus on pest con-
trol services of, and provided by, invertebrate animals
specifically. Invertebrates also comprise the vast major-
ity of species present in the abstracts selected for the
training set and the held-out test set.

We selected the 100 abstracts comprising the training
set on the basis of specifically including both predators
and parasitoids, in addition to pests, in order to fine-tune
the prompt on these roles as much as possible, as these
roles bear particular relevance to the topic of (natural)
biological pest control. The information on instances
of predators, parasitoids and pests was available from
a pre-screening procedure that was carried out in pre-
vious work for a total of 1520 abstracts, which identi-
fied and described genera present in these abstracts
and could thus indicate which abstracts contained (at
least one genera) of predators, parasitoids and pests.
The abstracts comprising the training data were then
selected from this subset at random on a rolling basis,
with an ongoing attempt to avoid extreme imbalances
between the number of predators, parasitoids and pests
(Fig. S1.1a). The 100 abstracts comprising the held-out
test set were selected randomly from the remaining ab-
stracts in the corpus. Pest species are common in the
corpus, which means that there is a relative increase in
the proportion of species labelled as pests in the test
set compared to the training set (Fig. S1.1b).

The training and test set consist of 14 columns (Table([f).
In the Role’ column, we determined whether a species
was mentioned as a predator, parasitoid or pest. If there
was no mention of these roles in the text, we looked for
any other broad category, such as herbivore, pollina-
tor, biological control agent, etc. Where specific roles
lacked, we looked for broader descriptions, such as
"was observed to predate/consume”, "was reared from
host" or "infests maize fields" to arrive at an appropri-
ate role. Where even descriptions lacked and no other
indication was given in the abstract, the role was left
blank. In the 'Generalist/Specialist’ column, we deter-
mined whether a species was mentioned as a (dietary)
generalist or specialist. We required no specific evi-
dence for this column, only the mention of dietary gen-
eralism or specialism. For the 'Pest Controller’ column
to be ’true’, we required either a specific mention of a
species as functioning as a biological control agent, or
required a predator, parasitoid or natural enemy to be
stated to specifically feed or prey on a pest. In the 'Pest
Names’ column, we specified the names of the pests
controlled by a pest controller. In the 'Pest Type’ col-
umn, we decided to distinguish invertebrate pests from
plant pests (weeds), with the aim of identifying weed
controllers from other pest controllers. In the column
‘Industry Type’ we determined if a pest species was
mentioned in association with a particular industry like
agriculture or forestry, and in the column ’Affects’ we
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determined which crops or products were affected by
the pest, if mentioned in the abstract. The column 'De-
scription’ serves to provide both as a description of the
species in the abstract, and as a justification for the as-
sessment of the other columns. The ’Location’ column
refers to the location of the study, if mentioned, and was
unconstrained in geographical scale.

Prompt and objective

In the first step of the experiment, we applied GPT-4 to
each individual abstract (title, abstract and author key-
words) in the training set, with the instruction to find all
taxonomic entities present in the text that are mentioned
at the species- or genus level and returning a table with
columns as in Table [l To achieve this, we instructed
GPT-4 with an initial prompt (Fig. S3.1). This prompt
follows a zero-shot prompting approach, detailing pre-
cisely how each column in the table should be filled out,
requiring both named entity recognition and relation ex-
traction capabilities.

Since the training and validation set were manually pop-
ulated with invertebrate species only, we decided to
prompt GPT-4 to neglect plants, bacteria, fungi and
pathogens in its output. While this does not exclude ver-
tebrate species per se, we proceed to analyse the per-
formance of the model on invertebrates only. The ability
of GPT-4 to abide by the constraint to neglect certain
entities in the text will be of interest in cases where gen-
erated output is desired to be limited to certain species
of interest, rather than providing an exhaustive table.
For large-scale studies, the increased completion time
of generating exhaustive tables may be substantial, and
the generation of long tabular output may be infeasible
due to the token limits posed by current state-of-the-art
large language models such as GPT-4. At the time of
this experiment, both the GPT-4’s input and generation
were limited to 2,048 tokens (OpenAl, 2023b), corre-
sponding to ca. 1536 words (OpenAl, |2023c).

As GPT-4 had not yet been released for APl usage
at the time of the study, we proceeded to use the
ChatGPT web-interface (using the May 24 release of
GPT-4) and saved the tabular output manually to a
spreadsheet. This required a Plus membership with
OpenAl. We prompted the model with each abstract
in an individual session to ensure that there was
no information leakage across abstracts. We then
analysed the output for each abstract in the training
set, as obtained with the initial prompt (Fig. S3.1),
noting its errors across the various columns of the
table, and subsequently improved the prompt through
a series of changes that proved to remedy the error
in each particular case. This was achieved through a
combination of experimenting with the prompt design,
based on consultation of the prompt learning literature,
and inserting bespoke instructions and clarifications
into the prompt (e.g., "Don’t do X", "Ensure that
Y"). Where uncertain how to proceed, we queried
GPT-4 itself as to how the prompt may be improved in
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Table 1. Columns of the data used in this study. Using these columns, we manually populated the training set (using the 100 abstracts selected for the training
set), and the test set (using the 100 abstracts selected for the test set): These constitute the ‘'manually labelled data’ in the training and test set. Consequently, we
instructed GPT-4 to generate a table with the same columns: These constitute the 'GPT-4 generated’ training and test set.

Column | Explanation | Clarification

1. Class | Class name. | Taxonomy (Latin).

2. Order | Order name. | Taxonomy (Latin).

3. Family | Family name. | Taxonomy (Latin).

4.  Genus | Genus name. | Taxonomy (Latin).

5. Species \ Species name. \ Taxonomy (Latin).

6. Role The role that the species is ascribed | Not limited to the given examples.
in the text (e.g., predator, parasitoid,
pest, herbivore, etc.).

7. G/S Is the species mentioned as a gener- | This refers to dietary generalism and
alist or specialist? specialism.

8. Pest Controller | True or false: Is the species men- | We define a pest controller as a natu-
tioned as a pest controller? ral enemy (i.e., predator or parasitoid)

of a pest. Biocontrol agents of pests
also sulffice.

9. Pest Names For pest controllers: What pests does | May be given as a common name or
it control? at any taxonomic scale, as mentioned

in the abstract.

10. Pest Type For pests and pest controllers: Is | Although plant species are not to be
the pest an invertebrate or plant (i.e., | returned as species in the table, they
weed)? may be mentioned in Column 9.

11.  Industry Type For pests and pest controllers: What | Not limited to the given examples.
industry is the pest associated with
(e.g., agriculture, forestry, freshwater,
etc.)?

12.  Affects For pests and pest controllers: What | This may be given as common names
crops, plants or products does the | or at any taxonomic scale, as men-
pest affect? tioned in the abstract.

13. Description Thorough description of the species | Unconstrained in length.
as mentioned in the abstract and a
justification for the assessment.

14. Location Geographical location of the study, if | Name of the location as mentioned in
mentioned. the abstract, unconstrained in scale.

order to avoid a particular error in the future. This was
done by following up on the output with "You made
the following error: X. How would I need

to change my prompt in order for you to fill
this out correctly next time?". We carried out
this fine-tuning process for the 100 abstracts in the
training data over the course of three full iterations.
We decided to iterate over the training set three times,
rather than once, in order to ensure that the continuous
changes made to the prompt yielded consistent results
and to allow for changes to be reverted if they proved
ineffective. All consecutive versions of the prompt over
the course of the fine-tuning process can be found in
Section 3 of the supplementary information .

Following fine-tuning against the training set, the prompt

assumed the design as shown in Fig. [T} This prompt is
split into three smaller prompts, the first of which serves
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to identify all relevant species in the abstract, the sec-
ond of which serves to return these species in a table
with the appropriate columns filled out, and the third
of which asks GPT-4 to review the generated table and
make any corrections if necessary. We ran these three
prompts within the same session. This approach, of di-
viding a complex set of instructions into smaller tasks,
is known as least-to-most prompting (Zhou et al., 2023).
The prompt design follows a ‘zero-shot’ approach as it
contains only instructions, rather than including any ex-
emplar prompt completions, which would have drasti-
cally increased the token length of the prompt. We at-
tempted to improve the reasoning ability of the model
by including the phrase "let’s think through the following
tasks step by step" (info-point 3; [Kojima et al.| (2023)),
and through the usage of chain-of-thought reasoning
(Wei et al.l [2023) at several points in the prompt to
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Prompt 1

Here are a title, abstract and some keywords:

{Text}

Based on this information, provide a comprehensive list of all the species that are mentioned
at the genus or species level, neglecting any species that are plants, bacteria, fungi or
pathogens. Include every synonym of a species as a separate species. Double check that you have
identified all species, including those that may be abbreviated (in which case, infer the full
name) .

. Least-to-most prompting (Zhou et al., 2023): First detects all relevant
[Intermediate output] [ species and only then returns species in the subsequent table.

Prompt 2 v
Ve
Create a table with exactly 14 columns. Provide rows for all the species (either at the genus
or species level) that you listed previously, filling in Column 1 (Class), 2 (Order), 3
Taxonomy is (Family), 4 (Genus), and 5 (Species) based on the taxonomy of each species. Correct any
frequently spel}ing mistakes in the taxonomy. Make sure all species and genera that you listed in your
misspelled in the previous response are included in the table. e
literature. For the remaining columns, thoroughly analyse the provided title, abstract and keywords. You Attempts to
oar:e tasked with reasoning to your best ability about the way that each species is mentioned in Induce zero-
Specifying the text. Let's think through the following tasks step by step* shot reasoning
GPT—4,Sr0|e_In For column 6 (Role), specify whether the species is mentioned as a predator, parasitoid, pest,° (Kojima et al.,
executing this biological control agent, pollinator, herbivore or anything else. If a species is mentioned as 2023).
task. both a predator and a biological control agent, then choose predator, and if a species is
mentioned as both a parasitoid and a biological control agent, then choose parasitoid. If a o
species is a prey or host of a predator a parasitoid, this does not suffice for the species to
. be classified as a pest; the species must be mentioned explicitly as a pest, or at least in
Specific association with biological control, destruction, infestation, etc. For column 7 (Generalist/
examplesaid in Specialist), indicate 'generalist' if the species is a generalist, 'specialist' if it's a
the correct specialist, or leave blank if neither is mentioned.

identification of In column 8 (Pest Controller), mark 'true' if the species can be considered a pest controller,

the species in otherwise 'false'. To clarify: If the species is mentioned as a predator, parasitoid, natural®
question. enemy or biological control agent of (or in association with) a pest, or is mentioned to
specifically prey or feed on a pest, then consider this species a pest controller; if it is o

stated as a biological control agent of a weed, then also consider the species a peste
controller. Hyperparasitoids, or predators of other pest predators (hyperpredators), are not'
e pest controllers.

Counterexamples

help reduce false If column 8 is 'true', list in column 9 (Pest Names) the pests the species controls; in column

10 (Pest Type), specify the pest type (invertebrate or plant); in column 11 (Associated With),

positives. identify what industry the pest is associated with (agriculture, forestry, or something else), (6
based only on information from the text; in column 12 (Affects), state what the pest affects Attempts to
(which crops, plants, products, etc.),ebased only on information from the text. avoid
If the species is a pest species, then fill in column 10 the pest type (invertebrate or plant), Ianrmatlon
o . column 11 what industry it is associated with (agriculture, forestry, etc.), and column 12 what being drawn
Attempts to avoid | crops, plants or other products this pest affects. from outside of
descriptions that o . o . L . the text (i.e.,
relay to another ?n column 13 (Description), p;ov1de a thorough .desc.rlptlon of tI'.le species: How is it mentlon(:.‘d training data).
. in the text? What role does it fulfil? Also, justify your choices for columns 11 and 12, if
species (e'g" filled in. This description should not refer to any other rows, it should be an independem:o

"see species ..."). description of the species in the text. In column 14 ocation) fill in the geographic
location(s) of the study (e.g. country, province, place, etc¥), if mentioned in the text.

As you fill out the table, pay attention to the following points. Do not repeat rows for the
Clarifications help | same species and ensure that additional rows are provided for synonyms (columns 6 to 12 should
reduce persistent be identical for synonyms). For any column: If it cannot be filled in, leave it blank. Do not
problems and number the rows: The 'Class' column must be the first column. Ensure that for all pests and

. pest controllers, columns 10 (Pest Type), 11 (Associated With), and 12 (Affects) are filled out
help GPT-4 arrive consistently and accurately. This means that if a row represents a pest, make sure to specify e
at the correct the pest type, the industry it is associated with, and what crops, plants or other products
answer through this pest affects; and if a row represents a pest controller, list the pests it controls in

column 9 (Pest Names), specify the pest type (column 10), identify what industry the pest is

chain-of-thought associated with (column 11), and state what the pest affects (column 12).

reasoning (e.g.
Wei et al., 2022). Provide only the table, without additional comments or text.

. J

Output l Prompt 3

Thoroughly review your work. Are all
species included in the table that you
listed before? Are all columns filled out
correctly? Have you missed anything? If so,
return the corrected table; if not, reply
only with 'No corrections.'.

Figure 1. The final prompt design after fine-tuning against the training set. The prompt is divided into three parts. The first part prompts GPT-4 to detect all relevant
species in the abstract, the second part prompts GPT-4 to return these in the table with the appropriate columns filled out, and the third part prompts GPT-4 to review
the generated table and make any corrections if necessary. The points labelled as 'C’ (and highlighted in grey rather than yellow) designate clarifications; these were
used to clarify specific terms such as pest and pest controller, and aimed to reduce persistent problems such as formatting errors and missing pest information in
some of the columns.
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demonstrate clearly to the model how it should think
about its tasks and what it must pay attention to (info-
points 'C’). These prompting techniques have all been
demonstrated to improve the reasoning capabilities of
GPT-3.5 (Zhou et al., 2023} [Kojima et al., [2023; Wei
et al., |2023). The prompt also makes abundant usage
of specific examples and counter-examples to aid the
correct identification of particular roles of entities. We
applied this fine-tuned prompt to the training data once
more without any further changes in order to obtain final
results on the training set, and subsequently applied the
prompt to the held-out test set.

Extraction of taxonomy

As shown in Table the first 5 columns of the
data reflect the taxonomy of the species or genus
(i.e., Class, Order, Family, Genus, Species). While
higher level taxonomic information can be extracted
from databases such as the Global Biodiversity Informa-
tion Facility (GBIF| [2023) for a given species or genus,
species names are frequently misspelled in the litera-
ture and genus names occasionally appear across dif-
ferent phyla, making it difficult to automatically extract
the correct taxonomy. We thus deemed it of interest to
investigate the ability of GPT-4 to (1) predict the missing
taxonomy of a given species or genus (i.e., from its train-
ing data) and (2) correct any obvious misspellings. To
this end, we filled out the taxonomy of each species (or
genus) in the training and test sets as they are stated
in the abstracts, if available. We refer to the task of
extracting this taxonomy as ’taxonomic named entity
recognition’. Where the taxonomy was not available in
the abstract, we searched for the species on GBIF and
the Encyclopedia of Life (EOL) (Parr et al., [2014) using
the genus and (if available) species name and filled this
out accordingly. We refer to the task of predicting this
missing taxonomy as ’higher level taxonomy prediction’.
This taxonomy concerns only the class, order and fam-
ily columns in the data sets as the genus and species
columns are needed to predict the missing taxonomy. In
both cases, the obtained taxonomic information is then
compared to the generated GPT-4 output. Since tax-
onomic named entity recognition and higher level tax-
onomy prediction comprise two very different tasks, we
evaluate performance of the model on these two groups
of taxonomic terms individually.

Mismatches. A mismatch between the manually labelled
taxonomy and the taxonomy returned by GPT-4 does
not necessarily mean that the GPT-4 prediction is
wrong. Taxonomy is frequently misspelled in the litera-
ture and conventions regarding taxonomic ranks are not
always used consistently. For example, Latin binomials
are often accompanied by a taxonomic annotation ’(X:
Y)’, where X typically refers to the order and Y typically
refers to the family of the species. However, authors fre-
quently present this annotation with phyla, class, sub-
orders or superfamilies instead, which means that the
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manual extraction does not always extract the correct
class, order and family information. In order to deter-
mine the correct taxonomic ranks in case of a mismatch
between the term manually extracted from the abstract
and the GPT-4 generated term, we once again referred
to the GBIF and EOL databases. Through compari-
son with this reference taxonomy, we then determined
whether the manual label, the GPT-4 prediction, or both,
were mistaken. Conversely, a mismatch between tax-
onomy that was missing from the abstract and the tax-
onomy predicted by GPT-4 necessarily implies that the
GPT-4 prediction was mistaken, since the missing tax-
onomy was obtained from the GBIF and EOL databases
to begin with.

We proceed to divide the taxonomic mistakes made by
GPT-4 into two categories: Minor mistakes and major
mistakes. We define a minor mistake as a discrep-
ancy between the GPT-4 prediction and the manual la-
bel where the GPT-4 prediction nevertheless preserves
essential details. This includes predictions of incor-
rect taxonomic ranks that are nevertheless part of the
broader taxonomy as adjacent terms (e.g., the correct
suborder rather than order, phylum rather than class,
etc.), entries of 'sp’/’spp.’ rather than blank species en-
tries, inclusions of subspecies information, or common
names rather than Latin names (e.g., ’Insect’ rather than
‘Insecta’). Conversely, we define major mistakes as dis-
crepancies where the GPT-4 prediction conveys infor-
mation that is inaccurate. This refers to incorrect taxo-
nomic terms that are not part of the broader taxonomy
of the species, and instances of blank entries where the
taxonomy is stated in the abstract. We refer to approxi-
mate taxonomic matches as matches that include both
exact matches and minor mistakes.

Analysis of species information

We focus our analysis of the remaining species informa-
tion (columns 6-14) on the species roles and the geo-
graphic locations. For these two sub-tasks, we measure
the performance of GPT-4 by computing the precision,
recall and F1-score (Eq. of the model, and provide
confusion matrices to identify true positives, false posi-
tives, true negatives and false negatives for each label.
The F1-score serves to strike a balance between the
precision and the recall.

Precision = rre
~ TP+FP
TP
R |l= —————
A= TP FN
F1-score — 2 Precision - Recall
" Precision + Recall (1)

TP : True Positives
F P : False Positives
F'N : False Negatives
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True positives comprise all direct matches between the
manual labels and the GPT-4 predictions, as well as pre-
dictions in close agreement with the manual label (i.e.,
convey the same essential information). For species
roles, this is achieved by grouping all obtained roles into
9 distinct groups, with which we ensure that roles such
as ’biocontrol agent’ and 'biological control agent’ both
comprise the same essential role. Similarly, roles such
as 'parasitoid’ and ’larval parasitoid’ comprise the same
group, as do labels such as ’'unclear’, 'not mentioned’
and blank entries. We group roles that are not of im-
mediate interest to this study as 'other’ (e.g., 'pollinator’,
'scavenger’, ‘competitor’).

For geographical locations, 'close agreement’ between
labels can be understood as referencing the same ge-
ographic area, albeit at different scales. As such, we
count examples such as ’'Northern New Zealand’ and
‘New Zealand’, 'Manitoba, western Canada’ and 'Mani-
toba, Canada’, 'Eastern Newfoundland’ and 'Newfound-
land’ (taken from the training set) as the same essential
location. Naturally, when the essential location is lost
(e.g., a manual label of ’Australia’ and a prediction of
‘North Island’) we no longer consider this a true positive
(indeed, this example would comprise a false negative,
as it missed the essential location, Australia).

Results

Species extraction

We found that splitting the instructions into two consecu-
tive prompts, in which the first prompt served to identify
all relevant species in the text and the second prompt
served to fill out the table, led to improvement in en-
tity extraction capability. While the initial prompt already
extracted 627 out of the 649 species (96.6% recall) in
the training data (with missing entries corresponding to
2 out of 100 abstracts), the split-prompt approach en-
sured that all 649 species were extracted in the first
part of the prompt. In the second part of the prompt,
however, GPT-4 remained challenged with returning all
previously found species in the final table, and as a
result a small number of species in the training data
were still missed in GPT-4’s output, with 631 out of 649
species (97.2% recall) extracted (Table [2a). However,
since these missing entries correspond to only 2 out of
100 abstracts in the training set, we obtain a mean re-
call per abstract of 99.5% (standard deviation = 4.4%)
(Table [2B). Importantly, we also observed 43 instances
of fabricated species entries (‘hallucinations’) as rows
in the GPT-4 output for the training set, which occurred
across the same two abstracts where missing entries
were observed. This results in a total precision of 93.6%
and a mean precision per abstract of 99.1% (standard
deviation = 6.8%) (Table[2). For the test set, GPT-4 ex-
tracted 244 out of 245 species (99.6% recall), and we
observed no hallucinated species entries in the test set
(100% precision) (Table [2). Moreover, we found that
GPT-4 did not generate any entries for plants, bacteria,
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fungi or pathogens in either the training set or the test
set and thus managed to abide by the constraint set on
the species extraction very effectively.

We hypothesised that the third step in the final prompt
design, in which we asked GPT-4 to thoroughly review
its output, would allow GPT-4 to pick up on its own mis-
takes, however, its success was found to be very lim-
ited. GPT-4 corrected its own mistakes only in the case
of a single abstract in the training set, corresponding
to 12 species entries. In this case, the model correctly
identified that it had left out columns 10 ('Pest Type’), 11
('Industry Type’) and 12 ('Affects’) for the pest species in
the table and then proceeded to fill these out correctly.
In one case in the test set, the model claimed that it had
not identified a particular species as ’pest’, stating that
it had corrected this, although the species had, in fact,
been identified as a pest already. In two other cases,
the model returned reassurances other than 'No correc-
tions’ (although conveying the same message). Inter-
estingly, the model did not recognise missing entries or
hallucinations in the table.

The generated tables obtained from GPT-4 display vary-
ing degrees of accuracy and adherence to the prompted
instructions. However, in cases where the information in
the abstract is presented clearly and non-ambiguously,
strong performance can be observed (Fig. [2). Con-
versely, ambiguous usage of language (e.g., a preda-
tory species that acts as a pest) is prone to produce er-
roneous results (Fig. [S1.2). The results in the following
sections are obtained from comparing the GPT-4 gener-
ated tables (using the fine-tuned prompt; Fig. [1) with the
manually labelled tables for all abstracts in the training
and the held-out test set. The species in the training and
test set that were missed by GPT-4 are omitted from the
remaining analysis as these species naturally cannot be
compared to GPT-4 predictions. This refers to 18 out of
642 entries in the training set and 1 out of 245 entries in
the test set. We also omit the 43 cases of hallucinations
in the training set from this further analysis, but discuss
these in the discussion.

Taxonomic named entity recognition

Here we assess the ability of GPT-4 to extract taxo-
nomic information present in the abstracts. We ob-
served only a small number of mismatches between
the manual labels and the GPT-4 predictions (Table [3).
Following comparison with the reference taxonomy ob-
tained from GBIF and EOL, we found that the majority
of mismatches were either cases where the GPT-4 pre-
diction was, in fact, correct, or where the mistake com-
prised only a minor mistake, rather than a major mis-
take (Table [S2.3a). Indeed, we observed only 2 major
mistakes out of the 2276 total taxonomic terms (0.09%)
predicted by GPT-4 in the training set, and 3 major mis-
takes out of the 803 total taxonomic terms (0.37%) pre-
dicted by GPT-4 in the test set (Table[S2.3a). Proportion
correct (PC) scores of approximate matches are found
to be between 98-100% across both the training and
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Table 2. Precision, recall and F1-score of the extraction of species (as rows in the final output table) by GPT-4, for the training set and the held-out test set. Scores
are presented as computed from the total number of predicted and manually extracted species entries (a), and as the mean per abstract (b). Support: The number of
species present in the manually labelled data set (a); the number of abstracts in the data set (b).

(a) Total
| Precision (%) | Recall(%) | F1(%) | Support
Training set | 93.6 | 97.2 | 95.3 | 649
Test set | 100.0 | 996 | 998 | 245

(b) Mean per abstract

| Precision (%) | Recall(%) | F1(%) | Support
Trainingset | 99.1+68 | 995+44 | 993+41 | 100
Testset | 100.0+£0.0 | 99.0+99 | 995+50 | 100

Table 3. Accuracy of GPT-4 on the task of taxonomic named entity recognition. This refers to taxonomy that was available for extraction in the abstract. Accuracy is
presented for each taxonomic rank as the proportion correct (PC) of predictions that are exact matches versus the total number of taxonomic terms (PCexact), and as
the proportion correct of predictions that are approximate matches (which exclude major mistakes but retain minor mistakes) versus the total number of taxonomic
terms (PCapprox). We also computed the latter per-abstract (PG, to avoid bias from abstracts with a large number of extracted species: The presented values
show the mean across abstracts with a spread of one standard deviation. Since the class column in both the training and the test set is heavily dominated by insect
species, we also provide information on the correct number of non-insects obtained in square brackets.

| Class | Order | Family | Genus |  Species
PCexact (¥ 97.9 98.4 98.7 98.6 96.8
— (143/146) [2/2] (377/383) (443/449) (622/631) (611/631)
Q
o  PCapprox (%) 100.0 100.0 100.0 100.0 99.8
£ (146/146) [2/2] (383/383) (449/449) (649/649) (648/649)
©
F  PChprox (%) | 100.0+£0.0 | 100.00.0 | 100.0+0.0 | 1000+00 | 99.9+1.2
PCexact (%) 100.0 915 98.4 99.2 95.1
(73/73) [3/3] (107/117) (121/123) (243/245) (233/245)
& PCapprox (%) 100.0 98.3 100.0 100.0 99.6
E (73/73) [3/3] (115/117) (123/123) (244/244) (243/244)
PCapprox (%) | 100.0£0.0 | 99.0+99 | 100.0+0.0 | 1000+00 | 99.8+20

Table 4. Accuracy of GPT-4 on the task of higher level taxonomy prediction. This refers to taxonomy that was not stated in the abstract and thus had to be predicted
by GPT-4 based on its training data. Accuracy is presented for each taxonomic rank as the proportion correct (PC) of predictions that are exact matches versus the
total number of taxonomic terms (PCexact), and as the proportion correct of predictions that are approximate matches (which exclude major mistakes but retain minor
mistakes) versus the total number of taxonomic terms (PCgpprox). We also computed the latter per-abstract (ch‘ppmx) to avoid bias from abstracts with a large number
of extracted species: The presented values show the mean across abstracts with a spread of one standard deviation. Since the class column in both the training and

the test set is heavily dominated by insect species, we also provide information on the correct number of non-insects obtained in square brackets.

| Class | Order | Family
PCexact (%) 99.8 98.8 90.1
~ (484/485) [20/20] (245/248) (164/182)
O
o PCapprox (%) 100.0 99.5 92.9
£ (485/485) [20/20] (381/383) (169/182)
©
F  PChprox (%) | 100000 | 99.4+41 | 986+5.2
PCexact (%) 93.0 96.9 94.2
(159/171) [31/43] (128/127) (114/121)
@ PCapprox (%) 99.4 98.4 96.7
8 (170/171) [42/43] (125/127) (117/121)
PCopprox (%) | 99.0+£9.9 | 985+11.1 | 99.4+4.1
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Title: Approaching and rostrum protrusion behaviours of Rhynocoris marginatus on three prey chemical cues

Abstract: Rhynocoris marginatus (F.) (Heteroptera Reduviidae) is a polyphagous predator predominantly found in agroecosystems, and their bordering ecosystems like scrub jungles, semi-arid zones and forests in
India. Although R. marginatus is a polyphagous predator, it exhibited a certain degree of host specificity. Due to its predatory potential, R. marginatus has been used as an important biological control agent in
India. Laboratory and field trials showed that R. marginatus feeds mainly on lepidopteran pests followed by coleopteran pests. R marginatus locates the preys by the chemical cues emanating from them.
Approaching and rostrum protrusion behaviours of R. marginatus life stages on hexane extract of three groundnut pests, Helicoverpa armigera (Hubner) (Lepidoptera Noctuidae), Spodoptera litura (F.) (Lepidoptera
Noctuidae) and Mylabris pustulata (Thunberg) (Coleoptera Meloidae). Significantly R. marginatus adult was found to be more responsive to the chemical cues of S. litura (62.5%) followed by H. armigera (60%)
and M. pustulata (40%). R. marginatus showed minimal preference to M. pustulata chemical cues as compared to H. armigera and S. litura chemical cusses. The prey's chemical cues elicited a quicker
approaching behaviour of the predator than the control. Moreover the rostrum protrusion time was also higher in the prey chemical cues categories as compared to the control. The results clearly show the role of
prey chemical cues in prey-predator interaction. GC-MS analysis of the prey chemical cues indicated H armigera, M. pustulata and S. litura contains eight, eight and five saturated hydrocarbons, respectively.
Keywords: Biological control agent; Chemical cues; Helicoverpa armigera; Mylabris pustulata; Rhynocoris marginatus; Spodoptera litura

Generalist | Pest Associated
Class | Order Family Genus Species Role /Specialist | Controller  Pest Names @ Pest Type With Affects Description Location

R. marginatus is a polyphagous predator found predominantly
in agroecosystems and bordering ecosystems in India. It is
Helicoverpa used as a biological control agent due to its predatory
armigera, potential and host specificity. It feeds mainly on lepidopteran
Spodoptera pests followed by coleopteran pests located by chemical cues
litura, emanating from them. The adult stage is more responsive to
Mylabris the chemical cues of S. litura and H. armigera and shows
Insecta | Hemiptera | Reduviidae | Rhynocoris | marginatus | Predator = Generalist | TRUE pustulata Invertebrate | Agriculture | Groundnuts | minimal preference to M. pustulata chemical cues. India

H. armigera, a lepidopteran pest, is a prey for R. marginatus,
which is attracted by its chemical cues. It is a pest in the
Insecta | Lepidoptera | Noctuidae | Helicoverpa | armigera Pest FALSE Invertebrate | Agriculture | Groundnuts | agriculture industry and affects groundnuts. India

S. litura is another lepidopteran pest that is preyed upon by R.
marginatus. R. marginatus responds significantly to the
chemical cues of S. litura. S. litura is a pest in the agriculture

Insecta | Lepidoptera | Noctuidae | Spodoptera | litura Pest FALSE Invertebrate | Agriculture | Groundnuts | industry and affects groundnuts. India

M. pustulata is a coleopteran pest and one of the preys of R.
marginatus. R. marginatus shows minimal preference to its
chemical cues. M. pustulata is a pest in the agriculture

Insecta | Coleoptera | Meloidae | Mylabris pustulata | Pest FALSE Invertebrate | Agriculture | Groundnuts | industry and affects groundnuts. India

Figure 2. Table generated by GPT-4 for an exemplar abstract (title, abstract and keywords) in the test set, using the fine-tuned prompt design (Fig. . This is an abstract discussing a predatory true bug found in India (Sahayaraj,/2008).
The generated table includes all four species mentioned in the abstract and correctly identifies R. marginatus as pest controlling predator and the remaining species as pests. The taxonomy is correctly extracted from the text, with the class
correctly predicted to be ’'Insecta’. The order of R. marginatus has been correctly predicted to be Hemiptera rather than the suborder Heteroptera that is stated in the text. The description of R. marginatus as "polyphagous predator” is
translated into 'Generalist’ in column 7, although the "certain degree of host specificity” is perhaps neglected. The pest information (columns 9—12) is correctly filled out both for R. marginatus as pest controller and for the remaining species
as pests. The descriptions are thorough and factually correct and the location is correctly identified to be India for all four species.
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test set, whether computed across all taxonomic terms
(PCapprox) Or across abstracts (PCprrOX) (Table .
Mismatches in the genus and species columns where
the GPT-4 prediction was correct refer primarily to cases
of spelling corrections, while mismatches in the class,
order and family columns refer primarily to cases of
corrected ranks (e.g., the correct family as opposed to
the superfamily that was mentioned in the abstract), al-
though we also find spelling corrections in the family col-
umn. Spelling corrections, which occurred exclusively
in the family, genus and species ranks, comprised 12
cases in the training set and 4 cases in the test set. In
all cases, GPT-4 corrected the spelling mistake and re-
turned the correct term. While this does not evidence
that the all misspellings in the data were corrected by
the model, it does demonstrate that when a misspelling
was addressed, it was done correctly.

Higher level taxonomy prediction

For the task of higher level taxonomy prediction we ob-
served more mismatches than for taxonomic named en-
tity recognition (Table [4), and more of these comprised
major mistakes (Table [S2.3b). We observe 15 major
mistakes out of the 915 total taxonomic terms (1.64%)
predicted by GPT-4 in the training set, and 7 major mis-
takes out of the 419 total taxonomic terms (1.67%) pre-
dicted by GPT-4 in the test set (Table [S2.3a). While
the PC scores of approximate matches (PCgpprox) Can
be seen to lie between 98—-100% for the class and or-
der, we observe a notable decline for the family rank in
both the training set and the test set (Table [d). This de-
cline, however, appears to be primarily a result of bias
towards a small number of abstracts in which many ma-
jor mistakes were made, and is thus not observed in the
scores per abstract (chppmx).

Species Roles

GPT-4 captured the roles of species with a high degree
of accuracy, as assessed against both the training set
(Fig. and the test set (Fig. [b). Crucially, while there
are a small number of cases of manually labelled preda-
tors, parasitoids and pests having been mislabelled by
GPT-4 as something else (e.g., as ‘competitor’, ‘prey’,
’host’, 'unclear’), there is no confusion between these
roles, either in the training set, or in the test set (em-
phasised by the dotted line).

Results on the test set are very comparable with results
on the training set, although some differences in preci-
sion and recall can be observed (Table[5b). In particular,
the precision for predator roles is reduced from 100% on
the training set to 80.4% on the test set. As we can see
from Fig. this reduction is primarily a result of GPT-
4 predictions of 'predator’ for terms that were manually
labelled as biological control agents, natural enemies or
were left blank (unclear). Recall of predator roles is only
marginally reduced on the test set as compared to the
training set. In both cases, false negatives are a result
of a comparatively small percentage of abstracts (Table

Scheepens etal. | Large language models help facilitate the automated synthesis of information on potential pest controllers.

52.1).

Performance for parasitoid roles on the test set matches
performance on the training set closely, with precision
and recall scores consistently between 97-100% and
an F1-score of 98.7-99.0% (Table [). In both sets,
hyperparasitoids (parasitoids of other parasitoids) are
accurately distinguished. For pest roles, we observe
a substantial amount of confusion between pests and
‘prey/host’, 'other’ and (in particular) ‘unclear’, across
both the training and the test set (Fig. [3a and Fig. [3b).
We also observe a large variation (between the training
set and the test set) in precision and recall for this role

(Table[5).

Geographic locations

In addition to the roles of species, we investigated the
ability of GPT-4 to extract geographical information from
the abstracts. The results show that GPT-4 is able
to effectively extract geographic information, with few
false-positive and false-negative predictions for both the
training set and test set (Fig. [4). Indeed, locations
are predicted with 98.7% precision and 97.1% recall
on the training set, and 95.3% precision and recall on
the test set (Table [6al and Table [6b] respectively). Per
abstract, an average of 96.3% of manually labelled lo-
cations are correctly returned by the GPT-4 predictions
in both the validation set and the test set (Table S2.2).
No-locations (i.e., no location mentioned in the abstract
for the respective species) are generally predicted only
marginally worse, with the exception of a notably lower
precision on the training set (Table [6a), which stems
from a total of 14 false negative predictions (Fig. [4).
These occur across 4 abstracts, with most (9 out of 14)
comprising empty predictions, and the remaining (5 out
of 14) comprising predictions of insufficient information
which stem from a single abstract (predictions of "North
Island" rather than "Australia").

Discussion

The results presented here show that GPT-4 possesses
an effective ability to (1) extract taxonomic and geo-
graphic entities from abstracts, (2) identify the roles of
species from their descriptions in the abstract and (3)
extract relations between entities in the abstract, such
as between pest controllers and pests, and pests and
certain industries as well as their affected products.
However, a number of observations and caveats merit
discussion.

Hallucinations

The vast pool of information that GPT-4 is able to syn-
thesise appears to provide a notable strength, enabling
the model to recognise common usages of language
in ecology such as the conventions regarding taxo-
nomic ranks and the meaning of domain-specific vocab-
ulary. Moreover, it allows the model to make predictions
that go beyond merely the information provided in the
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Figure 3. Confusion matrix of the various roles ascribed to species, either as 'Manual label’ or as 'GPT-4 prediction’, for the training set. Values indicate the percentage
of total predictions across each row (recall) and below these the corresponding absolute numbers of predictions. The primary roles of interest (predator, parasitoid
and pest) are emphasised with a dotted line. 'B.C.A.: Biological Control Agent. 'H. Parasitoid’: Hyperparasitoid. 'Nat. Enemy’: Natural enemy. 'Other’ includes terms
such as 'Pollinator’, 'Herbivore’, ’Leaf miner’, 'Scavenger’, 'Ectoparasite’ and 'Competitor’ and the term 'Unclear’ includes 'Not mentioned’, as well as empty entries.
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Table 5. Precision and recall obtained by GPT-4 for each role in the training set (a) and the held-out test set (b). Support: The number of instances of the respective
role in the manual labels. Weighted average: The average of the respective column, weighted by the support of each row. 'B.C.A’: Biological Control Agent. 'H.
Parasitoid’: Hyperparasitoid. 'Nat. Enemy’: Natural enemy. 'Other’ includes terms such as ’Pollinator’, "Herbivore’, ‘Leaf miner’, 'Scavenger’, 'Ectoparasite’ and
"Competitor’ and the term "Unclear’ includes 'Not mentioned’, as well as empty entries.

(a) Training set

| Precision (%) | Recall (%) | F1(%) | Support

Predator 100.0 93.2 96.5 207

Parasitoid 99.5 97.9 98.7 195

Pest 95.3 81.2 87.7 149

B.C.A. 88.9 100.0 94.1 16

H. Parasitoid 100.0 92.9 96.3 14

Nat. Enemy NA NA NA 0
Prey/Host 14.3 50.0 222 4

Other 87.5 91.3 89.4 23

Unclear 24.0 52.2 32.9 23

Weighted average | 94.7 | 902 | 920 | 631

(b) Test set

| Precision (%) | Recall (%) | F1(%) | Support

Predator 80.4 89.1 84.5 46
Parasitoid 100.0 98.1 99.0 52
Pest 87.4 96.0 91.5 101
B.C.A. 87.5 63.6 73.7 11
H. Parasitoid 100.0 100.0 100.0 2
Nat. Enemy NA 0.000 NA 3
Prey/Host 60.0 429 50.0 7
Other 27.3 42.9 33.3 7
Unclear 40.0 13.3 20.0 15

Weighted average

824 | 844 | 827 | 244

(a) Training set (b) Test set
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Figure 4. Confusion matrices of the geographic locations of the studies mentioned in the text, either as 'Manual label’ or as 'GPT-4 prediction’, for the training set
(a) and the held-out test set (b). Values indicate the percentage of total predictions across each row (recall) and below these the corresponding absolute numbers
of predictions. A true-positive prediction constitutes the prediction of a location that corresponds to, or is in close agreement with the manual label; a false-positive
constitutes the prediction of a non-empty location which does not correspond to the manual label; a true-negative constitutes a location correctly left blank (i.e., no
location was mentioned in the abstract); and a false-negative constitutes a location incorrectly left blank or conveying insufficient information (i.e., a location that was
mentioned in the abstract but not captured by GPT-4).

text, allowing it to correct spelling mistakes, disentangle
ambiguities, and provide appropriate roles of species
based on descriptions in the text.

The ability of GPT-4 to synthesise vast quantities of data
can also be a source of hallucinations, however. This
refers to cases of believable, but fabricated informa-
tion that have been observed to be produced by large
language model chatbots such as ChatGPT (Azamfirei
et al., 2023). We observed a total of 43 hallucinated
species as rows in the table output of GPT-4 (all in the
training set). While the first part of the prompt (Fig. [T)

Scheepens etal. |
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consistently returned the correct set of species, a sub-
sequent mismatch was observed between this set and
the species returned in the final table. This was ob-
served exclusively in cases where GPT-4 was unable
to complete the entire table in one prompt-completion
and thus required multiple completions to finish the table
(through the usage of a ’continue generating’ function
available in the web-interface). We suspect that this re-
peated generation of output may be the cause for these
hallucinations, possibly as a result of a diminishment of
the model’s internal memory (Gong et al., 2023) of its
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Table 6. Precision and recall obtained by GPT-4 for geographic locations in the training set (a) and the held-out test set (b). Support: The number of locations and
non-locations present in the manual labels. Weighted average: The average of the respective column, weighted by the support of each row. 'Location’ refers to the
location associated with the study of the species and 'No location’ refers to the case where no location is mentioned in the abstract; If GPT-4 predicted a location
that did not correspond to the manually labelled location, this is designated a false-positive, and if GPT-4 predicted no location for a manually labelled location, this is

labelled as a false-negative.

(a) Training set

| Precision (%) | Recall (%) | F1(%) | Support
Location 98.7 971 97.9 487
No location 90.8 95.8 93.2 144
Weighted average | 96.9 | 98 | 9.9 | 631
(b) Test set

| Precision (%) | Recall (%) | F1(%) | Support

Location 95.3 95.3 95.3 149
No location 92.6 92.6 92.6 95
Weighted average | 94.3 | 943 | 943 | 244

earlier response to the first part of the prompt. Indeed,
the only cases of hallucinated species rows in GPT-4’s
output (across both training and test sets) were detected
in the two longest tables generated by GPT-4 (corre-
sponding to two abstracts in the training set), consisting
of 25 and 58 rows, respectively. Furthermore, all 18
species rows that were missed by GPT-4 in the training
set originate from these same two abstracts, and thus
the same mechanism may be responsible for these false
negatives. While hallucinations are concerning, it is ex-
pected that usage of GPT-4 with higher token-lengths for
prompt completion would alleviate this issue. For exam-
ple, updated versions of GPT-4 are stated to have maxi-
mum token-lengths of 8,192 and 32,768 tokens respec-
tively, while web-interface usage was limited to 2,048
tokens per generation at the time of writing (OpenAl,
2023b). The fact that the GPT-4 output for the test set
contained no tables larger than 12 rows in length may
thus explain why we observed no instances of halluci-
nated species entries in the test set.

Additionally, a small number of hallucinations were ob-
served for the ’Industry Type’ column in the generated
data sets, where associations of pests with agriculture
or forestry were stated without any basis in the text and
no clear basis outside of the text. This was observed
on 18 (out of 631) occasions in the training set and on
8 (out of 244) occasions in the test set. The appar-
ent inability of GPT-4 to state whether information was
drawn from inside the text or from outside the text, and if
so, from where outside the text, is a well-known caveat
of the model. However, new plug-ins are continuously
being released to address this problem and may have
utility in tasks such as demonstrated here. Connect-
ing GPT-4 to live internet sources, as exemplified by the
GPT-4-powered Microsoft Bing Chat, may also provide
an effective way to reduce hallucinations through the re-
liable citing of sources.

The proneness of large language models to fabricate
erroneous, but credible-sounding pieces of information
is the subject of increasing discussions in the broader
scientific community, with concerns over the accuracy,
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reliability and accountability of scientific output obtained
with the usage of LLMs (Birhane et al.| [2023). Thus,
although Al models are increasingly being used in sci-
ence and have begun delivering numerous scientific ad-
vances and discoveries (Wang et al., |2023), it is impor-
tant for scientists to be aware of the limitations of Al
tools, such as LLMs and other black-box, deep learning
based models, and the potential impact of these models
on reliability and reproducibility in science.

The problem of ambiguity

The task posed to GPT-4 in this work was, furthermore,
challenged by ambiguity. For example, the task of de-
ciding whether a predator can be safely inferred to be
a pest controller if it is mentioned jointly with a pest in
a biological control experiment, but there is no explicit
mention of predation on the pest, is highly ambiguous.
So, oo, is the task of deciding whether a pest is associ-
ated with agriculture in cases where there is no explicit
mention of agriculture but the text includes terms often
associated with agriculture such as ’biological control’
and ’pesticide’. Capturing such roles and associations
correctly, while avoiding false positives (e.g., from non-
target species in pesticide experiments), is a difficult
task that is inherently limited by both the clarity and the
length of the text. Usage of LLMs such as GPT-4 for
text mining tasks in ecology must be partnered with an
aim to minimise these ambiguities. As LLMs become
more capable of processing large prompts, definitions
of terms and ’if-then’ clauses could be more extensively
included and be further refined. In the context of this
work, this could consist of including a set of definitions
for the various roles the model is instructed to identify
and a stricter protocol on how associations are to be
made (e.g., what information suffices for an "associa-
tion with agriculture"?).

Ambiguity in species roles. In the context of the species
roles, the 14 labels of 'predator’ that were not captured
by GPT-4 in the training set (Fig. refer to a single ab-
stract which mentions various species of silver fly "as-
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sociated with Chamaemyiidae-based biological control
programs". Although the abstract mentions no preda-
tory role, a predatory role was assumed during manual
labelling based on the fact that silver flies are known
predators — a piece of information evidently not available
to GPT-4 in this instance. In other instances, however,
GPT-4 does appear to have utilised information outside
of the abstract to obtain its returned roles: In the case of
one abstract, species that are described simply as nat-
ural enemies (and manually labelled as such) were la-
belled by GPT-4 as predators, which was consequently
validated by other internet sources. Also in the training
set, the only 4 manual labels of ’parasitoid’ that GPT-
4 failed to capture include one ambiguous case (where
the species in question is mentioned simply as a bio-
logical control agent but in close association with an-
other parasitoid, and thus perhaps GPT-4’s assessment
is correct), but in the 3 remaining cases a parasitoid role
is clearly stated in the text, and is, in fact, reiterated by
GPT-4 itself in the descriptions that it was instructed to
provide (column 13; Table [f). Why it described these
species as parasitoids but failed to state their roles as
such is unclear. In another case, where a hyperpar-
asitoid was labelled as a parasitoid, GPT-4 also notes
the species to be hyperparasitic in its description: Why
it was not labelled as such is, again, unclear.

In the test set, we observed a substantial reduction in
precision and recall for predator roles as compared with
the training set (Table [5). The drop in precision can
be seen to be a result of 10 false positive predictions,
which occur across 6 individual abstracts. One of these
cases refers to a species described as an ectoparasite
and manually labelled as such, but later in the abstract
is described (in a German translation) as a "predatory
enemy". Not only does this example highlight the impor-
tance of consistent usage of language (e.g., the adjec-
tive ‘predatory’ to be distinct from ’parasitic’), but it also
demonstrates the capability of GPT-4 to seamlessly pro-
cess text in different languages. The remaining cases
refer to species described in the abstract simply as
natural enemies or biological control agents but which
may be inferred to be predators based on their taxon-
omy (e.g., spiders and beetles), or species described
as entomopathogenic nematodes (EPNs), for whom it
is unclear on what basis GPT-4 predicted a predatory
role. The drop in recall is a result of a single abstract
in which GPT-4 labelled one species as 'prey’ and four
species as ‘competitor’, rather than correctly as preda-
tors. While the error of mislabelling a predator as prey
may appear substantial, the topic of this particular ab-
stract (intra-guild predation between native and invasive
spiders) provides an understandable point of confusion.

Finally, the ’pest’ labels missed by GPT-4 in the
training set comprise a total of 28 cases (across 8
abstracts), where GPT-4 chose instead to describe
the species as host, prey, herbivore or left their role
blank (i.e., 'unclear’). In none of these 28 cases, the
species are explicitly described as pests but were
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manually inferred to be acting as pests as a result of
being the target of a biocontrol-related feeding trial
or an insecticide experiment. The difficulty for GPT-4
appears to arise when these species are described
in the text with adjectives such as ’prey’, ’host’ or
’herbivore’ and the broader context in which they are
mentioned in the text (e.g., as the target species of
an insecticide experiment) is neglected. While we
attempted to catch such cases with the prompt line
"the species must be mentioned explicitly

as a pest, or at least in association with
biological control, destruction,
infestation, etc." (Fig. [f), it may be worthwhile to
highlight the aforementioned cases more specifically in
the prompt.

The challenge of prompt design

The question of prompt design (or prompt engineering)
comprises a serious challenge to the adoption of large
language models in scientific research. Here, we pro-
ceeded to optimise the performance of the prompt de-
sign against a training set. Our optimisation approach
had two main caveats. The first relates to the reliance
on manual, trial-and-error based optimisation, which is
time-consuming and may be intractable for very large
data sets. The second relates to the problem of over-
fitting, which, although not well-defined in this context
(as there is no proper loss function), may arise if the
prompt is too tailored to the training set and fails to
generalise to the rest of the data. Regardless of the
optimisation strategy, however, designing the prompt to
take into account the various intricacies of the task (def-
initions, examples, counterexamples, clarifications, rea-
soning) is highly non-trivial and highly data-dependent,
as exemplified by the extensive prompt utilised in this
work. Furthermore, performance of GPT-4 was ob-
served to be a highly non-linear function of the prompt-
design, with small changes in the prompt leading to
large changes in the output (for better or for worse).

As opposed to extensive prompt engineering, a power-
ful alternative may be posed by the fine-tuning of the
actual parameters of the model. Also known as transfer
learning (Pan and Yang, [2010), fine-tuning allows users
to customise the pre-trained machine learning model to
their own use cases by re-training the model (or a sub-
set of parameters of the model) on a much smaller, be-
spoke data set. With many applications in image and
text classification (Weiss et al.,[2016) , transfer learning
is already a rich and and active field in biomedicine, and,
to a lesser degree, ecology. OpenAl has released a
fine-tuning option for GPT-3.5, which is stated to "match,
or even outperform, base GPT-4-level capabilities on
certain narrow tasks" (Peng et al., 2023). Furthermore,
fine-tuning of GPT-3.5 is stated to allow for a shorten-
ing in prompts by as much as 90% as instructions can
be fine-tuned into the model itself. Fine-tuning may thus
provide a promising addition, or alternative, to prompt
engineering for large language models.
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Comparison with other tools

To put some of the results obtained in this work into a
broader perspective, a comparison can be made with
previous studies that have utilised text mining tools
for applications in ecology. Previous attempts to ex-
tract taxonomic terms from abstracts have resulted in
mean recall scores per abstract of 79.5% (Millard et al.}
2020) and 93.6% (Cornford et al.,2022) with the help of
the R package Taxize (Chamberlain and Szdcs), [2013),
while the extraction of geographic locations has been
achieved with a mean recall of 82.1% per abstract
(Cornford et al., 2022) with the help of the CLIFF-
CLAVIN geoparser model (D’Ignazio et al., [2014). Fur-
thermore, an extensive comparison of eight taxonomic
named entity recognition (NER) models over four gold
standard ecology corpora (Le Guillarme and Thuiller,
2022) reports scores for approximate matches ranging
between 78—96% (precision), 74—93% (recall) and 76—
91% (F1-score).

Comparison with these previous studies demonstrates
the capability of GPT-4 on similar tasks to be highly
competitive. If we can correctly assume the risk of
hallucinated species extractions to be minimised with
sufficiently large token lengths, we may assume such
hallucinated entries to pose a relatively low risk for fu-
ture endeavours, which are likely to incorporate longer
token lengths (both as input and for completion) as
large language models develop. As such, our results
on the test set, which did not suffer from hallucinated
species extractions, may offer a valuable demonstration
of the model's potential performance. The extraction
of species from abstracts in the test set was achieved
with a total precision of 100%, recall of 99.6% and F1-
score of 99.8% (Table [2a). Investigating only the tax-
onomy of the extracted species, we report PC scores
on the test set of 98.3—100.0% for taxonomy that was
stated in the abstract (Table [3) and 96.7-99.4% for tax-
onomy that was not stated in the abstract (Table [4).
Geographic locations (as approximate matches) were
extracted from the test set with a precision, recall and
F1-score of 95.3% (Table [6b), which is only marginally
worse than the performance obtained from the training
set. We highlight that GPT-4 achieved these results
without prior training on these tasks, while simultane-
ously generating answers to multiple other tasks laid out
in the prompt, such as extracting appropriate species
roles, identifying pest controllers, pest names and as-
sociations, and providing thorough descriptions.

Conclusion

In this work, we explored the potential of the next gen-
eration of large language models for the automation of
knowledge synthesis in ecology through the application
of GPT-4 to a body of literature on pest control. To this
end, we prompted GPT-4 using a set of instructions in-
volving the extraction of species, taxonomy and geo-
graphical locations, the labelling of roles, recognition of
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pest-controlling behaviour, pest types, pest associations
and mutual relations.

The results show that GPT-4 is highly capable of this
task, with performance on all investigated sub-tasks
largely congruent with the manual labels. Some of the
discrepancy appears to be a result of a certain degree
of ambiguity in the abstracts and in the task itself. We
thus restrained from speaking of ground-truth in this
work, since even manual labels are subject to ambigu-
ity and human error: Indeed, we observed a number of
cases where the predictions of GPT-4 were more accu-
rate than the manual labels. That being said, we also
observed cases of hallucinations, i.e. fabricated infor-
mation. In the case of hallucinated species entries in the
generated tables, this appears to be a symptom of the
limits (in terms of token-lengths) placed on the prompt
completion. In the case of individual pieces of fabricated
information, it is more difficult to identify root causes as
they may be more dependent on model parameters and
the original training data of GPT-4.

We hope that this work makes a valuable contribution to
the swiftly evolving domain of the automation of knowl-
edge syntheses in ecology by demonstrating the poten-
tial of the general-purpose LLM GPT-4 for such tasks.
Indeed, general-purpose LLMs may provide an inter-
esting way forward in ecology, since there is currently
a lack of specialised, pre-trained language models for
use in this domain. Combined with tailored prompt en-
gineering, such models can be used for a broad range
of tasks related to the extraction of information from
text, and have the potential to save a large amount of
time spent on manual labelling. Through their vast in-
formation base, these models can, in principle, be ap-
plied to literature spanning myriad languages, helping
to mitigate the widespread bias of the English language
in knowledge syntheses (Konno et al., 2020; Amano
et al., 2021) - although current LLM performance on un-
derrepresented languages has been found to be poor
(Laskar et al., [2023). Furthermore, their reliability may
be boosted through the integration of live internet ac-
cess and a growing number of plug-ins that address the
traceability of information. Additionally, an ability to han-
dle the full-texts of papers, rather than just abstracts, is
likely to be tractable in the near future and improve the
reliability of extracted information.

Finally, we reiterate that although we investigated the
application of GPT-4 to an instance of knowledge syn-
thesis of biological pest control, the conclusions of this
work are to be understood in the larger context of the
potential of general-purpose LLMs for the automation
of knowledge syntheses in ecology. In the spirit of
open science, such applications ideally transpire in an
open-source context, ensuring both open access and
reproducibility. While GPT-4 does not currently adhere
to such standards, we have nonetheless aimed in this
study to provide insight into the current state-of-the-art
of LLMs and their potential use for automated knowl-
edge synthesis in ecology.
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