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Abstract

This manuscript showcases the latest advancements in deeplmagel, a pivotal Fiji/Image] plugin for bioimage
analysis in the life sciences. The plugin, known for its user-friendly interface, facilitates the application of diverse
pre-trained neural networks to custom data. The manuscript demonstrates a number of deeplmagel capabilities,
particularly in executing complex pipelines, 3D analysis, and processing large images.

A key development is the integration of the Java Deep Learning Library (JDLL), expanding deeplmage]’s com-
patibility with various deep learning frameworks, including TensorFlow, PyTorch, and ONNX. This allows for
running multiple engines within a single Fiji/Image] instance, streamlining complex bioimage analysis tasks.

The manuscript details three case studies to demonstrate these capabilities. The first explores integrated image-to-
image translation and nuclei segmentation. The second focuses on 3D nuclei segmentation. The third case study
deals with large image segmentation.

These studies underscore deepImagel’s versatility and power in bioimage analysis, emphasizing its role as a critical
tool for life scientists and researchers. The advancements in deeplmagel] bridge the gap between deep learning
model developers and end-users, enabling a more accessible and efficient approach to biological image analysis.
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The advancements in deepImagel, detailed in this paper, represent a significant leap in bioim-
age analysis, crucial for life sciences. By enhancing this Fiji/Image] plugin, the research bridges
the gap between complex deep learning models and practical applications, making advanced
bioimage analysis accessible to a broader audience. This integration of the Java Deep Learn-
ing Library (JDLL) within deepImage] is particularly noteworthy, as it expands compatibility
with leading deep learning frameworks. This allows for the seamless execution of multiple
models in a single instance, simplifying the construction of complex image analysis pipelines.
The implications of this research are far-reaching, extending beyond academic circles to poten-
tially impact various sectors, including healthcare, pharmaceuticals, and biotechnology. The
enhanced capabilities of deepImage] in handling intricate pipelines, 3D analysis, and large
images facilitate detailed and efficient analysis of biological data. Such advancements are vital
for accelerating research and development in medical imaging, drug discovery, and understand-
ing complex biological processes. This manuscript contribution to the field of bioimage analysis
is significant, offering a tool that empowers researchers, irrespective of their computational
expertise, to leverage advanced technologies in their work. The wide applicability and ease of
use of deeplmagel] have the potential to foster interdisciplinary collaborations, drive innovation,
and facilitate discoveries across various scientific and industrial sectors.

1. Introduction

Bioimage analysis has undergone remarkable progress due to the advent of open-source tools, mak-
ing advanced technologies more accessible. These tools include BiaPy ("), CellPose ), CellProfiler®,
Icy ™, Tlastik®, ImJoy©, Napari(”, QuPath®, ZeroCostDL4Mic® and others. One notable devel-
opment in this field is the emergence of zero-code tools, which streamline the integration of complex
analysis pipelines and Deep Learning (DL) networks across various bioimage analysis domains. A key
example is Fiji/mageJ'”), an open-source desktop application central to bioimage analysis. It offers
extensive capabilities enhanced by a vibrant community that develops plugins, enabling tasks ranging
from basic image processing to advanced DL networks specialized in star-convex object segmentation
(i.e., nuclei) D,

Deeplmage] ('?), a freely available plugin for ImageJ, stands out in the realm of zero-code toolkits. It
provides an integrated environment within ImagelJ for executing third-party models from DL libraries.
Notably, deepImage] is a recognized community partner of the Biolmage Model Zoo (bioimage.io) ¥,
hosting pre-trained models for life sciences. Its user-friendly installation process simplifies complex DL
pipeline applications for biologists. Deeplmagel’s practicality is demonstrated in effective workflows
for microscopy image analysis (4.

This manuscript presents the latest version of deepImagel, leveraging the Biolmage Model Zoo’s
strengths. It introduces the Java-based Deep Learning Library (JDLL), marking a significant advance-
ment in accessible tools for bioimage analysis. The new version, deepIlmageJ 3.0, brings notable
improvements, including enhanced integration with the Biolmage Model Zoo and increased compatibil-
ity with various DL frameworks. These advancements make deeplmageJ a more versatile and powerful
tool in the Fiji/Imagel] ecosystem, especially in the application of complex image analysis tasks. The
case studies included in this manuscript exemplify the practical applications of these improvements,
showcasing deeplmagelJ 3.0’s enhanced capabilities in diverse bioimage analysis scenarios.

2. Advancements in deepImage]J 3.0: Expanding Capabilities in Bioimage Analysis

With the recent update of deeplmagel (deeplmage] 3.0), a range of significant advancements have
arisen, thereby expanding deepImagel’s functionalities and broadening its applicability in bioimage



analysis. These new features are designed to simplify the integration and execution of DL models,
offering researchers a more versatile and efficient toolset.

2.1. Java Deep-Learning Library: A Comprehensive Toolkit

A pivotal feature of deepImagel] 3.0 is its integration with the JDLL('®. JDLL acts as an all-
encompassing toolkit and application programming interface, facilitating the creation of sophisticated
scientific application and image analysis pipelines with DL functionality. This library simplifies the
complex tasks of installing, maintaining, and executing DL. models, with support for major frameworks
like TensorFlow, PyTorch, and ONNX. The DL engine installer and DL model runner within JDLL
provide an intuitive workflow for downloading, integrating and performing inference, offering a har-
monized approach to utilizing various DL frameworks. This synergy between deepIlmageJ and JDLL
significantly enhances the ability to execute DL. models within Fiji/ImageJ, offering researchers a more
streamlined and cohesive environment for bioimage analysis ().

2.2. Multiple Engine Compatibility: Running Different Engines in a Single Fiji/lmage] Instance

A noteworthy advancement in deepImage] 3.0 is its newfound capability to load and unload multiple
DL frameworks within the same Fiji/lmage]J instance. This development allows for the building of
image analysis pipelines that incorporate multiple DL stages, utilizing different engines. This improved
compatibility enables seamless integration of models developed in TensorFlow, PyTorch, and ONNX,
creating a unified workflow. Such an enhancement provides users with the flexibility to execute a variety
of models in a single, integrated pipeline. An example of this is presented in Case Study 1, where image-
to-image translation and cell segmentation are performed concurrently within the same Fiji/Image]
instance.

2.3. Extended Framework Compatibility: Supporting Various Versions of DL Frameworks

Deeplmagel 3.0 expands its compatibility with a variety of DL frameworks, including different ver-
sions. Now, users can run models created with TensorFlow 2 and ONNX, alongside the already
supported TensorFlow 1 and PyTorch. This extension in compatibility broadens the range of executable
models accessible within the Biolmage Model Zoo ecosystem. Researchers can take advantage of a
more diverse array of DL frameworks and their versions, thereby enriching the diversity of models
available from bioimage analysis.

2.4. Handling Large Images: Leveraging ImgLib2

DeepImagelJ 3.0, built upon ImgLib2, is equipped to handle large images, thereby demonstrating its
capacity for processing extensive datasets within some limits depending on the computer’s capability.
For instance, processing a single large image may require as much as one-tenth of the computer’s RAM
capacity. The integration of ImgLib2 significantly boosts the flexibility and scalability of deepImagelJ,
making it adept at accommodating the large image sizes often encountered in bioimage analysis. This
feature together with its tiling strategy ('?), ensures that researchers have the ability to apply DL models
to a wide array of image data, enabling thorough and detailed analyses.

3. Case Studies

In this section, we showcase real-world applications of deepIlmagelJ 3.0 through a series of case studies.
These studies highlight the software-enhanced features, as previously discussed. Through these practi-
cal examples, our goal is to demonstrate the significant impact and versatility of deepImagel] in tackling
various challenges encountered in bioimage analysis.
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3.1. Case Study 1: deepImage] Pipeline for Integrated Image-to-Image Translation and Nuclei
Segmentation

This case study showcases the advanced capabilities of deepImagel, particularly its proficiency in
integrating and executing diverse DL approaches, often challenged by library and dependency incom-
patibilities within a typical Python environment. Specifically, we have developed a sophisticated
bioimage analysis pipeline that combines the creation of artificially labeled nuclei images from mem-
brane staining images with subsequent nuclei segmentation. This approach allows us to generate
synthetic nuclei images, which are easier to process, from an input image (stained cell membranes)
that is more suitable for live imaging due to lower phototoxicity compared to direct nuclear staining.

Deeplmagel] 3.0 utilizes its enhanced features to combine two distinct DL networks: Pix2Pix !®
and StarDist!'?, This integration enables the conversion of membrane-stained images to nuclei stains
using Pix2Pix, exported in Pytorch 2.0.1, followed by nuclei segmentation with StarDist, imple-
mented in TensorFlow 2.14. This case study not only demonstrates deeplmagel’s capacity to integrate
diverse approaches but also highlights its ability to run models with different engines, addressing
the often encountered incompatibility of libraries and dependencies in Python environments®. The
pipeline effectively manages and executes these models, each requiring distinct engines, showcasing
deeplmagel’s versatility in handling complex bioimage analysis tasks.

To showcase the versatility of deepImagel, the initial step employs Pix2Pix, a conditional gener-
ative adversarial network designed for image-to-image translation. This network is used to convert
fluorescence microscopy images of Lifeact-RFP (actin, membrane stain) to sir-DNA (DAPI, nuclei
stain) images. Subsequently, the pipeline applies nuclei segmentation using StarDist, showcasing a
comprehensive analysis in a unified workflow.

The construction of this pipeline is depicted in Figure 1. It comprises two main phases (i) training
both networks using ZeroCostDL4Mic and (ii) performing inference with deepImagel, following the
export of these models to the bioimage.io format. Within the deepImage] environment, an Image]
macro is utilized to process the five available time points of Lifeact-RFP images with Pix2Pix. This step
results in synthetic SiR-DNA images, which effectively stain the nuclei. Subsequently, these images
undergo processing with the deepImageJ implementation of StarDist, which involves applying the UNet
model (trained via ZeroCostDL4Mic) in Fiji/ImageJ and the corresponding post-processing for nuclei
segmentation to produce masks. These masks, obtained from five distinct time points, are then tracked
using TrackMate'®), an ImageJ plugin, to visualize cell trajectories and track cell movement.

3.2. Case Study 2: Comprehensive 3D Nuclei Segmentation with deepImage]

Case Study 2 emphasizes the capabilities of deepImagel, particularly benefiting from its integration
within the extensive image processing ecosystem of Fiji/ImagelJ. This integration affords the flexibility
to run advanced pipelines automatically, including 3D+t image analysis, in a user-friendly manner.
In particular, Case Study 2 demonstrates the segmentation of nuclei in microscopy images of whole
embryos.

For enhanced reproducibility and to accommodate users without access to high-powered computa-
tional resources, this pipeline is executed in 2D, using a lightweight framework. By employing StarDist
2D (UNet model + postprocessing) and then applying MorphoLibJ ') connected components in 3D,
we successfully mimic 3D segmentation. This approach demonstrates how the integration of deepIm-
agel into the Fiji/Image] ecosystem facilitates complex image analysis tasks, bypassing the need for
extensive computational power typically required for direct 3D processing in bioimage analysis.

The dataset for this study is part of the Cell Tracking Challenge repository, specifically the "Devel-
oping Tribolium Castaneum embryo"?). This dataset provides 3D volumetric data of two beetle
embryos, complete with accompanying sparse nuclei annotations of the beetle’s blastoderm at the junc-
tion of embryonic and extra-embryonic tissues. Several preprocessing steps are undertaken to leverage



Pix2Pix

(training)

Pix2Pix StarDist
(testing)

actin

Lifeact-RFP and sir-DNA

StarDist

(training)

TrackMate

StarDist
(testing)

sir-DNA Test sir-DNA Masks

sir-DNA and Masks ZeroCostDL4Mic Fiji/lmageJ

Figure 1. Case Study 1: Image-to-Image translation and cell Segmentation - Pipeline and Dataset.
The pipeline involves three main stages: dataset preparation, model training using ZeroCostDL4Mic,
and inference and post-processing in deepImage. Initially, Pix2Pix and StarDist are fine-tuned with
specific datasets. Pix2Pix transforms actin images into synthetic DAPI images, while StarDist creates
masks from DAPI images. Once trained, the models are exported to the Biolmage Model Zoo format
and subsequently installed in deeplmagelJ. In the Fiji/ImageJ and deeplmageJ environment, the
pipeline first uses Pix2Pix to transform actin images into synthetic DAPI images, followed by the
application of StarDist for nuclei segmentation. Finally, TrackMate is utilized for a thorough evaluation
of cell tracking. A contrast enhancement has been applied to actin images for visualization purposes..

deeplmagel’s capabilities for running StarDist 2D. Initially, a targeted selection of slices from vari-
ous timepoints in embryo 01 was conducted, guided by the availability of ground truth data within
the dataset from the Cell Tracking Challenge. This selection process was governed by the necessity
to choose slices for which ground truth data existed, as these were imperative for the training phase.
These images and masks are then downsampled to manage memory usage and ensure reproducibility.
Following this, a median filter (kernel size, 7 pixels) is applied to reduce noise in the input images. The
prepared pair of images is then processed using the StarDist notebook within the ZeroCostDL4Mic
repository, as illustrated in Figure 2.

In Case Study 2, after the UNet model is fine-tuned, it is exported and integrated into deepIm-
agel as a bioimage.io model. The subsequent analysis in Fiji/ImagelJ involves a structured approach: i)
implementing preprocessing steps that mirror those used during the model’s training, ii) deploying the
StarDist model for inference, and iii) applying a series of post-processing techniques for assessment
and visualization. This includes downsampling and denoising of selected timepoints from Embryo 2,
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Figure 2. Case Study 2: 3D Nuclei Segmentation - Pipeline and Dataset. The dataset consists of two
distinct embryos, labeled 01 and 02. One embryo is used for fine-tuning the StarDist network in
ZeroCostDL4AMic, following downsampling and noise filtering, while the other is utilized for inference.
After training the StarDist model, it is employed in deeplmagel to create the masks, followed by
StarDist postprocessing. The pipeline is completed with the application of Connected Components for
3D visualization. All 3D volumes are displayed as Z-projections..

following the methodology utilized for the training dataset (Embryo 01). Each 2D slice of the embryo is
then processed through the trained network. The final step involves enhancing the segmentation masks
using the StarDist post-processing pipeline and applying MorpholibJ’s Connected Components‘'? for
comprehensive 3D visualization of the nuclei.

3.3. Case Study 3: Segmentation of Arabidopsis Apical Stem Cells and Integration with the Biolmage
Model Zoo in deepImage]

In this use case, we highlight two key capabilities of deepImage]: its adeptness in handling large 3D

images and its seamless integration with the Biolmage Model Zoo.

The implementation of this pipeline involves using the 3D UNet Arabidopsis Apical Stem Cells
model from the bioimage.io website>!), paired with the dataset titled "Research data supporting Cell
size and growth regulation in the Arabidopsis thaliana apical stem cell niche" ®*). This approach estab-
lishes an efficient yet robust pipeline for cell segmentation within apical stem cells, particularly focusing
on the epidermal cell volumes in the apical meristem, using the 3D UNet pretrained model from the
Biolmage Model Zoo.

The main steps of the pipeline are summarized in Figure 3. Initially, the model is downloaded from
bioimage.io website and installed via the deepIlmageJ Install mode. Subsequently, a relatively large
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Figure 3. Case Study 3: Segmentation of Arabidopsis Apical Stem Cells - Pipeline.This diagram
illustrates the pipeline for Case Study 3. Initially, the dataset is acquired, followed by downloading
and installing the model from the Biolmage Model Zoo into deepImageJ. Subsequently, the model is
applied to a selected root volume to generate a mask. The process concludes with post-processing and
MorpholibJ segmentation to display catchment and overlay basins on the segmented image..

image, measuring 515 X 515 pixels with 396 slices and representing a 3D volume of plant 13 (chosen
for its significant size), is selected for the analysis. The 3D UNet is then employed, and using the tiling
strategy of deepImage] ('?), the image is processed in 180 patches of 100 x 128 x 128 pixels to cover
the whole 3D volume. After running the model and obtaining the mask, the Gamma function at 0.80
is applied to enhance the membranes. Then, The morphological segmentation GUI ofMorphoLibJ (')
is executed. Namely, a combination of morphological operations (extended minima and morphological
gradient) previous to a watershed flooding algorithm is applied with a low tolerance setting to guarantee
precise segmentation accuracy.

4. Discussion

The advancements presented in this manuscript reflect a significant leap in the capabilities of deep-
Imagel, a key plugin for Fiji/Image]J in the domain of bioimage analysis. This tool evolution has the
potential to positively impact the life sciences community, where the need for accessible, efficient, and
versatile image analysis tools is ever-growing. Integrating deeplmageJ with the Biolmage Model Zoo
and incorporating the JDLL underscore its role as a bridge between complex DL. models and practical,
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user-friendly applications. Moreover, the seamless integration with the JDLL enhances the software’s
capabilities, providing a unified platform for deploying diverse DL. models.

The presented case studies demonstrate the profound adaptability and enhanced functionality of
deepIlmage]. A summary of these case studies is depicted in Figure 4. The first case study, focusing on
image-to-image translation and nuclei segmentation, illustrates the software’s ability to integrate and
execute multiple DL environments within a single Fiji/lmageJ instance. This capability is crucial in
biological contexts where multi-faceted analysis is often required. It facilitates the researchers to delve
into intricate biological pipelines without the need for extensive coding expertise. The second case
study further showcases the power of the integration of deepIlmagel into the Fiji/Imagel ecosystem to,
in this case, handle complex 3D nuclei segmentation. A task that is increasingly relevant as imaging
technologies advance. Finally, the third case study emphasizes the tool’s adeptness in processing large
3D images, an essential feature for analyzing extensive datasets commonly encountered in modern
biological research as well as the deepImage] integration with the Biolmage Model Zoo.

Looking ahead, a key area of focus for future work is the integration of interactive annotation
features. This functionality will enable users to fine-tune DL models directly within the deeplmage]
environment. By incorporating tools for interactive annotations, researchers will have the flexibil-
ity to customize and refine their models with greater precision and ease, tailoring them to specific
research needs. This addition is particularly crucial for cases where standard pre-trained models may
not perfectly align with unique dataset characteristics, allowing for more personalized and accurate
analysis.

Another significant advancement planned is the implementation of a transparent connection with
Python. This development will endow deeplmageJ with full training capabilities, effectively trans-
forming it into a comprehensive platform for both model development and application. By bridging
deepImagel with Python, a leading language in the field of data science and machine learning, users will
gain access to a vast ecosystem of libraries and tools. This integration will not only facilitate the train-
ing of DL models within deepIlmagelJ but also enable seamless interoperability between deeplmage]
and a wide range of Python-based data processing and analysis frameworks.

The development of the deepImage] environment and related initiatives represent a paradigm shift
in how biologists and researchers approach bioimage analysis. By lowering the barrier to entry for
applying advanced DL techniques, deepImageJ democratizes access to cutting-edge analysis methods.
This accessibility is vital for fostering a culture of innovation and exploration in the life sciences, where
researchers can leverage these tools to uncover new insights into complex biological phenomena. As
bioimage analysis continues to evolve, tools like deepImageJ will play a crucial role in bridging the
gap between advanced computational techniques and practical research applications, driving forward
the frontiers of science and medicine.

5. Conclusions

In conclusion, this manuscript has presented the evolution of deepImagelJ, highlighting key advance-
ments and new features. The integration of the JDLL has played a pivotal role in expanding the
capabilities of deeplmage], making it a versatile and accessible tool for life scientists and bioimage
analysts. The case studies showcased the practical applications of deepImagelJ across different biolog-
ical scenarios, demonstrating its effectiveness in tasks ranging from cell segmentation to plant tissue
analysis.

The introduction of the JDLL has significantly streamlined the execution of DL models, providing a
unified framework for various DL engines and frameworks. The ability to run different engines in a sin-
gle Fiji/Image] instance opens up new possibilities for constructing complex image analysis pipelines.
The enhanced compatibility with TensorFlow 1 and 2, PyTorch, and ONNX, coupled with the capability
to process larger images, marks a significant step forward in the field of bioimage analysis.
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Figure 4. Summary for the three case studies. This figure provides an overview of three distinct case
studies, highlighting deeplmageJ’s versatility and integration with other tools and plugins. Case Study
1 illustrates the transformation of an actin membrane stain image into a synthetic nuclei stain image
via Pix2Pix, followed by StarDist nuclei segmentation and TrackMate cell tracking. Case Study 2
presents two examples of a single slice from input volume and StarDist output, with one including the
Ground Truth. Case Study 3 shows the pipeline stages: (a) input image, (b) mask generation, (c)
overlay of Morphological Segmentation basins, and (d) visualization of catchment basins..

The zero-coded nature of deeplmagel, coupled with the new features introduced in version 3.0,
underscores its commitment to democratizing access to DL tools for life scientists. This paper not only
serves as a comprehensive documentation of deepImagel’s journey but also aims to inspire the research
community to harness the power of DL in the realm of bioimage analysis.

6. Materials

6.1. Datasets

6.1.1. Case Study 1: Lifeact-RFP cells with SiR-DNA

The datasets employed for training in both tasks are publicly available and have been used extensively
for similar research in fluorescence microscopy. These datasets consist of images of live cells expressing
Lifeact-RFP (Red Fusion Protein) for visualizing actin filaments and are treated with 0.5 pM SiR-DNA
for live cell DNA staining. The continuous imaging of cell culture was performed over 14 hours using
a spinning disk confocal microscope, capturing images at 10-minute intervals. This imaging was done
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with a Yokogawa CSU-W1 scanning unit on an inverted Zeiss Axio Observer Z1 microscope with a
20x (NA 0.8) air, Plan-Apochromat objective (Zeiss) ">,

For the Pix2Pix network training, we used pairs of images from these datasets: membrane-stained
(Lifeact-RFP) and nuclei-stained (SiR-DNA) images. The same nuclei-stained images were also
employed for training the StarDist model ®®. Manual mask images were generated in Fiji/Image] ) to
outline each nucleus, using the freehand selection tool to trace and add outlines to the Region of Inter-
est (ROI) manager, followed by the creation of an ROI map with the LOCI plugin. These ROI maps
were crucial for the accurate training of the StarDist model, particularly following image-to-image
translation.

6.1.2. Case Study 2: Developing Tribolium Castaneum embryo

In the context of Case Study 2, a specialized dataset from the Cell Tracking Challenge was utilized
to fine-tune the StarDist network (see Supplementary Material for the link to donwload). This dataset
includes high-resolution fluorescence microscopy images capturing the developing Tribolium Casta-
neum embryo nuclei. The images were acquired using a Zeiss LightSheet LZ.1 microscope equipped
with a Plan-Apochromat 20x/1.0 (water) objective lens, achieving a voxel size of 0.38 x 0.38 x 0.38
microns. The images were taken at 1.5-minute intervals to track cellular dynamics over time. For
detailed information on sample preparation, RNA injections, and imaging techniques, please refer to
Jain etal ..

It is important to recognize that the image data, acquired using a light-sheet microscope, was fused
from multiple viewpoints. Due to this, some views might not align perfectly, leading to the appearance
of false or conspicuous nuclei. Furthermore, as not all views cover the entire volume, localized dark
patches may be present along the image axis.

The experiment involved two separate embryos. The first embryo (Embryo 01) was used to train
the StarDist network in ZeroCostDL4Mic, whereas the second (Embryo 02) served as an independent
dataset for testing the methodology in Fiji/Image]. Crucially, the annotations used for network training
are sparse, focusing only on selected regions and cell lineages. This sparsity, particularly in the beetle’s
blastoderm at the junction of embryonic and extra-embryonic tissues, was pivotal for effective network
training. The sparse annotations provided a focused and relevant dataset for fine-tuning the network, as
depicted in Figure 2.

6.1.3. Case Study 3: Arabidopsis Apical Stem Cells Segmentation Dataset

In this case study, we utilized a publicly available confocal imaging-based dataset of plant cells from
Willis et al.*”, which includes data from six Arabidopsis thaliana plants treated with Naphthylphtha-
lamic acid (NPA). This treatment inhibits auxin transport, allowing the study of its effects on plant
development and physiology.

Confocal z-stacks were acquired every 4 hours for 3-3.5 days at a resolution of 0.22x0.22x0.26um>
per voxel using a 63 x 1.0 N.A. water immersion objective. For each plant, approximately 20 data time
points were available. Each time point comprises a stack of around 200 image slices, with each slice
measuring 512 X 512 pixels. The dataset includes segmentation ground truth, for instance, segmenta-
tion of each cell. Specifically, we analyzed an image stack from plant number 13, which displays cell
membranes expressing acylYFP in a shoot apical meristem 84 hours post-treatment.

7. Methods
7.1. Case Study 1: Lifeact-RFP cells with SiR-DNA

7.1.1. Pix2Pix for Image Translation and StarDist for nuclei segmentation
The Pix2Pix model'®), integral to Case Study 1 for the task of image-to-image translation from mem-
brane staining (Lifeact-RFP) to nuclei staining (SiR-DNA), underwent rigorous training for 200 epochs.
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The training dataset consisted of 1748 paired image patches, each with dimensions (1024 x 1024 x 3),
and a patch size of (512 x 512). The training process utilized a batch size of 1 and a vanilla Generative
Adversarial Network (GAN) loss function. Executed within the Pix2Pix ZeroCostDL4Mic notebook
(v1.15.1) on Google Colab, the model was trained to adhere to the default parameters of the notebook.
No data augmentation was applied during training. Key training parameters encompassed a patch size
of 512 x 512, a batch size of 1, and an initial learning rate of 2e — 4, achieving successful translation
from membrane to nuclei staining. The Pix2Pix model is exported using PyTorch 2.0.1.

After the image-to-image translation, the StarDist model, designed for nuclei segmentation, under-
went extensive training for 100 epochs. StarDist consists of a UNet trained to identify the intrinsic
features of an object, such as the centroid or oriented distances from the centroid to its boundary, that
enable its reconstruction as a star-convex polygon. The 2D variant of StarDist'") was trained and evalu-
ated using its implementation within the StarDist 2D ZeroCostDL4Mic notebook (v 1.19). The training
dataset consisted of 45 paired image patches, each with dimensions (1024 x 1024), and a patch size of
(1024 x 1024). The training process used a batch size of 2. The model was fine-tuned from a pretrained
model, applying no data augmentation during training. Executed within the Google Colab environment,
the training parameters included a patch size of 1024x1024, a batch size of 4, 100 epochs, and an initial
learning rate of 3e — 4. The resulting StarDist model is exported with Tensorflow 2.14.

7.1.2. Post-Processing with StarDist and TrackMate

In Case Study 1, the reconstruction of 2D star-convex polygons is facilitated by the StarDist plu-
gin for Fiji/lmage]J, which supports macro recording in ImageJ. Therefore, an ImagelJ/Fiji macro is
utilized to execute the complete pipeline, encompassing the running of Pix2Pix, StarDist, and the sub-
sequent StarDist PostProcessing. Following the generation of masks by this pipeline, the trajectories of
cells across five available timepoints are analyzed using TrackMate'®). The results, including the cell
trajectories, are illustrated in Figure 1.

7.2. Case Study 2: Developing Tribolium Castaneum embryo

7.2.1. Preprocessing

In Case Study 2, preprocessing steps are essential before inputting images into the StarDist network. It
is important to note that for fine-tuning the ZeroCostDL4Mic model, we utilize sparse annotations of
the beetle’s blastoderm, as described in 6.1.2. Consequently, only selected slides from the dataset are
employed. During the inference process in deepImagelJ, however, the entire volume corresponding to
each time point is processed.

A two-stage preprocessing strategy is implemented to address the image noise and reduce the com-
putational load. The first step involves applying a median filter across all images to reduce noise
effectively. Following this, a downsampling operation is conducted. This operation reduces the resolu-
tion by half along the x and y axes for the slices used in fine-tuning the ZeroCostDL4Mic model and
along all three axes (x, y, and z) when processing the entire volume for inference with deeplmagel.

7.2.2. StarDist - Nuclei Segmentation in 2D

The segmentation network employed in Case Study 2 is based on StarDist(' ), a deep-learning method
designed to precisely segment cell nuclei from bioimages. This method uses a shape representation
founded on star-convex polygons to predict both the presence and shape of nuclei within an image.
The 2D variant of StarDist relies on an adapted UNet architecture, allowing for efficient segmenta-
tion of 2D datasets. Implemented within the ZeroCostDL4Mic framework, the StarDist 2D model was
specifically tailored for nuclei segmentation within the context of the Developing Tribolium Castaneum
embryo dataset, as described in Section 6.1.2. The dataset structure was adjusted accordingly to facili-
tate compatibility with the notebook’s data reading mechanism. The code detailing the data structuring
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process is available on the deepImageJ GitHub for reproducibility purposes. Dataset augmentation was
performed by a factor of four via random rotations, flips, and intensity changes.

The training regimen involved 50 epochs on 40 paired image patches of size 512 x 512 cropped from
the original images (1871x965 pixels). A batch size of 15 was utilized, employing a MAE loss function.
The model was retrained from a preexisting pretrained model (2D Versatile fluo from StarDist Fiji),
with key training parameters including a learning rate of 5e —05, 10% validation data, 32 rays (n_rays),
and a grid parameter of 2. Despite challenges associated with ground truth variability, particularly in
cases where only one nucleus is marked in the mask, the model demonstrated good performance. This
effectiveness was observed in the segmentation accuracy, where the predicted results were consistently
aligned with the available ground truth, despite its inherent variability.

7.2.3. Postprocess with StarDist

In Case Study 2, the post-processing of StarDist is streamlined through an ImageJ macro, which pro-
cesses each slice of the 3D embryo volume independently. The macro, designed to handle 488 slices
per timepoint, applies the StarDist model slice by slice. For each slice, the StarDist model is applied,
followed by a series of post-processing operations. These operations, crucial for accurate object detec-
tion and minimizing overlap, include applying specific thresholds for probability and non-maximum
suppression. The macro utilizes the StarDist plugin to ensure precise segmentation results for each 2D
slice.

This macro effectively transforms the multi-channel output of StarDist into a single, comprehensive
mask. In the final phase, the Connected Components algorithm is applied across the entire 3D volume.
This process results in a detailed visualization of the entire volume, with each segmented cell clearly
delineated, as illustrated in Figure 2.

7.3. Case Study 3: Arabidopsis Apical Stem Cells Segmentation Dataset

7.3.1. 3D UNet Arabidopsis Apical Stem Cells
In Case Study 3, a 3D UNet®" was employed for cell boundary segmentation. This pre-trained model
is accessed from the bioimage.io website for inference, and it is also available through zenodo'.

The authors of the network®" employed a training strategy where the 3D UNet was trained on
ground truth cell contours obtained by applying a Gaussian blur to a two-voxel-thick boundary between
labeled regions. The training regimen featured a combination of binary cross-entropy (BCE) and Dice
loss, with notable architectural modifications, including replacing batch normalization with group nor-
malization and utilizing same convolutions instead of valid convolutions. During training, augmentation
techniques such as flips, rotations, elastic deformations, and noise augmentations were employed to
enhance the model’s generalization capabilities.

The trained model is available on bioimage.io under the emot ional-cricket, allowing acces-
sibility for the wider research community. In this case study, the network is exclusively employed for
inference on the specified dataset.

7.3.2. PostProcess

In the post-processing phase of Case Study 3, the pipeline includes two distinct steps. Initially, a
Gamma correction function, set at 0.80, is applied to enhance membrane visibility and reduce any blur-
riness. Subsequently, the Morphological Segmentation tool from Morpholib] '* is utilized for both
segmentation and visualization. This tool is employed with a tolerance setting of 10, enabling the effec-
tive depiction of catchment and overlay basins on the segmented image. This precise application of
Morphological Segmentation ensures clear and distinct visualization of each cell.

13D Unet Arabidopsis Apical Stem Cells Model in Zenodo https://zenodo.org/records/7768142
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Supplementary Material: Data, Notebooks, Code, and Models Availability

The following table provides details on the datasets, notebooks, code, and models used in each case
study. This information is essential for ensuring reproducibility and is included in the supplementary

material.

Case Study

Resource Type

Description and Links

Case Study 1

Files

prepare_dataset.py, StarDist Postprocess macro
CSl.ijm

Notebooks Pix2Pix Notebook, StarDist 2D Notebook
Dataset Lifeact-RFP, sir-DNA DAPI
Models Pix2Pix Model, StarDist Model
Case Study 2 | Files Generated_GTpy,  Mount_stardist_dataset.py,
StarDist_postprocess_macro_cs2.ijm
Notebooks StarDist 2D Notebook
Dataset Developing Tribolium Castaneum Embryo
Model StarDist Model
Case Study 3 | Dataset Arabidopsis Apical Stem Cells
Model 3D Unet Arabidopsis Model

Table 1. Availability of data, notebooks, code, and models for each case study.

Additionally, all codes related to these case studies can be found in the GitHub repository:

deepImage] Case Studies.



https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/pix2pix_ZeroCostDL4Mic.ipynb
https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/StarDist_2D_ZeroCostDL4Mic.ipynb
https://doi.org/10.5281/zenodo.3941889
https://doi.org/10.5281/zenodo.3715492
https://zenodo.org/records/10405149
https://zenodo.org/records/10406307
https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/StarDist_2D_ZeroCostDL4Mic.ipynb
http://celltrackingchallenge.net/3d-datasets/
https://zenodo.org/records/10406344
https://www.repository.cam.ac.uk/items/f7cdcf20-e8ca-4cf5-b7ab-90350a8d00b2
https://zenodo.org/records/7768142
https://github.com/deepimagej/case-studies
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