

1 Sonic restoration: Acoustic stimulation enhances soil fungal biomass and

2 activity of plant growth-promoting fungi

3

4 Jake M. Robinson^{1,2*}, Christian Cando-Dumancela^{1,2}, Martin F. Breed^{1,2}

5

6 ¹ College of Science and Engineering, Flinders University, Bedford Park, SA 5042,
7 Australia

² The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia

10

11 *Correspondence: Jake Robinson jake.robinson@flinders.edu.au

12

13 **Author contributions:** JMR conceived and designed the study and conducted the
14 lab work, CCD assisted with the lab work, JMR conducted the statistical analysis,
15 JMR produced the figures and visualisations, JMR, MFB wrote the original
16 manuscript, JMR, CCD and MFB reviewed and edited the final manuscript.

17

18

19

30

21

22

26 **Abstract |** Ecosystem restoration interventions often utilise visible elements to
27 restore an ecosystem (e.g., replanting native plant communities and reintroducing
28 lost species). However, using acoustic stimulation to restore ecosystems has
29 received little attention. Our study aimed to (a) investigate the potential effects of
30 acoustic stimulation on fungal biomass and organic matter decomposition, which are
31 both crucial components of ecosystem functioning and (b) assess the effect of
32 acoustic stimulation on the growth rate and sporulation of the plant growth-promoting
33 fungus *Trichoderma harzianum*. We played 70 dB and 90 dB soundscape treatments
34 (@ 8 kHz) to green and rooibos teabags in compost in experimental mesocosms for
35 8 hours per day for 14 days to test whether acoustic stimulation affected fungal
36 biomass and organic matter decomposition (a control mesocosm received only
37 ambient sound stimulation <30 dB). We played a monotone soundscape (80 dB @ 8
38 kHz) over five days to *Trichoderma harzianum* to assess whether this stimulation
39 affected the growth rate and sporulation of this fungus (control samples received
40 only ambient sound stimulation <30 dB). We show that the acoustic stimulation
41 treatments resulted in increased fungal biomass, greater decomposition, and
42 enhanced *T. harzianum* conidia (spore) activity compared to controls. These results
43 indicate that acoustic stimulation influences soil fungal growth and potentially
44 facilitates their functioning. A piezoelectric effect and/or fungal mechanoreceptor
45 stimulation are possible mechanisms. Our study highlights the potential of acoustic
46 stimulation to alter important functional soil components, which could, with further
47 development, be harnessed to aid ecosystem restoration.

48

49 **Keywords:** ecoacoustics; acoustic restoration; fungi; soil biodiversity; sonic
50 restoration; soil health

51 **Introduction**

52 Ecosystem restoration is imperative in the face of escalating ecosystem degradation
53 and global biodiversity loss (Tedesco et al. 2023). Efforts to restore ecosystems
54 often focus on physical and visible interventions, such as revegetation (Lázaro-
55 González et al. 2023) and species reintroductions (Hugron et al. 2020). While these
56 approaches are crucial for ecosystem recovery, there remains a notable gap in our
57 understanding of how audible domains could aid ecosystem recovery, particularly
58 below-ground. This subterranean focus is particularly important as 59% of the
59 world's biodiversity lives in soil (Anthony et al. 2023). Moreover, soil fauna such as
60 earthworms, are major contributors to ecosystem functioning and food production
61 (Fonte et al. 2023). The potential importance of audible domains in restoration invites
62 questions about whether acoustic stimulation (the application of sound to a particular
63 ecological receptor) could directly promote the restoration of soil ecosystems.

64

65 Ecological acoustic surveys or 'ecoacoustics' have proven successful at monitoring
66 soil biodiversity (Maeder et al. 2022), which is a vital but challenging-to-monitor
67 ecosystem component. Recently, Robinson et al. (2023) demonstrated that it is
68 possible to record soniferous species below-ground using piezoelectric microphones
69 and audio recording devices in a restoration context. The authors built acoustic
70 indices of audible soil diversity, complexity and normalised differential signals that
71 reflected the recovery of soil biodiversity in a temperate forest context. Moreover,
72 Görres and Chesmore (2019) used similar acoustic technology to detect scarab
73 beetle larvae stridulation in a soil pest monitoring setting.

74

75 However, the role of acoustic stimulation in fostering ecosystem recovery remains
76 underexplored. The emerging field of ‘acoustic restoration’ aims to broadcast
77 soundscapes in disturbed areas to facilitate the recolonisation of animals,
78 microorganisms, and biogenic compounds (Znidarsic et al. 2022). For instance,
79 McAfee et al. (2022) enriched marine soundscapes to enhance recruitment and
80 habitat building on oyster reefs. They deployed low-cost marine speakers at four
81 sites and compared oyster recruitment rates. The authors found that soundscape
82 playback significantly increased oyster recruitment at 8 of the 10 study sites.

83

84 Sound, as a fundamental aspect of the environment, holds immense potential to
85 influence ecological processes and shape ecosystem dynamics. Similarly,
86 anthropogenic sounds can alter ecosystem dynamics (Kunc and Schmidt, 2019).
87 However, the impact of sound on the restoration of degraded ecosystems,
88 particularly soil environments, has received little attention. According to a recent
89 review (Robinson et al. 2021), studies have shown that acoustic stimulation using
90 monotonous anthropogenic sound can change the community composition, growth
91 rate and biomass of lab-grown bacteria (Gu et al. 2016), algae (Cai et al. 2016) and
92 fungi (Hofstetter et al. 2020). However, there have been no studies on the effect of
93 anthropogenic sound exposure on the recovery of soil environments or the activity of
94 plant growth-promoting microbiota. This knowledge gap presents an opportunity to
95 explore the relationship between acoustic stimulation and ecosystem restoration,
96 particularly how it affects functional ecological components (e.g., biomass, diversity,
97 plant growth/health-promoting microbiota).

98

99 Two essential ecosystem functions that are influenced by soil microorganisms are
100 nutrient cycling (including decomposition and biomass) and plant-soil microbial
101 interactions (Dantas de Paula et al. 2021). Soil microorganisms, including bacteria,
102 viruses, fungi and others, drive these fundamental ecosystem processes (Wagg et
103 al. 2019), yet their response to acoustic stimulation remains underexplored.
104 Investigating the potential effects of acoustic stimulation on soil fungal biomass,
105 organic matter decomposition and plant growth-promoting activity (along with
106 microbial community dynamics) could provide valuable insights that eventually aid
107 ecosystem recovery.

108

109 We sought to take the first steps in understanding whether different soundscape
110 parameters could affect soil fungal biomass, organic matter decomposition and plant
111 growth-promoting fungal activity. To do this, we aimed to: (a) investigate the potential
112 effects of acoustic stimulation on fungal biomass and organic matter decomposition
113 (both key components of ecosystem functioning), and (b) assess the effect of
114 acoustic stimulation on the growth rate and sporulation of the plant growth-promoting
115 fungus *Trichoderma harzianum*. To examine the first aim, we played 70 dB and 90
116 dB soundscape treatments (@ 8 kHz) to green and rooibos teabags in compost in
117 experimental mesocosms for 8 hours per day for 14 days (a control mesocosm
118 received only ambient sound stimulation <30 dB). To explore the second aim, we
119 played a monotone soundscape (80 dB @ 8 kHz) over five days to *Trichoderma*
120 *harzianum* (control samples received only ambient sound stimulation <30 dB).
121 Understanding soil microorganism responses to acoustic stimulation could have far-
122 reaching implications for ecosystem restoration strategies. While we aim to conduct
123 comprehensive follow-up studies with refined soundscape parameters and detailed

124 microbiomics techniques (e.g., deep sequencing soil microbiomes to determine
125 functional responses), the objective of this study was to establish the foundations.

126

127 **Methods**

128 ***Experimental setup***

129 The acoustic stimulation of soil was conducted in dedicated, sound-attenuated
130 spaces in Hampshire, UK, between March 11 and 25, 2023. The spaces were 1.5 m
131 x 1.5 m x 2.5 m. We sterilised the spaces using a 1% Virkon solution to prevent
132 fungal contamination. Sound attenuation foam was installed on each wall of the
133 study spaces to (a) reduce ambient noise and (b) prevent the controlled acoustic
134 stimuli from escaping. Recording acoustic samples in ambient conditions may
135 capture sounds from variable detection spaces. To address this and create
136 controlled conditions, we built and installed three sound attenuation chambers (one
137 per treatment) within these study spaces. The sound attenuation chambers (Figure
138 S1) were made from heavy-duty 80 L plastic containers with secure lids and
139 Advanced Acoustics (305 mm) Wedge acoustic studio foam installed on each
140 internal wall of the container using Velcro strips.

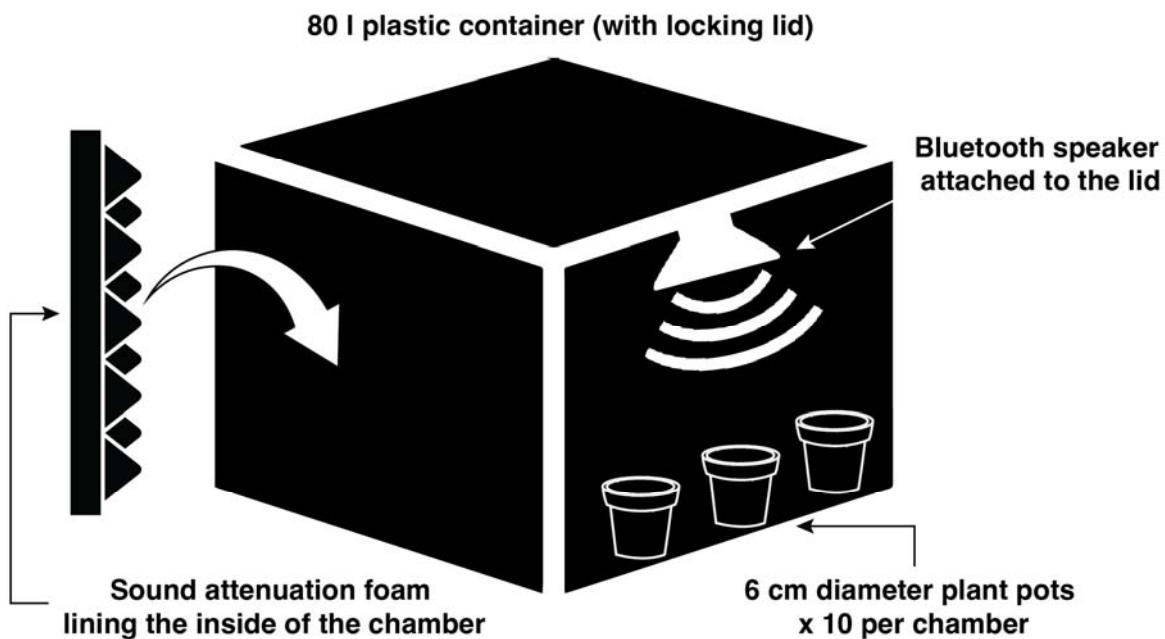
141

142 The acoustic stimulation of the plant growth-promoting fungus *T. harzianum* was
143 done in a lab at Flinders University, South Australia between December 15, 2023
144 and January 2, 2024. The same style of 80 L sound attenuation chambers were
145 used. Both lab spaces were kept at a constant 25°C and the local environment was
146 monitored with a ThermoPro TP50 digital indoor thermometer.

147

148

149 **Compost, teabags and containers**


150 To establish a self-contained collection of organic matter and measure its
151 decomposition rate, we applied an adapted version of the Keuskamp et al. (2013)
152 Tea Bag Index. This is a standardised method for gathering data on decomposition
153 rate and litter stabilisation in soil. The index has been tested for sensitivity and
154 robustness in contrasting ecosystems, confirming its applicability to a wide range of
155 conditions. The index involves using commercially available tetrahedron-shaped
156 teabags with sides of 5 cm, containing approximately 3 g of tea. The teabag mesh
157 size in our study was 0.25 mm, allowing microorganisms and mesofauna to enter the
158 bag while excluding macrofauna. To standardise baseline weights, we used a
159 scalpel to cut an incision (3-4 mm) in the teabag margin to release a small amount of
160 leaves. This allowed us to have a consistent baseline weight of 2.8 g (measured with
161 a Bonvoisin Digital Lab Scale with a 0.01 g accuracy).

162

163 We used two teabags per experimental unit, comprising 1 x rooibos
164 (EAN 5060136750113) and 1 x green (EAN 5060136750052) teabag and placed
165 them into the base of 30 x ZYBUX 6 cm round fibre plant pots (= total 120 teabags in
166 60 plant pots). We used potting compost in an 80 L container and measured its pH
167 and moisture before use. We divided the contents into two: 40L was heat-treated in
168 an oven at 100°C for 1 hr (Hawkes et al. 2002) to kill soil microorganisms and
169 mesofauna, and the other 40L remained untreated. The heat-treated units allow for
170 greater confidence in attributing potential changes in teabag mass or decomposition
171 to the influence of soil biota. We then filled 30 of the plant pots with untreated
172 compost (covering the teabags and filling to the top of the pots) and 30 with heat-
173 treated compost. We placed the pots into the sound attenuation chambers (Figure 1)

174 and applied different acoustic stimulation treatments (described in the next section)
175 for 14 days. After the acoustic stimulation period, we immediately measured and
176 recorded the weight of each teabag, heat-dried the teabags (to exclude moisture) at
177 70°C for 48-hrs and re-weighed them. We recorded soil pH at the beginning and end
178 of the experiment using a Hanna GroLine Tester (China; IC-HI981030).

179

180

181 **Figure 1 |** Sound attenuation chamber with pots in the base.

182

183 **Acoustic stimulation**

184 We applied three acoustic treatments to 10 pots for the heat-treated and untreated
185 soils in our study (Table 1). We decided upon 8 kHz as a suitable test frequency
186 following a review (Robinson et al. 2021) that identified microbial biomass and
187 growth rate can be influenced by this frequency. An amplitude of 80 dB is known to
188 influence *Escherichia coli* bacteria (Gu et al. 2016), and *Chlorella* algae biomass
189 (Jiang et al. 2012), and 90 dB influences *Picochlorum oklahomensis* (Cai et al.

190 2016). We used this as a guide and applied 70 dB (to capture potential lower
191 amplitude responses) and 90 dB amplitude levels. Both amplitude levels were played
192 at 8 kHz.

193

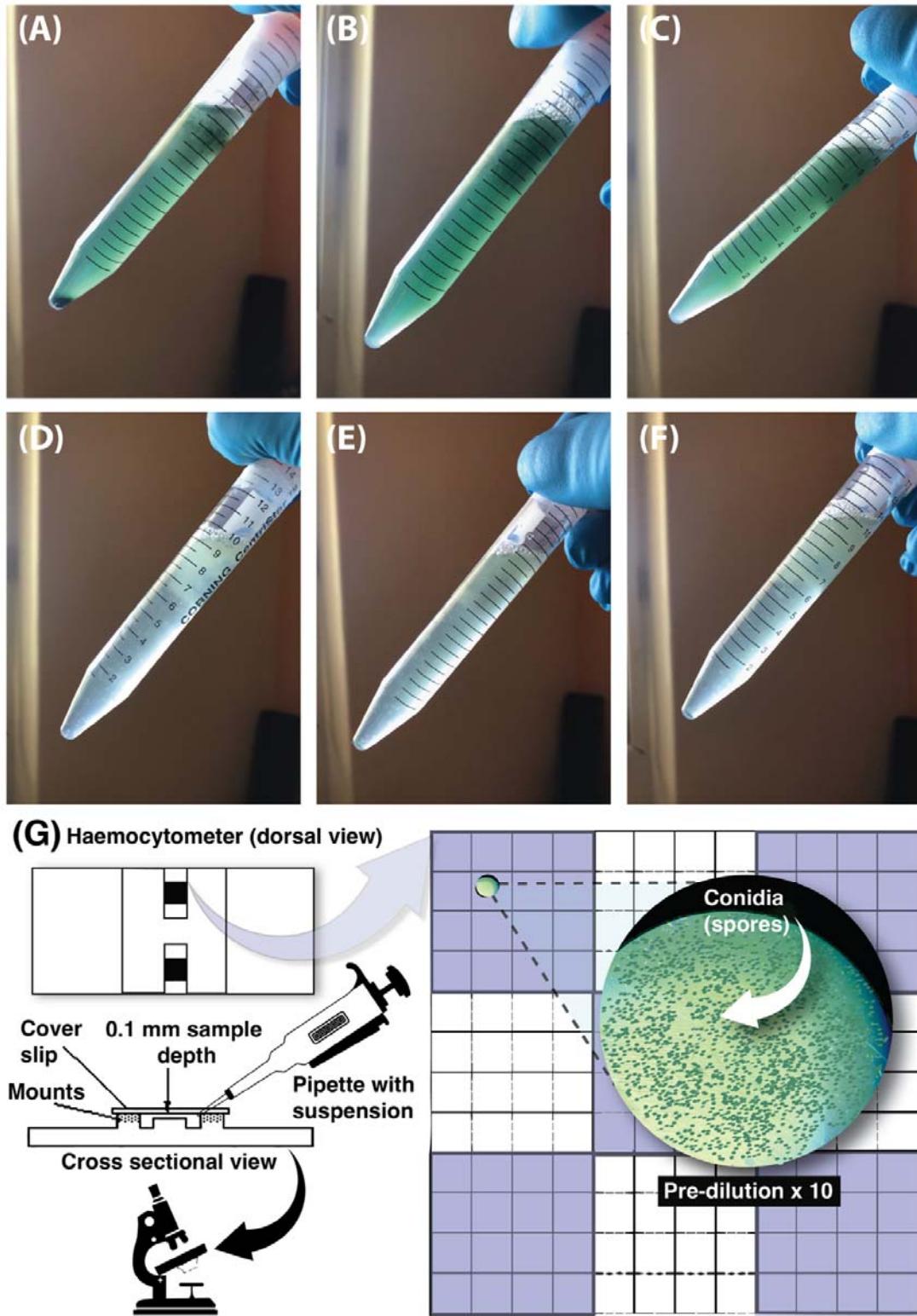
194 To facilitate acoustic stimulation, we downloaded (from YouTube) an 8-hour video
195 playing a monotonous 8 kHz sound (= Tinnitus Flosser Masker at 8 kHz by
196 Dalesnale). We tested the frequency using a Wildlife Acoustics Echometer Touch
197 Pro bat detector (USA), designed to capture high-frequency acoustic signals. We
198 installed an Anker Soundcore Bluetooth speaker (USA; A3102) on the inside of the
199 sound attenuation chamber lid (using 3 x Velcro strips) with the speaker facing
200 downwards. One Anker Soundcore speaker per sound attenuation chamber was
201 used (= 3 in total). We connected the Bluetooth speakers to 3 x Lenovo Tabs (China;
202 M8) to play the sound continuously for 8 hrs each day for 14 days, starting at
203 approximately 08:00. To determine the amplitude level in the sound attenuation
204 chambers, we used a Uni-T Professional Meter (China; TUT352) with an amplitude
205 detection range of 30 dB to 130 dB and adjusted the tablet sound accordingly.

206

207 ***T. harzianum* culture assay**

208 We selected *T. harzianum* as our focal plant growth-promoting fungus for three
209 reasons: (a) it has several potential beneficial functions that could enhance
210 ecosystem restoration (e.g., P solubilisation, ability to synthesise beneficial
211 phytohormones, and ability to outcompete plant pathogens) (Li et al. 2015; Illescas
212 et al. 2021; Swain and Mukherjee, 2020), (b) it is not an obligate symbiont, and is
213 therefore relatively easy to culture, and (c) it produces vivid green conidia (spores)
214 that can enhance the quantification process. We used *T. harzianum* (Isolate Td22;

215 Organic Crop Protectants) and created a modified potato dextrose agar culture
216 medium with 125 g potato, 15 g dextrose, 10 g baker's yeast extract and 850 ml of
217 distilled water (Jahan et al. 2013). The medium was created in aseptic conditions
218 and poured/set under a laminar flow hood (Lab Systems). We combined 5 g of the *T.*
219 *harzianum* per litre of distilled water to create a suspension and homogenised by
220 shaking/swirling the flask for 30 s. We then used a sterile loop to inoculate the
221 culture medium with *T. harzianum* in a random order, placing one small circular
222 streak (5 mm diameter) in the centre of the Petri dish (again, under a laminar flow
223 hood). This allowed for efficient mycelium radial growth measurements. The Petri
224 dishes ($n = 20$ for the acoustic stimulation treatment and $n = 20$ for the control group)
225 were then sealed with Parafilm and placed into their respective sound attenuation
226 chambers using a digital randomiser.


227

228 **Acoustic stimulation of *T. harzianum***

229 We decided to average the amplitude levels from the first part of the study (i.e., 70
230 dB and 90 dB) to provide acoustic stimulation parameters of 80 dB @ 8 kHz. This
231 was applied to 20 Petri dishes (in the acoustic stimulation treatment group only)
232 using a randomised controlled trial design. We randomly selected Petri dishes to be
233 stimulated for 30 minutes each per day, so that all 20 dishes received stimulation in
234 a random order. This was repeated over 5 days. We used three sound attenuation
235 chambers: one to store the acoustic-stimulation treatment group, one to store the
236 control group (no stimulation), and one to use for the Petri dishes isolated for
237 stimulation – these were placed directly on the Bluetooth speaker, which was on the
238 base of the chamber facing upwards. We used the same amplitude meter and tablet
239 for the sound source used for the first study aim.

240 **T. harzianum radial growth and conidia density quantification**

241 We measured the radial growth of the *T. harzianum* mycelium in each Petri dish
242 each day using a standard ruler and noted down the diameter at four points to get an
243 average diameter in mm. We also used a novel raster analysis approach in Python
244 (described in *Statistics and data analysis* below). To measure *T. harzianum* conidia
245 (spores) density, we poured 10 ml of distilled water over each Petri dish after 5 days
246 and collected the fungal biomass in 15 ml centrifuge tubes (Figure 2A-F). We then
247 filtered out non-target fungal biomass in each sample using a sterilised sieve with a
248 50 µm pour size (Retsch 41105003 Testsigter) and retained the suspension
249 containing the conidia. These were stored at 4°C. We inoculated a haemocytometer
250 (Ozlab, Neubauer-improved, 0.1 mm depth) with 1 µl of the conidia suspension and
251 covered the well with a cover slip (Figure 2G). We used a microscope (Wild M3
252 stereo) to count the cells in the four corner squares and the central square of the
253 haemocytometer, as per standard protocols (Abdulmalik et al. 2023; Milan et al.
254 2024). The suspensions were diluted by 10 x to reduce the conidia density enough
255 for quantification.

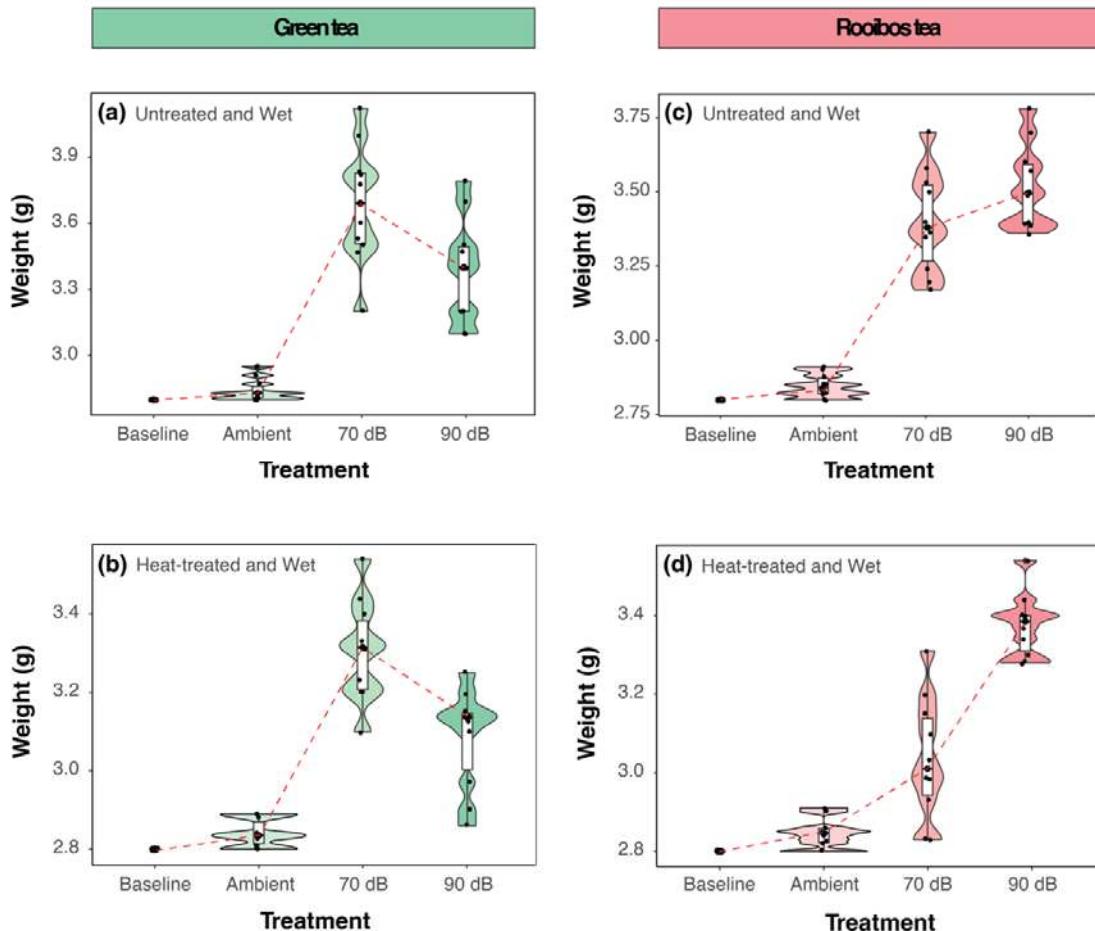
256 **Figure 2 |** Three randomly selected conidia suspension tubes from each treatment
257 group (A, B and C from the acoustic stimulation group, and D, E, and F from the
258 control group) and (G) haemocytometer methods for counting *T. harzianum* conidia.

260 **Statistics and data analysis**

261 Statistics were conducted in R Version 4.3.1 in R Studio 2023.06.0 “Beagle Scouts”
262 (R Core Team, 2023) and Python (version 3.12) with supplementary software (e.g.,
263 Microsoft Excel for .csv file processing). We used ANOVA using the easyanova
264 package in R (Arnhold 2022) to assess the effects of heat-treated soil (= treated or
265 untreated) and acoustic treatments (= baseline, ambient, 70 dB, 90 dB) on organic
266 matter weight, applying Tukey’s HSD posthoc test. Paired two-sample t-tests were
267 used to compare the means in conidia density. The distributions of model residuals
268 were assessed with a Shapiro-Wilk test and QQplots using the “qmath” function of
269 the lattice package in R. As per manufacturer instructions for our haemocytometer,
270 we calculated the average number of conidia per square x the dilution factor (= 10) x
271 10,000 to acquire conidia cells/ml (each haemocytometer square holds 10^{-4} ml of the
272 suspension).

273

274 We applied raster analyses in Python to assess the growth of conidia while in the
275 Petri dishes. Images were acquired using a Fujifilm XT-4 camera. Images were
276 saved in PNG format and cropped to remove any irrelevant background. Image
277 colour representation was converted from RGB to HSV using the OpenCV library in
278 Python. This conversion was chosen for its ability to separate colour components,
279 providing a more intuitive representation, and greenness was isolated due to the
280 colour of *T. harzianum* conidia. The green colour range in the HSV colour space was
281 defined as [35, 35, 35] to [180, 255, 255]. This range was determined through a
282 combination of literature review and empirical analysis of image characteristics. A
283 binary mask was created by thresholding the images using the defined green colour
284 range. This step resulted in the isolation of regions corresponding to green colour.


285 The quantification of the green colour involved automated counting of the number of
286 green pixels in the binary mask. The percentage of greenness was calculated (i.e.,
287 automated) by dividing the count of green pixels by the total number of pixels in the
288 image. Statistical analyses, including mean and standard deviation estimations, were
289 performed on the quantified green colour data to assess variations across samples.
290 We used the Mann-Whitney U test (Wilcoxon rank-sum test) in R to compare the
291 percentage of green coverage between treatment groups. Data visualisations were
292 produced using a combination of R, Python and Adobe Illustrator Creative Cloud
293 2022 (Adobe 2021).

294

295 **Results**

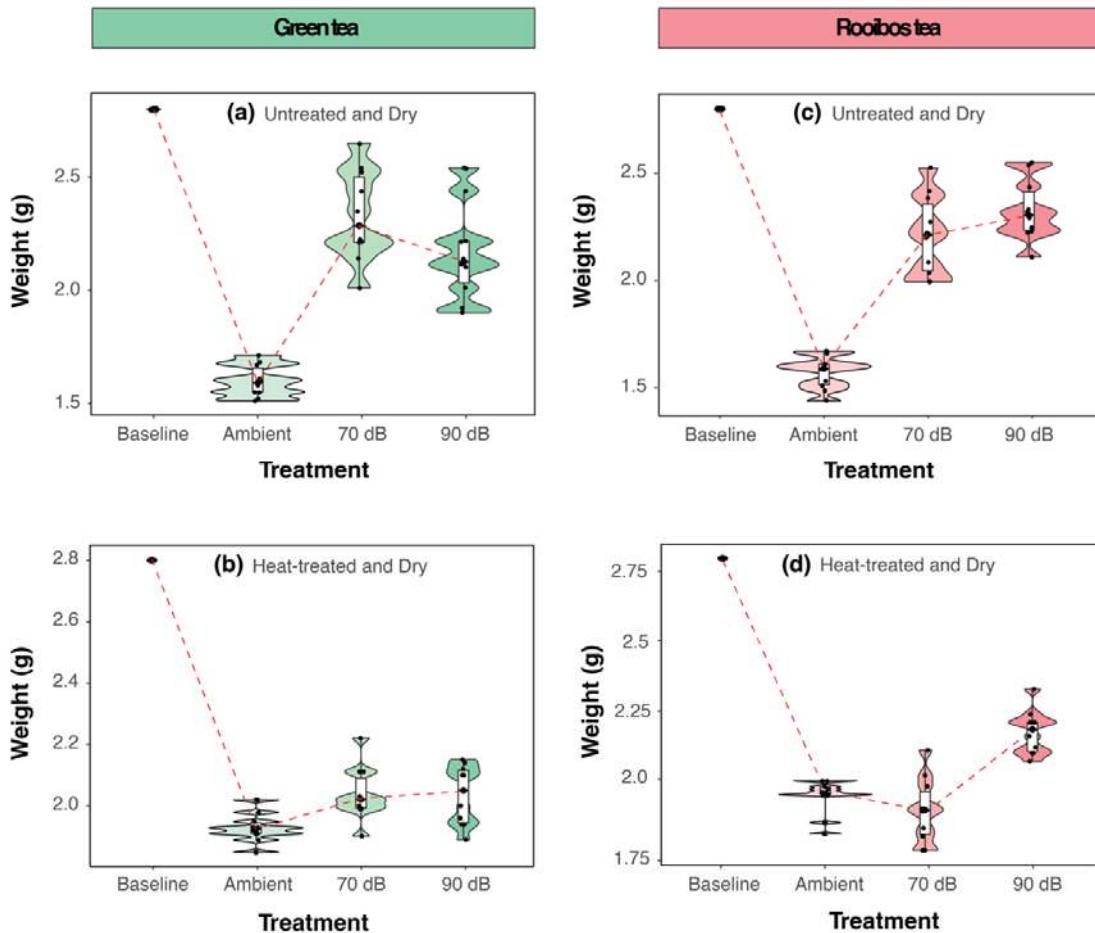
296 ***Weight of teabags before dehydration***

297 Acoustic stimulation at both 70 and 90 dB had a strong effect on increasing
298 *untreated* and heat-treated green teabag biomass compared to controls (*untreated*:
299 $F(3, 58) = 1234.59, p = < .001$; $\text{Eta}^2 = 0.98$, 95% CI [0.98, 1.00]; Tukey HSD, $p = <$
300 0.05; Figure 3a; heat-treated: $F(3, 58) = 139.80, p = < .001$; $\text{Eta}^2 = 0.88$, 95% CI
301 [0.83, 1.00]; Figure 3a). Acoustic stimulation also had a strong effect increasing
302 *untreated* and heat-treated rooibos teabag biomass compared to controls (*untreated*:
303 $F(3, 58) = 238.62, p = < 0.001$; $\text{Eta}^2 = 0.93$, 95% CI [0.90, 1.00], Tukey HSD, $p = <$
304 0.05 (Figure 3c); heat treated: $F(3, 58) = 179.15, p = < 0.001$; $\text{Eta}^2 = 0.90$, 95% CI
305 [0.86, 1.00], Tukey HSD, $p = < 0.05$; Figure 3b).

306

307 **Figure 3 |** Boxplots of green and red tea weight separated by treatment groups
308 (Ambient control ($n = 10$), 70 dB ($n = 10$) and 90 dB ($n = 10$). Boxplots show values
309 before dehydration (i.e., “wet”) for (a) green tea untreated, (b) green tea heat-treated,
310 (c) rooibos tea untreated, and (d) rooibos tea heat-treated. Baseline values ($n = 30$)
311 are shown at the first point of the x-axis (standardised to 2.8 g). Violins (the
312 undulating outline around the boxplots) represent kernel density estimations. Each
313 plot has a red dashed guideline, showing mean trends—these are for visual aid
314 purposes only and were added to the plots using Adobe Illustrator (Adobe Illustrator
315 CC 2023 27.3).

316


317

318 **Weight of teabags after dehydration**

319 Acoustic stimulation at both 70 and 90 dB had a strong effect on increasing
320 *untreated* and heat-treated green teabag biomass compared to controls (untreated:
321 $F(3, 58) = 293.01, p = < .001$; $\eta^2 = 0.94$, 95% CI [0.91, 1.00], Tukey HSD, $p = <$
322 0.05; Figure 4a; heat-treated: $F(3, 58) = 1093.40, p = < 0.001$; $\eta^2 = 0.98$, 95% CI
323 [0.98, 1.00], Tukey HSD, $p = < 0.05$; Figure 4b). There was no difference between
324 the 70 dB and 90 dB groups (Tukey HSD, $p = 0.73$).

325

326 Acoustic stimulation at both 70 and 90 dB had a strong effect on increasing
327 *untreated* rooibos teabag biomass compared to controls (untreated: $F(3, 58) =$
328 432.87, $p = < 0.001$; $\eta^2 = 0.96$, 95% CI [0.94, 1.00]), Tukey HSD, $p = < 0.05$;
329 Figure 4c). There was no difference between the 70 dB and 90 dB groups (Tukey
330 HSD, $p = 0.34$). Acoustic stimulation at 90 dB had a strong effect on increasing *heat-*
331 *treated* rooibos teabag biomass compared to controls (heat-treated: $F(3, 58) =$
332 915.07, $p = < 0.001$; $\eta^2 = 0.98$, 95% CI [0.97, 1.00]), Tukey HSD, $p = < 0.05$;
333 Figure 4d). There was no difference between the 70 dB and the ambient (control)
334 group (Tukey HSD, $p = 0.11$).

335

336 **Figure 4 |** Boxplots of green and red tea weight separated based on treatment

337 groups (Ambient control ($n = 10$), 70 dB ($n = 10$) and 90 dB ($n = 10$)). Boxplots show
338 values *after* dehydration (i.e., “dry”) for (a) green tea untreated, (b) green tea heat-
339 treated, (c) rooibos tea untreated, and (d) rooibos tea heat-treated. Baseline values
340 ($n = 30$) are shown at the first point of the x-axis (standardised 2.8 g). Violins (the
341 undulating outline around the boxplots) represent kernel density estimations. Each
342 plot has a red dashed guideline showing mean trends—these are for visual aid
343 purposes only.

344

345

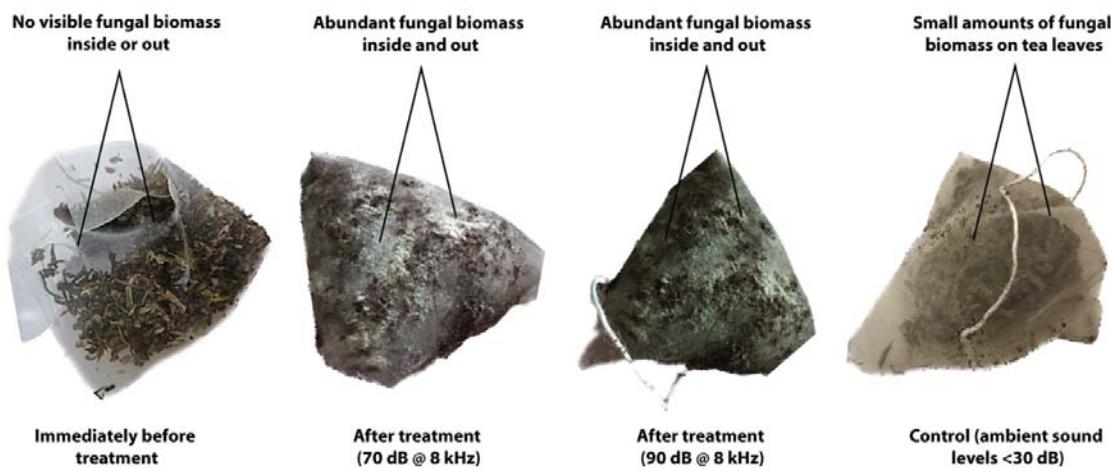
346

347 **Visual assessment of fungal biomass**

348 Fungal biomass was not visibly present in any teabags at the start of the experiment.

349 After 14 days of acoustic stimulation, fungal biomass was visibly abundant in the 70

350 dB and 90 dB treatment groups, for both green tea and rooibos teabags, and on both


351 the interior and exterior of each teabag (Figure 5). Fungal biomass was less visible

352 in the 20 control teabags. The internal biomass of the teabags in the 70 dB and 90

353 dB treatment groups was dense compared to the control (which had clear space

354 between the leaves and bag).

355

356

357 **Figure 5 |** Fungal biomass was visibly absent from the teabags before the treatment
358 of acoustic stimulation. However, teabag mass increased considerably under 70 dB
359 and 90 dB treatments (and no inter-treatment differences), particularly in the non-
360 heat-treated group (pictured), with fungal biomass visibly abundant inside and
361 outside of the teabag netting. The density of mass within the teabags is also visible
362 when compared with the 'before treatment' teabags and the control. The control
363 sample showed small amounts of fungal growth; however, this was limited to tea
364 leaves. These visual signs were consistent across untreated and heat-treated
365 samples.

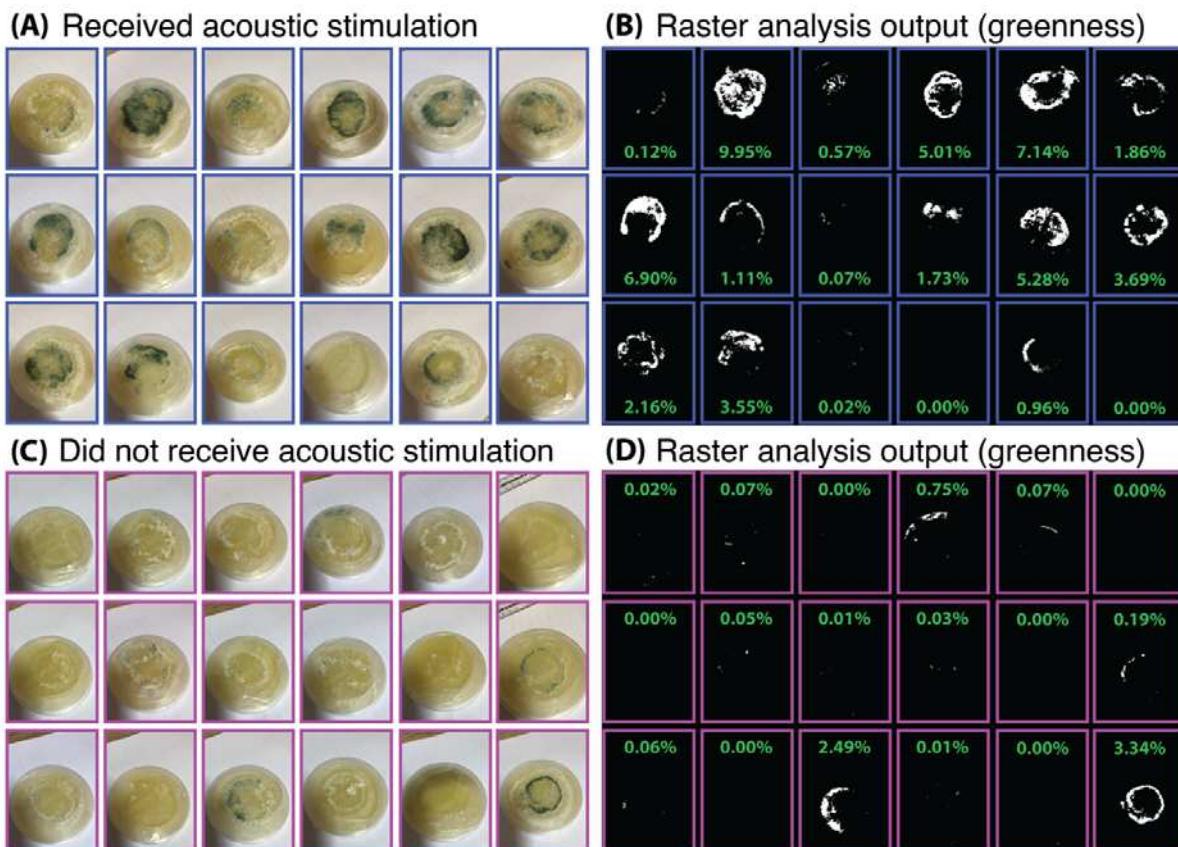
366 ***Soil pH***

367 There were no significant changes in soil pH between the beginning and the end of
368 the experiment for any treatment group. However, dehydration had a weak effect on
369 increasing soil pH (heat-treated soil pH $x\bar{ } = 6.90$, SD = 0.04, untreated soil pH $x\bar{ } =$
370 6.94, SD = 0.04, $t = -5.03$, df = 29, $p = <0.05$).

371

372 ***Radial (mycelial) growth***

373 Acoustic stimulation had a strong effect on increasing mycelial radial growth at day
374 two (acoustic treatment: $x\bar{ } = 60.5$ mm, SD = 3.09; control: $x\bar{ } = 58.5$ mm, SD =
375 1.89; $t = 2.5$, df = 18, $p = 0.02$). On day three, there was no effect of acoustic
376 stimulation on mycelial radial growth ($t = 0.5$, df = 18, $p = 0.58$). However, by day
377 four, there was a strong effect of acoustic stimulation and mycelial growth had
378 increased substantially (acoustic treatment: $x\bar{ } = 89.5$ mm, SD = 1.07; control: $x\bar{ } =$
379 82.8 mm, SD = 8.5; $t = 3.66$, df = 18, $p = 0.001$). By day five, there was again a
380 strong effect of acoustic stimulation on mycelial radial growth (acoustic treatment: $x\bar{ } =$
381 89.6 mm, SD = 1.07; control: $x\bar{ } = 83.4$ mm, SD = 7.8; $t = 3.37$, df = 18, $p = 0.003$).

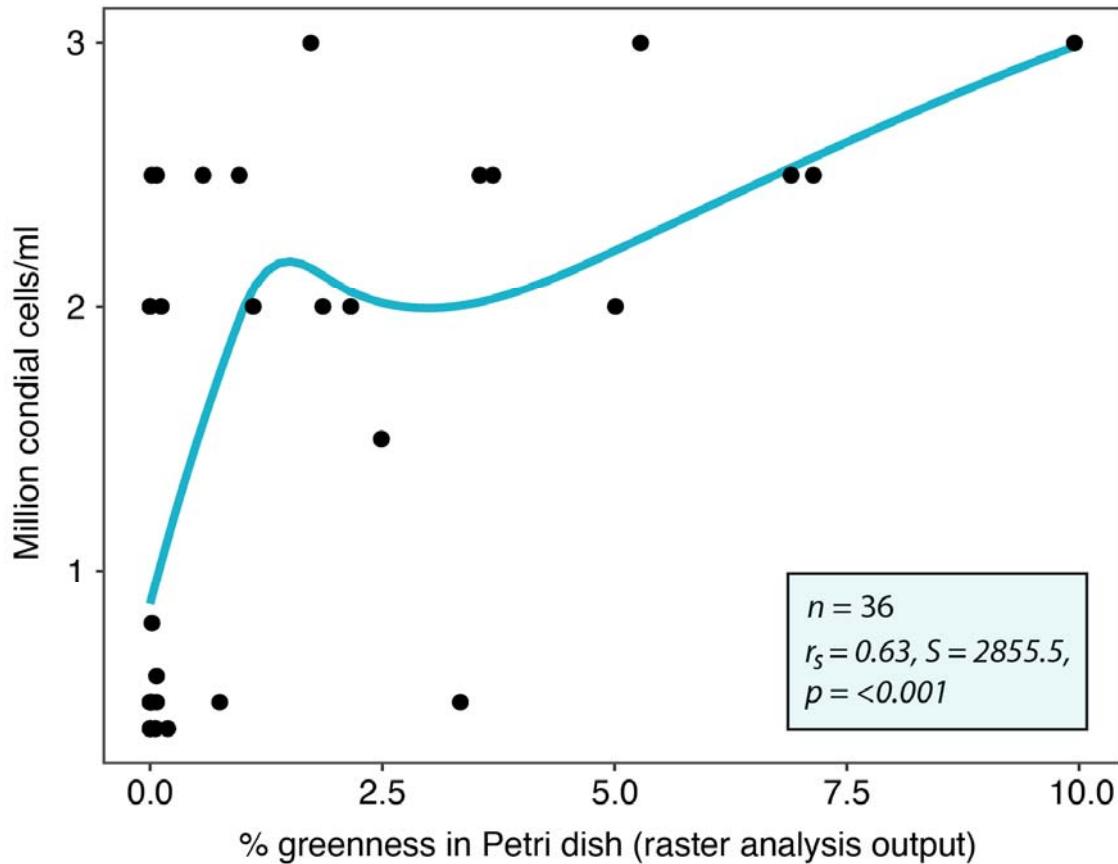

382

383 ***Conidia growth (proxy)***

384 Acoustic stimulation had a strong effect on increasing conidial growth (Figure 6; day
385 five acoustic treatment: $x\bar{ } = 2.8\%$ coverage, SD = 2.9; control: $x\bar{ } = 0.39\%$
386 coverage, SD = 0.94; $W = 61.5$, df = 18, $p = 0.001$).

387

388


389

390 **Figure 6.** Images of the Petri dishes containing *T. harzianum* culture on day 5 and
391 the outputs of the raster analysis of greenness (A = acoustic stimulation group, B =
392 acoustic stimulation group, C = culture control group, D = raster analysis output for
393 the control group) – including the percentage of green cover as a proxy for conidia
394 growth.

395

396 **Conidia cell density**

397 Acoustic stimulation had a strong effect on increasing conidial density (day five
398 acoustic stimulation: conidial density: $x\bar{x} = 2,421,052$ cells/ml; control: $x\bar{x} = 542,105$
399 cells/ml; $t = 18.2$, $df = 18$, $p = <0.001$). Cell density was strongly and positively
400 correlated with the percentage of green cover in the Petri dishes ($r_s = 0.63$, $S = 2855$,
401 $p = <0.001$; Figure 7).

402

403 **Figure 7.** Correlation between the conidia cell density (as determined via the
404 haemocytometer) and the percentage greenness coverage in the Petri dishes. The
405 blue line represents a smoothing (direction and strength of correlation) fitted to the
406 data points.

407

408 **Discussion**

409 Sound is a critical component of ecosystems, and we can detect acoustic properties
410 to monitor the restoration of soil biodiversity (Robinson et al. 2023). However, the
411 application of acoustic properties in a targeted way to alter and potentially enhance
412 soil restoration processes remains unexplored. Our study showed that acoustic
413 stimulation increases fungal biomass and aspects of decomposition in an
414 experimental soil mesocosm setting, and enhances the activity of a plant growth-

415 promoting fungus in a laboratory setting. These preliminary results serve as a
416 foundation for extending research into sonic restoration (e.g., exploring the effects of
417 specific acoustic parameters on particular fungal species and/or communities), plus
418 the mechanisms by which soil life is affected by sound (e.g., piezoelectric effects to
419 and/or mechanoreceptor stimulation of cellular and/or molecular processes). There is
420 potential to use this technology to improve ecosystem restoration outcomes, as well
421 as agricultural and clinical settings.

422

423 ***Acoustic stimulation increases soil fungal biomass***

424 We show in mesocosm experiments that our acoustic treatments increased the mass
425 of green and rooibos teabags. Our sound parameters (70 dB and 90 dB @ 8 kHz)
426 altered fungal biomass most likely by increasing their organic matter content due to
427 stimulating fungal growth and/or moisture absorption. We suggest that the fungi
428 within acoustic treatments were decomposing organic matter (i.e., the tea) and
429 gaining weight faster than controls – i.e., they held more water than energy lost as
430 heat, compared to controls.

431

432 Piezoelectric effects, induced by mechanical pressure (e.g., from acoustic waves) on
433 piezoelectric materials, can influence cellular and molecular processes in living
434 organisms, including microbiota (Gazvoda et al. 2022). Mechanoreceptor stimulation,
435 such as the activation of mechanosensitive ion channels in cells (e.g., by touch,
436 sound and other mechanical stimulation), plays a pivotal role in translating
437 mechanical signals into cellular responses, impacting processes like gene
438 expression and cell signalling pathways (Sun et al. 2022). Acoustic stimulation can
439 also affect the production of various metabolites in *Saccharomyces cerevisiae* yeast

440 in a liquid medium (Shah et al. 2016; Harris et al. 2021). It can also influence the
441 production of quorum sensing-regulated pigments, prodigiosin and violacein (Shah et
442 al. 2016). Therefore, with refinement, acoustic stimulation has the promise to be
443 developed into a tool to affect specific ecological functions (e.g., organic matter
444 decomposition). Our results are consistent with previous studies, including Hofstetter
445 et al. (2020), who showed that refrigerator acoustic vibrations can increase fungal
446 biomass, and Harris et al. (2021), who found that 90 dB acoustic stimulation
447 increased fungal growth in liquid media. Increased fungal biomass in our acoustic
448 stimulation treatments was also supported by the visual inspection of our
449 experimental tea bags.

450

451 We do note some inconsistent findings. The heat-treated 70 dB rooibos group was
452 lighter than the baseline but heavier than the ambient control group after
453 dehydration. The cause of this reduced biomass is unknown, but was potentially due
454 to this type of acoustic stimulation increasing organic matter decomposition in the
455 woodier rooibos tea when microbial communities have been degraded (e.g., by our
456 heat-treatment), compared to 90 dB and the leafier green tea.

457

458 ***Acoustic stimulation increases the activity of plant growth-promoting fungi***

459 We show that acoustic stimulation increased the growth rate and sporulation of *T.*
460 *harzianum*, a well-known plant growth-promoting fungus (Lòpez et al. 2023). Our
461 novel raster analysis provided a good measure of conidia growth/coverage in Petri
462 dishes and the haemocytometer. The potential mechanisms causing such effects
463 may also be piezoelectric and mechanoreceptor stimulation, but this needs further
464 investigation. Our results are consistent with Hoffstetter et al. (2020), who showed

465 fungal growth increases at high frequencies (above 5 kHz, as per our study). This
466 study also suggested that low frequencies (below 165 Hz) could reduce the growth
467 rate of *Botrytis* sp.

468

469 Whether certain sound parameters can target particular fungal species or guilds is
470 yet to be determined. This is a worthwhile research enquiry because it could have
471 broad-reaching implications, such as improving ecosystem restoration and
472 agricultural outcomes (e.g., increasing the biomass of desirable fungi including plant
473 growth-promoting and commercial species, suppressing undesirable fungi such as
474 pathogens humans and desirable plants). Of course, the potential unintended or
475 undesirable consequences of using this technology need to be investigated (e.g.,
476 non-target impacts).

477

478 In an ecosystem restoration context, we suggest two priority applications to further
479 develop: (1) applying acoustic stimulation to enhance the production efficiency of
480 microbial inoculants (e.g., potentially enhancing the growth rate but also the viability,
481 quality and functional potential of beneficial fungal spores), and (2) the direct
482 application of a sound source in ecosystems (*in-situ*) to help improve their biological
483 integrity via a direct effect on soil and potentially non-soil microbiota. While still in the
484 early stages, our results are encouraging to develop innovative restoration
485 techniques that leverage sound to alter soil ecosystem functioning. Considering the
486 broader restoration imperative, exploring the role of acoustic stimulation represents
487 an exciting and underexplored avenue of research. Expanding our understanding of
488 the relationships between acoustics, soil microbiota, and ecosystem functioning
489 paves the way for advancements in restoration and microbial ecology.

490 **Conclusion**

491 Our study introduces a novel dimension to the soil restoration domain by
492 investigating the effects of acoustic stimulation on fungal biomass and plant growth-
493 promoting fungi. Demonstrating a tangible impact on fungal activity, our findings
494 suggest that carefully tuned acoustic parameters can influence soil (and potentially
495 plant) components via their effect on fungi. We propose two critical avenues for
496 future research: optimising acoustic stimulation for microbial inoculants for plants
497 and exploring in-situ applications to enhance biological integrity and desirable
498 processes in eco- and agro-systems. Despite the need for further investigation into
499 potential unintended consequences, our study marks an important stride toward
500 leveraging sound as a tool for innovative and effective soil ecosystem restoration.

501

502

503

504

505

506

507

508

509

510

511

512

513 **Acknowledgements**

514 MFB was funded by the Australian Research Council [grants LP190100051,
515 LP190100484, DP210101932] and the New Zealand Ministry of Business Innovation
516 and Employment [grant UOWX2101].

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535 **References**

536 Abdulmalik, Z., Shittu, M., Adamu, S., Ambali, S.F. and Oyeyemi, B.F. (2023).
537 Elevated blood mercury and haematological response in free ranging chicken
538 (*Gallus Gallus domesticus*) from gold mining areas in Zamfara State
539 Nigeria. *Environmental Chemistry and Ecotoxicology*, 5:39-44.

540

541 Adobe (2021) *Adobe Illustrator*. <https://helpx.adobe.com/illustrator/using/whats-new.html> (accessed 7 July 2023).

543

544 Anthony, M.A., Bender, S.F. and van der Heijden, M.G. (2023). Enumerating soil
545 biodiversity. *Proceedings of the National Academy of Sciences*, 120:e2304663120.

546

547 Arnhold E (2022) *Easyanova in R*. <https://cran.r-project.org/web/packages/easyanova/index.html> (accessed 7 July 2023).

549

550 Cai W, Dunford NT, Wang N, Zhu S, He H (2016). Audible sound treatment of the
551 microalgae *Picochlorum oklahomensis* for enhancing biomass
552 productivity. *Bioresource technology*, 202:226-230.

553

554 Carvalho EO, Fernandes MM, Padrao J, Nicolau A, Marqués-Marchán J, Asenjo A,
555 Gama FM, Ribeiro C, Lanceros-Mendez S (2019). Tailoring bacteria response by
556 piezoelectric stimulation. *ACS applied materials & interfaces*, 11:27297-27305.

557

558 Dantas de Paula M, Forrest M, Langan L, Bendix J, Homeier J, Velescu A, Wilcke
559 W, Hickler, T (2021). Nutrient cycling drives plant community trait assembly and

560 ecosystem functioning in a tropical mountain biodiversity hotspot. *New*
561 *Phytologist*, 232:551-566.

562

563 Fonte, S.J., Hsieh, M. and Mueller, N.D. (2023). Earthworms contribute significantly
564 to global food production. *Nature Communications*, 14:5713.

565

566 Gazvoda, L., Nanut, M.P., Spreitzer, M. and Vukomanović, M. (2022). Antimicrobial
567 activity of piezoelectric polymer: piezoelectricity as the reason for damaging bacterial
568 membrane. *Biomaterials Science*, 10:4933-4948.

569

570 Görres, C.M. and Chesmore, D. (2019). Active sound production of scarab beetle
571 larvae opens up new possibilities for species-specific pest monitoring in
572 soils. *Scientific reports*, 9:10115.

573

574 Gu S, Zhang Y, Wu Y (2016). Effects of sound exposure on the growth and
575 intracellular macromolecular synthesis of *E. coli* k-12. *PeerJ*, 4:e1920.

576

577 Harris A, Lindsay MA, Ganley AR, Jeffs A, Villas-Boas SG (2021). Sound stimulation
578 can affect *Saccharomyces cerevisiae* growth and production of volatile metabolites
579 in liquid medium. *Metabolites*, 11:605.

580

581 Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002). Sustainable fermentative
582 hydrogen production: challenges for process optimisation. *International journal of*
583 *hydrogen energy*, 27:1339-1347.

584

585 Hofstetter RW, Copp BE, Lukic I (2020). Acoustic noise of refrigerators promote
586 increased growth rate of the gray mold *Botrytis cinerea*. *Journal of Food*
587 *Safety*, 40:e12856.

588

589 Hugron S, Guene-Nanchen M, Roux N, LeBlanc MC, Rochefort L (2020). Plant
590 reintroduction in restored peatlands: 80% successfully transferred—Does the
591 remaining 20% matter?. *Global Ecology and Conservation*, 22:e01000.

592

593 Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R. and Monte, E.
594 (2021). Phytohormone production profiles in *Trichoderma* species and their
595 relationship to wheat plant responses to water stress. *Pathogens*, 10:991.

596

597 Jahan, N., Sultana, S., Adhikary, S.K., Rahman, S. and Yasmin, S. (2013).
598 Evaluation of the growth performance of *Trichoderma harzianum* (Rifai.) on different
599 culture media. *J. Agri. Vet. Sci*, 3:44-50.

600

601 Jiang S, Rao H, Chen Z, Liang M, Li L (2012). Effects of sonic waves at different
602 frequencies on propagation of *Chlorella pyrenoidosa*. *Agricultural Science &*
603 *Technology*, 13:2197.

604

605 Keuskamp JA, Dingemans BJ, Lehtinen T, Sarneel JM, Hefting MM (2013). Tea Bag
606 Index: a novel approach to collect uniform decomposition data across
607 ecosystems. *Methods in Ecology and Evolution*, 4:1070-1075.

608

609 Kunc HP, Schmidt R (2019). The effects of anthropogenic noise on animals: a meta-
610 analysis. *Biology Letters*, 15:20190649.

611

612 Lázaro-González A, Andivia E, Hampe A, Hasegawa S, Marzano R, Santos AM,
613 Castro J, Leverkus AB (2023). Revegetation through seeding or planting: A
614 worldwide systematic map. *Journal of Environmental Management*, 337:117713.

615

616 Li, R.X., Cai, F., Pang, G., Shen, Q.R., Li, R. and Chen, W. (2015). Solubilisation of
617 phosphate and micronutrients by *Trichoderma harzianum* and its relationship with
618 the promotion of tomato plant growth. *PLOS ONE*, 10:e0130081.

619

620 López, A.C., Chelaliche, A.S., Alderete, J.A., Zapata, P.D. and Alvarenga, A.E.
621 (2023). Assessment of *Trichoderma* spp. from Misiones (Argentina) as biocontrol
622 agents and plant growth-promoting fungi on the basis of cell wall degrading enzymes
623 and indole acetic acid production. *Indian Phytopathology*, 76:923-928.

624

625 Maeder M, Guo X, Neff F, Schneider Mathis D, Gossner MM (2022). Temporal and
626 spatial dynamics in soil acoustics and their relation to soil animal diversity. *PLOS*
627 *One*, 17:e0263618.

628

629 McAfee D, Williams BR, McLeod L, Reuter A, Wheaton Z, Connell SD (2023).
630 Soundscape enrichment enhances recruitment and habitat building on new oyster
631 reef restorations. *Journal of Applied Ecology*, 60:111-120.

632

633 Milan, K.L., Ganesh, G.V., Mohandas, S. and Ramkumar, K.M. (2024). Counting of
634 Cells by Hemocytometer. In *Advanced Mammalian Cell Culture Techniques* (pp. 28-
635 31). CRC Press: Boca Raton.

636

637 R Core Team (2023) *R: a language and environment for statistical computing*. R
638 Foundation for Statistical Computing, Vienna, Austria. [https://www.R-
639 project.org/](https://www.R-project.org/) (accessed 7 July 2023).

640

641 Robinson JM, Cameron R, Parker B (2021). The effects of anthropogenic sound and
642 artificial light exposure on microbiomes: ecological and public health
643 implications. *Frontiers in Ecology and Evolution*, 9:662588.

644

645 Robinson, J.M., Aronson, J., Daniels, C.B., Goodwin, N., Liddicoat, C., Orlando, L.,
646 Phillips, D., Stanhope, J., Weinstein, P., Cross, A.T. and Breed, M.F. (2022).
647 Ecosystem restoration is integral to humanity's recovery from COVID-19. *The Lancet
648 Planetary Health*, 6:e769-e773.

649

650 Robinson, JM, Breed MF, Abrahams C (2023). The sound of restored soil: using
651 ecoacoustics to measure soil biodiversity in a temperate forest restoration
652 context. *Restoration Ecology*, e13934.

653

654 Shah, A., Raval, A. and Kothari, V. (2016). Sound stimulation can influence microbial
655 growth and production of certain key metabolites. *The Journal of Microbiology,
656 Biotechnology and Food Sciences*, 5:330.

657

658 Sun, Y., Wan, B., Wang, R., Zhang, B., Luo, P., Wang, D., Nie, J.J., Chen, D. and
659 Wu, X. (2022). Mechanical stimulation on mesenchymal stem cells and surrounding
660 microenvironments in bone regeneration: Regulations and applications. *Frontiers in*
661 *cell and developmental biology*, 10:808303.

662

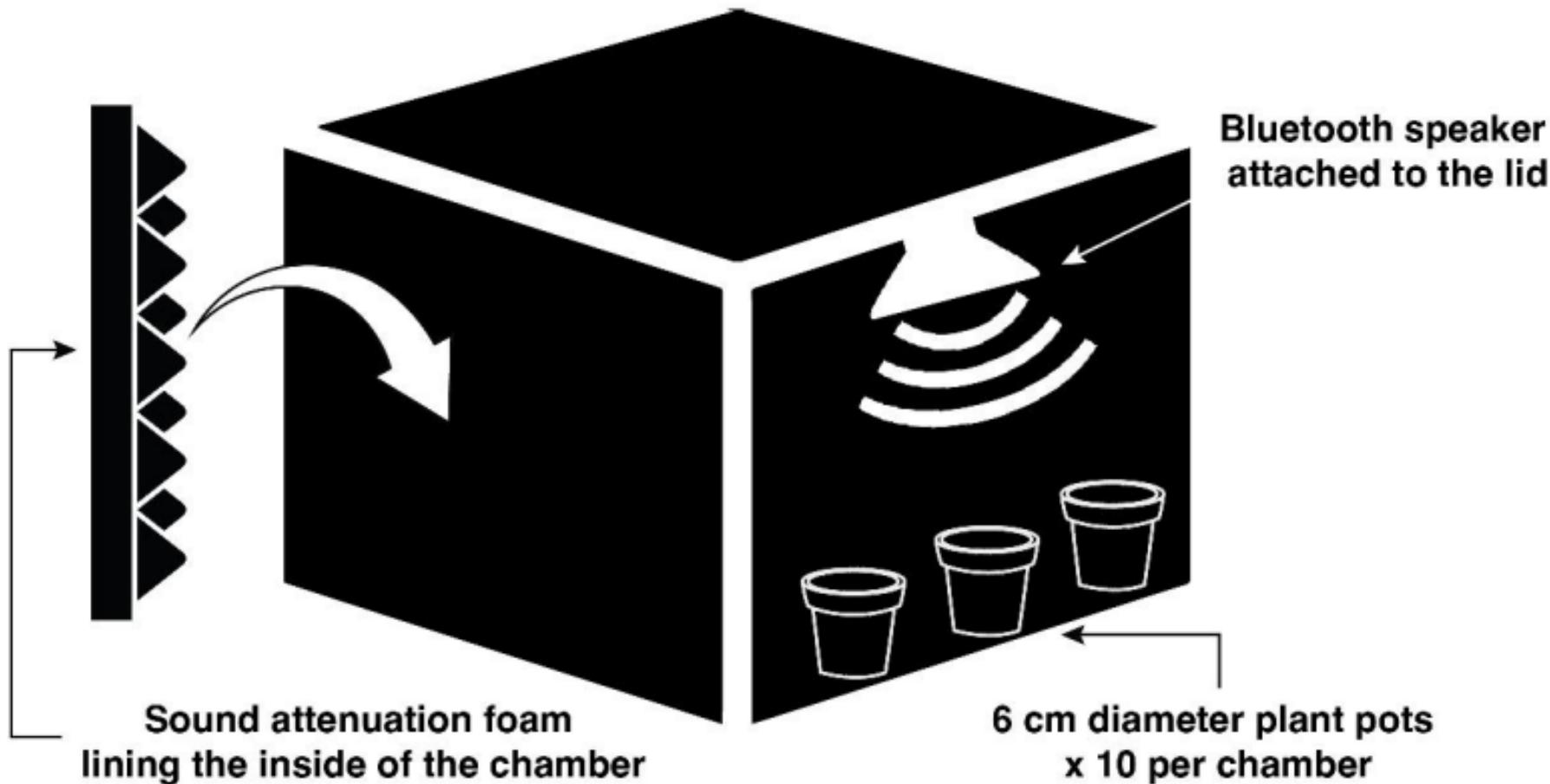
663 Swain, H. and Mukherjee, A.K. (2020). Host–pathogen–trichoderma
664 interaction. *Trichoderma: Host Pathogen Interactions and Applications*, 149-165.

665

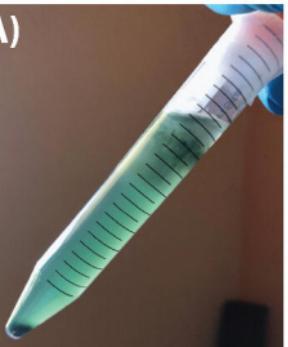
666 Tedesco AM, López-Cubillos S, Chazdon R, Rhodes JR, Archibald CL, Pérez-
667 Hä默le KV, Brancalion PH, Wilson KA, Oliveira M, Correa DF, Ota L (2023).
668 Beyond ecology: ecosystem restoration as a process for social-ecological
669 transformation. *Trends in Ecology & Evolution*. 38:643-653.

670

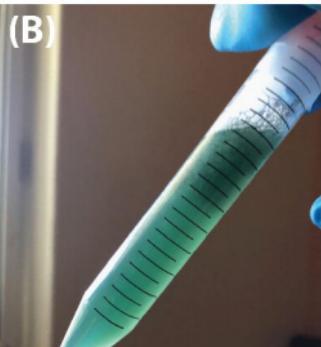
671 Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MG (2019).
672 Fungal-bacterial diversity and microbiome complexity predict ecosystem
673 functioning. *Nature communications*, 10:4841.

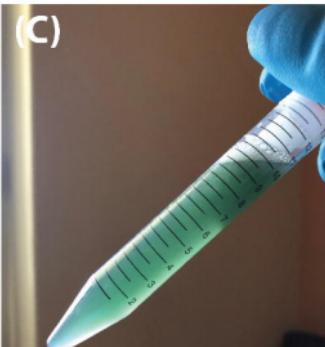

674

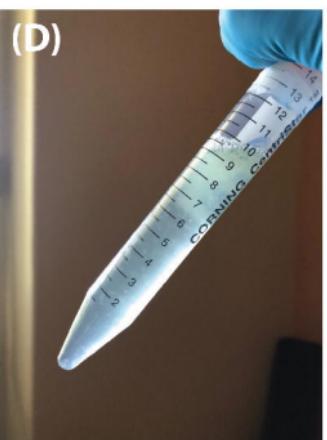
675 Znidersic E, Watson DM (2022). Acoustic restoration: Using soundscapes to
676 benchmark and fast-track recovery of ecological communities. *Ecology*
677 *Letters*, 25:1597-1603.


678 **Table S1 |** Treatment groups in this study (Aim 1) applied to 10 pots of heat-treated and untreated soils.

Amplitude	Frequency	Daily duration	Number of days
70 dB	8 kHz	8 hrs	14-days
90 dB	8 kHz	8 hrs	14-days
Ambient (<30 dB)	Ambient	8 hrs	14-days

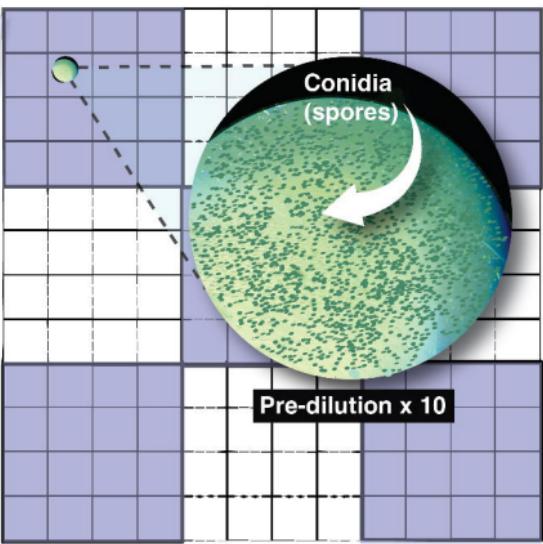
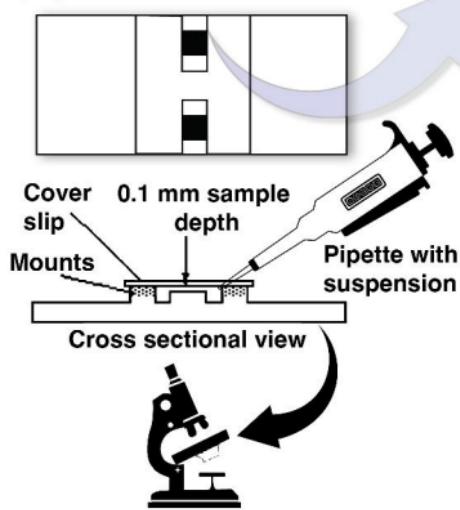

80 l plastic container (with locking lid)

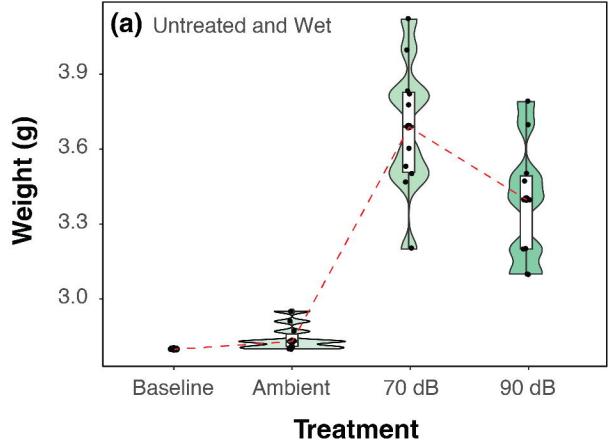

(A)

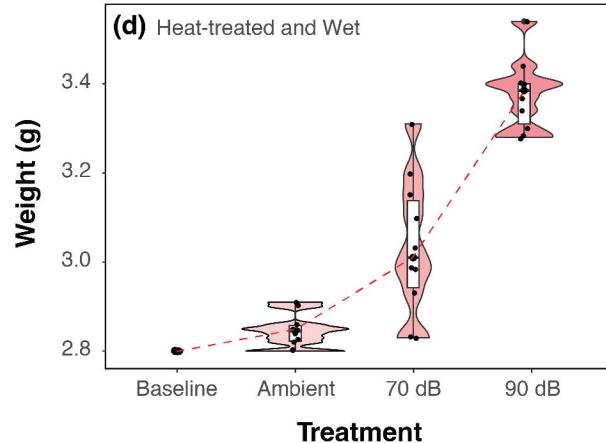
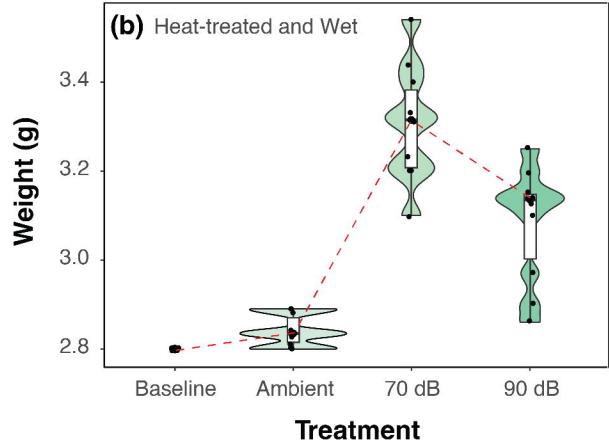
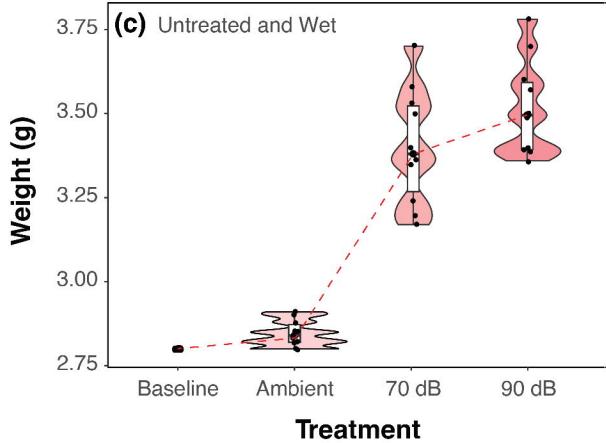

(B)

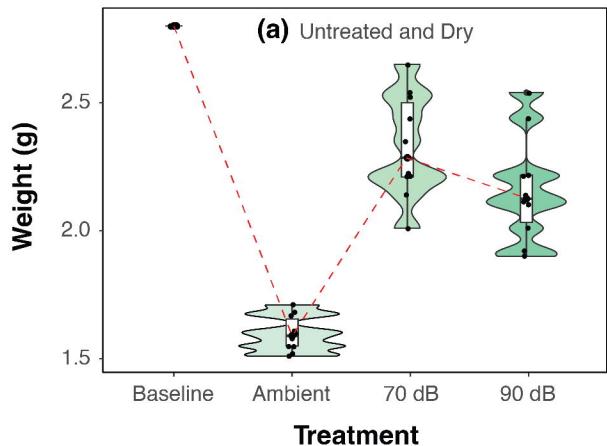
(C)

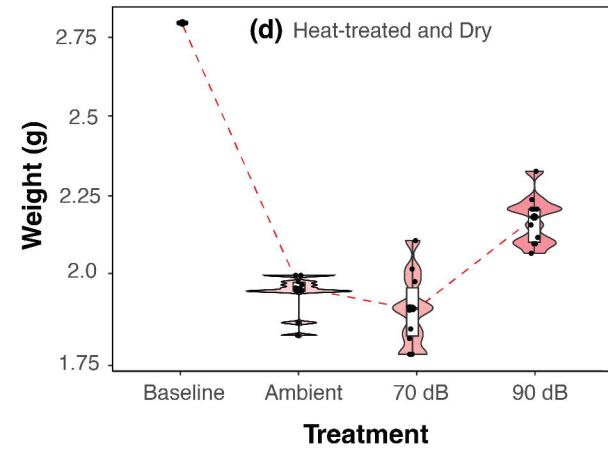
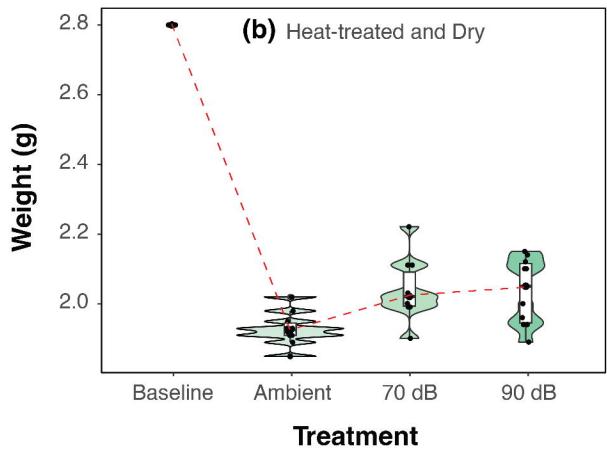
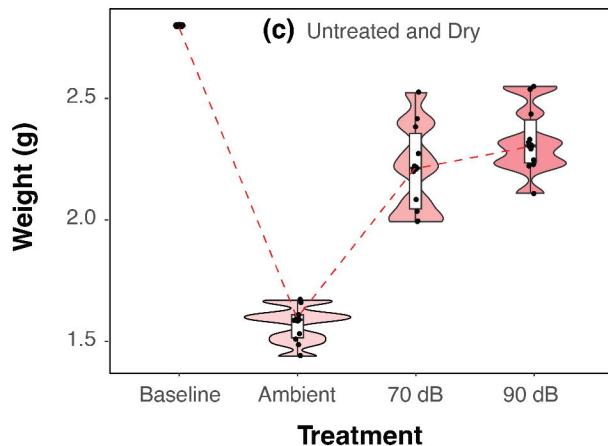
(D)



(E)


(F)




(G) Haemocytometer (dorsal view)


Green tea




Rooibos tea

Green tea

Rooibos tea

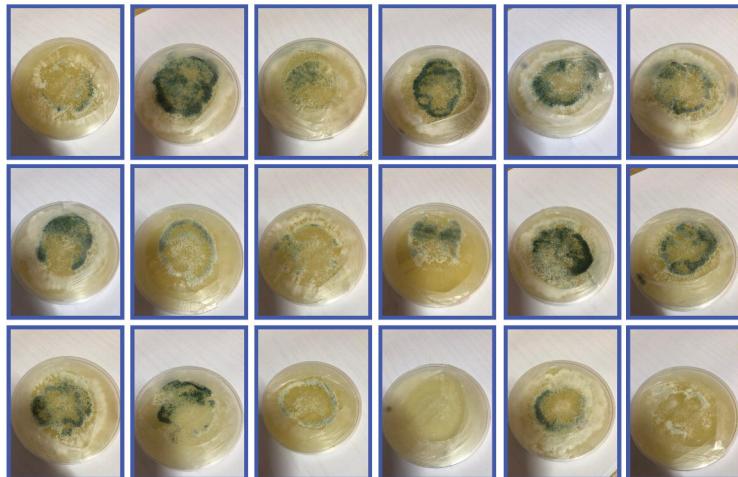
**No visible fungal biomass
inside or out**

**Immediately before
treatment**

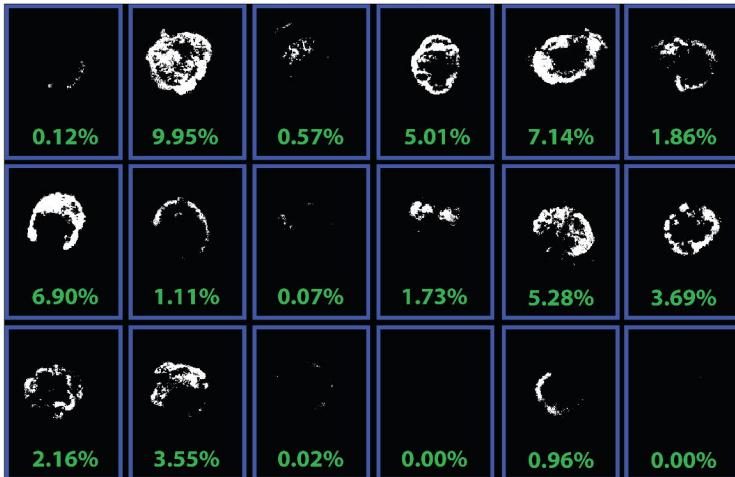
**Abundant fungal biomass
inside and out**

**After treatment
(70 dB @ 8 kHz)**

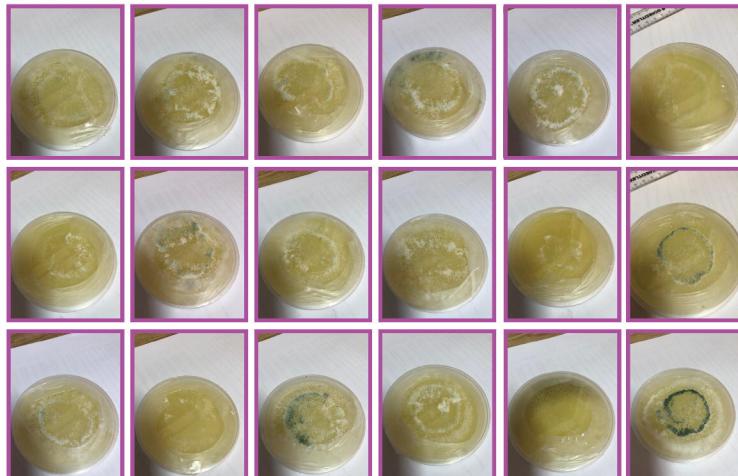
**Abundant fungal biomass
inside and out**

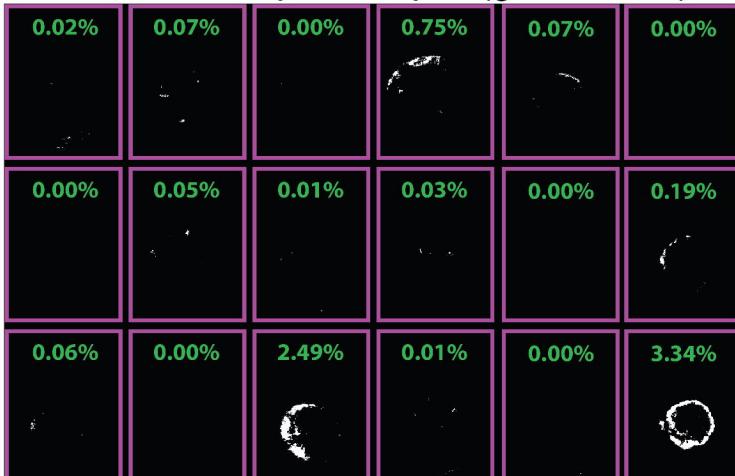

**After treatment
(90 dB @ 8 kHz)**

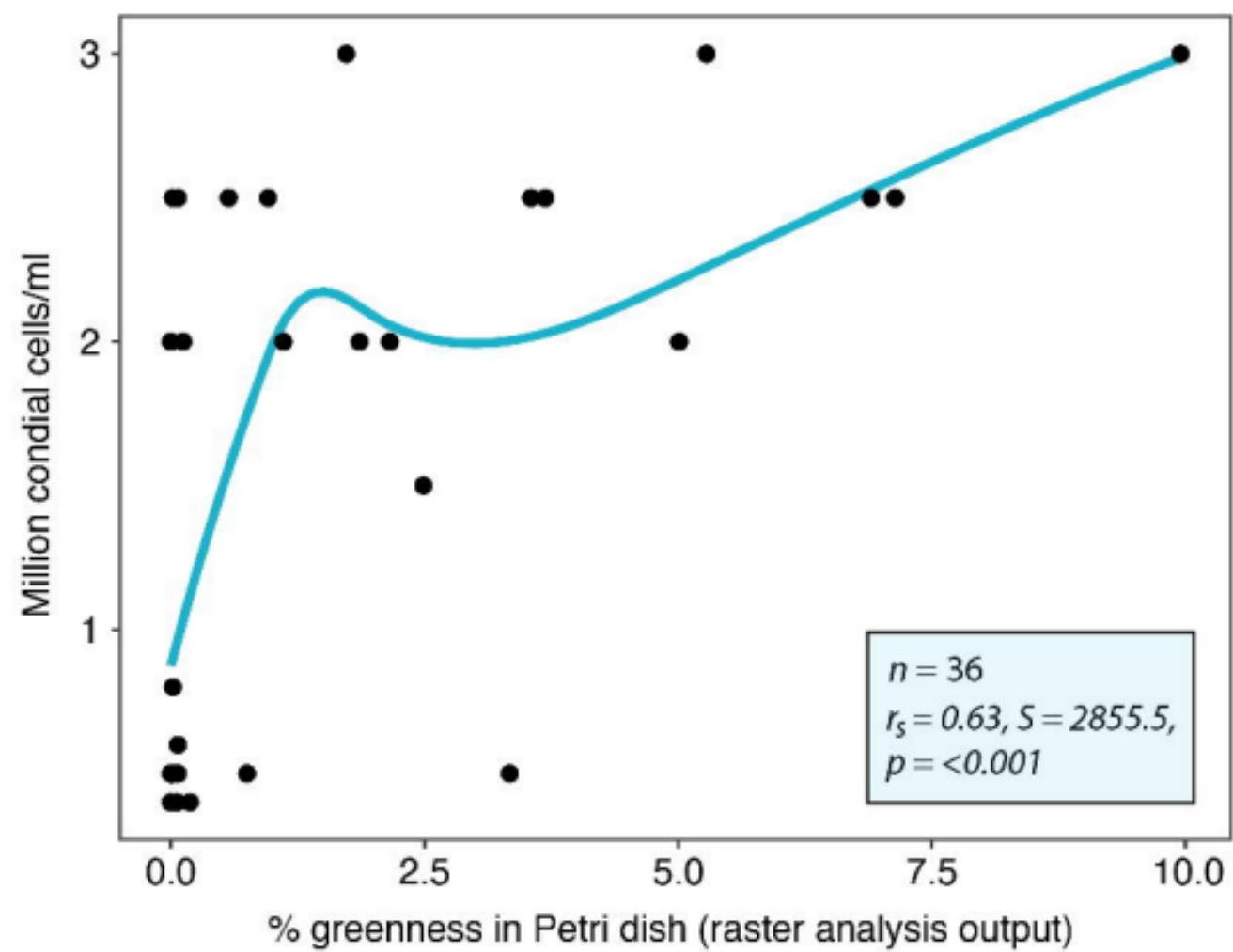
**Small amounts of fungal
biomass on tea leaves**



**Control (ambient sound
levels <30 dB)**


(A) Received acoustic stimulation


(B) Raster analysis output (greenness)



(C) Did not receive acoustic stimulation

(D) Raster analysis output (greenness)

