

1 **Little evidence for inbreeding depression for birth mass, survival and**
2 **growth in Antarctic fur seal pups**

3

4 **A.J. Paijmans^{1,2,*}, A.L. Berthelsen^{1,2}, R. Nagel^{1,2,3}, F. Cristaller^{1,2}, N. Kröcker^{1,2}, J.**
5 **Forcada⁴ and J.I. Hoffman^{1,2,4,5}**

6 1. Department of Evolutionary Population Genetics, Bielefeld University, 33615 Bielefeld,
7 Germany

8 2. Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany.

9 3. Centre for Biological Diversity, University of St. Andrews, St Andrews KY16 9TH, UK

10 4. British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK

11 5. Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld
12 University and University of Münster, Bielefeld, Germany

13

14 Keywords: Antarctic fur seal (*Arctocephalus gazella*), pinniped, inbreeding depression,
15 offspring growth, offspring survival, offspring birth mass, microsatellites, SNP array

16

17 *corresponding author: a.paijmans@uni-bielefeld.de

18

19 **Abstract**

20

21 Inbreeding depression, the loss of offspring fitness due to consanguineous mating, is
22 generally detrimental for individual performance and population viability. We therefore
23 investigated inbreeding effects in a declining population of Antarctic fur seals at Bird Island,
24 South Georgia. Here, localised warming has reduced the availability of the seal's staple diet,
25 Antarctic krill, leading to a temporal increase in the strength of viability selection against
26 inbred offspring, which are increasingly failing to recruit into the adult breeding population.
27 However, it remains unclear whether viability selection operates before or after nutritional
28 independence at weaning. We therefore used microsatellite data from 884 pups and their
29 mothers, and SNP array data from 100 mother-offspring pairs, to quantify the effects of
30 individual and maternal inbreeding on three important neonatal fitness traits: birth mass,
31 survival and growth. We did not find any clear or consistent effects of inbreeding on any of
32 these traits. This suggests that viability selection filters inbred individuals out of the
33 population as juveniles during the time window between weaning and recruitment. Our study
34 brings into focus a poorly understood life-history stage and emphasises the importance of
35 understanding the ecology and threats facing juvenile pinnipeds.

36

37 **Introduction**

38 Genetic diversity is fundamental for species survival and adaptation, especially in the
39 Anthropocene where environments are changing rapidly ¹. Understanding the evolutionary
40 mechanisms that shape genetic diversity is therefore essential for predicting species
41 persistence and for informing conservation policies ^{2,3}. Arguably, one of the most important
42 of these mechanisms is inbreeding depression, the loss of offspring fitness that occurs when
43 close relatives mate ⁴. Fitness is reduced because inbreeding increases genome-wide
44 homozygosity, exposing recessive deleterious alleles to selection and, to a lesser extent,
45 reducing heterozygote advantage ⁴. Studies of captive populations have documented strong
46 effects of inbreeding on key fitness traits such as neonatal survival, longevity and
47 reproductive success ⁴⁻⁶. However, inbreeding has been more challenging to study in wild
48 populations ⁷, leaving numerous open questions about the importance of inbreeding
49 depression and its dependence on life-history and environmental factors ^{8,9}.

50

51 Historically, pedigrees were considered the gold standard for quantifying inbreeding and its
52 effects on fitness ^{10,11}. However, pedigrees are challenging to construct in wild populations
53 as they require the intensive monitoring of entire populations over multiple generations.
54 Hence, many studies have used the heterozygosity of small panels of genetic markers
55 (typically around 10–20 microsatellites) as a proxy for inbreeding ^{12,13}. This approach has
56 uncovered heterozygosity fitness correlations (HFCs) for a variety of life-history,
57 physiological and behavioural traits including birth weight and neonatal survival ¹⁴, resistance
58 to parasites ^{15,16}, aggressiveness ¹⁷ and even attractiveness ¹⁸.

59

60 Due to the relatively low cost and ease of genotyping microsatellites, the HFC approach can
61 be readily scaled up to include hundreds or even thousands of individuals, facilitating large-
62 scale comparisons over time and across different life-history stages ^{e.g. 19–21}. However, small
63 panels of microsatellites typically have limited power to capture genome-wide variation in
64 inbreeding ^{22–24}. Consequently, there has been a growing focus on genome-wide approaches
65 capable of quantifying inbreeding with greater precision ^{16,25–28}. In particular, many studies
66 are now using single nucleotide polymorphism (SNP) arrays or whole genome resequencing
67 to characterise runs of homozygosity (ROHs), long homozygous tracts that occur when an
68 individual inherits the same identical by descent (IBD) haplotype from both of its parents
69 ^{27,29,30}. By summing up the ROHs within an individual's genome and expressing this as a
70 proportion of the total genome length, the genomic inbreeding coefficient F_{ROH} can be
71 calculated ^{28,31}.

72

73 Studies based on ROHs have confirmed that inbreeding occurs in many animal species and
74 can have strong effects on individual fitness ^{9,25,32,33}. However, less is known about the
75 effects of maternal inbreeding on offspring fitness ^{although see 25,26,34}. Filling this knowledge gap
76 is important because transgenerational inbreeding effects can potentially exacerbate
77 individual inbreeding effects, especially in species where mothers provision their offspring ³⁴.
78 The interplay between individual and maternal inbreeding might therefore have important
79 consequences for neonatal survival and growth, early-life traits that can influence population
80 dynamics, especially under stressful environmental conditions which can exacerbate
81 inbreeding depression ³⁵.

82

83 A long-term study of Antarctic fur seals at Bird Island, South Georgia, provides an excellent
84 opportunity to investigate the effects of individual and maternal inbreeding on early-life traits
85 in a wild marine mammal. This species is polygynous ³⁶ and adults of both sexes show
86 strong site fidelity ^{37,38}, behavioural traits that can promote inbreeding. In line with this,
87 HFCs have already been documented for multiple traits in Antarctic fur seals including body
88 size and reproductive success in males ^{18,39,40} and the propensity of female offspring to recruit
89 into the adult breeding population ²¹. Furthermore, the population of Antarctic fur seals at
90 Bird Island has been steadily declining since the mid 1980s, a pattern that has been linked to
91 a long-term trend of decreasing local krill abundance ^{21,41-43}. In parallel, the average
92 heterozygosity of the breeding female population has been steadily increasing over time,
93 implying that homozygous female offspring are increasingly being filtered out of the
94 population prior to recruitment by viability selection ²¹.

95

96 In order to better understand the decline of the Antarctic fur seal population at South Georgia,
97 we need to learn more about how viability selection operates against homozygous individuals
98 and exactly when this filtering process takes place. We envisage two, non-mutually
99 exclusive possibilities. First, viability selection may operate during the time-window from
100 birth until weaning at around four months of age ⁴⁴, in which case one would expect to
101 observe a negative relationship between inbreeding and pup survival. Furthermore, as
102 Antarctic fur seal pups are dependent on their mothers for nutrition and protection from
103 predators during this period, one might also expect to observe maternal inbreeding effects on
104 pup survival.

105

106 Alternatively, viability selection may operate during the time-window after weaning and prior
107 to recruitment at around 4–6 years of age ⁴². Indeed, one might expect selection against
108 inbred animals to be stronger during this period as the sub-adults are nutritionally
109 independent from their mothers and have to fend for themselves. However, this does not
110 necessarily mean that maternal inbreeding effects will be absent, as recruitment success has
111 been linked in pinnipeds to birth mass ²¹ and mass at weaning ⁴⁵, traits which are themselves
112 reflections of the amount of maternal investment ^{46–50}.

113

114 In this study, we investigated the above possibilities by analysing relationships between
115 inbreeding and three important early life traits in Antarctic fur seals: pup birth mass, survival
116 and growth. For this, we generated two datasets. The first of these comprised 884 pups and
117 342 mothers from a single breeding colony genotyped at 39 microsatellites. This dataset
118 spanned four consecutive breeding seasons, including one of the worst years on record in
119 terms of female breeding numbers, pup birth mass and food availability (Figure 1). To
120 measure pup growth, the animals were weighed at birth and were subsequently recaptured
121 and weighed again at around 50 days of age. The second dataset comprised 100 pups and
122 their mothers sampled from two adjacent breeding colonies during two consecutive breeding
123 seasons ⁵¹. These animals were fitted with VHF transmitters, which allowed the pups to be
124 recaptured and weighed every ten days from birth until just before moulting at around 60
125 days of age, allowing the construction of individual growth curves. These pups and their
126 mothers were genotyped on a recently developed 85k SNP array ⁵² for the quantification of
127 genomic inbreeding.

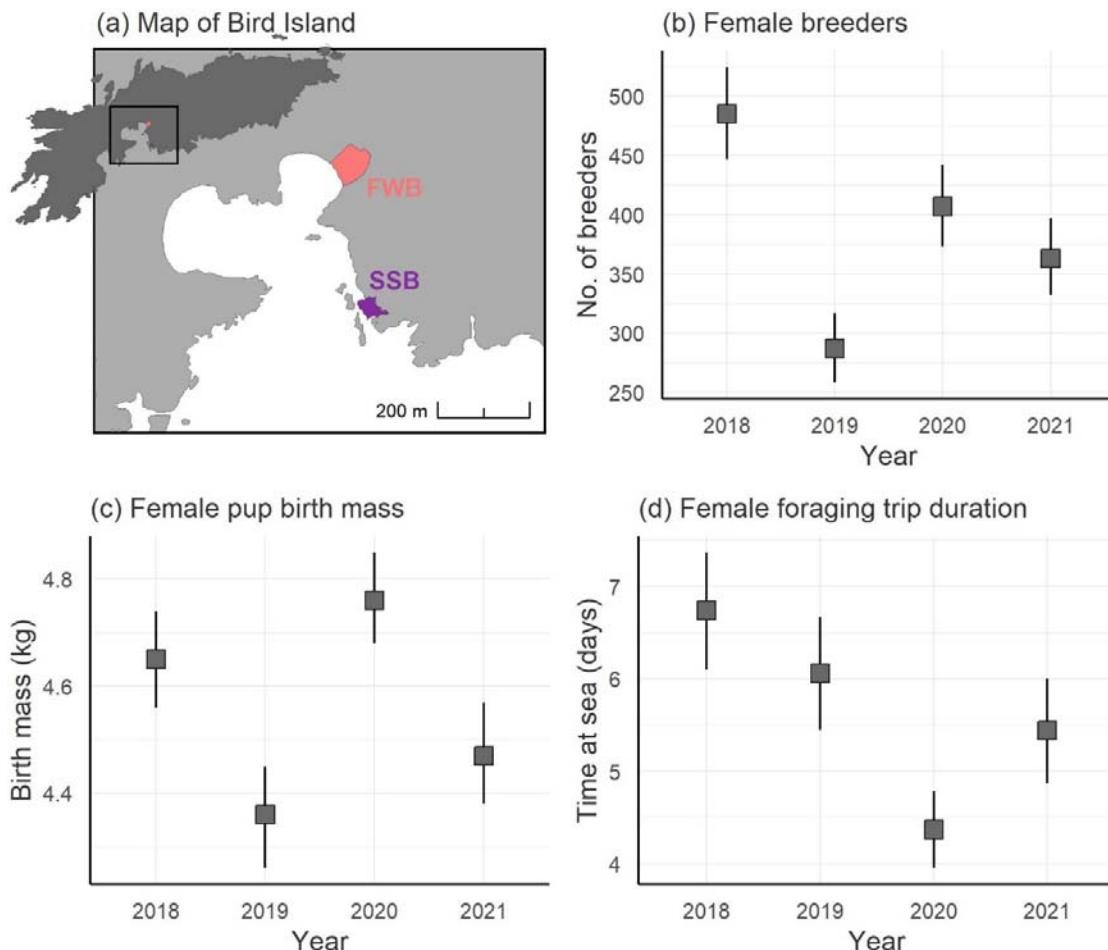
128

129 We hypothesised that (i) viability selection against inbred Antarctic fur seals occurs mainly
130 after weaning, and hence that an individual pup's survival will be unrelated to its level of
131 inbreeding. Furthermore, because inbred pups are less likely to recruit ²¹ and recruitment in
132 pinnipeds is often related to body mass ^{21,45}, we hypothesised that (ii) inbred pups would
133 exhibit slower growth. We additionally hypothesised that (iii) pups born to inbred mothers
134 will have lower survival and gain less weight; and (iv) inbreeding effects will be more readily
135 detected using ROHs based on tens of thousands of SNPs in comparison to 39 microsatellites.

136

137 **Results**

138 To test for effects of individual and maternal inbreeding on pup birth mass, survival and
139 growth, we analysed two datasets. The first of these comprised 884 pups (of which 431 were
140 male and 453 were female) and 342 mothers sampled over four consecutive breeding seasons
141 (2018–2021 inclusive) at the Special Study Beach (SSB; Fig. 1a) of which 721 (81%)
142 survived until the end of the field season. These pups were weighed at birth and
143 subsequently recaptured and weighed again at a mean age of 49 days (range = 12–89 days).
144 Both the pups and their mothers were genotyped at 39 microsatellites that have previously
145 been shown to be in Hardy-Weinberg equilibrium and linkage equilibrium in the study
146 population^{53,54}. The second dataset comprised 100 mother-offspring pairs (i.e. a total of 200
147 individuals, comprising 51 male and 47 female pups and their mothers) sampled over two
148 consecutive breeding seasons (2019 and 2020) from SSB and Freshwater Beach (FWB; Fig.
149 1a), of which 76 pups survived until the end of the field season. Repeated weight
150 measurements were gathered from these pups from birth until around 60 days of age. To
151 increase genetic resolution for this subset of animals, we genotyped them on a custom SNP
152 array, resulting in a dataset of 196 individuals (100 pups and 96 mothers) genotyped at
153 75,101 SNPs.


154

155 **Seasonal variation**

156 The four years of our study varied in three measures of breeding season quality (Fig. 1). The
157 2019 season was among the worst on record⁴², as indicated by substantially lower numbers
158 of breeding females (Fig. 1b), reduced pup birth mass (Fig. 1c) and relatively high foraging
159 trip durations (Fig. 1d), which indicate that fewer food resources were available to the

160 breeding females. By comparison, the 2020 season had the highest pup birth mass and the
161 shortest foraging trip durations, although female numbers were higher in 2018.

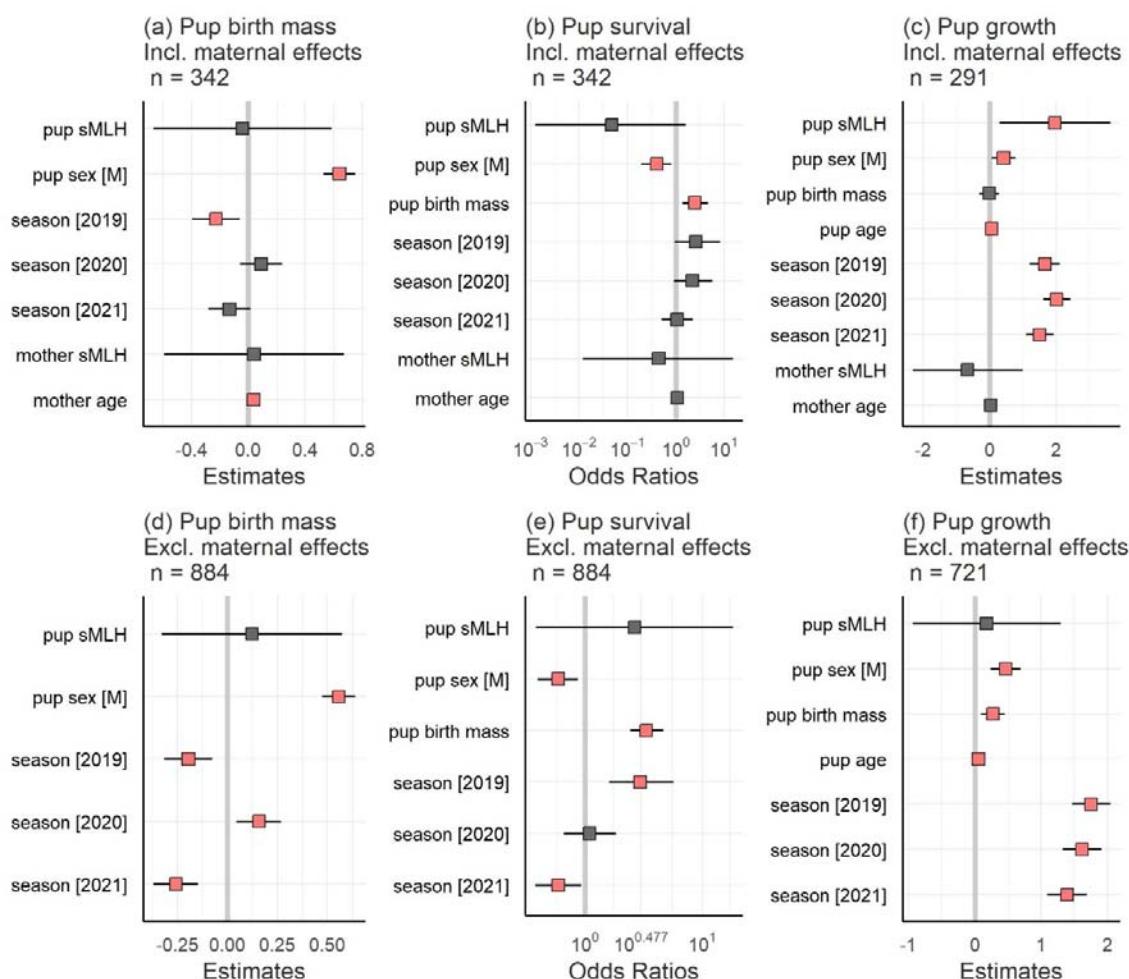
162

163
164 Figure 1. Interannual variation in three measures of season quality. (a) Map of Bird Island,
165 South Georgia, showing the location of two adjacent breeding colonies, the Special Study
166 Beach (SSB) and Freshwater Beach (FWB); (b) Annual numbers of breeding females on
167 SSB; (c) The birth mass of female pups born on SSB; (d) The amount of time spent foraging
168 at sea by mothers (data are from FWB). The squares show the means and the whiskers show
169 the 95% confidence intervals. Data from 2019 and 2020 are already published by Nagel et al.
170 55.

171

172 **Molecular inference of inbreeding**

173 Estimates of the two-locus disequilibrium g_2 were positive and significant for both the
174 microsatellite ($g_2 = 0.00053$, 95% CI = -0.00010–0.00124, $p = 0.040$) and the SNP ($g_2 =$
175 0.00012, 95% CI = 0.000086–0.00015, $p = 0.001$) datasets (see SI Fig. 1) indicating that both
176 sets of markers capture variation in inbreeding in the study population. The genomic
177 inbreeding coefficient F_{ROH} varied from 0.0417 to 0.1042 and averaged 0.0723 for the
178 mother-pup pairs genotyped on the SNP array.


179

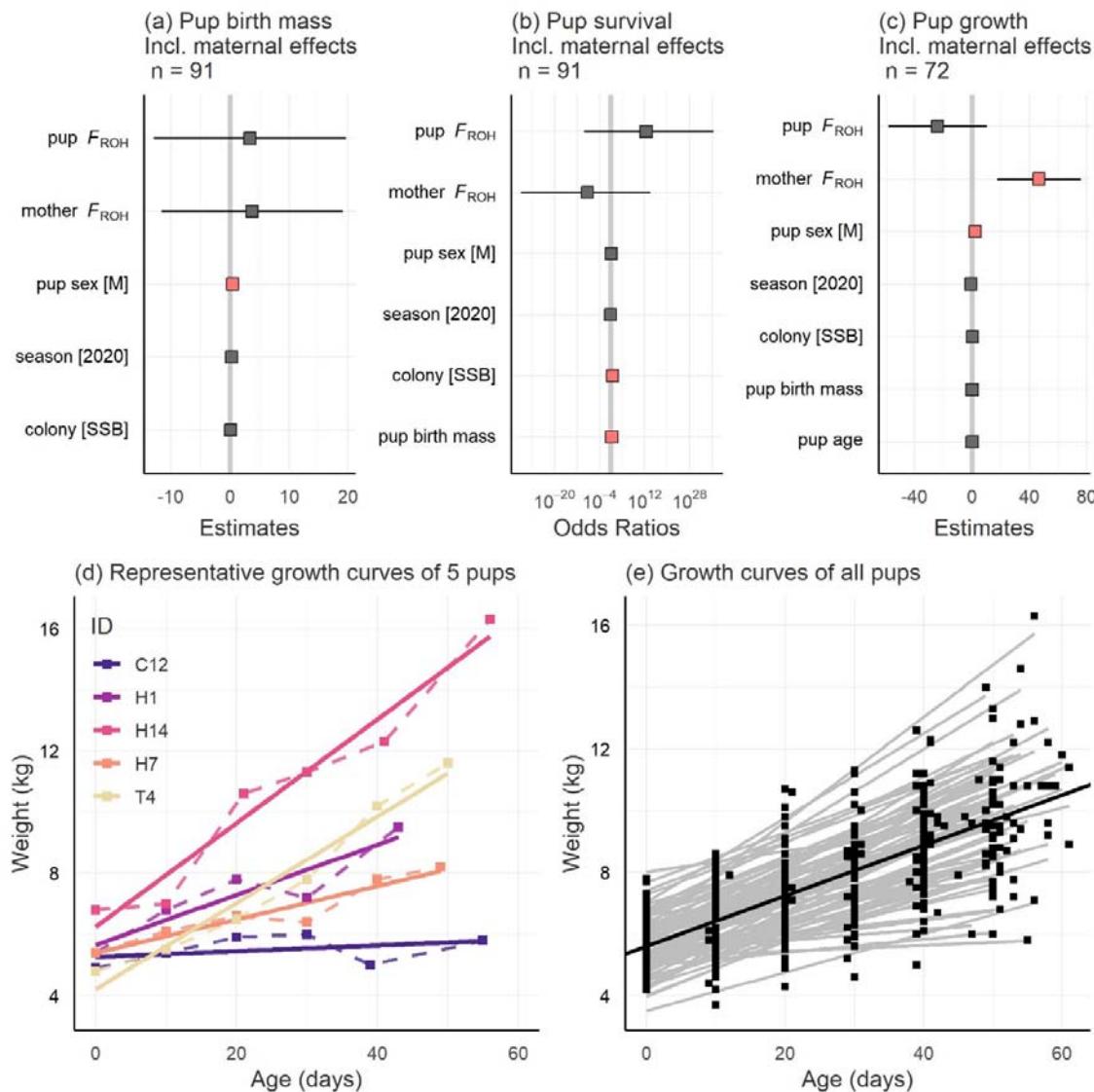
180 **Effects of microsatellite heterozygosity on pup birth mass, survival and growth**

181 No effects of either individual or maternal sMLH were found on pup birth mass when
182 controlling for the confounding effects of pup sex, maternal age and breeding season (Fig. 2a,
183 SI Table 1a). Male pups were born heavier than females ($p < 0.001$, Fig 2a, SI Table 1a),
184 older mothers gave birth to heavier pups ($p < 0.001$, Fig 2a, SI Table 1a) and pups were also
185 born lighter in 2019 compared to 2018 ($p = 0.008$ Fig 2a, SI Table 1a). Similarly, when
186 controlling for confounding effects, no effects of individual or maternal sMLH were found on
187 pup survival (Fig. 2b, SI Table 2a), although heavier pups had higher survival ($p = 0.003$, Fig
188 2b, SI Table 2a) and male pups had lower survival than female pups ($p = 0.013$, Fig 2b, SI
189 Table 2a). In our pup growth model, we found a weak positive effect of sMLH ($p = 0.021$,
190 Fig 2c, SI Table 3a) on growth, and male pups gained significantly more weight than females
191 ($p = 0.023$, Fig 2c, SI Table 3a). Older pups were also significantly heavier ($p < 0.001$, Fig
192 2c, SI Table 3a) and pups born in 2019, 2020 and 2021 were heavier than pups born in 2018
193 ($p < 0.001$, Fig 2c, SI Table 3a).

194 To investigate further, we repeated the above analyses using a larger dataset including many
195 additional pups with unknown mothers (see Methods for details). Overall, the results were
196 similar, with a small number of exceptions. For pup birth mass, all of the seasons showed
197 significant differences compared to 2018 ($p < 0.01$, Fig 2d, SI Table 1b). For pup survival,
198 we also found significant seasonal differences, with more pups surviving in 2019 compared
199 to 2018 and fewer pups surviving in 2021 ($p < 0.05$, Fig 2e, SI Table 2b). For pup growth,
200 we found a significant positive effect of pup birth mass ($p < 0.01$, Fig 2f, SI Table 3b) but the
201 effect of pup sMLH was not significant.

202

203
204 Figure 2. Model estimates and associated 95% confidence intervals for the fixed effects of (a)


205 pup birth mass; (b) pup survival; and (c) pup growth in models including maternal effects;
206 and (d) pup birth mass; (e) pup survival; and (f) pup growth in models excluding maternal
207 effects. Statistically significant relationships are highlighted in salmon pink.

208

209 **Effects of genomic inbreeding on pup birth mass, survival and growth**

210 When controlling for the confounding effects of pup sex, breeding season and colony, no
211 effects of individual or maternal F_{ROH} were found on pup birth mass (Fig 3a, SI Table 4), nor
212 were there any differences between the two breeding colonies or seasons (Fig 3a, SI Table 4),
213 although male pups were born heavier than females ($p = 0.021$, Fig 3a, SI Table 4). We also
214 found no effects of individual or maternal F_{ROH} on pup survival (Fig 3b, SI Table 5),
215 although survivorship was higher at SSB ($p = 0.028$, Fig 3b, SI Table 5) and heavier born
216 pups were more likely to survive ($p = 0.042$, Fig 3b, SI Table 5) when other model
217 components were kept constant. Maternal F_{ROH} was positively associated with pup growth (p
218 = 0.002, Fig 3c, SI Table 6) and male pups gained more weight than females ($p < 0.001$, Fig
219 3c, SI Table 6). Pup F_{ROH} , birth mass, age, season and breeding colony had no effect on
220 growth (Fig 3c, SI Table S6).

221

222
223 Figure 3. Results of genomic inbreeding analyses, including model estimates and associated
224 95% confidence intervals for the fixed effects of (a) pup birth mass; (b) pup survival; and (c)
225 pup growth. Statistically significant relationships are highlighted in salmon pink. Panels (d)
226 and (e) depict approximately linear increases in pup mass over time for a representative
227 subset of five pups and for all 100 pups respectively. The dark line in panel (e) indicates the
228 global average rate of change over time ($y = 0.082 x + 5.598$).

229

230 **Discussion**

231 We used molecular and life-history data from an intensively studied Antarctic fur seal
232 population to test for inbreeding depression for three important early acting traits. Using
233 microsatellite and SNP array data, we found no effects of individual or maternal inbreeding
234 on pup birth mass and survival. The results for pup growth were less clear as they depended
235 on the dataset, but again we did not find any consistent evidence for inbreeding depression.
236 Taken together, our results suggest that viability selection against inbred pups is unlikely to
237 be important during the first three months of life. By implication, viability selection against
238 inbred offspring likely operates during the juvenile stage after nutritional independence.

239

240 **Study design and comparison to previous studies.** Our study complements and builds
241 upon two previous studies of inbreeding depression in Antarctic fur seal pups. The first of
242 these found no effects of individual or maternal heterozygosity at nine microsatellites on pup
243 birth mass and survival⁵⁶ and the second found no effects of individual heterozygosity at 48
244 microsatellites on neonatal mortality due to bacterial infection⁵³. However, both of these
245 studies had important limitations. The first had a relatively large sample size of individuals
246 and incorporated maternal effects, but simulations and empirical studies have since shown
247 that nine microsatellites provide a poor estimate of inbreeding in all but the most inbred of
248 populations²². The second study, on the other hand, used a larger panel of microsatellites but
249 focused on a more narrowly defined trait and did not incorporate maternal effects. The
250 current study aimed to produce a more comprehensive and detailed picture of how selection
251 acts in early life by incorporating three main improvements. First, we broadened the focus to
252 include not only pup birth weight and survival, but also growth, inferred from repeated
253 measurements of the same individuals. Understanding the effects of inbreeding on early
254 growth could be important because body size at weaning is known to influence subadult

255 survival and recruitment success in several pinniped species ^{45,50,57-59}. Second, genetic
256 parentage analysis allowed us to confirm the maternity of the majority of pups, allowing us to
257 jointly analyse individual and maternal inbreeding effects for all three traits. Third, we
258 genotyped a sufficiently large number of microsatellites to capture a clear signal of identity
259 disequilibrium, as indicated by a statistically significant g_2 statistic, indicating that these
260 markers capture variation in genome-wide inbreeding. We furthermore used a SNP array to
261 quantify genomic inbreeding for a smaller number of animals that were radio tracked from
262 birth until moulting, allowing the construction of detailed individual growth curves.

263

264 **Pup birth mass and survival.** We found that male pups were born heavier but had lower
265 survival than female pups, older mothers gave birth to heavier pups, and heavier pups had
266 higher survival. Many of these relationships have previously been reported for the study
267 population ^{47,60}. However, we did not find any effects of individual or maternal inbreeding
268 on pup birth mass or survival after controlling for the confounding effects of pup sex and
269 breeding season. The clear absence of inbreeding depression for these traits in the current
270 study as well as in two previous studies ^{53,56} implies that viability selection against inbred
271 pups is weak or absent during the first three months of life. This is in contrast to the situation
272 with harbour seals ¹⁴, grey seals ⁶¹ and California sea lions ⁶², where microsatellite
273 heterozygosity is strongly associated with neonatal survival. The most likely explanation for
274 this difference is that most Antarctic fur seal pups die of causes that may not have a genetic
275 basis including starvation, trauma ⁵⁶ and predation ^{55,63,64}. These findings do not support the
276 hypothesis that viability selection operates to filter inbred pups out of the population prior to
277 weaning. However, it is important to note that we could only follow the pups until they
278 began to moult at around 50–60 days of age, which is around two months before weaning
279 takes place ⁴⁴. Nevertheless, 50% of the pup mortality that we observed in our study occurred

280 in the first seven days of life, and 90% of the pups had died before 35 days, similar to
281 previously reported by ⁶⁵. Consequently, although our data do not extend up to weaning, it
282 seems unlikely that many of our focal pups died between moulting and weaning.

283

284 **Pup growth.** As body mass at weaning is an important predictor of juvenile survival in
285 pinnipeds ^{45,50,57-59}, we hypothesised that the higher recruitment success of outbred
286 individuals might be explained by increased growth rates during early life. We therefore
287 used two approaches to quantify pup growth. First, for a large dataset of pups spanning four
288 consecutive seasons and genotyped at 39 microsatellites, we captured pups shortly after birth
289 and subsequently at tagging 12–89 (mean = 49) days later. We then controlled for the
290 variation in recapture time by including age as a fixed effect in our models. Second, we
291 made use of more detailed growth information available for 100 pups that were recaptured
292 every 10 days from birth until moulting. This revealed growth trajectories to be
293 approximately linear during the first 60 days of life, which justifies our approach of applying
294 linear models of weight gain for both datasets.

295

296 Starting with the microsatellite dataset, the model including maternal effects revealed a
297 significant positive association between individual heterozygosity and pup growth, but this
298 was not significant in the model excluding maternal effects. One possible explanation for
299 this discrepancy could be collider bias ⁶⁶, which is a type of selection bias where the
300 likelihood of a sample's inclusion in a given dataset is influenced by an unknown variable
301 (the “collider”), which is affected by both the response variable (x) and the predictor (y).
302 When the collider is included in the model, it could induce an association between x and y
303 that does not exist, or flip the estimate in the opposite direction if an association does exist. It

304 is possible that this could have occurred in our study, as pups for which maternal information
305 was available were born to tagged females in the study population, who tend to be older and
306 thus more experienced than untagged females. Hence, pups born to untagged females might
307 experience weaker inbreeding depression due to their fitness being primarily determined by
308 the lack of experience of their mothers. However, this seems unlikely given that we did not
309 find a significant effect of mother's age on pup growth. Alternatively, including maternal
310 sMLH in the model might have masked a significant effect of pup sMLH. However, this is
311 again not supported by our data as the association between pup sMLH and growth remained
312 significant even after removing maternal sMLH from the model (data not shown). Given that
313 no relationship between inbreeding and pup growth was found for the larger microsatellite
314 dataset as well as for the genomic dataset (see below), a final possibility could be type I error.

315

316 **Genomic inbreeding.** To quantify inbreeding with greater precision, we genotyped 100 pups
317 and their mothers on an 85k SNP array ⁵². These individuals were sampled in two
318 consecutive years from two neighbouring breeding colonies, SSB and FWB ⁵⁵. In line with
319 the results of the microsatellite analyses, no effects of individual or maternal F_{ROH} were
320 found on pup birth mass and survival. In addition, a significant effect of colony was found
321 on pup survival, with pups from SSB being more likely to survive. This has been shown
322 previously ⁵⁵ and is due to predation being higher at the lower density FWB colony ⁶⁴.

323

324 In contrast to the results of the microsatellite analyses, we found a significant effect of
325 maternal F_{ROH} on pup growth, although the direction of the relationship was the opposite to
326 what we originally hypothesised, with inbred mothers tending to have pups that gained more
327 weight. Again, this could potentially be due to type I error given our relatively small sample

328 size for this analysis. However, taking this result at face value, we can think of two
329 alternative explanations. First, because inbreeding tends to reduce longevity ^{7,26}, inbred
330 mothers may trade-off current versus future reproduction and invest more heavily into their
331 current offspring. However, theoretical models suggest maternal inbreeding is unlikely to
332 affect optimal parental investment ⁶⁷, while an empirical study of zebra finches found that
333 inbred mothers showed reduced, rather than increased, maternal care ⁶⁸. Another possibility
334 is that Antarctic fur seal pups may be better able to extract resources from inbred mothers, for
335 example via more effective food solicitation. In line with this, it has been shown that
336 maternal provisioning in Antarctic fur seals varies over time and depends on a combination of
337 both maternal and offspring traits, with heavier pups receiving more milk at around one
338 month of age, but maternal mass being the primary determinant of energy allocation in
339 newborn and two-month old pups ⁶⁹. This suggests that who is in control of parental
340 investment is dynamic across the investment period and that maternal traits are more
341 important determinants of maternal care overall.

342

343 **Implications.** Our findings lend support to the hypothesis that poor environmental
344 conditions select against inbred offspring mainly after nutritional independence in Antarctic
345 fur seals. In line with this, survival has been shown to decline after weaning and is strongly
346 related to sea surface temperature during the first six months of nutritional independence in a
347 closely related pinniped, the subantarctic fur seal ⁵⁸. This environmental dependence of early
348 survival mirrors the situation in Antarctic fur seals, where Forcada et al. ²¹ showed that the
349 strength of viability selection against inbred animals depends on the Southern Annular Mode,
350 a measure of climate variability in the Southern Ocean, which is positively correlated with
351 SST, low krill supply and reduced fur seal viability ^{21,42}. Taken together, these studies
352 suggest that juvenile pinnipeds may be particularly vulnerable to the selection pressures

353 imposed by changing environments. Hence, we urgently need to learn more about the
354 ecology of juvenile pinnipeds and the threats facing them during this critical life history
355 stage.

356

357 **Conclusion.** To summarise our main results, we did not find any significant effects of either
358 individual or maternal inbreeding on pup birth mass and survival. Furthermore, our results
359 for pup growth were not consistent across datasets and methods, leading us to conclude that
360 there is little clear evidence for inbreeding depression for pup growth. While larger sample
361 sizes would be required to reach more definitive conclusions, our results suggest that viability
362 selection against inbred Antarctic fur seals operates mainly after nutritional independence at
363 weaning. Our study therefore brings into focus a life-history stage that is little studied and
364 poorly understood.

365

366 **Methods**

367 **Field methods**

368 This study was conducted at an intensively studied breeding population of Antarctic fur seals
369 at Bird Island, South Georgia (54°00'024.800 S, 38°03'004.100 W) during the austral summers
370 of 2017–2018 to 2020–2021 (hereafter, breeding seasons are referred to by the year in which
371 they ended). Our main study colony (Special Study Beach; SSB, see Fig 1a) was located at a
372 small cobblestone breeding beach (approximately 440 m² at high tide) where a scaffold
373 walkway ⁶⁵ provides safe access to the animals while minimizing disturbance. A second
374 breeding colony, referred to as Freshwater Beach (FWB, see Fig 1a), was located
375 approximately 200 meters to the north.

376 The seals were captured and restrained following protocols that have been established over
377 more than 40 consecutive years of the long-term monitoring and survey program of the
378 British Antarctic Survey (BAS). As part of this long-term monitoring program, almost a
379 thousand adult females were tagged using cattle ear tags (Dalton Supplies, Henley on
380 Thames, UK) placed in the trailing edge of the foreflipper ^{70,71}. The majority of these females
381 were aged from canine tooth sections ^{72,73}. Pups were captured on the day of birth, sexed, and
382 weighed. Piglet ear notching pliers were used to collect a small skin sample from the
383 interdigital margin of the foreflipper, which was stored individually in 20% dimethyl
384 sulphoxide (DMSO) saturated with salt ⁷⁴ at -20°C. The pups were then marked with
385 temporary serial numbers by bleaching the fur on their backs before returning them to their
386 mothers, which were tissue sampled later in the season (January–March).

387 Twice-daily surveys were made of all females and their pups present in the colony from the
388 beginning of November until the end of January. To gather data on growth and survival, we

389 recaptured the pups and weighed them again after ~49 days (min: 12 days, max: 89 days) and
390 we recorded the identities of any pups that died during this period.

391 To provide more detailed insights into pup growth, we also collected serial weight
392 measurements from a subset of pups as described by Nagel et al. ⁷⁵. Briefly, during the
393 breeding seasons of 2019 and 2020, a total of 100 unique mother–pup pairs ($n = 200$
394 individuals) were captured, 50 from SSB and 50 from FWB. Because mothers and their
395 offspring become increasingly mobile as the pups mature ⁵¹, VHF transmitters were attached
396 to the animals to allow them to be located, recaptured and weighed every ten days from birth
397 until they started to moult (ca. 60 days).

398

399 **Genetic analyses**

400 *Microsatellite genotyping*

401 Total genomic DNA was extracted using an adapted chloroform-isoamylalcohol protocol ⁷⁵
402 and genotyped for 39 microsatellite loci as described by Paijmans et al. ⁵⁴. Briefly, the
403 microsatellite loci were PCR-amplified in five separate multiplexed reactions using a Type
404 It Kit (Qiagen). Fluorescently labelled PCR products were then resolved by electrophoresis
405 on an ABI 3730xl capillary sequencer (Applied Biosystems, Waltham, MA, USA). Allele
406 sizes were scored automatically using GeneMarker v. 2.6.2 (SoftGenetics, LLC., State
407 College, PA, USA) and the resulting genotypes were manually inspected and corrected where
408 necessary. Those genotypes with fewer than five missing loci were then used to quantify
409 individual standardized multilocus heterozygosity (sMLH) ¹⁵ using the *sMLH* function of the
410 InbreedR package ⁷⁶. The same package was also used to quantify identity disequilibrium
411 (using the g_2 statistic⁷⁷, with 1,000 permutations).

412 Up to around ten percent of mother-offspring pairs identified in the field are known to
413 genetically mismatch, probably due to a combination of fostering and milk-stealing ⁷⁸. We
414 therefore used NEWPAT ⁷⁹ to check the maternity of all pups. Any pairs of genotypes with
415 up to three mismatching loci were visually inspected as described by Hoffman et al. ⁸⁰.
416 Mismatches that could be clearly attributed to scoring errors were then corrected. Mothers
417 with zero ($n = 500$, 90%) or one mismatching locus ($n = 29$, 5%) were considered to be
418 biological mothers and were retained in the final dataset, while the remaining mothers ($n =$
419 26, 5%) were removed.

420

421 *SNP genotyping*

422 Additional genotyping was performed for the 100 pups and their mothers for which detailed
423 growth data were available. These animals were genotyped using a custom 85k Affymetrix
424 SNP array (for details, see Humble et al. ⁵²). Quality control was performed in the Axiom
425 Analysis Suite (5.0.1.38, Affymetrix) using the standard parameter threshold settings for
426 diploid organisms. To recover SNPs that were initially classified as “off-target variants”, we
427 used the “Run OTV caller” function in the Axiom Analysis Suite. This resulted in a dataset of
428 77,895 SNPs (97% of the 85,359 SNPs tiled on the array), of which 75% were categorised as
429 “polymorphic high resolution”, 14% as “no minor homozygote” and 2.5% as “monomorphic
430 high resolution”. SNPs showing a high Mendelian error rate were removed ($n = 240$) using
431 the `--me` flag in PLINK version 1.9 ⁸¹, with a per-sample error rate of at most 0.05 and a per-
432 variant error rate of at most 0.1. In addition, SNPs that departed significantly from Hardy
433 Weinberg equilibrium (HWE, $n = 238$) were removed using the `--hwe` flag with a *p*-value
434 threshold of 0.001 and the `midp` modifier in PLINK. Finally, we removed SNPs that did not

435 map to the genome and filtered the dataset to only include autosomal SNPs, resulting in a
436 final filtered dataset of 75,101 SNPs.

437 We then used the SNP data to calculate each individual's genomic inbreeding coefficient,
438 F_{ROH} . For this, we first called ROHs on autosomes using the PLINK function *--homozyg*
439 with the parameter settings described by Humble et al. ⁵². Briefly, we called ROH with a
440 minimum length of 1,000 kb and containing at least 20 SNPs while allowing no more than
441 one heterozygous site and a maximum gap of 1,000 kb using the command *--*
442 *homozygwindow-snp* 20 *--homozyg-snp* 20 *--homozyg-kb* 1000 *--homozyg-gap* 1000 *--*
443 *homozyg-density* 100 *--homozyg-window-missing* 5 *--homozyg-het* 1 *--homozyg-window-het* 1
444 *--homozyg-window-threshold* 0.05. The sum of the calculated ROH lengths was then divided
445 over the total autosome length (2.28 Gb) to obtain F_{ROH} . The two-locus heterozygosity
446 disequilibrium (g_2) was also calculated for the SNP data as described above.

447

448 **Statistical analyses**

449 We implemented a series of statistical models to investigate whether individual and / or
450 maternal heterozygosity explain a significant proportion of the variation in (i) pup birth mass,
451 (ii) pup survival, and (iii) pup growth. Models of pup growth could only be implemented for
452 surviving pups because the majority of dead pups could either not be recovered or were
453 scavenged by skuas and giant petrels. In order to allow the joint analysis of individual and
454 maternal effects, we initially focused on the subset of pups with known, genetically assigned
455 mothers (342 / 884 pups, 39%). To maximise our sample size, we also ran the same models
456 for the full dataset while excluding maternal effects. These analyses were performed
457 separately for the microsatellite and SNP datasets.

458

459 *Microsatellite data analyses*

460 To test for effects of individual and maternal microsatellite heterozygosity on pup birth mass,
461 we constructed a linear model. Pup and mother sMLH were included as continuous predictor
462 variables. Pup sex (male / female) and season (2017 / 2018 / 2019 / 2020) were included as
463 additional covariates (factors with two and four levels respectively) together with mother's
464 age (as a continuous variable):

465 Model 1: $\text{Pup birth mass}_i = \beta_{\text{Int}} + \beta_1 * \text{pup sMLH}_i + \beta_2 * \text{mother sMLH}_i + \beta_3 * \text{pup sex}_i$
466 $+ \beta_4 * \text{season}_i + \beta_5 * \text{mothers age}_i + \varepsilon_i$

467 where:

468 pup birth mass represents the observed value of the i-th individual in the sample,

469 $\beta_{\text{Int}}, \beta_1-\beta_5$ are regression coefficients for the intercept and the predictor variables, and

470 ε is the random error.

471 To test for effects of individual and maternal microsatellite heterozygosity on pup survival,
472 we constructed a generalized linear model (GLM) with a binomial error structure. Pup
473 survival was encoded as 1 = survived and 0 = dead. Pup and mother sMLH were included as
474 continuous predictor variables. Pup sex, season and mother's age were included as additional
475 covariates, together with birth mass (as a continuous variable):

476 Model 2: $\log \left(\frac{\text{Pup survival}_i}{1-\text{Pup survival}_i} \right) = \beta_{\text{Int}} + \beta_1 * \text{pup sMLH}_i + \beta_2 * \text{mother sMLH}_i + \beta_3 * \text{pup}$
477 $\text{sex}_i + \beta_4 * \text{pup birth mass}_i + \beta_5 * \text{season}_i + \beta_6 * \text{mothers age}_i + \varepsilon_i$

478 where:

479 Pup survival_i represents the probability that survival is equal to 1 for the *i*-th
480 individual in the sample,

481 β_{Int} , β_1 – β_6 are regression coefficients for the intercept and the predictor variables, and

482 ε is the random error.

483 To test for effects of individual and maternal microsatellite heterozygosity on pup growth, we
484 constructed a linear model. Growth was calculated as the difference in body mass between
485 birth and recapture. To correct for variation in the number of days between birth and
486 recapture, pup age (defined as the number of days between birth and recapture) was included
487 as a fixed effect in the model. Pup and mother sMLH were included as continuous predictor
488 variables and pup sex, birth mass, season and mother's age were included as additional
489 covariates:

490 Model 3: $\text{Pup growth}_i = \beta_{\text{Int}} + \beta_1 * \text{pup sMLH}_i + \beta_2 * \text{mother sMLH}_i + \beta_3 * \text{pup sex}_i + \beta_4$
491 $* \text{pup birth mass}_i + \beta_5 * \text{pup age}_i + \beta_6 * \text{season}_i + \beta_7 * \text{mothers age}_i + \varepsilon_i$

492 where:

493 pup survival represents the observed value of the *i*-th individual in the sample,

494 β_{Int} , β_1 – β_7 are regression coefficients for the intercept and the predictor variables, and

495 ε is the random error.

496

497 *SNP data analysis*

498 To test for effects of individual and maternal inbreeding on birth mass, we constructed a
499 linear model. Pup and mother F_{ROH} were included as continuous predictor variables. Pup sex

500 (male / female), colony (SSB / FWB) and season (2019 / 2020) were included as additional
501 two-level covariates:

502 Model 4: $\text{Pup birth mass}_i = \beta_{\text{Int}} + \beta_1 * \text{pup } F_{\text{ROH}}{}_i + \beta_2 * \text{mother } F_{\text{ROH}}{}_i + \beta_3 * \text{pup sex}_i +$
503 $\beta_4 * \text{colony}_i + \beta_5 * \text{season}_i + \varepsilon_i$

504 where:

505 pup birth mass represents the observed value of the i -th individual in the sample,

506 $\beta_{\text{Int}}, \beta_1 - \beta_5$ are regression coefficients for the intercept and the predictor variables, and

507 ε is the random error.

508 To test for effects of individual and maternal inbreeding on pup survival, we constructed a
509 generalized linear model (GLM) with a binomial error structure. Pup survival was encoded
510 as 1 = survived and 0 = dead. Pup and mother F_{ROH} were included as continuous predictor
511 variables. Pup sex, colony and season were included as two-level covariates as described
512 above and birth mass was included as a continuous covariate.

513 Model 5: $\log \left(\frac{\text{Pup survival}_i}{1 - \text{Pup survival}_i} \right) = \beta_{\text{Int}} + \beta_1 * \text{pup } F_{\text{ROH}}{}_i + \beta_2 * \text{mother } F_{\text{ROH}}{}_i + \beta_3 * \text{pup}$
514 $\text{sex}_i + \beta_4 * \text{pup birth mass}_i + \beta_5 * \text{colony}_i + \beta_6 * \text{season}_i + \varepsilon_i$

515 where:

516 Pup survival_i represents the probability that survival is equal to 1 for the i -th
517 individual in the sample,

518 $\beta_{\text{Int}}, \beta_1 - \beta_6$ are regression coefficients for the intercept and the predictor variables, and

519 ε is the random error.

520 To test for effects of individual and maternal inbreeding on pup growth, we used the repeated
521 weight measurements of individual pups to model growth curves. In a preliminary analysis,
522 we investigated the fit of linear, logistic and gompertz models to the growth data, and found
523 that pup growth was best described by a linear model (see supplementary R markdown file).
524 We therefore constructed a linear model of pup growth (calculated as the difference in body
525 mass between birth and last capture). The predictor variables in this model were pup F_{ROH} ,
526 mother F_{ROH} and the covariates pup sex, birth mass, age, colony and season:

527 Model 6: $\text{Pup growth}_i = \beta_{\text{Int}} + \beta_1 * \text{pup } F_{\text{ROH}}_i + \beta_2 * \text{mother } F_{\text{ROH}}_i + \beta_3 * \text{pup sex}_i + \beta_4 * \text{pup birth mass}_i + \beta_5 * \text{pup age}_i + \beta_6 * \text{season}_i + \beta_7 * \text{colony}_i + \varepsilon_i$
528

529 where:

530 pup survival represents the observed value of the i-th individual in the sample,

531 $\beta_{\text{Int}}, \beta_1-\beta_7$ are regression coefficients for the intercept and the predictor variables, and

532 ε is the random error.

533 For all of the models, the residuals were visually inspected for linearity and equality of error
534 variances (using plots of residuals versus fits) and normality (using Q-Q plots). Testing for
535 under- or over-dispersion was done by comparing the dispersion of simulated and observed
536 residuals. Model inspection was performed using DHARMA⁸². Analyses and visualisations
537 were implemented in R version 4.0.2⁸³ using the integrated development environment
538 RStudio⁸⁴.

539

540

541 **Animal ethics**

542 Fur seal samples were collected as part of the Polar Science for Planet Earth program of the
543 British Antarctic Survey, under permits from the Government of South Georgia and the South
544 Sandwich Islands (GSGSSI, Wildlife and Protected Areas Ordinance (2011), RAP permit
545 numbers 2018/024 and 2019/032). Samples originating from South Georgia Islands were
546 imported into the United Kingdom under permits from the Department for Environment,
547 Food, and Rural Affairs (Animal Health Act, import license number ITIMP18.1397) and
548 from the Convention on International Trade in Endangered Species of Wild Fauna and Flora
549 (import numbers 578938/01-15 and 590196/01-18), and exported under permits issued by the
550 GSGSSI and the UK Department for Environment, Food and Rural Affairs, under European
551 Communities Act 1972. All procedures used were approved by the British Antarctic Survey
552 Animal Welfare and Ethics Review Body (reference no. PEA6, AWERB applications
553 2018/1050 and 2019/1058).

554

555 **Data and code availability**

556 Scripts are provided in the form of an R Markdown file. The scripts and data needed to
557 reproduce all of the analyses and figures can also be accessed via GitHub
558 <https://github.com/apaijmans/inbreeding-pup-growth>). Microsatellite and SNP data are
559 available via the Zenodo repository, doi:XXX

560

561 **Acknowledgements**

562 This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German
563 Research Foundation) priority programme “Antarctic Research with Comparative

564 Investigations in Arctic Ice Areas" SPP 1158 (project number 424119118) and the SFB TRR
565 212 (NC³) (Project Numbers 316099922 & 396774617). This work contributes to the
566 Ecosystems project of the British Antarctic Survey, Natural Environmental Research Council,
567 and is part of the Polar Science for Planet Earth Programme.

568

569 **Author contributions**

570 Conceived the study: J.I.H. Sample collection and logistics: R.N., J.F. Laboratory work:
571 A.J.P., A.L.B., F.C., N.K. and R.N. Analysed data: A.J.P., A.L.B, J.I.H. Wrote the paper:
572 A.J.P., A.L.B. and J.I.H. All of the authors commented upon and approved the final
573 manuscript.

574

575 **Funding**

576 Open Access funding was enabled and organized by Projekt DEAL.

577

578 **Competing interests**

579 The authors declare no conflict of interest.

580

581 **Additional information**

582 Correspondence and requests for materials should be addressed to A.J.P. or J.I.H.

583

584 **References**

585

586 1. Bonnet, T. *et al.* Genetic variance in fitness indicates rapid contemporary adaptive
587 evolution in wild animals. *Science* **376**, 1012–1016 (2022).

588 2. Ellegren, H. & Galtier, N. Determinants of genetic diversity. *Nat. Rev. Genet.* **17**, 422
589 (2016).

590 3. Hoban, S. *et al.* Global Commitments to Conserving and Monitoring Genetic Diversity
591 Are Now Necessary and Feasible. *BioScience* **71**, 964–976 (2021).

592 4. Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary
593 consequences. *Annu. Rev. Ecol. Syst.* **18**, 237–268 (1987).

594 5. Boakes, E. H., Wang, J. & Amos, W. An investigation of inbreeding depression and
595 purging in captive pedigree populations. *Heredity* **98**, 172–182 (2007).

596 6. Leroy, G. Inbreeding depression in livestock species: review and meta-analysis. *Anim.*
597 *Genet.* **45**, 618–628 (2014).

598 7. Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. *Trends Ecol. Evol.*
599 **17**, 230–241 (2002).

600 8. Hasselgren, M. & Norén, K. Inbreeding in natural mammal populations: historical
601 perspectives and future challenges. *Mammal Rev.* **49**, 369–383 (2019).

602 9. Hedrick, P. W. & Garcia-Dorado, A. Understanding Inbreeding Depression, Purging, and
603 Genetic Rescue. *Trends Ecol. Evol.* **31**, 940–952 (2016).

604 10. Pemberton, J. Measuring inbreeding depression in the wild: the old ways are the best.
605 *Trends Ecol. Evol.* **19**, 613–615 (2004).

606 11. Pemberton, J. m. Wild pedigrees: the way forward. *Proc. R. Soc. B Biol. Sci.* **275**, 613–
607 621 (2008).

608 12. Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J. & Sheldon, B. C. A quantitative
609 review of heterozygosity–fitness correlations in animal populations. *Mol. Ecol.* **18**, 2746–
610 2765 (2009).

611 13. Szulkin, M., Bierne, N. & David, P. Heterozygosity–fitness correlations: a time for
612 reappraisal. *Evolution* **64**, 1202–1217 (2010).

613 14. Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of
614 harbour seal pups are positively correlated with genetic variation measured by
615 microsatellites. *Proc. R. Soc. Lond. B Biol. Sci.* **265**, 803–809 (1998).

616 15. Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated
617 selection against inbred soay sheep in a free-living island population. *Evolution* **53**,
618 1259–1267 (1999).

619 16. Hoffman, J. I. *et al.* High-throughput sequencing reveals inbreeding depression in a
620 natural population. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 3775 (2014).

621 17. Tiira, K. *et al.* Aggressiveness is associated with genetic diversity in landlocked salmon
622 (*Salmo salar*). *Mol. Ecol.* **12**, 2399–2407 (2003).

623 18. Hoffman, J. I., Forcada, J., Trathan, P. N. & Amos, W. Female fur seals show active
624 choice for males that are heterozygous and unrelated. *Nature* **445**, 912 (2007).

625 19. Bichet, C. *et al.* Contrasting heterozygosity-fitness correlations across life in a long-lived
626 seabird. *Mol. Ecol.* **28**, 671–685 (2019).

627 20. Chen, N., Cosgrove, E. J., Bowman, R., Fitzpatrick, J. W. & Clark, A. G. Genomic
628 Consequences of Population Decline in the Endangered Florida Scrub-Jay. *Curr. Biol.*
629 **26**, 2974–2979 (2016).

630 21. Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur
631 seal population. *Nature* **511**, 462 (2014).

632 22. Balloux, F., Amos, W. & Coulson, T. Does heterozygosity estimate inbreeding in real
633 populations? *Mol. Ecol.* **13**, 3021–3031 (2004).

634 23. Kardos, M., Allendorf, F. W. & Luikart, G. Evaluating the role of inbreeding depression
635 in heterozygosity-fitness correlations: how useful are tests for identity disequilibrium?
636 *Mol. Ecol. Resour.* **14**, 519–530 (2014).

637 24. Miller, J. M. & Coltman, D. W. Assessment of identity disequilibrium and its relation to
638 empirical heterozygosity fitness correlations: a meta-analysis. *Mol. Ecol.* **23**, 1899–1909
639 (2014).

640 25. Bérénos, C., Ellis, P. A., Pilkington, J. G. & Pemberton, J. M. Genomic analysis reveals
641 depression due to both individual and maternal inbreeding in a free-living mammal
642 population. *Mol. Ecol.* **25**, 3152–3168 (2016).

643 26. Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M.
644 Inbreeding depression across the lifespan in a wild mammal population. *Proc. Natl. Acad.
645 Sci. U. S. A.* **113**, 3585 (2016).

646 27. Kardos, M., Luikart, G. & Allendorf, F. W. Measuring individual inbreeding in the age of
647 genomics: marker-based measures are better than pedigrees. *Heredity* **115**, 63 (2015).

648 28. Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G. & Allendorf, F. W. Genomics
649 advances the study of inbreeding depression in the wild. *Evol. Appl.* **9**, 1205–1218
650 (2016).

651 29. Keller, M. C., Visscher, P. M. & Goddard, M. E. Quantification of Inbreeding Due to
652 Distant Ancestors and Its Detection Using Dense Single Nucleotide Polymorphism Data.
653 *Genetics* **189**, 237–249 (2011).

654 30. Leutenegger, A.-L. *et al.* Estimation of the Inbreeding Coefficient through Use of
655 Genomic Data. *Am. J. Hum. Genet.* **73**, 516–523 (2003).

656 31. McQuillan, R. *et al.* Runs of Homozygosity in European Populations. *Am. J. Hum. Genet.*
657 **83**, 359–372 (2008).

658 32. Niskanen, A. K. *et al.* Consistent scaling of inbreeding depression in space and time in a
659 house sparrow metapopulation. *Proc. Natl. Acad. Sci.* **117**, 14584–14592 (2020).

660 33. Stoffel, M. A., Johnston, S. E., Pilkington, J. G. & Pemberton, J. M. Genetic architecture
661 and lifetime dynamics of inbreeding depression in a wild mammal. *Nat. Commun.* **12**,
662 2972 (2021).

663 34. Brouwer, L., Komdeur, J. & Richardson, D. S. Heterozygosity–fitness correlations in a
664 bottlenecked island species: a case study on the Seychelles warbler. *Mol. Ecol.* **16**, 3134–
665 3144 (2007).

666 35. Richardson, D. S., Komdeur, J. & Burke, T. INBREEDING IN THE SEYCHELLES
667 WARBLER: ENVIRONMENT-DEPENDENT MATERNAL EFFECTS. *Evolution* **58**,
668 2037–2048 (2004).

669 36. Hoffman, J. I., Boyd, I. L., Amos, W. & Ashley, M. Male reproductive strategy and the
670 importance of maternal status in the Antarctic fur seal *Arctocephalus gazella*. *Evolution*
671 **57**, 1917–1930 (2003).

672 37. Hoffman, J. I., Trathan, P. N. & Amos, W. Genetic tagging reveals extreme site fidelity
673 in territorial male Antarctic fur seals *Arctocephalus gazella*. *Mol. Ecol.* **15**, 3841–3847
674 (2006).

675 38. Hoffman, J. I. & Forcada, J. Extreme natal philopatry in female Antarctic fur seals
676 (*Arctocephalus gazella*). *Mamm. Biol. - Z. Für Säugetierkd.* **77**, 71–73 (2012).

677 39. Hoffman, J. I., Hanson, N., Forcada, J., Trathan, P. N. & Amos, W. Getting Long in the
678 Tooth: A Strong Positive Correlation between Canine Size and Heterozygosity in
679 Antarctic Fur Seals *Arctocephalus gazella*. *J. Hered.* **101**, 527–538 (2010).

680 40. Hoffman, J. I., Boyd, I. L., Amos, W. & Harrison, R. Exploring the relationship between
681 parental relatedness and male reproductive success in the Antarctic fur seal
682 *Arctocephalus gazella*. *Evolution* **58**, 2087–2099 (2004).

683 41. Atkinson, A. *et al.* Krill (*Euphausia superba*) distribution contracts southward during
684 rapid regional warming. *Nat. Clim. Change* **9**, 142–147 (2019).

685 42. Forcada, J. *et al.* Ninety years of change, from commercial extinction to recovery, range
686 expansion and decline for Antarctic fur seals at South Georgia. *Glob. Change Biol.* **n/a**,
687 (2023).

688 43. McBride, M. M. *et al.* Antarctic krill *Euphausia superba*: spatial distribution, abundance,
689 and management of fisheries in a changing climate. *Mar. Ecol. Prog. Ser.* **668**, 185–214
690 (2021).

691 44. Payne, M. R. Growth in the Antarctic fur seal *Arctocephalus gazella*. *J. Zool.* **187**, 1–20
692 (1979).

693 45. Bowen, William. D., den Heyer, C. E., McMillan, J. I. & Iverson, S. J. Offspring size at
694 weaning affects survival to recruitment and reproductive performance of primiparous
695 gray seals. *Ecol. Evol.* **5**, 1412–1424 (2015).

696 46. Costa, D. P., Trillmich, F. & Croxall, J. P. Intraspecific allometry of neonatal size in the
697 antarctic fur seal (*Arctocephalus galapagoensis*). *Behav. Ecol. Sociobiol.* **22**, 361–364
698 (1988).

699 47. Doidge, D. W. & Croxall, J. P. Factors affecting weaning weight in Antarctic fur seals
700 *Arctocephalus gazella* at South Georgia. *Polar Biol.* **9**, 155–160 (1989).

701 48. Georges, J.-Y. & Guinet, C. Maternal Care in the Subantarctic Fur Seals on Amsterdam
702 Island. *Ecology* **81**, 295–308 (2000).

703 49. Jeanniard-du-Dot, T., Trites, A. W., Arnould, J. P. Y. & Guinet, C. Reproductive success
704 is energetically linked to foraging efficiency in Antarctic fur seals. *PLOS ONE* **12**,
705 e0174001 (2017).

706 50. Bowen, W. D. 6. Maternal Effects on Offspring Size and Development in Pinnipeds. in
707 *Maternal effects in mammals* 104–132 (University of Chicago Press, 2009).

708 51. Nagel, R. *et al.* Movement patterns and activity levels are shaped by the neonatal
709 environment in Antarctic fur seal pups. *Sci. Rep.* **11**, 14323 (2021).

710 52. Humble, E., Paijmans, A. J., Forcada, J. & Hoffman, J. I. An 85K SNP Array Uncovers
711 Inbreeding and Cryptic Relatedness in an Antarctic Fur Seal Breeding Colony. *G3*
712 *GenesGenomesGenetics* **10**, 2787 (2020).

713 53. Litzke, V., Ottensmann, M., Forcada, J., Heitzmann, L. & Ivan Hoffman, J.
714 Heterozygosity at neutral and immune loci is not associated with neonatal mortality due
715 to microbial infection in Antarctic fur seals. *Ecol. Evol.* **9**, 7985–7996 (2019).

716 54. Paijmans, A. J. *et al.* The genetic legacy of extreme exploitation in a polar vertebrate. *Sci.*
717 *Rep.* **10**, 5089 (2020).

718 55. Nagel, R. *et al.* Evidence for an Allee effect in a declining fur seal population. *Proc. R.*
719 *Soc. B Biol. Sci.* **288**, 20202882 (2021).

720 56. Hoffman, J. I., Forcada, J. & Amos, W. No relationship between microsatellite variation
721 and neonatal fitness in Antarctic fur seals, *Arctocephalus gazella*. *Mol. Ecol.* **15**, 1995–
722 2005 (2006).

723 57. Badger, J. J., Bowen, W. D., den Heyer, C. E. & Breed, G. A. Large offspring have
724 enhanced lifetime reproductive success: Long-term carry-over effects of weaning size in
725 gray seals (*Halichoerus grypus*). *Ecol. Evol.* **13**, e10095 (2023).

726 58. Beuplet, G., Barbraud, C., Chambellant, M. & Guinet, C. Interannual variation in the
727 post-weaning and juvenile survival of subantarctic fur seals: influence of pup sex, growth
728 rate and oceanographic conditions. *J. Anim. Ecol.* **74**, 1160–1172 (2005).

729 59. McMahon, C. R., Burton, H. R. & Bester, M. N. Weaning mass and the future survival of
730 juvenile southern elephant seals, *Mirounga leonina*, at Macquarie Island. *Antarct. Sci.* **12**,
731 149–153 (2000).

732 60. Lunn, N. J., Boyd, I. L., Barton, T. & Croxall, J. P. Factors Affecting the Growth Rate
733 and Mass at Weaning of Antarctic Fur Seals at Bird Island, South Georgia. *J. Mammal.*
734 **74**, 908–919 (1993).

735 61. Bean, K. *et al.* Patterns of parental relatedness and pup survival in the grey seal
736 (*Halichoerus grypus*). *Mol. Ecol.* **13**, 2365–2370 (2004).

737 62. Acevedo-Whitehouse, K. *et al.* Contrasting effects of heterozygosity on survival and
738 hookworm resistance in California sea lion pups. *Mol. Ecol.* **15**, 1973–1982 (2006).

739 63. Boveng, P. L., Hiruki, L. M., Schwartz, M. K. & Bengtson, J. L. Population Growth of
740 Antarctic Fur Seals: Limitation by a Top Predator, the Leopard Seal? *Ecology* **79**, 2863–
741 2877 (1998).

742 64. Nagel, R., Coleman, J., Stainfield, C., Forcada, J. & Hoffman, J. I. Observations of Giant
743 Petrels (*Macronectes* sp.) Attacking and Killing Antarctic Fur Seal (*Arctocephalus*
744 *gazella*) Pups. *Aquat. Mamm.* **48**, 509–512 (2022).

745 65. Doidge, D. W., Croxall, J. P. & Baker, J. R. Density-dependent pup mortality in the
746 Antarctic fur seal *Arctocephalus gazella* at South Georgia. *J. Zool.* **202**, 449–460 (1984).

747 66. Laubach, Z. M., Murray, E. J., Hoke, K. L., Safran, R. J. & Perng, W. A biologist's guide
748 to model selection and causal inference. *Proc. R. Soc. B Biol. Sci.* **288**, 20202815 (2021).

749 67. Duthie, A. B., Lee, A. M. & Reid, J. M. Inbreeding parents should invest more resources
750 in fewer offspring. *Proc. R. Soc. B Biol. Sci.* **283**, 20161845 (2016).

751 68. Pooley, E. L., Kennedy, M. W. & Nager, R. G. Maternal inbreeding reduces parental care
752 in the zebra finch, *Taeniopygia guttata*. *Anim. Behav.* **97**, 153–163 (2014).

753 69. McDonald, B. I., Goebel, M. E., Crocker, D. E. & Costa, D. P. Dynamic Influence of
754 Maternal and Pup Traits on Maternal Care during Lactation in an Income Breeder, the
755 Antarctic Fur Seal. *Physiol. Biochem. Zool.* **85**, 243–254 (2012).

756 70. Lunn, N. J., Boyd, I. L. & Croxall, J. P. Reproductive Performance of Female Antarctic
757 Fur Seals: The Influence of Age, Breeding Experience, Environmental Variation and
758 Individual Quality. *J. Anim. Ecol.* **63**, 827–840 (1994).

759 71. Erickson, A. W. & Bester, M. *Marking techniques*. In 'Antarctic Seals: Research
760 *Methods and Techniques*'. (Ed. RM Laws.) pp 89–115. (Cambridge University Press:
761 Cambridge, 1993).

762 72. Boyd, I. L. & Roberts, J. P. Tooth growth in male Antarctic fur seals (*Arctocephalus*
763 *gazella*) from South Georgia: an indicator of long-term growth history. *J. Zool.* **229**, 177–
764 190 (1993).

765 73. Boyd, I. L., Croxall, J. P., Lunn, N. J. & Reid, K. Population Demography of Antarctic
766 Fur Seals: The Costs of Reproduction and Implications for Life-Histories. *J. Anim. Ecol.*
767 **64**, 505 (1995).

768 74. Amos, W. & Hoelzel, A. R. Long-term skin preservation of whale skin for DNA analysis.
769 *Rep. Int. Whal. Comm. Spec. Issue* **13**, 99–103 (1991).

770 75. Nagel, R. *et al.* Low heritability and high phenotypic plasticity of salivary cortisol in
771 response to environmental heterogeneity in a wild pinniped. *Ecol. Evol.* **12**, e8757
772 (2022).

773 76. Stoffel, M. A. *et al.* inbreedR: an R package for the analysis of inbreeding based on
774 genetic markers. *Methods Ecol. Evol.* **7**, 1331–1339 (2016).

775 77. David, P., Pujol, B., Viard, F., Castella, V. & Goudet, J. Reliable selfing rate estimates
776 from imperfect population genetic data. *Mol. Ecol.* **16**, 2474–2487 (2007).

777 78. Hoffman, Joseph. I. & Amos, W. Does kin selection influence fostering behaviour in
778 Antarctic fur seals (*Arctocephalus gazella*)? *Proc. R. Soc. B Biol. Sci.* **272**, 2017–2022
779 (2005).

780 79. Worthington Wilmer, J., Allen, P. J., Pomeroy, P. P., Twiss, S. D. & Amos, W. Where
781 have all the fathers gone? An extensive microsatellite analysis of paternity in the grey
782 seal (*Halichoerus grypus*). *Mol. Ecol.* **8**, 1417–1429 (1999).

783 80. Hoffman, J. I. & Amos, W. Microsatellite genotyping errors: detection approaches,
784 common sources and consequences for paternal exclusion. *Mol. Ecol.* **14**, 599–612
785 (2005).

786 81. Purcell, S. *et al.* PLINK: A Tool Set for Whole-Genome Association and Population-
787 Based Linkage Analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

788 82. Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed)
789 Regression Models. R package version 0.4.3. (2021).

790 83. R Core Team. A language and environment for statistical computing. (2016).

791 84. RStudio Team. RStudio: Integrated Development for R. (2023).

792