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To make optimal decisions, intelligent agents must learn latent environmental states from discrete 
observations. Bayesian frameworks argue that integration of evidence over time allows us to refine our 
state belief by reducing uncertainty about alternate possibilities. How is this increasing belief precision 

during learning reflected in the brain? We propose that moment-to-moment neural variability provides a 
signature that scales with the degree of reduction of uncertainty during learning. In a sample of 47 healthy 
adults, we found that BOLD signal variability (SDBOLD, as measured with functional MRI) indeed 

compressed with successive exposure to decision-related evidence. Crucially, more accurate participants 
expressed greater SDBOLD compression primarily in Default Mode Network regions, possibly reflecting the 
increasing precision of their latent state belief during more efficient learning. Further, computational 
modeling of behavior suggested that more accurate subjects held a more unbiased (flatter) prior belief 

over possible states that allowed for larger uncertainty reduction during learning, which was directly 
reflected in SDBOLD changes. Our results provide first evidence that moment-to-moment neural variability 
compresses with increasing belief precision during effective learning, proposing a flexible mechanism for 

how we come to learn the probabilistic nature of the world around us. 

To make optimal decisions, animals often need to learn about <states= (i.e., decision-relevant properties) of the 
environment, such as the availability of fish in a nearby pond based on previous catch successes. These states 
are often not directly observable, so optimal agents need to combine the uncertainty about their beliefs with 
the evidence available to them. Research suggests that humans and other animals often take into account 
uncertainty during learning and decision-making2-4, while suboptimal use of uncertainty has been linked to 
maladaptive behavior observed in clinical and ageing populations3. Bayesian decision theory prescribes how 
agents should combine evidence with their internal beliefs under uncertainty to arrive at optimal estimates of 
external states and provides a benchmark to assess rational behavior in the context of learning 2,3,5. In this 
framework, an agent must represent a probability distribution over possible states. The variance of this 
distribution reflects the uncertainty of the agent9s state belief. As evidence accumulates and the agent refines 
its representation of the <correct= world state, the variance of the belief distribution is thought to reduce. How 
this increasing belief precision during learning is reflected in the brain remains unclear. 

A potential candidate for tracking the degree of state uncertainty is the moment-to-moment variability of 
neural responses. At the level of sensory cortex, computational modeling and non-human animal work suggests 
that neuronal variability signals uncertainty about peripheral inputs, such that neural population activity reflects 
sampling from a probability distribution over potential stimulus features; the higher perceptual uncertainty, the 
higher the neural variability 6-10. This idea is in line with theoretic work suggesting that neural systems should 
maintain an appropriate degree of instability in the face of uncertainty to permit the exploration of alternative 
causes of incoming sensory input 11. While plausible, no study to date has investigated whether stimulus-evoked 
neural variability tracks changes in perceptual uncertainty in a learning task and how it relates to behavior. With 
regard to human data, a recent study by Kosciessa, et al. 12 showed that increasing uncertainty about the task-
relevance of different perceptual stimulus features is accompanied by an increase in cortical <excitability= 
(heightened desynchronization of alpha rhythms and increased entropy in the EEG signal). However, it is not 
clear whether these perceptual accounts of uncertainty-based shifts in neural variability also translate to higher-
order decision variables that arise while learning about latent environmental states. 
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In the context of learning, larger temporal variability under high uncertainty may not just represent exploration 
of potential world states but may allow more flexible updating of one9s belief once new information becomes 
available. Indeed, previous human work suggests that higher brain signal variability affords larger cognitive 
flexibility 13,14. For example, several studies have found that brain signal variability increases with increasing task 
demands (at least until processing limits are reached) and that the ability to upregulate variability predicts task 
performance 15-22. These studies commonly argue that neural variability supports performance under increasing 
task demand by allowing the brain to maintain flexible responding to stimulus information. In line with this idea, 
Armbruster-Genç, et al. 16 observed better performance on a task switching paradigm under higher BOLD signal 
variability, whereas cognitive stability during distractor inhibition was related to lower brain signal variability. 
During learning, task demands are highest early on, when the brain needs to maintain high flexibility to 
incorporate incoming evidence for belief updating. This should allow it to converge on the <correct= state 
representation with learning. We therefore hypothesize that moment-to-moment brain signal variability 
compresses with increasing belief precision (i.e., decreasing uncertainty) during learning (Figure 1). 

To test this hypothesis, we acquired functional MRI (fMRI) while participants performed a <marble task=. In this 
task, participants had to learn the probability of drawing a blue marble from an unseen jar (i.e., urn) based on 

five samples (i.e., draws from the urn with replacement). In a Bayesian inference framework, the jar marble ratio 
can be considered a latent state that participants must infer. We hypothesized that (1) variability in the BOLD 
response (SDBOLD) would compress over the sampling period, thus mirroring the reduction in state uncertainty, 
and that (2) subjects with greater SDBOLD compression would show smaller estimation errors of the jars9 marble 

ratios as an index of more efficient belief updating. A secondary aim of the current study was to directly compare 
the effect of uncertainty on SDBOLD with a more standard General Linear Modelling (GLM) approach, which looks 
for correlations between average BOLD activity and uncertainty. This links our findings directly to previous 

investigations of neural uncertainty correlates, which disregarded the magnitude of BOLD variability 2,23-37. We 
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Figure 1. Hypothetical model of uncertainty and brain dynamics. In this example, the agent has to infer the proportion of 

blue birds in a world made up of red and blue birds by combining information across discrete observations over time. Under 

high state uncertainty early on in the learning process, more brain signal variability allows the brain to entertain a larger 

variety of possible states (i.e., proportions of blue birds in the world). With each new observation, the precision of the belief 

distribution increases and brain signal variability compresses. 
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hypothesized (3) that SDBOLD would uniquely predict inference accuracy compared to these standard neural 

uncertainty correlates. 
 
Our results showed that SDBOLD closely tracked individual differences in the reduction of state uncertainty during 
learning which related to task accuracy in a unique manner that was not captured by a more standard GLM 
approach. As such, we identified a novel neural signal reflecting uncertainty  during learning. 

METHODS 

Participants and procedure 

51 healthy young adults (18 3 35 years) participated in the study. They were recruited from the participant 
database of the MPI for Human Development (Berlin, Germany) and gave written informed consent according 
to the guidelines of the German Psychological Society (DGPS) ethics board, who approved the study. 
Participants underwent fMRI while performing a perceptual gambling task. They received 10 Euros per hour in 
addition to a variable performance bonus of up to 2 Euros.   

The marble task 

The task was divided into four blocks of 18 trials each. Participants performed three blocks during fMRI 
acquisition, while the final block was performed outside the scanner. We will only consider the three MR blocks 
for our analyses. Participants received instructions and completed nine practice trials prior to the first scanning 
block. Each trial of the task consisted of three phases: a sampling, an estimation, and a gambling phase. To 
investigate brain signal variability changes during learning, we focused on the sampling and estimation phases 
in this study (referred to as the <marble task=). A description of the gambling phase, which was unrelated to the 
learning process, is provided in the Supplementary Methods. The task design also included a between-trial 
reward manipulation. Here, we collapsed trials across the two levels of the reward manipulation given that we 
assumed those would only affect the choice and not the learning part. The task was programmed using 
Presentation software (Version 14.9, Neurobehavioral Systems Inc., Albany, CA, USA). 
 
In the marble task, participants were asked to estimate the proportion of blue marbles in an unseen <jar= (i.e., 
urn), containing a total of 100 blue and red marbles, based on five successive samples (i.e., draws from the urn 
with replacement) presented successively during the sampling phase (Figure 2A). In total, 18 different jars with 
different proportions of blue marbles (ranging from 0.1 to 0.91) were presented across all trials (Supplementary 
table S1). Each jar was presented four times across the four experimental blocks in random order. Each sample 
from a given jar could contain either one, five or nine marbles, which manipulated the informativeness of the 
samples (i.e., one marble was least informative for inferring the proportion of blue marbles whereas nine 
marbles was most informative). Samples were presented in 3x3 grids with grey marbles serving as placeholders 
to ensure similar visual inputs across samples. Additionally, within each sample the order of the marbles (i.e., 
the location in the 3x3 grid) was permuted. The samples for each jar were randomly drawn from a binomial 
distribution with the corresponding probability of drawing a blue marble. This draw was performed once so each 
jar was associated with a consistent set of five samples with varying sizes (note that the total number of marbles 
across samples thus varied between jars). This ensured that all participants received identical sample 
information. For each trial with the same unseen jar, the order of the associated samples was varied randomly. 
Each sample was presented for 1s followed by a fixation cross presented for 2 to 6s. Following the sampling 
phase, participants were asked to indicate their estimate of the proportion of blue marbles in the jar by adjusting 
the ratio of blue to red marbles in a 100-marble grid using an MR-compatible five-button box. The starting value 
of the grid was always set to 50 red and 50 blue marbles. With the upper and lower buttons, the participants 
were able to adjust the grid in steps of five marbles, and with the left and right button in a one marble step, 
respectively. With the middle button participants confirmed their estimation. The maximum reaction time for 
the estimation phase was set to 7s. Participants received a bonus payment based on the average accuracy of 
their marble ratio estimates (performance-dependent bonus). 

Behavioral modelling 

We modeled participants9 responses using variants of a Bayesian observer model. The Bayesian observer 
represents the probability of drawing a blue marble from the unseen jar as a beta distribution with parameters 
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� and �, which is updated after each draw according to Bayes9 rule (Figure 2B). Because the beta distribution is 
a conjugate prior for the binomial distribution (the likelihood function in this task), the posterior belief 
distribution is also a beta distribution with ³s+1 = ³s + Bs and ³s+1 = ³s + Rs, where Bs and Rs are the number of blue 
and red marbles for a sample s respectively. The prior for the first draw of each trial is given by � = 	� = 1, 
representing a flat prior. The best estimate for the probability of drawing a blue marble is given by the 

expectation of the beta distribution � = 	
!
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Figure 2. Behavior in the marble task. A: Task design. Participants observed five samples from an unseen jar (sampling 

phase) and then entered their estimate of the proportion of blue marbles in the jar into a 10x10 grid (estimation phase). 

B: Schematic illustration of the Bayesian observer model with varying priors. A narrower prior belief centered on a default 

50:50 marble ratio predicts more misestimation of extreme jar proportions (top) and less uncertainty reduction during 

the sampling phase (bottom; s1 to s5 correspond to the five samples presented on a given trial). 
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To model empirical response patterns affecting subjects9 task accuracy, we considered two variants of this 
Bayesian observer model. In one model variant, we fit a parameter Ã	 g 1 for each subject, which described the  
initial setting of � and � on each trial prior to observing samples from a given jar (where Ã	 = � = 	�; Figure 2B). 
A higher value for r describes a narrower prior around the default belief of 0.5. In a second Bayesian observer 
model variant, we fit a parameter � g 0, which exponentially weighs the evidence of each sample: ³s+1 = ³s + 
(Bs)d and �s+1 =	�s + (Rs)

 d. If � < 1, the evidence of larger draws is underweighted, while for � > 1 the evidence 
of larger draws is overweighted. Comparing these models allowed us to test whether deviations from the 
unbiased Bayesian observer model were related to prior representation or evidence weighting respectively. 
 
To accommodate probabilistic responding of subjects, we compared these models with two alternative choice 
rules. One model family assumes that subjects9 reported estimates represent draws from the final beta 
distribution on each trial. Another model family assumes that subjects9 choices are draws from a truncated 
normal distribution (0	 f � f 1) that is centered on the expectation of the final beta distributions: 
�(�[����(�, �)], �), where � is a free model parameter that captures response noise around the model 
prediction. This parameter may reflect imprecision in entering one9s marble ratio estimate into the response 
grid, but it can also capture any unmodeled sources of (biased and random) errors in jar estimates beyond those 
explained by the model parameters of interest. This parameter may thus also capture model misfit. 
 
Bayesian observer models assume that participants track the full belief distribution over potential marble ratios 
and consider uncertainty when updating their estimate. To test whether subjects indeed behave in a Bayesian 
manner, we also fitted a simpler Rescorla-Wagner model that only updates a point estimate of the marble ratio 

belief: �<%#& =	�<% 2 	�(�<% 2	
'!

('!	#	)!)
), where �<% is the marble ratio point estimate after observing sample s, Bs 

and Rs are the number of blue and red marbles respectively, and 0	 f � f 1 is the free learning rate parameter. 
To model subjects9 responses, we included a free noise parameter � modelling Gaussian response noise around 
the final point estimate, similar to the noisy choice rule described previously for the Bayesian observer models. 
 
Model fitting and comparison. We fitted behavioral models to participants9 responses on all trials of the three 
MR blocks by minimizing the joint negative log likelihoods under each model using the fmincon routine 
implemented in MATLAB (version 2017b). We ensured model convergence by fitting each model 10 times and 
used the fitting iteration with the minimal negative log likelihood across subjects. We compared model fits by 
computing the Bayesian Information Criterion (BIC): ��� = � ln(�) 2 2	ln	(�), where k is the number of 
parameters, n is the number of datapoints, and L is the maximized model likelihood. We report BICs for each 
subject and across all subjects. 
 
Model simulations. We simulated behavior using the empirical parameter estimates and the trial sequences of 
each subject. This resulted in one synthetic dataset for each model with 51 simulated subjects each. We used 
these simulated datasets to perform model and parameter recovery checks. See the Supplementary 
Information for the results of these checks. 
 
Image acquisition and pre-processing. Participants underwent functional MRI scanning at the Max Planck 
institute for Human Development (Berlin, Germany) in a 3 Tesla Siemens TrioTim MRI system (Erlangen, 
Germany) using a multi-band EPI sequence (factor 4; TR)=)645)ms; TE)=)30)ms; flip angle 60°; FoV)=)222)mm; 
voxel size 3)×)3)×)3 mm; 40 transverse slices). This amounted to 1010 T2*-weighted functional images per 
scanner run per subject (except for one subject, who had 1020 acquired images per run). A T1-weighted 
structural scan was also acquired (MPRAGE: TR)=)2500)ms; TE)=)4.77)ms; flip angle 7°; FoV)=)256)mm; voxel size 
1)×)1)×)1 mm; 192 sagittal slices). 
 
T1-weighted images were brain extracted using ANTs software (version 2.3.5, http://stnava.github.io/ANTs/) 
using population level templates from the OASIS dataset 
(https://figshare.com/articles/dataset/ANTs_ANTsR_Brain_Templates/915436). The functional T2*-weighted 
scans were pre-processed in FSL (version 5.0.11) FEAT separately for each run. The pipeline includes motion 
correction, brain extraction of the functional images, and spatial smoothing using a Gaussian 5mm kernel. 
Following FEAT, the functional images were first detrended using SPM9s detrend function (at a 3rd order 
polynomial) and then high-pass filtered using a standard 8th order butterworth filter implemented in MATLAB 
(version 2017b) with a cut-off of 0.01 Hz. We then performed ICA on the resulting data using FSL MELODIC to 
identify residual artifacts. We manually labeled rejected components for 19 subjects (~37% of the total data; for 
details on the component rejection criteria see 38) and then used these labels to train FSL9s ICA classifier FIX to 
automatically label artifactual components for the remaining subjects. We tested different classification 
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thresholds and validated classification accuracy for several randomly selected subjects from the test set. We 
accepted a threshold of 20 after this manual inspection. Rejected components were then regressed out of the 
data using FSL9s fsl_regfilt function. Lastly, functional images were first registered to the brain-masked T1-
weighted images and then to MNI space (using the MNI152 template provided in FSL) via linear rigid-body 
transformation as implemented in FSL9s flirt function. 

Statistical analysis 

Behavioral analysis. All behavioral analyses reported were run in SPSS (Version 25). To limit the effect of 
univariate outliers on the reported results, we winsorized the estimation error, extreme jar bias, and behavioral 
model parameter variables. Outliers were defined as datapoints that were 1.5 times the interquartile range 
beyond the 25th or 75th percentile respectively. We used the highest/lowest score of the non-outlying datapoints 
to impute outlying values. Between zero and three values were imputed for each variable. 
 

Functional MRI analysis. Subject-level fMRI data were modelled using a mass-univariate GLM approach as 
implemented in SPM12 (Wellcome Department of Imaging Neuroscience, London, UK). To quantify BOLD 
response variability, we adapted a <least squares 3 single= (LS-S) approach as described by Mumford, et al. 39. 
This approach is implemented in an in-house version of variability toolbox for SPM 
(http://www.douglasdgarrett.com/#software) developed by our research group. This toolbox takes as input a 
standard GLM design matrix. We included the following regressors in each subject9s design matrix: Five 
regressors for the onsets of each successive sample presentation (with a duration of 1s), one regressor for the 
estimation phase onsets (with a duration of subjects9 RTs), and one regressor for the gambling phase onsets 
(with a duration of subjects9 RTs). All regressors were modelled as stick functions that were convolved with the 
canonical hemodynamic response function (HRF) and its first and second derivatives resulting in a total of 21 
regressors per scanner run plus one constant regressors for each run. The toolbox then proceeds to iteratively 
fit GLMs which include one regressor modelling a single event and a second regressor modelling all other events 
of the same and all other conditions (this is done separately for each task run). To avoid issues with beta 
estimation close to the end of a timeseries (caused by truncation of the HRF), the toolbox discards any onsets 
that occur within the final 20s of the timeseries. Finally, the toolbox computes the standard deviation over the 
resulting (across-trial) beta estimates for each condition to yield the measure of SDBOLD used in this study. 
Compared to other approaches to SDBOLD estimation, this SDBOLD quantification allows one to parse dynamics 
amongst neighboring events/time points, while accounting for hemodynamic delays. 
 
To compare our SDBOLD results to standard analysis approaches, we also obtained restricted maximum 
likelihood (ReML) GLM beta estimates for each task condition. The design matrix of this GLM included the same 
regressors as the one passed to variability toolbox for SDBOLD estimation. We defined contrasts to summarize 
condition effects across task runs. However, this approach ignores the variance in uncertainty trajectories across 
trials that result from our sample size manipulation (see Figure S1B). To account for this variance, we ran another 
GLM modelling the modulation of the BOLD signal by the posterior variance (i.e., uncertainty) of the unbiased 
Bayesian observer model during the sampling process. The design matrix of this GLM included the following 
regressors for each scanner run: one regressor for the sample onsets (with a duration of 1s), one regressor for 
the parametric modulation of the sample onsets regressor by model-derived posterior variances, one regressor 
for the estimation phase onsets (with a duration of subjects9 RTs), and one regressor for the gambling phase 
onsets (with a duration of subjects9 RTs). We mean-centered the parametric modulation regressor prior to 
model estimation. All regressors were modelled as stick functions (except for the parametric modulation 
regressor) that were convolved with the canonical hemodynamic response function (HRF) and its first and 
second derivatives resulting in a total of 12 regressors per scanner run. We also included three additional 
constant regressors modelling the mean of each scanner run. To look at the effect of the parametric modulation 
regressor, we defined a contrast that picked out the beta estimates of this regressor for each scanner run (more 
precisely, the parametric modulation regressors convolved with the canonical HRF).  
 
To relate within-person SDBOLD or standard GLM beta estimates to the task design or behavior, we use a partial 
least-squares approach (PLS) 40. PLS finds latent factors that express maximal covariance between brain and 
behavior/design matrices using singular value decomposition. Brain scores are defined as the product of the 
brain data matrix with their respective latent factor weights (saliences). We will refer to brain scores in our 
SDBOLD analyses as <latent SDBOLD= and to the brain scores of our parametric modulation analyses as <latent 
uncertainty modulation=. To obtain a summary measure of the spatial expression of a latent variable, we can 
sum brain scores over all voxels. We performed 1000 permutation tests to assess the significance of the brain-
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design/behavior relationship against a null model. We then divided each voxel9s salience by its bootstrapped 
standard error, at +/- 3 (approximating a 99.9% confidence interval), which serves as a pseudo-normalized 
measure of voxel robustness. We determined clusters of voxels with robust saliences by applying a cluster mask 
with a minimum threshold of 25 voxels. Prior to all PLS analyses, brain measures images were grey matter 
masked using the tissue prior provided in FSL at a probability threshold of > 0.37, and restrained to voxels with 
non-zero values for the respective brain measure across subjects. 
 
To account for univariate outliers and non-linear relationships, we ran all reported brain-behavior analyses on 
ranked brain and behavioral variables in line with previous research 41. The results should thus be interpreted as 
monotonic rather than strictly linear relationships. Furthermore, we used a criterion of Cook9s distance > 4/N to 
identify multivariate outliers in all PLS models, removing where present. We nevertheless report the results of 
all analyses for the full dataset (N=51) without outliers removed in the Supplementary Results. 

 
Data availability 

 
The code to perform all behavioral and neuroimaging analyses is available at: 
https://github.com/LNDG/Skowron_etal_2023. 
 

RESULTS 

Subjects9 estimation errors are explained by individual differences in prior belief width 

Participants performed the <marble task= during functional MRI scanning (Figure 2A). On each trial, they 
observed five sequential sample draws from a hypothetical <jar= containing a certain proportion of red and blue 
marbles (sampling phase). The marble ratio of the unseen jar varied from trial to trial and sample draws could 
contain one, five or nine marbles. Afterwards, participants indicated their estimate of the proportion of blue 
marbles in the jar by adjusting the number of blue marbles in a 10 by 10 response grid representing the unseen 
jar (estimation phase; see methods for further details). Our primary measure of interest was estimation error, 
defined as 1+ =	 |�+ 2	 	�J+|, where q is the experienced proportion of blue marbles on trial t (i.e., the mean across 
samples; note that this quantity differs from the true proportion of the unseen jar but constitutes the best 
(unbiased) estimate given the available samples) and 	»J  is the subject9s reported estimate of the blue marble 
proportion of the jar on trial t (Figure 3A). We computed the median estimation error across trials as an individual 
difference measure of estimation accuracy.   Subjects9 median estimation error ranged from 0.01 to 0.20 
(Median = 0.07, SD = 0.035). A Wilcoxon signed-ranks test revealed that estimation errors significantly differed 
from zero (Z = 6.215, one-sided p = 2.57 ; 10,&-). This indicates differences between experienced and estimated 
marble ratios on the group level. Previous research suggests that people often underestimate probabilities of 
frequent events and overestimate probabilities of rare events in similar decision-from-experience tasks 42,43. To 
see whether this effect contributed to estimation accuracy in our task, we examined whether subjects made 
more errors for jars with more extreme marble ratios. We ran a linear mixed model predicting trial-wise 
estimation error from the marble ratio distance from 50:50 for a given jar. To account for individual differences 
in intercepts, we entered subject ID as a covariate in the model. There was a significant positive relationship 
between trial-wise estimation-error and jar marble ratio distance from 50:50 (F(1,2702) = 154.608, p = 
1.48 ; 10,./, semi-partial h2 = 0.048). The more extreme the jar marble ratio, the larger subjects9 estimation 
error on a given trial. In the following sections, we will refer to this effect as the <extreme jar bias=. Next, we 
examined whether individual differences in this extreme jar bias explained individual differences in median 
estimation error. We computed individuals9 extreme jar bias by running regression models predicting trial-wise 
estimation error from marble ratio distance from 50:50 for each subject separately. Individuals9 extreme jar bias 
was defined as the fitted (unstandardized) slopes of these regression models (Mean = 0.198, SD = 0.230). We 
found that individual differences in extreme jar bias correlated strongly and positively with subjects9 median 
estimation error (Pearson9s r(49) = 0.63, p = 8.28 ; 10,0; Figure 3B). Biased estimation of extreme jar proportions 
thus contributed to individual differences in task accuracy. 

We next fitted a set of Bayesian observer models that could account for this estimation bias in terms of 
inadequate uncertainty representations. The model with the overall best Bayesian Information Criterion (BIC) 
value was a Bayesian observer model which included a fitted prior parameter r, describing individual differences 
in the width of the belief distribution over marble ratios before observing any samples, and a response noise 
parameter �, which captures variability of subjects9 reported marble ratio estimates around model predictions 
(Table 1). The second-best overall model included an exponential evidence weight � and a noisy choice rule 
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parameter s , followed by an exponential evidence weight and fitted prior model assuming responses were 
sampled from the final trial posterior of the belief distribution. A Rescorla-Wagner model had the worst fit out 
of all models, which suggests that people indeed keep track of and leverage uncertainty estimates to update 
their marble ratio belief in a Bayesian manner. Parameters of the winning model were recoverable from 
simulations and model recovery was acceptable at the group level  (see Supplementary Methods for details). 
 

We next tested whether the prior width parameter r of the winning Bayesian observer model captured 
individual differences in extreme jar bias that contributed to subjects9 estimation error while controlling for 
other unmodelled sources of error captured by the response noise parameter �. The fitted prior parameter r of 
the winning Bayesian observer model had a median of 2.45 (SD = 4.23), indicating that subjects on average had 
a narrower prior than the unbiased Bayesian observer (r = 1). Moreover, the fitted noise parameter � had a 
median of 0.10 (SD = 0.05), highlighting that subjects9 reported marble ratios deviated from model predictions 
by 10 marbles on average. We ran multiple regression analyses predicting median estimation error and extreme 
jar bias from the fitted prior parameter r and noise parameter �  respectively. In the first regression model, a 
narrower prior parameter r (t(48) = 13.152, p = 1.57 ; 10,&0, semi-partial h2 = 0.771; Figure 3C) and a higher noise 
parameter � (t(48) = 4.501, p = 4.30 ; 10,1, semi-partial h2 = 0.090; Figure 3D) uniquely predicted larger 
estimation errors (full model: (F(2,48) = 88.135, p = 8.54 ; 10,&0, R2 = 0.786). Importantly, the prior width 
parameter r accounted for most of the explained variance in estimation errors suggesting that our model 
captured individual differences in subjects9 response behavior well. A narrower parameter r reflects a stronger 
prior belief in a 50:50 marble ratio, which should bias estimates for more extreme jars towards this (incorrect) 

Figure 3. Latent sources of individual estimation errors. A: Left: Reported blue marble proportion estimates across trials and subjects 

against the experienced blue marble proportion across samples on a given trial. Groups are based on a median split on the fitted prior 

width parameter r of the Bayesian observer model (i.e., the narrow prior group had higher parameter estimates). Right: Schematic 

example of our trial-wise estimation error measure. B: Individual differences in median estimation error related to estimation accuracy 

for jars with extreme marble ratios. C-D: The fitted prior width and response noise parameters of the Bayesian observer model predicted 

differences in median estimation error. Plotted parameters are residualized by the other model parameter respectively. 
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default belief. In line with this expectation, our second regression model revealed that subjects9 extreme jar bias 
was positively related to prior width r (t(48) = 11.780, p = 9.11 ; 10,&2, semi-partial h2 = 0.499) but also 
negatively to response noise � (t(48) = -2.983, p = 4.48 ; 10,., semi-partial h2 = -0.032; full model: F(2,48) = 
114.968, p = 4.956 ; 10,&3, R2 = 0.827). The significant (although smaller) effect of the noise parameter � on 
extreme jar bias was driven by a small number of subjects with negative extreme jar bias slopes (i.e., subjects 
who made larger errors for jars with even rather than extreme marble ratios), which the Bayesian observer 
model could not account for (see Supplementary Results for further details). Taken together, these analyses 
indicate that the width of the prior belief substantially impacts individual task performance by capturing 
subjects9 tendency to overestimate jars with blue marble proportions close to 0 and underestimate jars with blue 
marble proportions close to 1 (Figure 3A). 
 
Table 1. Model comparison. BIC for each fitted behavioral model. 
 

Model Rescorla-Wagner Bayesian observer 
Parameters a, s r d r, s d, s 
BIC 23.38 ; 10. 23.68 ; 10. 23.82 ; 10. 24.59 ; 10. 24.16 ; 10.  

 
 

BOLD signal variability tracks individual differences in prior uncertainty and compresses during learning 

To investigate our hypothesis that BOLD signal variability (SDBOLD) collapses with successive sample 
presentations, we ran a task PLS analysis 40 relating SDBOLD to the five sample periods. This analysis returned a 
significant latent effect (permuted p = 0) showing that SDBOLD reduced with successive exposure to marble 
samples across a distributed set of cortical brain regions spanning the parietal, prefrontal and temporal lobes 
(Figure 4A, see Figure S2A for full axial brain plots and Table S3 for peak voxel coordinates in robust clusters). 
We further investigated this trend by fitting orthogonal polynomial contrasts in a linear mixed model entering 
subject ID as covariate. The pattern of latent SDBOLD change was best described by a linear contrast (F(1,201) = 
40.444, p = 1.34 ; 10,3, semi-partial h2 = 1.12 ; 10,4) over a quadratic (F(1,201)=3.066, p = 8.15 ; 10,4, semi-
partial h2 = 8.41 ; 10,/) and cubic (F(1,201)=3.416, p = 6.61 ; 10,4, semi-partial h2 = 9.61 ; 10,/) one. 
 
Next, we asked whether the ability to collapse SDBOLD over the sampling period related to individual differences 
in task accuracy. To this end, we quantified SDBOLD change (�SDBOLD) by fitting linear regression slopes to the 
SDBOLD estimates for the five sample presentations in each voxel. We ran behavioral PLS analysis relating these 
SDBOLD slopes to subjects9 median estimation error. Four Cook9s d (i.e., multivariate) outliers were removed from 
this and all subsequent reported analyses resulting in N = 47 (we refer to the Supplementary Information for PLS 
results ran on the full dataset). We found a significant latent relationship (permuted p = 3.00 ; 10,., Figure 4B, 
cf. Figure S3A for N = 51) revealing that subjects who decreased SDBOLD more, especially in parietal, prefrontal 
(PFC) and temporal cortex, also produced smaller estimation errors  (Spearman9s r = 0.612). Notably, this set of 
brain regions largely overlapped with the canonical Default Mode Network (DMN) that is typically observed in 
resting-state fMRI (BSR > 3; Figure 4C, see Figure S2B for full axial brain plots and Table S4 for peak voxel 
coordinates in robust clusters) 1. 
 
We further investigated our hypothesis that individual differences in state uncertainty representations could 
explain the relationship between �SDBOLD and estimation error. Our winning behavioral model suggested that 
subjects with a narrower prior belief distribution over marble ratios (i.e., large r parameter) showed little 
decrease in state uncertainty during sampling, because they started out with less uncertainty to begin with, and 
made more errors because they remained inflexible about their (incorrect) prior belief of a 50:50 marble ratio. 
In contrast, more accurate subjects (i.e., r close to 1) represented maximal state uncertainty at the start of a 
trial and reduced uncertainty more with each presented sample (Figure 2B). We expected �SDBOLD to mirror 
these individual differences in state uncertainty change during the sampling phase. To test this hypothesis, we 
ran multiple regression analysis predicting latent �SDBOLD (i.e., the whole-brain pattern of �SDBOLD which 
relates to median estimation error; see Figure 3b) from the prior width r parameter of the winning behavioral 
model. We also entered the response noise parameter � as a control variable, which captures all unmodeled 
sources of estimation error and thus serves as a measure of model misfit (see Methods). This model explained a 
significant amount of variance (F(2,44) = 4.489, p = 1.68 ; 10,4, R2 = 0.169). There was a significant main effect 
only for prior width r (t(44) = 2.703, p = 9.72 ; 10,., semi-partial h2 = 0.138) but not for noise parameter � (t(44) 
= 0.425, p = 0.673). Therefore, the wider a participant9s prior belief (i.e., smaller r), the more they collapsed 
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SDBOLD during the sampling phase (Figure 4D). To ensure that that these effects were not due to the specific 
parameterization of the winning behavioral model, we replicated this analysis also for the parameters of the 
(second-best) evidence weight model (see Supplementary Results). 
 

It is possible that our within-person effects of �SDBOLD are not independent of between-subject differences in 
SDBOLD levels, which have also been linked to task performance in previous studies 13.  To account for this, we 
computed a latent SDBOLD control variable by matrix multiplying brain saliences from the behavioral PLS analysis  
relating �SDBOLD to estimation error (which reflect the spatial expression of the observed relationship) with 
subjects9 SDBOLD level at the first sample presentation period. We found no significant correlation between 
latent �SDBOLD and latent SDBOLD at first sample exposure (Spearman9s r(45) = -0.073, p = 6.28 ; 10,&).  Next, 
estimation error was significantly related to �SDBOLD (t(44) = 5.430, p = 2 ; 10,2, semi-partial h2 = 0.625) when 
controlling for the effect of latent SDBOLD at first sample exposure (t(44) = 1.806, p = 7.78 ; 10,4, semi-partial h2 
= 0.208; full model: F(2,44) = 15.747, p = 7 ; 10,2, R2 = 0.417). Likewise, prior width r (residualized by noise 
parameter �) of the winning Bayesian-observer model was significantly related to �SDBOLD (t(44) = 3.151, p = 
2.92 ; 10,., semi-partial h2 = 0.409) when controlling for the effect of latent SDBOLD at first sample exposure 
(t(44) = 2.526, p = 1.52 ; 10,4, semi-partial h2 = 0.328; full model: F(2,44) = 7.618, p = 1.44 ; 10,., R2 = 0.257). In 
both models, the inclusion of the control variable also did not diminish the effect size of �SDBOLD on these 
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behavioral measures. Thus, the effect of within-person SDBOLD compression on task performance was 
independent of between-subject differences in initial SDBOLD levels. 
 
Overall, these results indicate that the degree to which subjects compress SDBOLD with learning predicts 
individual differences in inference accuracy, which can be explained in terms of idiosyncratic uncertainty 
representations. 

Standard GLM neural uncertainty correlates are distinct from BOLD variability effects 

Finally, we compared our SDBOLD findings to a more standard GLM analysis approach looking for brain areas 
whose (average) BOLD response magnitude is correlated with uncertainty. To this end, we obtained voxel-wise 
GLM beta estimates for each of the sample periods and entered them into behavioral PLS analysis relating them 
to estimation error. This multivariate approach makes the results directly comparable to our main finding 
showing that SDBOLD compression during learning relates to individual differences in task performance. This 
analysis did not yield a significant latent relationship (permuted p = 0.161 for N = 47 and permuted p = 0.268 for 
N = 51), suggesting that SDBOLD but not mean BOLD change predicted individual differences in inference 
accuracy. However, this change in average BOLD activity over the sampling period does not account for more 
nuanced modulation of the BOLD signal by uncertainty resulting from the varying sample sizes in our task 
design (see Figure S1B). In other words, an unbiased Bayesian observer model would predict more uncertainty 
reduction after observing a larger compared to a smaller sample in addition to the overall reduction in 
uncertainty with the total accumulated evidence (i.e., trial time). Our SDBOLD metric required discrete 
uncertainty conditions (with sufficient trial counts) and we thus only considered the main effect of trial time on 
uncertainty. However, in a standard GLM approach we could model the parametric modulation of the BOLD 
signal by the posterior variance of the belief distribution (i.e., uncertainty) for the unbiased Bayesian observer 
model, which accounts for both trial time and sample size effects on uncertainty. Again, we used a multivariate 
PLS approach to relate individuals9 voxel-wise GLM beta estimates (for a parametric uncertainty regressor) to 
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median estimation error. This revealed a significant latent association (permuted p = 	3.40 ; 10,4, Spearman9s r 
= 0.675, Figure 5A, cf. Figure S3B for N = 51). Robust positive clusters were mainly located in the lateral parietal 
cortex, PFC (dorsomedial, ventrolateral, and rostrolateral parts), and in the insula. Robust negative clusters 
were present in ventromedial PFC (vmPFC) and in the left hippocampus (see Figure S2C for full axial brain plots 
and Table S5 for peak voxel coordinates in robust clusters). This latent relationship was related to the prior width 
parameter r of the winning Bayesian observer model, similar to the effect of DSDBOLD (Figure 5B). For further 
details on these results, please refer to the Supplementary Information. 
 
Qualitatively, these effect regions seem to show little overlap with those showing an effect for �SDBOLD. To test 
the spatial specificity of �SDBOLD effects, we computed a new latent variable by extracting the brain saliences 
from the behavioral PLS analysis relating latent �SDBOLD to estimation error and matrix-multiplied them with 
the uncertainty beta estimates in each voxel from our standard parametric GLM analysis. We then ran a multiple 
regression analysis predicting median estimation error from latent �SDBOLD and this spatially-matched latent 
parametric uncertainty modulation variable. The regression model was significant (F(2,44) = 13.901, p = 
2.10 ; 10,1) with an R2 of 0.387. The main effect of latent �SDBOLD was significant (t(44) = 5.265, p = 4 ; 10,2, 
semi-partial h2 = 0.386) but not for the new latent control variable (t(44) = 0.975, p = 0.335). This indicates that 
�SDBOLD effects and the parametric uncertainty modulation of the BOLD signal on performance are spatially 
distinct in the brain. 
 
Furthermore, we found a significant positive correlation between the latent �SDBOLD (Spearman9s r(45) = 0.407, 
p = 4.55 ; 10,.) and latent uncertainty modulation effects on estimation accuracy indicating that more accurate 
performers show both types of uncertainty representation in the brain. We ran multiple regression analysis 
predicting estimation errors from both latent �SDBOLD and latent uncertainty modulation to investigate whether 
they explained unique variance in estimation errors. The full model was significant (F(2,44) = 31.883, p = 
2.76 ; 10,3, R2 = 0.592; Figure 5C). We found a significant main effect of both latent �SDBOLD (t(44) = 4.844, p = 
1.60 ; 10,1, semi-partial h2 = 0.218) and latent uncertainty modulation (t(44) = 3.829, p = 4.04 ; 10,/, semi-
partial h2 =  0.136). This suggests that both types of neural uncertainty correlates uniquely relate to task 
accuracy. 
 
Overall, these analyses reveal that SDBOLD effects are spatially distinct and uniquely relate to task accuracy 
compared to neural correlates revealed by a more standard GLM approach. 

DISCUSSION 

In this study we show that reductions in state uncertainty over the course of learning co-occur with a 
compression in BOLD signal variability. Moreover, individuals who decreased state uncertainty to a greater 
extent showed more pronounced SDBOLD compression and made smaller estimation errors on average. 
Behavioral modeling suggested that better performers reduced state uncertainty to a greater extent because 
they began with a wider (more uncertain and flexible) prior belief distribution before observing any samples, 
resulting in more unbiased marble ratio estimates. 

Our findings establish SDBOLD as a novel within-person neural correlate of uncertainty, which reduces over the 
course of Bayesian inference/learning, and relates to inference accuracy. The current findings thus add to a 
growing literature demonstrating that within-person SDBOLD modulation in the face of varying task demands 
facilitates adaptive behavior across different cognitive domains (see 13). Our study is the first to directly show 
that SDBOLD tracks reductions in uncertainty. The bulk of past empirical work arguing for such a link showed 
modulation of brain signal variability across disparate task conditions that varied along several dimensions 
beyond uncertainty (e.g., cognitive demand, bottom-up sensory input or processing requirements 17,18,44,45). By 
employing a learning paradigm, we were able to operationalize uncertainty in a highly precise manner; 
specifically, one9s uncertainty regarding the latent state of an environmental variable, a property that can be 
reduced through learning from observations. To our knowledge, the only other study to date that has directly 
investigated brain signal variability changes with uncertainty is a recent study by Kosciessa, et al. 12, who 
systematically manipulated uncertainty in a perceptual decision-making task by varying the number of visual 
features that could be probed in a subsequent decision phase. This paradigm allowed the researchers to equate 
bottom-up visual input across uncertainty conditions, similar to our own study. However, their study focused on 
irreducible uncertainty (sometimes referred to as risk or outcome uncertainty in the literature 2,3) and only 
considered temporal variability in the EEG signal. In contrast, we show that reductions in state uncertainty (i.e., 
uncertainty about the probability of an outcome) due to learning are mirrored in the variability of the fMRI BOLD 
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signal. This supports the longstanding idea that brain signal variability enables cognitive flexibility 13,14, which is 
required early on in the learning process to update one9s internal state belief. 
 
Another innovation of our study over prior BOLD variability work more generally13,14 is the use of an event-
related method to quantify trial-to-trial SDBOLD. This allowed us to track the evolution of SDBOLD with changes in 
uncertainty on a short time scale (several seconds) 39. This method is inspired by the machine-learning fMRI 
literature allowing for the estimation of GLM beta parameters for single events, over which we can compute the 
variance for each uncertainty condition.  
 
These features of our study resolve various shortcomings of previous work and provide strong support for a link 
between brain signal variability and uncertainty. 
 
Individual differences in uncertainty representations track inference accuracy 
 
We found that low performing individuals made most estimation errors for extreme marble ratios, such that jars 
with blue marble proportions close to one were underestimated and those with proportions close to zero were 
overestimated. This effect has been reported previously for tasks where participants are asked to judge 
outcome probabilities from experience, sometimes referred to as under-extremity 42,43,46. Notably, some studies 
found that this effect is abolished when participants were asked to give verbal judgements instead 47. This may 
suggest that individual differences in extreme jar bias result from people9s (in)ability to accurately enter their 
marble ratio estimates into the grid in the estimation phase of our task. However, we found that brain activity 
during sampling (prior to the estimation phase) predicted individual differences in peoples9 (average) estimation 
error. It is thus likely that the observed bias reflects people9s internal representations rather than being a mere 
consequence of our chosen response modality. 
 
Our winning Bayesian observer model suggested that such estimation errors could best be explained by 
individual differences in the representation of the initial prior belief over blue marble proportions rather than in 
belief updating; low performers held a narrower prior belief distribution over the default belief of a 50:50 marble 
ratio. It is possible that this prior was induced by our task design given the default position of the response grid. 
The fitted prior could thus reflect individual differences in anchoring to this task feature 48. Alternatively, this 
bias could reflect bona fide trait-like individual differences in expectations about extreme outcomes. In line with 
this explanation, Glaze, et al. 49 found that performance differences on a change-point inference task were best 
explained by participants9 prior width over potential change rates, which cannot simply be explained by 
anchoring. Note that the distinction between prior beliefs and belief updating is also pertinent to other 
approximately-Bayesian and non-Bayesian cognitive models that have been used to model the inference 
process in similar tasks, which we did not consider here 43,50. These models account for cognitive limitations in 
human information processing and may provide an even better fit to behavioral data. While not the main aim 
of the current study, future modelling and experimental work is required to pin down the source of individual 
differences in under-extremity observed in the current study. 
 
We showed that less SDBOLD compression (independent of initial SDBOLD levels) in poorer performers could best 
be explained by more limited uncertainty reduction, based on parameter estimates for the winning behavioral 
model. Still, our results rely on the assumption that participants represent and utilize uncertainty akin to an 
(approximate) Bayesian observer. Future work should reduce reliance on model assumptions and obtain 
subjective uncertainty estimates. For example, one could regularly ask people to report their state belief 
together with their belief confidence throughout the learning process to directly track updates in their 
subjective belief distribution. 
 
Performance-related SDBOLD collapse in the Default Mode Network 

 
We observed performance-relevant collapse in SDBOLD in a network of brain regions that largely overlapped with 
regions commonly ascribed to the default mode network (DMN) in resting-state fMRI connectivity analyses 1,51-

54, including  parietal (precuneus, inferior parietal lobe including the angular gyrus), prefrontal (superior frontal 
gyrus, frontopolar cortex, orbitofrontal cortex, paracingulate gyrus) and temporal (middle temporal gyrus) 
cortices. Previous work has consistently reported deactivation of this brain network during externally-cued, 
demanding cognitive tasks compared to rest 51,52,54-57. In contrast, internally-oriented tasks that call for self-
referential processing and memory recollection demonstrate increased activity in key regions of the DMN 54,58-

60. With respect to brain signal variability, one study by Grady and Garrett 44 found increased SDBOLD in DMN 
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regions in externally- as compared to internally-guided tasks. Given previous reports that higher local SDBOLD is 
associated with lower whole-brain functional network dimensionality 61, this finding may reflect more crosstalk 
between the DMN and other brain networks during externally-guided tasks. Therefore, SDBOLD compression 
during learning may reflect the gradual build-up of an internal world model; larger SDBOLD under high state 
uncertainty early on may afford a more flexible incorporation of incoming information to update one9s internal 
state belief. As state uncertainty reduces and SDBOLD compresses, the brain arrives at a stable internal belief 
representation, which informs one9s jar marble ratio estimate in the subsequent task phase.  
 
Previous research has shown that internally-guided tasks evoke a coupling between the DMN and the 
frontoparietal-control network to support task performance 62. In our task, we would expect such a coupling to 
emerge towards the end of the sampling period reflecting the utilization of one9s internal state belief to prepare 
the upcoming response. Indeed, we observe a concomitant increase in BOLD activity in the fronto-parietal 
network and compression of SDBOLD in the DMN in high performing subjects. How functional connectivity 
between different brain networks changes over the course of learning goes beyond the scope of the current 
study, but constitutes an interesting target for future research. 
 
Standard analytic approaches reveal different neural uncertainty correlates compared to SDBOLD 

 
Our standard GLM analysis revealed that BOLD modulation by uncertainty also related to estimation accuracy 
in our task. On one hand, higher BOLD (in lateral parietal cortex, dorsomedial PFC, ventro- and rostrolateral 
PFC, and anterior insula) with lower uncertainty predicted higher estimation accuracy. In other words, high 
performers showed an increase in BOLD activity in these regions as they observed more samples and became 
more certain about the jar marble ratio on a given trial. These areas correspond to fronto-parietal control and 
dorsal attention brain networks, which support goal-directed behavior in externally-driven tasks 1,63-66. 
Conversely, positive coupling between the BOLD signal and state uncertainty in mainly in the vmPFC (and a 
cluster in the left hippocampus) also predicted better performance in our task, which has previously been linked 
to confidence representations 67 (see Supplementary Information for detailed discussion of these findings). 
 
Interestingly, we found that uncertainty representations in SDBOLD (in DMN regions) and parametric BOLD 
signal modulation (in fronto-parietal control/attention regions) were spatially different and uniquely predicted 
estimation accuracy. Why would the brain track uncertainty in these different neural signals and across different 
networks? One possibility could be that SDBOLD tracks uncertainty about the latent environmental state with or 
without immediate relevance for decision-making, while parametric BOLD modulation by uncertainty may be 
more relevant in the context of goal-directed decision formation and action selection. In support of this view, 
previous research has shown modulation of brain signal variability by stimulus features even when no action 
was required. For example, in the human neuroimaging literature, changes in neural variability have been 
observed in response to varying complexity of visual stimuli during passive viewing, which were linked to offline 
cognitive performance 41,45. In a similar vein, it has recently been argued that early perceptual uncertainty, which 
has been the main focus of sampling accounts of neural variability, is tracked irrespective of task demands but 
can be flexibly utilized in higher-order decision-making 6-8,68. Thus, changes in brain signal variability may track 
environmental variables without the need for immediate action. In contrast, parametric BOLD modulation by 
uncertainty has been reported for learning and decision-making tasks that require participants to make choices 
on every trial 2,23-37. As such, these neural uncertainty correlates may be more tightly linked to decision formation 
and may in some cases even relate to metacognitive awareness of this decision-relevant variable 67,69,70. 
Although speculative, this framework makes testable predictions for situations in which we would expect to see 
a dissociation of these two neural signals, which should be addressed in future work. 

 
Limitations and next steps 
 

One potential limitation of our task design was that our stimulus sample size manipulation introduced trial-to-
trial variance in how much uncertainty could be reduced with each presented sample (Figure S1B). Because our 
SDBOLD measure was computed for each sample period across trials, uncertainty levels were by definition not 
equivalent within each condition bin (although uncertainty always decreased across sample periods). However, 
our results showed that SDBOLD effects could not be explained by parametric BOLD signal modulation by trial-
to-trial differences in uncertainty trajectories in the same brain regions, which could have accounted for this 
variance. Ideally, future studies should keep sample size consistent between trials so that SDBOLD can be 
computed over comparable uncertainty levels.  
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Another potential limitation is that uncertainty was collinear with within-trial time in our task; the more samples 
were presented, the more uncertainty could be reduced in general. However, this is an inevitable consequence 
of decision-making and learning in stable environments, in which one can simply accumulate evidence over 
time. Although within-trial time could have introduced  arousal- or attention-related effects (which have 
previously been linked to human brain signal variability 13),  we observed performance-related interindividual 
variability in SDBOLD compression over the sampling period. Such an effect cannot, by definition, be accounted 
for by the fixed factor of trial time. Nevertheless, future work could investigate the coupling between brain 
signal variability and uncertainty in non-stationary learning environments (see e.g. 3), within which uncertainty 
can increase or decrease over time. 
 
Conclusion 

 
We provide first evidence that moment-to-moment brain signal variability compresses with increasing belief 
precision during learning. Whether brain signal compression is directly proportional to the informativeness of 
the available evidence is an important prediction that should be investigated in future work.    
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Figure S1. Model comparison and simulations. A: Counts of models with the lowest BIC across 

subjects. B: Trial-wise trajectories of the posterior variances of the marble ratio belief distribution for 

the unbiased Bayesian observer model. C: Parameter recovery for the Bayesian observer model with 

free prior width r and noisy choice s. D: Parameter recovery for the Bayesian observer model with 

free evidence weight d and noisy choice s. E: Proportion of models recovered from simulated subjects 

for each model. Note. RW = Rescorla-Wagner model, expo = Bayesian observer with exponential 

evidence weight d and sampling choice rule, prior = Bayesian observer model with fitted prior width 

r and sampling choice rule, expo+noise = same as expo model but with noisy choice s, prior+noise = 

same as prior but with noisy choice s 
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Figure S2. Axial brain plots for the PLS results. A: Task PLS model relating SDBOLD to sample 
presentations. B: Behavioral PLS model relating �SDBOLD to median estimation error (N = 47). C: 

Behavioral PLS model relating BOLD signal uncertainty modulation to median estimation error (N = 
47). Bootstrap ratio = BSR. 
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Figure S3. Behavioral PLS results for the full dataset (N = 51). A: Behavioral PLS model relating �SDBOLD to 
average estimation error. B: Behavioral PLS model relating BOLD signal uncertainty modulation to median 
estimation error. Note: The results are presented for rank scored variables. P-values are based on 

nonparametric permutation tests. 
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Supplementary Table S1. Overview of the 18 marble jars. Each participant completed each jar four times 
(twice in the low reward and twice in the high reward condition). 
 

 

  

Jar Jar type p(blue) Payoff 
gamble 

EV gamble EV certain EV 
difference 

1 risk seeking 0.2 55 11 10 1 
2 risk seeking 0.1 130 13 10 3 
3 risk seeking 0.4 28 11.2 10 1.2 

4 risk seeking 0.6 22 13.2 10 3.2 
5 risk seeking 0.9 12 10.8 10 0.8 
6 risk seeking 0.8 16 12.8 10 2.8 

7 risk neutral 0.1 100 10 10 0 
8 risk neutral 0.2 50 10 10 0 
9 risk neutral 0.25 40 10 10 0 
10 risk neutral 0.77 13 10 10 0 

11 risk neutral 0.83 12 10 10 0 
12 risk neutral 0.91 11 10 10 0 
13 risk averse 0.1 92 9.2 10 -0.8 

14 risk averse 0.2 35 7 10 -3 
15 risk averse 0.6 15 9 10 -1 
16 risk averse 0.4 17 6.8 10 -3.2 

17 risk averse 0.8 11 8.8 10 -1.2 
18 risk averse 0.9 8 7.2 10 -2.8 

Note. EV = Expected value, p(blue) = blue marble probability 
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Supplementary Table S2. Model recovery. BIC of each model for each simulated dataset. 
 

Recovered model: RW expo prior expo+noise prior+noise 

RW -3508.163 -1984.135 1560.267 -2694.659 -2633.512 

expo -2828.659 -4926.453 -3708.676 -4223.386 -4018.178 

prior -3706.85 -5704.678 -6375.963 -5297.432 -5702.832 

expo+noise -2888.764 -3287.136 -2035.45 -4396.865 -4037.069 

prior+noise -3207.927 -3669.239 -3177.083 -4293.817 -4770.482 
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Supplementary Table S3: Peak voxel coordinates in robust clusters (BSR > 3) for the significant latent variable of 

the task PLS analysis relating SDBOLD to sample presentation. 
 

 

MNI          

X  Y  Z  BSR  p-value  Cluster size (voxels)  Anatomical region  

-39 -54 36 -6.4734 0.0000 4086 L Inferior Parietal Lobule 

-33 51 0 -6.3604 0.0000 488 L Middle Frontal Gyrus 

-45 

(-45) 

12 

(9) 

54 

(54) 

-6.2607 0.0000 3370 L Middle Frontal Gyrus* 

-9 -96 12 -5.9355 0.0000 384 L Superior Occipital Gyrus 

60 -24 -3 -5.2715 0.0000 189 R Middle Temporal Gyrus 

3 -6 66 -4.5180 0.0000 36 R Posterior-Medial Frontal 

-30 -39 -12 -4.5173 0.0000 25 L Fusiform Gyrus 

15 48 0 -4.3964 0.0000 58 R Superior Medial Gyrus 

45 -6 -3 -4.2319 0.0000 27 R Insula Lobe 

-24 -39 66 -4.1320 0.0000 46 L Postcentral Gyrus 

18 

(22) 

-24 

(-24) 

63 

(63) 

-4.0587 0.0000 52 R Precentral Gyrus* 

Note. Abbreviations: MNI = Coordinates in Montreal Neurological Institute space, BSR = Bootstrap ratio. 

Anatomic labels were derived from the cytoarchitectonic atlas provided in the anatomy toolbox for SPM 8 
(Eickhoff et al., 2005). We only report clusters of 25 voxels or more. *Peak voxel not assigned anatomical label 
in anatomy toolbox. Anatomical label corresponds to bracketed coordinates. 
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Supplementary Table S4: Peak voxel coordinates in robust clusters (BSR > 3) for the significant latent variable of 

the behavioral PLS analysis relating �SDBOLD to estimation error (N = 47). 
 

MNI          

X  Y  Z  BSR  p-value  Cluster size (voxels)  Anatomical region  

57 3 -24 7.6886 0.0000 180 R Middle Temporal Gyrus 

3 -57 18 7.5207 0.0000 257 R Precuneus 

-45 -78 33 7.4781 0.0000 275 Area PGp (IPL) 

-21 33 48 7.3272 0.0000 187 L Superior Frontal Gyrus 

33 27 9 6.6384 0.0000 26 R Insula Lobe 

48 -69 33 5.9344 0.0000 180 R Angular Gyrus 

-9 66 18 5.8743 0.0000 178 L Superior Medial Gyrus 

-39 42 -6 5.8357 0.0000 169 L IFG (p. Orbitalis) 

60 -45 48 5.7765 0.0000 327 R Inferior Parietal Lobule 

-15 -87 21 5.7644 0.0000 32 L Superior Occipital Gyrus 

-54 -27 -3 5.7185 0.0000 51 L Middle Temporal Gyrus 

36 3 57 5.5382 0.0000 84 R Middle Frontal Gyrus 

51 6 15 5.5042 0.0000 107 R Rolandic Operculum 

36 18 -18 5.4959 0.0000 42 R Insula Lobe 

12 -24 69 5.2755 0.0000 39 R Paracentral Lobule 

24 -36 -6 5.1858 0.0000 25 R ParaHippocampal Gyrus 

-9 57 39 5.1066 0.0000 53 L Superior Frontal Gyrus 

-45 -45 15 4.9372 0.0000 51 L Superior Temporal Gyrus 

-51 12 18 4.9333 0.0000 43 L IFG (p. Opercularis) 

-66 
(-63) 

-27 
(-31) 

-24 
(-20) 

4.8241 0.0000 133 L Inferior Temporal Gyrus* 

15 36 51 4.8089 0.0000 45 R Superior Frontal Gyrus 

-33 60 18 4.6589 0.0000 50 L Middle Frontal Gyrus 

9 60 15 4.5953 0.0000 54 R Superior Medial Gyrus 

42 57 15 4.1974 0.0000 70 R Middle Frontal Gyrus 

Note. Abbreviations: MNI = Coordinates in Montreal Neurological Institute space, BSR = Bootstrap ratio. 
Anatomic labels were derived from the cytoarchitectonic atlas provided in the anatomy toolbox for SPM 8 
(Eickhoff et al., 2005). We only report clusters of 25 voxels or more. *Peak voxel not assigned anatomical label 

in anatomy toolbox. Anatomical label corresponds to bracketed coordinates. 
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Supplementary Table S5: Peak voxel coordinates in robust clusters (BSR > 3) for the significant latent variable of 

the behavioral PLS analysis relating uncertainty modulation to estimation error (N = 47). 
 

MNI          

X  Y  Z  BSR  p-value  Cluster size (voxels)  Anatomical region  

57 -39 51 7.5835 0.0000 636 R Inferior Parietal Lobule 

0 27 51 6.7004 0.0000 172 L Superior Medial Gyrus 

48 39 15 6.5347 0.0000 202 R IFG (p. Triangularis) 

-36 -48 45 6.3783 0.0000 365 L Inferior Parietal Lobule 

-42 39 15 6.1012 0.0000 49 L IFG (p. Triangularis) 

-33 18 9 5.8193 0.0000 40 L Insula Lobe 

36 24 0 5.3671 0.0000 59 R Insula Lobe 

51 12 33 5.0933 0.0000 71 R IFG (p. Opercularis) 

30 54 -9 4.5326 0.0000 27 R Middle Orbital Gyrus 

-48 6 36 4.4879 0.0000 36 L Precentral Gyrus 

-9 60 3 -5.4550 0.0000 391 L Superior Medial Gyrus 

-18 -6 -21 -4.3491 0.0000 35 L Hippocampus 

Note. Abbreviations: MNI = Coordinates in Montreal Neurological Institute space, BSR = Bootstrap ratio. 

Anatomic labels were derived from the cytoarchitectonic atlas provided in the anatomy toolbox for SPM 8 
(Eickhoff et al., 2005). We only report clusters of 25 voxels or more. 
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SUPPLEMENTARY METHODS 
 
Task design. During the final experimental block, performed outside the MR scanner, confidence ratings of the 
estimation of the blue-red marble ratio were collected. For this block of trials, a rating scale was included directly 

after completion of the estimation and prior to the gambling phase. Participants were instructed to indicate 
their confidence ranging from <very unsure= to <very sure= about the estimation of the blue-red marble ratio on 
a continuous confidence judgment scale 1. Additionally, the amount of obtainable reward on each trial was 

manipulated. Each marble was marked with one ring (low reward) or two rings (high reward). In the high reward 
condition, the magnitude of the reward in the gamble was doubled compared to the low reward condition. Each 
participant completed each jar an equal number of times in the low and high reward conditions. 
 
The gambling phase. At the end of each trial, participants had to make a risky decision between two options. 
One option represented a draw from the current urn. If the outcome had been a blue marble, the participant 
would have received a payoff with a specific magnitude (which is different in each trial, see details below). The 

other option represented a reference option with a certain payoff (i.e., reward probability was 100 percent). 
After the experiment finished, one of these gambles was picked and participants received a bonus payment 
based on the result of a draw from their chosen option. The options were presented in the left or right hemi-

field of the screen and the order was pseudo-randomized across the experiment. Participants should choose 
one option via left or right button of the button box. Each trial ended following the decision and subsequently 
the next trial started with a different urn and reward probability.  

 The 18 different marble jars in the experiment differed in expected value in the following way: In six jars 
the expected value (probability of drawing a blue marble times the varying payoff) was larger than the reference 
option (ranging between 10 and 30 percent), in another six urns the expected value of both options were 

approximately equal and in the final six urns the expected value was lower than the reference option (ranging 
between -10 and -30 percent, Supplementary Table S1). The probability of drawing a blue marble varied 
between 0.1 and 0.91, whereas the payoff varied between 8 and 130 points. Theoretically, a decision-maker that 

always chooses the gambling option could expect the same summed expected value as a decision maker that 
always chooses the certain reference option. 
 

SUPPLEMENTARY RESULTS 
 

Model and parameter recovery. The ground truth model was recovered well from each simulated dataset. The 
respective ground truth model consistently had the lowest BIC overall (supplementary Table S2). Across the 

simulated subjects, the ground truth model was always recovered most frequently (Supplementary Figure S1E). 
However, there was some model confusion, particularly for our winning model (fitted prior with noisy choice 
rule), which was only recovered in about 49% of simulated subjects. This may also explain the variance in 

empirical model fit on the subject level, although the majority of subjects (35%) were still best fit by the overall 
winning Bayesian observer model (Supplementary Figure S1A). Some degree of model confusion is to be 
expected since all variants of our Bayesian observer model aim to account for the same behavioral pattern 

(biased estimation of extreme marble proportions). Certain parameterizations of the prior model family may 
thus yield simulated behavior that is also well accounted for by models from the exponential family. 
Furthermore, some confusion between nested models is not necessarily surprising. For example, certain ranges 

of the response noise parameter � may result in similar behavioral predictions to that of the same model that 
samples responses from the final beta distribution. It is noteworthy, however, that in general models including 
a noisy response rule are well differentiable from models with a sampling response rule. This supports the 

inclusion of the noise parameter � in our winning model. There was also good differentiation between the 
Rescorla-Wagner model and all Bayesian observer models on the subject level supporting our inference that 
subjects seem to use uncertainty to inform their marble ratio estimates. 
We also checked the recoverability of model parameters. For our winning model, both prior (Pearson9s r = 0.98) 

and noise (Pearson9s r = 0.97) parameters estimated for each simulated subject were highly correlated with their 
ground truth values (Supplementary Figure S1C). Parameters of the second-best model were also recoverable 
(Supplementary Figure S1D). This reinforces the inferences made from individuals9 parameter estimates in our 

results. 
 

Explaining the effect of response noise parameter � on extreme jar bias. The significant main effect of 

response noise � in predicting subjects9 extreme jar bias suggests that people with opposite extreme jar biases 
(i.e., more misestimation for jars with marble ratios close to 50:50), is not captured by the winning behavioral 
model. Indeed, if we remove subjects with opposite extreme jar bias (i.e., negative effect slopes, N = 9) from 
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this regression analysis, the main effect of noise parameter � on extreme jar bias is not significant (t(39) = -0.113, 

p = 0.922). Thus, our behavioral model accounts well for the empirical response pattern we sought to capture 
(i.e., positive effect slopes).  
 

Analysis of BOLD signal modulation by uncertainty. Our PLS model relating BOLD signal modulation by 
uncertainty (i.e., standard GLM beta estimates for the parametric uncertainty regressor) to subjects9 median 

estimation error revealed a significant latent association (permuted p = 	3.40 ; 10
!", Spearman9s r = 0.675, 

Figure 5B, cf. Figure S3B for N = 51). Because brain saliences were both positive and negative, individual 
differences in parametric modulation effects related differently to estimation errors between regions (see 
Figure S2C for full axial brain plots and Table S5 for peak voxel coordinates in robust clusters). In robust clusters 

with positive saliences, subjects who down-modulated BOLD activity more with increasing state uncertainty 
made fewer estimation errors (lower latent uncertainty modulation rank scores reflecting more negative 
modulation effects) than subjects who did not track state uncertainty in these regions (higher latent uncertainty 

modulation rank scores reflecting BOLD signal modulation by state uncertainty effects close to zero). Robust 
clusters were mainly located in the lateral parietal cortex, PFC (dorsomedial, ventrolateral, and rostrolateral 
parts), and in the insula. In contrast, in robust clusters with negative brain saliences, subjects who showed more 

positive coupling between BOLD signal and state uncertainty made fewer estimation errors than subjects with 
a negative coupling. This relationship was mainly expressed in a cluster located in the ventromedial PFC 
(vmPFC) and a cluster in the left hippocampus. 
 
We also investigated whether these performance-related individual differences in BOLD signal modulation by 
uncertainty could be explained by idiosyncratic uncertainty representations, as captured by our winning 
behavioral model. We ran multiple regression predicting latent uncertainty modulation of the BOLD response, 

which relates to task accuracy, from the prior width parameter r controlling for response noise �. This model 

explained a significant amount of variance (F(2,44) = 6.244, p = 	4.10 ; 10
!#) with an R2 of 0.221 (Figure 5C). 

There was a significant main effect for prior width r (t(44) = 3.508, p = 	1.05 ; 10
!#, semi-partial h2 = 0.218) but 

not for parameter � (t(44) = 1.590, p = 0.119). This finding suggests that people with suboptimal uncertainty 

representations, due to a narrow prior belief distribution (i.e., higher r), show less BOLD signal modulation by 
state uncertainty trajectories derived from the unbiased Bayesian observer model. We again ran this analysis 

also for the parameters of the (second-best) evidence weight model, which afforded similar inferences (see 
supplementary results). 
 

Brain-behavior results for the evidence weight model. Our alternative model, which explains suboptimal 
responding by an exponential weighting of the incoming evidence, would similarly predict individual differences 
in state uncertainty reduction during the sampling phase: People who reduce uncertainty less for large samples 

(i.e., � < 1) make more estimation errors than people who weight the information provided by large samples 

more optimally (i.e., � = 1). Subjects9 fitted prior parameter r of the winning model and fitted evidence weight 
� for second-best model (both including a response noise parameter �) were highly correlated (Pearson9s r(49) 

= -0.863, p = 	3.73 ; 10
!$%), supporting the notion that they capture similar behavioral response patterns. For 

this model, the fitted evidence weight parameter � had a median of 0.85 (SD = 0.84) and the fitted noise 

parameter � had a median of 0.10 (SD = 0.05). 
 
Predicting ranked latent �SDBOLD from the ranked evidence weight �  and response noise � parameters in a 

multiple regression model explained a significant amount of variance (F(2,44) = 6.938, p = 	2.41 ; 10
!#) with an 

R2 of 0.240. There was a significant main effect only for evidence weight � (t(44) = -3.725, p = 	5.53 ; 10
!&, semi-

partial h2 = -0.240): People who underweight the evidence of large samples more (i.e. � < 1) show less SDBOLD 

collapse during the sampling phase. Furthermore, the regression model predicting latent uncertainty 
modulation of the BOLD response from evidence weight parameter � and response noise � explained a 

significant amount of variance (F(2,44) = 5.544, p = 	7.12 ; 10
!#) with an R2 of 0.201. There was a significant main 

effect for evidence weight � (t(44) = -3.257, p =	2.17 ; 10
!#, semi-partial h2 = -0.193) and also for parameter � 

(t(44) = 2.147, p = 	3.74 ; 10
!"). This suggests that people who underweight the evidence of large samples (� < 

1) show less BOLD signal modulation by uncertainty trajectories of the unbiased Bayesian observer.  
 

Overall, our interpretation that individual differences in uncertainty representations explain the observed brain-
behavior relationships would not have changed had we chosen this alternative model. We frame our conclusions 
in terms of the fitted prior model because it provided a better account of behavior. 
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SUPPLEMENTARY DISCUSSION 
 
Our standard analysis approach revealed that BOLD signal modulation by state uncertainty predicted task 

accuracy. On one hand, higher BOLD signal (in lateral parietal cortex, dorsomedial PFC, ventro- and 
rostrolateral PFC, and anterior insula) with lower uncertainty predicted higher estimation accuracy. In other 
words, higher performers showed an increase in BOLD activity in these regions as they observed more samples 

and became more certain about the jar marble ratio on a given trial. These areas correspond to frontoparietal 
control and dorsal attention brain networks, which support goal-directed behavior in externally-driven tasks 2-
6. These networks of brain areas have also been found to correlate with state uncertainty in other inference tasks 
7,8. However, these prior studies commonly report an opposite effect direction in which high state uncertainty 
reflected more activity in these brain regions. For example, an fMRI study by McGuire, et al. 7 investigated how 
uncertainty drives learning in a task that required participants to infer the position of an unseen helicopter based 
on bag drops that followed a normal distribution around the helicopter9s true position. In their task, the 

helicopter location could change unannounced leading to learning rate adjustments due to change-point 
uncertainty and uncertainty about the helicopter location in a given environment (which the authors term 
relative uncertainty). The authors found BOLD signal modulation by relative uncertainty in lateral parietal 

cortex, dorsomedial PFC, ventrolateral PFC, and anterior insula, which match the regions we found in the 
current study. However, the direction of effect is reversed showing a positive coupling between relative 
uncertainty and the BOLD signa. Two key differences of our study are that we investigate state inference in a 

stable rather than dynamic environment and that decisions are only required after observing several evidence 
samples. In these respects, our study shares similarities with perceptual decision-making studies, which assume 
that noisy perceptual evidence is integrated over time to arrive at a decision 9,10. Previous fMRI studies of 

perceptual decision-making also report the involvement of a similar set of higher-order brain regions, which 
have been linked to evidence accumulation, decision formation and response preparation 11-18. Notably, some 
studies have reported an increase in average BOLD activity in these brain areas over the sampling period (i.e., 

with decreasing state uncertainty), which aligns with our findings 11,19. 
 
Conversely, positive coupling between the BOLD signal and state uncertainty in vmPFC and left hippocampus 

also predicted better performance in our task. The previously mentioned study by McGuire, et al. 7 also reported 
an effect in the vmPFC, but again with opposite effect direction compared to the one we see in high performers. 
At first glance, our findings appear at odds with previous work reporting vmPFC tracking of subjective 
confidence. However, recent work by Trudel, et al. 20 suggests that representations of uncertainty in this brain 

region depend on the behavioral goal. In their task, participants had to learn the predictiveness of two choice 
options in determining a target location that was later revealed in the trial. Early on during learning, vmPFC 
BOLD signal positively tracked the uncertainty differences of the two choice options and correlated with 

uncertainty-guided exploration. Later on, vmPFC BOLD signal negatively tracked the uncertainty difference 
and correlated with uncertainty-avoidant exploitation. The positive effect we observe in our study is thus in line 
with the general idea of an =exploratory brain mode= that supports uncertainty-guided learning.   

Overall, the GLM results directly connect to previous studies across various domains of decision-making and 
reveal surprising discrepancies that require more attention in future work.  
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