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To make optimal decisions, intelligent agents must learn latent environmental states from discrete
observations. Bayesian frameworks argue that integration of evidence over time allows us to refine our
state belief by reducing uncertainty about alternate possibilities. How is this increasing belief precision
during learning reflected in the brain? We propose that moment-to-moment neural variability provides a
signature that scales with the degree of reduction of uncertainty during learning. In a sample of 47 healthy
adults, we found that BOLD signal variability (SDgop, as measured with functional MRI) indeed
compressed with successive exposure to decision-related evidence. Crucially, more accurate participants
expressed greater SDgoLp compression primarily in Default Mode Network regions, possibly reflecting the
increasing precision of their latent state belief during more efficient learning. Further, computational
modeling of behavior suggested that more accurate subjects held a more unbiased (flatter) prior belief
over possible states that allowed for larger uncertainty reduction during learning, which was directly
reflected in SDgoLo changes. Our results provide first evidence that moment-to-moment neural variability
compresses with increasing belief precision during effective learning, proposing a flexible mechanism for
how we come to learn the probabilistic nature of the world around us.

To make optimal decisions, animals often need to learn about “states” (i.e., decision-relevant properties) of the
environment, such as the availability of fish in a nearby pond based on previous catch successes. These states
are often not directly observable, so optimal agents need to combine the uncertainty about their beliefs with
the evidence available to them. Research suggests that humans and other animals often take into account
uncertainty during learning and decision-making®*, while suboptimal use of uncertainty has been linked to
maladaptive behavior observed in clinical and ageing populations®. Bayesian decision theory prescribes how
agents should combine evidence with their internal beliefs under uncertainty to arrive at optimal estimates of
external states and provides a benchmark to assess rational behavior in the context of learning ***. In this
framework, an agent must represent a probability distribution over possible states. The variance of this
distribution reflects the uncertainty of the agent’s state belief. As evidence accumulates and the agent refines
its representation of the “correct” world state, the variance of the belief distribution is thought to reduce. How
this increasing belief precision during learning is reflected in the brain remains unclear.

A potential candidate for tracking the degree of state uncertainty is the moment-to-moment variability of
neural responses. At the level of sensory cortex, computational modeling and non-human animal work suggests
that neuronal variability signals uncertainty about peripheral inputs, such that neural population activity reflects
sampling from a probability distribution over potential stimulus features; the higher perceptual uncertainty, the
higher the neural variability ®*°. This idea is in line with theoretic work suggesting that neural systems should
maintain an appropriate degree of instability in the face of uncertainty to permit the exploration of alternative
causes of incoming sensory input ™. While plausible, no study to date has investigated whether stimulus-evoked
neural variability tracks changes in perceptual uncertainty in a learning task and how it relates to behavior. With
regard to human data, a recent study by Kosciessa, et al. ** showed that increasing uncertainty about the task-
relevance of different perceptual stimulus features is accompanied by an increase in cortical “excitability”
(heightened desynchronization of alpha rhythms and increased entropy in the EEG signal). However, it is not
clear whether these perceptual accounts of uncertainty-based shifts in neural variability also translate to higher-
order decision variables that arise while learning about latent environmental states.
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Figure 1. Hypothetical model of uncertainty and brain dynamics. In this example, the agent has to infer the proportion of
blue birds in a world made up of red and blue birds by combining information across discrete observations over time. Under
high state uncertainty early on in the learning process, more brain signal variability allows the brain to entertain a larger
variety of possible states (i.e., proportions of blue birds in the world). With each new observation, the precision of the belief
distribution increases and brain signal variability compresses.

In the context of learning, larger temporal variability under high uncertainty may not just represent exploration
of potential world states but may allow more flexible updating of one's belief once new information becomes
available. Indeed, previous human work suggests that higher brain signal variability affords larger cognitive
flexibility **. For example, several studies have found that brain signal variability increases with increasing task
demands (at least until processing limits are reached) and that the ability to upregulate variability predicts task
performance ****. These studies commonly argue that neural variability supports performance under increasing
task demand by allowing the brain to maintain flexible responding to stimulus information. In line with this idea,
Armbruster-Geng, et al. *® observed better performance on a task switching paradigm under higher BOLD signal
variability, whereas cognitive stability during distractor inhibition was related to lower brain signal variability.
During learning, task demands are highest early on, when the brain needs to maintain high flexibility to
incorporate incoming evidence for belief updating. This should allow it to converge on the “correct” state
representation with learning. We therefore hypothesize that moment-to-moment brain signal variability
compresses with increasing belief precision (i.e., decreasing uncertainty) during learning (Figure 1).

To test this hypothesis, we acquired functional MRI (fMRI) while participants performed a “marble task”. In this
task, participants had to learn the probability of drawing a blue marble from an unseen jar (i.e., urn) based on
five samples (i.e., draws from the urn with replacement). In a Bayesian inference framework, the jar marble ratio
can be considered a latent state that participants must infer. We hypothesized that (1) variability in the BOLD
response (SDgoLp) would compress over the sampling period, thus mirroring the reduction in state uncertainty,
and that (2) subjects with greater SDgoLp compression would show smaller estimation errors of the jars’ marble
ratios as an index of more efficient belief updating. A secondary aim of the current study was to directly compare
the effect of uncertainty on SDgoLp with a more standard General Linear Modelling (GLM) approach, which looks
for correlations between average BOLD activity and uncertainty. This links our findings directly to previous
investigations of neural uncertainty correlates, which disregarded the magnitude of BOLD variability ***¥. We
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hypothesized (3) that SDgoip would uniquely predict inference accuracy compared to these standard neural
uncertainty correlates.

Our results showed that SDgoLp closely tracked individual differences in the reduction of state uncertainty during
learning which related to task accuracy in a unique manner that was not captured by a more standard GLM
approach. As such, we identified a novel neural signal reflecting uncertainty during learning.

METHODS
Participants and procedure

51 healthy young adults (18 — 35 years) participated in the study. They were recruited from the participant
database of the MPI for Human Development (Berlin, Germany) and gave written informed consent according
to the guidelines of the German Psychological Society (DGPS) ethics board, who approved the study.
Participants underwent fMRI while performing a perceptual gambling task. They received 10 Euros per hour in
addition to a variable performance bonus of up to 2 Euros.

The marble task

The task was divided into four blocks of 18 trials each. Participants performed three blocks during fMRI
acquisition, while the final block was performed outside the scanner. We will only consider the three MR blocks
for our analyses. Participants received instructions and completed nine practice trials prior to the first scanning
block. Each trial of the task consisted of three phases: a sampling, an estimation, and a gambling phase. To
investigate brain signal variability changes during learning, we focused on the sampling and estimation phases
in this study (referred to as the "marble task”). A description of the gambling phase, which was unrelated to the
learning process, is provided in the Supplementary Methods. The task design also included a between-trial
reward manipulation. Here, we collapsed trials across the two levels of the reward manipulation given that we
assumed those would only affect the choice and not the learning part. The task was programmed using
Presentation software (Version 14.9, Neurobehavioral Systems Inc., Albany, CA, USA).

In the marble task, participants were asked to estimate the proportion of blue marbles in an unseen “jar” (i.e.,
urn), containing a total of 100 blue and red marbles, based on five successive samples (i.e., draws from the urn
with replacement) presented successively during the sampling phase (Figure 2A). In total, 18 different jars with
different proportions of blue marbles (ranging from 0.1 to 0.91) were presented across all trials (Supplementary
table S1). Each jar was presented four times across the four experimental blocks in random order. Each sample
from a given jar could contain either one, five or nine marbles, which manipulated the informativeness of the
samples (i.e., one marble was least informative for inferring the proportion of blue marbles whereas nine
marbles was most informative). Samples were presented in 3x3 grids with grey marbles serving as placeholders
to ensure similar visual inputs across samples. Additionally, within each sample the order of the marbles (i.e.,
the location in the 3x3 grid) was permuted. The samples for each jar were randomly drawn from a binomial
distribution with the corresponding probability of drawing a blue marble. This draw was performed once so each
jar was associated with a consistent set of five samples with varying sizes (note that the total number of marbles
across samples thus varied between jars). This ensured that all participants received identical sample
information. For each trial with the same unseen jar, the order of the associated samples was varied randomly.
Each sample was presented for 1s followed by a fixation cross presented for 2 to 6s. Following the sampling
phase, participants were asked to indicate their estimate of the proportion of blue marbles in the jar by adjusting
the ratio of blue to red marbles in a 100-marble grid using an MR-compatible five-button box. The starting value
of the grid was always set to 50 red and 50 blue marbles. With the upper and lower buttons, the participants
were able to adjust the grid in steps of five marbles, and with the left and right button in a one marble step,
respectively. With the middle button participants confirmed their estimation. The maximum reaction time for
the estimation phase was set to 7s. Participants received a bonus payment based on the average accuracy of
their marble ratio estimates (performance-dependent bonus).

Behavioral modelling

We modeled participants’ responses using variants of a Bayesian observer model. The Bayesian observer
represents the probability of drawing a blue marble from the unseen jar as a beta distribution with parameters
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Figure 2. Behavior in the marble task. A: Task design. Participants observed five samples from an unseen jar (sampling
phase) and then entered their estimate of the proportion of blue marbles in the jar into a 10x10 grid (estimation phase).
B: Schematic illustration of the Bayesian observer model with varying priors. A narrower prior belief centered on a default
50:50 marble ratio predicts more misestimation of extreme jar proportions (top) and less uncertainty reduction during
the sampling phase (bottom; s1 to s5 correspond to the five samples presented on a given trial).

a and B, which is updated after each draw according to Bayes’ rule (Figure 2B). Because the beta distribution is
a conjugate prior for the binomial distribution (the likelihood function in this task), the posterior belief
distribution is also a beta distribution with o, = as + Bs and Bs., = Bs + Rs, where Bs and R are the number of blue
and red marbles for a sample s respectively. The prior for the first draw of each trial is givenby a = f =1,
representing a flat prior. The best estimate for the probability of drawing a blue marble is given by the

expectation of the beta distribution u =

a+p’
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To model empirical response patterns affecting subjects’ task accuracy, we considered two variants of this
Bayesian observer model. In one model variant, we fit a parameter p = 1 for each subject, which described the
initial setting of @ and 8 on each trial prior to observing samples from a given jar (where p = a = f3; Figure 2B).
A higher value for p describes a narrower prior around the default belief of o.5. In a second Bayesian observer
model variant, we fit a parameter § > 0, which exponentially weighs the evidence of each sample: ds.. = o5 +
(Bs)® and Bsia = Bs + (R)°. If § < 1, the evidence of larger draws is underweighted, while for § > 1 the evidence
of larger draws is overweighted. Comparing these models allowed us to test whether deviations from the
unbiased Bayesian observer model were related to prior representation or evidence weighting respectively.

To accommodate probabilistic responding of subjects, we compared these models with two alternative choice
rules. One model family assumes that subjects’ reported estimates represent draws from the final beta
distribution on each trial. Another model family assumes that subjects’ choices are draws from a truncated
normal distribution (0 < x < 1) that is centered on the expectation of the final beta distributions:
N(E[beta(a,B)], o), where g is a free model parameter that captures response noise around the model
prediction. This parameter may reflect imprecision in entering one’s marble ratio estimate into the response
grid, but it can also capture any unmodeled sources of (biased and random) errors in jar estimates beyond those
explained by the model parameters of interest. This parameter may thus also capture model misfit.

Bayesian observer models assume that participants track the full belief distribution over potential marble ratios
and consider uncertainty when updating their estimate. To test whether subjects indeed behave in a Bayesian
manner, we also fitted a simpler Rescorla-Wagner model that only updates a point estimate of the marble ratio

5 _ 5 _ .5 Bs
belief: Rg,; = Ry — a(R; TS
and R; are the number of blue and red marbles respectively, and 0 < @ < 1is the free learning rate parameter.
To model subjects’ responses, we included a free noise parameter ¢ modelling Gaussian response noise around

the final point estimate, similar to the noisy choice rule described previously for the Bayesian observer models.

), where Ry is the marble ratio point estimate after observing sample s, Bs

Model fitting and comparison. We fitted behavioral models to participants’ responses on all trials of the three
MR blocks by minimizing the joint negative log likelihoods under each model using the fmincon routine
implemented in MATLAB (version 2017b). We ensured model convergence by fitting each model 10 times and
used the fitting iteration with the minimal negative log likelihood across subjects. We compared model fits by
computing the Bayesian Information Criterion (BIC): BIC = kIn(n) — 2In (L), where k is the number of
parameters, n is the number of datapoints, and L is the maximized model likelihood. We report BICs for each
subject and across all subjects.

Model simulations. We simulated behavior using the empirical parameter estimates and the trial sequences of
each subject. This resulted in one synthetic dataset for each model with 51 simulated subjects each. We used
these simulated datasets to perform model and parameter recovery checks. See the Supplementary
Information for the results of these checks.

Image acquisition and pre-processing. Participants underwent functional MRI scanning at the Max Planck
institute for Human Development (Berlin, Germany) in a 3 Tesla Siemens TrioTim MRI system (Erlangen,
Germany) using a multi-band EPI sequence (factor 4; TR = 645 ms; TE = 30 ms; flip angle 60°; FoV =222 mm;
voxel size 3x3x3 mm; 40 transverse slices). This amounted to 1010 T2*-weighted functional images per
scanner run per subject (except for one subject, who had 1020 acquired images per run). A Ti-weighted
structural scan was also acquired (MPRAGE: TR = 2500 ms; TE = 4.77 ms; flip angle 7°; FoV = 256 mm; voxel size
1x1x1mm; 192 sagittal slices).

T1-weighted images were brain extracted using ANTs software (version 2.3.5, http://stnava.github.io/ANTSs/)
using population level templates from the OASIS dataset
(https://figshare.com/articles/dataset/ANTs_ANTsR_Brain_Templates/915436). The functional T2*-weighted
scans were pre-processed in FSL (version 5.0.11) FEAT separately for each run. The pipeline includes motion
correction, brain extraction of the functional images, and spatial smoothing using a Gaussian smm kernel.
Following FEAT, the functional images were first detrended using SPM’s detrend function (at a 3™ order
polynomial) and then high-pass filtered using a standard 8" order butterworth filter implemented in MATLAB
(version 2017b) with a cut-off of 0.01 Hz. We then performed ICA on the resulting data using FSL MELODIC to
identify residual artifacts. We manually labeled rejected components for 19 subjects (~37% of the total data; for
details on the component rejection criteria see *) and then used these labels to train FSL's ICA classifier FIX to
automatically label artifactual components for the remaining subjects. We tested different classification
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thresholds and validated classification accuracy for several randomly selected subjects from the test set. We
accepted a threshold of 20 after this manual inspection. Rejected components were then regressed out of the
data using FSL's fsl_redfilt function. Lastly, functional images were first registered to the brain-masked T1-
weighted images and then to MNI space (using the MNI152 template provided in FSL) via linear rigid-body
transformation as implemented in FSL's flirt function.

Statistical analysis

Behavioral analysis. All behavioral analyses reported were run in SPSS (Version 25). To limit the effect of
univariate outliers on the reported results, we winsorized the estimation error, extreme jar bias, and behavioral
model parameter variables. Outliers were defined as datapoints that were 1.5 times the interquartile range
beyond the 25" or 75™ percentile respectively. We used the highest/lowest score of the non-outlying datapoints
to impute outlying values. Between zero and three values were imputed for each variable.

Functional MRI analysis. Subject-level fMRI data were modelled using a mass-univariate GLM approach as
implemented in SPM12 (Wellcome Department of Imaging Neuroscience, London, UK). To quantify BOLD
response variability, we adapted a “least squares — single” (LS-S) approach as described by Mumford, et al. *.
This approach is implemented in an in-house version of variability toolbox for SPM
(http://www.douglasdgarrett.com/#software) developed by our research group. This toolbox takes as input a
standard GLM design matrix. We included the following regressors in each subject’s design matrix: Five
regressors for the onsets of each successive sample presentation (with a duration of 1s), one regressor for the
estimation phase onsets (with a duration of subjects’ RTs), and one regressor for the gambling phase onsets
(with a duration of subjects’ RTs). All regressors were modelled as stick functions that were convolved with the
canonical hemodynamic response function (HRF) and its first and second derivatives resulting in a total of 21
regressors per scanner run plus one constant regressors for each run. The toolbox then proceeds to iteratively
fit GLMs which include one regressor modelling a single event and a second regressor modelling all other events
of the same and all other conditions (this is done separately for each task run). To avoid issues with beta
estimation close to the end of a timeseries (caused by truncation of the HRF), the toolbox discards any onsets
that occur within the final 20s of the timeseries. Finally, the toolbox computes the standard deviation over the
resulting (across-trial) beta estimates for each condition to yield the measure of SDgowp Used in this study.
Compared to other approaches to SDgoip estimation, this SDgoLp quantification allows one to parse dynamics
amongst neighboring eventsftime points, while accounting for hemodynamic delays.

To compare our SDgoip results to standard analysis approaches, we also obtained restricted maximum
likelihood (ReML) GLM beta estimates for each task condition. The design matrix of this GLM included the same
regressors as the one passed to variability toolbox for SDgoLp estimation. We defined contrasts to summarize
condition effects across task runs. However, this approach ignores the variance in uncertainty trajectories across
trials that result from our sample size manipulation (see Figure S1B). To account for this variance, we ran another
GLM modelling the modulation of the BOLD signal by the posterior variance (i.e., uncertainty) of the unbiased
Bayesian observer model during the sampling process. The design matrix of this GLM included the following
regressors for each scanner run: one regressor for the sample onsets (with a duration of 1s), one regressor for
the parametric modulation of the sample onsets regressor by model-derived posterior variances, one regressor
for the estimation phase onsets (with a duration of subjects’ RTs), and one regressor for the gambling phase
onsets (with a duration of subjects’ RTs). We mean-centered the parametric modulation regressor prior to
model estimation. All regressors were modelled as stick functions (except for the parametric modulation
regressor) that were convolved with the canonical hemodynamic response function (HRF) and its first and
second derivatives resulting in a total of 12 regressors per scanner run. We also included three additional
constant regressors modelling the mean of each scanner run. To look at the effect of the parametric modulation
regressor, we defined a contrast that picked out the beta estimates of this regressor for each scanner run (more
precisely, the parametric modulation regressors convolved with the canonical HRF).

To relate within-person SDgovp or standard GLM beta estimates to the task design or behavior, we use a partial
least-squares approach (PLS) #°. PLS finds latent factors that express maximal covariance between brain and
behavior/design matrices using singular value decomposition. Brain scores are defined as the product of the
brain data matrix with their respective latent factor weights (saliences). We will refer to brain scores in our
SDgovp analyses as “latent SDgoip” and to the brain scores of our parametric modulation analyses as “latent
uncertainty modulation”. To obtain a summary measure of the spatial expression of a latent variable, we can
sum brain scores over all voxels. We performed 1000 permutation tests to assess the significance of the brain-
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design/behavior relationship against a null model. We then divided each voxel’s salience by its bootstrapped
standard error, at +/- 3 (approximating a 99.9% confidence interval), which serves as a pseudo-normalized
measure of voxel robustness. We determined clusters of voxels with robust saliences by applying a cluster mask
with @ minimum threshold of 25 voxels. Prior to all PLS analyses, brain measures images were grey matter
masked using the tissue prior provided in FSL at a probability threshold of > 0.37, and restrained to voxels with
non-zero values for the respective brain measure across subjects.

To account for univariate outliers and non-linear relationships, we ran all reported brain-behavior analyses on
ranked brain and behavioral variables in line with previous research “*. The results should thus be interpreted as
monotonic rather than strictly linear relationships. Furthermore, we used a criterion of Cook’s distance > 4/N to
identify multivariate outliers in all PLS models, removing where present. We nevertheless report the results of
all analyses for the full dataset (N=51) without outliers removed in the Supplementary Results.

Data availability

The code to perform all behavioral and neuroimaging analyses is available at:
https://github.com/LNDG/Skowron_etal 2023.

RESULTS
Subjects’ estimation errors are explained by individual differences in prior belief width

Participants performed the “marble task” during functional MRI scanning (Figure 2A). On each trial, they
observed five sequential sample draws from a hypothetical “jar” containing a certain proportion of red and blue
marbles (sampling phase). The marble ratio of the unseen jar varied from trial to trial and sample draws could
contain one, five or nine marbles. Afterwards, participants indicated their estimate of the proportion of blue
marbles in the jar by adjusting the number of blue marbles in a 10 by 10 response grid representing the unseen
jar (estimation phase; see methods for further details). Our primary measure of interest was estimation error,
definedas &, = |6, — 6,|, where 0 is the experienced proportion of blue marbles on trial t (i.e., the mean across
samples; note that this quantity differs from the true proportion of the unseen jar but constitutes the best
(unbiased) estimate given the available samples) and D is the subject’s reported estimate of the blue marble
proportion of the jar on trial t (Figure 3A). We computed the median estimation error across trials as an individual
difference measure of estimation accuracy. Subjects’ median estimation error ranged from 0.01 to o0.20
(Median = 0.07, SD = 0.035). A Wilcoxon signed-ranks test revealed that estimation errors significantly differed
from zero (Z = 6.215, one-sided p = 2.57 - 1071%). This indicates differences between experienced and estimated
marble ratios on the group level. Previous research suggests that people often underestimate probabilities of
frequent events and overestimate probabilities of rare events in similar decision-from-experience tasks ***3. To
see whether this effect contributed to estimation accuracy in our task, we examined whether subjects made
more errors for jars with more extreme marble ratios. We ran a linear mixed model predicting trial-wise
estimation error from the marble ratio distance from 5o:50 for a given jar. To account for individual differences
in intercepts, we entered subject ID as a covariate in the model. There was a significant positive relationship
between trial-wise estimation-error and jar marble ratio distance from 5o:50 (F(1,2702) = 154.608, p =
1.48 - 1073*, semi-partial n* = 0.048). The more extreme the jar marble ratio, the larger subjects’ estimation
error on a given trial. In the following sections, we will refer to this effect as the “extreme jar bias”. Next, we
examined whether individual differences in this extreme jar bias explained individual differences in median
estimation error. We computed individuals’ extreme jar bias by running regression models predicting trial-wise
estimation error from marble ratio distance from 5o:50 for each subject separately. Individuals’ extreme jar bias
was defined as the fitted (unstandardized) slopes of these regression models (Mean = 0.198, SD = 0.230). We
found that individual differences in extreme jar bias correlated strongly and positively with subjects’ median
estimation error (Pearson’s r(49) = 0.63, p=8.28 - 1077; Figure 3B). Biased estimation of extreme jar proportions
thus contributed to individual differences in task accuracy.

We next fitted a set of Bayesian observer models that could account for this estimation bias in terms of
inadequate uncertainty representations. The model with the overall best Bayesian Information Criterion (BIC)
value was a Bayesian observer model which included a fitted prior parameter p, describing individual differences
in the width of the belief distribution over marble ratios before observing any samples, and a response noise
parameter g, which captures variability of subjects’ reported marble ratio estimates around model predictions
(Table 1). The second-best overall model included an exponential evidence weight § and a noisy choice rule
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parameter o , followed by an exponential evidence weight and fitted prior model assuming responses were
sampled from the final trial posterior of the belief distribution. A Rescorla-Wagner model had the worst fit out
of all models, which suggests that people indeed keep track of and leverage uncertainty estimates to update
their marble ratio belief in a Bayesian manner. Parameters of the winning model were recoverable from

simulations and model recovery was acceptable at the group level (see Supplementary Methods for details).
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Figure 3. Latent sources of individual estimation errors. A: Left: Reported blue marble proportion estimates across trials and subjects
against the experienced blue marble proportion across samples on a given trial. Groups are based on a median split on the fitted prior
width parameter r of the Bayesian observer model (i.e., the narrow prior group had higher parameter estimates). Right: Schematic
example of our trial-wise estimation error measure. B: Individual differences in median estimation error related to estimation accuracy
for jars with extreme marble ratios. C-D: The fitted prior width and response noise parameters of the Bayesian observer model predicted
differences in median estimation error. Plotted parameters are residualized by the other model parameter respectively.

We next tested whether the prior width parameter p of the winning Bayesian observer model captured
individual differences in extreme jar bias that contributed to subjects’ estimation error while controlling for
other unmodelled sources of error captured by the response noise parameter . The fitted prior parameter p of
the winning Bayesian observer model had a median of 2.45 (SD = 4.23), indicating that subjects on average had
a narrower prior than the unbiased Bayesian observer (p = 1). Moreover, the fitted noise parameter ¢ had a
median of 0.10 (SD = 0.05), highlighting that subjects’ reported marble ratios deviated from model predictions
by 10 marbles on average. We ran multiple regression analyses predicting median estimation error and extreme
jar bias from the fitted prior parameter p and noise parameter ¢ respectively. In the first regression model, a
narrower prior parameter p (t(48) = 13.152, p= 1.57 - 1077, semi-partial n* = 0.771; Figure 3C) and a higher noise
parameter o (t(48) = 4.501, p = 4.30- 107>, semi-partial n* = 0.090; Figure 3D) uniquely predicted larger
estimation errors (full model: (F(2,48) = 88.135, p = 8.54- 10717, R* = 0.786). Importantly, the prior width
parameter p accounted for most of the explained variance in estimation errors suggesting that our model
captured individual differences in subjects’ response behavior well. A narrower parameter p reflects a stronger
prior belief in a 50:50 marble ratio, which should bias estimates for more extreme jars towards this (incorrect)
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default belief. In line with this expectation, our second regression model revealed that subjects’ extreme jar bias
was positively related to prior width p (t(48) = 11.780, p = 9.11 - 107°, semi-partial n* = 0.499) but also
negatively to response noise o (t(48) = -2.983, p = 4.48 - 1073, semi-partial n* = -0.032; full model: F(2,48) =
114.968, p = 4.956 - 10719, R* = 0.827). The significant (although smaller) effect of the noise parameter o on
extreme jar bias was driven by a small number of subjects with negative extreme jar bias slopes (i.e., subjects
who made larger errors for jars with even rather than extreme marble ratios), which the Bayesian observer
model could not account for (see Supplementary Results for further details). Taken together, these analyses
indicate that the width of the prior belief substantially impacts individual task performance by capturing
subjects’ tendency to overestimate jars with blue marble proportions close to o and underestimate jars with blue
marble proportions close to 1 (Figure 3A).

Table 1. Model comparison. BIC for each fitted behavioral model.

Model Rescorla-Wagner Bayesian observer
Parameters o, o p ) p,C 5, o
BIC —3.38-103 —3.68-103 —3.82-103 —4.59-103 —4.16-103

BOLD signal variability tracks individual differences in prior uncertainty and compresses during learning

To investigate our hypothesis that BOLD signal variability (SDgsowp) collapses with successive sample
presentations, we ran a task PLS analysis #° relating SDgovp to the five sample periods. This analysis returned a
significant latent effect (permuted p = 0) showing that SDgo.p reduced with successive exposure to marble
samples across a distributed set of cortical brain regions spanning the parietal, prefrontal and temporal lobes
(Figure 4A, see Figure S2A for full axial brain plots and Table S3 for peak voxel coordinates in robust clusters).
We further investigated this trend by fitting orthogonal polynomial contrasts in a linear mixed model entering
subject ID as covariate. The pattern of latent SDgoLp change was best described by a linear contrast (F(z,201) =
40.444, p = 1.34 - 1079, semi-partial n* = 1.12 - 1072) over a quadratic (F(1,201)=3.066, p = 8.15 - 1072, semi-
partial n*=8.41 - 10™*) and cubic (F(1,201)=3.416, p = 6.61 - 1072, semi-partial n* = 9.61 - 10~*) one.

Next, we asked whether the ability to collapse SDgoLo over the sampling period related to individual differences
in task accuracy. To this end, we quantified SDgoLp change (ASDsovp) by fitting linear regression slopes to the
SDgoLp estimates for the five sample presentations in each voxel. We ran behavioral PLS analysis relating these
SDgowo slopes to subjects’ median estimation error. Four Cook’s d (i.e., multivariate) outliers were removed from
this and all subsequent reported analyses resulting in N = 47 (we refer to the Supplementary Information for PLS
results ran on the full dataset). We found a significant latent relationship (permuted p = 3.00 - 1073, Figure 4B,
cf. Figure S3A for N = 51) revealing that subjects who decreased SDgoLp more, especially in parietal, prefrontal
(PFC) and temporal cortex, also produced smaller estimation errors (Spearman’s r = 0.612). Notably, this set of
brain regions largely overlapped with the canonical Default Mode Network (DMN) that is typically observed in
resting-state fMRI (BSR > 3; Figure 4C, see Figure S2B for full axial brain plots and Table S4 for peak voxel
coordinates in robust clusters) *.

We further investigated our hypothesis that individual differences in state uncertainty representations could
explain the relationship between ASDgoLp and estimation error. Our winning behavioral model suggested that
subjects with a narrower prior belief distribution over marble ratios (i.e., large p parameter) showed little
decrease in state uncertainty during sampling, because they started out with less uncertainty to begin with, and
made more errors because they remained inflexible about their (incorrect) prior belief of a 50:50 marble ratio.
In contrast, more accurate subjects (i.e., p close to 1) represented maximal state uncertainty at the start of a
trial and reduced uncertainty more with each presented sample (Figure 2B). We expected ASDgoLp to mirror
these individual differences in state uncertainty change during the sampling phase. To test this hypothesis, we
ran multiple regression analysis predicting latent ASDgocp (i.e., the whole-brain pattern of ASDgoip which
relates to median estimation error; see Figure 3b) from the prior width p parameter of the winning behavioral
model. We also entered the response noise parameter ¢ as a control variable, which captures all unmodeled
sources of estimation error and thus serves as a measure of model misfit (see Methods). This model explained a
significant amount of variance (F(2,44) = 4.489, p = 1.68 - 1072, R* = 0.169). There was a significant main effect
only for prior width p (t(44) = 2.703, p = 9.72 - 1073, semi-partial n* = 0.138) but not for noise parameter o (t(44)
= 0.425, p = 0.673). Therefore, the wider a participant’s prior belief (i.e., smaller p), the more they collapsed
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SDgowp during the sampling phase (Figure 4D). To ensure that that these effects were not due to the specific
parameterization of the winning behavioral model, we replicated this analysis also for the parameters of the
(second-best) evidence weight model (see Supplementary Results).
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Figure 4. SDgoLp tracks idiosyncratic uncertainty representations and predicts inference accuracy. A: Task PLS revealed average
SDgoLp compression over the sampling phase. Error bars represent bootstrapped 95% confidence intervals of the mean. For
visualization, we also plot means for groups based on a median split on the fitted prior width parameter r of the Bayesian observer
model. B: Change in SDgoLp over the sampling phase correlated with estimation accuracy. Greater SDgo.p collapse related to smaller
median estimation errors. The inset shows the distribution of median SDgoLp change over positive effect voxels (BSR > 3). The diamond
marker indicates the distribution median. C: Regions showing performance-related SDgo.p change (see panel B) largely overlapped
with the canonical Default Mode Network (DMN)®. D: Fitted prior width parameter estimates (residualized by noise parameter o) of
the Bayesian observer model positively correlated with performance-related SDgo.p change. Note: All variables are rank-transformed.

It is possible that our within-person effects of ASDgoLp are not independent of between-subject differences in
SDgotp levels, which have also been linked to task performance in previous studies **. To account for this, we
computed a latent SDgoLp control variable by matrix multiplying brain saliences from the behavioral PLS analysis
relating ASDgoLp to estimation error (which reflect the spatial expression of the observed relationship) with
subjects’ SDgovp level at the first sample presentation period. We found no significant correlation between
latent ASDgorp and latent SDgovp at first sample exposure (Spearman'’s r(45) = -0.073, p = 6.28 - 1071). Next,
estimation error was significantly related to ASDgoup (t(44) = 5.430, p = 2 - 107, semi-partial n* = 0.625) when
controlling for the effect of latent SDgovp at first sample exposure (t(44) =1.806, p = 7.78 - 1072, semi-partialn*
= 0.208; full model: F(2,44) = 15.747, p = 7 - 107%, R* = 0.417). Likewise, prior width p (residualized by noise
parameter o) of the winning Bayesian-observer model was significantly related to ASDgovp (t(44) = 3.151, p =
2.92 - 1073, semi-partial n* = 0.409) when controlling for the effect of latent SDgovp at first sample exposure
(t(44) = 2.526, p = 1.52 - 1072, semi-partial n* = 0.328; full model: F(2,44) =7.618, p=1.44 - 1073, R*= 0.257). In
both models, the inclusion of the control variable also did not diminish the effect size of ASDgoLp on these
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behavioral measures. Thus, the effect of within-person SDgoip compression on task performance was
independent of between-subject differences in initial SDgoLp levels.

Overall, these results indicate that the degree to which subjects compress SDgoip with learning predicts
individual differences in inference accuracy, which can be explained in terms of idiosyncratic uncertainty
representations.

Standard GLM neural uncertainty correlates are distinct from BOLD variability effects

Finally, we compared our SDgowp findings to a more standard GLM analysis approach looking for brain areas
whose (average) BOLD response magnitude is correlated with uncertainty. To this end, we obtained voxel-wise
GLM beta estimates for each of the sample periods and entered them into behavioral PLS analysis relating them
to estimation error. This multivariate approach makes the results directly comparable to our main finding
showing that SDgoLo compression during learning relates to individual differences in task performance. This
analysis did not yield a significant latent relationship (permuted p = 0.161 for N = 47 and permuted p = 0.268 for
N = 51), suggesting that SDgoLo but not mean BOLD change predicted individual differences in inference
accuracy. However, this change in average BOLD activity over the sampling period does not account for more
nuanced modulation of the BOLD signal by uncertainty resulting from the varying sample sizes in our task
design (see Figure S1B). In other words, an unbiased Bayesian observer model would predict more uncertainty
reduction after observing a larger compared to a smaller sample in addition to the overall reduction in
uncertainty with the total accumulated evidence (i.e., trial time). Our SDgop metric required discrete
uncertainty conditions (with sufficient trial counts) and we thus only considered the main effect of trial time on
uncertainty. However, in a standard GLM approach we could model the parametric modulation of the BOLD
signal by the posterior variance of the belief distribution (i.e., uncertainty) for the unbiased Bayesian observer
model, which accounts for both trial time and sample size effects on uncertainty. Again, we used a multivariate
PLS approach to relate individuals' voxel-wise GLM beta estimates (for a parametric uncertainty regressor) to
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Figure 5. Standard GLM neural uncertainty correlates are distinct from SDgo.p effects. A: BOLD signal modulation by uncertainty (GLM
b estimates) correlated with average estimation accuracy. More downmodulation with increasing state uncertainty across the whole brain
related to smaller estimation errors. The inset shows the distribution of b estimates over positive (BSR > 3, top) and negative (BSR < 3,
bottom) effect voxels. The diamond marker indicates the distribution median. B: Fitted prior width parameter values (residualized by noise
parameter o) of the Bayesian observer model positively correlated with performance-related BOLD signal modulation by uncertainty (GLM
b estimates). C: Changes in SDgoLp over the sampling phase and BOLD signal modulation by uncertainty (GLM b estimates) uniquely
predicted task performance. Good performers showed both more SDgoLp compression and more downmodulation of the BOLD signal when
state uncertainty was high. Note: All PLS results are presented for rank-transformed variables.
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median estimation error. This revealed a significant latent association (permuted p = 3.40 - 1072, Spearman’sr
=0.675, Figure 5A, cf. Figure S3B for N = 51). Robust positive clusters were mainly located in the lateral parietal
cortex, PFC (dorsomedial, ventrolateral, and rostrolateral parts), and in the insula. Robust negative clusters
were present in ventromedial PFC (vmPFC) and in the left hippocampus (see Figure S2C for full axial brain plots
and Table S5 for peak voxel coordinates in robust clusters). This latent relationship was related to the prior width
parameter p of the winning Bayesian observer model, similar to the effect of ASDgoLo (Figure 5B). For further
details on these results, please refer to the Supplementary Information.

Qualitatively, these effect regions seem to show little overlap with those showing an effect for ASDgovp. To test
the spatial specificity of ASDgoLo effects, we computed a new latent variable by extracting the brain saliences
from the behavioral PLS analysis relating latent ASDgovp to estimation error and matrix-multiplied them with
the uncertainty beta estimates in each voxel from our standard parametric GLM analysis. We then ran a multiple
regression analysis predicting median estimation error from latent ASDgovp and this spatially-matched latent
parametric uncertainty modulation variable. The regression model was significant (F(2,44) = 13.901, p =
2.10 - 107°) with an R? of 0.387. The main effect of latent ASDgoLp was significant (t(44) = 5.265, p =4+ 107¢,
semi-partial n* = 0.386) but not for the new latent control variable (t(44) = 0.975, p = 0.335). This indicates that
ASDgovp effects and the parametric uncertainty modulation of the BOLD signal on performance are spatially
distinct in the brain.

Furthermore, we found a significant positive correlation between the latent ASDgoLo (Spearman’s r(45) = 0.407,
p=4.55-1073)and latent uncertainty modulation effects on estimation accuracy indicating that more accurate
performers show both types of uncertainty representation in the brain. We ran multiple regression analysis
predicting estimation errors from both latent ASDgoLp and latent uncertainty modulation to investigate whether
they explained unique variance in estimation errors. The full model was significant (F(2,44) = 31.883, p =
2.76 - 1072, R* = 0.592; Figure 5C). We found a significant main effect of both latent ASDsowo (t(44) = 4.844, p =
1.60 - 1075, semi-partial n* = 0.218) and latent uncertainty modulation (t(44) = 3.829, p = 4.04 - 10™*, semi-
partial n* = 0.136). This suggests that both types of neural uncertainty correlates uniquely relate to task
accuracy.

Overall, these analyses reveal that SDgoip effects are spatially distinct and uniquely relate to task accuracy
compared to neural correlates revealed by a more standard GLM approach.

DISCUSSION

In this study we show that reductions in state uncertainty over the course of learning co-occur with a
compression in BOLD signal variability. Moreover, individuals who decreased state uncertainty to a greater
extent showed more pronounced SDgop compression and made smaller estimation errors on average.
Behavioral modeling suggested that better performers reduced state uncertainty to a greater extent because
they began with a wider (more uncertain and flexible) prior belief distribution before observing any samples,
resulting in more unbiased marble ratio estimates.

Our findings establish SDgoLp as a novel within-person neural correlate of uncertainty, which reduces over the
course of Bayesian inference/learning, and relates to inference accuracy. The current findings thus add to a
growing literature demonstrating that within-person SDgoLp modulation in the face of varying task demands
facilitates adaptive behavior across different cognitive domains (see **). Our study is the first to directly show
that SDgovp tracks reductions in uncertainty. The bulk of past empirical work arguing for such a link showed
modulation of brain signal variability across disparate task conditions that varied along several dimensions
beyond uncertainty (e.g., cognitive demand, bottom-up sensory input or processing requirements 7*4445) By
employing a learning paradigm, we were able to operationalize uncertainty in a highly precise manner;
specifically, one’s uncertainty regarding the latent state of an environmental variable, a property that can be
reduced through learning from observations. To our knowledge, the only other study to date that has directly
investigated brain signal variability changes with uncertainty is a recent study by Kosciessa, et al. **, who
systematically manipulated uncertainty in a perceptual decision-making task by varying the number of visual
features that could be probed in a subsequent decision phase. This paradigm allowed the researchers to equate
bottom-up visual input across uncertainty conditions, similar to our own study. However, their study focused on
irreducible uncertainty (sometimes referred to as risk or outcome uncertainty in the literature *3) and only
considered temporal variability in the EEG signal. In contrast, we show that reductions in state uncertainty (i.e.,
uncertainty about the probability of an outcome) due to learning are mirrored in the variability of the fMRIBOLD
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signal. This supports the longstanding idea that brain signal variability enables cognitive flexibility ****, which is
required early on in the learning process to update one’s internal state belief.

Another innovation of our study over prior BOLD variability work more generally’®* is the use of an event-
related method to quantify trial-to-trial SDgoLo. This allowed us to track the evolution of SDgoLp with changesin
uncertainty on a short time scale (several seconds) ¥. This method is inspired by the machine-learning fMRI
literature allowing for the estimation of GLM beta parameters for single events, over which we can compute the
variance for each uncertainty condition.

These features of our study resolve various shortcomings of previous work and provide strong support for a link
between brain signal variability and uncertainty.

Individual differences in uncertainty representations track inference accuracy

We found that low performing individuals made most estimation errors for extreme marble ratios, such that jars
with blue marble proportions close to one were underestimated and those with proportions close to zero were
overestimated. This effect has been reported previously for tasks where participants are asked to judge
outcome probabilities from experience, sometimes referred to as under-extremity “*%¥¢. Notably, some studies
found that this effect is abolished when participants were asked to give verbal judgements instead *. This may
suggest that individual differences in extreme jar bias result from people’s (in)ability to accurately enter their
marble ratio estimates into the grid in the estimation phase of our task. However, we found that brain activity
during sampling (prior to the estimation phase) predicted individual differences in peoples’ (average) estimation
error. It is thus likely that the observed bias reflects people’s internal representations rather than being a mere
consequence of our chosen response modality.

Our winning Bayesian observer model suggested that such estimation errors could best be explained by
individual differences in the representation of the initial prior belief over blue marble proportions rather than in
belief updating; low performers held a narrower prior belief distribution over the default belief of a 50:50 marble
ratio. It is possible that this prior was induced by our task design given the default position of the response grid.
The fitted prior could thus reflect individual differences in anchoring to this task feature *°. Alternatively, this
bias could reflect bona fide trait-like individual differences in expectations about extreme outcomes. In line with
this explanation, Glaze, et al. “° found that performance differences on a change-point inference task were best
explained by participants’ prior width over potential change rates, which cannot simply be explained by
anchoring. Note that the distinction between prior beliefs and belief updating is also pertinent to other
approximately-Bayesian and non-Bayesian cognitive models that have been used to model the inference
process in similar tasks, which we did not consider here “**°. These models account for cognitive limitations in
human information processing and may provide an even better fit to behavioral data. While not the main aim
of the current study, future modelling and experimental work is required to pin down the source of individual
differences in under-extremity observed in the current study.

We showed that less SDgoip compression (independent of initial SDgocp levels) in poorer performers could best
be explained by more limited uncertainty reduction, based on parameter estimates for the winning behavioral
model. Still, our results rely on the assumption that participants represent and utilize uncertainty akin to an
(approximate) Bayesian observer. Future work should reduce reliance on model assumptions and obtain
subjective uncertainty estimates. For example, one could regularly ask people to report their state belief
together with their belief confidence throughout the learning process to directly track updates in their
subjective belief distribution.

Performance-related SDgoLp collapse in the Default Mode Network

We observed performance-relevant collapse in SDgoLp in @ network of brain regions that largely overlapped with
regions commonly ascribed to the default mode network (DMN) in resting-state fMRI connectivity analyses ™"
% including parietal (precuneus, inferior parietal lobe including the angular gyrus), prefrontal (superior frontal
gyrus, frontopolar cortex, orbitofrontal cortex, paracingulate gyrus) and temporal (middle temporal gyrus)
cortices. Previous work has consistently reported deactivation of this brain network during externally-cued,
demanding cognitive tasks compared to rest >***°**7_ In contrast, internally-oriented tasks that call for self-
referential processing and memory recollection demonstrate increased activity in key regions of the DMN 545%°
% With respect to brain signal variability, one study by Grady and Garrett * found increased SDgoLp in DMN
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regions in externally- as compared to internally-guided tasks. Given previous reports that higher local SDgovp is
associated with lower whole-brain functional network dimensionality ®, this finding may reflect more crosstalk
between the DMN and other brain networks during externally-guided tasks. Therefore, SDgoLo compression
during learning may reflect the gradual build-up of an internal world model; larger SDgoLp under high state
uncertainty early on may afford a more flexible incorporation of incoming information to update one’s internal
state belief. As state uncertainty reduces and SDgop compresses, the brain arrives at a stable internal belief
representation, which informs one’s jar marble ratio estimate in the subsequent task phase.

Previous research has shown that internally-guided tasks evoke a coupling between the DMN and the
frontoparietal-control network to support task performance ®*. In our task, we would expect such a coupling to
emerge towards the end of the sampling period reflecting the utilization of one’s internal state belief to prepare
the upcoming response. Indeed, we observe a concomitant increase in BOLD activity in the fronto-parietal
network and compression of SDgop in the DMN in high performing subjects. How functional connectivity
between different brain networks changes over the course of learning goes beyond the scope of the current
study, but constitutes an interesting target for future research.

Standard analytic approaches reveal different neural uncertainty correlates compared to SDgoLp

Our standard GLM analysis revealed that BOLD modulation by uncertainty also related to estimation accuracy
in our task. On one hand, higher BOLD (in lateral parietal cortex, dorsomedial PFC, ventro- and rostrolateral
PFC, and anterior insula) with lower uncertainty predicted higher estimation accuracy. In other words, high
performers showed an increase in BOLD activity in these regions as they observed more samples and became
more certain about the jar marble ratio on a given trial. These areas correspond to fronto-parietal control and
dorsal attention brain networks, which support goal-directed behavior in externally-driven tasks “®3°°,
Conversely, positive coupling between the BOLD signal and state uncertainty in mainly in the vmPFC (and a
cluster in the left hippocampus) also predicted better performance in our task, which has previously been linked
to confidence representations “ (see Supplementary Information for detailed discussion of these findings).

Interestingly, we found that uncertainty representations in SDgoLo (in DMN regions) and parametric BOLD
signal modulation (in fronto-parietal control/attention regions) were spatially different and uniquely predicted
estimation accuracy. Why would the brain track uncertainty in these different neural signals and across different
networks? One possibility could be that SDgo.p tracks uncertainty about the latent environmental state with or
without immediate relevance for decision-making, while parametric BOLD modulation by uncertainty may be
more relevant in the context of goal-directed decision formation and action selection. In support of this view,
previous research has shown modulation of brain signal variability by stimulus features even when no action
was required. For example, in the human neuroimaging literature, changes in neural variability have been
observed in response to varying complexity of visual stimuli during passive viewing, which were linked to offline
cognitive performance “***. In a similar vein, it has recently been argued that early perceptual uncertainty, which
has been the main focus of sampling accounts of neural variability, is tracked irrespective of task demands but
can be flexibly utilized in higher-order decision-making ®*°. Thus, changes in brain signal variability may track
environmental variables without the need for immediate action. In contrast, parametric BOLD modulation by
uncertainty has been reported for learning and decision-making tasks that require participants to make choices
on every trial **%¥. As such, these neural uncertainty correlates may be more tightly linked to decision formation
and may in some cases even relate to metacognitive awareness of this decision-relevant variable “/%97°,
Although speculative, this framework makes testable predictions for situations in which we would expect to see
a dissociation of these two neural signals, which should be addressed in future work.

Limitations and next steps

One potential limitation of our task design was that our stimulus sample size manipulation introduced trial-to-
trial variance in how much uncertainty could be reduced with each presented sample (Figure S1B). Because our
SDgoLp measure was computed for each sample period across trials, uncertainty levels were by definition not
equivalent within each condition bin (although uncertainty always decreased across sample periods). However,
our results showed that SDgoLp effects could not be explained by parametric BOLD signal modulation by trial-
to-trial differences in uncertainty trajectories in the same brain regions, which could have accounted for this
variance. ldeally, future studies should keep sample size consistent between trials so that SDgop can be
computed over comparable uncertainty levels.
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Another potential limitation is that uncertainty was collinear with within-trial time in our task; the more samples
were presented, the more uncertainty could be reduced in general. However, this is an inevitable consequence
of decision-making and learning in stable environments, in which one can simply accumulate evidence over
time. Although within-trial time could have introduced arousal- or attention-related effects (which have
previously been linked to human brain signal variability **), we observed performance-related interindividual
variability in SDgoLp compression over the sampling period. Such an effect cannot, by definition, be accounted
for by the fixed factor of trial time. Nevertheless, future work could investigate the coupling between brain
signal variability and uncertainty in non-stationary learning environments (see e.g. 3), within which uncertainty
can increase or decrease over time.

Conclusion
We provide first evidence that moment-to-moment brain signal variability compresses with increasing belief

precision during learning. Whether brain signal compression is directly proportional to the informativeness of
the available evidence is an important prediction that should be investigated in future work.
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Figure S1. Model comparison and simulations. A: Counts of models with the lowest BIC across
subjects. B: Trial-wise trajectories of the posterior variances of the marble ratio belief distribution for
the unbiased Bayesian observer model. C: Parameter recovery for the Bayesian observer model with
free prior width p and noisy choice . D: Parameter recovery for the Bayesian observer model with
free evidence weight 6 and noisy choice . E: Proportion of models recovered from simulated subjects
for each model. Note. RW = Rescorla-Wagner model, expo = Bayesian observer with exponential
evidence weight 6 and sampling choice rule, prior = Bayesian observer model with fitted prior width
p and sampling choice rule, expo+noise = same as expo model but with noisy choice o, prior+noise =

same as prior but with noisy choice ¢
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Figure S2. Axial brain plots for the PLS results. A: Task PLS model relating SDgop to sample
presentations. B: Behavioral PLS model relating ASDgoLo to median estimation error (N = 47). C:

Behavioral PLS model relating BOLD signal uncertainty modulation to median estimation error (N =
47). Bootstrap ratio = BSR.
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Figure S3. Behavioral PLS results for the full dataset (N = 51). A: Behavioral PLS model relating ASDgovp to
average estimation error. B: Behavioral PLS model relating BOLD signal uncertainty modulation to median
estimation error. Note: The results are presented for rank scored variables. P-values are based on
nonparametric permutation tests.
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Supplementary Table S1. Overview of the 18 marble jars. Each participant completed each jar four times
(twice in the low reward and twice in the high reward condition).

Jar Jar type p(blue) Payoff EV gamble EV certain EV
gamble difference

1 risk seeking 0.2 55 11 10 1

2 risk seeking 0.1 130 13 10 3

3 risk seeking 0.4 28 11.2 10 1.2
4 risk seeking 0.6 22 13.2 10 3.2
5 risk seeking 0.9 12 10.8 10 0.8
6 risk seeking 0.8 16 12.8 10 2.8
7 risk neutral 0.1 100 10 10 o)

8 risk neutral 0.2 50 10 10 o)

9 risk neutral 0.25 40 10 10 o)
10 risk neutral 0.77 13 10 10 o)
11 risk neutral 0.83 12 10 10 o)
12 risk neutral 0.91 11 10 10 o)
13 risk averse 0.1 92 9.2 10 -0.8
14 risk averse 0.2 35 7 10 -3
15 risk averse 0.6 15 9 10 -1
16 risk averse 0.4 17 6.8 10 -3.2
17 risk averse 0.8 11 8.8 10 -1.2
18 risk averse 0.9 8 7.2 10 -2.8

Note. EV = Expected value, p(blue) = blue marble probability
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Supplementary Table S2. Model recovery. BIC of each model for each simulated dataset.

Recovered model: RW expo prior expo+noise prior+noise
RW -3508.163 -1984.135 1560.267 -2694.659 -2633.512
expo -2828.659 -4926.453 -3708.676 -4223.386 -4018.178
prior -3706.85 -5704.678 -6375.963 -5297.432 -5702.832
expo+noise -2888.764 -3287.136 -2035.45 -4396.865 -4037.069
prior+noise -3207.927 -3669.239 -3177.083 -4293.817 -4770.482
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Supplementary Table S3: Peak voxel coordinates in robust clusters (BSR > 3) for the significant latent variable of
the task PLS analysis relating SDgo.p to sample presentation.

MNI

X Y z BSR p-value Cluster size (voxels) Anatomical region

-39 -54 36 -6.4734 0.0000 4086 L Inferior Parietal Lobule
-33 51 0 -6.3604 0.0000 488 L Middle Frontal Gyrus
-45 12 54 -6.2607 0.0000 3370 L Middle Frontal Gyrus*
(-45)  (9) (54)

-9 -96 12 -5.9355 0.0000 384 L Superior Occipital Gyrus
60 -24 -3 -5.2715 0.0000 189 R Middle Temporal Gyrus

3 -6 66 -4.5180 0.0000 36 R Posterior-Medial Frontal
-30 -39 12 -4.5173 0.0000 25 L Fusiform Gyrus

15 48 0 -4.3964 0.0000 58 R Superior Medial Gyrus
45 -6 -3 -4.2319 0.0000 27 R Insula Lobe

-24 -39 66 -4.1320 0.0000 46 L Postcentral Gyrus

18 =24 63 -4.0587 0.0000 52 R Precentral Gyrus*

(22)  (24)  (63)
Note. Abbreviations: MNI = Coordinates in Montreal Neurological Institute space, BSR = Bootstrap ratio.
Anatomic labels were derived from the cytoarchitectonic atlas provided in the anatomy toolbox for SPM 8
(Eickhoff et al., 2005). We only report clusters of 25 voxels or more. *Peak voxel not assigned anatomical label
in anatomy toolbox. Anatomical label corresponds to bracketed coordinates.
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Supplementary Table S4: Peak voxel coordinates in robust clusters (BSR > 3) for the significant latent variable of
the behavioral PLS analysis relating ASDgo.p to estimation error (N = 47).

MNI
X Y Z BSR p-value Cluster size (voxels) Anatomical region
57 3 -24 7.6886 0.0000 180 R Middle Temporal Gyrus
3 -57 18 7.5207 0.0000 257 R Precuneus
-45 -78 33 7.4781 0.0000 275 Area PGp (IPL)
21 33 48 7.3272 0.0000 187 L Superior Frontal Gyrus
33 27 9 6.6384 0.0000 26 R Insula Lobe
48 -69 33 5.9344 0.0000 180 R Angular Gyrus
-9 66 18 5.8743 0.0000 178 L Superior Medial Gyrus
-39 42 -6 5.8357 0.0000 169 L IFG (p. Orbitalis)
60 -45 48 5.7765 0.0000 327 R Inferior Parietal Lobule
-15 -87 21 5.7644 0.0000 32 L Superior Occipital Gyrus
-54 -27 -3 5.7185 0.0000 51 L Middle Temporal Gyrus
36 3 57 5.5382 0.0000 84 R Middle Frontal Gyrus
51 6 15 5.5042 0.0000 107 R Rolandic Operculum
36 18 .18 5.4959 0.0000 42 R Insula Lobe
12 -24 69 5.2755 0.0000 39 R Paracentral Lobule
24 36 -6 5.1858 0.0000 25 R ParaHippocampal Gyrus
-9 57 39 5.1066 0.0000 53 L Superior Frontal Gyrus
-45 -45 15 4.9372 0.0000 51 L Superior Temporal Gyrus
-51 12 18 £4.9333 0.0000 43 L IFG (p. Opercularis)
-66 -27 =24 4.8241 0.0000 133 L Inferior Temporal Gyrus*
(-63) (31)  (-20)
15 36 51 4.8089 0.0000 45 R Superior Frontal Gyrus
-33 60 18 4.6589 0.0000 50 L Middle Frontal Gyrus
9 60 15 4.5953 0.0000 54 R Superior Medial Gyrus
42 57 15 4.1974 0.0000 70 R Middle Frontal Gyrus

Note. Abbreviations: MNI = Coordinates in Montreal Neurological Institute space, BSR = Bootstrap ratio.
Anatomic labels were derived from the cytoarchitectonic atlas provided in the anatomy toolbox for SPM 8
(Eickhoff et al., 2005). We only report clusters of 25 voxels or more. *Peak voxel not assigned anatomical label
in anatomy toolbox. Anatomical label corresponds to bracketed coordinates.
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Supplementary Table Ss: Peak voxel coordinates in robust clusters (BSR > 3) for the significant latent variable of
the behavioral PLS analysis relating uncertainty modulation to estimation error (N = 47).

MNI

X Y Z BSR p-value Cluster size (voxels) Anatomical region

57 -39 51 7.5835 0.0000 636 R Inferior Parietal Lobule
0 27 51 6.7004 0.0000 172 L Superior Medial Gyrus
48 39 15 6.5347 0.0000 202 R IFG (p. Triangularis)
-36 -48 45 6.3783 0.0000 365 L Inferior Parietal Lobule
-42 39 15 6.1012 0.0000 49 L IFG (p. Triangularis)
-33 18 9 5.8193 0.0000 40 L Insula Lobe

36 24 0 5.3671 0.0000 59 R Insula Lobe

51 12 33 5.0933 0.0000 71 R IFG (p. Opercularis)
30 54 -9 4.5326 0.0000 27 R Middle Orbital Gyrus
-48 6 36 4.4879 0.0000 36 L Precentral Gyrus

-9 60 3 -5.4550 0.0000 391 L Superior Medial Gyrus
.18 -6 -21 -4.3491 0.0000 35 L Hippocampus

Note. Abbreviations: MNI = Coordinates in Montreal Neurological Institute space, BSR = Bootstrap ratio.
Anatomic labels were derived from the cytoarchitectonic atlas provided in the anatomy toolbox for SPM 8
(Eickhoff et al., 2005). We only report clusters of 25 voxels or more.
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SUPPLEMENTARY METHODS

Task design. During the final experimental block, performed outside the MR scanner, confidence ratings of the
estimation of the blue-red marble ratio were collected. For this block of trials, a rating scale was included directly
after completion of the estimation and prior to the gambling phase. Participants were instructed to indicate
their confidence ranging from “very unsure” to “very sure” about the estimation of the blue-red marble ratio on
a continuous confidence judgment scale *. Additionally, the amount of obtainable reward on each trial was
manipulated. Each marble was marked with one ring (low reward) or two rings (high reward). In the high reward
condition, the magnitude of the reward in the gamble was doubled compared to the low reward condition. Each
participant completed each jar an equal number of times in the low and high reward conditions.

The gambling phase. At the end of each trial, participants had to make a risky decision between two options.
One option represented a draw from the current urn. If the outcome had been a blue marble, the participant
would have received a payoff with a specific magnitude (which is different in each trial, see details below). The
other option represented a reference option with a certain payoff (i.e., reward probability was 100 percent).
After the experiment finished, one of these gambles was picked and participants received a bonus payment
based on the result of a draw from their chosen option. The options were presented in the left or right hemi-
field of the screen and the order was pseudo-randomized across the experiment. Participants should choose
one option via left or right button of the button box. Each trial ended following the decision and subsequently
the next trial started with a different urn and reward probability.

The 18 different marble jars in the experiment differed in expected value in the following way: In six jars
the expected value (probability of drawing a blue marble times the varying payoff) was larger than the reference
option (ranging between 10 and 30 percent), in another six urns the expected value of both options were
approximately equal and in the final six urns the expected value was lower than the reference option (ranging
between -10 and -30 percent, Supplementary Table S1). The probability of drawing a blue marble varied
between 0.1and 0.91, whereas the payoff varied between 8 and 130 points. Theoretically, a decision-maker that
always chooses the gambling option could expect the same summed expected value as a decision maker that
always chooses the certain reference option.

SUPPLEMENTARY RESULTS

Model and parameter recovery. The ground truth model was recovered well from each simulated dataset. The
respective ground truth model consistently had the lowest BIC overall (supplementary Table S2). Across the
simulated subjects, the ground truth model was always recovered most frequently (Supplementary Figure S1E).
However, there was some model confusion, particularly for our winning model (fitted prior with noisy choice
rule), which was only recovered in about 49% of simulated subjects. This may also explain the variance in
empirical model fit on the subject level, although the majority of subjects (35%) were still best fit by the overall
winning Bayesian observer model (Supplementary Figure S1A). Some degree of model confusion is to be
expected since all variants of our Bayesian observer model aim to account for the same behavioral pattern
(biased estimation of extreme marble proportions). Certain parameterizations of the prior model family may
thus yield simulated behavior that is also well accounted for by models from the exponential family.
Furthermore, some confusion between nested models is not necessarily surprising. For example, certain ranges
of the response noise parameter g may result in similar behavioral predictions to that of the same model that
samples responses from the final beta distribution. It is noteworthy, however, that in general models including
a noisy response rule are well differentiable from models with a sampling response rule. This supports the
inclusion of the noise parameter o in our winning model. There was also good differentiation between the
Rescorla-Wagner model and all Bayesian observer models on the subject level supporting our inference that
subjects seem to use uncertainty to inform their marble ratio estimates.

We also checked the recoverability of model parameters. For our winning model, both prior (Pearson’s r = 0.98)
and noise (Pearson’s r = 0.97) parameters estimated for each simulated subject were highly correlated with their
ground truth values (Supplementary Figure S1C). Parameters of the second-best model were also recoverable
(Supplementary Figure S1D). This reinforces the inferences made from individuals’ parameter estimates in our
results.

Explaining the effect of response noise parameter a on extreme jar bias. The significant main effect of
response noise g in predicting subjects’ extreme jar bias suggests that people with opposite extreme jar biases
(i.e., more misestimation for jars with marble ratios close to 50:50), is not captured by the winning behavioral
model. Indeed, if we remove subjects with opposite extreme jar bias (i.e., negative effect slopes, N = g) from
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this regression analysis, the main effect of noise parameter o on extreme jar bias is not significant (t(39) = -0.113,
p = 0.922). Thus, our behavioral model accounts well for the empirical response pattern we sought to capture
(i.e., positive effect slopes).

Analysis of BOLD signal modulation by uncertainty. Our PLS model relating BOLD signal modulation by
uncertainty (i.e., standard GLM beta estimates for the parametric uncertainty regressor) to subjects’ median
estimation error revealed a significant latent association (permuted p = 3.40 - 1072, Spearman’s r = 0.675,
Figure 5B, cf. Figure S3B for N = 51). Because brain saliences were both positive and negative, individual
differences in parametric modulation effects related differently to estimation errors between regions (see
Figure S2C for full axial brain plots and Table S for peak voxel coordinates in robust clusters). In robust clusters
with positive saliences, subjects who down-modulated BOLD activity more with increasing state uncertainty
made fewer estimation errors (lower latent uncertainty modulation rank scores reflecting more negative
modulation effects) than subjects who did not track state uncertainty in these regions (higher latent uncertainty
modulation rank scores reflecting BOLD signal modulation by state uncertainty effects close to zero). Robust
clusters were mainly located in the lateral parietal cortex, PFC (dorsomedial, ventrolateral, and rostrolateral
parts), and in the insula. In contrast, in robust clusters with negative brain saliences, subjects who showed more
positive coupling between BOLD signal and state uncertainty made fewer estimation errors than subjects with
a negative coupling. This relationship was mainly expressed in a cluster located in the ventromedial PFC
(vmPFC) and a cluster in the left hippocampus.

We also investigated whether these performance-related individual differences in BOLD signal modulation by
uncertainty could be explained by idiosyncratic uncertainty representations, as captured by our winning
behavioral model. We ran multiple regression predicting latent uncertainty modulation of the BOLD response,
which relates to task accuracy, from the prior width parameter p controlling for response noise . This model
explained a significant amount of variance (F(2,44) = 6.244, p = 4.10 - 1073) with an R? of 0.221 (Figure 50).
There was a significant main effect for prior width p (t(44) = 3.508, p = 1.05 - 1073, semi-partial n* = 0.218) but
not for parameter o (t(44) = 1.590, p = 0.119). This finding suggests that people with suboptimal uncertainty
representations, due to a narrow prior belief distribution (i.e., higher p), show less BOLD signal modulation by
state uncertainty trajectories derived from the unbiased Bayesian observer model. We again ran this analysis
also for the parameters of the (second-best) evidence weight model, which afforded similar inferences (see
supplementary results).

Brain-behavior results for the evidence weight model. Our alternative model, which explains suboptimal
responding by an exponential weighting of the incoming evidence, would similarly predict individual differences
in state uncertainty reduction during the sampling phase: People who reduce uncertainty less for large samples
(i.e., 6 <1) make more estimation errors than people who weight the information provided by large samples
more optimally (i.e., § = 1). Subjects’ fitted prior parameter p of the winning model and fitted evidence weight
& for second-best model (both including a response noise parameter a) were highly correlated (Pearson’s r(49)
=-0.863, p = 3.73 - 1071°), supporting the notion that they capture similar behavioral response patterns. For
this model, the fitted evidence weight parameter § had a median of 0.85 (SD = 0.84) and the fitted noise
parameter ¢ had a median of 0.10 (SD = 0.05).

Predicting ranked latent ASDgoLo from the ranked evidence weight § and response noise o parameters in a
multiple regression model explained a significant amount of variance (F(2,44) = 6.938, p = 2.41-1073) with an
R? of 0.240. There was a significant main effect only for evidence weight & (t(44) = -3.725, p= 5.53 - 107%, semi-
partial n* = -0.240): People who underweight the evidence of large samples more (i.e. § < 1) show less SDgoLp
collapse during the sampling phase. Furthermore, the regression model predicting latent uncertainty
modulation of the BOLD response from evidence weight parameter § and response noise ¢ explained a
significant amount of variance (F(2,44) = 5.544, p= 7.12 - 1073) with an R* of 0.201. There was a significant main
effect for evidence weight & (t(44) = -3.257, p = 2.17 - 1073, semi-partial n* = -0.193) and also for parameter o
(t(44) = 2.147, p= 3.74 - 1072). This suggests that people who underweight the evidence of large samples (& <
1) show less BOLD signal modulation by uncertainty trajectories of the unbiased Bayesian observer.

Overall, our interpretation that individual differences in uncertainty representations explain the observed brain-

behavior relationships would not have changed had we chosen this alternative model. We frame our conclusions
in terms of the fitted prior model because it provided a better account of behavior.
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SUPPLEMENTARY DISCUSSION

Our standard analysis approach revealed that BOLD signal modulation by state uncertainty predicted task
accuracy. On one hand, higher BOLD signal (in lateral parietal cortex, dorsomedial PFC, ventro- and
rostrolateral PFC, and anterior insula) with lower uncertainty predicted higher estimation accuracy. In other
words, higher performers showed an increase in BOLD activity in these regions as they observed more samples
and became more certain about the jar marble ratio on a given trial. These areas correspond to frontoparietal
control and dorsal attention brain networks, which support goal-directed behavior in externally-driven tasks *
®. These networks of brain areas have also been found to correlate with state uncertainty in other inference tasks
78, However, these prior studies commonly report an opposite effect direction in which high state uncertainty
reflected more activity in these brain regions. For example, an fMRI study by McGuire, et al. 7 investigated how
uncertainty drives learning in a task that required participants to infer the position of an unseen helicopter based
on bag drops that followed a normal distribution around the helicopter’s true position. In their task, the
helicopter location could change unannounced leading to learning rate adjustments due to change-point
uncertainty and uncertainty about the helicopter location in a given environment (which the authors term
relative uncertainty). The authors found BOLD signal modulation by relative uncertainty in lateral parietal
cortex, dorsomedial PFC, ventrolateral PFC, and anterior insula, which match the regions we found in the
current study. However, the direction of effect is reversed showing a positive coupling between relative
uncertainty and the BOLD signa. Two key differences of our study are that we investigate state inference in a
stable rather than dynamic environment and that decisions are only required after observing several evidence
samples. In these respects, our study shares similarities with perceptual decision-making studies, which assume
that noisy perceptual evidence is integrated over time to arrive at a decision #*°. Previous fMRI studies of
perceptual decision-making also report the involvement of a similar set of higher-order brain regions, which
have been linked to evidence accumulation, decision formation and response preparation **®, Notably, some
studies have reported an increase in average BOLD activity in these brain areas over the sampling period (i.e.,
with decreasing state uncertainty), which aligns with our findings **.

Conversely, positive coupling between the BOLD signal and state uncertainty in vmPFC and left hippocampus
also predicted better performance in our task. The previously mentioned study by McGuire, et al.” also reported
an effect in the vmPFC, but again with opposite effect direction compared to the one we see in high performers.
At first glance, our findings appear at odds with previous work reporting vmPFC tracking of subjective
confidence. However, recent work by Trudel, et al. *° suggests that representations of uncertainty in this brain
region depend on the behavioral goal. In their task, participants had to learn the predictiveness of two choice
options in determining a target location that was later revealed in the trial. Early on during learning, vmPFC
BOLD signal positively tracked the uncertainty differences of the two choice options and correlated with
uncertainty-guided exploration. Later on, vmPFC BOLD signal negatively tracked the uncertainty difference
and correlated with uncertainty-avoidant exploitation. The positive effect we observe in our study is thus in line
with the general idea of an "exploratory brain mode” that supports uncertainty-guided learning.
Overall, the GLM results directly connect to previous studies across various domains of decision-making and
reveal surprising discrepancies that require more attention in future work.
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