

1 **Atrial Proteomic Profiling Reveals a Switch Towards Profibrotic Gene Expression Program in**
2 **CREM-IbΔC-X Mice with Persistent Atrial Fibrillation**

3

4 Shuai Zhao^{1,2,*}, Mohit M. Hulsurkar^{1,2,*}, Satadru K. Lahiri^{1,2}, Yuriana Aguilar-Sanchez^{1,2}, Elda
5 Munivez^{1,2}, Frank Ulrich Müller³, Antrix Jain⁴, Anna Malovannaya^{4,5}, Kendrick Yiu⁶, Svetlana Reilly⁶,
6 Xander H.T. Wehrens^{1,2,7,8,9,10}

7

8 ¹Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA;

9 ²Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA;

10 ³Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany; ⁴Mass

11 Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA; ⁵Department of

12 Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA; ⁶Division of Cardiovascular

13 Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence,

14 NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK; ⁷Department of

15 Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA; ⁸Department of

16 Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; ⁹Department of Pediatrics (in

17 Cardiology), Baylor College of Medicine, Houston, TX 77030, USA; ¹⁰Center for Space Medicine,

18 Baylor College of Medicine, Houston, USA.

19

20 * Equal contribution.

21 **Running title:** Profibrotic Gene Expression Program in Persistent Atrial Fibrillation.

22 **Word count:** 5,082 (8 figures)

23 **Keywords:** Atrial fibrillation, atrial remodeling, fibrosis, proteomics.

24

25 **Correspondence to:** Xander H.T. Wehrens MD, PhD, Cardiovascular Research Institute,
26 Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, Tel 713-798-4261, Email:
27 wehrens@bcm.edu

28 **ABBREVIATIONS AND ACRONYMS**

29

30 AF atrial fibrillation

31 BP biological process

32 CREM cAMP-response element modulator

33 DEP differentially expressed protein

34 ECG electrocardiogram

35 ECM extracellular matrix

36 FBLN5 fibulin 5

37 GO gene ontology

38 GSEA gene set enrichment analysis

39 ITGAV integrin alpha V

40 LCP1 lymphocyte cytosolic protein 1

41 MS mass spectrometry

42 pAF paroxysmal atrial fibrillation

43 PCA principal component analysis

44 perAF persistent atrial fibrillation

45 PPI protein-protein interaction

46 WT wild type

47

48 **ABSTRACT**

49

50 **Background:** Overexpression of the CREM (cAMP response element-binding modulator) isoform
51 CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous
52 AF.

53 **Purpose:** To identify key proteome signatures and biological processes accompanying the development
54 of persistent AF through integrated proteomics and bioinformatics analysis.

55 **Methods:** Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were
56 subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and
57 pathway enrichment analysis, and protein-protein interaction (PPI) network analysis.

58 **Results:** A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed
59 enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix
60 (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial
61 fibrosis and remodeling based on expression changes, co-expression patterns, and PPI network analysis.
62 Comparative analysis with previously published datasets revealed a shift in protein expression patterns
63 from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in
64 older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns that
65 resembled those of humans with persistent AF.

66 **Conclusions:** This study uncovered distinct temporal changes in atrial protein expression patterns with
67 age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of
68 the key differentially abundant proteins identified in this study in AF progression may open new
69 therapeutic avenues to control atrial fibrosis and substrate development in AF.

70

71 **KEY WORDS:** Atrial fibrillation, atrial fibrosis, extracellular matrix, disease model, proteomics

72 **1. INTRODUCTION**

73

74 Atrial fibrillation (AF) is the most common cardiac arrhythmia and a major risk factor for ischemic
75 stroke and heart failure. According to data from the Global Burden of Disease study 2019, AF caused
76 about 300,000 deaths while 59 million patients suffer from AF.[1] The progressive nature of disease
77 progression complicates the assessment and treatment of AF.[2] AF typically begins as paroxysmal AF,
78 characterized by intermittent arrhythmia periods lasting less than 7 days, and tends to progress over time
79 to persistent AF (perAF). AF progresses over time and with age and more than half of all AF patients
80 are >75 years old. [3]

81 AF is hallmark by electrical and structural (fibrotic) remodeling in the myocardium, which
82 underlies the progressive nature of the arrhythmia itself. AF related comorbidities, associated with
83 structural changes in the myocardium, pose a particular challenge in AF treatment, as current therapies
84 are largely focused on controlling electrical remodeling (the heart rate and rhythm), with no effective
85 therapies targeting structural changes. Thus, further mechanistic understanding of how atrial (electrical
86 and structural) remodeling contributes to the disease progression is necessary to develop more effective
87 therapies for AF.[4] Electrical remodeling leading to ectopic firing and re-entrant activity of action
88 potentials is considered to be causative for the onset of AF[5] as well as the maintenance of initial
89 disease state. While it is shown that further structural and fibrotic remodeling is necessary for advanced
90 disease state progression,[6] the underlying mechanisms are not well understood.

91 The use of animal models has enabled the study of specific genetic and molecular factors
92 contributing to the pathogenesis of AF.[7, 8] While large animal models can recapitulate the disease
93 progression seen in humans, they have some disadvantages like a longer time-course to develop
94 advanced disease stages and difficulty to perform genetic modifications.[9] On the other hand, mouse
95 models offer multiple advantages such as a shorter time course of disease development, ease of genetic

96 manipulation, less genetic heterogeneity among animals, and overall cost-effectiveness. Several mouse
97 models have been shown to recapitulate key disease features also seen in patients with AF.[7] For
98 example, CREM transgenic (CREM-Tg) mice exhibit aberrant sarcoplasmic reticulum Ca^{2+} handling,
99 which was demonstrated to serve as a mechanistic driver of AF progression.[10] CREM-Tg mice
100 overexpress the CREM-Ib Δ C-X isoform, the expression of which is also elevated in human patients with
101 perAF.[10] In these mice, atrial remodeling typically starts at 5-6 weeks of age and ectopic beats are
102 observed at around 3 months, which is associated with spontaneous, paroxysmal AF.[8, 10, 11] As the
103 CREM-Tg mice age, they develop atrial dilation, conduction abnormalities and extensive atrial fibrosis,
104 which is associated with increasing persistence and burden of AF.[8, 10] The disease progression in
105 CREM-Tg mice thus mimics the atrial remodeling and disease evolution often observed in patients with
106 AF.

107 To gain a better understanding of the atrial protein landscape involved in the advanced stages of
108 perAF, we performed unbiased mass spectrometry-based quantitative proteomics on 9-month-old
109 CREM-Tg mice. Enrichment and network analysis identified ~3,000 unique proteins in the atria of
110 CREM-Tg mice and their age-sex matched wild-type littermate controls. Using multimodal analysis, the
111 differentially expressed proteins (DEPs) were compared with publicly available datasets from young
112 CREM-Tg mice.[12] While the young CREM-Tg mice with early-stage AF mainly exhibited changes in
113 biological pathways involved in regulating metabolism, contractility, and electric activity in the atria,
114 older CREM-Tg mice with more advanced-stage AF showed a significant shift in the gene expression
115 patterns associated with fibrotic remodeling. The enrichment of actin filament assembly and ECM
116 remodeling events emerged as a possible driver of alterations in atrial tissue integrity and contractility.
117 Taken together, our study uncovered a novel shift in the atrial proteome associated with biological
118 processes promoting atrial remodeling and fibrosis during more advanced stages of AF, similar to those

119 observed in atrial tissue from patients with persistent AF. These pathways may be suitable for future
120 studies with the goal of developing new therapeutic targets for AF prevention.

121 **2. MATERIALS AND METHODS**

122

123 A detailed description of all methods is provided in the **Supplemental Materials**. The authors did not
124 use generative AI or AI-assisted technologies in the development of this manuscript.

125

126 **2.1. Sample preparation for mass spectrometry.** All animal studies were performed according to
127 protocols approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine
128 conforming to the Guide for the Care and Use of Laboratory Animals published by the U.S. National
129 Institutes of Health (NIH Publication No. 85-23, revised 1996). Mice with cardiomyocyte-specific
130 overexpression of CREM-IbΔC-X (Tg) were described previously.[13] Mice were 9 months-of-age and
131 divided into 2 experimental groups: 1) CREM-Tg mice and, 2) WT littermates. Mice were euthanized,
132 and atria tissue was harvested, immediately snap frozen in liquid nitrogen, and stored at -80 °C for
133 downstream analysis. Tissue homogenization, protein digestion, peptide clean-up, and unbiased mass
134 spectrometry were performed as detailed in the **Supplemental Material**.

135

136 **2.2. Mass spectrometry (MS) data processing.** The MS raw data was searched with Proteome
137 Discoverer 2.1 software (Thermo Scientific, Waltham, MA) with Mascot 2.4 (Matrix Science, Chicago,
138 IL) against NCBI refseq *Mus musculus* database (updated 03/24/2020). The following parameters were
139 set for identification and quantification: 1) trypsin digestion with a maximum of two miscuts; 2)
140 dynamic modification of oxidation (M), protein N-terminal acetylation, deamidation (NQ); 3) fixed
141 modification of carbamidomethylation (C); 4) precursor mass tolerance of 20 ppm and fragment mass
142 tolerance of 0.02 Da. The PSMs output file from Proteome Discoverer was grouped at the gene level.

143 The gene product inference and iBAQ-based quantification was carried out using the gpGrouper
144 algorithm to calculate peptide peak area (MS1) based expression estimates.[14] The median normalized
145 and log10 transformed iBAQ values were used for data analysis.

146

147 **2.3. Analysis of differentially expressed proteins.** The differentially expressed proteins (DEPs)
148 between the CREM-Tg and WT littermates were calculated using the moderated t-test to calculate p
149 values and log2 fold changes in the R package “limma”.[15] The Benjamini-Hochberg method was used
150 to adjust original p values. DEPs with an adjusted p value <0.05 and $\text{log2FC} > 1$ or $\text{log2FC} < -1$ were
151 considered as significant. The volcano plot was used to display DEPs. Principal component analysis
152 (PCA) and unsupervised hierarchical clustering of distances between samples were performed to analyze
153 sample clustering based on the protein expression profile similarities. PCA plot was generated by R
154 package “ggplot2”[16] and R-package “pheatmap”[17] was used to generate hierarchically clustered
155 heatmap. The common significant DEPs between our dataset and public datasets were obtained by the
156 online Venn diagram tool (<https://bioinformatics.psb.ugent.be/webtools/Venn/>).

157

158 **2.4. Function and pathway enrichment analysis of DEPs.** DEP function and pathway enrichment
159 analysis was carried out using the R package “clusterProfiler”.[18] Gene Ontology (GO) analysis was
160 performed using the significant DEPs while the full list of DEPs was applied to Gene Set Enrichment
161 Analysis. The Benjamini-Hochberg method was used to correct the p value and adjusted p <0.05 were
162 considered statistically significant. Specifically, our GO analysis focused on the biological process (BP)
163 category, which is a key aspect of protein function.

164

165 **2.5. Protein-protein interaction network construction and module analysis.** STRING database
166 (<https://string-db.org>) was used to construct the protein-protein interaction (PPI) network of DEPs using

167 the medium confidence score of 0.4 as a cut-off.[19] Cytoscape (version 3.9.1, <http://www.cytoscape.org>)
168 was used for the network visualization.[20] Highly interconnected modules were extracted from the PPI
169 network using the Cytoscape plug-in MCODE with the following criteria: degree cutoff = 2, node score
170 cutoff = 0.2, k-core = 2, max depth = 100.[21]

171

172 **2.6. Protein co-expression correlation analysis.** Co-expression patterns between ECM proteins were
173 determined based on the proteomics level. Pearson correlations coefficient between proteins were
174 calculated using the R package "corrplot".[22]

175

176 **2.7. Identification of core proteins.** Core proteins demonstrate complex interplays with other proteins
177 in the processes. To prevent the selection bias, core proteins are defined based on their correlation
178 relationship as well as their degrees of connection in the PPI network. The Deeply Integrated Human
179 Single-Cell Omics (DISCO) database.[23] (<https://www.immunesinglecell.org/>) was used to verify the
180 expression level of the core proteins in heart.

181

182 **2.7. Dataset acquisition.** The dataset from Seidl *et al.*[12] was obtained from 7-week-old mice with
183 cardiomyocyte-specific overexpression of CREM-IbΔC-X (CREM-Tg). As controls, age-matched WT
184 littermates from the same breeding colony were used. The dataset from Liu *et al.*[24] contains 18 human
185 left atrial appendage (LAA) tissue samples including 9 with persistent AF and 9 with sinus rhythm.
186 Different excel files containing differentially expressed proteins identified from each dataset were
187 obtained.

188

189 **2.8. Immunoblotting.** Protein lysates were denatured for 10 minutes at 70°C in Laemmli buffer with
190 beta-mercaptoethanol prior to electrophoresis on a 10% acrylamide gel. Proteins were transferred for 90

191 minutes at room temperature (RT) onto a PVDF membrane. Membranes were blocked 60 minutes at RT
192 in OneBlock™ blocking buffer (#20-314, Genesee Scientific, Morrisville, NC) followed by overnight
193 incubation at 4°C in primary antibodies for ITGAV (1:1,000, A2091, Abclonal, Woburn, MA), FBLN5
194 (1:1,000, A9961, Abclonal, Woburn, MA), LCP1 (1:1,000, A5561, Abclonal, Woburn, MA), and
195 GAPDH (1:10,000 EMD Millipore, Burlington, MA) in OneBlock™ blocking buffer. After washing in
196 TBS-Tween, membranes were incubated in goat anti-mouse IgG (H+L) superclonal™ secondary
197 antibody, Alexa Fluor 680 (1:10,000, A28183, Thermo Fischer, Waltham, MA) or goat anti-rabbit IgG
198 (H&L) antibody DyLightTM 800 conjugated (1:10,000, 611-145-002, Rockland, Limerick, PA) at a
199 dilution of 1:10,000 in OneBlock™ blocking buffer prior to imaging with Li-Cor Odyssey Blot Imager.
200

201 **2.9. Statistical analysis.** Data were analyzed using analysis of variance (ANOVA) followed by the post
202 hoc Bonferroni t-test for multiple group non-repeated measures. Independent groups in the same
203 experiment were analyzed using unpaired *t*-test. Values are expressed as mean ± SEM, and *p* < 0.05 was
204 considered statistically significant. All the statistical analyses were performed using GraphPad Prism 10
205 (GraphPad Software Inc., San Diego, CA) unless otherwise stated.

206

207 RESULTS

208

209 **3.1. Characterization of atrial dysfunction and remodeling in CREM-Tg mice.** To examine the
210 effects of cardiomyocyte-specific overexpression of CREM-IbΔC-X on atrial remodeling,
211 echocardiographic studies were performed to assess atrial and ventricular function and structure.
212 Representative long-axis echocardiography revealed clear images of the aortic root (Ao) and left atrium
213 (LA) in 9-month-old CREM-Tg mice and WT littermates (**Fig. 1A**). The LA size was significantly larger
214 in CREM-Tg mice compared to WT littermates (**Fig. 1B**). The atrial contractile function was studied

215 using echo Doppler. Representative color Doppler images of the early and late flow peaks through the
216 mitral valve showed an increased mitral early to after waves (E/A) ratio in CREM-Tg versus WT
217 littermates (**Fig. 1C-D**), indicating abnormal ventricular filling probably because of decreased atrial
218 contractility. The CREM-Tg mice also exhibited mild ventricular contractile dysfunction: the ejection
219 fraction was reduced in CREM-Tg mice (51.4 ± 0.97) compared with WT littermates (61.7 ± 0.84 ;
220 $P=0.010$). There were signs of left ventricular dilatation without increases in wall thickness, consistent
221 with a mild dilated cardiomyopathy (**Supplemental Table 1**), consistent with prior studies. [25, 26]
222 Furthermore, the amount of atrial fibrosis was examined using picrosirius red staining of longitudinal
223 cardiac sections (**Fig. 1E**). Quantification revealed an increased amount of fibrosis in the atria from
224 CREM-Tg compared with WT littermates ($p = 0.006$; **Fig. 1F**), consistent with prior studies [25].
225

226 **3.2. Proteomic profiling and DEPs identification**

227 To generate a complete profile of protein expression changes associated with chronic AF in CREM-Tg
228 mice, we performed an unbiased label-free proteomic analysis. **Fig. 2** shows the workflow of this study,
229 starting from sample preparation to mass spectrometry to eventual bioinformatic analysis of the results.
230 To elucidate proteome alterations in mice with perAF, we analyzed atrial samples from three CREM-Tg
231 mice and three WT littermates. Liquid chromatography with tandem mass spectrometry (LC-MS/MS)
232 identified a total of 3,356 proteins. For the sake of reproducibility, the data set was filtered for detection
233 of protein in all three replicates of either WT or CREM-Tg mice. Consequently, a total of 2,438 proteins
234 were utilized for differential analysis.

235 To gain insight into the overall proteome alterations in CREM-Tg mice vs WT littermates,
236 principal component analysis (PCA) and unsupervised clustering analysis of the overall protein
237 expression levels identified by mass-spectrometry were performed (**Fig. 3A and Supplemental Fig. 1**).
238 In the PCA plot, PC1 accounted for 89.1% of the variance in protein expression between samples while

239 PC2 accounted for 9.3% of the variance, indicating differential separation between groups. Notably, the
240 differential expression pattern of mouse CREM1 may be indicative of biological variability within the
241 CREM-Tg group. To show the distribution of differentially expressed proteins (DEPs) between CREM-
242 Tg mice and WT littermates in relation to their relative importance, a volcano plot was generated (**Fig.**
243 **3B**). Out of all 2,438 DEPs identified, 98 were significant using a cut-off filter of an adjusted p value
244 <0.05 and $\log_{2}FC > 1$ or < -1 , respectively. Out of these, 82 significant DEPs were up-regulated, while 16
245 were down-regulated (**Supplemental Table 2**). Unsupervised clustering analysis revealed that the
246 significant DEPs accurately separated the two group samples into two clusters, reinforcing the reliability
247 of our differential expression analysis results (**Fig. 3C**). Subsequently, we selected all significant DEPs
248 for further validation and downstream characterization.

249

250 **3.3. Functional enrichment analysis of differentially expressed proteins**

251 To identify biological functions that are involved in significant DEPs, we performed gene ontology (GO)
252 enrichment analysis. We focused on the GO term ‘biological process’ (BP; GO:0008150) specifically.
253 Significantly enriched BPs were classified into five clusters according to their functional descriptions
254 and are shown in **Supplemental Fig. 2**. As shown in **Fig. 4A** our most enriched BPs were actin filament
255 organization, extracellular matrix organization, extracellular structure organization, actin filament
256 bundle assembly, etc., suggesting that the functions of significant DEPs are highly associated with actin
257 dynamics and extracellular matrix (ECM) remodeling processes.

258 The gene concept network analysis revealed the association of proteins involved in the top 5 BP
259 terms (**Fig. 4B**). The red nodes represent BP terms that are connected to DEPs. These DEPs were found
260 to be enriched in relevant BPs. Furthermore, the color of each DEP node is indicative of their relative
261 expression change. Notably, the protein LCP1 was found to be shared across all terms, signifying a
262 promising protein for further investigation, and indicating that LCP1 may play a central role in

263 regulating multiple diverse BPs involved in an advanced stage of AF. A full list of significantly enriched
264 GO terms is available in **Supplemental Table 3**.

265

266 **3.4. PPI network construction**

267 A protein-protein interaction (PPI) network of all the significant DEPs was constructed to provide a
268 systems-level perspective on protein-protein interactions and organization. The network contains 54
269 nodes and 118 interaction pairs (**Fig. 4C**). The top module within the network was identified through the
270 application of Molecular Complex Detection (MCODE), which is a seed-and-extension approach. It
271 initially assigns every node a weight, seeding these nodes to form initial clusters and expanding these
272 clusters, eventually revealing functionally related clusters [21]. Notably, LCP1 was found in the top
273 module (score = 4), highlighting its relevance as a candidate for further research (**Fig. 4D**).

274

275 **3.5. Key proteins involved in atrial fibrotic remodeling**

276 We recently identified an increased amount of interstitial fibrosis in the atria of 7-month-old CREM-Tg
277 mice compared with WT littermates [25], which mimics the findings in patients with perAF. By
278 controlling ECM remodeling and turnover, ECM dynamics play a crucial role in regulating fibrosis [11].
279 To further investigate mechanisms underlying ECM dynamics, their impact on AF, and to identify
280 critical proteins involved in these processes, we next extracted DEPs from the enriched GO cluster
281 annotated “collagen extracellular matrix structure”. In CREM-Tg mice, all DEPs in this cluster had
282 elevated expression levels (**Fig. 5A**). The correlation analysis illustrated in **Fig. 5B** revealed a strong
283 positive correlation between these ECM regulator proteins, indicating their expression may be regulated
284 by shared factors and signaling pathways. We next constructed the PPI network of ECM DEPs. The
285 network consists of 13 nodes and 28 interaction pairs (**Fig. 5C**). The degree of connection of each
286 protein with other DEPs in the network is listed in the bar plot (**Fig. 5D**).

287

288 **3.6. Validation of key proteins**

289 Considering the extensive characterization of collagen proteins in ECM remodeling and fibrosis [11, 27],
290 we opted to focus our investigation on other proteins that may uncover new mechanistic pathways.
291 Based on their abundance and the abovementioned analysis, we focused on ITGAV, LCP1, and FBLN5.
292 We then referred to the DISCO database[23] for the expression of each key protein in curated single-cell
293 RNA sequencing data from heart tissue samples. ITGAV and FBLN5 showed robust expression at the
294 transcriptomic level within the heart tissue, primarily observed in the fibroblast subsets (**Supplemental**
295 **Fig. 3 and 4**). While LCP1 expression could not be clearly observed in all the fibroblast subsets
296 (**Supplemental Fig. 5**), considering its central location in our network analysis (**Fig. 4C**), we shortlisted
297 these 3 proteins for further validation.

298 To validate our proteomics findings, we performed western blot analysis on ITGAV, FBLN5, and
299 LCP1 expression in atrial tissue of CREM-Tg mice and WT littermates (**Fig. 6A,C,E**). We found that,
300 consistent with the proteomics results, the protein expression levels of all three proteins were
301 significantly higher in CREM-Tg mice versus WT littermates (ITGAV: 1.34 ± 0.32 ; $p=0.002$; Lcp1: $0.75 \pm$
302 0.16 ; $p<0.001$; FBLN5: 0.49 ± 0.16 ; $p=0.010$; **Fig. 6B,D,F**). These results lend support to the robustness
303 of our quantitative proteomics analysis.

304

305 **3.7. Comparison of DEPs from old vs young CREM-Tg mice**

306 In a prior study, Seidl *et al.*[12] reported that biological processes enriched in young CREM-Tg mice at
307 7 weeks-of-age were mostly related to changes in metabolism, contractility, and electric activity. To
308 assess whether there is a switch in the genetic program of CREM-Tg mice when AF becomes more
309 persistent, we performed a comparative analysis between the datasets obtained from our CREM-Tg mice
310 at 9 months-of-age and the publicly available datasets from Seidl *et al.*[12]. By overlapping DEPs, we

311 found 14 to be common among the two datasets (**Fig. 7A**). Notably, all 14 of these DEPs showed a
312 consistent pattern of expression change (**Fig. 7B**), i.e., 11 DEPs were overexpressed in both the datasets
313 and 3 out of 14 were downregulated in both, with changes in the relative expression levels being more
314 pronounced in the 9-month-old CREM-Tg mice. To understand the processes critical for regulating early
315 vs. advanced stages of AF, we next conducted GO analysis on 94 DEPs that were unique to CREM-Tg
316 mice at 7 weeks, 84 DEPs that were unique to Tg mice at 9 months, and 14 DEPs that were shared by
317 both groups. While BPs related to metabolic regulation and energy production for normal muscle
318 functioning were found to be unique for the 7-week-old CREM-Tg mice, we determined that as the AF
319 progressed, there was a shift in the BPs to atrial remodeling and fibrosis (**Fig. 7C**). Interestingly, some
320 of the BPs common for both early and late stages of AF were related to cytoskeletal organization and
321 remodeling, suggesting that changes in the genes involved in processes related to atrial remodeling and
322 ECM deposition begin in the early stages of AF, but are more pronounced as the disease progresses to
323 advanced stages.

324

325 **3.8. Comparison of DEPs from old CREM-Tg mice vs human AF patients**

326 CREM-Tg mice have been reported as an effective AF model, demonstrating similarities in disease
327 progression comparable to that observed in human AF.[11, 13, 25, 26, 28-30] To uncover additional
328 areas of resemblance of molecular alterations in CREM-Tg mice in comparison with human patients, we
329 obtained a publicly available dataset,[24] showing the atrial proteomic landscape in patients with
330 persistent AF. We used the same significance threshold (fold change >1.2 and adjusted p value <0.1) as
331 reported in this study and identified 480 significant DEPs in the human perAF patients compared to 98
332 in CREM-Tg mice (**Fig. 8**). Out of these, 21 DEPs were common across both the datasets (**Fig. 8A**).
333 Remarkably, 18 of these 21 DEPs showed a consistent pattern of expression change (**Fig. 8B**), i.e., they
334 were all overexpressed in both datasets. Many of those proteins (BGN, EMILIN1, IGFBP7, ITGAV,

335 LCP1, SPARC) are involved in fibrogenesis processes, underscoring the relevance of CREM-Tg mice as
336 a clinically relevant model to study persistent AF mechanisms.

337

338 **4. DISCUSSION**

339

340 In this study, we performed unbiased proteomic studies to uncover new molecular mechanisms that play
341 a role in the pathogenesis of AF progression. Specifically, we utilized the well-characterized CREM-Tg
342 mouse model of spontaneous AF development and progression that was previously shown to mimic
343 major aspects of AF in humans, such as AF progression, atrial remodeling and fibrosis, and intracellular
344 Ca^{2+} handling abnormalities.[11, 13, 25, 26, 28-30] Our results show that 9-month-old CREM-Tg mice
345 with persistent AF develop enlarged atria and atrial fibrosis, mimicking the phenotype seen in patients
346 with advanced persistent AF. Since the molecular pathways involved in atrial remodeling are not well
347 understood, we performed mass spectrometry-based unbiased proteomic profiling of atrial tissues
348 obtained from 9-month-old CREM-Tg mice. Unsupervised clustering analysis of differentially
349 expressed proteins showed a clear distinction between CREM-Tg mice and their age-matched WT
350 littermate controls. Gene ontology analysis of DEPs from CREM-Tg mice revealed upregulation of
351 various proteins involved in actin-cytoskeleton organization as well as ECM deposition. A comparison
352 with DEPs in the atria of young CREM-Tg mice showed that there was a clear switch from proteins
353 involved in the regulation of metabolism and muscle contraction to fibrotic remodeling in mice with
354 more advanced stages of AF. Moreover, comparative analysis with a publicly available proteomic
355 dataset from patients with persistent AF showed an overlap with DEPs from CREM-Tg mice, and these
356 overlapping genes were involved in biological processes related to atrial remodeling and fibrosis.

357

358 **4.1. Enrichment of structural remodeling processes in AF**

359 Enrichment analysis using DEPs from our proteomics results revealed that biological processes related
360 to actin cytoskeleton organization and ECM remodeling were most significantly altered in CREM-Tg
361 mice compared to the WT littermate controls, which is in concordance with clinical observations that
362 advanced stage AF is associated with atrial structural remodeling including fibrosis, myocyte
363 hypertrophy, and loss of contractile elements.[31] Excessive and disordered deposition of ECM creates
364 complications such as fibrosis, which disrupts the normal architecture of the atrial myocardium,
365 eventually creating a fibrotic substrate vulnerable to arrhythmic events.[32] Cytoskeletal proteins are
366 thought to consist of the majority of proteins found in atrial cardiomyocytes.[33] Given the critical role
367 cytoskeletal proteins play in regulating the contractile ability of cardiomyocytes,[34] the alteration in
368 their expression will result in impaired cardiomyocyte contraction, prolonged structural damage, and
369 disturbed atrial function. Changes in ECM remodeling and cytoskeleton organization significantly
370 contribute to the structural remodeling events, compromising atrial function and electrical conduction.
371 These alterations set the stage for the development and perpetuation of AF.

372

373 **4.2. Role of actin-cytoskeleton organization in AF**

374 The cytoskeleton of a cell is made of filamentous proteins such as actin, provides mechanical support to
375 the cell, and is involved in various cellular processes, including stress transmission, cell shape change,
376 and contractility.[35] Cytoskeletal rearrangement causes contractile dysfunction and impaired cellular
377 function, suggesting the importance of cytoskeleton in maintaining normal cardiomyocyte function. The
378 microtubule network, a key part of the cytoskeleton, is critical for maintaining balanced proteostasis in
379 cardiomyocytes[36] and its derailment is shown to be involved in AF progression.[34, 37] Numerous
380 studies have showed how cytoskeleton proteins contribute to the development of arrhythmia, for example,
381 alterations of cytoskeleton protein ankyrin B have been shown to cause ion channel dysfunction in heart,
382 leading to increased susceptibility to arrhythmias.[38-40] Mutations in actin-binding protein such as

383 dystrophin disturbs voltage-dependent sarcolemmal ion channels, giving rise to arrhythmias.[41] In
384 addition, reduced dystrophin protein was shown to associate with the reduced neuronal nitric oxide
385 synthase, and increased AF inducibility.[42]

386 In our proteomics analysis, we revealed significant changes in the expression of proteins
387 involved in the cytoskeleton dynamics in CREM-Tg mice compared to WT littermates, and some of the
388 top regulated proteins include RhoC, MYH11, TAGLN, etc. Although there have been few
389 investigations on the role of these proteins in AF, their potential as a promising target warrants more
390 investigation. For example, dysregulation of RhoC signaling has been suggested to alter Ca^{2+} uptake of
391 sarcoplasmic reticulum, potentially promoting AF pathogenesis in mice.[43] Additionally, a recent cross-
392 ancestry meta-analysis involving over 1 million individuals discovered a previously unreported
393 susceptibility locus in *MYH11* for AF, which highlights the possibility to delve into the role of MYH11
394 in AF pathogenesis.[44] Furthermore, in a prospective longitudinal cohort of over 4,000 patients,
395 TAGLN, an actin-crosslinking protein, was identified as a putative causative protein for AF.[45] These
396 findings emphasize the importance of focusing on these unique candidates in future functional studies of
397 AF pathogenesis.

398

399 **4.3. Role of ECM regulating proteins in AF**

400 Atrial fibrosis has emerged as an important contributor to the pathophysiology of AF and has been
401 associated with AF recurrences and the development of complications.[10, 46] The ECM primarily
402 consists of fibrillar collagen including collagen types I and III, basement membrane proteins such as
403 fibronectin, laminin, and fibrillin, and various proteoglycans.[47] Collagens are essential for maintaining
404 the structural integrity of myocardial tissue, the basement membrane contributes to cell-cell interactions,
405 while proteoglycans are crucial in adhesion and signaling processes. Our analysis revealed significant
406 up-regulated expression of collagen proteins such as collagen I, VI, and XIV in CREM-Tg mice

407 compared to WT littermates. The changes in the expression level of these collagens lead to their altered
408 proportions in the ECM, which could contribute to the pathogenesis of atrial fibrosis, potentially leading
409 to the development of AF.

410 In the present study, we validated the upregulation of ECM associated proteins – ITGAV, FBLN5,
411 and LCP1 in CREM-Tg mice compared to WT littermates. ITGAV is known to play a central role in
412 tissue fibrosis and its overexpression is thought to be the most upstream event of ECM deposition in
413 fibroblasts.[48, 49] Pharmacological inhibition of ITGAV led to notable improvements in cardiac
414 function in a mouse model of myocardial infarction.[50] Moreover, this inhibition resulted in a
415 decreased expression of markers associated with cardiac fibroblast activation *in vitro*. Additionally, pro-
416 fibrotic roles of ITGAV were reported in a hypertensive rat model.[51] FBLN5, an extracellular scaffold
417 protein, is a known factor modulating deposition of elastin in ECM.[52] FBLN5 has been considered for
418 its potential as an anti-fibrotic therapeutic target [53]. FBLN5 was identified as a novel protein highly
419 expressed in patients with HBV/HCV-associated hepatic fibrosis in a large cohort study using
420 quantitative proteomics.[54] Loss of FBLN5 resulted in reduced tissue stiffness and inflammation in a
421 mouse model of cutaneous fibrosis.[53] suggesting that FBLN5 may be an ideal candidate to target
422 profibrotic processes. Originally identified as an actin-binding protein in hematopoietic cells, [55] LCP1
423 has recently garnered attention for its involvement in tissue fibrosis. LCP1 was identified as a critical
424 player in the liver fibrogenesis in non-alcoholic steatohepatitis through different integrative network-
425 based analysis using publicly available bulk RNAseq datasets.[56] A recent study suggested that LCP1
426 contributes to pulmonary fibrosis by promoting NLRP3 inflammasome assembly in lung-resident
427 alveolar macrophages.[57] Given the role of NLRP3 inflammasome in atrial fibrosis and AF,[30, 58]
428 LCP1 may be a critical regulator of atrial fibrosis and remodeling.

429 Collectively, the involvement of these proteins highlights their crucial roles in regulating fibrosis,
430 making them promising targets for anti-fibrotic therapeutic interventions. The roles of these proteins

431 have never been reported in atrial fibrosis, underscoring the need for future investigations into their
432 mechanisms and those of other DEPs found in our study in atrial fibrosis associated with AF.
433 Understanding these mechanisms will expand our understanding of atrial fibrosis in AF and potentially
434 identify novel therapeutic strategies for AF.

435
436 **4.4. A shift in gene expression pattern from early to late-stage AF**

437 We conducted a cross-species comparisons of atrial proteome data to deepen our understanding of the
438 mechanisms driving AF initiation and progression. To identify possible age-dependent cellular
439 alterations at the proteome expression level, we compared our dataset to a publicly available dataset of
440 young CREM-Tg mice at 7 weeks of age.[12] A total of 14 common DEPs were identified, including
441 several key players such as FBLN5, GPC1, MFAP4, PRELP, FLNA, and TAGLN2 involved in
442 cytoskeleton organization or ECM dynamics. These proteins showed consistent changes in their
443 regulation in two studies, indicating the onset of structural remodeling even at the early stage of AF,
444 which was further exacerbated as AF progressed. GO analysis of these shared DEPs further revealed
445 enrichment of processes closely related to ECM dynamics such as ECM assembly and elastic fiber
446 assembly, whereas GO analysis of unique DEPs in young CREM-Tg mice showed they were primarily
447 annotated to metabolic processes. This interesting finding suggests structural remodeling may occur at
448 the molecular level prior to its observable manifestation. In line with our findings, Schulte *et al.*[59]
449 reported more prominent atrial fibrosis and structural remodeling in 16-week-old CREM-Tg mice
450 compared to younger 7-week-old CREM-Tg. Interestingly, their function and pathway enrichment
451 analysis showed pathways related to actin cytoskeleton organization as well as critical processes in
452 fibrotic progression such as cell adhesion and cell-matrix interaction enriched in younger CREM-Tg
453 mice. The alignment of these findings reinforces the importance of structural remodeling in AF
454 progression. Future interventions may include treating metabolic anomalies in the early stages of AF,

455 while the observation that structural remodeling began early and persisted indicates its potential as a
456 target throughout AF progression.

457

458 **4.5. Clinical relevance of the experimental model of AF**

459 Previous studies reported the CREM-Tg mouse as an effective model for studying AF [11, 25, 26, 29,
460 30]. However, these studies mainly focused on evaluating the suitability of the model through
461 comprehensive biochemistry and physiological assessments. To further validate the clinical relevance of
462 CREM-Tg mice, we conducted a comparative analysis between our dataset and that of a proteomics
463 study using samples from human patients with persistent AF.[24] Our analysis revealed that 18 out of 21
464 shared DEPs showed consistent changes in expression, emphasizing the significance of these proteins.
465 Many of these proteins were associated with the ECM remodeling, including BGN, ITGAV, EMILIN1,
466 LCP1, SPARC, MFAP4, among others. These findings not only support the clinical relevance of our
467 model but also highlight the potential for utility of these key proteins as biomarkers of AF or possible
468 therapeutic targets. By targeting these proteins involved in ECM remodeling, it may be possible to stop
469 the progression of AF and potentially improve patient outcomes.

470

471 **4.6. Limitations and future directions**

472 Our study points towards the potential of antifibrotic therapies in AF treatment. However, it is important
473 to acknowledge limitations. For example, the number of samples included in the study is relatively small,
474 in part due to the costs associated with these experiments; nevertheless, we still identified important
475 molecular characteristics and establish the clinical significance of our experimental model of AF. Future
476 functional studies need to be conducted to unravel mechanistic roles of these ECM proteins.
477 Furthermore, *in vivo* fibroblast conditional knock-in or knock-out mouse model of these candidate

478 proteins could provide further validation and strengthen our understanding of biological and structural
479 changes in AF development and disease progression.

480

481 **CONCLUSION**

482

483 In summary, we performed proteomics and bioinformatic analysis to demonstrate the involvement of the
484 cytoskeleton and ECM remodeling in AF development. We revealed the shifting landscape of the
485 biological processes as the disease progresses and assessed the clinical significance of this experimental
486 mouse model of AF. We identified candidate proteins that potentially regulate ECM remodeling and
487 their association with AF disease progression. Our study paves the way for future novel strategies for the
488 identification and prevention of AF.

489 **FUNDING**

490

491 This work is supported by NIH grants R01-HL089598, R01-HL147108, R01-HL153350, and R01-
492 HL160992 (to X.H.T.W.). This work was also supported by the British Heart Foundation Senior
493 (FS/SBSRF/22/31033) fellowship to SR. In addition, this project was supported by BCM Mass
494 Spectrometry Proteomics Core that is supported by the Dan L. Duncan Comprehensive Cancer Center
495 NIH award (P30 CA125123), CPRIT Core Facility Award (RP210227) and NIH High End Instrument
496 award (S10 OD026804). This project was further supported by the Mouse Metabolism and Phenotyping
497 Core at Baylor College of Medicine, which is supported in part with funding from NIH (UM1HG006348,
498 R01DK114356, R01HL130249) and using an instrument purchased with funding from NIH
499 (S10OD032380).

500

501 **AUTHOR CONTRIBUTIONS**

502

503 Study design: SZ, MH, XHTW; Execution/data collection: SZ, MH, YAS, SKL, EM, AJ; Data
504 compilation and analysis: SZ, MH, YAS, SKL, AJ; Drafted manuscript: SZ and MH; Edited manuscript:
505 all authors; Acquired funding, regulatory approvals: SR, XHTW.

506

507 **DISCLOSURE**

508

509 XHTW is a founding partner and shareholder of Elex Biotech Inc, a start-up company that developed
510 drug molecules that target ryanodine receptors to treat cardiac arrhythmia disorders. Other authors have
511 no conflict of interest to declare.

512

513 **DATA AVAILABILITY**

514

515 The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via
516 the PRIDE partner repository with the dataset identifier PXD045882.

517

518 **APPENDIX A. SUPPLEMENTAL DATA**

519

520 Supplemental data to this article can be found online at XXX.

521 **REFERENCES**

522

523 [1] X.J. Dong, B.B. Wang, F.F. Hou, Y. Jiao, H.W. Li, S.P. Lv, F.H. Li, Global burden of atrial
524 fibrillation/atrial flutter and its attributable risk factors from 1990 to 2019, *Europace* 25(3) (2023) 793-
525 803.

526 [2] S. Nattel, E. Guasch, I. Savelieva, F.G. Cosio, I. Valverde, J.L. Halperin, J.M. Conroy, S.M. Al-
527 Khatib, P.L. Hess, P. Kirchhof, J. De Bono, G.Y. Lip, A. Banerjee, J. Ruskin, D. Blendea, A.J. Camm,
528 Early management of atrial fibrillation to prevent cardiovascular complications, *Eur Heart J* 35(22)
529 (2014) 1448-56.

530 [3] A.S. Volgman, G. Nair, R. Lyubarova, F.M. Merchant, P. Mason, A.B. Curtis, N.K. Wenger, N.T.
531 Aggarwal, J.N. Kirkpatrick, E.J. Benjamin, Management of Atrial Fibrillation in Patients 75 Years and
532 Older: JACC State-of-the-Art Review, *J Am Coll Cardiol* 79(2) (2022) 166-179.

533 [4] J. Heijman, V. Algalarrondo, N. Voigt, J. Melka, X.H. Wehrens, D. Dobrev, S. Nattel, The value of
534 basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical
535 analysis, *Cardiovasc Res* 109(4) (2016) 467-79.

536 [5] M. Haïssaguerre, P. Jaïs, D.C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le
537 Mouroux, P. Le Métayer, J. Clémenty, Spontaneous initiation of atrial fibrillation by ectopic beats
538 originating in the pulmonary veins, *N Engl J Med* 339(10) (1998) 659-66.

539 [6] D. Li, S. Fareh, T.K. Leung, S. Nattel, Promotion of atrial fibrillation by heart failure in dogs: atrial
540 remodeling of a different sort, *Circulation* 100(1) (1999) 87-95.

541 [7] D. Dobrev, X.H.T. Wehrens, Mouse Models of Cardiac Arrhythmias, *Circ Res* 123(3) (2018) 332-
542 334.

543 [8] J.A. Keefe, M.M. Hulsurkar, S. Reilly, X.H.T. Wehrens, Mouse models of spontaneous atrial
544 fibrillation, *Mamm Genome* 34(2) (2023) 298-311.

545 [9] D. Schüttler, A. Bapat, S. Kääb, K. Lee, P. Tomsits, S. Clauss, W.J. Hucker, Animal Models of Atrial
546 Fibrillation, *Circ Res* 127(1) (2020) 91-110.

547 [10] J. Jalife, K. Kaur, Atrial remodeling, fibrosis, and atrial fibrillation, *Trends Cardiovasc Med* 25(6)
548 (2015) 475-84.

549 [11] P. Kirchhof, E. Marijon, L. Fabritz, N. Li, W. Wang, T. Wang, K. Schulte, J. Hanstein, J.S. Schulte,
550 M. Vogel, N. Mougenot, S. Laakmann, L. Fortmueller, J. Eckstein, S. Verheule, S. Kaese, A. Staab, S.
551 Grote-Wessels, U. Schotten, G. Moubarak, X.H. Wehrens, W. Schmitz, S. Hatem, F.U. Müller,
552 Overexpression of cAMP-response element modulator causes abnormal growth and development of the

553 atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice, *Int J Cardiol* 166(2)
554 (2013) 366-74.

555 [12] M.D. Seidl, J. Stein, S. Hamer, F. Pluteanu, B. Scholz, E. Wardelmann, A. Huge, A. Witten, M. Stoll,
556 E. Hammer, U. Völker, F.U. Müller, Characterization of the Genetic Program Linked to the
557 Development of Atrial Fibrillation in CREM-IbΔC-X Mice, *Circ Arrhythm Electrophysiol* 10(8) (2017).

558 [13] F.U. Müller, G. Lewin, H.A. Baba, P. Bokník, L. Fabritz, U. Kirchhefer, P. Kirchhof, K. Loser, M.
559 Matus, J. Neumann, B. Riemann, W. Schmitz, Heart-directed expression of a human cardiac isoform of
560 cAMP-response element modulator in transgenic mice, *J Biol Chem* 280(8) (2005) 6906-14.

561 [14] A.B. Saltzman, M. Leng, B. Bhatt, P. Singh, D.W. Chan, L. Dobrolecki, H. Chandrasekaran, J.M.
562 Choi, A. Jain, S.Y. Jung, M.T. Lewis, M.J. Ellis, A. Malovannaya, gpGrouper: A Peptide Grouping
563 Algorithm for Gene-Centric Inference and Quantitation of Bottom-Up Proteomics Data, *Mol Cell*
564 *Proteomics* 17(11) (2018) 2270-2283.

565 [15] M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, G.K. Smyth, limma powers differential
566 expression analyses for RNA-sequencing and microarray studies, *Nucleic Acids Res* 43(7) (2015) e47.

567 [16] W. Hadley, Ggplot2: Elegant graphics for data analysis, Springer2016.

568 [17] R. Kolde, Pheatmap: pretty heatmaps, R package version 1(2) (2012) 726.

569 [18] T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan, X. Fu, S. Liu, X.
570 Bo, G. Yu, clusterProfiler 4.0: A universal enrichment tool for interpreting omics data, *Innovation (Camb)*
571 2(3) (2021) 100141.

572 [19] D. Szklarczyk, A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M.
573 Legeay, T. Fang, P. Bork, L.J. Jensen, C. von Mering, The STRING database in 2021: customizable
574 protein-protein networks, and functional characterization of user-uploaded gene/measurement sets,
575 *Nucleic Acids Res* 49(D1) (2021) D605-d612.

576 [20] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T.
577 Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks,
578 *Genome Res* 13(11) (2003) 2498-504.

579 [21] G.D. Bader, C.W. Hogue, An automated method for finding molecular complexes in large protein
580 interaction networks, *BMC Bioinformatics* 4 (2003) 2.

581 [22] T. Wei, V. Simko, M. Levy, Y. Xie, Y. Jin, J. Zemla, Package ‘corrplot’, *Statistician* 56(316) (2017)
582 e24.

583 [23] M. Li, X. Zhang, K.S. Ang, J. Ling, R. Sethi, N.Y.S. Lee, F. Ginhoux, J. Chen, DISCO: a database
584 of Deeply Integrated human Single-Cell Omics data, *Nucleic Acids Res* 50(D1) (2022) D596-d602.

585 [24] Y. Liu, F. Bai, Z. Tang, N. Liu, Q. Liu, Integrative transcriptomic, proteomic, and machine learning
586 approach to identifying feature genes of atrial fibrillation using atrial samples from patients with
587 valvular heart disease, *BMC Cardiovasc Disord* 21(1) (2021) 52.

588 [25] L. Ni, S.K. Lahiri, J. Nie, X. Pan, I. Abu-Taha, J.O. Reynolds, H.M. Campbell, H. Wang, M.
589 Kamler, W. Schmitz, F.U. Müller, N. Li, X. Wei, D.W. Wang, D. Dobrev, X.H.T. Wehrens, Genetic
590 inhibition of nuclear factor of activated T-cell c2 prevents atrial fibrillation in CREM transgenic mice,
591 *Cardiovasc Res* 118(13) (2022) 2805-2818.

592 [26] N. Li, D.Y. Chiang, S. Wang, Q. Wang, L. Sun, N. Voigt, J.L. Respress, S. Ather, D.G. Skapura, V.K.
593 Jordan, F.T. Horrigan, W. Schmitz, F.U. Müller, M. Valderrabano, S. Nattel, D. Dobrev, X.H.T. Wehrens,
594 Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation
595 substrate in a transgenic mouse model, *Circulation* 129(12) (2014) 1276-1285.

596 [27] T.N. Wight, S. Potter-Perigo, The extracellular matrix: an active or passive player in fibrosis?, *Am J*
597 *Physiol Gastrointest Liver Physiol* 301(6) (2011) G950-5.

598 [28] A. Bukowska, M. Felgendreher, B. Scholz, C. Wolke, J.S. Schulte, E. Fehrmann, E. Wardelmann,
599 M.D. Seidl, U. Lendeckel, K. Himmeler, A. Gardemann, A. Goette, F.U. Müller, CREM-transgene mice:
600 An animal model of atrial fibrillation and thrombogenesis, *Thromb Res* 163 (2018) 172-179.

601 [29] F.T. Stümpel, J. Stein, K. Himmeler, B. Scholz, M.D. Seidl, B.V. Skryabin, F.U. Müller,
602 Homozygous CREM-IbΔC-X Overexpressing Mice Are a Reliable and Effective Disease Model for
603 Atrial Fibrillation, *Front Pharmacol* 9 (2018) 706.

604 [30] C. Yao, T. Veleva, L. Scott, Jr., S. Cao, L. Li, G. Chen, P. Jeyabal, X. Pan, K.M. Alsina, I.D. Abu-
605 Taha, S. Ghezelbash, C.L. Reynolds, Y.H. Shen, S.A. LeMaire, W. Schmitz, F.U. Müller, A. El-
606 Armouche, N. Tony Eissa, C. Beeton, S. Nattel, X.H.T. Wehrens, D. Dobrev, N. Li, Enhanced
607 Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation, *Circulation* 138(20)
608 (2018) 2227-2242.

609 [31] Y.C. Chen, A. Voskoboinik, A. Gerche, T.H. Marwick, J.R. McMullen, Prevention of Pathological
610 Atrial Remodeling and Atrial Fibrillation: JACC State-of-the-Art Review, *J Am Coll Cardiol* 77(22)
611 (2021) 2846-2864.

612 [32] C.Y. Li, J.R. Zhang, W.N. Hu, S.N. Li, Atrial fibrosis underlying atrial fibrillation (Review), *Int J*
613 *Mol Med* 47(3) (2021).

614 [33] P.C. Poulsen, M. Schrölkamp, N. Bagwan, U. Leurs, E.S.A. Humphries, S.H. Bomholzt, M.S.
615 Nielsen, B.H. Bentzen, J.V. Olsen, A. Lundby, Quantitative proteomics characterization of acutely
616 isolated primary adult rat cardiomyocytes and fibroblasts, *J Mol Cell Cardiol* 143 (2020) 63-70.

617 [34] P. Kishore, A.C.T. Collinet, B. Brundel, Prevention of Atrial Fibrillation: Putting Proteostasis
618 Derailment Back on Track, *J Clin Med* 12(13) (2023).

619 [35] D.A. Fletcher, R.D. Mullins, Cell mechanics and the cytoskeleton, *Nature* 463(7280) (2010) 485-92.

620 [36] D. Zhang, C.T. Wu, X. Qi, R.A. Mejering, F. Hoogstra-Berends, A. Tadevosyan, G. Cubukcuoglu
621 Deniz, S. Durdu, A.R. Akar, O.C. Sibon, S. Nattel, R.H. Henning, B.J. Brundel, Activation of histone
622 deacetylase-6 induces contractile dysfunction through derailment of α -tubulin proteostasis in
623 experimental and human atrial fibrillation, *Circulation* 129(3) (2014) 346-58.

624 [37] R.H. Henning, B. Brundel, Proteostasis in cardiac health and disease, *Nat Rev Cardiol* 14(11) (2017)
625 637-653.

626 [38] S.R. Cunha, T.J. Hund, S. Hashemi, N. Voigt, N. Li, P. Wright, O. Koval, J. Li, H. Gudmundsson,
627 R.J. Gmina, M. Karck, J.J. Schott, V. Probst, H. Le Marec, M.E. Anderson, D. Dobrev, X.H. Wehrens,
628 P.J. Mohler, Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation,
629 *Circulation* 124(11) (2011) 1212-22.

630 [39] S.N. Koenig, P.J. Mohler, The evolving role of ankyrin-B in cardiovascular disease, *Heart Rhythm*
631 14(12) (2017) 1884-1889.

632 [40] H.C. Sucharski, E.K. Dudley, C.B.R. Keith, M. El Refaey, S.N. Koenig, P.J. Mohler, Mechanisms
633 and Alterations of Cardiac Ion Channels Leading to Disease: Role of Ankyrin-B in Cardiac Function,
634 *Biomolecules* 10(2) (2020).

635 [41] X. Koenig, J. Ebner, K. Hilber, Voltage-Dependent Sarcolemmal Ion Channel Abnormalities in the
636 Dystrophin-Deficient Heart, *Int J Mol Sci* 19(11) (2018).

637 [42] S.N. Reilly, R. Jayaram, K. Nahar, C. Antoniades, S. Verheule, K.M. Channon, N.J. Alp, U.
638 Schotten, B. Casadei, Atrial sources of reactive oxygen species vary with the duration and substrate of
639 atrial fibrillation: implications for the antiarrhythmic effect of statins, *Circulation* 124(10) (2011) 1107-
640 17.

641 [43] M.L. Mohan, S.L. Yong, Q. Wang, S.V.N. Prasad, Abstract 3636: Regulation of Cardiac
642 Sarcoplasmic Reticulum Calcium Uptake by PI3K α , *Circulation* 120(suppl_18) (2009) S842-
643 S842.

644 [44] K. Miyazawa, K. Ito, M. Ito, Z. Zou, M. Kubota, S. Nomura, H. Matsunaga, S. Koyama, H. Ieki, M.
645 Akiyama, Y. Koike, R. Kurosawa, H. Yoshida, K. Ozaki, Y. Onouchi, A. Takahashi, K. Matsuda, Y.
646 Murakami, H. Aburatani, M. Kubo, Y. Momozawa, C. Terao, S. Oki, H. Akazawa, Y. Kamatani, I.
647 Komuro, Cross-ancestry genome-wide analysis of atrial fibrillation unveils disease biology and enables
648 cardioembolic risk prediction, *Nat Genet* 55(2) (2023) 187-197.

649 [45] T. Jonmundsson, A.E. Steindorsdottir, T.R. Austin, E.A. Frick, G.T. Axelsson, L. Launer, B.M.
650 Psaty, J. Loureiro, A.P. Orth, T. Aspelund, V. Emilsson, J.S. Floyd, L. Jennings, V. Gudnason, V.
651 Gudmundsdottir, A proteomic analysis of atrial fibrillation in a prospective longitudinal cohort (AGES-
652 Reykjavik study), *Europace* 25(11) (2023).

653 [46] M. Sagris, E.P. Vardas, P. Theofilis, A.S. Antonopoulos, E. Oikonomou, D. Tousoulis, Atrial
654 Fibrillation: Pathogenesis, Predisposing Factors, and Genetics, *Int J Mol Sci* 23(1) (2021).

655 [47] J. Pellman, R.C. Lyon, F. Sheikh, Extracellular matrix remodeling in atrial fibrosis: mechanisms
656 and implications in atrial fibrillation, *J Mol Cell Cardiol* 48(3) (2010) 461-7.

657 [48] Z. Wang, M. Jinnin, Y. Kobayashi, H. Kudo, K. Inoue, W. Nakayama, N. Honda, K. Makino, I.
658 Kajihara, T. Makino, S. Fukushima, Y. Inagaki, H. Ihn, Mice overexpressing integrin αv in fibroblasts
659 exhibit dermal thinning of the skin, *J Dermatol Sci* 79(3) (2015) 268-78.

660 [49] N.C. Henderson, T.D. Arnold, Y. Katamura, M.M. Giacomini, J.D. Rodriguez, J.H. McCarty, A.
661 Pellicoro, E. Raschperger, C. Betsholtz, P.G. Ruminski, D.W. Griggs, M.J. Prinsen, J.J. Maher, J.P.
662 Iredale, A. Lacy-Hulbert, R.H. Adams, D. Sheppard, Targeting of αv integrin identifies a core molecular
663 pathway that regulates fibrosis in several organs, *Nat Med* 19(12) (2013) 1617-24.

664 [50] M. Bouvet, O. Claude, M. Roux, D. Skelly, N. Masurkar, N. Mougenot, S. Nadaud, C. Blanc, C.
665 Delacroix, S. Chardonnet, C. Pionneau, C. Perret, E. Yaniz-Galende, N. Rosenthal, D.A. Trégouët, G.
666 Marazzi, J.S. Silvestre, D. Sasso, J.S. Hulot, Anti-integrin $\alpha(v)$ therapy improves cardiac fibrosis after
667 myocardial infarction by blunting cardiac PW1(+) stromal cells, *Sci Rep* 10(1) (2020) 11404.

668 [51] G.L. Perrucci, V.A. Barbagallo, M. Corlianò, D. Tosi, R. Santoro, P. Nigro, P. Poggio, G.
669 Bulfamante, F. Lombardi, G. Pompilio, Integrin $\alpha v\beta 5$ in vitro inhibition limits pro-fibrotic response in
670 cardiac fibroblasts of spontaneously hypertensive rats.

671 [52] B. Padhy, R.S. Kapuganti, B. Hayat, P.P. Mohanty, D.P. Alone, De novo variants in an extracellular
672 matrix protein coding gene, fibulin-5 (FBLN5) are associated with pseudoexfoliation, *Eur J Hum Genet*
673 27(12) (2019) 1858-1866.

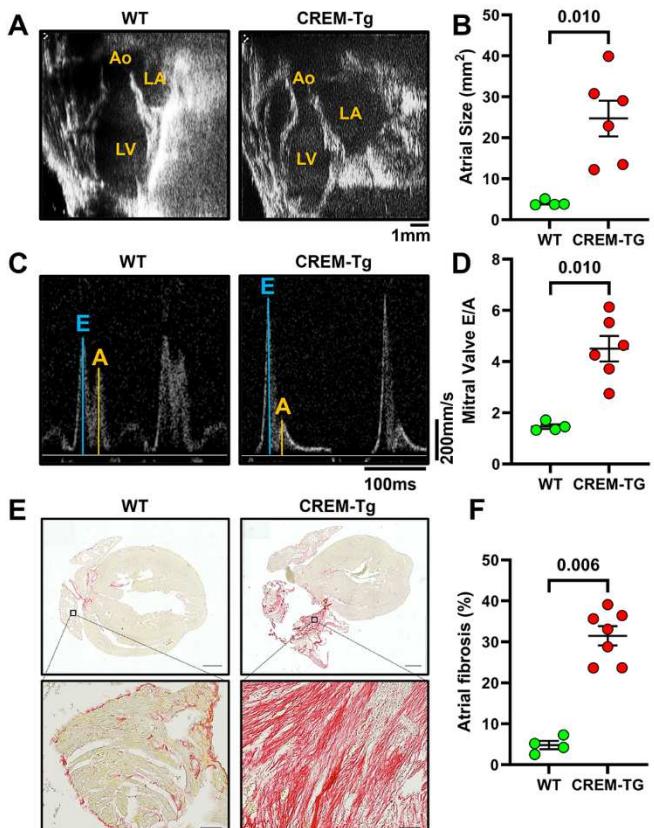
674 [53] M. Nakasaki, Y. Hwang, Y. Xie, S. Kataria, R. Gund, E.Y. Hajam, R. Samuel, R. George, D. Danda,
675 J.P. M, T. Nakamura, Z. Shen, S. Briggs, S. Varghese, C. Jamora, The matrix protein Fibulin-5 is at the
676 interface of tissue stiffness and inflammation in fibrosis, *Nat Commun* 6 (2015) 8574.

677 [54] T. Bracht, V. Schweinsberg, M. Trippler, M. Kohl, M. Ahrens, J. Padden, W. Naboulsi, K. Barkovits,
678 D.A. Megger, M. Eisenacher, C.H. Borchers, J.F. Schlaak, A.C. Hoffmann, F. Weber, H.A. Baba, H.E.
679 Meyer, B. Sitek, Analysis of disease-associated protein expression using quantitative proteomics—
680 fibulin-5 is expressed in association with hepatic fibrosis, *J Proteome Res* 14(5) (2015) 2278-86.

681 [55] C.S. Lin, T. Park, Z.P. Chen, J. Leavitt, Human plastin genes. Comparative gene structure,
682 chromosome location, and differential expression in normal and neoplastic cells, *J Biol Chem* 268(4)
683 (1993) 2781-92.

684 [56] J.J. Zhang, Y. Shen, X.Y. Chen, M.L. Jiang, F.H. Yuan, S.L. Xie, J. Zhang, F. Xu, Integrative
685 network-based analysis on multiple Gene Expression Omnibus datasets identifies novel immune
686 molecular markers implicated in non-alcoholic steatohepatitis, *Front Endocrinol (Lausanne)* 14 (2023)
687 1115890.

688 [57] H. Joshi, A. Almgren-Bell, E.P. Anaya, E.M. Todd, S.J. Van Dyken, A. Seth, K.M. McIntire, S.
689 Singamaneni, F. Sutterwala, S.C. Morley, L-plastin enhances NLRP3 inflammasome assembly and
690 bleomycin-induced lung fibrosis, *Cell Rep* 38(11) (2022) 110507.

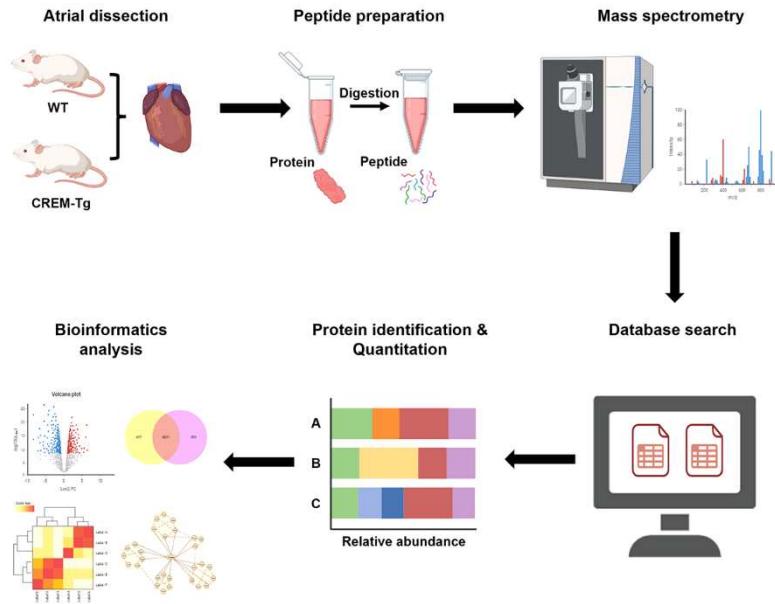

691 [58] J. Song, J.A. Navarro-Garcia, J. Wu, A. Saljic, I. Abu-Taha, L. Li, S.K. Lahiri, J.A. Keefe, Y.
692 Aguilar-Sanchez, O.M. Moore, Y. Yuan, X. Wang, M. Kamler, W.E. Mitch, G. Ruiz-Hurtado, Z. Hu, S.S.
693 Thomas, D. Dobrev, X.H. Wehrens, N. Li, Chronic kidney disease promotes atrial fibrillation via
694 inflammasome pathway activation, *J Clin Invest* 133(19) (2023).

695 [59] B. Scholz, J.S. Schulte, S. Hamer, K. Himmeler, F. Pluteanu, M.D. Seidl, J. Stein, E. Wardelmann, E.
696 Hammer, U. Volker, F.U. Muller, HDAC (Histone Deacetylase) Inhibitor Valproic Acid Attenuates Atrial
697 Remodeling and Delays the Onset of Atrial Fibrillation in Mice, *Circ Arrhythm Electrophysiol* 12(3)
698 (2019) e007071.

699

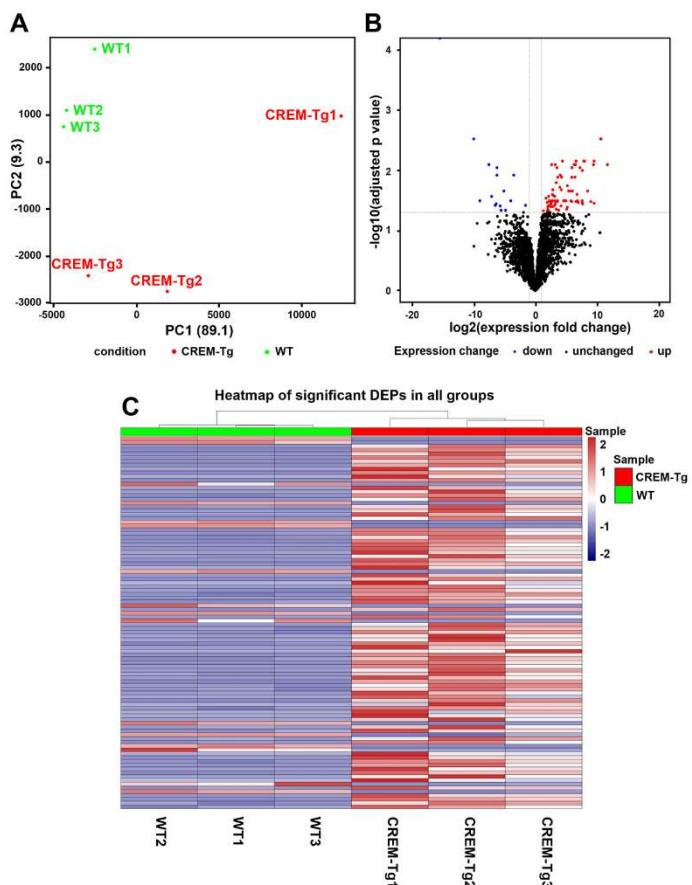
700

701 **Figure 1. Atrial enlargement and fibrosis in CREM-Tg mice compared to WT littermates: A)**
702 Representative echocardiograph images and **B)** scatter plots showing increased atrial size in CREM-Tg
703 mice (n=6) versus WT littermates (n=4). **C)** Echo Doppler recordings showing mitral valve flow and **D)**
704 scatter plots showing increased mitral valve E/A ratios in CREM-Tg mice (n=6) versus WT littermates
705 (n=4). **E)** Representative images of picrosirius red staining and **F)** quantification of interstitial fibrosis of
706 atrial sections from CREM-Tg (n=7) versus WT control mice (n=4). Scale bar = 200 μ m (5X) and 50 μ m
707 (20X). Data expressed as mean \pm SEM. P values were determined using an unpaired *t* test.
708



709

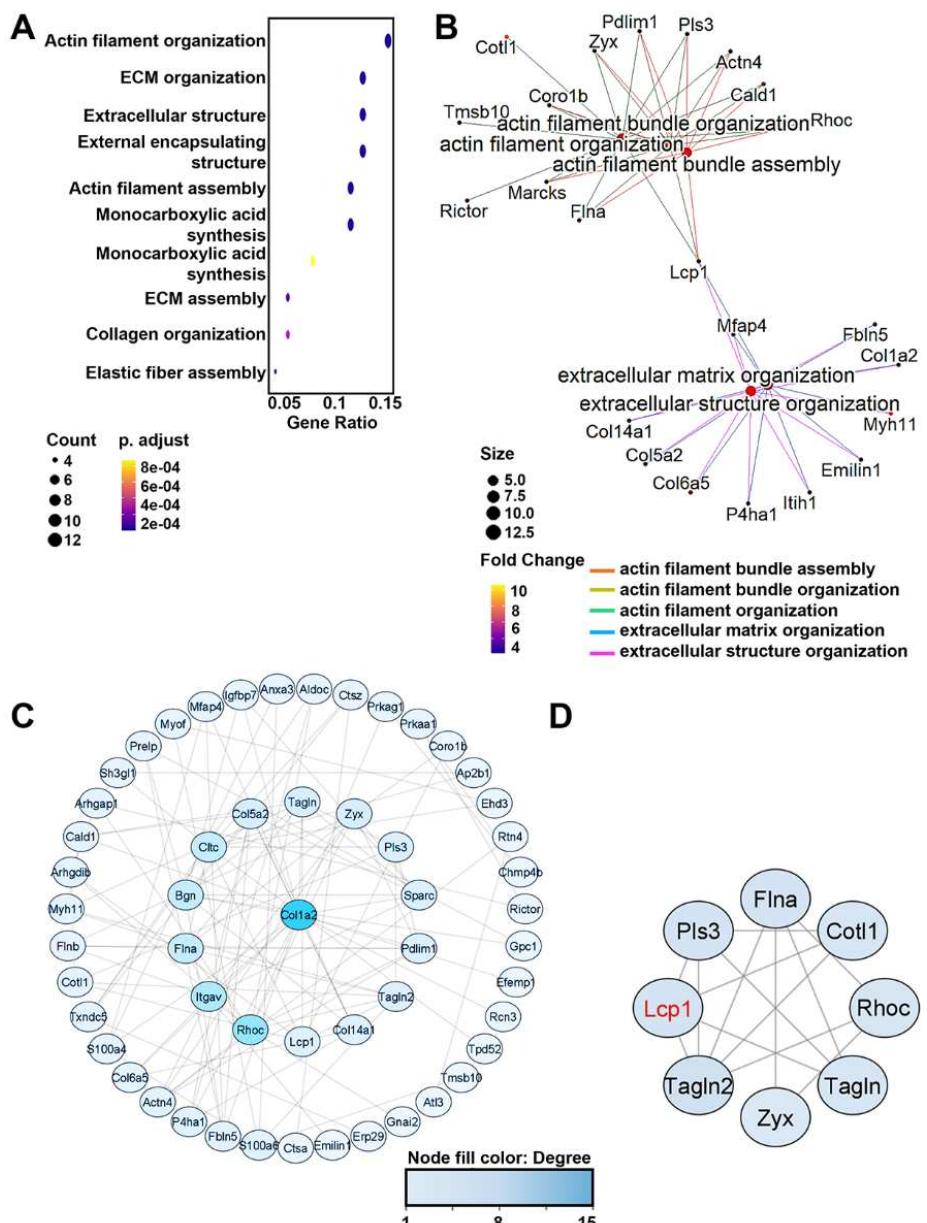
710


711 **Figure 2. Workflow of the LC-MS/MS-based proteomic profiling of the atria from CREM-Tg**
712 **mice with chronic AF and WT littermate controls in sinus rhythm.**

713

716 **Figure 3. Multi-dimensional analysis of protein expression profile in CREM-Tg mice and WT**
717 **littermates. A)** Principal component analysis showing the overall effect of variances between the
718 CREM-Tg mice and WT littermate controls. **B)** Volcano plot demonstrating the distribution of protein
719 expression changes comparing CREM-Tg mice to WT littermates. Red dots represent significantly up-
720 regulated proteins with adjusted p values <0.05 and $\log_2\text{FC} > 1$ while blue dots represent significantly
721 down-regulated proteins with adjusted p values <0.05 and $\log_2\text{FC} < -1$. **C)** Heatmap of differentially
722 expressed proteins (DEPs) in each sample. The columns correspond to the samples and the rows
723 correspond to individual proteins. Samples are grouped by clusters. The color scale is based on a z-score
724 distribution from -2 (blue) to 2 (red), see scale. Z-scores were calculated on a protein-by-protein (row-
725 by-row) basis by subtracting the mean and then dividing by the standard deviation.

726

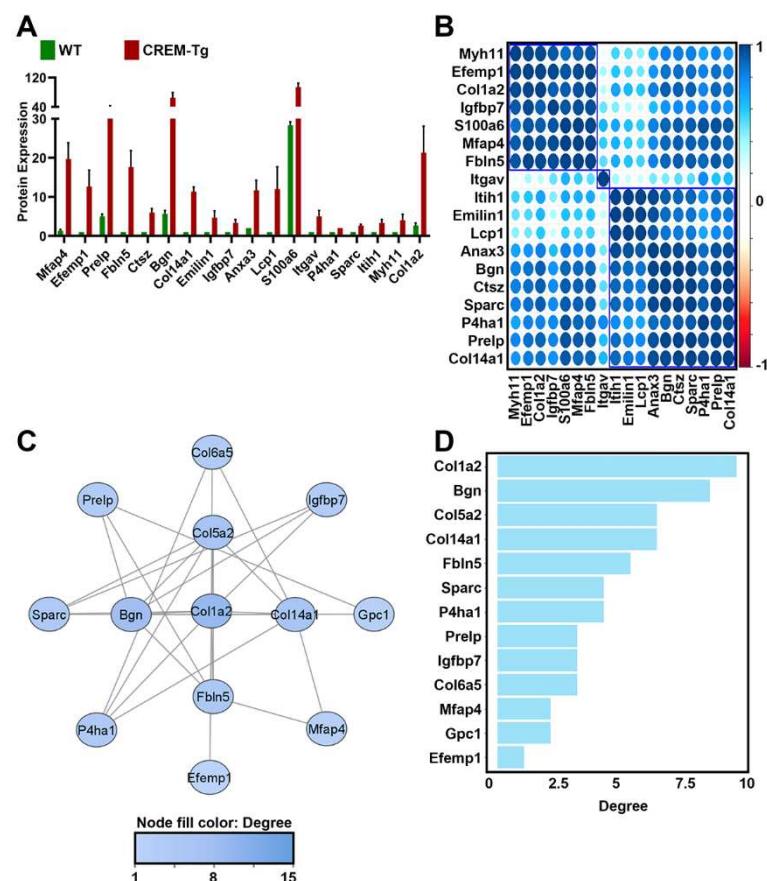


727

728

729 **Figure 4. Pathway enrichment and PPI network analysis of differentially expressed proteins**

730 **(DEPs).** **A)** Dot plot showing the top 10 enriched biological processes (BPs) comparing CREM-Tg mice
731 to WT littermates. **B)** The CNET plot depicting the proteins associated with the top 5 BPs. The log2
732 expression fold change overlaid as color gradient. **C)** PPI network of significant DEPs, in which the
733 nodes represent proteins, and the edges represent the interaction between proteins. The darker the node,
734 the higher the degree of the protein represented by the node within the network. **D)** Top 1 closely
735 connected DEP module identified by the Molecular Complex Detection (MCODE) algorithm. Adjusted
736 p values were calculated using the Benjamini-Hochberg procedure.

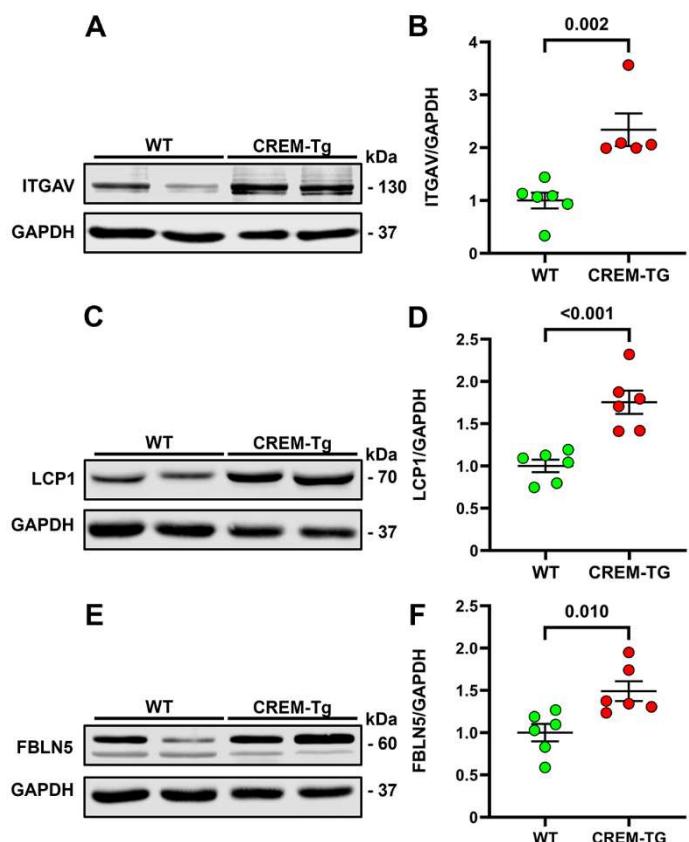


737

738

739 **Figure 5. Protein co-expression and PPI network analysis of differentially expressed proteins in**
740 **the extracellular matrix (ECM). A)** Bar graphs showing normalized ECM protein expression levels of
741 in the atrial of CREM-Tg mice and WT littermates. **B)** Dot plot shows the correlation analysis of ECM
742 proteins. Only positive correlation between ECM proteins was observed. **C)** PPI network of ECM
743 proteins. The darker the node, the higher the degree of the protein represented by the node in the
744 network. **D)** Bar plot showing the degree value of each protein. Ordered from the largest to the smallest
745 value. P values were determined using an unpaired *t* test.

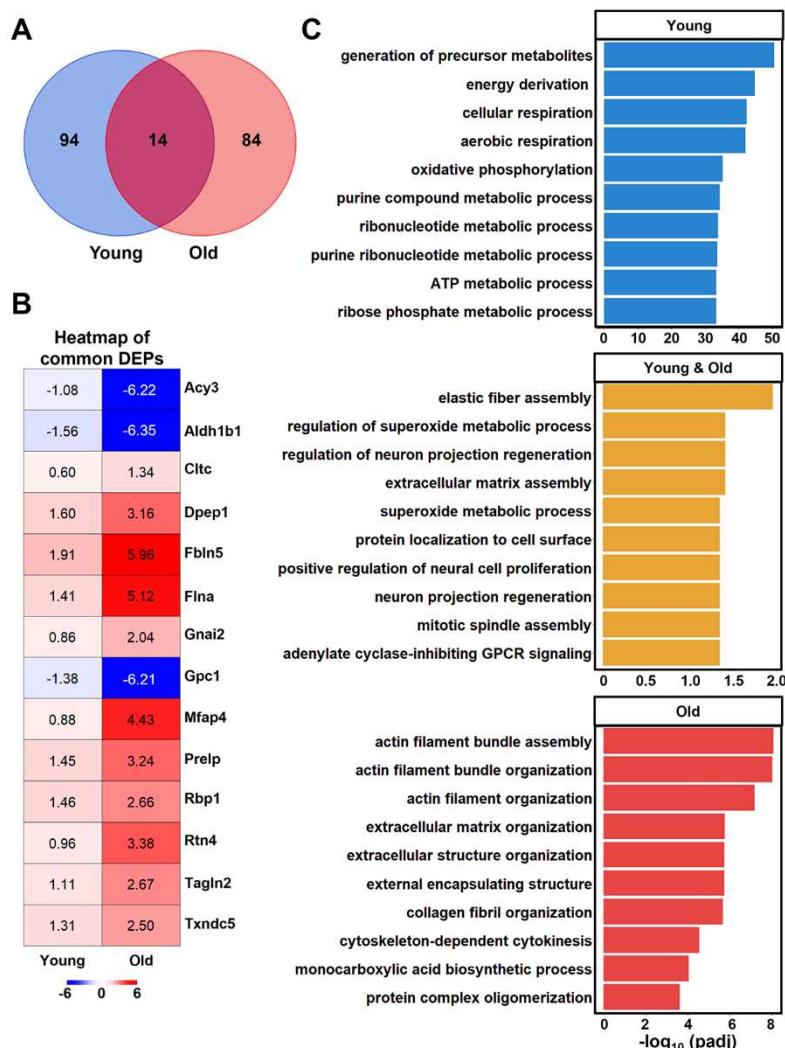
746



747

748

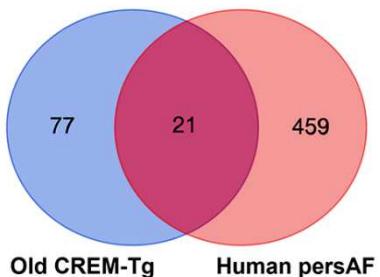
749 **Figure 6. Western blot validation analysis of key ECM proteins in mouse atrial tissue. A)** Western
750 blot analysis of integrin alpha chain V (ITGAV) in atrial tissue of CREM-Tg mice and WT littermates. **B)**
751 Quantification showing increased ITGAV levels in CREM-Tg mice. **C)** Western blot analysis of
752 lymphocyte cytosolic protein 1 (LCP1) in atrial tissue and **D)** quantification showing increased LCP1
753 levels in CREM-Tg mice. **E)** Western blot analysis of fibulin-5 (FBLN5) in atrial tissue and **D)**
754 quantification showing increased FBLN5 levels in CREM-Tg mice. Data expressed as mean \pm SEM. P
755 values were determined using an unpaired *t* test. Each dot represents an individual animal.


756

757

758

759 **Figure 7. Differential expression profile (DEP) showing similarities and differences between young**
 760 **and old CREM-Tg mice. A)** Venn diagram revealing common DEPs comparing old (9 months-of-age)
 761 and young (7 weeks-of-age) CREM-Tg mice, compared with WT littermates. **B)** Heatmap showing
 762 protein expression patterns in young and old CREM-Tg mice, compared with WT littermates. The color
 763 scale represents the log2 ratio of each protein in each group. **C)** Bar plots show the top 10 enriched
 764 biological processes using different subsets of DEPs. Blue color represents using DEPs only found in
 765 young CREM-Tg mice, red color represents DEPs only found in old CREM-Tg mice, and orange color
 766 represents DEPs found in both old and young CREM-Tg mice. Adjusted P values were calculated using
 767 the Benjamini-Hochberg procedure.



768

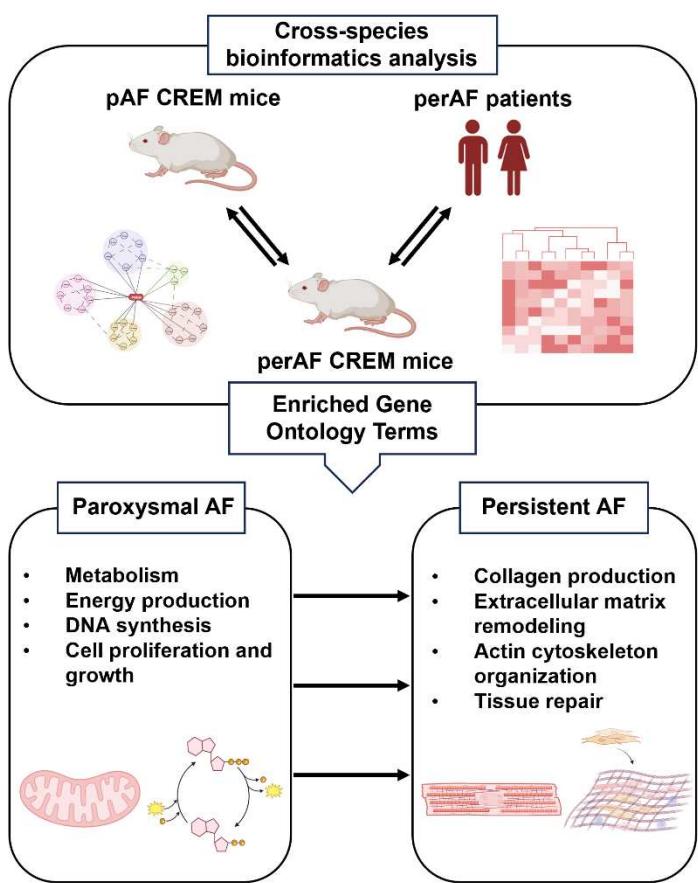
769

770 **Figure 8. Protein expression changes in old CREM-Tg mice recapitulate those in human patients**
771 **with persistent AF. A)** Venn diagram reveals common differentially expressed proteins (DEPs)
772 identified in old (9 months) CREM-Tg mice vs WT littermates, and patients with persistent atrial
773 fibrillation (perAF) vs controls in sinus rhythm. **B)** Heatmap shows DEPs in old CREM-Tg mice and
774 human patients with perAF. The color scale and the number in each box correspond to the log2 ratio of
775 each protein in different groups. Adjusted P values were calculated using the Benjamini-Hochberg
776 procedure.

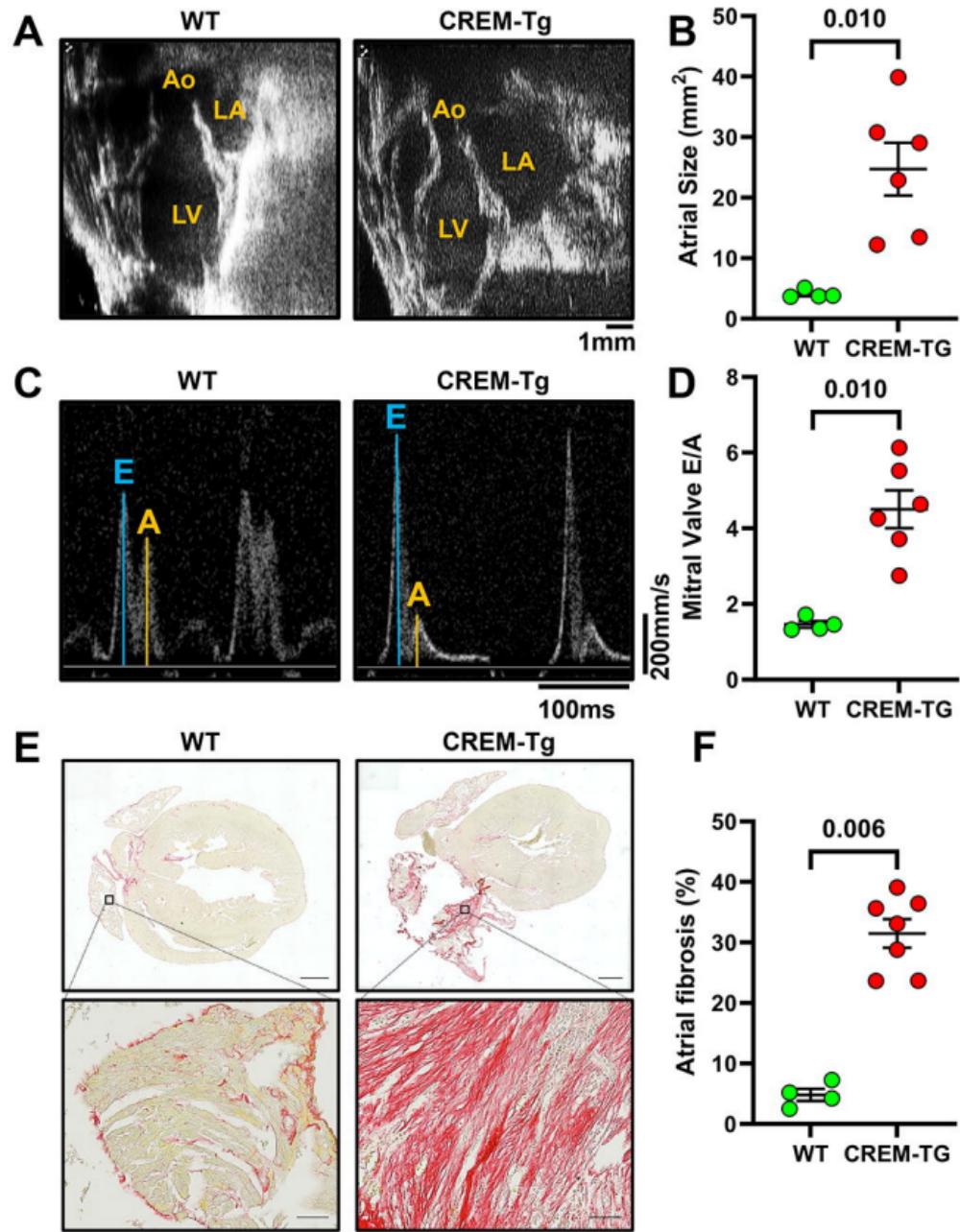
A

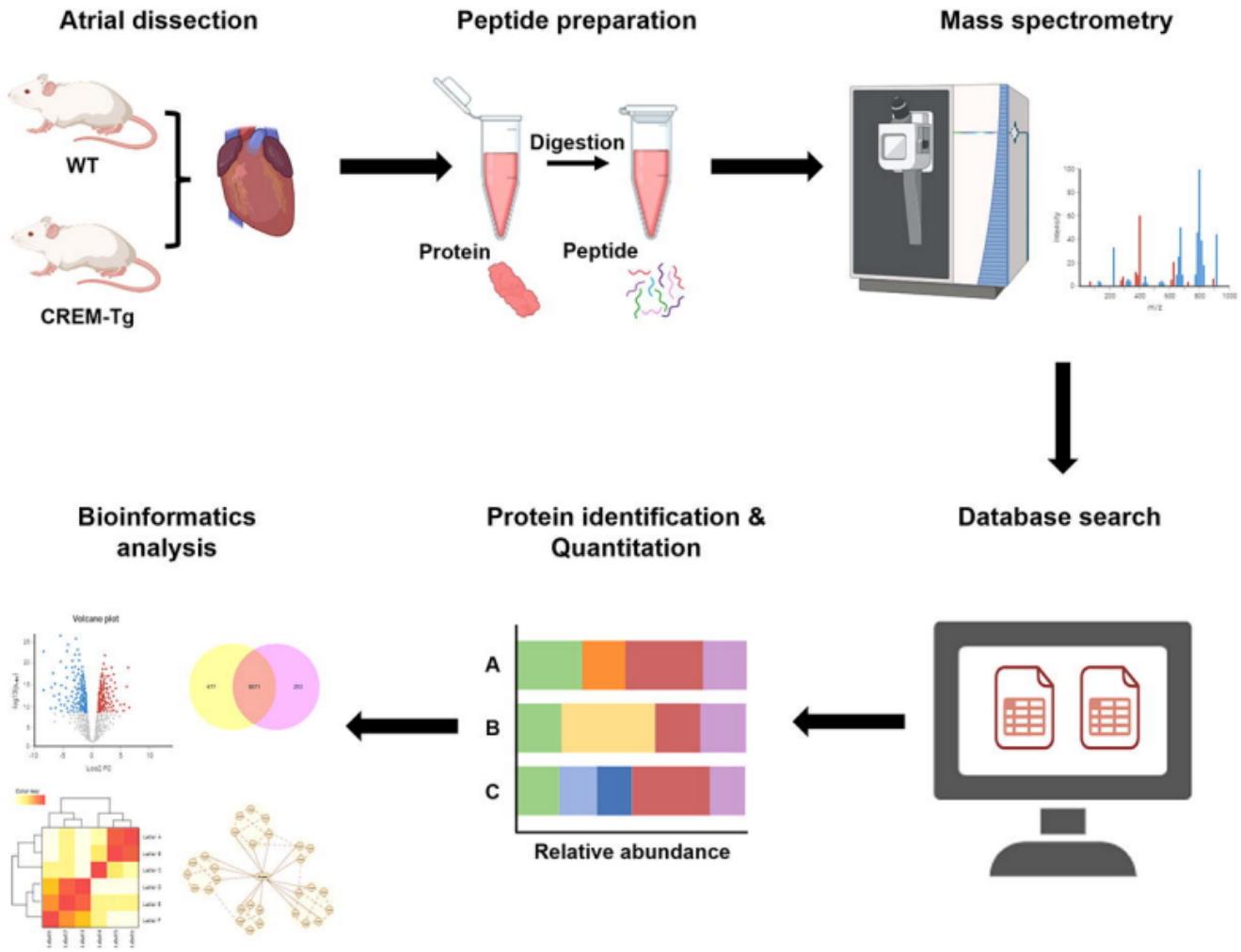
B

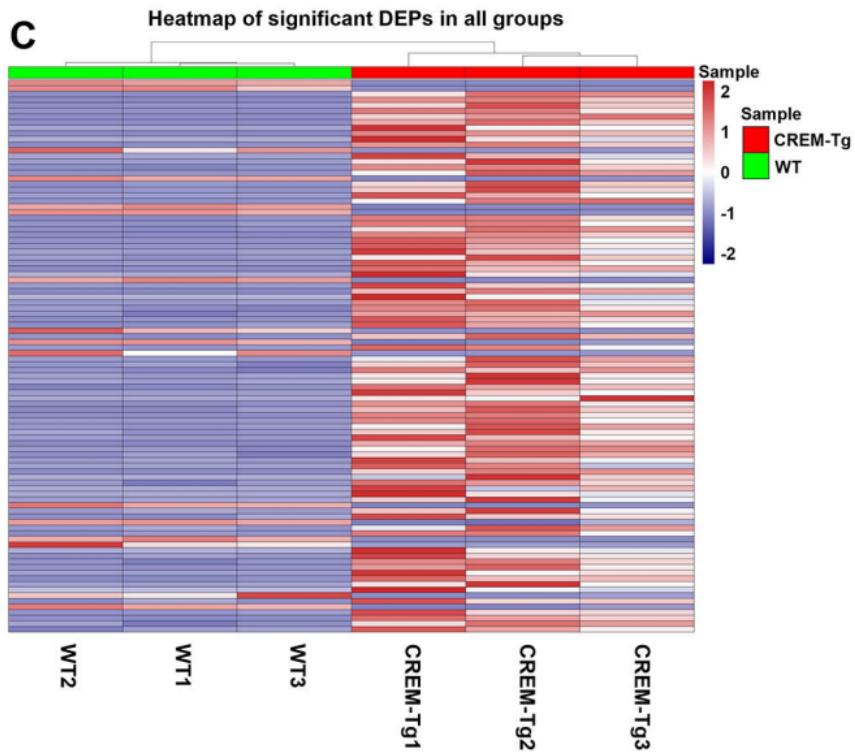
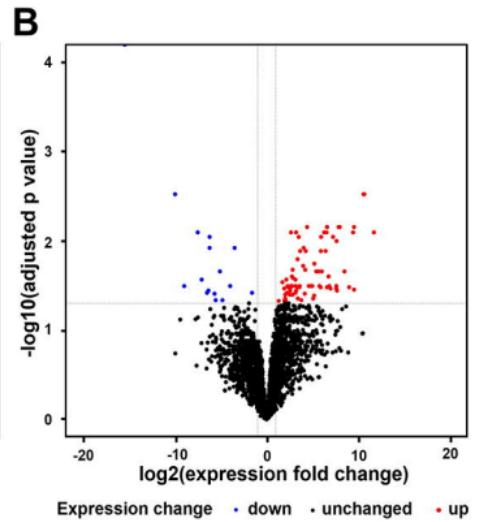
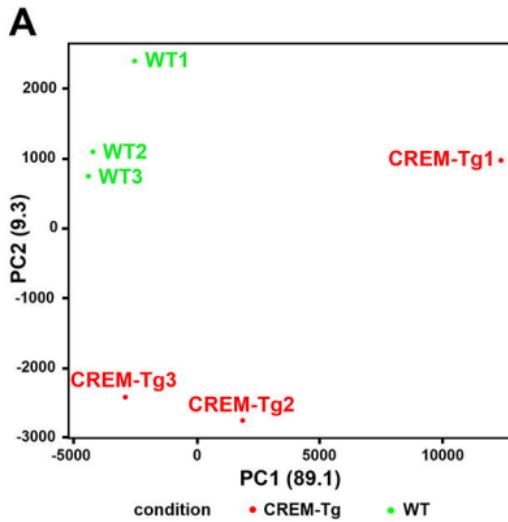
777

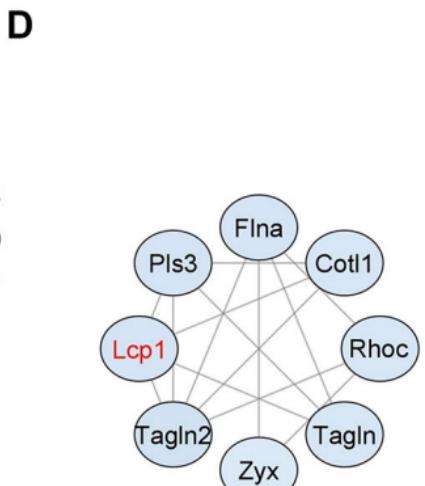
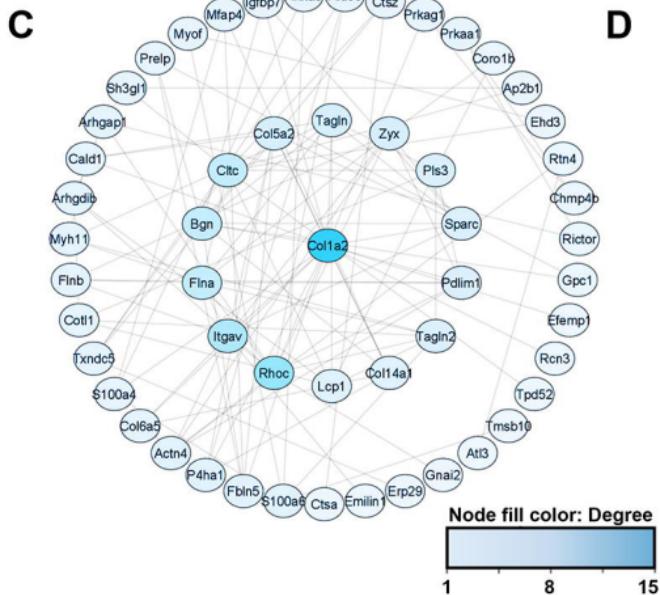
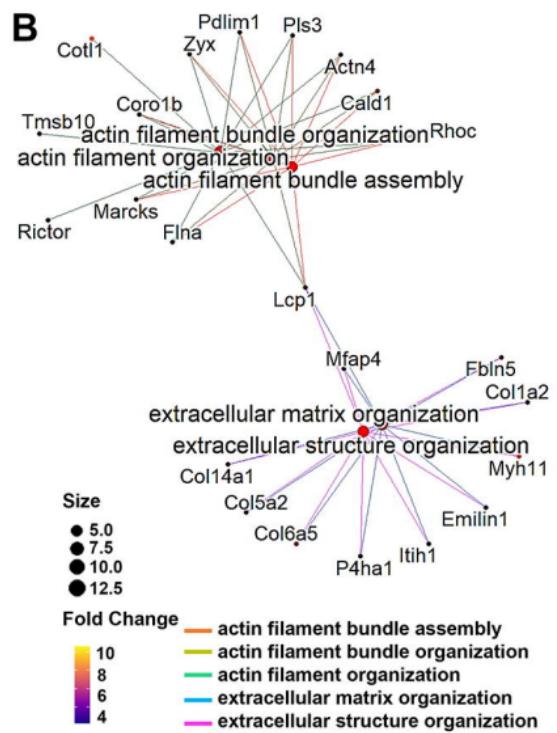
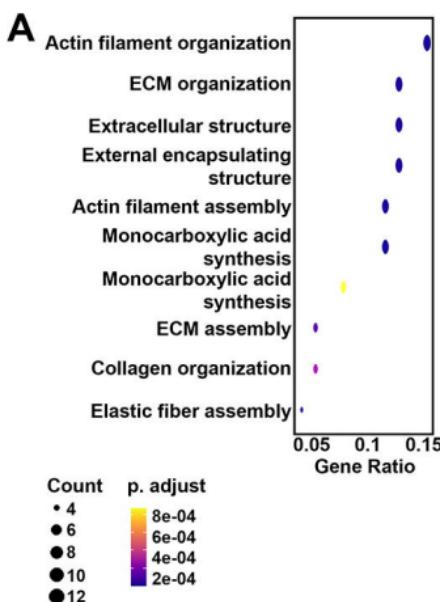

778

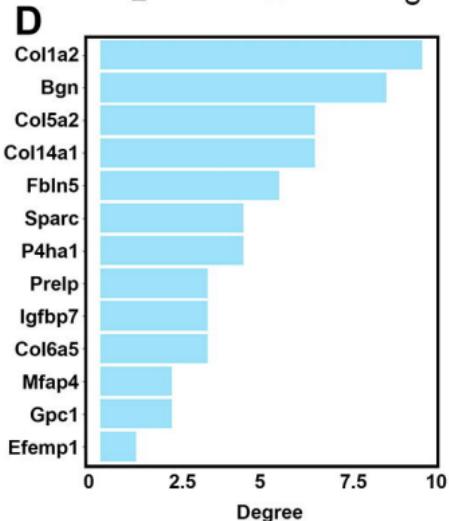
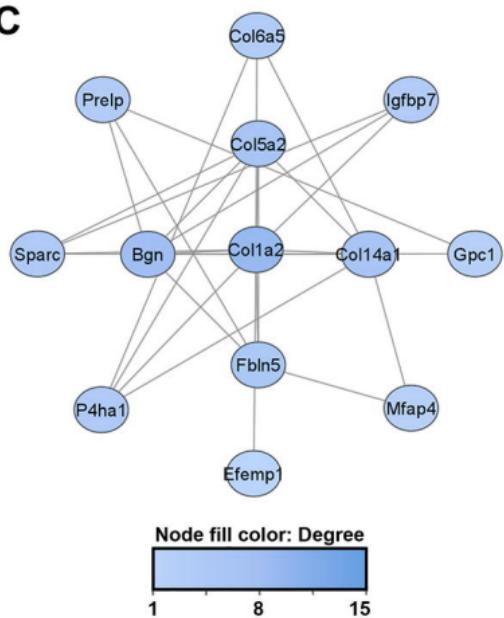
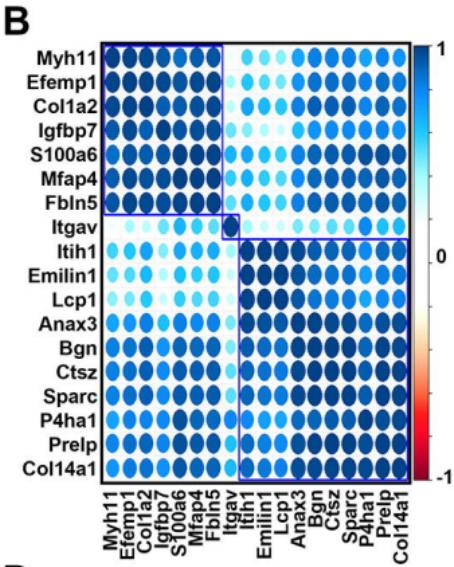
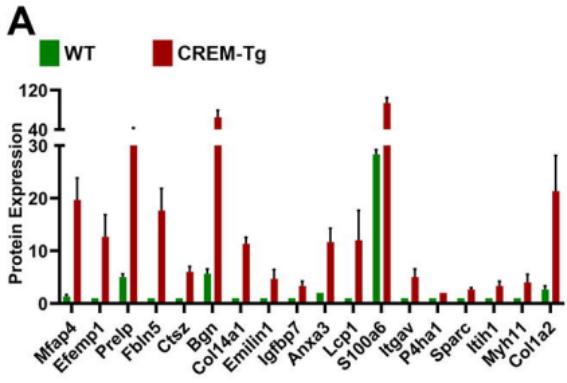
779 **Graphical abstract**

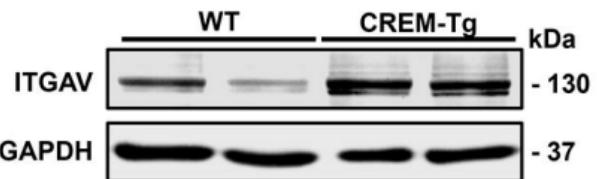
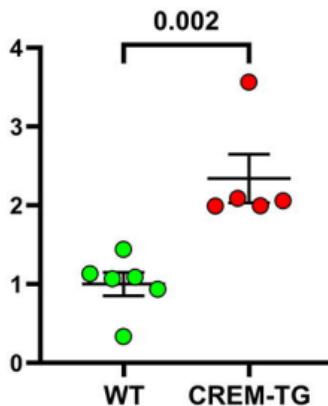
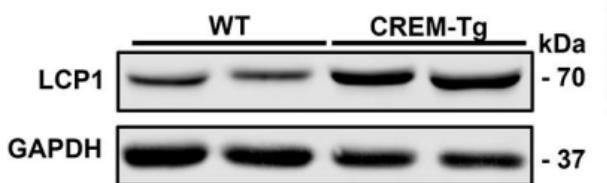
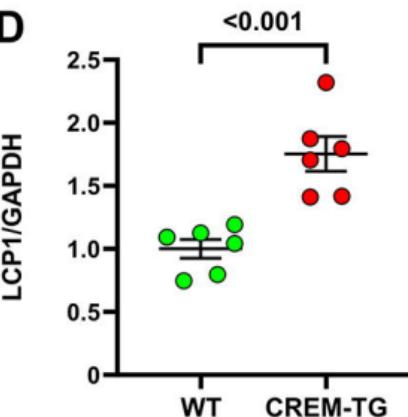
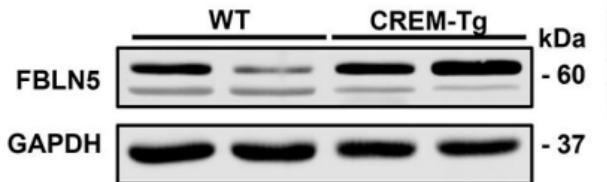
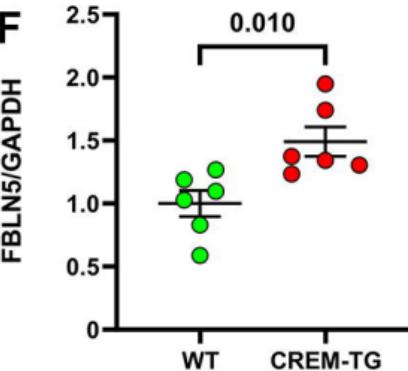

780

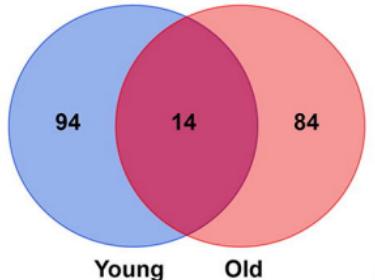

781 Graphical abstract summarizing key findings of this paper. The atrial proteome in 9-month-old CREM-
782 Tg mice with chronic persistent AF (perAF) was compared with age-matched WT littermates. In
783 addition, proteome changes in these old CREM-Tg mice were compared with proteome changes
784 previously identified in young CREM-Tg mice with paroxysmal AF (pAF). Moreover, an interspecies
785 comparison was performed between old CREM-Tg mice and human patients with perAF. The major
786 findings are that in pAF, key changes were identified in proteins involved in metabolism, energy
787 production, DNA synthesis, and cell proliferation and growth. On the other hand, in mice and humans
788 with perAF, key changes were found in the expression of proteins involved in collagen production,
789 extracellular matrix remodeling, actin cytoskeleton organization, and tissue repair.

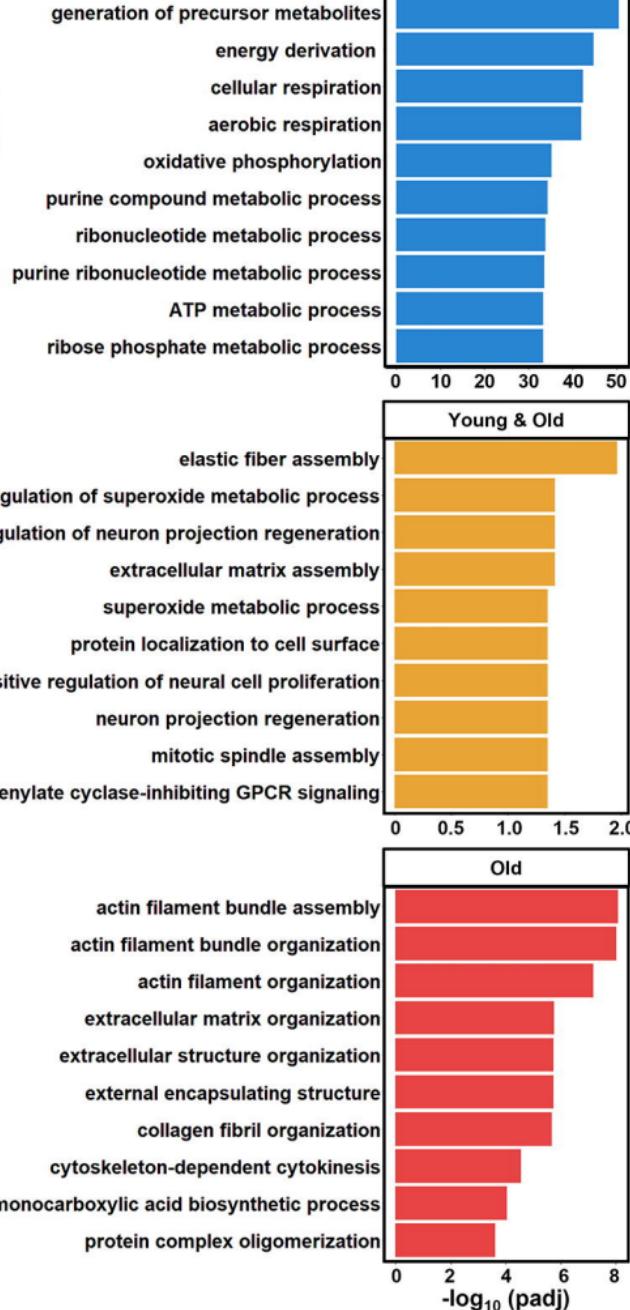



790

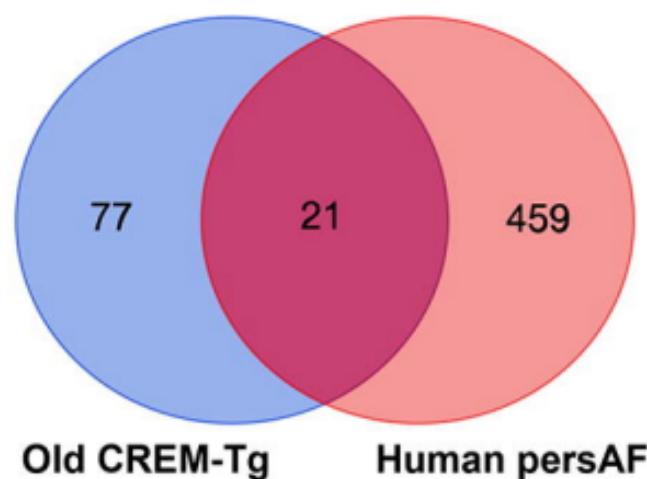









791





A**B****C****D****E****F**

A**B**

Heatmap of common DEPs

C


A**B**

Heatmap of common DEPs

3.52	1.34	<i>Aldh1a1</i>
-15.51	0.76	<i>Aldoc</i>
7.65	1.29	<i>Aoc3</i>
4.19	1.39	<i>Arhgdib</i>
3.68	1.62	<i>Bgn</i>
4.05	1.27	<i>Ctsz</i>
6.56	1.52	<i>Efemp1</i>
5.23	1.74	<i>Emilin1</i>
5.69	1.28	<i>Flnb</i>
2.85	1.28	<i>Esty2</i>
-6.21	2.44	<i>Gpc1</i>
-3.98	1.26	<i>Gtsk1</i>
4.00	1.63	<i>Ifgb7</i>
4.87	1.35	<i>Itgav</i>
5.45	1.65	<i>Lcp1</i>
2.37	1.26	<i>Marcks</i>
4.43	2.66	<i>Mfap4</i>
6.79	1.22	<i>Myof</i>
3.38	1.22	<i>Rtn4</i>
7.62	0.67	<i>Sparc</i>
6.30	0.80	<i>Tagln</i>

Old CREM-Tg

Human persAF

