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ABBREVIATIONSAND ACRONYMS

AF atrial fibrillation

BP biological process

CREM cAMP-response element modulator
DEP differentially expressed protein
ECG electrocardiogram

ECM extracellular matrix

FBLNS fibulin 5

GO gene ontology

GSEA gene set enrichment analysis
ITGAV integrin alpha V

LCP1 lymphocyte cytosolic protein 1
MS mass spectrometry

pAF paroxysmal atrial fibrillation
PCA principal component analysis
perAF persistent atrial fibrillation

PPI protein-protein interaction

WT wild type
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ABSTRACT

Background: Overexpression of the CREM (CAMP response elerharting modulator) isoform
CREM-IbAC-X in transgenic mice (CREM-Tg) causes the agesdéent development of spontaneous
AF.

Purpose: To identify key proteome signatures and biolobpracesses accompanying the development
of persistent AF through integrated proteomics lainthformatics analysis.

Methods: Atrial tissue samples from three CREM-Tg mice #mée wild-type littermates were
subjected to unbiased mass spectrometry-baseditatimatproteomics, differential expression and
pathway enrichment analysis, and protein-proteieraction (PPI) network analysis.

Results: A total of 98 differentially expressed proteinsrevélentified. Gene ontology analysis revealed
enrichment for biological processes regulatingracyttoskeleton organization and extracellular rzatri
(ECM) dynamics. Changes in ITGAV, FBLN5, and LCPéravidentified as being relevant to atrial
fibrosis and remodeling based on expression changesxpression patterns, and PPI network analysis.
Comparative analysis with previously published gets revealed a shift in protein expression pattern
from ion-channel and metabolic regulators in yo@REM-Tg mice to profibrotic remodeling factors in
older CREM-Tg mice. Furthermore, older CREM-Tg meséibited protein expression patterns that
resembled those of humans with persistent AF.

Conclusions: This study uncovered distinct temporal changesnal protein expression patterns with
age in CREM-Tg mice consistent with the progressiv@ution of AF. Future studies into the role of
the key differentially abundant proteins identifiadhis study in AF progression may open new

therapeutic avenues to control atrial fibrosis amstrate development in AF.

KEY WORDS: Atrial fibrillation, atrial fibrosis, extracellulamatrix, disease model, proteomics
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1. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiaarrhythmia and a major risk factor for ischemic
stroke and heart failure. According to data frora @lobal Burden of Disease study 2019, AF caused
about 300,000 deaths while 59 million patients esuffom AF.[1] The progressive nature of disease
progression complicates the assessment and trelatiaf.[2] AF typically begins as paroxysmal AF,
characterized by intermittent arrhythmia periodsitey less than 7 days, and tends to progresstiover

to persistent AF (perAF). AF progresses over time with age and more than half of all AF patients
are >75 years old. [3]

AF is hallmarked by electrical and structural (@bc) remodeling in the myocardium, which
underlies the progressive nature of the arrhythitsielf. AF related comorbidities, associated with
structural changes in the myocardium, pose a pdatichallenge in AF treatment, as current thesapie
are largely focused on controlling electrical remloty (the heart rate and rhythm), with no effegtiv
therapies targeting structural changes. Thus, duntechanistic understanding of how atrial (eleatri
and structural) remodeling contributes to the disgarogression is necessary to develop more eféecti
therapies for AF.[4] Electrical remodeling leaditm ectopic firing and re-entrant activity of action
potentials is considered to be causative for theebof AF[5] as well as the maintenance of initial
disease state. While it is shown that further $tmat and fibrotic remodeling is necessary for ambeal
disease state progression,[6] the underlying meshnsnare not well understood.

The use of animal models has enabled the studypefific genetic and molecular factors
contributing to the pathogenesis of AF.[7, 8] WHiege animal models can recapitulate the disease
progression seen in humans, they have some didadpsnlike a longer time-course to develop
advanced disease stages and difficulty to perfoemetic modifications.[9] On the other hand, mouse

models offer multiple advantages such as a shomer course of disease development, ease of genetic
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manipulation, less genetic heterogeneity among alsinand overall cost-effectiveness. Several mouse
models have been shown to recapitulate key disksdares also seen in patients with AF.[7] For
example, CREM transgenic (CREM-Tg) mice exhibitradmet sarcoplasmic reticulum &shandling,
which was demonstrated to serve as a mechanigtierdof AF progression.[10] CREM-Tg mice
overexpress the CREMAC-X isoform, the expression of which is also eledain human patients with
perAF.[10] In these mice, atrial remodeling typigadtarts at 5-6 weeks of age and ectopic beats are
observed at around 3 months, which is associatéd sgiontaneous, paroxysmal AFR.[8, 10, 11] As the
CREM-Tg mice age, they develop atrial dilation, @action abnormalities and extensive atrial fibrpsis
which is associated with increasing persistence lamden of AF.[8, 10] The disease progression in
CREM-Tg mice thus mimics the atrial remodeling aiskase evolution often observed in patients with
AF.

To gain a better understanding of the atrial prot@ndscape involved in the advanced stages of
perAF, we performed unbiased mass spectrometrydbgsentitative proteomics on 9-month-old
CREM-Tg mice. Enrichment and network analysis idienl ~3,000 unique proteins in the atria of
CREM-Tg mice and their age-sex matched wild-tygerinate controls. Using multimodal analysis, the
differentially expressed proteins (DEPs) were camgawith publicly available datasets from young
CREM-Tg mice.[12] While the young CREM-Tg mice wetarly-stage AF mainly exhibited changes in
biological pathways involved in regulating metaboij contractility, and electric activity in the iafr
older CREM-Tg mice with more advanced-stage AF sftbw significant shift in the gene expression
patterns associated with fibrotic remodeling. Tmeichment of actin filament assembly and ECM
remodeling events emerged as a possible drivelteriions in atrial tissue integrity and contrhisti
Taken together, our study uncovered a novel shifthe atrial proteome associated with biological

processes promoting atrial remodeling and fibrdsisng more advanced stages of AF, similar to those
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observed in atrial tissue from patients with peéesis AF. These pathways may be suitable for future
studies with the goal of developing new therapetatigets for AF prevention.

2. MATERIALSAND METHODS

A detailed description of all methods is providedthe Supplemental Materials. The authors did not

use generative Al or Al-assisted technologies endevelopment of this manuscript.

2.1. Sample preparation for mass spectrometry. All animal studies were performed according to
protocols approved by the Institutional Animal Carel Use Committee of Baylor College of Medicine
conforming to the Guide for the Care and Use ofdratory Animals published by the U.S. National
Institutes of Health (NIH Publication No. 85-23yiged 1996)Mice with cardiomyocyte-specific
overexpression of CREM-iC-X (Tg) were described previously.[13] Mice weren®nths-of-age and
divided into 2 experimental groups: 1) CREM-Tg macel, 2) WT littermates. Mice were euthanized,
and atria tissue was harvested, immediately smaerfrin liquid nitrogen, and stored at -80 °C for
downstream analysis. Tissue homogenization, prakigestion, peptide clean-up, and unbiased mass

spectrometry were performed as detailed inSingplemental Material.

2.2. Mass spectrometry (M S) data processing. The MS raw data was searched with Proteome
Discoverer 2.1 software (Thermo Scientific, Walth&i#®) with Mascot 2.4 (Matrix Science, Chicago,
IL) against NCBI refsed/lus musculus database (updated 03/24/2020). The following patars were
set for identification and quantification: 1) trypsligestion with a maximum of two miscuts; 2)
dynamic modification of oxidation (M), protein Nrteinal acetylation, deamidation (NQ); 3) fixed
modification of carbamidomethylation (C); 4) presorr mass tolerance of 20 ppm and fragment mass

tolerance of 0.02 Da. The PSMs output file fromt@ome Discoverer was grouped at the gene level.
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The gene product inference and iBAQ-based quaatifin was carried out using the gpGrouper
algorithm to calculate peptide peak area (MS1)dhaspression estimates.[14] The median normalized

and log10 transformed IBAQ values were used foa daglysis.

2.3. Analysis of differentially expressed proteins. The differentially expressed proteins (DEPS)
between the CREM-Tg and WT littermates were catedlaising the moderated t-test to calculate p
values and log2 fold changes in the R package “Wnfh5] The Benjamini-Hochberg method was used
to adjust original p values. DEPs with an adjugteehlue <0.05 and log2FC >1 or log2FC <-1 were
considered as significant. The volcano plot wasdusedisplay DEPs. Principal component analysis
(PCA) and unsupervised hierarchical clusteringistiathces between samples were performed to analyze
sample clustering based on the protein expressiofilg similarities. PCA plot was generated by R
package “ggplot2”[16] and R-package “pheatmap’[W4s used to generate hierarchically clustered
heatmap. The common significant DEPs between otasdband public datasets were obtained by the

online Venn diagram tool (https://bicinformaticdhpsyent.be/webtools/Veny/

24. Function and pathway enrichment analysis of DEPs. DEP function and pathway enrichment
analysis was carried out using the R package ‘@iBsbfiler’.[18] Gene Ontology (GO) analysis was
performed using the significant DEPs while the figt of DEPs was applied to Gene Set Enrichment
Analysis. The Benjamini-Hochberg method was usedotoect the p value and adjusted p <0.05 were
considered statistically significant. Specificatbyr GO analysis focused on the biological pro¢B$y

category, which is a key aspect of protein function

2.5. Protein-protein interaction network construction and module analysis. STRING database

(https://string-db.orgwas used to construct the protein-protein intewaqPPI) network of DEPs using
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the medium confidence score of 0.4 as a cut-off fZhM@oscape (version 3.9.1, http://www.cytoscags.or

was used for the network visualization.[20] HigiMyerconnected modules were extracted from the PPI
network using the Cytoscape plug-in MCODE with thikowing criteria: degree cutoff = 2, node score

cutoff = 0.2, k-core = 2, max depth = 100.[21]

2.6. Protein co-expression correlation analysis. Co-expression patterns between ECM proteins were
determined based on the proteomics level. Pearsomlations coefficient between proteins were

calculated using the R package "corrplot”.[22]

2.7. Identification of core proteins. Core proteins demonstrate complex interplays wilieoproteins
in the processes. To prevent the selection biag pmteins are defined based on their correlation

relationship as well as their degrees of conneatiothe PPI network. The Deeply Integrated Human

Single-Cell Omics (DISCO) database.[23] (https:/imimmunesinglecell.org/was used to verify the

expression level of the core proteins in heart.

2.7. Dataset acquisition. The dataset from Sei@t al.[12] was obtained from 7-week-old mice with
cardiomyocyte-specific overexpression of CREM@X (CREM-Tg). As controls, age-matched WT
littermates from the same breeding colony were Lifkbd dataset from Ligt al.[24] contains 18 human
left atrial appendage (LAA) tissue samples inclgdth with persistent AF and 9 with sinus rhythm.
Different excel files containing differentially esgssed proteins identified from each dataset were

obtained.

2.8. Immunoblotting. Protein lysates were denatured for 10 minutes &€ 70 Laemmli buffer with

beta-mercaptoethanol prior to electrophoresis &% acrylamide gel. Proteins were transferred @r 9
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minutes at room temperature (RT) onto a PVDF mendrembranes were blocked 60 minutes at RT
in OneBlock™ blocking buffer (#20-314, Genesee fitfie, Morrisville, NC) followed by overnight
incubation at 4°C in primary antibodies for ITGA¥:1{,000, A2091, Abclonal, Woburn, MA), FBLN5
(1:1,000, A9961, Abclonal, Woburn, MA), LCP1 (1:@( A5561, Abclonal, Woburn, MA), and
GAPDH (1:10,000 EMD Millipore, Burlington, MA) in @eBlock™ blocking buffer. After washing in
TBS-Tween, membranes were incubated in goat antisendgG (H+L) superclongd secondary
antibody, Alexa Fluor 680 (1:10,000, A28183, Thermscher, Waltham, MA) or goat anti-rabbit IgG
(H&L) antibody DyLightTM 800 conjugated (1:10,00811-145-002, Rockland, Limerick, PA) at a

dilution of 1:10,000 in OneBlock™ blocking buffenqr to imaging with Li-Cor Odyssey Blot Imager.

2.9. Statistical analysis. Data were analyzed using analysis of variance (ANCgllowed by the post
hoc Bonferroni t-test for multiple group non-regEhtmeasures. Independent groups in the same
experiment were analyzed using unpairéelst. Values are expressed as mean + SEM, and @b<was
considered statistically significant. All the sttittal analyses were performed using GraphPad Pism

(GraphPad Software Inc., San Diego, CA) unlessrofise stated.

RESULTS

3.1. Characterization of atrial dysfunction and remodelingin CREM-Tg mice. To examine the
effects of cardiomyocyte-specific overexpressio€BEM-IbAC-X on atrial remodeling,
echocardiographic studies were performed to asggakand ventricular function and structure.
Representative long-axis echocardiography revedésd images of the aortic root (Ao) and left atriu
(LA) in 9-month-old CREM-Tg mice and WT littermat@sg. 1A). The LA size was significantly larger

in CREM-Tg mice compared to WT littermaté€sd. 1B). The atrial contractile function was studied
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using echo Doppler. Representative color Dopplages of the early and late flow peaks through the
mitral valve showed an increased mitral early terafvaves (E/A) ratio in CREM-Tg versus WT
littermates Fig. 1C-D), indicating abnormal ventricular filling probalihecause of decreased atrial
contractility. The CREM-Tg mice also exhibited mildntricular contractile dysfunction: the ejection
fraction was reduced in CREM-Tg mice (51.4 £ 0.8@npared with WT littermates (61.7 + 0.84;
P=0.010). There were signs of left ventricular tdileon without increases in wall thickness, cormsist
with a mild dilated cardiomyopathgipplemental Table 1), consistent with prior studies. [25, 26]
Furthermore, the amount of atrial fibrosis was exasuh using picrosirius red staining of longitudinal
cardiac sectiond{g. 1E). Quantification revealed an increased amounibobsis in the atria from

CREM-Tg compared with WT littermates (p = 0.06%g. 1F), consistent with prior studies [25].

3.2. Proteomic profiling and DEPs identification
To generate a complete profile of protein expressttanges associated with chronic AF in CREM-Tg
mice, we performed an unbiased label-free prote@madysisFig. 2 shows the workflow of this study,
starting from sample preparation to mass spectmrn@eventual bioinformatic analysis of the result
To elucidate proteome alterations in mice with geénde analyzed atrial samples from three CREM-Tg
mice and three WT littermates. Liquid chromatogsapith tandem mass spectrometry (LC-MS/MS)
identified a total of 3,356 proteins. For the sakeeproducibility, the data set was filtered fateltion
of protein in all three replicates of either WT@REM-Tg mice. Consequently, a total of 2,438 pritei
were utilized for differential analysis.

To gain insight into the overall proteome alterasiacn CREM-Tg mice vs WT littermates,
principal component analysis (PCA) and unsupervisestering analysis of the overall protein
expression levels identified by mass-spectromeggevperformedKig. 3A and Supplemental Fig. 1).

In the PCA plot, PC1 accounted for 89.1% of thearare in protein expression between samples while

10
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PC2 accounted for 9.3% of the variance, indicadirfigrential separation between groups. Notablg, th
differential expression pattern of mouse CREM1 in@yndicative of biological variability within the
CREM-Tg group. To show the distribution of diffeteatly expressed proteins (DEPS) between CREM-
Tg mice and WT littermates in relation to theiratele importance, a volcano plot was generakeg. (
3B). Out of all 2,438 DEPs identified, 98 were siggaht using a cut-off filter of an adjusted p value
<0.05 and log2FC >1 or <-1, respectively. Out et 82 significant DEPs were up-regulated, witle 1
were down-regulatedS(ipplemental Table 2). Unsupervised clustering analysis revealed tiat t
significant DEPs accurately separated the two geaupples into two clusters, reinforcing the religbi

of our differential expression analysis resug)( 3C). Subsequently, we selected all significant DEPs

for further validation and downstream characterrat

3.3. Functional enrichment analysisof differentially expressed proteins

To identify biological functions that are involvad significant DEPs, we performed gene ontology JGO
enrichment analysis. We focused on the GO termidbioal process’ (BP; GO:0008150) specifically.
Significantly enriched BPs were classified intoefisusters according to their functional descripdio

and are shown iBupplemental Fig. 2. As shown irFig. 4A our most enriched BPs were actin filament
organization, extracellular matrix organizationtragellular structure organization, actin filament
bundle assembly, etc., suggesting that the furetdisignificant DEPs are highly associated wittinac
dynamics and extracellular matrix (ECM) remodelimgcesses.

The gene concept network analysis revealed theiasiem of proteins involved in the top 5 BP
terms Fig. 4B). The red nodes represent BP terms that are casthex DEPs. These DEPs were found
to be enriched in relevant BPs. Furthermore, ther @d each DEP node is indicative of their relativ
expression change. Notably, the protein LCP1 wasddo be shared across all terms, signifying a

promising protein for further investigation, andlicating that LCP1 may play a central role in

11
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263  regulating multiple diverse BPs involved in an athed stage of AF. A full list of significantly enhed
264 GO terms is available iBupplemental Table 3.

265

266  3.4. PPI network construction

267 A protein-protein interaction (PPI) network of @ik significant DEPs was constructed to provide a
268  systems-level perspective on protein-protein irtgoas and organization. The network contains 54
269 nodes and 118 interaction paiBsd. 4C). The top module within the network was identiftadough the
270  application of Molecular Complex Detection (MCODRJich is a seed-and-extension approach. It
271 initially assigns every node a weight, seedingehezdes to form initial clusters and expandingehes
272 clusters, eventually revealing functionally relathasters [21]. Notably, LCP1 was found in the top
273 module (score = 4), highlighting its relevance aswadidate for further researdfig. 4D).

274

275  3.5.Key proteinsinvolved in atrial fibrotic remodeling

276 We recently identified an increased amount of stigal fibrosis in the atria of 7-month-old CREM3T
277  mice compared with WT littermates [25], which misiibe findings in patients with perAF. By

278  controlling ECM remodeling and turnover, ECM dynasiplay a crucial role in regulating fibrosis [11].
279  To further investigate mechanisms underlying ECMatyics, their impact on AF, and to identify

280  critical proteins involved in these processes, wx Bxtracted DEPs from the enriched GO cluster
281  annotated “collagen extracellular matrix structuta”CREM-Tg mice, all DEPs in this cluster had
282  elevated expression levelsig. 5A). Thecorrelation analysis illustrated iig. 5B revealed a strong
283  positive correlation between these ECM regulatotgans, indicating their expression may be regdlate
284 by shared factors and signaling pathways. We maxs$teucted the PPI network of ECM DEPs. The
285  network consists of 13 nodes and 28 interactiorsgfaig. 5C). The degree of connection of each

286  protein with other DEPs in the network is listedhe bar plotfig. 5D).

12
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3.6. Validation of key proteins
Considering the extensive characterization of gelteproteins in ECM remodeling and fibrosis [11], 27
we opted to focus our investigation on other prig¢hat may uncover new mechanistic pathways.
Based on their abundance and the abovementiongaianave focused on ITGAV, LCP1, and FBLNS5.
We then referred to the DISCO database[23] foettpgression of each key protein in curated single-ce
RNA sequencing data from heart tissue samples. WT&#l FBLN5 showed robust expression at the
transcriptomic level within the heart tissue, prilyaobserved in the fibroblast subsegipplemental
Fig. 3and 4). While LCP1 expression could not be clearly obsdrin all the fibroblast subsets
(Supplemental Fig. 5), considering its central location in our netwarkalysis Fig. 4C), we shortlisted
these 3 proteins for further validation.

To validate our proteomics findings, we performesstern blot analysis on ITGAV, FBLN5, and
LCP1 expression in atrial tissue of CREM-Tg micd 8T littermatesKig. 6A,C,E). We found that,
consistent with the proteomics results, the progejoression levels of all three proteins were
significantly higher in CREM-Tg mice versus WT dittnates (ITGAV: 1.34+0.32; p=0.002; Lcpl: 0.75%
0.16; p<0.001; FBLN5: 0.49+0.16; p=0.0Hg. 6B,D,F). These results lend support to the robustness

of our quantitative proteomics analysis.

3.7. Comparison of DEPsfrom old vs young CREM-Tg mice

In a prior study, Seiddt al.[12] reported that biological processes enrichegoumng CREM-Tg mice at

7 weeks-of-age were mostly related to changes italmésm, contractility, and electric activity. To
assess whether there is a switch in the genetigrgamo of CREM-Tg mice when AF becomes more
persistent, we performed a comparative analysisdeat the datasets obtained from our CREM-Tg mice

at 9 months-of-age and the publicly available datafom Seidkt al.[12]. By overlapping DEPs, we
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found 14 to be common among the two datadeis. (fA). Notably, all 14 of these DEPs showed a
consistent pattern of expression charigeg.(7B), i.e., 11 DEPs were overexpressed in both thaesett
and 3 out of 14 were downregulated in both, withrges in the relative expression levels being more
pronounced in the 9-month-old CREM-Tg mice. To ustsnd the processes critical for regulating early
vs. advanced stages of AF, we next conducted G@sas@&n 94 DEPs that were unique to CREM-Tg
mice at 7 weeks, 84 DEPs that were unique to Tgrat®® months, and 14 DEPs that were shared by
both groups. While BPs related to metabolic regutatand energy production for normal muscle
functioning were found to be unique for the 7-wedk-CREM-Tg mice, we determined that as the AF
progressed, there was a shift in the BPs to atrabdeling and fibrosid(g. 7C). Interestingly, some

of the BPs common for both early and late stageAFofvere related to cytoskeletal organization and
remodeling, suggesting that changes in the gervedvied in processes related to atrial remodelind) an
ECM deposition begin in the early stages of AF, &g more pronounced as the disease progresses to

advanced stages.

3.8. Comparison of DEPsfrom old CREM-Tg mice vs human AF patients

CREM-Tg mice have been reported as an effectivendBlel, demonstrating similarities in disease
progression comparable to that observed in humadBF.3, 25, 26, 28-30] To uncover additional
areas of resemblance of molecular alterations iBNM@R'g mice in comparison with human patients, we
obtained a publicly available dataset,[24] shovilmgyatrial proteomic landscape in patients with
persistent AF. We used the same significance tblégfold change >1.2 and adjusted p value <0.1) as
reported in this study and identified 480 signifitBEPs in the human perAF patients compared to 98
in CREM-Tg mice Fig. 8). Out of these, 21 DEPs were common across bethddtasetdHg. 8A).
Remarkably, 18 of these 21 DEPs showed a consisstatrn of expression chandeéd. 8B), i.e., they

were all overexpressed in both datasets. Manyasfeiproteins (BGN, EMILINL, IGFBP7, ITGAV,
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LCP1, SPARC) are involved in fibrogenesis processederscoring the relevance of CREM-Tg mice as

a clinically relevant model to study persistent®Echanisms.

4. DISCUSSION

In this study, we performed unbiased proteomicisgitb uncover new molecular mechanisms that play
a role in the pathogenesis of AF progression. Sipatty, we utilized the well-characterized CREM-Tg
mouse model of spontaneous AF development andgssign that was previously shown to mimic
major aspects of AF in humans, such as AF progmesatrial remodeling and fibrosis, and intracealtul
Cd" handling abnormalities.[11, 13, 25, 26, 28-30] @sults show that 9-month-old CREM-Tg mice
with persistent AF develop enlarged atria and Efibeosis, mimicking the phenotype seen in pasent
with advanced persistent AF. Since the moleculénvpays involved in atrial remodeling are not well
understood, we performed mass spectrometry-badsdsau proteomic profiling of atrial tissues
obtained from 9-month-old CREM-Tg mice. Unsupesdiglustering analysis of differentially
expressed proteins showed a clear distinction tVREM-Tg mice and their age-matched WT
littermate controls. Gene ontology analysis of DEBs1 CREM-Tg mice revealed upregulation of
various proteins involved in actin-cytoskeletonaorization as well as ECM deposition. A comparison
with DEPs in the atria of young CREM-Tg mice showleat there was a clear switch from proteins
involved in the regulation of metabolism and musdatraction to fibrotic remodeling in mice with
more advanced stages of AF. Moreover, comparatig®y/sis with a publicly available proteomic
dataset from patients with persistent AF showed\eanlap with DEPs from CREM-Tg mice, and these

overlapping genes were involved in biological pssss related to atrial remodeling and fibrosis.

4.1. Enrichment of structural remodeling processesin AF
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Enrichment analysis using DEPs from our proteomessilts revealed that biological processes related
to actin cytoskeleton organization and ECM remaodgkvere most significantly altered in CREM-Tg
mice compared to the WT littermate controls, whighn concordance with clinical observations that
advanced stage AF is associated with atrial stractvemodeling including fibrosis, myocyte
hypertrophy, and loss of contractile elements.[Bg¢essive and disordered deposition of ECM creates
complications such as fibrosis, which disrupts tieemal architecture of the atrial myocardium,
eventually creating a fibrotic substrate vulneratolearrhythmic events.[32] Cytoskeletal proteine ar
thought to consist of the majority of proteins fdun atrial cardiomyocytes.[33] Given the criticale
cytoskeletal proteins play in regulating the caottita ability of cardiomyocytes,[34] the alteratiam
their expression will result in impaired cardiomyt® contraction, prolonged structural damage, and
disturbed atrial function. Changes in ECM remodgland cytoskeleton organization significantly
contribute to the structural remodeling events, mamising atrial function and electrical conduction

These alterations set the stage for the developamehperpetuation of AF.

4.2. Role of actin-cytoskeleton organization in AF

The cytoskeleton of a cell is made of filamentorgtgins such as actin, provides mechanical support to
the cell, and is involved in various cellular preses, including stress transmission, cell shapegeha

and contractility.[35] Cytoskeletal rearrangemeaises contractile dysfunction and impaired cellular
function, suggesting the importance of cytoskel@étomaintaining normal cardiomyocyte function. The
microtubule network, a key part of the cytoskeletsreritical for maintaining balanced proteostasis
cardiomyocytes[36] and its derailment is showndartvolved in AF progression.[34, 37] Numerous
studies have showed how cytoskeleton proteins ibomérto the development of arrythmia, for example,
alterations of cytoskeleton protein ankyrin B haeen shown to cause ion channel dysfunction inthear

leading to increased susceptibility to arrythm8&-40] Mutations in actin-binding protein such as
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dystrophin disturbs voltage-dependent sarcolemamathannels, giving rise to arrhythmias.[41] In
addition, reduced dystrophin protein was showrsgneiate with the reduced neuronal nitric oxide
synthase, and increased AF inducibility.[42]

In our proteomics analysis, we revealed significdr#tnges in the expression of proteins
involved in the cytoskeleton dynamics in CREM-Tgewcompared to WT littermates, and some of the
top regulated proteins include RhoC, MYH11, TAGId\G. Although there have been few
investigations on the role of these proteins intAEjr potential as a promising target warrantsamor
investigation. For example, dysregulation of Rha®aling has been suggested to altet" Qatake of
sarcoplasmic reticulum, potentially promoting ARhpEgenesis in mice.[43] Additionally, a recent &r0s
ancestry meta-analysis involving over 1 millioniinduals discovered a previously unreported
susceptibility locus iMYH11 for AF, which highlights the possibility to delugto the role of MYH11
in AF pathogenesis.[44] Furthermore, in a prospedbngitudinal cohort of over 4,000 patients,
TAGLN, an actin-crosslinking protein, was identtfias a putative causative protein for AF.[45] These
findings emphasize the importance of focusing @sd¢hunique candidates in future functional studies

AF pathogenesis.

4.3. Role of ECM regulating proteinsin AF

Atrial fibrosis has emerged as an important contabto the pathophysiology of AF and has been
associated with AF recurrences and the developoferdmplications.[10, 46] The ECM primarily
consists of fibrillar collagen including collageypes | and Ill, basement membrane proteins such as
fibronectin, laminin, and fibrillin, and variousgieoglycans.[47] Collagens are essential for meimg
the structural integrity of myocardial tissue, besement membrane contributes to cell-cell intemast
while proteoglycans are crucial in adhesion andaligg processes. Our analysis revealed significant

up-regulated expression of collagen proteins ssatofiagen I, VI, and XIV in CREM-Tg mice
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compared to WT littermates. The changes in theesgion level of these collagens lead to theiredter
proportions in the ECM, which could contribute he fpathogenesis of atrial fibrosis, potentiallydieg
to the development of AF.

In the present study, we validated the upreguladfddCM associated proteins — ITGAV, FBLN5,
and LCP1 in CREM-Tg mice compared to WT littermat@&SAV is known to play a central role in
tissue fibrosis and its overexpression is thoughitet the most upstream event of ECM deposition in
fibroblasts.[48, 49] Pharmacological inhibitionl®fSAV led to notable improvements in cardiac
function in a mouse model of myocardial infarct[b@] Moreover, this inhibition resulted in a
decreased expression of markers associated wiliacéibroblast activatiom vitro. Additionally, pro-
fibrotic roles of ITGAV were reported in a hypersare rat model.[51] FBLN5, an extracellular scdfo
protein, is a known factor modulating depositiorelafstin in ECM.[52] FBLN5 has been considered for
its potential as an anti-fibrotic therapeutic taf@8]. FBLNS was identified as a novel protein g
expressed in patients with HBV/HCV-associated heg#irosis in a large cohort study using
guantitative proteomics.[54] Loss of FBLNS resultededuced tissue stiffness and inflammation in a
mouse model of cutaneous fibrosis.[53] suggeshag EFBLNS may be an ideal candidate to target
profibrotic processes. Originally identified asatin-binding protein in hematopoietic cells, [25}P1
has recently garnered attention for its involvemertissue fibrosis. LCP1 was identified as a caiti
player in the liver fibrogenesis in non-alcoholieaohepatitis through different integrative networ
based analysis using publicly available bulk RNAdatasets.[56] A recent study suggested that LCP1
contributes to pulmonary fibrosis by promoting NLRIRflammasome assembly in lung-resident
alveolar macrophages.[57] Given the role of NLRF&ammasome in atrial fibrosis and AF,[30, 58]
LCP1 may be a critical regulator of atrial fibroairsd remodeling.

Collectively, the involvement of these proteinstiights their crucial roles in regulating fibrosis,

making them promising targets for anti-fibrotic idygeutic interventions. The roles of these proteins
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have never been reported in atrial fibrosis, uraeisg the need for future investigations into thei
mechanisms and those of other DEPs found in odyystuatrial fibrosis associated with AF.
Understanding these mechanisms will expand ourrstateding of atrial fibrosis in AF and potentially

identify novel therapeutic strategies for AF.

4.4. A shift in gene expression pattern from early to late-stage AF

We conducted a cross-species comparisons of ptosdome data to deepen our understanding of the
mechanisms driving AF initiation and progressionidentify possible age-dependent cellular
alterations at the proteome expression level, wepeoed our dataset to a publicly available dataiset
young CREM-Tg mice at 7 weeks of age.[12] A totial4 common DEPs were identified, including
several key players such as FBLN5, GPC1, MFAP4,IFRELNA, and TAGLNZ involved in
cytoskeleton organization or ECM dynamics. Thesggims showed consistent changes in their
regulation in two studies, indicating the onsestofictural remodeling even at the early stage of AF
which was further exacerbated as AF progresseda@@ysis of these shared DEPs further revealed
enrichment of processes closely related to ECRhadyics such as ECM assembly and elastic fiber
assembly, whereas GO analysis of unique DEPs ingg@REM-Tg mice showed they were primarily
annotated to metabolic processes. This interefitiding suggests structural remodeling may occur at
the molecular level prior to its observable martédgen. In line with our findings, Schulet al.[59]
reported more prominent atrial fibrosis and streadttemodeling in 16-week-old CREM-Tg mice
compared to younger 7-week-old CREM-Tg. Interesyirtgeir function and pathway enrichment
analysis showed pathways related to actin cytogkelerganization as well as critical processes in
fibrotic progression such as cell adhesion andmallrix interaction enriched in younger CREM-Tg
mice. The alignment of these findings reinforcasithportance of structural remodeling in AF

progression. Future interventions may include ingainetabolic anomalies in the early stages of AF,
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while the observation that structural remodelingdreearly and persisted indicates its potential as

target throughout AF progression.

4.5. Clinical relevance of the experimental model of AF

Previous studies reported the CREM-Tg mouse af#fectiee model for studying AF [11, 25, 26, 29,
30]. However, these studies mainly focused on eelg the suitability of the model through
comprehensive biochemistry and physiological assests. To further validate the clinical relevante o
CREM-Tg mice, we conducted a comparative analysig/den our dataset and that of a proteomics
study using samples from human patients with persig\F.[24] Our analysis revealed that 18 outbf 2
shared DEPs showed consistent changes in expressipasizing the significance of these proteins.
Many of these proteins were associated with the E&@Rbdeling, including BGN, ITGAV, EMILINL,
LCP1, SPARC, MFAP4, among others. These findingonty support the clinical relevance of our
model but also highlight the potential for utility these key proteins as biomarkers of AF or pdssib
therapeutic targets. By targeting these proteimshted in ECM remodeling, it may be possible tgosto

the progression of AF and potentially improve pati@utcomes.

4.6. Limitationsand futuredirections

Our study points towards the potential of antifitréherapies in AF treatment. However, it is intpot

to acknowledge limitations. For example, the nundfesamples included in the study is relatively Bma
in part due to the costs associated with theseremgeets; nevertheless, we still identified impottan
molecular characteristics and establish the clirsigmificance of our experimental model of AF. G
functional studies need to be conducted to unramechanistic roles of these ECM proteins.

Furthermore, in vivo fibroblast conditional knoak-br knock-out mouse model of these candidate
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proteins could provide further validation and sg@n our understanding of biological and strudtura

changes in AF development and disease progression.

CONCLUSION

In summary, we performed proteomics and bioinforecraalysis to demonstrate the involvement of the
cytoskeleton and ECM remodeling in AF developmentrélealed the shifting landscape of the
biological processes as the disease progressessaassed the clinical significance of this experiale
mouse model of AF. We identified candidate protéiad potentially regulate ECM remodeling and
their association with AF disease progression. ualy paves the way for future novel strategiesHer

identification and prevention of AF.
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701 Figure 1. Atrial enlargement and fibrossin CREM-Tg mice compared to WT littermates: A)

702  Representative echocardiograph imagesB)rstatter plots showing increased atrial size Ie®IRTg
703  mice (n=6) versus WT littermates (n=&) Echo Doppler recordings showing mitral valve flamdD)
704  scatter plots showing increased mitral valve E#osin CREM-Tg mice (n=6) versus WT littermates
705  (n=4).E) Representative images of picrosirius red staiaimgf) quantification of interstitial fibrosis of
706  atrial sections from CREM-Tg (n=7) versus WT cohtnice (n=4). Scale bar = 20t (5X) and 5Qm

707 (20X). Data expressed as mean + SEM. P valuesdetezmined using an unpairetest.
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711 Figure2. Workflow of the LC-M SM S-based proteomic profiling of the atria from CREM-Tg

712 micewith chronic AF and WT littermate controlsin sinusrhythm.
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Figure 3. Multi-dimensional analysis of protein expression profilein CREM-Tg miceand WT
littermates. A) Principal component analysis showing the ovesfiéict of variances between the
CREM-Tg mice and WT littermate controB) Volcano plot demonstrating the distribution obi&in
expression changes comparing CREM-Tg mice to Wériitates. Red dots represent significantly up-
regulated proteins with adjusted p values <0.05legdFC >1 while blue dots represent significantly
down-regulated proteins with adjusted p values 5@ logFC <-1.C) Heatmap of differentially
expressed proteins (DEPS) in each sample. The osle@arrespond to the samples and the rows

correspond to individual proteins. Samples are prdlby clusters. The color scale is based pscore
distribution from -2 (blue) to 2 (red), see scalescores were calculated on a protein-by-proteiw{ro

by-row) basis by subtracting the mean and therdutigiby the standard deviation.
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Figure 4. Pathway enrichment and PPI network analysis of differentially expressed proteins

(DEPs). A) Dot plot showing the top 10 enriched biologicedgesses (BPs) comparing CREM-Tg mice
to WT littermatesB) The CNET plot depicting the proteins associatét the top 5 BPs. The log2
expression fold change overlaid as color gradiéhPPI network of significant DEPs, in which the
nodes represent proteins, and the edges représenteraction between proteins. The darker thenod
the higher the degree of the protein representatidpode within the network) Top 1 closely
connected DEP module identified by the MoleculamPtex Detection (MCODE) algorithm. Adjusted

p values were calculated using the Benjamini-Hoadppeocedure.
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739  Figureb. Protein co-expression and PPI network analysis of differentially expressed proteinsin

740 theextracelular matrix (ECM). A) Bar graphs showing normalized ECM protein expogsievels of
741  in the atrial of CREM-Tg mice and WT littermat&j. Dot plot shows the correlation analysis of ECM
742  proteins. Only positive correlation between ECMtpias was observe@) PPI network of ECM

743  proteins. The darker the node, the higher the @egjréhe protein represented by the node in the

744 network.D) Bar plot showing the degree value of each protemdered from the largest to the smallest

745  value. P values were determined using an unpatest.
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749  Figure 6. Western blot validation analysis of key ECM proteinsin mouse atrial tissue. A) Western

750  Dblot analysis of integrin alpha chain V (ITGAV) atrial tissue of CREM-Tg mice and WT littermatB3.
751 Quantification showing increased ITGAV levels in ER-Tg mice.C) Western blot analysis of

752 lymphocyte cytosolic protein 1 (LCP1) in atrialsigee and) quantification showing increased LCP1
753  levels in CREM-Tg miceE) Western blot analysis of fibulin-5 (FBLN5) in mdrtissue and)

754  quantification showing increased FBLNS levels inENRTg mice. Data expressed as mean + SEM. P

755  values were determined using an unpairesst. Each dot represents an individual animal.
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Figure 7. Differential expression profile (DEP) showing similarities and differences between young
and old CREM-Tg mice. A) Venn diagram revealing common DEPs comparing®lthonths-of-age)
and young (7 weeks-of-age) CREM-Tg mice, compang WT littermatesB) Heatmap showing
protein expression patterns in young and old CREMnzIce, compared with WT littermates. The color
scale represents the log2 ratio of each protegagh groupC) Bar plots show the top 10 enriched
biological processes using different subsets of ®BRue color represents using DEPs only found in
young CREM-Tg mice, red color represents DEPs tmind in old CREM-Tg mice, and orange color
represents DEPs found in both old and young CREMRilag. Adjusted P values were calculated using

the Benjamini-Hochberg procedure.
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Figure 8. Protein expression changesin old CREM-Tg mice recapitulate those in human patients
with persistent AF. A) Venn diagram reveals common differentially expeesproteins (DEPS)
identified in old (9 months) CREM-Tg mice vs WTiditmates, and patients with persistent atrial
fibrillation (perAF) vs controls in sinus rhythm) Bleatmap shows DEPs in old CREM-Tg mice and
human patients with perAF. The color scale anchtiraber in each box correspond to the log2 ratio of
each protein in different groups. Adjusted P valwese calculated using the Benjamini-Hochberg
procedure.
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Graphical abstract

Graphical abstract summarizing key findings of ffaper. The atrial proteome in 9-month-old CREM-
Tg mice with chronic persistent AF (perAF) was camgal with age-matched WT littermates. In
addition, proteome changes in these old CREM-Tgmiere compared with proteome changes
previously identified in young CREM-Tg mice withrpaysmal AF (pAF). Moreover, an interspecies
comparison was performed between old CREM-Tg mmcehaiman patients with perAF. The major
findings are that in pAF, key changes were idegdiin proteins involved in metabolism, energy
production, DNA synthesis, and cell proliferatiomdagrowth. On the other hand, in mice and humans
with perAF, key changes were found in the expressigroteins involved in collagen production,

extracellular matrix remodeling, actin cytoskeletwyganization, and tissue repair.
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