

1 Developmental toxicity of pre-production plastic pellets affects a large swathe of invertebrate taxa
2 Eva Jimenez-Guri^{a,*}, Periklis Paganos^{a,1†}, Claudia La Vecchia^{a,†}, Giovanni Annona^{b,†}, Filomena
3 Caccavale^{a,†}, Maria Dolores Molina^{c,d,†}, Alfonso Ferrández-Roldán^{c,e,†}, Rory Daniel Donnellan^{f,†},
4 Federica Salatiello^a, Adam Johnstone^g, Maria Concetta Eliso^{a,2}, Antonietta Spagnuolo^a, Cristian
5 Cañestro^{c,e}, Ricard Albalat^{c,e}, José María Martín-Durán^f, Elizabeth A. Williams^g, Enrico D'Aniello^a,
6 Maria Ina Arnone^a

7 ^a Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms,
8 Naples, Italy

9 ^b Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological
10 Resources, Naples, Italy

11 ^c Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona,
12 Catalunya, Spain.

13 ^d Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain

14 ^e Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona,
15 Catalunya, Spain.

16 ^f School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK

17 ^g College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom

18 ¹ Present address: Eugene Bell Center for Regenerative Biology & Tissue Engineering, Marine
19 Biological Laboratory, Woods Hole, MA, USA

20 ² Present address: Department of Chemical, Biological, Pharmaceutical and Environmental Sciences,
21 University of Messina, Messina, Italy

22 * Corresponding author: eva.jimenez-guri@szn.it

23 † These authors contributed equally to the work

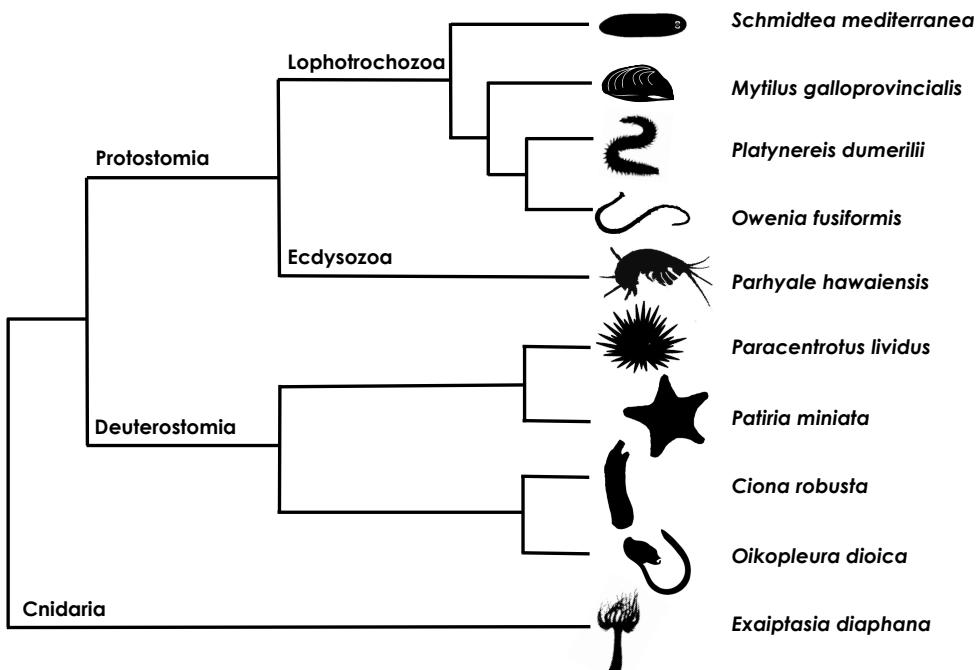
24 Abstract

25 Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of
26 toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been
27 shown to affect the development of sea urchins and, to some extent, mussels. The extent of those
28 developmental effects on other animal phyla remains unknown. Here, we test the toxicity of
29 environmental mixed nurdle samples and new PVC pellets for the embryonic development or

30 asexual reproduction by regeneration of animals from all the major animal superphyla
31 (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse,
32 concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and
33 deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially,
34 morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study
35 serves as a proof of principle for the potentially catastrophic effects that increasing plastic
36 concentrations in the oceans and other ecosystems can have across animal populations from all
37 major animal superphyla.

38 **Keywords**

39 Plastic leachates, nurdles, development, regeneration, aquatic invertebrates


40 **1. Introduction**

41 Plastic contamination has emerged as a significant concern in marine ecosystems due to its
42 pervasive presence and potential impact (Eriksen et al., 2014; Thushari & Senevirathna, 2020). Large
43 plastic items can entangle marine animals, cause physical injuries, and alter or disrupt habitats. In
44 time, with the physical and chemical actions of the environment, plastics can break down and
45 produce secondary microplastics, particles smaller than 5 mm. Other microplastics already arrive as
46 small particles to the environment, known as primary microplastics. Whichever the origin,
47 microplastics possess certain characteristics that make them a particular concern: they have a global
48 distribution, as they are easy to disperse because of their small size; they can be ingested by a wide
49 range of animals, entering the food chain at any trophic level; and they have a relatively larger
50 surface area compared to larger plastic items, allowing them to adsorb, accumulate and carry
51 pollutants from the surrounding environment (Mato et al., 2001). These pollutants can include toxic
52 chemicals and heavy metals, leading to potential risks when ingested by marine organisms, as well
53 as the potential to release these harmful additives into the water, creating additional hazards to
54 marine life and ecosystems (Teuten et al., 2009; Engler, 2012; Gauquie et al., 2015; Rendell-Bhatti
55 et al., 2021). Among the significant contributors to primary microplastic pollution, in terms of
56 weight, are pre-production plastic pellets commonly known as nurdles (Sherrington, 2016), the
57 building blocks for plastic products. During manufacturing, these nurdles are combined with various
58 chemical compounds, including plasticizers, stabilizers, and antioxidants, necessary to impart
59 specific physical properties to the final products. These chemical compounds are readily transferred
60 to the water (Mato et al., 2001; Rendell-Bhatti et al., 2021; Paganos et al., 2023) in the case of the
61 nurdles being lost at sea (Sewwandi et al., 2022). Once in the water, they have the ability to

62 concentrate environmental pollutants and transport and release them to a different location, often
63 far from the source of contamination (Teuten et al., 2009).

64 Many marine invertebrates commonly undergo embryonic development in the water column, and
65 their larvae are usually planktonic. Their developmental strategy, combined with the absence of a
66 protective eggshell, make them vulnerable to contamination from plastic leachates. Plastic leachate
67 toxicity has been shown to have negative effects on the development of several marine organisms
68 (Li et al., 2016; Oliviero et al., 2019; Gardon et al., 2020), and in particular, plastic pre-production
69 pellet leachates can disrupt the development of sea urchins (Nobre et al., 2015; Rendell-Bhatti et
70 al., 2021; Paganos et al., 2023) and to some extent brown mussels (Gandara e Silva et al., 2016).
71 However, there is a lack of knowledge regarding how universal the susceptibility to this
72 contamination is across other animal groups.

73 Here, we provide a systematic characterisation of the phenotypic abnormalities found during
74 development and asexual reproduction by regeneration in an array of aquatic invertebrates treated
75 with both environmental and industrial pre-production plastic pellet leachates. We select
76 representative species of the aquatic ecosystem, including one mollusc, two annelids, one flatworm,
77 one crustacean arthropod, two echinoderms, two tunicates and one cnidarian, to investigate
78 microplastic-induced abnormalities in organisms across all major animal superphyla (Figure 1).

79

80 Figure 1. Phylogenetic tree. A schematic representation of the phylogenetic relationships among
81 the species studied in this work. Representatives of the three major bilateria superphyla are used

82 (Protostomia (Lophotrochozoa and Ecdysozoa) and Deuterostomia), as well as a representative of
83 the radiata (Cnidaria). *O. dioica* by Josep Martí-Solans (CC0 1.0).

84 2. Materials and methods

85 2.1. Microplastic leachate preparation

86 Environmentally retrieved nurdles were obtained from Watergate bay (Cornwall, UK) by Beach
87 Guardian CIC in December 2021 and manually sorted from other plastic particles. Commercial PVC
88 nurdles were purchased from Northern Polymers and Plastics Ltd. (UK) in January 2022. In brief, for
89 each of the plastic particles, pellets were added to filtered seawater (0.22 µm) (FSW) at a
90 concentration of 10% (v/v). Pellets were leached for 72 h on a platform shaker, with continuous
91 shaking at room temperature (ca 18°C). Leachates were obtained by filtering through filter paper in
92 order to remove particles. Leachates were diluted to the final concentration in FSW. Only for
93 *Schmidtea mediterranea*, leachates were obtained and diluted in Planarian Artificial Medium (1X
94 PAM) (Cebrià & Newmark, 2005) rather than FSW. We tested 10% nurdle leachates and 1%, 5% and
95 10% PVC leachates (v/v), concentrations which had previously been shown to induce aberrant
96 phenotypes in echinoderms (Rendell-Bhatti et al., 2021; Paganos et al., 2023), to produce
97 comparable results with our previous work. Tests with lower concentrations than the ones used
98 here did not produce evident aberrant phenotypes.

99 2.2. Animal husbandry, fertilisation and embryo exposure

100 Sexually mature specimens of *Mytilus galloprovincialis* were obtained from Irsvem Srl, a commercial
101 shellfish farm (Bacoli, Napoli, Italy). Animals were mechanically stimulated to promote spawning by
102 scraping the shells to remove adherent organisms and pulling the byssus. Approximately, 20–30
103 mussels were placed in a tank with Mediterranean FSW at 18°C and spread to easily monitor the
104 spawning. When mussels began to spawn, each individual was washed and then transferred into a
105 beaker containing 200 ml of Mediterranean FSW to isolate male and female gametes. Eggs were
106 fertilised with an egg/sperm ratio 1:15 in a volume of 50 ml. The resulting zygotes were left to grow
107 at 18°C in treatment plates at a concentration of 250 eggs per ml until the developmental stage of
108 interest, the D-larva at 48 hours post fertilisation (hpf).

109 *Platynereis dumerilii* gametes were obtained from an in-house culture at the University of Exeter,
110 (UK), with culture conditions based on (Hauenschild & Fischer, 1969). Batches of embryos were
111 created by allowing a single male and female epitoke to freely spawn in a 100ml glass beaker with
112 80ml 0.22 µm filtered artificial seawater. Developing eggs were stripped of their protective jelly by

113 thorough rinsing through a 100 µm filter mesh cup one hour after fertilisation. De-jellied fertilised
114 eggs were then added to the different treatments and left to develop in an incubator at a constant
115 temperature of 18°C with a regular light-dark cycle (16h light, 8h dark) for 96 hours.

116 *Parhyale hawaiensis* were housed in artificial sea water at 24°C at the University of Exeter, Penryn
117 campus (UK). Sexually mature pairs in amplexus were transferred to beakers containing the
118 different treatments. When the female moult, pairs separate and oocytes are fertilised and
119 deposited in the female's ventral pouch (Rehm et al., 2009). After a few days, females were
120 anesthetised with clove oil (Rehm et al., 2009) and eggs removed and transferred to containers with
121 the same treatment as the parents. This was done to avoid predation of eggs or hatched larvae by
122 the adults. Because of the way *P. hawaiensis* embryos are fertilised, embryos from every pairing
123 were only assigned to one treatment, differing from the other species here studied. Embryos were
124 left to develop at 24°C until hatching occurred.

125 *Paracentrotus lividus* were housed in circulating seawater aquaria at 18°C in the aquarium facility
126 of the Stazione Zoologica Anton Dohrn, Naples (Italy). Gamete acquisition and fertilisations were
127 performed as described elsewhere (Rendell-Bhatti et al., 2021). Embryos were added to treatment
128 beakers immediately after confirmation of fertilisation at a concentration of 50 embryos per ml and
129 left to develop at 18°C until the 48 hpf pluteus stage.

130 *Patiria miniata* were housed in circulating seawater at 14 °C, to prevent them from spontaneous
131 spawning, in the aquarium facility of the Stazione Zoologica Anton Dohrn, Naples (Italy). Gametes
132 were retrieved from adults by arm incision and extraction of intact gonads. Eggs were released from
133 the ovaries through manual dissection, while male gonads were placed dry in an Eppendorf tube at
134 4°C. Immature oocytes were incubated with 1:1000 dilution of 10mM 1-Methyladenine in FSW for
135 1h at 15°C. Once the germinal vesicle was broken down, an indication of the oocytes' maturity, they
136 were fertilised with a few drops of diluted sperm in FSW (1µl of dry sperm in 10ml of FSW). Embryos
137 were then added to treatment beakers at a concentration of 50 embryos per ml and left to develop
138 at 15 °C until 4 days post fertilisation (dpf, bipinnaria larvae stage) in 9:1 diluted FSW (9-parts
139 Mediterranean FSW, 1-part distilled water) to obtain the appropriate salinity of approximately
140 35ppt.

141 *Ciona robusta* were collected in Taranto (Italy) in March 2023, and left for at least seven days in an
142 aquarium facility at 16-18°C with permanent light to promote gametogenesis at the Stazione
143 Zoologica Anton Dohrn, Naples (Italy). Gametes were obtained as described before (Eliso et al.,
144 2020), with modifications. In brief, oocytes and sperm were harvested from each individual by

145 dissecting the gonoducts sequentially, to avoid self fertilisation. Fertilization was performed by
146 adding diluted sperm (1:100 in FNSW) to the eggs suspension. After 15 minutes of incubation on a
147 rotating shaker, the fertilized eggs were rinsed in FSW to avoid polyspermy and added to treatment
148 plates about 30 minutes post-fertilization, with a density of 10 embryos per ml and left to develop
149 at 18°C until the desired developmental stage (hatched larva).

150 *Oikopleura dioica* specimens were cultured in the animal facility of the University of Barcelona
151 (Spain) as previously described (Martí-Solans et al., 2015). Mature females and males were collected
152 separately at day 5, and left to spawn naturally. For each experiment, multiple egg and sperm
153 batches were mixed, *in vitro* fertilised and transferred before the first cell division to treatment
154 plates at 19°C until the desired larval stage.

155 *Owenia fusiformis* collected from the coasts near the Station Biologique de Roscoff were maintained
156 in artificial seawater at the Queen Mary University of London, London (UK) at 15°C. Animals were
157 removed from their sand tubes as described elsewhere (Carrillo-Baltodano et al., 2021) and
158 decapitated with a razor blade just above the first parapodia before being left to regenerate in
159 seawater supplemented with penicillin (100U/ml) and streptomycin (200 µg/ml) at 19°C.

160 *Schmidtea mediterranea* from an asexual clonal line were housed at 20°C in 1X PAM water (Cebrià
161 & Newmark, 2005) at the University of Barcelona (Spain). Animals were fed twice per week with
162 organic veal liver and were starved for at least 1 week before experiments. Pre-pharyngeal
163 amputation was performed using a razor blade. After amputation, animals were immediately
164 transferred to treatment plates at 20°C and left to regenerate until observations at five and seven
165 days.

166 *Exaiptasia diaphana* (formerly *Aiptasia pallida*) polyp specimens were housed in circulating
167 seawater aquarium facility at the Stazione Zoologica Anton Dohrn, Naples (Italy). For our
168 experimental purposes, they were kept starved in crystallizing dishes at 24°C in a light/dark cycle of
169 12/12 hours. Pedal lacerations were collected manually and placed in a 12-well plate, one laceration
170 per well. They were allowed to regenerate in FSW for one week. After that time, FSW was replaced
171 with leachate solution at the defined concentration, and regenerating fragments were incubated at
172 18°C for one week.

173 2.3. Phenotypical observations

174 Larvae of the species object of the study were arrested by fixing them in 4% PFA and imaged using
175 either a Leica M165C with a Leica DFC295 camera, or a Leica DMi8 with a Leica flexacam C3

176 microscope. *O. dioica*, *S. mediterranea* and *E. diaphana* were imaged alive using an Olympus SZX16
177 stereomicroscope, an sCM EX-3 high end digital microscope camera (DC.3000s, Visual Inspection
178 Technology) and a Zeiss AXIO Zoom V16 microscope equipped with Axiocam 208 colour camera,
179 respectively. Larvae were classified into two groups: normal developed larvae and aberrant larvae,
180 including phenotypes ranging from delayed to totally aberrant. However, notes were made in the
181 phenotypes that, despite looking normal, were not quite like the controls, as well as for delayed
182 larvae that looked otherwise correct. Statistical differences were analysed by performing One-Way
183 ANOVA followed by Post Hoc Tukey HSD. Mussel area size differences between controls and treated
184 animals for each individual spawning (n=6 spawning events) were calculated with ImageJ and
185 differences were analysed by performing unpaired t-tests.

186 2.4 *S. mediterranea* immunohistochemistry and cell proliferation counts.

187 Whole-mount immunohistochemistry in planarians was performed as previously described (Ross et
188 al., 2015; Fraguas et al., 2021). The following antibodies were used: mouse anti-SYNApsin, used as
189 pan-neural marker (anti- SYNORF1, Developmental Studies Hybridoma Bank, Iowa City, IA, USA)
190 diluted 1:50; mouse anti-VC1(Sakai et al., 2000), specific for planarian photosensitive cells (anti-
191 arrestin, kindly provided by H. Orii and Professor K. Watanabe) diluted 1:15000; rabbit anti-
192 phospho-histone H3 (Ser10) to detect cells at the G2/M phase of cell cycle (H3P, Cell Signaling
193 Technology) diluted 1:300. The secondary antibodies Alexa 488-conjugated goat anti-mouse and
194 Alexa-568-conjugated goat anti-rabbit (Molecular Probes, Waltham, MA, USA) were diluted 1:400
195 and 1:1000, respectively. Samples were mounted in 70% glycerol before imaging. Fixed and stained
196 animals were observed with a Leica MZ16F stereomicroscope and imaged with a ProgRes C3 camera
197 (Jenoptik, Jena, TH, Germany). Confocal images were obtained with a Zeiss LSM 880 confocal
198 microscope (Zeiss, Oberkochen, Germany). Image processing and quantifications were performed
199 with Adobe Photoshop and ImageJ2. Counting of the H3P-positive cells was carried out manually
200 and normalized by the total body area. Statistical analyses and graphical representations were
201 performed using GraphPad Prism 9. A box plot displaying the minimum, lower first quartile, median,
202 upper third quartile, and maximum values was used to represent the data. Kruskal-Wallis test was
203 performed to compare the means between conditions after discarding data normality and
204 homogeneity for some samples using the Shapiro-Wilk test.

205 3. Results

206 Plastic pellet leachates affect a large swathe of animal phyla

207 We tested the effects of leachates of high concentrations of new and beach plastic pellets on the
208 development of *Mytilus galloprovincialis* (mollusc), *Platynereis dumerilii* (annelid), *Parhyale*
209 *hawaiensis* (arthropod), *Paracentrotus lividus* and *Pariria miniata* (echinoderms), and *Ciona robusta*
210 and *Oikopleura dioica* (tunicates) (Figure 2), and on the regeneration capacity of *Owenia fusiformis*
211 (annelid), *Schmidtea mediterranea* (platyhelminth) and *Exaiptasia diaphana* (cnidaria) (Figure 3).
212 Our results showed that the effects were treatment and dose-dependent, as well as species-specific
213 (Figure 4).

214 We observed *M. galloprovincialis* larvae at 48 hpf. At this stage, the controls displayed normal D-
215 larvae phenotype, with a well-formed early shell that covered the mantle of the larvae (Marin, Le
216 Roy & Marie, 2012) (Figure 2. A1; Supplementary figure 1. A). Nurdle-leachate-treated larvae had a
217 very similar phenotype to the controls, but they were slightly smaller in size ($p<0.05$) (Figure 2. A2;
218 Supplementary figure 1. A, B, F). No differences were detected between 1% PVC-leachate treated
219 embryos and controls (Supplementary Figure 1. C), but at 5% there was a significative reduction in
220 size, with a misshaped shell in what we classified as an aberrant larva with protruding mantle (Figure
221 2. A3; Supplementary figure 1. D). At 10% PVC-leachate, the larvae did not develop properly and
222 remained arrested around the trochophore stage, barely forming, in some instances, a very
223 rudimentary incipient shell (Figure 2. A4; Supplementary figure 1. E).

224 *Platynereis dumerilii* develops first into a trochophore larvae, followed by a nectochaete larval stage
225 (Özpolat et al., 2021). We assessed morphological changes at 4 dpf, the nectochaete larva. At this
226 point, control and nurdle-treated larvae looked the same, with normal segmentation, chaetae,
227 digestive system and lipid droplet distribution (Figure 2. B1, B2). However, larvae treated with PVC
228 leachates did not develop properly. For 1% PVC leachate-treated larvae, despite looking otherwise
229 normal, a few of the animals showed a deformed gut phenotype (not shown). This gut phenotype
230 was more pronounced and common in 5% PVC-treated animals (Figure 2. B3). While the rest of the
231 larvae could be considered normal, the developing digestive system showed a probable over-
232 extension of the foregut tissue, and the lipid droplet distribution was also aberrant. In the 10% PVC
233 leachate treatment, many larvae failed to complete the trochophore-to-nectochaete transition
234 (Figure 2. B4). Where these larvae had chaetae, they showed that segmentation was not properly
235 completed, and they resembled a truncated malformed nectochaete. The lipid droplet distribution
236 of these larvae was also abnormal. A normal nectochaete should have four prominent lipid droplets,
237 with two larger and two smaller droplets, sitting just below the foregut-mouth region, but these
238 larvae showed more droplets, and oddly distributed. A normal trochophore displays four big lipid

239 droplets (Fischer, Henrich & Arendt, 2010), and the higher number of droplets seen in the truncated
240 nectochaete could be a remnant of the failed transition between the two larval stages. The larvae
241 that became more like nectochaete also showed apparent problems with the developing gut similar
242 to what is seen at 5% PVC, potentially due to an inability to differentiate the foregut from the rest
243 of the gut, or over-proliferation of the foregut.

244 *Parhyale hawaiensis* hatches into a juvenile larva after about 10 dpf. Control larvae showed a
245 normal phenotype, with a normal head with two antennae segments, a thorax with two claws and
246 five legs and an abdomen (Figure 2. C1). No changes were seen in the nurdle or 1% PVC treatments
247 (Figure 2. C2; not shown). For 5% PVC leachate-treated animals, about half of the larvae showed
248 malformed appendages, both at the level of the head, where the antennae formed but were
249 deviated toward the posterior of the head, and the thorax, where claws and legs were malformed
250 and twisted (Figure 2. C3). None of the 10% PVC leachate-treated embryos developed properly and
251 all died *in ovo* (Figure 2. C4).

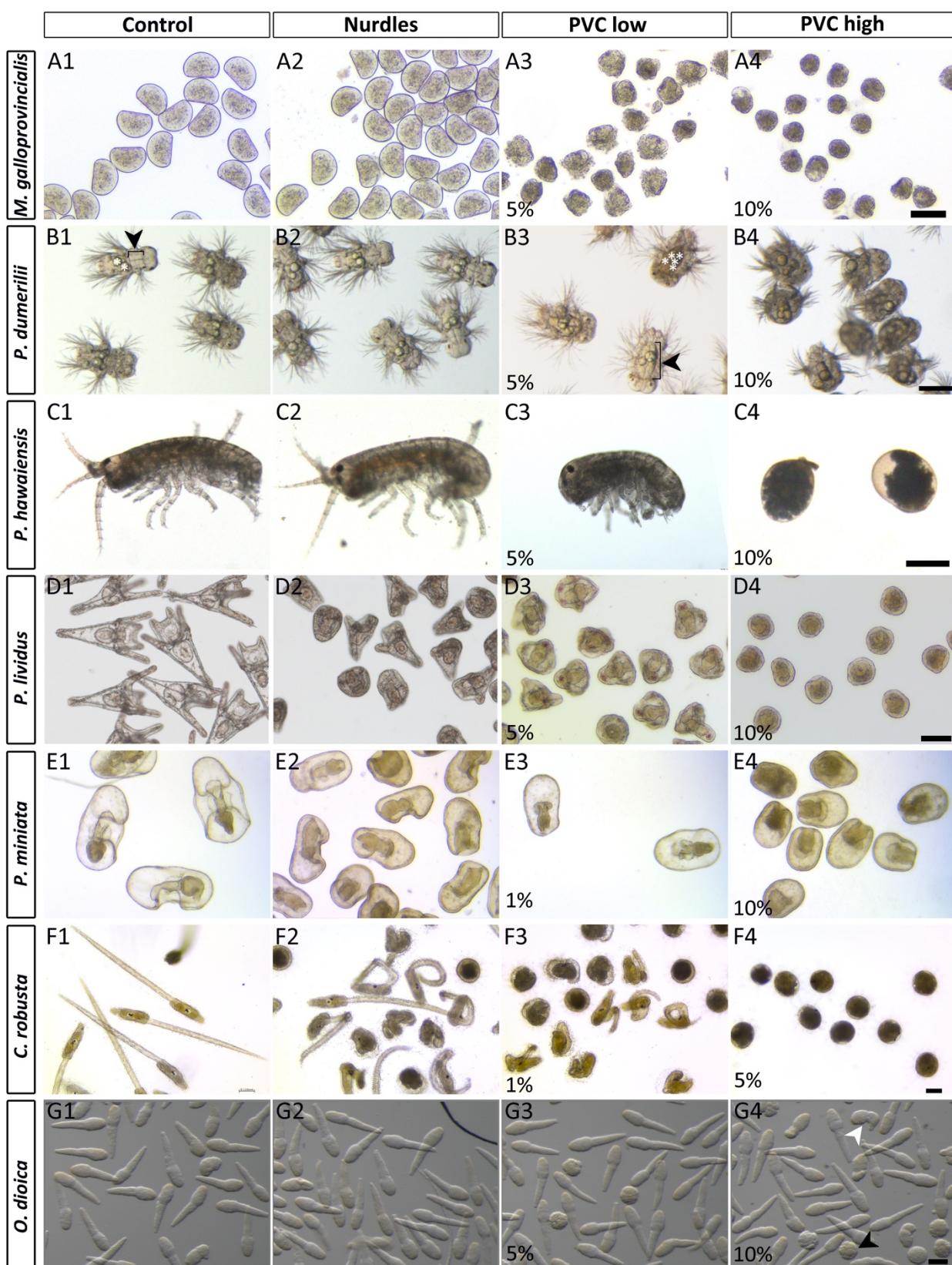
252 *Paracentrotus lividus* were imaged at 48 hpf, at pluteus larva stage. Control larvae are bilaterally
253 symmetrical four-arm pluteus, with the typical tripartite gut, ciliary band and skeletal rods (Figure
254 2. D1). Nurdle leachate-treated larvae are either delayed or malformed (Figure 2. D2; Figure 4. D).
255 These malformations include shorter or absent arms, probably due to skeletogenic impairment and
256 a bell-shaped morphology consistent with a radialisation problem. This phenotype agrees with the
257 one observed before in this species (Rendell-Bhatti et al., 2021), if slightly milder, probably due to
258 different plastic particles used (see discussion below). All PVC leachate treatment concentrations
259 show developmental abnormalities in *P. lividus*. 1% PVC leachate-treated larvae are delayed, with
260 no other clear phenotypic abnormality (not shown; Figure 4. D). 5% PVC leachate-treated embryos
261 display a bell-shape, being clearly radialised. Malformation of the skeleton and of the distribution
262 of the pigment cells is also evident (Figure 2. D3). 10% PVC-treated larvae have a very extreme
263 phenotype. In some cases, they exhibit a radialised phenotype with no elongation of the arms and
264 a lack of pigment cells. In other cases, the archenteron has not even elongated and, in most cases,
265 the embryo has not proceeded post-gastrulation (Figure 2. D4).

266 *Patiria miniata* produce a bipinnaria larvae (Yankura et al., 2010). Control larvae at 4 dpf show a
267 typical young bipinnarial larva phenotype, including a partitioned digestive tract, elongated coeloms
268 that will give rise to the hydrovascular organ (Perillo et al., 2023) and a well-formed ciliary band
269 (Figure 2. E1). All treated larvae show some delay or aberrant phenotypes. For nurdle-leachate-
270 treated embryos, larvae resemble late gastrulae (Figure 2. E2), delayed more than 24 hours from

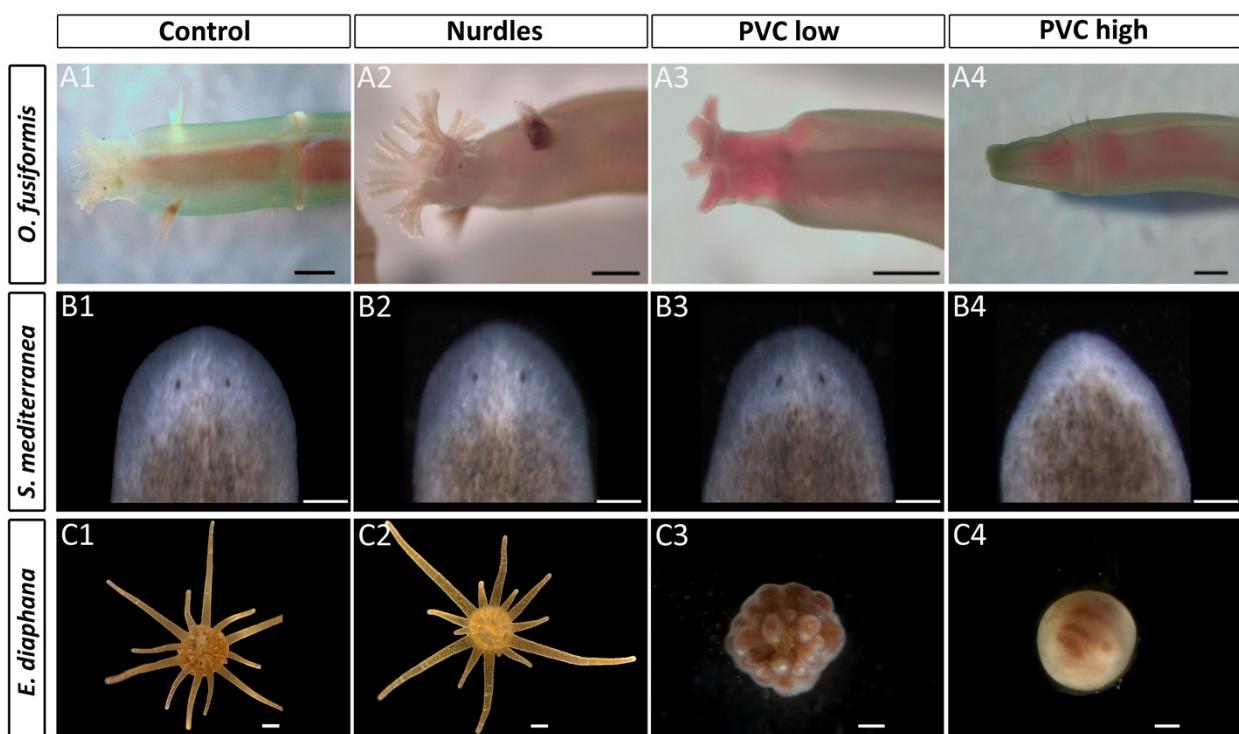
271 the normal developmental milestone. In many cases the gut appears like a non-partitioned tube,
272 accompanied by ectodermal deficits. For instance, ectodermal regions such as the ciliary band and
273 oral hood are missing. Last but not least, the elongation of the coelom appears to be delayed. For
274 PVC-leachate treated embryos, a concentration-dependent delay in development is seen, with
275 animals looking like late gastrula when treated with 1% PVC-leachates (Figure 2. E3), to mid gastrula,
276 with some misshaping of the elongating archenteron at 10% (Figure 2. E4).

277 *Ciona robusta* tadpole larvae have two main structures: the trunk, which contains the adhesive
278 organ (palps), the brain vesicle with two pigmented sensory organs (otolith and ocellus), endoderm
279 and mesenchyme; and a straight tail for locomotion, bearing the neural tube, notochord,
280 endodermal strand and muscles, all covered by the larval tunic. Control larvae showed a normal
281 trunk and straight tail containing vacuolated notochord cells (Figure 2. F1), while all the treatments
282 compromised the normal embryo development. Nurdle-leachate-treated larva showed a shorter,
283 kinked or coiled tail, often disorganized in its internal structure. In most cases, the trunk shape was
284 abnormal, the sensory vesicle was deformed, although carrying both pigmented organs, and the
285 adhesive organ was misshaped. (Figure 2. F2). The phenotype for 1% PVC leachate-treated larvae
286 was very similar to the observed for nurdle leachates (Figure 2. F3), although a higher percentage
287 of embryos did not hatch and were still in the chorion. However, at 5% PVC leachate treatments,
288 the larvae were not formed, but instead, unhatched round individuals were obtained. There were,
289 however, two pigmented spots, probably a hint of structures corresponding to the otolith and the
290 ocellus, demonstrating development had proceeded, but morphogenesis had not been successful,
291 thus producing aberrant embryos (Figure 2. F4).

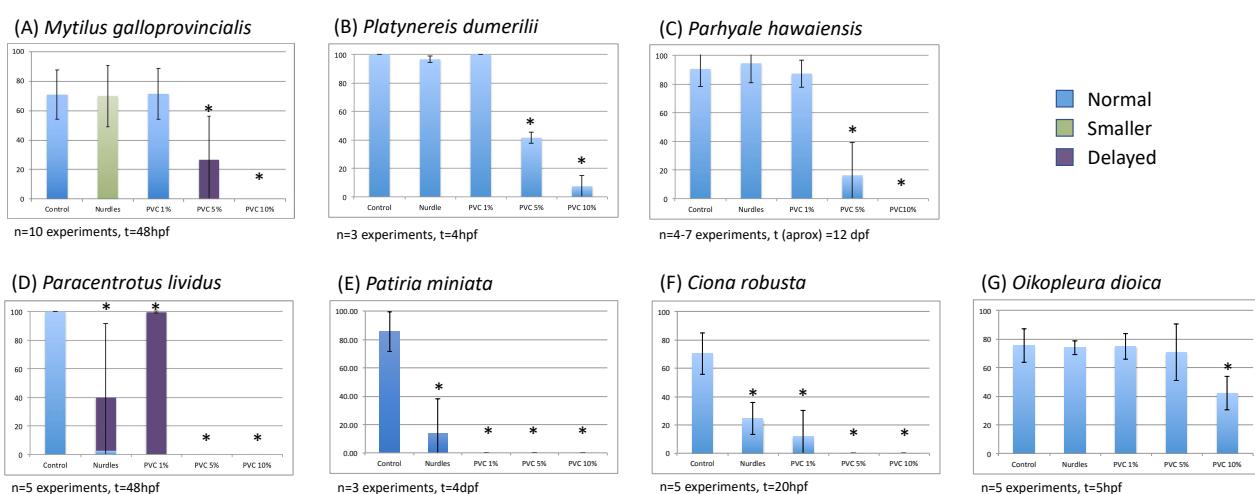
292 *Oikopleura dioica* develops extremely fast, with hatchling larvae appearing at 3.6 hpf at 19°C and
293 larval development lasting a further 7 hours only, when the juvenile form is ready to make the first
294 house (Ferrández-Roldán et al., 2019). The larvae, as in *C. robusta*, consist of a trunk that will house
295 all the organs in the adult, and the tail with the notochord, the muscle cells and the nervous system.
296 We only observed a significative shift from the controls at the highest concentration of PVC
297 leachates (10%) when the percentage of malformed larvae increased (Figure 2. G4, Figure 4. G).
298 These malformations affected the tail, which appeared shorter or kinked, and the trunk, which was
299 misshaped. We also saw a higher proportion of animals that arrested their development at a pre-
300 tailbud stage, previously described as a golf ball phenotype (Torres-Águila et al., 2018).


301 *Owenia fusiformis* is capable of anterior regeneration after traumatic injury. Three days after
302 amputation, the blastema is formed, and differentiation and regeneration are complete seven days

303 after injury (Marilley & Thouveny, 1978). At this time point, we found no differences between
304 controls and nudle leachate-treated animals (Figure 3. A1, A2). Heads regenerated to create fully
305 formed tentacles and eyes. Animals treated with 5% PVC leachates looked normal (Figure 3. A3),
306 but showed a less elaborate branching in the crown of tentacles, and two out of six did not develop
307 the eyes properly. Likewise, five out of six of the 10% PVC leachate-treated animals regenerated
308 properly but the branching pattern of the tentacles looked delayed. One animal failed to undergo
309 morphogenesis at this concentration after creating an elongated blastema (Figure 3. A4).


310 The asexual strain of *Schmidtea mediterranea* uses stem-cell based regeneration as its main
311 reproductive strategy. and can regenerate new heads, tails, sides, or entire organisms from small
312 body fragments in a process taking days to weeks (reviewed in (Reddien, 2018)). We found no
313 differences in regeneration between controls and nudle or 5% PVC leachate-treated animals
314 (Figure 3. B1-B3; Supplementary Figure 2). However, animals treated with 10% PVC leachates
315 developed a smaller blastema than the controls and, at 7 days after amputation, they have
316 regenerated smaller eyes and brains (Figure 3. B4; Supplementary Figure 2)). To investigate the
317 proliferative rate of stem cells, we identified the G2/M stage of the cell cycle by performing
318 immunostaining against a phosphorylated form of Histone-3. We quantified the total number of
319 mitoses in amputated planarians regenerating anterior wounds at 5 days after amputation and
320 observed a significant decrease in the number of mitotic stem cells in 10% PVC leachate-treated
321 animals, but not in any other treatment (Supplementary Figure 2).

322 *Exaiptasia diaphana* exhibits asexual reproduction capability, growing from pedal lacerations, a
323 small portion of tissue deriving from the margin of the pedal disk and the body column. This
324 produces of crescent-shaped fragments that successfully regenerate into fully formed polyps within
325 a few weeks (Clayton & Lasker, 1985; Presnell, Wirsching & Weis, 2022) (Figure 3. C1). Fourteen
326 days post-laceration, the morphology is adult-like, differing only for the smaller size. Treatment with
327 nudle leachate at a concentration of 10% did not seem to affect the external morphology, which
328 remained comparable to the control (Figure 3. C2). At a concentration of 1% PVC, the morphology
329 of the polyps was also equivalent to the control group (not shown). However, higher concentrations
330 of PVC leachate displayed concentration-dependent effects on normal development. Specifically,
331 treatment with 5% PVC leachate caused developmental delays and reduced tentacle length without
332 affecting the overall number of tentacles (Figure 3. C3). This result was consistent with the
333 development period (Presnell, Wirsching & Weis, 2022). Furthermore, at a concentration of 10%
334 PVC leachate, the regeneration of *E. diaphana* was severely compromised. Despite remaining alive,


335 the laceration was covered with a protective mucous membrane (typical of new pedal lacerations),
336 and the animal maintained its initial state without any signs of tentacle or gut formation (Figure 3.
337 C4).

339 Figure 2. Morphological effects on larval development. Representative pictures of the phenotypes
340 observed for every studied species as they undergo each treatment. See text for details. Columns
341 are different treatments: (1) Control; (2) Nurdle; (3) PVC low, represents the lowest concentration
342 tested (between 1% and 5% PVC) resulting in a significant phenotype; (4) PVC high, represents the
343 concentration at which the most aberrant phenotype was obtained (10% PVC for all species except
344 for *C. robusta*, which was already at 5%). Lines are different species, as shown in left panel. (B1)
345 White asterisks show and example of normal number of lipid droplets; black bracket and arrowhead
346 show an example of normal foregut. (B3) White asterisks show an example of abnormal number of
347 lipid droplets; black bracket and arrowhead show an example of an enlarged foregut (G4) White
348 arrowhead points to a kinked-tail phenotype, black arrowhead points to a golf ball phenotype. Scale
349 bars are 110 μ m for all animals except *P. hawaiensis* which represents 200 μ m.

350
351 Figure 3. Morphological effects on regeneration. Representative pictures of the phenotypes
352 observed for every studied species as they undergo each treatment. See text for details. Columns
353 are different treatments: (1) Control; (2) Nurdle, 10% nurdle leachates; (3) PVC low, 5% PVC
354 leachates; (4) PVC high, 10% PVC. Lines are different species, as shown in left panel. A and B show
355 only the anterior regenerating heads of the animal. A, anterior to the left; B, anterior to the top.
356 Scale bars represent 500 μ m for *O. fusiformis* and 200 μ m for *S. mediterranea* and *E. diaphana*.

357

358 Figure 4. Percentage of normal developmental phenotypes obtained for each species studied in
359 each treatment. Percentage of normal embryos is depicted in blue. When embryos are delayed but
360 otherwise normal they are depicted in purple. Smaller than normal but otherwise normal embryos
361 are shown in green. Number of biological replicas and time of observation are stated under each
362 species graph. Error bars show standard deviations. Asterisks indicate differences from the controls
363 have statistic significance (One-Way ANOVA followed by Post Hoc Tukey HSD).

364 4. Discussion

365 Developmental susceptibility across animal superphyla

366 The species employed in this study showed different developmental susceptibility to the treatments
367 (Figure 4). In summary, all species were affected by new PVC particle leachates, but only some
368 deuterostomes and the mussels had a clear response to environmental nurdle leachates. *P. dumerilii*, *O. dioica* or *P. hawaiensis* are unaffected by nurdle leachate treatment. For PVC
369 treatments, some species are affected already at low concentrations, like *C. robusta* and *P. miniata*,
370 which show severe phenotypes already at 1%, while the rest show clear aberrations at 5%, except
371 for *O. dioica* which seems to be more resistant and is only affected by the 10% treatment.

373 For deuterostomes, in the case of the echinoderms *P. lividus* and *P. miniata* the effect seems to start
374 early, with problems with gastrulation and archenteron elongation, as well as embryonic axis
375 formation, as seen in other studies for *P. lividus* and *S. purpuratus* (Rendell-Bhatti et al., 2021;
376 Paganos et al., 2023). In agreement with the phenotypes we observe, molecular data for *S.*
377 *purpuratus* treated with 10% PVC leachates had previously shown downregulation of genes involved
378 in the secondary axis formation as well as in the cell specification of certain cell types (Paganos et
379 al., 2023). Looking into the tunicates, *C. robusta* is affected by all treatments while *O. dioica* is more
380 resilient, only showing aberrant phenotypes at the higher concentration of PVC. In both cases, we

381 believe axial patterning and cell specification are correct, but that morphogenesis is altered. This is
382 clear for the treatments that display weaker phenotypes, where structures like the trunk and the
383 tail have formed, but the morphology of these structures is aberrant (*C. robusta*, Figure 2. F2, F3; *O.
384 dioica*, Figure 2. G4). In the most extreme phenotypes, both species display a golf ball phenotype.
385 In *C. robusta* it is still possible to identify the two pigmented spots within the otherwise amorphous
386 ball phenotype. For *O. dioica*, both aberrant phenotypes observed here are also seen when this
387 animal is exposed to diatom bloom-derived biotoxins (Torres-Águila et al., 2018). Molecular analysis
388 of the golf ball phenotype in *O. dioica* has previously showed that cell and tissue specification in this
389 phenotype are correct, but that it is morphogenesis that is at fault (Torres-Águila et al., 2018), and
390 we believe this is also the case here. All protostomes tested, *M. galloprovincialis*, *P. dumerilii* and *P.
391 hawaiensis*, display a later effect at lower PVC concentrations, since they show correct axis
392 specification and early morphogenesis. The appendage malformation in *P. hawaiensis* and the
393 aberrant gut formation in *P. dumerilii* nectochaete larvae and the failure to produce a shell in *M.
394 galloprovincialis* point to later gene regulatory pathways being affected in these cases. However,
395 high PVC concentrations affect larval metamorphosis in *P. dumerilii*, as seen with the inability to
396 properly transit from trochophore to nectochaete larva, and *P. hawaiensis* embryos fail to complete
397 their developmental program.

398 Effects on regeneration

399 Regeneration is a type of asexual reproduction strategy widely adopted among aquatic
400 invertebrates by which an animal can regrow certain body parts from just a part of the original
401 organism. Studying regeneration is important to understand healing and repair mechanisms,
402 including those happening in humans (Mehta & Singh, 2019). Regeneration involves three main
403 events: wound healing, cell population mobilisation (of stem cells, dedifferentiated or
404 transdifferentiated cells) and tissue morphogenesis. *E. diaphana* can regenerate a whole polyp from
405 a small part of the peduncle (pedal laceration) (Clayton, 1985). In the planarian *S. mediterranea*,
406 residing pluripotent cells called neoblasts are recruited in the wound site to generate a blastema,
407 which will then differentiate, and morphogenetic processes will assure that the correct pattern is
408 formed to create the missing body parts (Reddien, 2018). Following anterior amputation in *O.
409 fusiformis*, several tissue rearrangements are in place to generate a blastema where epidermal and
410 muscle cells proliferate (Fontés et al., 1983). In our study, we see a clear hindering of the
411 regenerative process in *E. diaphana* treated with PVC leachates (Figure 3. A3, A4). In the case of this
412 species, wound healing takes place before we expose the animals to the treatment. Later, we

413 cannot discern if the regeneration is obstructed at the level of cell mobilisation or tissue
414 morphogenesis. The regeneration defects of PVC leachates in *S. mediterranea* and *O. fusiformis* are
415 much milder (Figure 3. B1-B4, C1-C4). While *O. fusiformis* mostly shows only a delay of the
416 regeneration process at the highest concentration of PVC leachates, the planarian displays aberrant
417 regeneration with the formation of a smaller blastema and regenerating smaller eyes. In this case,
418 we were able to pinpoint a reduction in the proliferation of the stem cells as well as in the
419 differentiation of the nervous system and the new eyes (Supplementary Figure 2). This points to a
420 correct wound healing and cell mobilisation in the planarians, and alteration in cell proliferation
421 being the main cause of the failure in proper regeneration in this species. Whichever the
422 mechanisms impeded by plastic leachate treatment in each of these species, there is a hinderance
423 in regeneration because of these treatments, showing that asexual reproduction can also be
424 affected by microplastic contamination. Indeed, nanoplastics have been found to delay
425 regeneration in *Girardia tigrina* (Cesarini et al., 2023a) and *Hydra vulgaris* (Cesarini et al., 2023b),
426 but to the best of our knowledge, no report has shown effects of plastic leachates on regeneration
427 prior to our work. However, with the species sampled here, our results suggest that regeneration is
428 more resilient to plastic contamination than development is. Further analysis of the cellular types
429 and gene expression after infliction of the wound will be necessary to determine if pluripotent-cell
430 recruitment and proliferation are happening correctly and if tissue morphogenesis is affected.
431 Knowing the effects that plastic contamination can have in the regenerative processes will be
432 informative both for the effects in asexual reproduction in marine invertebrates and for the study
433 of possible consequences for tissue healing and regeneration in other species, potentially including
434 vertebrates and humans subjected to plastic exposure.

435 Chemical pollutants in the water

436 We have previously determined the content of persistent organic pollutants (POPs) and other
437 contaminants in the leachates of these pellets (Rendell-Bhatti et al., 2021; Paganos et al., 2023). In
438 no case were any phthalates found in the leachates of either plastic particles (Rendell-Bhatti et al.,
439 2021). In 10% nurdle leachates, we had previously found high concentrations of polychlorinated
440 biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), 21 and 5 times higher than normal
441 sea water content (Rendell-Bhatti et al., 2021), which could explain the developmental effects found
442 in *P. lividus* treated with nurdle leachates (Rendell-Bhatti et al., 2021). These chemicals had also
443 been found in similar concentrations in leachates from farming fishing gear in French Polynesia,
444 which also induced developmental defects in the pearl oyster (Gardon et al., 2020). However, the

445 content of POPs in 10% PVC leachates were significantly lower, and the presence of these
446 compounds alone could not explain the stronger developmental abnormalities seen in PVC leachate
447 treated *P. lividus* (Rendell-Bhatti et al., 2021). Analysis of the elemental content of the water
448 leachates by inductively coupled plasma – optical emission spectrometry revealed that 10% PVC
449 leachates contained high amounts of zinc ($1 \mu\text{g g}^{-1}$), but nurdle leachates did not have higher
450 concentrations of zinc than sea water (Paganos et al., 2023). The zinc present in the PVC leachates
451 could explain the phenotypes observed with this treatment, which were consistent with classical
452 developmental experiments exposing sea urchin embryos to heavy metals (Mitsunaga & Yasumasu,
453 1984; Hardin et al., 1992; Kobayashi & Okamura, 2004; Cunningham et al., 2020; Paganos et al.,
454 2023). Since using the same plastic particles, these same chemicals are expected to be the ones
455 responsible for the phenotypes observed in the present study.

456 **Intraspecific variability of the response**

457 We observed that the impact of each leachate treatment can differ in severity across batches of
458 animals of the same species. Indeed, experiments conducted with animals collected on different
459 days showed more variation compared to those conducted with animals collected on the same day.
460 These differences were particularly noticeable for the nurdle and low PVC concentration leachate
461 treatments, which generally resulted in a lower percentage of aberrant embryos than in the higher
462 PVC leachate treatments (see, for instance, standard deviations for each species in Figure 4).
463 Oxidative stress is highly involved in the effects of plastic and plastic-leachate treatments in marine
464 larvae ((Paganos et al., 2023); also reviewed in (Hu & Palić, 2020)) and adults (Jeong et al., 2017;
465 Pérez-Albaladejo, Solé & Porte, 2020; Milito et al., 2020; Murano et al., 2023). Recently, our lab and
466 others have shown that adult sea urchins subjected to higher oxidative stress produce less
467 successful embryos than animals in normal physiological conditions (Masullo et al., 2021; Jimenez-
468 Guri et al., 2023). We believe that the intraspecific differences we see here are due, probably
469 amongst other reasons, to the state of the parents before obtaining the gametes for the
470 experiments as well as to the influence of the different genetic backgrounds of the various parents
471 used.

472 We also detected intraspecific differences due to a batch effect in the particles used. For beach-
473 collected nurdles, we found the phenotypes observed are not always equivalent when different
474 batches of environmental nurdles are used for one species. This is inherent to the sample type, as
475 every environmental nurdle can have a different history from when they were lost at sea and,
476 therefore, can have gathered different types of contaminants in their travel (Teuten et al., 2009).

477 Likewise, different types of new plastic pellets will be supplemented with, and therefore be able to
478 leach, different chemicals at production. Therefore, it is necessary to stress again that different
479 types of nurdles will produce different phenotypes, and that the ones shown here are only examples
480 of what can happen. Moreover, the concentrations of pre-production plastic pellets used in this
481 study to create the leachates are higher than those found in the sea, except maybe in the event of
482 a nurdle spill (like the one that occurred in Sri Lanka in 2020 (Sewwandi 22) amongst others). Still,
483 this study constitutes a proof of principle to describe that aquatic animals from different and diverse
484 phyla are susceptible to plastic leachates during development, metamorphosis and regeneration.

485 Interspecific variability of the response

486 Plastic contamination has been previously shown to affect development in a variety of animals, and
487 plastic leachates are sufficient to cause these effects (Nobre et al., 2015; Li et al., 2016; Gandara e
488 Silva et al., 2016; Oliviero et al., 2019; Gardon et al., 2020; Rendell-Bhatti et al., 2021; Paganos et
489 al., 2023). Micro- and nano-plastics activate oxidative damage and inflammatory responses, leading
490 to adverse outcome pathways in a variety of organisms (Hu & Palić, 2020), while plastic additives
491 have also been shown to induce oxidative stress in aquatic organisms (reviewed in (Pérez-
492 Albaladejo, Solé & Porte, 2020)). Previous studies have shown that adult and developing sea urchins
493 exposed to plastic leachates have increased oxidative stress and lower production or maintenance
494 of immune cells (Jimenez-Guri et al., 2023; Paganos et al., 2023). Furthermore, the gene regulatory
495 networks acting early in the development and necessary for proper embryo formation are affected
496 in these animals too (Paganos et al., 2023). It would be of great interest to look into the mechanisms
497 of action of these toxicants to learn how leachates affect the animals studied here. One would
498 expect that detoxification genes can be important in protecting some of the more resilient species.
499 In *O. dioica*, response genes against environmental stress (also known as the defensome (Goldstone
500 et al., 2006)), particularly those dealing with aldehyde detoxification, are upregulated very early in
501 development as a response to biotoxins, where phenocopies of the larval shapes seen in our study
502 are obtained (Torres-Águila et al., 2018). However, *C. robusta* is a species that typically lives in
503 contaminated environments, since it thrives in ports where oil and plastic pollution, amongst
504 others, is high, and should therefore have a very developed detoxification system. Indeed, exposure
505 to metals in *Ciona* is known to upregulate glutathione biosynthesis (Franchi et al., 2012) and
506 upregulate transcription of Cu,Zn superoxide dismutases (Ferro et al., 2013) and metallothionein
507 genes (Franchi et al., 2011), all of which processes are linked to exposure and protection against
508 oxidative stress. However, this particular species is one of the most affected by our treatments.

509 Oxidative stress coping mechanisms, including increasing reduced glutathione, have also been
510 shown to be in place in *M. galloprovincialis* reared in aquaculture environments, which have
511 increased intake of microplastics (Capo et al., 2021), and increased metallothionein expression has
512 also been shown in *M. galloprovincialis* and *S. purpuratus* exposed to microplastics (Paganos et al.,
513 2023; Impellitteri et al., 2023). It would, therefore, be very interesting to study the transcriptomic
514 state of the defensome of the species studied here to correlate the different phenotypes with
515 alterations in these specific genes.

516 We hypothesised that another possible reason for the interspecific differences in the severity of the
517 phenotypes, besides specific physiological, developmental and metabolic responses to the
518 treatments, would be the speed of development of the different species, as well as the presence of
519 a longer-lasting, stronger chorion, as a physical barrier to the exterior. If an animal is faster at
520 developing, it will make sense that chemicals in the water may have less time to affect their
521 development, as they still need to pass through the chorion before it can generate stress or affect
522 the transcription of genes. On the contrary, it could be that a slow-developer could have more time
523 to react activating the stress-defence response. Chorions are indeed protective barriers against
524 polymer microsphere toxicity in zebrafish embryos (Feng et al., 2013). Here, we have a mix of
525 species that develop extremely fast (*O. dioica* hatches just 4 hpf) to relatively slow (*P. hawaiensis*
526 hatches around 12 dpf). We do not see any emerging pattern that would allow us to determine if
527 developing fast or slow is advantageous against plastic leachate contamination. However, the
528 protective function of the chorion seems not to influence the effect of our treatments: despite *C.*
529 *robusta* having a very strong chorion (not only composed of a surrounding membrane but also test
530 cells, a group of maternal cells placed between the egg and the membrane, and maternal follicle
531 cells outside the membrane (Kourakis et al., 2021)), it showed a clear and visible impairment in the
532 proper development of the embryos. Notwithstanding the mechanism of each species to cope or
533 react to the plastic leachates, we believe that transcriptomic profiling and determination of the
534 oxidative stress state of these species after treatment could shed light on the mechanisms behind
535 the differences and similarities between them.

536 Ecological consequences

537 The potential biological impacts of plastic pollution have been extensively discussed, including the
538 chemical toxicity from plastic leachates (Oliviero et al., 2019; Ke et al., 2019; Shi et al., 2019; Rendell-
539 Bhatti et al., 2021; Jimenez-Guri et al., 2023; Paganos et al., 2023). Chemical stressors from plastics
540 have been identified as a possible contributor to biodiversity loss (MacLeod et al., 2021). Embryo

541 development is an extremely robust process that has evolved cellular processes and regulatory
542 pathways to respond to environmental stressors. However, some anthropogenic stressors can elude
543 the mechanisms that act as developmental defences to ensure the right developmental decisions,
544 overwhelming the developmental robustness (Hamdoun & Epel, 2007). Problems in the correct
545 development of embryos can lead to declines in the success of subsequent generations for a
546 particular species. Developmental effects with no detectable phenotypes, which may be happening
547 in the lower concentrations tested here, could also mediate potential transgenerational changes,
548 which in turn may be detrimental. Given that many species have a spawning season, sporadic
549 environmental stressors such as surges in local plastic contamination could impact a particular
550 population's reproductive success. Here, we demonstrate that plastic leachate contamination can
551 affect the development and regeneration of many aquatic species with potentially catastrophic
552 effects that can result in the loss of communities and disruption of ecosystems. Our study provides
553 data showing that microplastic-derived chemical pollution can affect major lineages of marine
554 diversity, pointing to consequences for the health and functioning of marine ecosystems.

555 5. Conclusions

556 Leachates of industrial PVC pellets affect all animals tested in a concentration-dependent and
557 species-specific manner. Leachates of environmentally retrieved nurdles at the same high
558 concentrations have a phenotypical effect in fewer species, but still in four out of the ten species
559 tested. Deuterostomes, excluding *O. dioica*, show the highest sensitivity to all leachates. This work
560 constitutes proof of principle that both new and environmentally retrieved pre-production plastic
561 pellets, at high concentrations, can release enough chemicals to affect the development and
562 regeneration of a wide group of animals. Whether this can be generalised to other types of plastic
563 leachates is plausible but needs to be studied. Moreover, there may be effects that do not show an
564 evident phenotype but may be affecting development, physiology or robustness at a lower level,
565 and cumulative effects may eventually be hindering optimal development, probably including
566 transgenerational effects. Follow-up mechanistic studies to understand the reason for the failure of
567 the developmental and regeneration process and any effects with no detectable phenotypes at
568 lower concentrations would be extremely interesting to address the potential ecological
569 consequences of plastic pollution on the marine ecosystem.

570 Acknowledgements

571 Emily Stevens and the team of Beach Guardian for providing beach plastic pellets. Aziz Aboobaker
572 for supplying the culture of *P. hawaiensis*, Alessia Di Donfrancesco for help with the set up of the *P.*

573 *hawaiensis* culture in Exeter, and Alex Hayward for transporting the animals from Oxford to Penryn.
574 Toby Doyle for help with *P. hawaiensis* maintenance and help with running the experiments. Davide
575 Caramiello and Alberto Macina for animal husbandry at the Stazione Zoologica Anton Dohrn. Sophie
576 Den Hartog for help with *P. dumerilii* husbandry in Exeter University and Anna Bawden for help with
577 sample transport. Sebastian Artíme for assistance with the *O. dioica* facility in Barcelona. Francesc
578 Cebrià for reagents towards the *S. mediterranea* experiments, and Hidefumi Orii and Kenju
579 Watanabe for providing anti-VC-1 antibody. Monoclonal anti-SYNORF1 antibody was obtained from
580 the Developmental Studies Hybridoma Bank, developed under the auspices of the National Institute
581 of Child Health and Human Development and maintained by the Department of Biological Sciences,
582 University of Iowa, Iowa City, IA, USA.

583 **Bibliography**

584 Capo X, Rubio M, Solomando A, Alomar C, Compa M, Sureda A, Deudero S. 2021. Microplastic intake
585 and enzymatic responses in *Mytilus galloprovincialis* reared at the vicinities of an aquaculture
586 station. *Chemosphere* 280:130575. DOI: 10.1016/j.chemosphere.2021.130575.

587 Carrillo-Baltodano AM, Seudre O, Guynes K, Martín-Durán JM. 2021. Early embryogenesis and
588 organogenesis in the annelid *Owenia fusiformis*. *EvoDevo* 12:5. DOI: 10.1186/s13227-021-
589 00176-z.

590 Cebrià F, Newmark PA. 2005. Planarian homologs of netrin and netrin receptor are required for
591 proper regeneration of the central nervous system and the maintenance of nervous system
592 architecture. *Development* 132:3691–3703. DOI: 10.1242/dev.01941.

593 Cesarini G, Coppola F, Campos D, Venditti I, Battocchio C, Di Giulio A, Muzzi M, Pestana JLT, Scalici
594 M. 2023a. Nanoplastics exposure inhibits feeding and delays regeneration in a freshwater
595 planarian. *Environmental Pollution* 332:121959. DOI:
596 <https://doi.org/10.1016/j.envpol.2023.121959>.

597 Cesarini G, Secco S, Taurozzi D, Venditti I, Battocchio C, Marcheggiani S, Mancini L, Fratoddi I, Scalici
598 M, Puccinelli C. 2023b. Teratogenic effects of environmental concentration of plastic particles
599 on freshwater organisms. *Science of The Total Environment* 898:165564. DOI:
600 10.1016/j.scitotenv.2023.165564.

601 Clayton W. 1985. Pedal laceration by the anemone *Aiptasia pallida*. *Marine Ecology Progress Series*
602 21:75–80. DOI: 10.3354/meps021075.

603 Clayton WS, Lasker HR. 1985. Individual and population growth in the asexually reproducing

604 anemone *Aiptasia pallida* Verrill. *Journal of Experimental Marine Biology and Ecology* 90:249–
605 258. DOI: 10.1016/0022-0981(85)90170-4.

606 Cunningham B, Torres-Duarte C, Cherr G, Adams N. 2020. Effects of three zinc-containing
607 sunscreens on development of purple sea urchin (*Strongylocentrotus purpuratus*) embryos.
608 *Aquatic Toxicology* 218:105355. DOI: 10.1016/j.aquatox.2019.105355.

609 Eliso MC, Bergami E, Manfra L, Spagnuolo A, Corsi I. 2020. Toxicity of nanoplastics during the
610 embryogenesis of the ascidian *Ciona robusta* (Phylum Chordata). *Nanotoxicology* 14:1415–
611 1431. DOI: 10.1080/17435390.2020.1838650.

612 Engler RE. 2012. The Complex Interaction between Marine Debris and Toxic Chemicals in the Ocean.
613 *Environmental Science & Technology* 46:12302–12315. DOI: 10.1021/es3027105.

614 Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J.
615 2014. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over
616 250,000 Tons Afloat at Sea. *PLoS ONE* 9:1–15. DOI: 10.1371/journal.pone.0111913.

617 Feng D-F, Wu W-X, He N-N, Chen D-Y, Feng X-Z. 2013. Analysis of chorion changes in developmental
618 toxicity induced by polymer microspheres in Zebrafish embryos. *RSC Advances* 3:17880. DOI:
619 10.1039/c3ra41503a.

620 Ferrández-Roldán A, Martí-Solans J, Cañestro C, Albalat R. 2019. *Oikopleura dioica*: An Emergent
621 Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of
622 Development. In: *Results and Problems in Cell Differentiation*. 63–105. DOI: 10.1007/978-3-
623 030-23459-1_4.

624 Ferro D, Franchi N, Mangano V, Bakiu R, Cammarata M, Parrinello N, Santovito G, Ballarin L. 2013.
625 Characterization and metal-induced gene transcription of two new copper zinc superoxide
626 dismutases in the solitary ascidian *Ciona intestinalis*. *Aquatic Toxicology* 140–141:369–379.
627 DOI: 10.1016/j.aquatox.2013.06.020.

628 Fischer AHL, Henrich T, Arendt D. 2010. The normal development of *Platynereis dumerilii*
629 (Nereididae, Annelida). *Frontiers in Zoology* 7:31. DOI: 10.1186/1742-9994-7-31.

630 Fontés M, Coulon J, Delgross M-H, Thouveny Y. 1983. Muscle dedifferentiation and contractile
631 protein synthesis during post-traumatic regeneration by *Owenia fusiformis* (polychaete
632 annelid). *Cell Differentiation* 13:267–282. DOI: 10.1016/0045-6039(83)90037-4.

633 Fraguas S, Cárcel S, Vivancos C, Molina MD, Ginés J, Mazariegos J, Sekaran T, Bartscherer K, Romero

634 R, Cebrià F. 2021. CREB-binding protein (CBP) gene family regulates planarian survival and stem
635 cell differentiation. *Developmental Biology* 476:53–67. DOI: 10.1016/j.ydbio.2021.02.008.

636 Franchi N, Boldrin F, Ballarin L, Piccinni E. 2011. CiMT-1, an unusual chordate metallothionein gene
637 in *Ciona intestinalis* genome: structure and expression studies. *Journal of Experimental Zoology*
638 *Part A: Ecological Genetics and Physiology* 315A:90–100. DOI: 10.1002/jez.653.

639 Franchi N, Ferro D, Ballarin L, Santovito G. 2012. Transcription of genes involved in glutathione
640 biosynthesis in the solitary tunicate *Ciona intestinalis* exposed to metals. *Aquatic Toxicology*
641 114–115:14–22. DOI: 10.1016/j.aquatox.2012.02.007.

642 Gandara e Silva PP, Nobre CR, Resaffe P, Pereira CDS, Gusmão F. 2016. Leachate from microplastics
643 impairs larval development in brown mussels. *Water Research* 106:364–370. DOI:
644 10.1016/j.watres.2016.10.016.

645 Gardon T, Huvet A, Paul-Pont I, Cassone A, Koua MS, Soyez C, Jezequel R, Receveur J, Le Moullac G.
646 2020. Toxic effects of leachates from plastic pearl-farming gear on embryo-larval development
647 in the pearl oyster *Pinctada margaritifera*. *Water Research*:115890. DOI:
648 10.1016/j.watres.2020.115890.

649 Gauquie J, Devriese L, Robbens J, De Witte B. 2015. A qualitative screening and quantitative
650 measurement of organic contaminants on different types of marine plastic debris.
651 *Chemosphere* 138:348–356. DOI: 10.1016/j.chemosphere.2015.06.029.

652 Goldstone JV, Hamdoun A, Cole BJ, Howard-Ashby M, Nebert DW, Scally M, Dean M, Epel D, Hahn
653 ME, Stegeman JJ. 2006. The chemical defensome: Environmental sensing and response genes
654 in the *Strongylocentrotus purpuratus* genome. *Developmental Biology* 300:366–384. DOI:
655 10.1016/j.ydbio.2006.08.066.

656 Hamdoun A, Epel D. 2007. Embryo stability and vulnerability in an always changing world.
657 *Proceedings of the National Academy of Sciences* 104:1745–1750. DOI:
658 10.1073/pnas.0610108104.

659 Hardin J, Coffman JA, McClay DR, Black SD. 1992. Commitment along the dorsoventral axis of the
660 sea urchin embryo is altered in response to NiCl₂. *Development* 116:671–685.

661 Hauenschild C, Fischer A. 1969. *Platynereis dumerilii: mikroskopische Anatomie, Fortpflanzung,*
662 *Entwicklung*. Stuttgart SE - 55 p. : ill. ; 25 cm.: G. Fischer Stuttgart. DOI: LK -
663 <https://worldcat.org/title/718069795>.

664 Hu M, Palić D. 2020. Micro- and nano-plastics activation of oxidative and inflammatory adverse
665 outcome pathways. *Redox Biology* 37:101620. DOI: 10.1016/j.redox.2020.101620.

666 Impellitteri F, Yunko K, Martyniuk V, Matskiv T, Lechachenko S, Khoma V, Mudra A, Piccione G,
667 Stoliar O, Faggio C. 2023. Physiological and biochemical responses to caffeine and microplastics
668 in *Mytilus galloprovincialis*. *Science of The Total Environment* 890:164075. DOI:
669 10.1016/j.scitotenv.2023.164075.

670 Jeong C-B, Kang H-M, Lee M-C, Kim D-H, Han J, Hwang D-S, Souissi S, Lee S-J, Shin K-H, Park HG, Lee
671 J-S. 2017. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-
672 mediated defense mechanisms in the marine copepod *Paracyclopsina nana*. *Scientific Reports*
673 7:41323. DOI: 10.1038/srep41323.

674 Jimenez-Guri E, Murano C, Paganos P, Arnone MI. 2023. PVC pellet leachates affect adult immune
675 system and embryonic development but not reproductive capacity in the sea urchin
676 *Paracentrotus lividus*. *Marine Pollution Bulletin* In press.

677 Ke A-Y, Chen J, Zhu J, Wang Y-H, Hu Y, Fan Z-L, Chen M, Peng P, Jiang S-W, Xu X-R, Li H-X. 2019.
678 Impacts of leachates from single-use polyethylene plastic bags on the early development of
679 clam *Meretrix meretrix* (Bivalvia: Veneridae). *Marine Pollution Bulletin* 142:54–57. DOI:
680 10.1016/j.marpolbul.2019.03.029.

681 Kobayashi N, Okamura H. 2004. Effects of heavy metals on sea urchin embryo development. 1.
682 Tracing the cause by the effects. *Chemosphere* 55:1403–1412. DOI:
683 10.1016/j.chemosphere.2003.11.052.

684 Kourakis MJ, Bostwick M, Zabriskie A, Smith WC. 2021. Disruption of left-right axis specification in
685 *Ciona* induces molecular, cellular, and functional defects in asymmetric brain structures. *BMC
686 Biology* 19:141. DOI: 10.1186/s12915-021-01075-4.

687 Li H-X, Getzinger GJ, Ferguson PL, Orihuela B, Zhu M, Rittschof D. 2016. Effects of Toxic Leachate
688 from Commercial Plastics on Larval Survival and Settlement of the Barnacle *Amphibalanus
689 amphitrite*. *Environmental Science & Technology* 50:924–931. DOI: 10.1021/acs.est.5b02781.

690 MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. *Science*
691 373:61–65. DOI: 10.1126/science.abg5433.

692 Marilley M, Thouveny Y. 1978. DNA synthesis during the first stages of anterior regeneration in the
693 polychaete annelid *Owenia fusiformis* (dedifferentiation and early phases of differentiation).
694 *Development* 44:81–92. DOI: 10.1242/dev.44.1.81.

695 Marin F, Le Roy N, Marie B. 2012. The formation and mineralization of mollusk shell. *Frontiers in*
696 *Bioscience* S4:321. DOI: 10.2741/s321.

697 Martí-Solans J, Ferrández-Roldán A, Godoy-Marín H, Badia-Ramentol J, Torres-Aguila NP, Rodríguez-
698 Marí A, Bouquet JM, Chourrout D, Thompson EM, Albalat R, Cañestro C. 2015. *Oikopleura*
699 *dioica* culturing made easy: A Low-Cost facility for an emerging animal model in EvoDevo.
700 *genesis* 53:183–193. DOI: 10.1002/dvg.22800.

701 Masullo T, Biondo G, Natale M Di, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta
702 A, Nicosia A. 2021. Gene Expression Changes after Parental Exposure to Metals in the Sea
703 Urchin Affect Timing of Genetic Programme of Embryo Development. *Biology* 10:103. DOI:
704 10.3390/biology10020103.

705 Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T. 2001. Plastic resin pellets as a
706 transport medium for toxic chemicals in the marine environment. *Environmental Science and*
707 *Technology* 35:318–324. DOI: 10.1021/es0010498.

708 Mehta AS, Singh A. 2019. Insights into regeneration tool box: An animal model approach.
709 *Developmental Biology* 453:111–129. DOI: 10.1016/j.ydbio.2019.04.006.

710 Milito A, Murano C, Castellano I, Romano G, Palumbo A. 2020. Antioxidant and immune response
711 of the sea urchin *Paracentrotus lividus* to different re-suspension patterns of highly polluted
712 marine sediments. *Marine Environmental Research* 160:104978. DOI:
713 10.1016/j.marenvres.2020.104978.

714 Mitsunaga K, Yasumasu I. 1984. Stage Specific Effects of Zn²⁺ on Sea Urchin Embryogenesis.
715 (animalization/EDDA/EDTA-OH/sea urchin embryos/Zn²⁺). *Development, Growth and*
716 *Differentiation* 26:317–327. DOI: 10.1111/j.1440-169X.1984.00317.x.

717 Murano C, Nonnis S, Scalvini FG, Maffioli E, Corsi I, Tedeschi G, Palumbo A. 2023. Response to
718 microplastic exposure: An exploration into the sea urchin immune cell proteome.
719 *Environmental Pollution* 320:121062. DOI: 10.1016/j.envpol.2023.121062.

720 Nobre CR, Santana MFM, Maluf A, Cortez FS, Cesar A, Pereira CDS, Turra A. 2015. Assessment of
721 microplastic toxicity to embryonic development of the sea urchin *Lytechinus variegatus*
722 (Echinodermata: Echinoidea). *Marine Pollution Bulletin* 92:99–104. DOI:
723 10.1016/j.marpolbul.2014.12.050.

724 Oliviero M, Tato T, Schiavo S, Fernández V, Manzo S, Beiras R. 2019. Leachates of micronized plastic
725 toys provoke embryotoxic effects upon sea urchin *Paracentrotus lividus*. *Environmental*

726 *Pollution* 247:706–715. DOI: 10.1016/j.envpol.2019.01.098.

727 Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY,
728 Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh Y-W, Hui J,
729 Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K,
730 Raible F, Arendt D. 2021. The Nereid on the rise: *Platynereis* as a model system. *EvoDevo* 12:10.
731 DOI: 10.1186/s13227-021-00180-3.

732 Paganos P, Ullmann CV, Gaglio D, Bonanomi M, Salmistraro N, Arnone MI, Jimenez-Guri E. 2023.
733 Plastic leachate-induced toxicity during sea urchin embryonic development: Insights into the
734 molecular pathways affected by PVC. *Science of The Total Environment* 864:160901. DOI:
735 10.1016/j.scitotenv.2022.160901.

736 Pérez-Albaladejo E, Solé M, Porte C. 2020. Plastics and plastic additives as inducers of oxidative
737 stress. *Current Opinion in Toxicology* 20–21:69–76. DOI: 10.1016/j.cotox.2020.07.002.

738 Perillo M, Swartz SZ, Pieplow C, Wessel GM. 2023. Molecular mechanisms of tubulogenesis revealed
739 in the sea star hydro-vascular organ. *Nature Communications* 14:2402. DOI: 10.1038/s41467-
740 023-37947-2.

741 Presnell JS, Wirsching E, Weis VM. 2022. Tentacle patterning during *Exaiptasia diaphana* pedal
742 lacerate development differs between symbiotic and aposymbiotic animals. *PeerJ* 10:e12770.
743 DOI: 10.7717/peerj.12770.

744 Reddien PW. 2018. The Cellular and Molecular Basis for Planarian Regeneration. *Cell* 175:327–345.
745 DOI: 10.1016/j.cell.2018.09.021.

746 Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH. 2009. The crustacean *Parhyale*
747 *hawaiensis*: A new model for arthropod development. *Cold Spring Harbor Protocols* 4. DOI:
748 10.1101/pdb.em0114.

749 Rendell-Bhatti F, Paganos P, Pouch A, Mitchell C, D'Aniello S, Godley BJ, Pazdro K, Arnone MI,
750 Jimenez-Guri E. 2021. Developmental toxicity of plastic leachates on the sea urchin
751 *Paracentrotus lividus*. *Environmental Pollution* 269:115744. DOI:
752 10.1016/j.envpol.2020.115744.

753 Ross KG, Omuro KC, Taylor MR, Munday RK, Hubert A, King RS, Zayas RM. 2015. Novel monoclonal
754 antibodies to study tissue regeneration in planarians. *BMC Developmental Biology* 15:2. DOI:
755 10.1186/s12861-014-0050-9.

756 Sakai F, Agata K, Orii H, Watanabe K. 2000. Organization and Regeneration Ability of Spontaneous
757 Supernumerary Eyes in Planarians. Eye Regeneration Field and Pathway Selection by Optic
758 Nerves. *ZOOLOGICAL SCIENCE* 17:375–381. DOI: 10.2108/zsj.17.375.

759 Sewwandi M, Hettithanthri O, Egodage SM, Amarathunga AAD, Vithanage M. 2022. Unprecedented
760 marine microplastic contamination from the X-Press Pearl container vessel disaster. *Science of
761 The Total Environment* 828:154374. DOI: 10.1016/j.scitotenv.2022.154374.

762 Sherrington C. 2016. Plastics in the marine environment. Report to European Commission.
763 *Eunomia*:1–13.

764 Shi M, Sun Y, Wang Z, He G, Quan H, He H. 2019. Plastic film mulching increased the accumulation
765 and human health risks of phthalate esters in wheat grains. *Environmental Pollution* 250:1–7.
766 DOI: 10.1016/j.envpol.2019.03.064.

767 Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Bjorn A, Rowland SJ, Thompson RC,
768 Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M,
769 Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino
770 Y, Imamura A, Saha M, Takada H. 2009. Transport and release of chemicals from plastics to the
771 environment and to wildlife. *Philosophical Transactions of the Royal Society B: Biological
772 Sciences* 364:2027–2045. DOI: 10.1098/rstb.2008.0284.

773 Thushari GGN, Senevirathna JDM. 2020. Plastic pollution in the marine environment. *Helion*
774 6:e04709. DOI: 10.1016/j.heliyon.2020.e04709.

775 Torres-Águila NP, Martí-Solans J, Ferrández-Roldán A, Almazán A, Roncalli V, D'Aniello S, Romano
776 G, Palumbo A, Albalat R, Cañestro C. 2018. Diatom bloom-derived biotoxins cause aberrant
777 development and gene expression in the appendicularian chordate *Oikopleura dioica*.
778 *Communications Biology* 1. DOI: 10.1038/s42003-018-0127-2.

779 Yankura KA, Martik ML, Jennings CK, Hinman VF. 2010. Uncoupling of complex regulatory patterning
780 during evolution of larval development in echinoderms. *BMC Biology* 8. DOI: 10.1186/1741-
781 7007-8-143.

782