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Abstract Protein kinases act as central molecular switches in the control of cellular functions.
Alterations in the regulation and function of protein kinases may provoke diseases including
cancer. In this study we investigate the conformational states of such disease-associated kinases
using the high sensitivity of the Kinase Conformation (KinCon)-reporter system. We first tracked
BRAF-kinase activity conformation changes upon melanoma drug binding. Second, we also use
the KinCon reporter technology to examine the impact of regulatory protein interactions on
LKB1-kinase tumor suppressor functions. Third, we explore the conformational dynamics of
RIP-kinases in response to TNF-pathway activation and small molecule interactions. Finally, we
show that CDK4/6 interactions with regulatory proteins alter conformations which remain
unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the
KinCon technology helps identify cellular factors that impact drug efficacies. The understanding
of the dynamics of full-length protein kinases when interacting with small molecule inhibitors or
regulatory proteins is crucial for designing more effective therapeutic strategies.

Introduction
The human kinome is encoded by more than 500 genes which lead to the synthesis of functionally
diverse kinases. Kinases are different in their domain composition but all contain a structurally
conserved phosphotransferase domain (Manning (2009), Kornev and Taylor (2010)). Convention-
ally, protein kinases function as enzymes that enable the transfer of a phosphate group from ATP
to defined amino acids of a target protein. Protein kinases regulate various aspects of cellular func-
tions including cell survival, apoptosis, cell division and metabolism via reversible and tightly regu-
lated phosphorylations (Figure 1A) (Bhullar et al. (2018), Blume-Jensen and Hunter (2001), Manning
et al. (2002)). In addition to kinase phosphotransferase activities, kinase domains have scaffolding
functions (Shrestha et al. (2020), Reiterer et al. (2014)).

On the cellular level, kinases act as molecular switches, adopting conformational states that
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align with an active (ON) or inactive (OFF) kinase state (Huse and Kuriyan (2002), Yamaguchi and
Hendrickson (1996), Lopez et al. (2019), Feichtner et al. (2022)). These ON and OFF states of protein
kinases signify a switch-like behavior which is governed by a collection of molecular mechanisms
(Figure 1A). Funneling the diverse signals underlines the center stage of kinases in signaling path-
ways, which frequently involve kinase regulation. Thus, one kinase directly modulates the activity
level and role of the subsequent kinase in a cascade like structure (Guo et al. (2020), Avruch et al.
(2007)). This regulation is facilitated by the formation of multi-protein complexes to spatiotempo-
rally control and amplify signal transmission (Morrison (2001), Pouysségur et al. (2002)). Figure 1A
highlights several factors affecting kinase functions. Selected modes of kinase regulation which
are of relevance for the presented study are listed below:

First, the activity of a kinase can be altered by post-translational modifications (PTMs) of se-
lected amino acids. PTMs alter kinase characteristics like its activity status, its location within the
cell, rate of degradation, and its associations with other proteins (Chou (2020), Cohen (2000), Deribe
et al. (2010)).

Second, the scaffolding functions of kinase domains accompany the process of phosphotrans-
ferase reactions. These play central roles in the activation and deactivation process of interact-
ing kinase protomers. This feature is key for pseudokinase activities, for relaying signaling inputs
without catalytic functions (Weinlich and Green (2014), Morrison and Davis (2003), Boudeau et al.
(2006)).

Third, kinase functions depend on decisive regulatory protein interdependencies, for which
several modes of regulation have been described. Intramolecular auto-inhibitory modules (AIM)
alter kinase activity states by reducing the accessibility of the substrate protein for the subsequent
kiss-and-run phosphotransferase reaction (Mayrhofer et al. (2020), Pufall and Graves (2002), Xu
et al. (2002)). In some cases, kinase domain activities are controlled by interacting with substrate-
like sequences. Pseudo-substrate stretches bind to the catalytic cleft of the kinase and hinder
the phosphorylation of the substrate. This binding to the catalytic site is altered in response to
input signals and manifested in kinase conformation changes, which in turn coordinate protein
kinase activation cycles (Schmitt et al. (2022), Kemp et al. (1994)). Besides intramolecular inhibition,
activating and inactivating regulatory protein interactions have been described for prototypical
kinases such as PKA and CDKs (Boudeau et al. (2003), Taylor et al. (2005)).

Fourth, kinase regulation is strongly dependent on the expression pattern and how the protein
is stabilized in regard to the cell fate within the respective cell system or compartment (Capra et al.
(2006)).

Fifth, regulatory protein interactions of kinases depend on small molecule interactions. Be-
sides different types of second messengers (e.a. Ca?*, IP3, cCAMP) (Newton et al. (2016), Kasai and
Petersen (1994)) a collection of metabolites and ions contribute in orchestrating cellular kinase
functions (Ramms et al. (2021)).

Alterations of the ON and OFF modes of regulating kinases are also pertinent to kinase-related
disorders. Deregulation of kinase functions is associated with the development of numerous dis-
eases, such as cancer, inflammatory, infectious and degenerative conditions (Shchemelinin et al.
(2006), Kostler and Zielinski (2015), Ferguson and Gray (2018)). Kinase malfunctions result from
gene mutations, deletions, fusions or increased or aberrant expressions. These mechanisms re-
sult in gain or loss of function of the involved kinase pathways, thus driving disease etiology and
progression (Ochoa et al. (2018), Van et al. (2021), Cicenas et al. (2018)).

For this technical report, we have incorporated disease-relevant full-length phosphotransferases
which exhibit different modes of regulation into the kinase conformation (KinCon) reporter system.
The KinCon reporter platform is a Renilla luciferase (RLuc) based protein fragment complementa-
tion assay, which fuses two fragments of RLuc to the N and the C terminus of a full-length kinase.
This reporter can be used to track conformational changes of kinases due to mutations, PTMs,
PPIs, or inhibitor binding. We discuss the KinCon reporter principle at the beginning of the results
section. The kinases listed below are characterized by distinctive modes of regulation, are viable
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targets for inhibition, or are so far difficult to assess directly through traditional biochemical mea-
surements: The liver kinase B1 (LKB1, STK11), the receptor-interacting serine/threonine-protein
kinase 1 (RIPK1) and the cyclin-dependent kinases 4 and 6 (CDK4/6).

LKB1 is active as trimeric cytoplasmic protein complex. Itis the upstream regulator of the AMP-
activated protein kinase (AMPK), which is the macromolecular key kinase complex in regulating
the cellular energy metabolism (Rodriguez et al. (2021)). LKB1 promotes AMPK signaling by form-
ing an heterotrimeric complex with the pseudokinase STE20-related adaptor alpha (STRAD«) and
the scaffolding protein Mouse protein-25 (MO25) through phosphorylation and thus activation of
cytoplasmic AMPK (Boudeau et al. (2004), Narbonne et al. (2010)). Mutations in LKB1 can lead
to the autosomal dominant disease Peutz-Jeghers syndrome (PJS) (Mehenni et al. (1998), Beggs
et al. (2010)). Inactivating mutations of LKB1 are frequently observed in non-small-cell lung cancer
(NSCLC), cervical carcinoma and malignant melanoma (Wingo et al. (2009), Ndembe et al. (2022)).

RIPK1 acts as a central stress sensor to control cell survival, inflammation and cell death signal-
ing (Clucas and Meier (2023)). Deregulation of RIPK1 and RIPK3-involved signaling cascades have
been linked to inflammatory bowel diseases, rheumatoid arthritis, autoimmune conditions and
neuroinflammatory diseases such as Alzheimer's and Parkinson’s disease (Martens et al. (2020), Li
et al. (2019), Speir et al. (2021), Clucas and Meier (2023)). This is believed to be related to deregula-
tions of both catalytic and scaffolding functions. Thus, a collection of small molecule blockers has
been identified to interfere with RIPK1 signaling and function. It's intriguing to note that RIPK1 and
RIPK3 may share a similar mechanism of action with BRAF, as their structural arrangements and
the dimerization of their kinase domains bear resemblance (Raju et al. (2018)). In addition to this,
auto-phosphorylation of RIPK1 and RIPK3 represents a central regulatory element, with similar ties
to BRAF (Laurien et al. (2020)).

Unlike the auto-inhibitory mechanisms of kinase regulation, some kinases dynamically engage
with activating and deactivating polypeptides (Zhang et al. (2027)). One of the best studied ex-
amples is the interaction of regulatory proteins with the catalytic subunits of the cAMP-controlled
serine/threonine protein kinase A (PKA) (Taylor et al. (2012), Zhang et al. (2020)). In a similar man-
ner CDKs form active and inactive protein complexes to directly promote the cell cycle (Goel et al.
(2018)). The central role of CDK4/6 lies in regulating cell cycle progression by phosphorylating and
activating the key substrate retinoblastoma protein (Rb) that promotes G1 to S phase transition.
On the molecular level this is controlled by complex formation of CDK4 and CDK6 with regulatory
polypeptides (James et al. (2008)). Binding to p16/™N*43, one of the most frequently mutated tumor
suppressor proteins, blocks CDK4/6 functions (Quelle et al. (1997)). Cancer mutations in p16/Nk4a
counteract this. As a result, kinase activating cyclinD proteins bind to CDK4/6 to promote carcino-
genesis (VanArsdale et al. (2015)). Thus, CDK4/6 inhibitors (CDK4/6i) found the way into the clinic,
in particular for treating breast cancer patients (Nebenfuehr et al. (2020),Yu et al. (2006). The devel-
opment of drug resistance upon CDK4/6 inhibitors therapies underscores the need for personal-
ized treatments that consider the patient’s genetic profile and the underlying alterations of CDK4/6
complexes present in their cancer cells (Alvarez-Ferndndez and Malumbres (2020), Knudsen and
Witkiewicz (2017)).

Various cellular mechanisms are employed to control the molecular switch-like-behavior of pro-
tein kinases to temporally lock them into either an active or inactive conformation. These mecha-
nisms include the PTMs of specific residues, the binding of regulatory proteins or co-factors, and
allosteric changes induced by ligands (Bhullar et al. (2018), Taylor et al. (2021), Newton (2007)).
This precisely controlled mode of action can be hindered, amongst others by patient-specific mu-
tations or modified by bio-active small molecules (Figure 1A). Conventional methods often fall short
in capturing the dynamic functioning of kinases within their native cellular environments (Klaeger
et al. (2017), Croce et al. (2019)). This makes innovative biotech approaches essential for a com-
prehensive understanding of their roles in the cell. Here we show that genetically encoded KinCon
reporters are extendable to many more kinases, to enable systematic monitoring of cellular kinase
activity states in live cells. In addition to its predictive capabilities, the KinCon technology serves
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as a valuable tool for uncovering cellular factors influencing drug efficacy (Mayrhofer et al. (2020),
Fleischmann et al. (2023), Rock et al. (2019)). Such insights into the molecular dynamics of kinases
upon interactions with small molecule inhibitors or regulatory proteins is necessary for the design
of more effective therapeutic strategies.

Results

Kinases act as molecular switches to integrate, amplify, restrict and/or relay signal propagation
in spatiotemporal fashion and in cell-type specific manner. The precise coordination of usually
oscillating kinase activities is a prerequisite for proper signal transmission (Taylor et al. (2012), Pan
and Heitman (2002)). When investigating pathological kinase functions for therapeutic purposes, it
is crucial to take the cellular elements that influence kinase activities into account. In figure 1A we
list a collection of factors which affect kinase activity states. It is thus essential to closely monitor
the physiological and pathophysiological kinases functions of activation and deactivation in intact
cell settings in the presence and absence of patient mutation and drug exposure.

One cell-based technology for studying cellular kinase activity states is the KinCon reporter
technology (Rock et al. (2019), Mayrhofer et al. (2020), Fleischmann et al. (2023)). It is a highly
sensitive assay for tracking kinase activities which is mirrored by the alterations of full-length kinase
structures in cells. With in-silico predictions it was projected that more than 200 protein kinases
of the human kinome contain cis-regulatory elements. In many cases these sequence stretches
may act as AIMs (Mayrhofer et al. (2020), Yeon et al. (2016)). In figure 1B we depict exemplary how
underlying kinase ON and OFF states can be tracked using KinCon reporter technology (Enzler
et al. (2020). The read out is based on the molecular motion of the full-length kinase containing
diverse cis-regulatory elements such as AlMs. Cell-type specific KinCon measurement allow the
testing of the influence of mutations, signaling pathway activation, binary protein interactions and
drug binding on the respective reporter dynamics. We have previously applied the technology to
gain insights into the functioning of two kinases that belong to the MAPK pathway. In these proof
of concept studies, we showed that BRAF and MEK1 KinCon reporters are direct real-time read-
outs for kinase activities in intact cell settings caused by mutation and drug treatments (Rdck et al.
(2019), Mayrhofer et al. (2020), Fleischmann et al. (2021), Fleischmann et al. (2023)).

The overall construction principle of the KinCon reporter is modular. For the generation of
the genetically encoded KinCon reporter the sequence of the kinase of choice is inserted into the
multiple cloning site (MCS) of a mammalian expression construct. The MCS is flanked by the coding
regions of a split luminescent protein for cellular over-expression experiments of the encoded
hybrid reporter protein (see the KinCon reporter protein domain structure at the top of figure 1C).
In many cases it is sufficient to fuse to the N and C terminus of the full-length kinase sequence the
two fragments of the respective reporter protein (with intervening flexible linker stretches shown
in red, Figure 1B, Q).

In this study we used the protein-fragment complementation fragments (PCA, -F[1] and -F[2])
of the Renilla luciferase (RLuc-PCA) (Stefan et al. (2007)). The KinCon reporters are constructed
to facilitate the intramolecular complementation of appended Rluc PCA fragments. Transient ex-
pressions offer the flexibility to analyze different time frames for KinCon reporter expressions and
drug candidate exposures, in either low or high throughput format in intact cells (Figure 1C). Be-
sides applying wild-type reporters it allows for the ‘personalization’ of the sensor set-up by integrat-
ing patient-specific mutations, co-expressing regulatory proteins, or making systematic changes to
post translational modification sites.

Following KinCon reporter expression along with co-expression of interacting molecules in the
appropriate cell plate format, systematic perturbations can be applied. Following addition of the
luciferase substrate to cells grown in a mono-layer or in suspension cellular bioluminescence sig-
nals are emanating from complemented RLuc PCA fragments (Figure 1B, C) (Rdock et al. (2019),
Mayrhofer et al. (2020)). Light recordings and subsequent calculations of time-dependent dosage
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variations of bioluminescence signatures of parallel implemented KinCon configurations aid in es-
tablishing dose-response curves. These curves are used for discerning pharmacological character-
istics such as drug potency, effectiveness of drug candidates, and potential drug synergies (Figure
1Q). In order to enhance our understanding of kinase dynamics we selected a group of kinases
which activities are altered in different pathological settings. These examples emphasize how mu-
tations, PTMs, PPIs, or kinase drugs induce context-dependent effects on the conformation states
of kinases. In figure 1D we present a schematic and simplified depiction of the kinase’s ON and
OFF conditions for complexes emanating from the kinases BRAF, LKB1, RIPK1 and CDK6. Exem-
plary, we show how protein complex formation and patient mutations contribute or perturb ki-
nase activation cycles. As starting point, we illustrated the high sensitivity of the reporter system
for tracking basal activity conformations of the kinases BRAF-V600E, LKB1, RIPK1, and CDK6 respec-
tively. We showed that transient over-expression of these KinCon reporters for 10h, 16h, 24h or
48h in HEK293T cells delivers consistently of increasing signals for all KinCon reporters (Figure 1E,
Figure Supplement 1A). Immunoblotting cell lysates after luminescence measurements showed ex-
pression levels of the reporters in the range and below the endogenous expressed kinases (Figure
1E).

Next, we analyzed the BRAF kinase activity conformations using wild-type and mutated KinCon
BRAF reporters. The V600E mutation, found primarily in melanoma patients, effectively immobi-
lized BRAF and the respective KinCon reporter in its and opened and active conformation (Davies
et al. (2002), Lavoie et al. (2020), Karoulia et al. (2017), Lito et al. (2013), Rock et al. (2019)). Previ-
ously we have shown that FDA-approved melanoma drugs (Vemurafenib, Encorafenib, Dabrafenib)
and one drug candidate from clinical studies (PLX8394) converted the opened BRAF-V600E reporter
back to the more closed and thus inactive conformation (Rack et al. (2019), Mayrhofer et al. (2020),
Yao et al. (2019)). Using this readout, we showed that at expression levels of the BRAF KinCon re-
porter below the immunoblotting detection limit, one hour of drug exposure exclusively converted
BRAF-V600E to the more closed conformation (Figure 1F, G, Figure Supplement 1B). These data un-
derline that at expression levels far below the endogenous kinase, protein activity conformations
can be tracked in intact cells. This may represent the more authentic (patho)physiological context
and takes the molecular interactions with endogenous factors into consideration.

Next, we adapted the KinCon biosensor technology to investigate the correlation between con-
formation and activity-regulation of key kinase pathways. We analyzed three different kinase path-
ways displaying different modes of kinase ON-OFF regulation.
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Figure 1. Kinase regulation and KinCon reporter technology features. A) Impact of indicated
factors/features (e.g. Protein-protein interactions (PPI), post-translational modifications (PTM) cis-regulatory
elements (CRE)) on the switch-like behavior of kinases. B) Schematic representation of the KinCon reporter
technology using the Renilla Luciferase (Rluc) protein-fragment complementation assay (PCA) as it works for
kinases such as BRAF which contain autoinhibitory modules (AIM); RLuc fragments are N and C terminally
fused to the kinase of interest (with interjacent linker in red) and are labeled with F[1] and F[2]. PPIs, drug
(candidate) or small molecule binding, mutations and/or PTMs may convert the KinCon reporter into different
conformation states. Protein movements are quantified through measuring alterations of bioluminescence
signals using either intact cell populations or lysed cells upon RLuc substrate addition. C) Shown is the
workflow for the KinCon reporter construct engineering and analyses using KinCon technology. The kinase
gene of interest is inserted into the multiple cloning site of a mammalian expression vector which is flanked
by respective PCA fragments (-F[11]-, -F[2]) and separated with interjacent flexible linkers. Transient expression
of the genetically encoded reporter in different multi-well formats allows to vary expression levels and define
a coherent drug treatment plan. Moreover, it is possible to alter the kinase sequence (mutations) or to
co-express or knock-down the kinase, interlinked kinases or proteinogenic regulators of the pathway. After
systematic administration of pathway modulating drugs or drug candidates, analyses of KinCon dynamics
reveal changes in potency, efficacy, and potential synergistic effects of the tested bioactive small molecules.
D) Shown is a simplified schematic representation of the activating mechanisms of BRAF, LKB1, RIPK1 and
CDK6 complexes (with indication of selected regulators or complex components) engaged in altering OFF
(top) or ON (bottom) kinase states. E) Representative KinCon experiments of time-dependent expressions of
indicated KinCon reporter constructs in HEK293T cells are shown (mean +SEM). BRAF-V600E, LKB1, RIPK1 and
CDK6 KinCon reporters were transiently over-expressed in 24-well format in HEK293T cells for 10h, 16h, 24h
and 48h each. Immunoblotting with respective antibodies show expression levels of endogenous and
over-expressed kinases. F) Impact of 1uM PLX8394 exposure (for 1h) on BRAF and BRAF-V600E KinCon
reporters transiently over-expressed for indicated time frames in HEK293T cells is shown. One representative
experiment with the respective immunoblots of in total n=4 independent performed experiments is
presented. G) RLuc PCA values have been normalized on the untreated conditions for every time point. The
mean +SEM of PLX8394 exposure on BRAF dynamics of n=4 experiments is shown. RLU, relative light units.
Statistical significance for G: One-sample t-test (*p<0.05, **p<0.01, ***p<0.001)

Trimeric LKB1 complexes

Upon heterotrimeric complex formation with the pseudokinase STRAD« and the scaffolding pro-
tein MO25, the kinase LKB1 contributes to the activation of AMPK by phosphorylation at the po-
sition Thr172 (Figure 2A). This activation mechanism acts as a key step in regulating glucose and
lipid metabolism in response to cellular energy fluctuations in the cell. Additionally, AMPK has
been shown to have a conserved role in cell polarity. (Shackelford and Shaw (2009), Boudeau et al.
(2004),Baas et al. (2003)). It is the pseudokinase domain of STRAD« that directly interacts with the
kinase domain of LKB1, thus triggering the activation of LKB1‘s tumor-suppressing phosphotrans-
ferase functions (Figure 2B, C). It is assumed that upon ATP binding STRADa occupies an active
conformation. In this scenario LKB1 affinities for binding rise and it binds as a pseudosubstrate.
MO25 acts as scaffold for the kinase dimer to promote the activated LKB1 conformation state (Zegqi-
raj et al. (2009a), Zeqiraj et al. (2009b)). Further, MO25 binding stabilizes this trimeric cytoplasmic
complex (Figure 2A, B) (Boudeau et al. (2003), Baas et al. (2003)).

The capacity of STRAD« for allosterically modulating LKB1 functions through direct interaction
underlines that pseudokinases are more than inert scaffolds. They are involved in modulating
interacting enzyme entities (Rajakulendran and Sicheri (2010), Reiterer et al. (2014)). This is in
line with the common belief that pseudokinases can employ switch-like transitions to regulate
signaling networks (Kung and Jura (2019), Shrestha et al. (2020)). Given the discovery of LKB1
inactivating mutations in diseases like PJS, NSCLC, and colorectal cancer, there is growing interest
in exploring strategies to therapeutically restore the function of mutated LKB1 (Sanchez-Cespedes
(2007), Launonen (2005), Kitajima et al. (2019)).

In contrast to blockers of kinase functions it is more challenging to identify activator molecules
for promoting reactivation of the LKB1-AMPK axis. Thus, we investigated the impact of trimeric
complex formation of LKB1:STRADa:MO25 on downstream activity of LKB1. We adopted the Kin-
Con technology for measuring involved kinase conformation states. First, we transiently over-
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240 expressed the three flag-tagged polypeptides LKB1, STRADa and MO25 in Hela cells. Next, we
20 employed the pT172-AMPK/AMPK ratio as a measure of cellular LKB1 activity, observing the highest
251 increase of LKB1 mediated downstream phosphorylation of AMPKa-T172 following co-expression
22 Of both, MO25 and STRADa respectively. Using the chosen cellular setting and transfection pro-
263 tocol with a 1:1:1 ratio of transfected expression constructs, a similar effect was observed when
254 Solely over-expressing STRADa. No impact on AMPK phosphorylation was observed when MO25
255 Was over-expressed alone (Figure 2D).

256 First, we started to investigate the impact of LKB1 and MO25 co-expression on STRAD« KinCon
27 dynamics. Notable is the fact that only faint STRAD« KinCon signals were detected in the absence
2ss 0f MO25 and LKB1 co-expression. To our surprise we have observed a more than 10-fold elevation
250 Of the reporter signals following co-expression of both interacting partners in HEK293T cells (48h
260 Of expression, Figure 2E). This data supports the notion that STRAD« engages an opened confor-
261 Mation, where C- and N- termini are separated and thus almost no bioluminescence signal can be
262 detected under basal conditions. Upon interaction with LKB1 this conformation shifts to a partially
263 Closed intermediate conformation state. The trimeric complex further promotes structure closing.
2¢a We have observed the same tendency - but to a lower extent - using LKB1 KinCon readouts in the
265 presence and absence of both interacting proteins (Figure 2F).

266 To validate these findings, we then tested the impact of LKB1-binding deficient STRADa-H231A/
267 F233A (HF) mutant proteins (Boudeau et al. (2004)) in co-expression experiments with the LKB1
2¢s KinCon reporter. It has previously been reported that this mutation prevents STRADa-LKB1 dimer
260 and greatly hinders STRADa-MO25-LKB1 trimer formation and thereby AMPK activation (Zegiraj
270 et al. (2009a)). We observed that the so-called HF double mutation of STRAD« is sufficient to abolish
2711 the elevating effect of trimer complex formation (Figure 2G). Therefore, we assume that the active,
272 opened LKB1 conformation is not present upon coexpression of STRADa-HF. This might me due
273 to a lack of onteraction between LKB1 and STRADa-HF. Since both mutations are located at the
27a  LKB1/STRADa binding interface, we hypothesize that allosteric communication between LKB1 and
275 STRAD« is essential for its function (Qing et al. (2022), Zeqiraj et al. (2009a)) (Figure 2H). These
276 findings underline that indeed the trimeric complex formation alters KinCon dynamics. With this
277 reporter technology we monitored the interaction based activities of of LKB1 directly in a living cell
278 Setting.

279 LKB1-loss of function mutations have been identified in a plethora of pathological conditions in-
280 Cluding autosomal diseases and many different forms of cancers (Sanchez-Cespedes (2007), Launonen
281 (2005), Molaei et al. (2022)). Thus, we set out to analyze the impact of patient mutations on alter-
282 ations of involved kinase conformations (Figure 2C).

283 In figure 2C we have listed the assumed functions of the tested mutations. Three 'tool’ muta-
284 tions (K48R, R74A and K78l) (Zubiete-Franco et al. (2019), Qing et al. (2022), Yang et al. (2079)) and
2es  three patient mutations (D176N, D194N and W308C, in red) (Ui et al. (2014), Al Bakir et al. (2023),
286 Islam et al. (2019)) were analyzed.

287 Figure 2H highlights the location of these mutations within LKB1. K78, D176, and D194 are
288 highly conserved residues within the ATP binding pocket and are critical for kinase activity: K78
280 forms a salt bridge with E98 on the aC-helix which stabilizes a functional active conformation, the
200 Catalytic D176 is crucial for phosphoryl transfer, and D194 is part of the DFG motif involved in bind-
201 ing of the Mg?* ion (Fabbro et al. (2015), Meharena et al. (2016)). The residue W308 is part of a
202 hydrophobic cluster and thus surrounded by lipophilic residues (Zegiraj et al. (2009a)). R74 is lo-
203 Cated within the STRADa binding interface, and has been reported to interact with STRADa Q251
204 (Zegiraj et al. (2009a)), and K48 is a solvent-exposed acetylation site (Zubiete-Franco et al. (2019),
205 Zegqiraj et al. (2009a)) located on the back of the N-lobe. Among these mutations, only the W308C
206 Mutation prevented the closing of the LKB1 conformation when co-expressed with STRAD« and
207 MO25 (Figure 2I). This indicates, that the catalytic site residues are critical for enzymatic activity,
206 but play a less important role in maintaining the LKB1 active conformation in the presence of both
200 STRADa and MO25. The W308C mutation has previously been identified to cause a reduction in
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LKB1 stability when compared to the wild-type variant (Islam et al. (2019)), suggesting the polar
side chain of cysteine likely disrupts the interaction network within the hydrophobic cluster. Addi-
tionally, the LKB1 mutant W308C diminishes its catalytic activity (Islam et al. (2019), Boudeau et al.
(2004), Mehenni et al. (1998)), consistent with the observed disruption of the LKB1 active conforma-
tion (Figure 21). These findings suggest that LKB1-W308C lost its ability to form the heterotrimeric
complex, with implications on hindering downstream activation and thus affecting its tumor sup-
pressor functions. Overall these findings underline that KinCon technology can be extended to
track the impact of binary protein complexes and related cancer mutations on kinase activity dy-
namics. Moreover, this data demonstrated that in contrast to the previously published MEK1 and
BRAF KinCons (Fleischmann et al. (2021), Fleischmann et al. (2023), Rock et al. (2019), Mayrhofer
et al. (2020)) the more closed STRADa and LKB1 KinCon conformations represent the more active
kinase states.
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Figure 2. LKB1 emanating complexes and mutation-related kinase activity conformations in intact
cells. A) Simplified view of the LKB1-complex composition which promotes AMPKa signaling via
phosphorylation at position Thr172.B) The crystal structure of the LKB1-STRADa-MO25 complex (PDB code
2WTK (Zegiraj et al. (2009a))) represents a snapshot of trimeric complex assembly. The missense mutations
we have analyzed are indicated in blue (STRAD«) and pale yellow and rose (LKB1). The uncleavable ATP
analogue AMP-PNP bound to the catalytic pocket is depicted in light green sticks. C) Domain organization of
human LKB1, STRADa and MO25 (Accession numbers: Q15831, Q7RTN6, Q9Y376) with indication of the kinase
and pseudokinase domains (KD). Shown in red are tested missense mutations. These are summarized in the
table together with their origin and assumed functions (PM stands for patient mutation) (Zubiete-Franco et al.
(2019), Qing et al. (2022), Yang et al. (2019), Ui et al. (2014),Al Bakir et al. (2023), Islam et al. (2019), Boudeau
et al. (2004)). D) Effect of LKB1 co-expression in the presence and absence of the complex partners MO25 and
STRAD« on the pAMPK/AMPK ratio was determined (HelLa cells, 48h post transfection) (mean +SEM, n=4 ind.
experiments ). Representative western blots showing the presence/absence of interaction partners are
shown below (3x-Flag expressed constructs indicated as flag). E) Illustration of the KinCon reporter setup for
STRAD« KinCon measurements: Effect of LKB1-STRADa-MO25 complex formation on the STRAD« KinCon
reporter (HEK293T cells, 48h post transfection). Bioluminescence signals were normalized on reporter
expression levels and compared to the STRADa-KinCon signal (mean +SEM, n=4 ind. experiments).
Representative western blots are shown below (3x-Flag expressed constructs indicated as flag). F) lllustration
of the KinCon reporter setup for LKB1 KinCon measurements: Effect of LKB1-STRADa-MO25 complex
formation on the LKB1 KinCon reporter conformation. Bioluminescence signals were measured 48h post
transfection, were normalized on protein expression levels and compared to the LKB1-KinCon signal
(HEK293T cells, 48h post transfection) (mean +SEM, n=5 ind. experiments). G) LKB1-KinCon measurements
upon co-expression of wt and mutated STRAD« proteins displaying the binding deficient STRADa mutations
H231A/F233A (HF; see binding interface in Figure 2B/H). Bioluminescence signals were normalized on protein
expression levels and are displayed relative to the LKB1-KinCon signal (HEK293T cells, 48h post transfection)
(mean +SEM, n=4 ind. experiments). One representative immunoblot is shown below (3x-Flag expressed
constructs indicated as flag). H) A more detailed depiction of the trimeric complex from figure 2B highlights
the localization of mutations conferring altered LKB1 functions. LKB1 residues K78, D176, and D194 (pale
yellow sticks) are located within the catalytic cleft and in close proximity to AMP-PNP (light green sticks).
Please note that K79 forms a salt bridge with E98 (dark green sticks) on the aC-helix. STRADa residues H231
and F233 (blue sticks) are located within the LKB1 interaction interface. LKB1 residue W308 (rose sticks) is part
of a hydrophobic cluster of residues and is surrounded by the lipophilic side chains of neighboring residues
(dark green sticks). 1) Impact of LKB1 missense mutations (three patient mutations D176N, D194N and W308C
and three ‘non-patient’ mutations K48R, R74A, K78l) on KinCon conformation changes upon co-expression of
flag-tagged STRAD« and MO25. Bioluminescence signals were normalized on protein expression levels and
are displayed relative to the LKB1-wt KinCon reporter (HEK293T cells, 48h post transfection) (mean +SEM, n=4
ind. experiments). Representative immunoblots are shown below (3x-Flag expressed constructs indicated as
flag). Statistical significance for D, E, F, G, and |: One-sample t-test (*p<0.05, **p<0.01, ***p<0.001)

Mutations and inhibitors induce RIPK1 conformation changes

RIPK1 is a multi-functional protein and central regulator of cell death, inflammatory processes,
and immune responses (Figure 3A). Generally, RIPK1 can promote both, cell survival as well as cell
death, highly depending on the regulatory inputs received from the cellular environment (Degterev
et al. (2019), Clucas and Meier (2023), Silke and Meier (2013)). Genetic alterations of RIPK1 are
linked to immune and autoinflammatory diseases. Examples are missense mutations of aspar-
tate 324, which act as gain-of-function mutations of the protein kinase. Patients harboring these
mutations suffer from chronic auto-inflammation caused by hypersensitive RIPK1 (Lalaoui et al.
(2020), Tao et al. (2020)). Small molecule mediated inhibition of RIPK1 kinase activity were shown
to counteract the necroptotic phenotype in disease models (Tao et al. (2020)). This exemplifies the
potential of RIPK1 targeting drugs for the treatment of certain inflammatory diseases.

We established a KinCon reporter platform for monitoring the conformational changes of ki-
nases and pseudo-kinases involved in the necroptosis signaling pathway. Additionally, we exam-
ined the effects of binding of allosteric kinase blockers to both wild-type and mutant RIPK1 re-
porters. We depict the domain organization of RIPK1, RIPK3 and MLKL. We also included analyses
of RIPK2 - which is not part of the necroptosis pathway (Figure 3B). We cloned the human versions
of these kinase genes into KinCon reporter expression constructs. After transient over-expression
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of these kinases in HEK293T cells, we quantified the basal RLuc PCA signals and compared these
to the basal signal of the BRAF KinCon reporter (Figure 3C).

As starting point, we evaluated whether RIP kinases 1 and 3 activation would manifest in dy-
namic conformational changes. We promoted necroptosis introducing stimuli by activating the
TNFa pathway with TNFa (Christofferson et al. (2012)), while preventing repressive RIPK1 ubiquity-
lation with the SMAC mimetic BV-6 (Li et al. (2011)). To prevent the onset of apoptosis and instead
induce activation of RIPK3, we blocked caspase 8 activation with the caspase inhibitor zZVAD-FMK
(Festjens et al. (2007)) (as illustrated in figure 3A).

We used HEK293T cells and transiently expressed the RIPK1 and RIPK3 KinCon reporters for
48 hours. Bioluminescence readouts of the KinCon reporters were quantified after indicated tim-
ings of TNFa, BV-6, and zZVAD-FMK (TBZ) treatments. We observed successive accumulation of the
respective KinCon reporter protein levels over the treatment time course (Figure Supplement 2A).
We assume that this is caused by blocking of caspase 8, thus preventing the cleavage of both RIPK
KinCon sensors. As consequence we normalized the obtained RLuc PCA signals on reporter expres-
sion levels. In doing so we found that both, the RIPK1 as well as the RIPK3 KinCon reporter showed
markedly reduced bioluminescence in the necroptotic cellular environment (Figure 3D). These re-
sults support the notion that both kinases shift upon pathway activation to a more opened (ON
state) full-length kinase conformation.

Conformational modulation of the RIPK1 KinCon following TNFa pathway activation suggests
that the reporter is incorporated into complex I. We were interested to test the degree to which
the RIPK1 KinCon represents a functional RIPK1 entity, despite the substantial modifications in-
troduced to the polypeptide sequence. For this purpose, we conducted co-expression experi-
ments of various RIPK1 KinCon and flag-tagged RIPK1 variants in RIPK1-deficient HEK293T cells.
We used auto-phosphorylation at S166 as the primary readout for RIPK1 catalytic activity. Our
results showed that the RIPK1 KinCon reporter was not capable of auto-phosphorylation (Figure
Supplement 3B). In the presence of active flag-tagged RIPK1 however, trans-phosphorylation of
the KinCon reporter hybrid proteins was evident (Figure Supplement 3B).

To further deepen our understanding of modes of RIPK1 activation we integrated a collection
of missense mutations into the KinCon reporter. The assumed functions have been listed in Figure
3E. At the kinase N terminus a stretch of phosphorylation sites are attributed to kinase activation.
Auto-phosphorylations at the positions S14, S15 and S166 have been shown to trigger downstream
activation (Laurien et al. (2020), Wang et al. (2018)). The localizations are highlighted in the domain
organization and the structure depiction of RIPK1 dimers (Figure 3E, F). Additional kinases like IKKq,
IKKg, TBK1, and MK2 have been linked to control the phosphorylation and activity state of RIPK1
(Dondelinger et al. (2019), Xu et al. (2018), Jaco et al. (2017)).

Auto-phosphorylation events have been described for the positions S14/15/166 and are critical
for RIPK1 activation (Wang et al. (2021)) thus, we integrated mutations that mimic protein phos-
phorylation (S to E amino acid substitutions) and those that are deficient of phosphorylation (S to
A amino acid substitutions), aiming to track their impact on molecular motions of RIPK1 to simu-
late the more activate kinase status. In addition, the kinase deficient mutant K45A was investigated
(Shutinoski et al. (2016)). Interestingly, K45 in RIPK1 corresponds to K78 in LKB1, highlighting the
importance of this lysine residue in the functionality of various kinases. Our KinCon findings un-
expectedly demonstrated for RIPK1 that in addition to the kinase-deficient mutant (K45A) all the
phosphorylation mimetic (514/15/166E) and phosphorylation preventing (S14/15/166A) mutations
tested led to an opening (ON state) of RIPK1 conformation (Figure 3G).

We also incorporated prevalent patient mutations of RIPK1, observed in distinct inflammatory
diseases, into the KinCon biosensor. Besides the patient mutations of the regulatory caspase 8
cleavage site in RIPK1 (D324A/E/H) we integrated the C601Y missense mutation, which causes im-
munodeficiency and inflammatory bowel disease, into the reporter (Li et al. (2079)). Again, we
observed an opening of RIPK1 conformations with all mutations tested (Figure 3H). This data sup-
ports the idea that in addition to preventing caspase 8 cleavage the mutations at position 324 affect
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the activity conformation of RIPK1. The C601Y substitution promotes RIPK1 opening as well.

We next tested RIPK1 KinCon settings with the allosteric RIPK1 modulators GSK547 and Necro-
statin (Puylaert et al. (2022), Cho et al. (2071)). When bound to RIPK1, both of these compounds
occupy a pocket located behind the ATP binding site (Figure 3, Figure Supplement 2B). The kinase-
deficient mutation (K45A) of the KinCon biosensor displayed the strongest opening of the kinase
conformation. For this reason we used it to benchmark the effects of Necrostation and GSK547.
Application of both compounds for various time points showed that these inhibitors engaged with
all the tested RIPK1 KinCon reporters. We observed an increase of bioluminescence for all RIPK1
inhibitors tested, which reflects the closing of the kinase conformation. The inhibitors also affected
the phosphorylation mimetic (S14/15/166E) and phosphorylation preventing (5S14/15/166A) KinCon
reporters to the more closed configuration when compared to the unrelated control, the MEK1 ki-
nase inhibitor Cobimetinib (Figure 3J, Figure Supplement 3D). This data underlines that application
of these two kinase blockers alter the conformations and we assume scaffolding functions of active
and inactive RIPK1 protomers.
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Figure 3. RIPK1 conformation dynamics. A) Simplified chematic representations of the activation pathways
for apoptosis and necroptosis are depicted. Highlighted are the compounds for the TBZ (10pg/ml TNFa, 10nM
BV-6, and 20nM zVAD-FMK) treatment that induce necroptosis in black. B) Domain organization of human
RIPK1 (accession number: Q13546), RIPK2 (accession number: 043353), RIPK3 (accession number: Q9Y572)
and MLKL (accession number: Q8NB16). C) Basal signals of indicated KinCon reporters following transient
over-expression in HEK293T cells. Bars represent the RLU fold change relative to RIPK1, which have been
normalized on the KinCon protein expression levels (mean +SEM;, n=5 ind. experiments). D) Time-dependent
treatments with TBZ of HEK293T cells transiently expressing wt RIPK1 (left) and wt RIPK3 (right) KinCon
reporters. Bioluminescence signals were normalized on protein expression levels and are displayed relative
to the untreated reporter signals (mean +SEM, n=3 ind. experiments). E) Domain organization of RIPK1 with
indication of missense mutation sites in RIPK1 and their suggested mode of regulation. F) 3D structure of
RIPK1 dimers with functional mutations highlighted (PDB code: 6HHO (Wang et al. (2018))). The kinase-bound
inhibitor GSK547 is depicted as brown sticks G) KinCon reporter signals of functional RIPK1 mutations
(S14/15/166A, S14/15/166E, K45A) measured in a HEK293T RIPK1 knock-out cell line. Bioluminescence signals
were normalized on KinCon protein expression levels and are displayed relative to wt-RIPK1 (mean +SEM, n=5
ind. experiments). H) KinCon reporter signals of RIPK1 mutations originating from patient loci (D324A, D324E,
D324H, C601Y) were measured in HEK293T RIPK1 KO cells. Bioluminescence signals were normalized on
KinCon protein expression levels and are displayed relative to wt-RIPK1 (mean +SEM, n=5 ind. experiments). I)
3D structure of RIPK1 with the inhibitor GSK547, which binds to an allosteric site in close proximity to the ATP
binding site. J) Dynamics of RIPK1 reporters displaying indicated mutations (described in G) upon exposure to
the two RIPK1i (GSK547 and Necrostatin 1uM), and the MEKi Cobimetinib (1pM, control experiment) or DMSO
for 1h. Bars represent the RLU fold-change relative to the DMSO control of the respective reporter (mean
+SEM, n=6 ind. experiments, HEK293T RIPK1 KO). Statistical significance for C, D, G, H and J: One-sample t-test
(*p<0.05, **p<0.01, ***p<0.001)

CDK4 and CDK®6 interactions and conformations

CDK4 and CDK®6 exhibit proto-oncogenic properties that rely on the presence and interaction with
regulatory proteins (Scheiblecker et al. (2020), Eferl and Wagner (2003)). Further, CDK6 functions as
a chromatin-bound factor and transcriptional regulator, thereby promoting the initiation of tumori-
genesis (Kollmann et al. (2013), Semczuk and Jakowicki (2004), Kollmann and SexlI (2013)). These
activities are modulated by its molecular interaction partners, particularly cyclins and proteino-
genic inhibitors. CDKs are protein kinases that regulate a plethora of processes, most importantly
cell cycle progression (Goel et al. (2018)). On the molecular level CDK4/6 control phosphorylation of
the retinoblastoma protein (Rb) which acts as a transcriptional corepressor. This phosphorylation
event leads to the dissociation of the Rb-E2F complex, enabling the transcription of target genes
that facilitate cell cycle progression (Giacinti and Giordano (2006)). To activate CDK4/6 they form a
complex with D-type cyclins (Gao et al. (2020)). The phosphotransferase function of CDK4/6 is in-
hibited by a number of different proteins, including the INK4 family of proteins (p16™k4a, p15Nk4b,
p18NK4c, n19INKid) and members from the Cip/Kip family (p21P', p27XP1) (Figure 4A) (Lin et al.
(2007)). Over 80% of all human cancers (e.g. breast, melanoma and pancreatic cancer) exhibit
alterations of different kind in the CDK4/6-cyclinD-INK4-Rb cascade (Ortega et al. (2002)). Deregu-
lation is caused by alterations of protein expression levels and/or by mutations within the crucial
regulatory proteins. Prime example is the tumor suppressor protein p16/N*4a which is one of the
most frequently mutated genes in human cancers (Romagosa et al. (2011)), Liggett Jr and Sidran-
sky (1998)).

The CDK4/6-cyclinD protein complex has been found to be hyperactivated in many cancers and
therefore promote tumor growth (Choi et al. (2012)). This implies that CDK4/6 serves as a signifi-
cant therapeutic target, and chemical inhibitors have been developed to target CDK4/6 phospho-
transferase activities. Efficient CDK4/6 inhibitors such as Palbocilicb, Ribociclib and Abemacilib are
currently in clinical use against breast cancer (Otto and Sicinski (2017)). A major drawback of these
therapies is the emergence of drug resistance (Fass/ et al. (2022)). The development of precision
medicine oriented polypharmacology therapies is one strategy to avoid the advent of such under-
lying resistance mechanisms (Alvarez-Ferndndez and Malumbres (2020), Yang et al. (2017)). In this
context it needs to be noted that CDK6 possesses a kinase independent function as nuclear tran-
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scriptional regulator (Kollmann et al. (2013), Kollmann and Sexl (2013), Scheicher et al. (2015)). This
involves feedback loops involving STAT3 and cyclinD regulations of p16'NK4 expression (Kollmann
et al. (2013)).

On the molecular level CDK4/6 activity states depend on the formation of PPIs with cyclinD or
p16/NK4a wherein cyclinD activates them, while p16'NK4a inhibits their activity of promoting Rb phos-
phorylation (Figure 4A). Distinct to the other kinases tested here, the CDK protein coding sequences
are composed almost exclusively of the kinase domain with short additional stretches at the N and
C termini (Figure 4B). In contrast to BRAF and RIPK1, the regulatory protein motifs are encoded by
separate polypeptides. In the following, we tested the binary interaction of p16 with CDK4 and
CDKB6. Structures of these complexes have been described. It is evident that substitution of R at
the position 31 of CDK6 with C (R31C) alters the binding affinities. CDK6-R31 is a crucial amino acid
in the binding interface with p16'™*42_ It forms two ionic interactions with p16'N¥42 residues D74 and
D84, which are lost in the R31C mutant (Figure 4C). Experimental data further supports this notion
(Rodriguez-Diez et al. (2074)). We included the respective mutations by generating CDK6-R31C and
also the corresponding R24C expression construct in CDK4 (CDK4-R24C). We conceived a work pro-
gram with PPl and kinase conformation reporters to elucidate the mechanism of dimerization in
relation to drug binding.

We started analyzing binary protein interaction of p16 with CDK4 and CDK6. We fused the two
RLuc fragments that are used in the KinCon reporter to two different proteins, in this case CDK4 or
CDK6 and p16'™4a, When two proteins interact, the two Rluc PCA fragments form a complemented
luciferase and an increased light signal can be detected (Figure 4D, left). Originally the underlying
technology had been developed for the dynamic measurements of regulatory kinase interactions
of PKA (Stefan et al. (2007)). Besides testing the kinase mutants CDK6-R31C and CDK4-R24C we
generated the murine homolog of the p16'N*42 displaying the cancer mutation P40L. P40L showed
reduced affinities for CDKs and thus no longer inhibits phosphotransferase functions of CDK4/6
(Yarbrough et al. (1999)). Upon complex formation of CDKs with p16/N¥42 the C terminal fused RLuc
PCA reporter fragments complement and bioluminescence signals can be detected using intact
cells transiently expressing the hybrid proteins. After co-expression of indicated constructs for 48
hours the cells were subjected to bioluminescence measurements (Figure 4D, Figure Supplement
1C). Using this cell based PPI reporter we observed a significant reduction of p16'N4a:CDK4/6 com-
plex formation when the respective R residues are mutated to C. Integration of the P40L mutation
in p16™NK4 prevented complex formation as expected and further validates the reporter system
applied (Figure 4D).

Next, we set out to test the impact of these CDK mutations on kinase conformations. We have
previously shown that basal CDK4/6 KinCon conformation states can be tracked using the KinCon
reporter technology (Mayrhofer et al. (2020)). Thus, we evaluated if a reduction of interaction
with inhibitory proteins such as p16'Nk4 alter CDK full length conformations. We transiently over-
expressed the wt and mutant CDK4/6 KinCon reporter in HEK293T cells. After 48 hours of expres-
sion the cells were subjected to bioluminescence measurement. The results showed that the re-
duced affinity for p16'NK42 binding alters the conformations of both CDKs. CDK4- and CDK6-p16/NK42
binding deficient mutants exhibited a more opened conformation, as indicated by a decrease in bi-
oluminescence (Figure 4E). In the following, all KinCon reporters have been subjected to analyzes
upon CDK4/6 inhibitor binding (Yam et al. (2018)). Again we used HEK293T cells and transiently
expressed the wt and mutated KinCon reporters for 48 hours. We then exposed the cells to three
clinically applied CDK4/6i at a concentration of 1uM for 3h. Overall we could not detect any major
effects of drug exposure on the dynamics of the four CDK KinCon reporters which showed differ-
ent affinities for p16/N%42 binding (Figure 4F). This data underlines that these breast cancer drugs
which should bind to the active protein kinase conformation did not induce full length CDK4 and
CDK6 conformation changes in the tested cell culture settings.
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Figure 4. CDK4/6 interactions and conformations. A) Schematic illustration of regulatory CDK4/6
interactions and Rb activation. B) Domain organization of CDK4, CDK6 and p16'NK43; tested point mutations
are listed below. C) 3D structure of CDK6 in complex with p16/NK4a_ Crucial amino acids involved in the
interaction of the two proteins are highlighted. The R31C mutant is depicted in orange. (PDB code 1BI7 (Russo
et al. (1998))). D) PPl analyses of the kinases CDK4 and CDK6 with p16'NK4a, Scheme illustrates CDK4/6
hetero-dimer formation with p16'NK4a analyzed using a PCA RLuc PPI reporter system. PPl induces the
complementation of RLuc PCA fragments promoting an increase in bioluminescence. HEK293T cells were
exposed to measurements after 48h of transient reporter expression. Bars represent the RLU fold change of
PPl in relation to wt CDK4/6-p16'NK4a (mean +SEM, n=7 ind. experiments). E) Basal signal of CDK4/6 KinCon
reporters with indicated mutations are shown. Constructs were transiently expressed for 48h in HEK293T
cells. Bars represent the RLU fold change relative to the wt CDK4/6 reporters (mean +SEM, n=6 ind.
experiments). One representative western blot is shown below. F) Dynamics of CDK4/6 reporters expressed
in HEK293T cells for 48h upon exposure to the three indicated CDK4/6i (1pM) or DMSO for 3h. Bars represent
the RLU fold change relative to the DMSO control of the respective reporter (mean +SEM, n=4 ind.
experiments). Statistical significance for D-F: One-sample t-test (*p<0.05, **p<0.01, ***p<0.001)

The inhibitors used in this study, fall into different inhibitor categories (Type |, Type | 1/2, Type
I and Type Ill). The classification of inhibitors is determined by the activation state of the protein
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kinase, particularly the positioning of the DFG-Asp (active in, inactive out) and the aC-helix (active in,
inactive out) (Zhang et al. (2009)). However, type Il (allosteric) inhibitors deviate from this pattern.
They bind adjacent to the ATP-binding pocket, enabling simultaneous binding of ATP and the in-
hibitor (Wu et al. (2015)). Type | inhibitors selectively bind to the active conformation of the kinase,
characterized by DFG in and «Cin. Type | 1/2 inhibitors, on the other hand, bind to the inactive state
of the kinase, represented by DFG in and aC out. Type Il inhibitors bind to the inactive kinase, where
DFG is out and aC can be either in or out (Arter et al. (2022)) (Figure 5A and B). In this study we have
observed alterations of KinCon activity conformations upon changes of protein interactions and
through type | 1/2 and type Il inhibitor binding (Figure 5A-C), but not type | inhibitors. We provide
a summary of the changes in KinCon activity conformations. We have previously shown that for
both kinases of the MAPK pathway, MEK1 and BRAF the respective inhibitors affect primarily the
active kinase conformation (Rack et al. (2019), Mayrhofer et al. (2020), Fleischmann et al. (20217),
Fleischmann et al. (2023)). Exemplarily we illustrate that both kinases which are activated through
cancer patient mutations (BRAF-V600E and MEK1-K57E) can bind the respective kinase inhibitor,
resulting in a change in the activity conformations (Figure 5A, B). The same observation was made
with the MEK1 KinCon upon activation through BRAF phosphorylation (Fleischmann et al. (2023)).
In contrast it was of interest that for all tested RIPK1 activity conformations we observed that the
binding of allosteric RIPK1i promoted a closing of the RIPK1 conformation. In Figure 5B we ex-
emplarily illustrate the impact of inhibitor binding on the kinase-dead version RIPK1-K45A. This
observation underlines that also inactive RIPK1 complexes are target of drug binding with feasible
consequences on kinase scaffolding functions. Kinase activities of CDK4/6 are regulated via de-
fined PPIs (Nebenfuehr et al. (2020)). We showed that reducing binding affinities for p16'Nk42 and
related inhibitory proteins triggers the opening of the kinase conformation (Figure 5C). However,
using the applied standard protocols we have chosen for all KinCon we have not observed that any
of the three clinically applied CDK4/6i tested (such as Abemaciclib) altered the kinase conformation
significantly.

In this context we would like to introduce another kinase example displaying regulatory PPI
controlling the catalytic kinase protomer. When the regulatory (R) and the catalytic (C) subunit in-
teract a tetrameric PKA holoenzyme complex (R2:C2) is inactive. When second messenger cAMP
molecules bind to a R dimer the complex dissociates and catalytic PKA subunits are activated (Tay-
lor et al. (2013)). Mutations such as L206R lock the catalytic subunit in its active state. Thus, in-
teractions of regulatory subunits are significantly reduced (Mayrhofer et al. (2020), Bolger (2022)).
Reduction of binding affinities through the use of the general cCAMP elevating agent Forskolin, trig-
gers conformation changes to the more opened state; mechanistically similar to CDK6-R31C. The
PKAc-L206R KinCon mutant already engages this opened activity conformation state (Figure 5D).
Based on these two examples we assume that binary protein interactions are the prime factors for
altering CDK4/6 and PKA-C activity conformations.

In this study we focused on a collection of well-studied kinase pathways. In this regard it is
important to note that only a limited number of approved drugs target human kinases. We have
depicted this visually by employing an evolutionary-based representation of kinase relationships
in the human kinome tree (Figure 5E). The blue squares indicate the kinase branches displaying
approved kinase blockers. It is evident that numerous protein kinases lack drug candidates and a
more suitable tool for basic research analyses of pathological kinase functions (these kinases are
referred to as the ‘dark kinome') (Berginski et al. (2021), Southekal et al. (2021)). In the kinome
tree illustration we have integrated our growing catalog of KinCon reporters (red dots, Figure 5E).
This represents an extendable toolbox for gaining first but also deeper insights into the dynamic
alterations of kinase activity structures induced by different means of inhibitors, activators or mu-
tations. Systematic implementation of this technology in kinase research programs would assist
in advancing our understanding of kinase and pseudokinase regulations and functions.
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Figure 5. Impact of small bioactive or second messenger molecules and protein interactions on kinase
activity conformations. A+B) Depiction of molecular interactions of a type | 1/2 and type Ill kinase inhibitors
with a kinase domains (N and C lobe). Impact of PLX8394, Cobimetinib GSK547 and on wt and mutated
versions of BRAF, RIPK1 and MEK1 KinCon reporters. 48h after transfection of HEK293T cells with respective
reporter constructs, the cells were treated with the indicated inhibitors for 1h (1pM) followed by Rluc PCA
analyses. Bars represent the RLU fold change relative to the DMSO control of the respective reporter (mean
+SEM, n=4 ind. experiments). C) Depiction of molecular interactions of a type | kinase inhibitor with a kinase
domain (N and C lobe). Impact of p16-deficient binding (R31C mutation) and abemaciclib on indicated CDK6
kinase conformations. 48h after transfection of HEK293T cells with respective reporter constructs, the cells
were treated with the indicated inhibitors for 3h (1uM) followed by Rluc PCA analyses. Bars represent the RLU
fold change in relation to untreated wt CDK6 (mean +SEM, n=4 ind. experiments). D) Bioluminescence
measurement of PKAc wt and L206R KinCon reporters. After 48h of transient expressions in HEK293T cells,
the cells were treated with 20pM of Forskolin for 15 min followed by Rluc PCA analyses. Bars represent the
RLU fold change in relation to untreated wt PKAc (mean +SEM, n=4 ind. experiments). E) Kinase tree displays
kinases for which KinCon reporter have been generated (red dots). The blue squares highlight the kinase for
which approved drugs are available. Generated with kinhub.org/kinmap/. Statistical significance for A-D:
One-sample t-test (*p<0.05, **p<0.01, ***p<0.001)
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direction, only a small fraction of the entire kinome has been targeted by FDA-approved kinase
blockers so far (Lahiry et al. (2010), Politi et al. (2015)). Once a kinase inhibitor is introduced into
clinical use, it often encounters the development of drug resistance mechanisms over time (Long-
ley and Johnston (2005)). Especially in cancer therapy, these facts pose a significant challenge for
identifying and applying efficient small molecule based therapies. Hence, itis crucial to gain a more
extensive insight into the molecular consequences of kinase patient mutations and the evolving
patterns of drug resistance mechanisms. For both endeavors new technologies are indispensable
for identifying, accurately monitoring and targeting the dysregulated functions of kinases on the
cellular level.

Anticipating and unveiling the cellular mechanism of drug actions may help to develop new
treatment concepts by reducing the diminishing of drug efficacies (Chan and Ginsburg (2011), Goetz
and Schork (2018)). The KinCon technology, introduced here, seeks to address the previously men-
tioned challenges. It has the potential to become a valuable asset for tracking kinase functions in
living cells which are hard to measure solely via phosphotransferase activities. Overall, it offers an
innovative solution for understanding kinase activity conformations, which could pave the way for
more novel intervention strategies for kinase entities with limited pharmaceutical targeting poten-
tial. This relates to the tracking of kinase-scaffold and pseudo-kinase functions.

At the beginning of our studies, we underlined the exceptional sensitivity of the KinCon-reporter
system for tracking kinase activity conformations. We demonstrated that at expression levels far
below the endogenous kinase of interest we tracked kinase conformations and their alterations
upon drug exposure (Figure 1E-G). Tracking enzyme activities at low expression levels is paramount
for understanding the details of cellular functions, as many regulatory and spatiotemporal con-
trolled kinase interactions occur under such settings. Such precise measurements are essential
for unraveling and targeting pathological kinases functions.

So far, KinCon reporters have been used to assess different conformational states of kinases
which are altered by phosphotransferase-activating patient mutations and/or kinase drug binding
(Rock et al. (2019), Mayrhofer et al. (2020), Fleischmann et al. (2021), Fleischmann et al. (2023)).
Here we set out to evaluate consequences of inactivating patient mutations on the complex for-
mation emanating from the kinase LKB1. We aimed to broaden the application spectrum of this
reporter technology for investigating how regulatory protein interactions influence the tumor sup-
pressor functions of the kinase LKB1 (Partanen et al. (2012)). This holds particular implication for
inactivated LKB1, as it suggests that activator compounds could potentially counteract its loss-of-
function mutations in cancer. In order to screen or test such re-activator molecules, biolumines-
cence measurements in living cells would be advantageous, since the complex cellular environ-
ment needs to be taken into account. In in-vitro assays, which mostly focus on kinase domain
activities, regulatory protein interactions are neglected. We have confirmed the notion that the
formation of the trimeric complex between STRADa-LKB1-MO25 was necessary for signal propa-
gation to AMPK. In line with this, the LKB1 and STRAD« KinCon bioluminescence signals increased
upon complex formation and vice-versa were reduced back to the baseline signal when a complex
breaking mutation in the pseudokinase STRAD«a was introduced (Figure 2G). Further, we showed
that tracking structural rearrangements induced by patient or regulatory mutations can be quanti-
fied using KinCon technology (Figure 2I). In this setting KinCon measurements of either the kinase
(LKB1) or pseudokinase (STRADa) report trimeric complex formation which is pivotal for cytoplas-
mic kinase pathway activation (Figure 2E, F). In contrast to MEK1 and BRAF KinCons, the closed
STRADa and LKB1 KinCon conformations seem to correspond to the more active kinase units.

In the next step, we expanded the application of the KinCon reporter to RIPK. Examining the
molecular mechanisms that regulate RIPK1 activity poses a challenge because of the intricate na-
ture of the pathway. Functioning as a molecular scaffold, RIPK1 orchestrates signal transduction
by coordinating multiple kinases participating in the NFxB pathway (Moynagh (2005), Meylan et al.
(2004)). Moreover, as a regulator of cell death, RIPK1 forms a substantial amyloid-like signalosome
in conjunction with RIPK3 and various other factors (Degterev et al. (2019)). We have shown that
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indeed pathway activation at different levels of the cascade can be tracked. Further, all tested
mutations converted RIPK1 to the more opened conformation (Figure 3G, H). Both tested and al-
losterically acting RIPK1i converted the KinCon reporter back to a more closed conformation (Figure
3J, 5B). This consistent impact on the open kinase conformation, indicates a uniform response in
altering the enzymes structural state. We assume that this unexpected drug driven transition of
inactive and active RIPK1 complexes to more closed kinase conformation may have relevance for
scaffold functions of RIPK1. Further, we speculate that it may affect drug efficacies.

The proto-oncogenic characteristics of CDK4 and CDK6 depend on expression levels and their
interactions with a collection of regulatory proteins (Lin et al. (2007). We applied the KinCon tech-
nology for tracking activity states of both kinases. We demonstrated that regulatory CDK4/6 inter-
actions induce conformational changes that remain unaltered when clinically used type | inhibitors
bind to them (Figure 4F). However, we would like to state that the involvement of cyclinD interac-
tions will need to be taken into account for follow up studies. In general these observations will be
relevant for targeting other kinases which are disease relevant and are thus current or future tar-
gets for drug discovery efforts. Overall the details of drug binding and action have been elaborated
in last section of the results (Figure 5).

In summary, we have extended the KinCon reporter application spectrum. Besides monitoring
conformational changes induced by drugs and drug candidates, it can be applied to accurately
track the formation of activated and kinase centered protein complexes as well. Apart from its
predictive value, the KinCon technology helps consider or identify cellular factors that impact drug
candidate efficacies. This understanding of the molecular kinase dynamics as they interact with
small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic
strategies, especially considering that many kinase pathways have so far remained untargeted.
The KinCon technology offers a potential avenue to change this.

Materials & Methods

Expression Constructs

All constructs were cloned into the pcDNA3.1 expression vector containing F[1] and F[2] of the
KinCon reporter. Linear DNA fragments were produced by PCR using Q5 DNA Polymerase. After
removing the PCR overhangs with Agel and Hpal (NEB) respectively and subsequent DNA fragment
gel extraction, the PCR insert fragments were isolated using the innuPREP DOUBLEpure Kit (Ana-
lytik Jena). The DNA Fragments were the ligated using T4 DNA ligase (NEB) and amplified using
XL10-gold ultracompetent cells. Plasmids were purified by mini- or midiprep (Quiagen) and veri-
fied by Sanger Sequencing (Microsynth/Eurofins).

Cell culture

HEK293T cells were obtained from ATCC (CRL-11268). HEK293T cells were grown in DMEM supple-
mented with 10% FBS. Transient transfections were performed with Transfectin reagent (Biorad,
1703352). Hela cells were obtained from ATCC (CCL-2). HelLa cells were grown in DMEM supple-
mented with 10% FBS. HEK293T RIPK1 knock-out cell lines were provided by Pascal Meier. Tran-
sient transfections were performed with JetPRIME DNA and siRNA transfection reagent (Polyplus
supplied by VWR, 101000046).

All cells are tested regularly for mycoplasma by PCR using suitable primers and/or Universal My-
coplasma Detection Kit (ATCC, 30-1012K).

Immunoblotting

Cells were lysed in ice-cold RIPA buffer (50mM Tris-HCI pH 7.4, 1% NP-40, 0,25% Na-Deoxycholate,
120mM NaCl, TmM EDTA, 1TmM PMSF, 1ug/mL Leupeptine/ Aprotinin/ Pepstatin , TmM Na,VO,/
Na,P,0,/ NAF) and mixed with 5xLaemmli Buffer. After heating to 95°C for 10 minutes, the samples
were loaded on 10% Acylamide SDS gels for subsequent electrophoresis. Gels were transferred to
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a PDVF membrane (Roth) using either the Trans-Blot SD Semi-Dry Transfer Cell (Bio-rad) or the Mini
Trans-Blot Cell (Biorad), blocked in TBS-T with 2,5% BSA for 30 minutes at room temperature and in-
cubated in the primary antibody over night at 4°C. Blots were incubated with secondary antibodies
for 1h at room temperature and washed with TBS-T before imaging. Imaging was performed with a
FUSION FX (Vilber). Immunoblot images were analyzed using Image) (NHI). The signal of the target
protein was then normalized on the indicated loading control (e.g GAPDH or Vinculin). To normal-
ize AMPK phosphorylation (pAMPK) levels to those of total AMPK, GAPDH-normalized pAMPK levels
were divided by their respective GAPDH-normalized total AMPK levels from the same experiment.
Primary antibodies used were the rabbit anti-GAPDH (14C10) (Cell Signaling, 2118), rabbit anti-
AMPKa (Thr172) (40H9) (Cell Signaling, 2532), rabbit-anti-Phospho-AMPKa (Thr172) (40H9) (Cell
Signaling 2535), rabbit-anti-LKB1 (D60C5) (Cell Signaling 3047), rabbit-anti-Vinculin (Cell Signaling
4650), rabbit-anti-RIP (D94C12) XP (Cell Signaling 3493), rabbit-anti RIP3 (E1Z1D) (Cell Signaling
13526), anti-CDK6 (DCS83) mouse (Cell Signaling 3136S), mouse-anti-FLAG M2 (Sigma Aldrich F3165-
1MQ@), rabbit-anti- Renilla Luciferase (EPR17792) (Abcam ab185926), mouse-anti- Renilla Luciferase
clone 1D5.2 (Millipore MAB4410).

Luciferase PPl Assay

PCA was performed by growing HEK293T cells in DMEM supplemented with 10% FBS in a 24-well
plate format. PCA analyses was performed similarly as previously described in (Réck et al. (2019)).
HEK293T cells were grown in DMEM supplemented with 10% FBS. The indicated RLuc-tagged con-
structs, one with RLuc[F1] and one with RLuc[F2], were transiently over-expressed with TransFectin
reagent (Bio-Rad, 1703352) in a 24-well plate format. Fourty-eight hours after transfection the
medium was carefully aspirated, the cells were washed once with PBS (1TmM Sodium phosphate
ph 7,2; 15mM NaCl) and after addition of 150uL of PBS to each well, transferred to a 96-well plate
(Grainer 96 F-Bottom) . Bioluminescence was measured after addition of 20pL h-Coelentracine
(Nanolight Technology) using the PHERAstar FSX (BMG Labtech) (Measurement start time [s]: 0,2 ;
Measurement interval time [s]: 10,00; Optic module LUM plus; Gain: 3600; Focal height [mm] 12,5
). Data was evaluated using the MARS Data evaluation Software (BMG Labtech).

Luciferase PCA Assay (KinCon Assay)

HEK293T cells, cultured in StableCell DMEM (Sigma Aldrich), were split into 24-well plates at 90.000c/
well and after 24h the indicated plasmids were transfected using TransFectin Lipid reagent (Bio-Rad
1703352) at a total of 50-66ng/well. After 48 hours of Protein expression cells were washed once
with PBS (1TmM Sodium phosphate ph 7,2; 15mM NacCl) and after addition of 150pL of PBS to each
well, transferred to a 96-well plate (Grainer 96 F-Bottom) . Bioluminescence was measured after
addition of 20pL h-Coelentracine (Nanolight Technology) using the PHERAstar FSX (BMG Labtech)
(Measurement start time [s]: 0,2 ; Measurement interval time [s]: 10,00; Optic module LUM plus;
Gain: 3600; Focal height [mm] 12,5). Data was evaluated using the MARS Data evaluation Software
(BMG Labtech).

Inhibitors

Inhibitors used were Palbociclib (PD 0332991) (MCE Med Chem Express, HY-50767), Abemaciclib
(LY2835219) (MCE Med Chem Express, HY-16297A), Ribociclib (LEE011) (MCE Med Chem Express,
HY-15777), PLX8394 (MCE Med Chem Express, HY-18972), GSK-547 (MCE Med Chem Express, HY-
114492), Necrostatin 2 racemate (1S; Nec-1S; 7-Cl-O-Nec1) (MCE Med Chem Express, HY-14622A),
Cobimetinib (GDC-0973; XL518) (MCE Med Chem Express HY13064), TNFa (MCE Med Chem Express,
HY-P7090A), z-VAD(OMe)-FMK (MCE Med Chem Express, HY-16658), BV6 (MCE Med Chem Express,
HY-16701).
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Statistical analyses

The data were analyzed using GraphPad Prism 8.0. If not indicated otherwise, one-sample t-tests
were used to evaluate statistical significance. Values are expressed as the mean +SEM as indicated.
Significance was set at the 95% confidence level and ranked as *p<0.05, **p<0.01, ***p<0.001.

Preparation of structures

The LKB1-STRADa-MO25« (PDB code 2WTK (Zegiraj et al. (2009a))) and CDK6-p16™N*4a (PDB code
1BI7 (Russo et al. (1998))) complex structures were prepared using the default setting of the Pro-
tein Preparation Wizard (Madhavi Sastry et al. (2013), Schrodinger (2019)) in Maestro Schrédinger
release 2019-4 (Schroédinger Release 2019-4: Maestro, Schrodinger, LLC, New York, NY, 2019). The
construct used to generate the LKB1 structure contained the inactivating mutation D194A, intended
to prevent Mg?* binding (Zeqiraj et al. (2009a)). This mutation was converted back to the wildtype
Asp residue using MOE version v2022.02 (Molecular Operating Environment (MOE), 2022.02; Chem-
ical Computing Group ULC, 1010 Sherbrooke St. West, Suite 910, Montreal, QC, Canada, H3A 2R7,
2022). For the calculation of the CDK6 R31C mutant, only the CDK6 residues within 12A of p16/Nk4a
were retained. The mutation was then generated using Osprey v2.2beta (Chen et al. (2009), Gainza
et al. (2013)) as described before (Kaserer and Blagg (2018)). Figures were generated using PyMOL
version 2.5.0 (The PyMOL Molecular Graphics System, Version 2.5.0 Schrédinger, LLC).
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