

1 **Structure and function of the Si3 insertion integrated into the trigger loop/helix of**
2 **cyanobacterial RNA polymerase**

3
4 M. Zuhair Qayyum^{1,4,*}, Masahiko Imashimizu^{1,2,*}, Miron Leanca^{3,*}, Rishi K. Vishwakarma^{1,*},
5 Amber Riaz-Bradley³, Yulia Yuzenkova^{3,5} and Katsuhiko S. Murakami^{1,5}

6 ¹Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology,
7 The Center for Structural Biology, The Pennsylvania State University, University Park, PA
8 16802, USA

9 ²Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced
10 Industrial Science and Technology, Tsukuba, 305-8565 Japan

11 ³The Centre for Bacterial Cell Biology, Newcastle University, UK

12 ⁴Current address: Protein Technologies Center, Inspiration4 Advanced Research Center,
13 Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105,
14 USA

15 *Contributed equally to this work

16 ⁵To whom correspondence should be addressed: kum14@psu.edu (K.S.M.),
17 y.yuzenkova@ncl.ac.uk (Y.Y.)

18
19 **Author Contributions:** Y.Y. and K.S.M. designed the research; M.Z.Q., M.I., M.L., R.K.V. and
20 A.R-B performed the research; M.Z.Q., M.I., Y.Y. and K.S.M. analyzed the data; and M.I., Y.Y.
21 and K.S.M. wrote the paper.

22 **Competing Interest Statement:** The authors declare no competing interests.

23 **Classification:** Biological Sciences/Biochemistry

24 **Keywords:** cyanobacteria, RNA polymerase, transcription, cryo-EM

25 **This PDF file includes:**

26 Main Text

27 Figures 1 to 5

28 Supplemental Figures 1-7, Tables 1-2, Supplemental Movie Legends 1-2

29

30 **Abstract**

31 Cyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA
32 polymerases (RNAPs) with characteristics that distinguish from canonical bacterial RNAPs. The
33 largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, β' 1 and β' 2,
34 and contains the largest known lineage-specific insertion domain, Si3, located in the middle of
35 the trigger loop and spans approximately half of the β' 2 subunit. In this study, we present the X-
36 ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation
37 complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound
38 at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main
39 body of cyRNAP, fits into cavities of cyRNAP and shields the binding site of secondary channel-
40 binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger
41 helix upon iNTP binding at the active site results in a large swing motion of Si3; however, this
42 transition does not affect the catalytic activity of cyRNAP due to its minimal contact with
43 cyRNAP, NusG or DNA. This study provides a structural framework for understanding the
44 evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may
45 provide insights into the molecular mechanism of transcription in specific environment of
46 photosynthetic organisms.

47

48 **Significance statement:**

49 Cellular RNA polymerase (RNAP) carries out RNA synthesis and proofreading reactions
50 utilizing a mobile catalytic domain known as the trigger loop/helix. In cyanobacteria, this
51 essential domain acquired a large Si3 insertion during the course of evolution. Despite its
52 elongated shape and large swinging motion associated with the transition between the trigger
53 loop and helix, Si3 is effectively accommodated within cyRNAP, with no impact on the
54 fundamental functions of the trigger loop. Understanding the significance of Si3 in cyanobacteria
55 and chloroplasts is expected to reveal unique transcription mechanism in photosynthetic
56 organisms.

57

58

59

60

61 **Introduction**

62 Cyanobacteria and chloroplasts of algae and higher plants are characterized by oxygen-
63 evolving photosynthesis and are phylogenetically closely related. These genomes are transcribed
64 by a bacterial-type RNA polymerase (cyRNAP and plastid-encoded RNAP, PEP, respectively)
65 aided by transcription initiation σ factors for recognition of specific promoters (1-3). Although
66 cyRNAPs and chloroplast PEPs retain the fundamental functions of bacterial RNAPs, they
67 possess several distinct characteristics that distinguish them from canonical bacterial RNAPs.

68 First, the largest subunit of cyRNAP is separated into two polypeptides, β' 1 and β' 2,
69 which are encoded by the *rpoC1* and *rpoC2* genes, respectively (Fig. 1A). In *Synechococcus*
70 *elongatus*, which is the cyanobacterium used for the cryo-EM structural study of RNAP
71 described herein, the 624 residue β' 1 and 1,318 residue β' 2 subunits correspond to the amino
72 (N)-terminal one-third and the carboxy (C)-terminal two-thirds of the 1,407 residue β' subunit in
73 *Escherichia coli*, respectively. A junction between the β' 1 and β' 2 subunits is positioned before
74 the conserved region E (4, 5). The β' 1 subunit contains the clamp and the catalytic double-psi- β -
75 barrel domain coordinating a Mg^{2+} ion; the β' 2 subunit contains the rim helix, bridge helix,
76 trigger loop and jaw domain.

77 Second, cyRNAP contains the largest known lineage-specific insertion domain, Si3 (645
78 residues), which spans approximately half the size of the β 2' subunit and is located in the middle
79 of the trigger loop (Fig. 1A) (6, 7). The trigger loop plays a central role in nucleotide selection,
80 RNA synthesis and RNA cleavage during proofreading by cellular RNAPs (8). In the absence of
81 nucleotide triphosphate (NTP) substrate, the tip of the trigger loop is located away from the
82 active site (9). Upon binding of complementary incoming NTP (iNTP) at the active site, the
83 trigger loop folds to form a trigger helix containing two α -helices, which extensively interacts
84 with the base and triphosphate groups of iNTP and facilitates the nucleotidyl transfer reaction
85 (8). The Si3 insertion is found in RNAPs of gram-negative bacteria in the middle of the trigger
86 loop (evolutionarily conserved region G; Fig. 1A). Si3 is composed of repeats of the conserved
87 sandwich-barrel hybrid motif (SBHM). *Escherichia coli* (*E. coli*) RNAP contains two copies of
88 SBHM (SFig. 1A) (10), and sequence analysis indicates that up to seven copies of SBHM are
89 present in the Si3 insertion of cyRNAP (6). The structure and function of the Si3 insertion in *E.*
90 *coli* RNAP have been well characterized; it is involved in stabilizing the open complex and RNA
91 hairpin-dependent (*his*) and -independent (*ops*) transcription pausing (11, 12) and is highly

mobile, with its confirmation being dependent on the folded/unfolded state of the trigger loop/helix and binding of transcription factors (Gre, DksA) at the secondary channel of RNAP (13, 14). In addition, structural and functional analyses of Si3 in cyRNAP have recently been initiated. According to the cryo-electron microscopy (cryo-EM) structure of the cyRNAP promoter complex (15), Si3 forms an “arch” with region 2 of the σ factor, the element involved in opening the DNA duplex at the -10 position of the promoter. This arch stabilizes the promoter complex, and its removal affects the fitness and stress resistance of cyanobacteria. Notably, the Si3- σ contact remains intact upon trigger loop refolding into the trigger helix after iNTP addition to the initiation complex with the short RNA transcript. After transition to the elongation phase, it is unknown whether Si3 becomes mobile in the presence of transcription elongation factors such as NusG and how Si3 affects refolding of the trigger helix and the catalytic activity of RNAP.

In this work, we structurally and biochemically analyzed cyRNAP elongation complex (EC) to understand the functional importance of Si3 in the elongation phase of transcription. We solved the X-ray crystal structure of Si3 and cryo-EM structures of the cyRNAP EC with NusG in the presence and absence of iNTP bound at the active site.

108

109 **Results**

110 **X-ray crystal structure of *Thermosynechococcus elongatus* BP-1 Si3 (TelSi3)**

111 We investigated the structure of the separate Si3 protein of the thermophilic cyanobacterium *Thermosynechococcus elongatus* BP-1 (TelSi3) by X-ray crystallography. The 112 DNA sequence encoding Si3 (residues 345-983) was cloned and inserted into a vector for 113 expression in *E. coli* cells, and the resulting protein was purified to homogeneity. Initial attempts 114 to crystallize TelSi3 were unsuccessful. Limited trypsinolysis revealed that the amino-terminal 115 (N-terminal) 91 residues of TelSi3 are sensitive to proteolysis (SFig. 2A), indicating flexibility, 116 which potentially hindered crystallization. We then cloned and expressed TelSi3, which lacks the 117 N-terminal 91 residues (TelSi3 Δ N, residues 435 to 983) and thus forms large crystals (Fig. 1B) 118 belonging to the P3(2)21 space group (six TelSi3 Δ N copies per asymmetric unit; Fig. 1C). We 119 were unable to generate a TelSi3 Δ N model suitable for molecular replacement based on the 120 protein sequence (e.g., by SWISS-MODEL; SFig. 2C). Therefore, the experimental phase was 121 achieved by the single-wavelength anomalous dispersion (SAD) method using selenomethionine 122

123 (SeMet)-labeled TelSi3 Δ N protein (SFig. 2B). The 3.2 Å resolution experimental density map
124 allowed us to build the structures of four full-length and two partial models of TelSi3 Δ N in the
125 asymmetric unit (STable 1). The AlphaFold (20) structural prediction for TelSi3 Δ N was in close
126 agreement with the X-ray structure, with an RMSD of 1.08 Å (SFig. 2C).

127 TelSi3 Δ N (150 Å in length and 50 Å in width) is longer than the canonical bacterial
128 RNAP (e.g., 110 × 130 Å: *E. coli* RNAP) (SFig. 1B). TelSi3 Δ N comprises seven SBHMs
129 (SBHM-2 to SBHM-8). The X-ray crystal structure of the N-terminal region (81 residues) of Si3
130 from *S. elongatus* PCC 7942 (15) showed an independently folded SBHM (SBHM-1). This
131 region corresponds to the 91 N-terminal residues of TelSi3 (missing in the crystallized
132 TelSi3 Δ N), indicating that cyRNAP contains 8 copies of SBHM within Si3 (Fig. 1C, SFig. 3).

133 TelSi3 has a swordfish-shaped profile, with distinct “tail”, “fin”, “body” and “head”
134 subdomains formed by SBHM-1, SBHM-2/8, SBHM-3/4/5 and SBHM-6/7, respectively (Fig.
135 1D). Notably, the SBHMs in TelSi3 are not structured in a simple tandem arrangement (Fig. 2D
136 and SFig. 3), in contrast to *E. coli* Si3, which contains two independently folded SBHMs
137 connected by a short linker (SFig. 1A) (10). Although each SBHM has a core antiparallel β-sheet
138 topology, connections between the β-sheets vary as the polypeptide chain folds over itself (Fig.
139 1D). In addition, the sequences of SBHM-1, -6, -7 and -8 are continuous; the others (SBHM-2, -
140 3, -4 and -5) contain structural elements from distant regions of the polypeptide sequence. We
141 assessed conformational flexibility by comparing the four full-length TelSi3 Δ N structures from
142 the asymmetric unit using the Si3-fin as a reference for superimposition. This showed substantial
143 conformational variation in the Si3-head, allowing for a 24 Å \square displacement associated with an
144 11° rotation (Fig. 1E).

145

146 **Cryo-EM structure of the *Synechococcus elongatus* RNAP elongation complex with NusG**

147 To investigate the structure of cyRNAP and the dynamics of Si3 at the elongation stage,
148 we determined the cryo-EM single-particle reconstruction structure of the cyRNAP EC (SFig 4,
149 STable 2). NusG was also included in the EC, as most ECs contain NusG under physiological
150 transcription conditions (16, 17), and physical contact between Si3 and NusG was investigated.

151 We used recombinant double affinity-tagged *S. elongatus* cyRNAP to avoid isolation of
152 any chimeric cyRNAP containing *E. coli* RNAP subunit. EC was assembled by mixing cyRNAP,
153 NusG and the DNA/RNA scaffold (Fig. 2A). The preferred particle orientation issue of EC-

154 NusG was resolved by adding CHAPSO (final concentration of 0.8 mM) to the sample before
155 application to the cryo-EM grid (18). The cryo-EM structure was determined with an overall
156 resolution of 3 Å, revealing well-defined cryo-EM densities for cyRNAP, the N-terminal
157 domain of NusG (residues 19-138) and the DNA/RNA hybrid (Fig. 2B). The densities of the
158 single-stranded nontemplate DNA in the transcription bubble and the single-stranded RNA
159 within the RNA exit channel were traceable due to their respective interactions with NusG and
160 the RNA exit channel (Fig. 2C). The carboxyl-terminal (C-terminal) domains of the α subunits
161 and the Kyrpides-Ouzounis-Woese (KOW) domain of NusG were disordered.

162 By contacting both the upstream and downstream DNA duplexes, NusG seemed to
163 maintain a 90° bend in the DNA centered at the RNAP active site (SFig. 5A), which may
164 stabilize the DNA/RNA holding of cyRNAP. To evaluate the role of NusG, we immobilized
165 reconstituted ECs on agarose beads and challenged the complex with 300 mM NaCl in the
166 absence of NusG. There was a significant reduction in the proportion of RNA released from the
167 complex compared with the EC in the presence of NusG (SFig. 5B), indicating its stabilizing
168 effect. Notably, compared with its orthologs from *E. coli*, *Bacillus subtilis* and *Mycobacterium*
169 *tuberculosis*, the cyanobacterial NusG gene possesses a longer and more positively charged loop
170 (residues 110-122) within the N-terminal domain. This loop extends toward the downstream
171 DNA and single-stranded non-template DNA within the transcription bubble (SFig. 5A).
172 Deletion of this cyanobacteria-specific loop ($\text{NusG}^{\Delta 110-122}$) significantly reduced the stabilizing
173 effect of NusG (SFig. 5B).

174

175 **Si3 runs along the cavities of cyRNAP and shields the binding site of DksA/Gre factors**

176 By fitting the models of RNAP (without Si3), NusG and the DNA/RNA scaffold, we
177 elucidated a density corresponding to Si3, which extends starting from the trigger loop and then
178 moves below the rim helix ($\beta'2$ subunit), running along the lobe/protrusion domains (β subunit)
179 and nearly reaching the upstream DNA (Fig. 2B, SMovie 1). The overall structure of cyRNAP is
180 nearly identical to the structures of other bacterial RNAPs, including those of *E. coli* and *M.*
181 *tuberculosis* (19, 20), indicating that Si3 runs along the cavities of RNAP without influencing its
182 general shape or conformation. The crystal structures of Si3 containing both SBHM2-8 and
183 SBHM1 were fitted to their corresponding cryo-EM density. The cryo-EM density of the Si3-
184 head was weak and had a low resolution (Fig. 2B, SFig. 4E), suggesting its mobility.

185 Si3-tail is positioned in front of the rim helix (Fig. 3A). Si3-fin is positioned below the
186 rim helix, and the extended SBHM2 loop (residues 463-471) fills a gap between the $\beta'2$ jaw and
187 β lobe domains. Si3-body is located beside the lobe and protrusion domains of the β subunit, and
188 Si3-head reaches the upstream DNA (Figs. 2B and 3A). Si3-fin contacts the bottom part of the
189 rim helix, but only a few amino acid residues of Si3 contact the main body of RNAP and NusG,
190 suggesting that Si3-tail and Si3-body/head can move their positions without restraint. Si3 spans
191 the entire length of cyRNAP, reaching from the secondary channel to the upstream DNA.
192 However, it likely does not interfere with any basic function of cyRNAP (i.e., DNA binding,
193 RNA elongation, binding of initiation factor σ , or elongation factors NusA and NusG), as it runs
194 along the sidewall of cyRNAP (Figs. 2D and 3A).

195 During transcription, the secondary channel of all cellular RNAPs, including bacterial
196 RNAPs, serves as the only access route between the active site found in the center of RNAP and
197 the external milieu, serving as an entry point for substrate NTPs and an exit route for the RNA
198 3'-end during backtracking (prior to RNA cleavage). In cyRNAP, the secondary channel appears
199 to be open enough to allow these functions. In addition to these basic functions, the secondary
200 channel serves as a binding platform for proofreading factors such as Gre and regulatory factors
201 such as DksA, known as secondary channel binding factors (13, 27). These factors use the RNAP
202 rim helix as a primary binding site, after which the coiled-coil domain is inserted to access the
203 active site of RNAP (Fig. 3B). In cyRNAP, Si3-tail and -fin occupy the front and bottom sides of
204 the rim helix, respectively, thereby preventing any potential association of secondary channel
205 binding factors (Fig. 3A).

206

207 **Dynamic motion of Si3 associated with the transition between the trigger loop and helix** 208 **during iNTP binding at the active site**

209 To investigate the Si3 conformational change associated with trigger helix refolding, we
210 prepared an iNTP-bound form of the EC by extending RNA with 3'-deoxy adenosine
211 triphosphate (3'-dATP), which arrested further RNA extension, followed by cytosine
212 triphosphate (CTP) addition as the iNTP (SFig. 6). The resulting cryo-EM structure was
213 determined at 2.79 \AA resolution (SFig. 6). Although an excess amount of CTP was added to the
214 EC, a substantial population of ECs (~40%) remained unbound to iNTP. However, the iNTP-
215 bound EC could be clearly distinguished from the iNTP-free EC during 3D classification of the

216 cryo-EM data process due to its unique Si3 orientation relative to the main body of cyRNAP
217 associated with iNTP binding (SFig. 6B and 6D). This allowed for a well-defined density map of
218 the cyRNAP active site. In the iNTP-bound EC, the B-site Mg²⁺ (known as the nucleotide-
219 binding metal) was present at the active site. However, the A-site Mg²⁺ (known as the catalytic
220 metal) was absent, likely due to the lack of a hydroxyl group at the 3'-end of the RNA. Trigger
221 helix folding establishes several essential contacts between the iNTP and amino acid residues,
222 including β'2-M339 in contact with the nucleobase and β'2-H343 in contact with the β-
223 phosphate group (SFig. 6D).

224 Trigger helix folding induces significant motion of Si3 relative to the main body of
225 cyRNAP. Specifically, the trigger helix formation pulls a linker connecting the C-terminal half
226 of the trigger helix and the Si3-fin, and during this process, the tip of the rim helix acts as a pivot
227 point, converting the lateral motion of the linker (~10 Å) into the rotational motion of Si3,
228 resulting in an ~50 Å distance and a 24° swing of Si3-head (Figs. 4A and B, SMovie 2). Si3-
229 body/head swings down from the main body of cyRNAP; thus, the β protrusion domain no
230 longer contacts Si3-body/head in the iNTP-bound EC (Fig. 4A). Remarkably, the large swinging
231 of Si3, which is coupled to trigger helix formation (Fig. 4B), did not markedly alter the catalytic
232 properties of cyRNAP (Fig. 4C). Three ECs containing 14, 15 and 16 nucleotide long RNAs
233 (EC14, 15 and 16) were prepared by extending the initial 5'-labelled 13 nt long RNA in the
234 nucleic acid scaffold shown above the summary table. Nucleotide addition, its direct reversal by
235 pyrophosphorolysis, and transcript cleavage were performed for the ECs that formed with either
236 wild-type (WT) or Si3-lacking (ΔSi3) cyRNAP. Rates of the NTP addition, pyrophosphorolysis
237 and RNA hydrolysis were similar between the WT and ΔSi3 cyRNAPs (Fig. 4C and SFig. 7).
238 The relative rates of these reactions also allowed us to attribute a predominant translocation state
239 to the EC tested because nucleotide addition proceeded from post-translocation,
240 pyrophosphorolysis from pre-translocation and hydrolysis from the backtracked state (scheme on
241 Fig. 4C). Comparison of the rates of these reactions for the three complexes used in the present
242 study suggested that EC14 is mainly stabilized in a post-translocated state (characterized by fast
243 NTP addition), EC15 is mainly pre-translocated (fast pyrophospholysis), and EC16 is mainly
244 backtracked/paused (faster hydrolysis), similar to the ECs formed by *Thermus aquaticus* RNAP
245 (21), which doesn't contain Si3, on this template. These results imply that Si3 does not influence
246 the catalysis or translocation equilibrium of cyRNAP.

247 The cryo-EM structure of the cyRNAP-promoter DNA complex containing σ^A (both
248 from *Synechocystis* sp. PCC 6803, which is closely related to the *S. elongatus* PCC 7942 used in
249 this study), promoter DNA and 4-mer RNA was determined by Shen et al. (15); the results
250 showed that Si3-head contacts σ^A domain 2. This interaction clamps the single-stranded DNA
251 around the -10 region, stabilizing the open complex and facilitating transcription initiation.
252 Comparison of the structures of the cyRNAP promoter complex (15) with those of the EC (this
253 study) revealed that Si3-body and -head move toward σ^A domain 2 for interaction but that the
254 other cyRNAP structures, including Si3-tail and -fin and the main body of the RNAP, are nearly
255 identical (Fig. 5A).

256 Si3 wraps around the main body of cyRNAP, which may facilitate RNAP folding,
257 subunit assembly and/or maturation to form an active and mature form of RNAP as DNA and a
258 σ factor that enhances reconstitution of *E. coli* RNAP (22). To test the function of Si3 during
259 cyRNAP assembly and maturation, we performed a refolding experiment with WT, Δ Si3
260 cyRNAP and Δ Si3 cyRNAP in combination with the separately expressed and purified Si3
261 protein (Δ Si3+Si3) (Fig. 5B). The proteins were denatured with 6 M guanidine-HCl and
262 renatured by gradual removal of guanidine-HCl via dialysis against renaturation buffer. The
263 activities of the reconstituted Δ Si3 cyRNAP in the absence and presence of the Si3 protein, as
264 judged by their ability to extend 13 nt long RNA in the assembled duplex with template DNA
265 oligonucleotide, were nearly the same as those of the WT cyRNAP, indicating that Si3 does not
266 play a role in cyRNAP assembly and maturation. This conclusion is supported by the similar
267 yields of recombinant WT and Δ Si3 cyRNAPs routinely isolated from *E. coli*. Remarkably,
268 however, the separate Si3 protein binds Δ Si3 cyRNAP but not the WT cyRNAP when it is added
269 externally to cyRNAP (Fig. 5C). When complex formation between Si3 and Δ Si3 cyRNAP was
270 assessed by a blue native polyacrylamide gel electrophoresis, a band with a lower mobility
271 similar to that of the WT cyRNAP was observed (Fig. 5C, Lane 4). Interaction between WT
272 cyRNAP and Si3 was not detected, i.e., no complex with lower mobility than that of WT
273 cyRNAP was detected (Lane 5).

274

275 **Discussion**

276 In this study, we determined the structures of cyRNAP Si3 by X-ray crystallography (Fig.
277 1) and of cyRNAP EC-NusG with and without iNTP by cryo-EM (Figs. 2 and 4). We
278 investigated the function of Si3 by comparing the catalytic activities of WT and Δ Si3 cyRNAPs.
279 The results of structural and biochemical investigations of cyRNAP showed that Si3 is
280 accommodated within the cavities of cyRNAP without compromising its basic activities, that it
281 shields the site of secondary channel binding proteins, and that it moves within cyRNAP upon
282 binding of iNTP in the active site. Remarkably, a minor structural transition between the trigger
283 loop and trigger helix causes a major swinging motion of Si3 (Fig. 4 and SMovie 2). The
284 presence of Si3 in the middle of the trigger loop/helix did not affect cyRNAP catalysis under our
285 experimental conditions (Fig. 4C). Because of the large conformational change that occurs
286 during the transcription reaction, changes in cyRNAP activity could be observed when the
287 motion of Si3 is hindered, such as by binding of external factors. Further proteomics for
288 searching factors binding Si3, structural, single-molecule and biochemical studies are required to
289 elucidate its role in regulating transcription by cyRNAP, such as by sensing environmental
290 signals (e.g., trafficking of RNAP or transcription-translation coupling) to optimizing cyRNAP
291 activity. Alternatively, the oscillating motion of Si3 might function as a regulatory signal for
292 cellular processes. Photosynthetic cyanobacteria synchronize their gene expression patterns with
293 diurnal light cycles (23). Conceivably, the lack of Si3 movement might trigger initiation of
294 cyRNAP hibernation through binding to cellular factors or its oligomerization during the night.
295 Additionally, Si3 movement might help RNAP propel through the densely packed cytoplasm of
296 cyanobacteria during transcription.

297 The primary proofreading mechanism employed by RNAP involves backtracking
298 followed by hydrolysis of misincorporated nucleotides at the 3'-end of nascent RNA. This
299 process is significantly enhanced by elongation factors that bind to RNAP secondary channel,
300 such as Gre in bacteria, TFS in archaea, and TFIIS in eukaryotes (24). However, unlike the
301 absolute majority of living organisms, cyanobacteria lack Gre factor. The intracellular
302 concentration of Mn^{2+} is two orders of magnitude greater in cyanobacteria than in other bacteria
303 to support photosynthesis (16). It is possible that Mn^{2+} replaces the catalytic Mg^{2+} of RNAP and
304 thus promotes misincorporation of NTPs (25, 26). Potentially as a compensating mechanism,
305 cyRNAP has been shown to possess proficient intrinsic proofreading activity (7, 27). However,
306 this intrinsic activity is still approximately 10 times lower than the Gre-stimulated activity of *E.*

307 *coli* RNAP. Gre-like factors either emerged after the split of cyanobacteria from their last
308 common ancestor with other bacteria or were subsequently lost. The distinctive characteristics of
309 cyRNAP—the absence of Gre/DksA factors and the split of the largest subunit may be
310 intrinsically linked to Si3 acquisition. The Si3-tail/fin position around the rim helix of RNAP
311 prevents association of secondary channel binding proteins, such as GreA and DksA, with
312 cyRNAP (Fig. 3). As secondary channel binding proteins play critical roles in transcription
313 fidelity and regulation in bacteria, the Si3-GreA/DksA trade-off in cyanobacteria might be
314 advantageous but remains to be fully understood. With Si3 acquisition, β' increased to 210 kDa
315 in size, and separation of the original *rpoC* gene into two genes was perhaps beneficial to
316 facilitate expression of such a large protein. The observed change in the position and mobility of
317 Si3 in cyRNAP ECs compared to those in the promoter complex (Fig. 5A) raises questions about
318 the role of Si3 in promoter escape. Si3 may complicate promoter escape by binding to the σ
319 factor; conversely, its large-range movement upon RNA synthesis may contribute to weakening
320 σ association with core and/or promote σ release at transition to elongation stage.

321 The structure corresponding to Si3 of cyRNAP has not been found in other bacterial
322 RNAPs. However, the structure and arrangement of the Rpb9 subunit in eukaryotic RNAPII
323 show remarkable similarity to those of the Si3 subunit of cyRNAP (Fig. 3C). Rpb9 is positioned
324 within a cavity between the rim helix and the lobe domain of RNAPII, akin to the Si3-fin of
325 cyRNAP (highlighted in red in cyRNAP and RNAPII). Rpb9 is a unique subunit found only in
326 RNAPII and plays a critical role in enhancing the accuracy of transcription (28). Although both
327 Rpb9 and Si3-tail are located away from the active site of RNAP, their presence may enhance
328 transcription fidelity, which coordinates RNAP confirmation changes such as RNAP swiveling
329 and/or movement of the rim helix during the nucleotide addition cycle (20). The presence of
330 these unique structural features in different types of RNAPs suggests a common mechanism for
331 enhancing transcriptional accuracy and specificity across different organisms. Further
332 investigation of Si3 function at different stages of transcription and under several growth
333 conditions in cyanobacteria will be required to determine the full array of its biological
334 functions.

335

336 **Experimental Procedures**

337 **Protein preparation**

338 The DNA fragment encoding *Thermosynechococcus elongatus* BP-1 Si3 in the $\beta'2$ subunit
339 (TelSi3, RpoC2 residues 345-983, 69 kDa) was cloned between the NdeI and BamHI sites of the
340 pET15b expression vector to introduce an N-terminal His₆-tag, and the protein was
341 overexpressed in *E. coli* BL21(DE3)/pLysS cells. Transformants were subsequently grown in LB
342 media supplemented with ampicillin (100 μ g/ml) and chloramphenicol (25 μ g/ml) at 37 °C until
343 the OD₆₀₀ reached ~0.5, after which protein expression was induced by adding 0.5 mM IPTG for
344 10 h at 4 °C. The harvested cells were lysed by sonication, and proteins in the soluble fraction
345 were purified by Ni-affinity column chromatography (HisTrap 5 ml column, GE Healthcare).
346 The His₆-tag was removed by thrombin digestion (1 μ g of thrombin per mg of TelSi3 protein)
347 for 20 h at 4 °C, and the protein was further purified by Q Sepharose column chromatography
348 (GE Healthcare) and gel-filtration column chromatography (HiLoad Superdex75 16/60, GE
349 Healthcare). The purified protein was concentrated to 15 mg/ml and exchanged into buffer
350 containing 10 mM Tris-HCl (pH 8.0), 50 mM NaCl and 0.1 mM EDTA.

351

352 **Limited trypsinolysis**

353 Limited trypsinolysis was used to remove flexible regions from TelSi3, and N-terminal amino
354 acid sequencing was used to identify protein fragments suitable for crystallization. The trypsin
355 digests were carried out in 10 mM Tris-HCl (pH 8), 100 mM NaCl, 5% (v/v) glycerol, 0.1 mM
356 EDTA and 1 mM DTT. TelSi3 (10 mg/ml) was digested in a 10 μ l volume with different
357 amounts of trypsin (5 nM to 5 μ M) for 10 min at 25 °C. The reactions were terminated by
358 addition of PMSF. The trypsinized fragments were separated by SDS-PAGE and blotted onto
359 PVDF membranes, and the N-terminal sequences were determined by Edman based protein
360 sequencing. The TelSi3 fragment containing residues 435-938 (TelSi3 Δ N, 60 kDa) was PCR
361 subcloned and inserted into the pET15b expression vector between the NdeI and BamHI sites.
362 The protein was overexpressed and purified as described above for full-length TelSi3.

363

364 **Crystallization**

365 Initial crystals of TelSi3 Δ N were obtained by the hanging-drop vapor diffusion method by
366 mixing equal volumes of the protein solution (20 mg/ml) and crystallization solution (0.1 M
367 sodium citrate [pH 3.5], 0.2 M MgCl₂ and 10% PEG6000) and incubating at 4 °C over the same
368 crystallization solution. The large crystals (0.5 \times 0.2 \times 0.2 mm) used for X-ray data collection

369 were prepared by microseeding by mixing 2 μ l of protein solution, 2 μ l of crystallization solution
370 (0.1 M sodium citrate [pH 5], 0.4~0.6 M MgCl₂, 4~6% PEG3350 and 50 μ g/ml heparin) and 0.2
371 μ l of seed solution. The crystals were then dehydrated by transfer to crystallization solution
372 (without heparin) with increasing concentrations of PEG3350 (in 5% steps) to a final
373 concentration of 20% and incubated for 5-10 h. For all procedures, crystal preparation, growth
374 and dehydration were performed at 4 °C. The crystals were transferred to a crystallization
375 solution with 25% (v/v) propylene glycol as a cryoprotective solution and flash frozen in liquid
376 nitrogen. Selenomethionine-substituted proteins were prepared for SAD analysis by suppressing
377 methionine biosynthesis.

378

379 **X-ray data collection and crystal structure determination**

380 In addition to the four original methionine residues found in TelSi3 Δ N (including an N-terminal
381 methionine residue resulting from cloning into the pET15b vector), three methionine residues
382 were introduced by replacing the leucine residues at 508, 738 and 922 by site-directed
383 mutagenesis to obtain the experimental phase via single-anomalous dispersion (SAD)
384 experiments using SeMet-labeled proteins. The TelSi3 Δ N protein with seven selenomethionine
385 residues (TelSi3 Δ N^{Met⁷}) was generated by suppressing methionine biosynthesis during
386 overexpression of the TelSi3 Δ N^{Met⁷} protein. The protein was purified as described above.

387 Diffraction data were corrected at National Synchrotron Light Source (NSLS) beamline X25.
388 There are six TelSi3 Δ N^{Met⁷} molecules in an asymmetric unit of the crystal belonging to the
389 P3(2)21 space group. The crystallographic datasets were processed using HKL2000 (29). With
390 the anomalous signal from SeMet, the experimental phase (figure of merit: 0.273) was calculated
391 using automated structure solution (AutoSol) in PHENIX (30). Density modification yielded a
392 map suitable for manual model building by Coot (31) followed by structure refinement using
393 PHENIX. The final coordinates and structure factors have been deposited in Protein Data Bank
394 (PDB) under the accession codes listed in Supplementary Table 1.

395

396 **Expression and isolation of the *Synechococcus elongatus* RNAP**

397 The core enzyme of cyRNAP was overexpressed in *E. coli* T7Express cells (New England
398 Biolabs) cells transformed with a pET28a expression vector containing the α , β , β' 1, β' 2 and ω
399 encoding genes (β and β' 2 contain a Strep-tag and His-tag, respectively) (32). The cells were

400 grown in LB media supplemented with kanamycin (50 μ g/ml) at 37 °C until the OD₆₀₀ was ~0.6.
401 Afterward, the cells were induced with IPTG (1 mM) and grown overnight at 22 °C.
402 The biomass was harvested and suspended in lysis buffer (50 mM Tris-HCl (pH 8.0), 250 mM
403 NaCl, 10% glycerol, 20 mM imidazole, and 1 mM β -mercaptoethanol and protease inhibitors
404 from Roche according to the manufacturer's instructions). The cells were sonicated, lysate
405 centrifuged at 18 k x g, after which the supernatant was collected. The protein was purified at
406 4 °C sequentially through a HisTrap (5 mL) column and a Strep-Tactin XT (1 mL) column (both
407 from Cytiva). The latter column was washed with 3 column volumes (CVs) of Buffer W (100
408 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA). The bound protein was eluted by applying
409 1 CV of Buffer E (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 2.5 mM
410 desthiobiotin). The purified cyRNAP (20 μ M) was assessed using SDS-PAGE, dialyzed against
411 Storage Buffer (40 mM Tris-HCl pH 8.0, 200 mM KCl, 1 mM EDTA, 1 mM DTT, and 5%
412 glycerol), and stored at -80 °C.

413

414 **Cloning, expression and isolation of the *Synechococcus elongatus* NusG and Si3 proteins**

415 The NusG was overexpressed in *E. coli* T7Express cells (New England Biolabs) cells
416 transformed with pET28a expression vector where the gene for the C-terminal His₆-
417 tagged *Synechococcus elongatus* NusG was cloned. Cells were grown in LB
418 medium supplemented with kanamycin (50 μ g/ml) at 37°C until OD₆₀₀ ~0.5, then induced with
419 IPTG (1 mM) and grown overnight at 22°C. Culture pellets were sonicated in 50 ml Lysis Buffer
420 (10 mM Tris-HCl pH 7.9, 300 mM KCl, protease inhibitors from Roche according
421 to manufacturer), spun at 18K rpm, and filtered through 0.22 μ M syringe filter. Filtered
422 supernatant was subjected to Ni-NTA affinity chromatography in 10 mM Tris-HCl pH 7.9, 600
423 mM KCl, 5% glycerol with 50 mM imidazole washes and 100 mM imidazole elution. The eluted
424 protein (in 600 mM KCl) was diluted (~100 mM KCl) and applied to a pre-equilibrated with
425 (10 mM Tris-HCl pH 8.0, 100 mM KCl, 5% glycerol) 5 ml Resource Q column, Cytiva. The
426 column was washed with 5 CV of equilibration buffer, and the protein was eluted by applying a
427 linear salt gradient (100-1 M KCl) over 10 CV. The purified NusG (90 μ M) was checked using
428 SDS-PAGE, stored in Storage Buffer (40 mM Tris-HCl pH 8.0, 200 mM KCl, 1 mM EDTA, 1
429 mM DTT, 5% glycerol) at -80 °C. Cyanobacteria-specific loop of NusG (residues 110-122) was
430 deleted by site-directed mutageneses, and the mutant NusG was isolated as the WT protein.

431 The open reading frame encoding separate full-size Si3 domain was cloned into pET28 vector,
432 overexpressed *E. coli* T7Express cells (New England Biolabs) as the N-terminal His₆-tagged
433 protein, and isolated via Ni-NTA affinity chromatography on HisTrap column, Cytiva, similarly
434 to NusG protein. After affinity chromatography the protein was dialysed against the storage
435 buffer (20 Tris-HCl pH 8.0, 200 mM KCl, 1 mM EDTA, 1 mM DTT, 50% glycerol).

436

437 **Sample preparation for cryo-EM**

438 The cyRNAP EC with NusG was reconstituted in vitro by mixing 5 μ M cyRNAP with equimolar
439 amounts of template DNA and RNA (Fig. 2A) in storage buffer at 37 °C for 10 minutes,
440 followed by mixing with 7 μ M nontemplate DNA and incubating further for 10 minutes. The
441 resulting EC was mixed with 7 μ M NusG and incubated for 10 min at 37 °C. CHAPSO (8 mM)
442 was added to the sample just before vitrification. The iNTP-bound EC was prepared by adding 1
443 mM 3'-deoxyATP or CTP to the EC with NusG and incubating for 5 min at 37 °C. Another
444 difference between the EC- and iNTP-bound ECs is the nontemplate DNA used in the scaffold,
445 the latter of which contains complementary transcription bubbles.

446

447 **Grid preparation for cryo-EM**

448 C-flat Cu grids (CF-1.2/1.3 400 mesh, Protochips, Morrisville, NC) were glow-discharged for 40
449 seconds using the PELCO easiGlow™ system prior to application of 3.5 μ l of the sample (2.5 –
450 3.0 mg/ml protein concentration) and plunge-freezing in liquid ethane using a Vitrobot Mark IV
451 (FEI, Hillsboro, OR) with 100% chamber humidity at 5 °C.

452

453 **Cryo-EM data acquisition and processing**

454 Data were collected using a Titan Krios (Thermo Fisher) microscope equipped with a Falcon IV
455 direct electron detector (Gatan) at Penn State Cryo-EM Facility. Sample grids were imaged at
456 300 kV, with an intended defocus range of -2.5 to -0.75 μ m and a magnification of 75,000X in
457 electron counting mode (0.87 Å per pixel). Movies were collected with a total dose of 45
458 electrons/Å². Downstream processing was performed with CryoSPARC (33). The movies were
459 corrected and aligned using patch motion correction followed by patch CTF correction. Particles
460 were picked using a template-based autopicker and multiple rounds of 2D classification to
461 discard bad particles. The 2D classes with EC-NusG particles were selected and used for training

462 the Topaz model (34). The Topaz-extracted particles were subjected to multiple rounds of
463 heterogeneous refinement to remove junk particles. Finally, a nonuniform refinement operation
464 was run on the final set of particles to yield the reconstruction (SFigs. 4 and 6).

465

466 **Structure refinement and model building**

467 A model of the cyRNAP core enzyme was constructed by homology modeling using core RNAP
468 from the cryo-EM structure of the *Syn6803* RNAP- σ^A promoter DNA open complex as a
469 reference model. A model of cyNusG was constructed with the AlphaFold2 gene (35). DNA and
470 RNA models were constructed using the *E. coli* RNAP elongation complex (PDB: 7MKO) as a
471 guide. The cyRNAP gene was manually fitted into the cryo-EM density map using Chimera (36),
472 followed by rigid body and real-space refinement using Coot (31) and Phenix (37).

473

474 ***In vitro* transcription in the assembled elongation complexes**

475 ECs were assembled and immobilized as described (38). Sequences of the oligonucleotides used
476 for the assembly of ECs are shown on Fig.4C. For assembly of ECs used for experiments on Fig.
477 4C, 13 nt long RNA was radiolabelled at the 5'-end with [γ -³²P] ATP and T4 Polynucleotide
478 kinase (New England Biolabs) prior to complexes assembly. Stalled elongation complexes
479 EC14, EC15 and EC16 were obtained by extension of the initial RNA13 in EC13 with 10 μ M
480 NTP sets according to the sequence for 5 min and then were washed with TB to remove Mg^{2+}
481 and NTPs. Reactions were initiated by addition of 10 mM MgCl₂ with or without either 1 μ M
482 NTPs or 250 μ M PPi. Single nucleotide addition and pyrophosphorolysis experiments were
483 performed at 30°C in transcription buffer (TB) containing 20 mM Tris-HCl pH 6.8, 40 mM KCl,
484 10 mM MgCl₂, transcript hydrolysis was done in the same buffer except at pH 7.9. After
485 incubation for intervals of time specified on Figures, reactions were stopped with formamide-
486 containing buffer. Products were resolved by denaturing 23% polyacrylamide gel electrophoresis
487 (PAGE) (8 M Urea), revealed by PhosphorImaging (Cytiva) and visualized using ImageQuant
488 (Cytiva) software. Kinetics data were fitted to a single exponential equation $y=y_0+a^{-bx}$ using
489 SigmaPlot software by non-linear regression to determine rate constants of the reactions.

490

491 **Denaturation and renaturation of cyRNAP**

492 Denaturation of cyRNAP was performed by incubating the purified protein for 20 min in
493 denaturing buffer containing 20 mM Tris-HCl (pH 7.9), 6 M guanidine-HCl, 5% glycerol, 1 mM
494 EDTA, and 10 mM DTT at 30 °C in a 100 μ l volume and with a cyRNAP concentration of 0.5
495 mg/ml. Recombinant Si3 was included in 2.5 molar excess. The proteins were renatured via
496 overnight dialysis at 7 °C against renaturing buffer containing 20 mM Tris-HCl (pH 7.9), 200
497 mM KCl, 10% glycerol, 2 mM MgCl₂, 10 μ M ZnCl₂, 1 mM EDTA, and 1 mM DTT. Aliquots of
498 the renaturation mixture and their serial dilutions were used for nucleotide addition experiments
499 on assembled constructs containing template DNA and RNA oligonucleotides. A 13 nt RNA
500 oligonucleotide was radiolabeled at the 5' end with [γ -³²P] ATP and T4 polynucleotide kinase
501 (New England Biolabs) prior to EC assembly. The indicated on the Fig. 5C amount of assembly
502 #
503 mixture was incubated with the RNA-DNA duplex for 5 min at room temperature, then 10 μ M
504 GTP was added for 10 minutes at 30°C. Reactions were stopped and products analyzed as
505 before.

506

507 **Complex formation between the Si3 protein and core cyRNAP**

508 For the binding experiment 150 nM core enzymes and 1.5 μ M Si3 proteins were incubated for 10
509 minutes at 4°C in 20 mM Tris-HCl pH 7.9, 40 mM KCl, mixed with loading dye (final
510 concentration is 50mM BisTris pH 7.2, 50mM NaCl, 10% glycerol, 0.001% Ponceau S) and
511 resolved on the NativePAGE 3-12% Bis-Tris gel, Invitrogen using running buffers prepared
512 according to the manufacturer, for 90 minutes at 150V. Gel was fixed with 50% methanol,10%
513 acetic acid solution, and additionally de-stained by boiling in 8% acetic acid.

514

515 **Salt stability of elongation complexes**

516 Elongation complex was assembled using oligos shown on SFig. 5B. 14 nt RNA in ECs on was
517 radiolabelled at the 3' end by incorporation of [α -³²P] GTP into original 13 nt long RNA. To
518 examine the stability of ECs, ECs bound to the streptavidin sepharose beads, Cytiva via strep tag
519 on β subunit of cyRNAP, were incubated in TB containing 300 mM KCl at 30°C for times
520 specified on SFig. 5B. WT or mutant NusG^{Δ110-122} were added where specified at 1 μ M final
521 concentration. Supernatant and total fractions were collected for analysis. Reactions were
522 stopped and products analyzed as before.

523

524 **Figure legends**

525 **Fig. 1. X-ray crystal structure of TelSi3ΔN.** (A) The thick bars represent the primary sequences
526 of the largest subunits of the bacterial, chloroplast and archaeal RNAPs. Domains (Si3, green
527 boxes) and structural motifs (RH, rim helix; BH, bridge helix; TL, trigger loop) are labeled. The
528 lettered boxes represent evolutionarily conserved regions. The split ends of the two polypeptides
529 are indicated by black triangles. (B) Crystals of TelSi3ΔN. (C) Structure of TelSi3ΔN. Six
530 molecules of TelSi3ΔN (I~VI) are present in the asymmetric unit. Molecules are depicted as
531 cartoon models with transparent surfaces, and each molecule is denoted by a unique color and
532 labeled. (D) The backbone is colored as a ramp from the N-terminus to the C-terminus, from
533 blue/cyan/green/yellow/orange/red. SBHMs are labeled 1 to 8, and subdomains (tail, fin, body
534 and head) are indicated. The TelSi3ΔN structure lacks SBHM-1, and the trigger loops (TL_N and
535 TL_C) are depicted as blue oval and pink cylinders, respectively, with black lines showing their
536 connections with TelSi3ΔN. (E) Molecules 1 and 3 of TelSi3ΔN are superimposed via fin
537 subdomains, revealing flexibility in the orientation between the fin and body/head subdomains.

538

539 **Fig. 2. Cryo-EM image of the cyRNAP elongation complex with NusG.** (A) The sequence of
540 the DNA/RNA scaffold used for the EC-NusG assembly (template DNA, green; nontemplate
541 DNA, yellow; RNA, red). DNA and RNA regions lacking cryo-EM density are underlined. (B)
542 Orthogonal views of the cryo-EM density map. Subunits and domains of cyRNAP, DNA, RNA
543 and NusG are colored and labeled (RH, rim helix; prot, protrusion; downDNA, downstream
544 DNA; upDNA, upstream DNA). The split ends of the β'1 and β'2 subunits are indicated by
545 white circles. The SBHMs in Si3 are labeled 1 to 8. (C) Cryo-EM density of DNA, RNA and
546 NusG are shown with a transparent RNAP density map (ntDNA, nontemplate DNA; ssRNA,
547 single-stranded RNA). The 5' and 3' ends of the RNA are indicated. The cryo-EM density map
548 is colored according to B. (D) Efficient storage of an elongated and large Si3 molecule on the
549 surface of cyRNAP. The structure of EC-NusG is shown as a transparent surface, and the Si3,
550 DNA/RNA and trigger loop (TL_N, TL_C) regions are shown as cartoon models. SBHMs are
551 labeled 1 to 8, and subdomains (tail, fin, body and head) are indicated. The active site of RNAP
552 is designated by catalytic Mg²⁺ (magenta sphere).

553

554 **Fig. 3. Comparison of the structures of cyRNAP, *E. coli* RNAP and eukaryotic RNAPII.**
555 The structures of cyRNAP (A), *E. coli* RNAP with GreB (PDB: 6RIN, B) and yeast RNAPII
556 (PDB: 7ML0, C) are shown as transparent surfaces with domains, subunits and a factor
557 described in the main text.

558
559 **Fig. 4. Si3 movement during the trigger helix folding.** (A) Cryo-EM maps of the iNTP-bound
560 (gray) and iNTP-free (light blue) states of the EC-NusG strains (RH, rim helix; prot, protrusion;
561 upDNA, upstream DNA). Arrows indicate movement of Si3 by trigger helix folding. (B)
562 Conformational change in Si3 during the transition from the trigger loop (TL) to the trigger helix
563 (TH) by iNTP (blue stick model) binding. The red and black arrows indicate movements of the
564 TL/TH-Si3 linker and Si3, respectively. A pivot point for converting the movement of the linker
565 to the swing motion of Si3 is shown as a blue transparent circle. (C) Si3 does not influence
566 catalysis by cyRNAP. Scheme and sequence of the assembled elongation complex used for
567 experiments with WT and Δ Si3 RNAPs. The table represents the summary of reaction rate
568 constants of single nucleotide addition (k_{NTP}), pyrophosphorolysis (k_{PPi}) and transcript hydrolysis
569 (k_{OH^-}) in EC14, EC15 and EC16 by WT and Δ Si3 RNAPs. The values that follow the \pm sign are
570 the values of standard deviation derived from three independent experiments. The shade of green
571 in the cells reflects the value of the constant, i.e., darkest shade corresponds to the highest rate.
572 The right column shows the predominant translocation states of the elongation complexes, as
573 deduced from the relative rates of reaction. Scheme of RNAP oscillation in translocation
574 equilibrium and the architecture of the nucleic acid scaffold of the elongation complex in
575 post-translocation, pre-translocation and backtracked states, as adapted from (21). The
576 template DNA, the non - template DNA and the RNA are green, yellow and pink, respectively.
577 Catalytic Mg^{2+} ions and the $i+1$ site of the RNAP active center are shown by a red circle and a
578 blue rectangle, respectively.

579
580 **Fig. 5. Si3 functions.** (A) The cryo-EM structures of cyRNAP in the EC (left) and the promoter
581 complex (right, PDB: 8GZG). The contact between Si3-head and σ^A in the promoter complex is
582 indicated by a black circle. (B) Si3 is not required for cyRNAP assembly or maturation. WT and
583 Δ Si3 cyRNAPs were denatured and subsequently renatured, after which their activity was tested
584 on the construct mimicking the DNA template–RNA transcript duplex structure by their ability

585 to incorporate the next nucleotide, G, dictated by the template. Twofold serial dilutions of the
586 assembly mixture with the indicated initial amounts of core enzymes were tested. The vertical
587 lines indicate the positions where the parts of the same gel were combined. (C) The recombinant
588 Si3 protein can bind Δ Si3 cyRNAP but not WT cyRNAP. The complex formation between the
589 indicated proteins was analyzed by blue native polyacrylamide gel electrophoresis. The vertical
590 line indicates the position where two parts of the same gel were combined.

591

592 **Data, Materials, and Software Availability.** The X-ray crystallographic density map and the
593 refined model have been deposited in Protein Data Bank (www.rcsb.org) under accession
594 number 8EMB. The cryo-EM density map and the refined model have been deposited in
595 Electron Microscopy Data Bank (www.ebi.ac.uk/emdb/) under accession numbers EMD-40874
596 (iNTP-free EC-NusG) and EMD-42502 (iNTP-bound EC-NusG) and in Protein Data Bank
597 (www.rcsb.org) under accession numbers 8SYI (iNTP-free EC-NusG) and 8URW (iNTP-bound
598 EC-NusG). All study data are included in the article and/or SI Appendix.

599

600 **ACKNOWLEDGMENTS**

601 We thank Jean-Paul Armache at Penn State for the technical support. We thank the National
602 Synchrotron Light Source (NSLS) Brookhaven National Laboratory for X-ray data collection.
603 We would like to acknowledge the Penn State Huck Life Science Institutes Cryo-EM Core
604 Facility for use of the Talos Arctica G2 TEM and the Vitrobot Mark IV and Sung Hyun Cho for
605 data collection. We thank Yu Zhang at the Shanghai Institute of Plant Physiology and Ecology
606 for kindly sharing the coordinates of *Synechocystis* sp. PCC 6803 RNAP. This work was
607 supported by a National Institutes of Health grant (R35 GM131860 to K. S. M.) and a
608 Biotechnology and Biological Sciences Research Council grant BB/W017385/1 to Y.Y.

609

610 **REFERENCES**

- 611 1. T. Borner, A. Y. Aleynikova, Y. O. Zubo, V. V. Kusnetsov, Chloroplast RNA
612 polymerases: Role in chloroplast biogenesis. *Biochim Biophys Acta* **1847**, 761-769
613 (2015).
- 614 2. T. Pfannschmidt *et al.*, Plastid RNA polymerases: orchestration of enzymes with different
615 evolutionary origins controls chloroplast biogenesis during the plant life cycle. *J Exp Bot*
616 **66**, 6957-6973 (2015).

617 3. G. J. Schneider, N. E. Turner, C. Richaud, G. Borbely, R. Haselkorn, Purification and
618 characterization of RNA polymerase from the cyanobacterium *Anabaena* 7120. *J Biol
619 Chem* **262**, 14633-14639 (1987).

620 4. W. Q. Xie, K. Jager, M. Potts, Cyanobacterial RNA polymerase genes *rpoC1* and *rpoC2*
621 correspond to *rpoC* of *Escherichia coli*. *J Bacteriol* **171**, 1967-1973 (1989).

622 5. G. J. Schneider, R. Haselkorn, RNA polymerase subunit homology among cyanobacteria,
623 other eubacteria and archaebacteria. *J Bacteriol* **170**, 4136-4140 (1988).

624 6. W. J. Lane, S. A. Darst, Molecular evolution of multisubunit RNA polymerases:
625 sequence analysis. *J Mol Biol* **395**, 671-685 (2010).

626 7. A. Riaz-Bradley, K. James, Y. Yuzenkova, High intrinsic hydrolytic activity of
627 cyanobacterial RNA polymerase compensates for the absence of transcription
628 proofreading factors. *Nucleic Acids Res* **48**, 1341-1352 (2020).

629 8. M. Z. Qayyum, Y. Shin, K. S. Murakami, Encyclopedia of Biological Chemistry III.
630 10.1016/b978-0-12-819460-7.00252-8, 358-364 (2021).

631 9. A. C. Cheung, P. Cramer, A movie of RNA polymerase II transcription. *Cell* **149**, 1431-
632 1437 (2012).

633 10. M. Chlenov *et al.*, Structure and function of lineage-specific sequence insertions in the
634 bacterial RNA polymerase beta' subunit. *J Mol Biol* **353**, 138-154 (2005).

635 11. J. Y. Kang *et al.*, RNA Polymerase Accommodates a Pause RNA Hairpin by Global
636 Conformational Rearrangements that Prolong Pausing. *Mol Cell* **69**, 802-815 e805
637 (2018).

638 12. I. Artsimovitch, V. Svetlov, K. S. Murakami, R. Landick, Co-overexpression of
639 *Escherichia coli* RNA polymerase subunits allows isolation and analysis of mutant
640 enzymes lacking lineage-specific sequence insertions. *J Biol Chem* **278**, 12344-12355
641 (2003).

642 13. M. Abdelkareem *et al.*, Structural Basis of Transcription: RNA Polymerase Backtracking
643 and Its Reactivation. *Mol Cell* **75**, 298-309 e294 (2019).

644 14. Y. Shin *et al.*, Structural basis of ribosomal RNA transcription regulation. *Nat Commun*
645 **12**, 528 (2021).

646 15. L. Shen *et al.*, An SI3-sigma arch stabilizes cyanobacteria transcription initiation
647 complex. *Proc Natl Acad Sci U S A* **120**, e2219290120 (2023).

648 16. R. A. Mooney *et al.*, Regulator trafficking on bacterial transcription units in vivo. *Mol
649 Cell* **33**, 97-108 (2009).

650 17. A. V. Yakhnin, M. Kashlev, P. Babitzke, NusG-dependent RNA polymerase pausing is a
651 frequent function of this universally conserved transcription elongation factor. *Crit Rev
652 Biochem Mol Biol* **55**, 716-728 (2020).

653 18. J. Chen, A. J. Noble, J. Y. Kang, S. A. Darst, Eliminating effects of particle adsorption to
654 the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA
655 polymerase and CHAPSO. *J Struct Biol X* **1** (2019).

656 19. M. Z. Qayyum, V. Molodtsov, A. Renda, K. S. Murakami, Structural basis of RNA
657 polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. *J
658 Biol Chem* **297**, 101404 (2021).

659 20. R. K. Vishwakarma, M. Z. Qayyum, P. Babitzke, K. S. Murakami, Allosteric mechanism
660 of transcription inhibition by NusG-dependent pausing of RNA polymerase. *Proc Natl
661 Acad Sci U S A* **120**, e2218516120 (2023).

662 21. A. Bochkareva, Y. Yuzenkova, V. R. Tadigotla, N. Zenkin, Factor-independent
663 transcription pausing caused by recognition of the RNA-DNA hybrid sequence. *EMBO J*
664 **31**, 630-639 (2012).

665 22. R. Fukuda, A. Ishihama, Subunits of RNA polymerase in function and structure;
666 Maturation in vitro of core enzyme from Escherichia coli. *J Mol Biol* **87**, 523-540 (1974).

667 23. G. Dong, S. S. Golden, How a cyanobacterium tells time. *Curr Opin Microbiol* **11**, 541-
668 546 (2008).

669 24. R. C. Conaway, S. E. Kong, J. W. Conaway, TFIIS and GreB: two like-minded
670 transcription elongation factors with sticky fingers. *Cell* **114**, 272-274 (2003).

671 25. J. Hurwitz, L. Yarbrough, S. Wickner, Utilization of deoxynucleoside triphosphates by
672 DNA-dependent RNA polymerase of E. coli. *Biochem Biophys Res Commun* **48**, 628-635
673 (1972).

674 26. S. K. Niyogi, R. P. Feldman, Effect of several metal ions on misincorporation during
675 transcription. *Nucleic Acids Res* **9**, 2615-2627 (1981).

676 27. M. Imashimizu, K. Tanaka, N. Shimamoto, Comparative Study of Cyanobacterial and E.
677 coli RNA Polymerases: Misincorporation, Abortive Transcription, and Dependence on
678 Divalent Cations. *Genet Res Int* **2011**, 572689 (2011).

679 28. N. K. Nesser, D. O. Peterson, D. K. Hawley, RNA polymerase II subunit Rpb9 is
680 important for transcriptional fidelity in vivo. *Proc Natl Acad Sci U S A* **103**, 3268-3273
681 (2006).

682 29. Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation
683 mode. *Methods Enzymol* **276**, 307-326 (1997).

684 30. D. Liebschner *et al.*, Macromolecular structure determination using X-rays, neutrons and
685 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877
686 (2019).

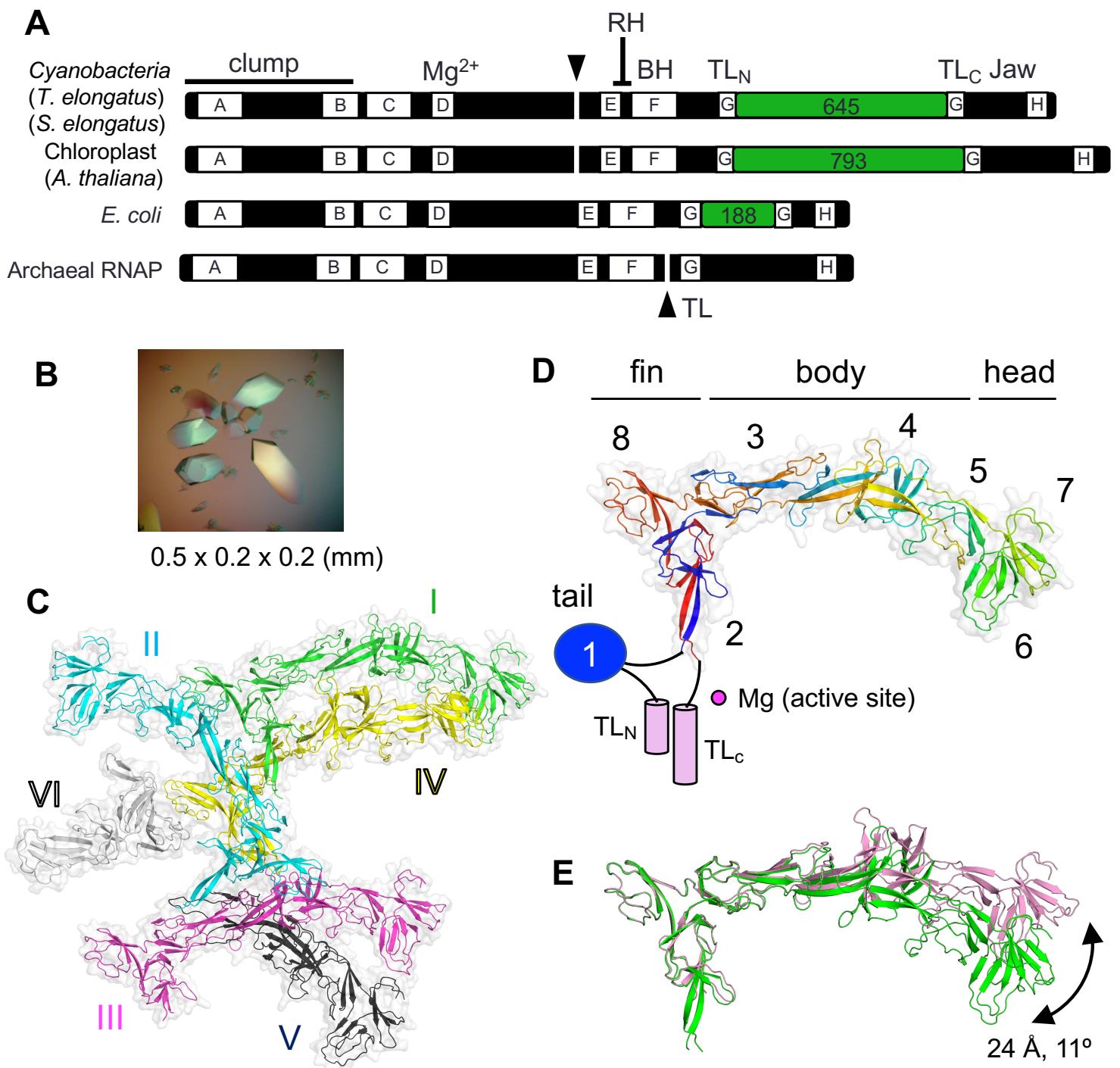
687 31. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot.
688 *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

689 32. L. Shen *et al.*, A SI3- σ arch stabilizes cyanobacteria transcription initiation complex.
690 *bioRxiv* 10.1101/2022.10.06.511230, 2022.2010.2006.511230 (2022).

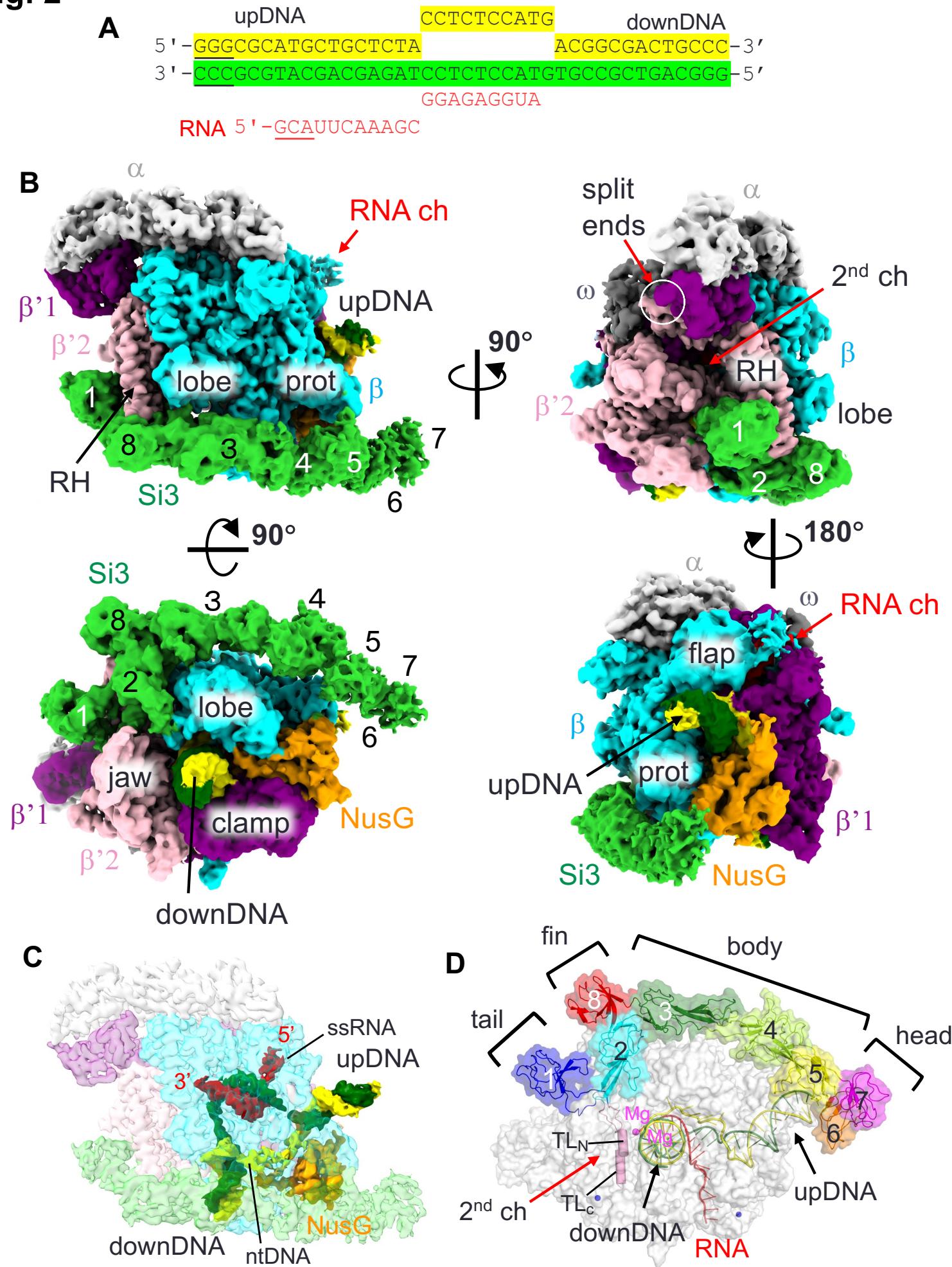
691 33. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms for
692 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296 (2017).

693 34. T. Bepler *et al.*, Positive-unlabeled convolutional neural networks for particle picking in
694 cryo-electron micrographs. *Nat Methods* **16**, 1153-1160 (2019).

695 35. J. Jumper *et al.*, Applying and improving AlphaFold at CASP14. *Proteins* **89**, 1711-1721
696 (2021).


697 36. E. F. Pettersen *et al.*, UCSF Chimera--a visualization system for exploratory research and
698 analysis. *J Comput Chem* **25**, 1605-1612 (2004).

699 37. P. V. Afonine *et al.*, Real-space refinement in PHENIX for cryo-EM and crystallography.
700 *Acta Crystallogr D Struct Biol* **74**, 531-544 (2018).


701 38. Y. Yuzenkova *et al.*, Stepwise mechanism for transcription fidelity. *BMC Biol* **8**, 54
702 (2010).

703

Fig. 1

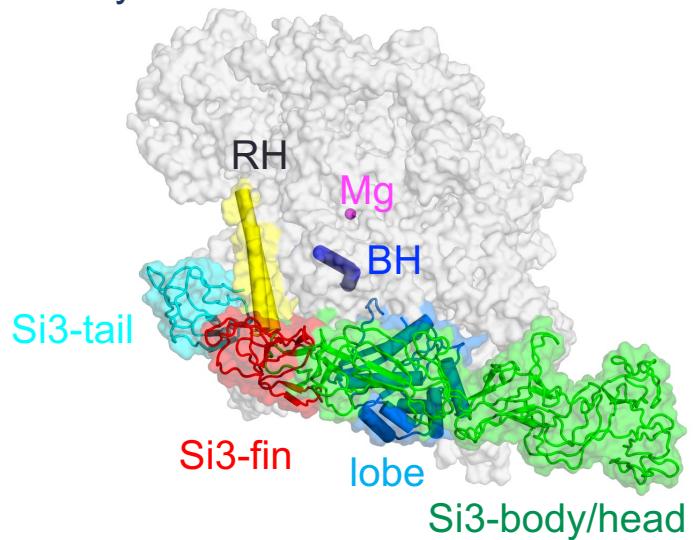


Fig. 2

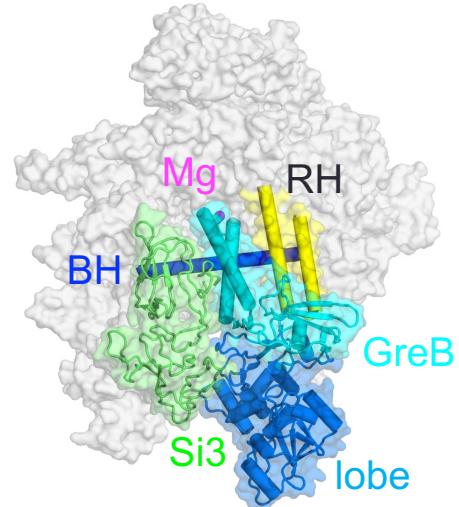
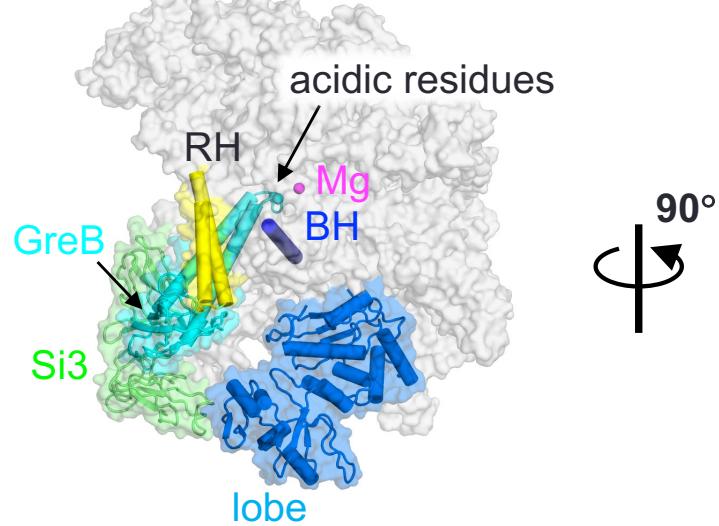
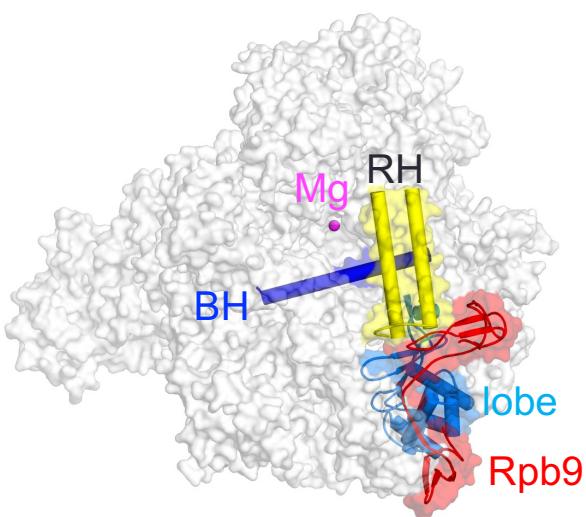
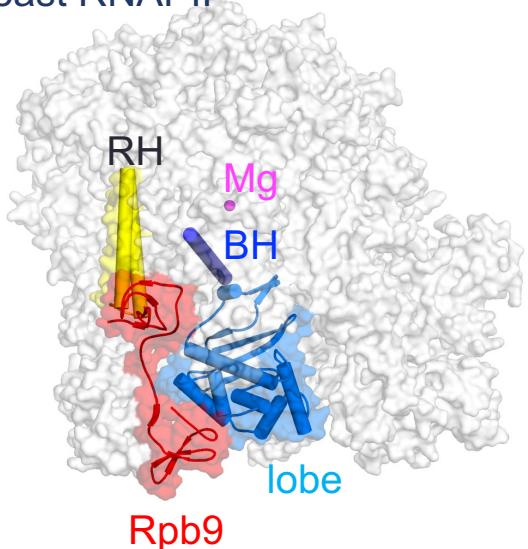
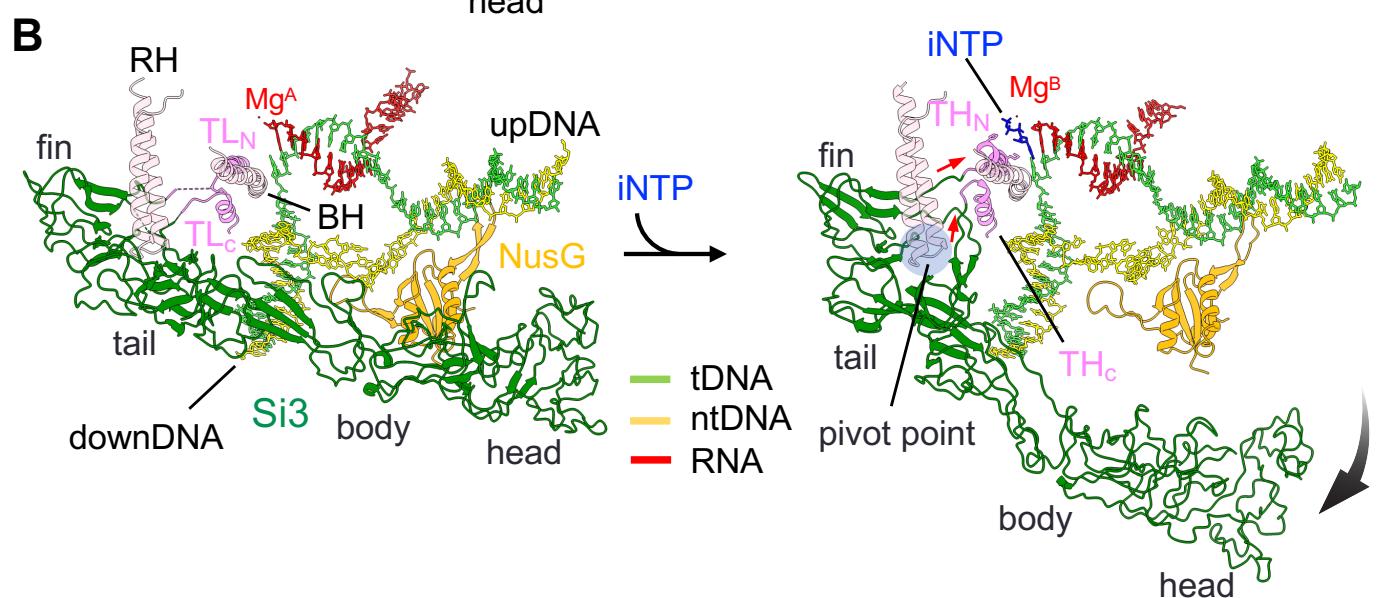
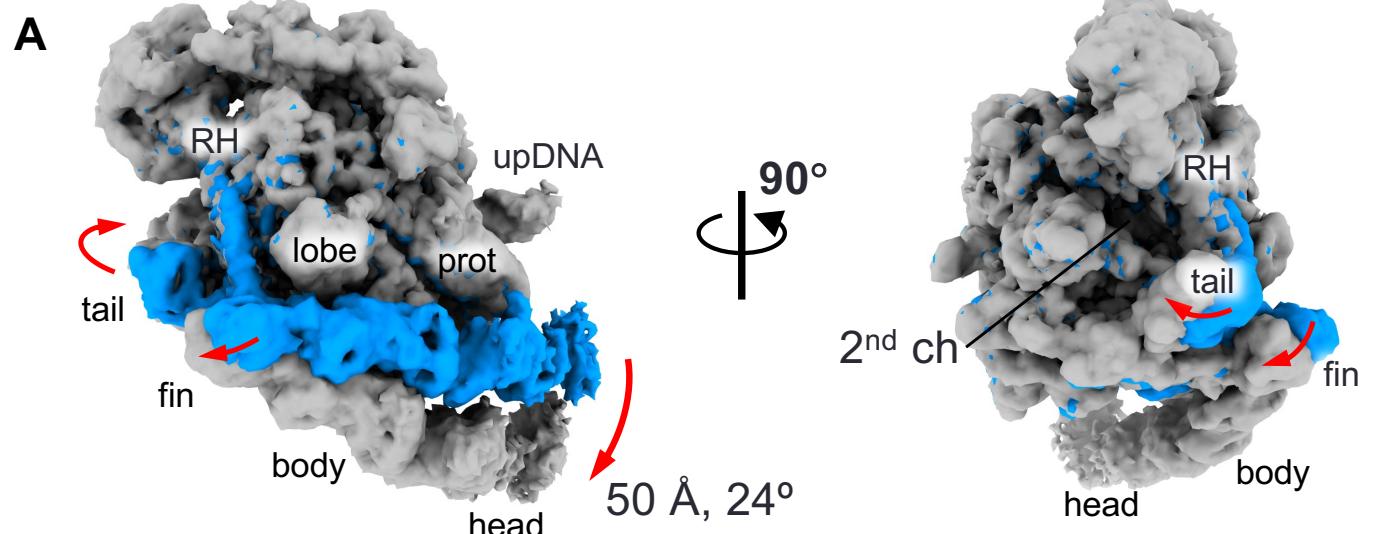



Fig. 3



A cyRNAP



B *E. coli* RNAP-GreB

C Yeast RNAPII

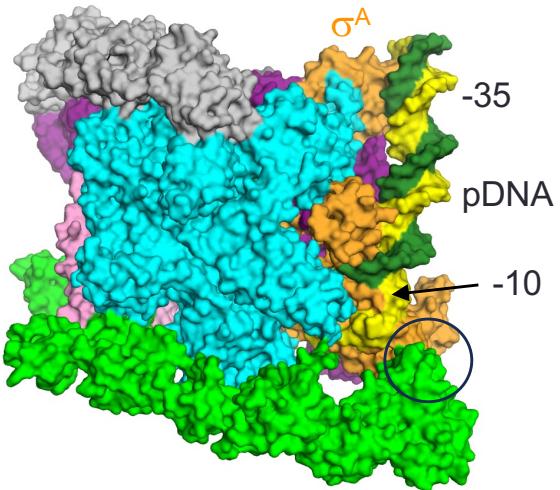
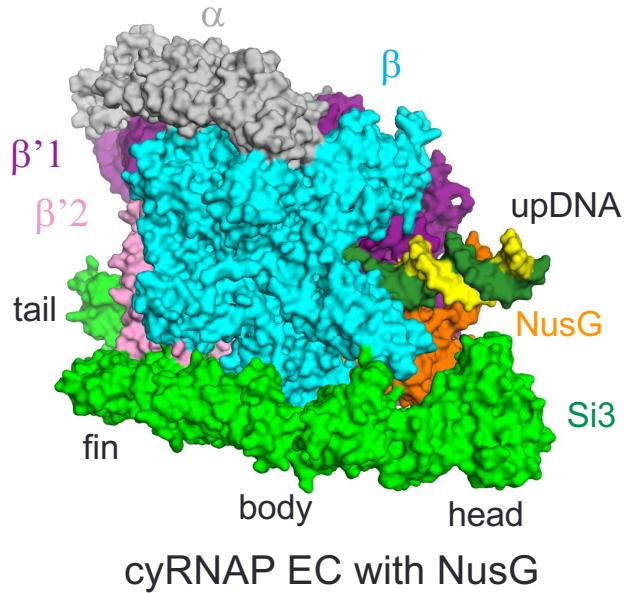



Fig. 4

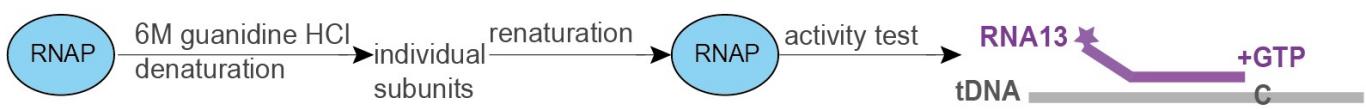
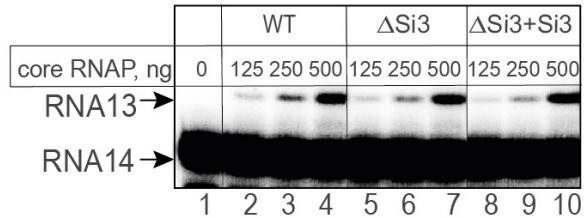
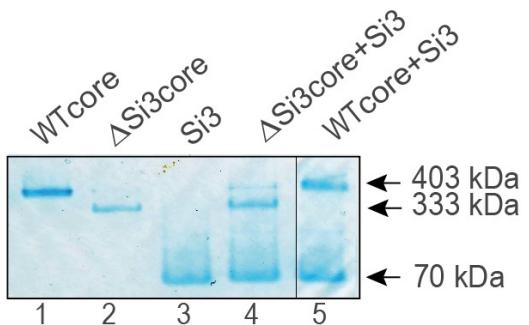


Fig. 5



A

B

C

