



== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: [office@reviewcommons.org](mailto:office@reviewcommons.org)

# 1 Nucleocytoplasmic transport senses mechanics independently 2 of cell density in cell monolayers

3 Ignasi Granero-Moya<sup>1,2</sup>, Guillaume Belthier<sup>3,4</sup>, Bart Groenen<sup>1,5</sup>, Marc Molina-Jordán<sup>1</sup>, Miguel  
4 González-Martín<sup>1</sup>, Xavier Trepaut<sup>1,2,6,7</sup>, Jacco van Rheenen<sup>3,4</sup>, Ion Andreu<sup>8,9\*</sup>, Pere Roca-  
5 Cusachs<sup>1,2,\*</sup>.

6 <sup>1</sup> Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and  
7 Technology (BIST), Barcelona, Spain

8 <sup>2</sup> University of Barcelona, Barcelona, Spain

9 <sup>3</sup> Oncode Institute, Amsterdam, The Netherlands

10 <sup>4</sup> Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam,  
11 The Netherlands

12 <sup>5</sup> Eindhoven University of Technology, Department of Biomedical Engineering, PO Box  
13 513, 5600 MB Eindhoven, The Netherlands.

14 <sup>6</sup> Institutó Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

15 <sup>7</sup> Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y  
16 Nanomedicina (CIBER-BBN), Barcelona, Spain.

17 <sup>8</sup> Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain

18 <sup>9</sup> Ikerbasque, Basque Foundation for Science, Bilbao, Spain

19 \*Correspondence to Ion Andreu ([ion.andreu@ehu.eus](mailto:ion.andreu@ehu.eus)) or Pere Roca-Cusachs  
20 ([proca@ibecbarcelona.eu](mailto:proca@ibecbarcelona.eu)).

## 21 Abstract

22 Cells sense and respond to mechanical forces through mechanotransduction, which regulates  
23 processes in health and disease. In single cells, mechanotransduction involves the transmission  
24 of force to the cell nucleus, where it affects nucleocytoplasmic transport (NCT) and the  
25 subsequent nuclear localization of transcriptional regulators such as YAP. However, if and how  
26 NCT is mechanosensitive in multicellular systems is unclear. Here, we characterize and use a  
27 fluorescent sensor of nucleocytoplasmic transport (Sencyt) and demonstrate that  
28 nucleocytoplasmic transport responds to mechanics but not cell density in cell monolayers.  
29 Using monolayers of both epithelial and mesenchymal phenotype, we show that NCT is altered  
30 in response both to osmotic shocks, and to the inhibition of cell contractility. Further, NCT  
31 correlates with the degree of nuclear deformation measured through nuclear solidity, a shape  
32 parameter related to nuclear envelope tension. In contrast and in opposition to YAP, NCT is not  
33 affected by cell density, showing that the response of YAP to both mechanics and cell-cell  
34 contacts operates through distinct mechanisms. Our results demonstrate the generality of the  
35 mechanical regulation of NCT.

## 36 Introduction

37 Cells sense and respond to their mechanical context in a process called mechanotransduction.  
38 Mechanotransduction is essential in physiological situations such as organ development  
39 (Hamant & Saunders, 2020) or embryogenesis (Brunet et al., 2013) and also in pathological  
40 settings, for instance tumour progression (Broders-Bondon et al., 2018). One of the cell elements  
41 involved in mechanotransduction is the cell nucleus, which responds to both intracellular and  
42 extracellular forces through several mechanisms. These mechanisms involve changes in  
43 chromatin architecture (Nava et al., 2020), in the conformation and localization of nucleoskeletal  
44 elements such as lamins (Philip & Dahl, 2008; Swift et al., 2013), in nuclear membrane tension  
45 (Lomakin et al., 2020; Venturini et al., 2020), and in the localization and activity of transcriptional  
46 regulators (Elosegui-Artola et al., 2017; Tajik et al., 2016). In single cells, transcriptional  
47 regulators including YAP (Elosegui-Artola et al., 2017), Twist, Snail, and SMAD3 (Andreu et al.,  
48 2022) localize to the nucleus in response to force due to changes in nucleocytoplasmic transport  
49 (NCT). Specifically, force applied to the nucleus increases nuclear membrane tension, NPC  
50 diameter, and diffusion through NPCs (Elosegui-Artola et al., 2017; Schuller et al., 2021; Zimmerli  
51 et al., 2021). Both passive and facilitated diffusion (i.e., passive and active transport) are affected  
52 by force, but to different extents. This causes a differential effect that leads to force-dependent  
53 nuclear or cytoplasmic accumulation of proteins depending on the balance between their  
54 passive transport properties and their active transport properties (governed by their nuclear  
55 localization or export sequences) (Andreu et al., 2022).

56 The role of NCT in mechanotransduction is thus established for single cells, but if and how it  
57 applies to multicellular systems is unclear. In multicellular systems, cell mechanotransduction  
58 involves a complex interplay between cell-matrix and cell-cell adhesion (Aragona et al., 2013;  
59 Maniotis et al., 1997). Further, cell-cell adhesion per se also regulates transcriptional regulators  
60 such as YAP, in ways that could be independent of mechanotransduction mechanisms (Aragona  
61 et al., 2013; Zhao et al., 2007, 2008). Thus, to what extent NCT changes can explain  
62 mechanotransduction responses in multicellular systems is unknown. To address this, we need  
63 a NCT reporter which is sensitive to mechanical forces, but not to signaling pathways (such as  
64 the Hippo pathway that regulates YAP). In our previous work (Andreu et al., 2022), we screened  
65 a battery of synthetic constructs that expressed inert, freely diffusing proteins, that only interact  
66 with the active transport machinery through nuclear localization sequences (NLS). These  
67 proteins showed different facilitated and passive transport rates, and some of them had  
68 mechanosensitive shuttling rates and localization. In single fibroblasts, the synthetic protein  
69 L\_NLS-41 kDa (Figure 1a) presented the biggest mechanosensitivity, defined as the change in  
70 localization in response to force. Indeed, in response to force applied to the nucleus, L\_NLS-41  
71 kDa showed increased rates of both passive and active nuclear transport (Figure 1b). However,  
72 active transport was more affected by force, leading to a force-dependent accumulation in the  
73 nucleus.

74 Due to these properties, L\_NLS-41 kDa is an appropriate mechanosensitive NCT reporter, which  
75 for convenience we have renamed as **SEnsor of NucleoCYtoplasmic Transport** (Sencyt). In this  
76 work, we use Sencyt in cell monolayers, and show that NCT responds to mechanical inputs but  
77 not cell-cell contacts, thereby separating the two types of inputs that are the major regulators  
78 of YAP.

## 79 RESULTS

80 To evaluate the role of NCT in the mechanotransduction of multicellular systems, we used 2  
81 different cell lines stably expressing Sencyt: MCF7 and C26. Both are cancer cell lines, but present  
82 different characteristics. MCF-7 are epithelial cells isolated from metastatic adenocarcinoma of  
83 a human breast tumor and are used for breast cancer research and many mechanobiological  
84 studies. They have an epithelial phenotype (Ahlstrom & Erickson, 2007), with strong cell-cell  
85 adhesions. C-26 is a murine colon adenocarcinoma cell line (also named MCA-26, CT-26, and  
86 Colo-26) (Corbett et al., 1975). It has a more mesenchymal phenotype, presenting thus an  
87 interesting contrast to MCF7. To test the mechanosensitivity of NCT in these two cell lines in a  
88 multicellular context, we carried out two types of mechanical perturbations: osmotic shocks, and  
89 inhibition of the forces exerted by the cell actin cytoskeleton.

### 90 **Hypo- and hyper-osmotic shocks increase and decrease nucleocytoplasmic transport 91 respectively.**

92 Osmotic shocks have been widely used to alter mechanical conditions of the nucleus (Schuller et  
93 al., 2021; Venturini et al., 2020; Zimmerli et al., 2021). In this work, we have used the osmotic  
94 stress conditions previously used in similar works (Elosegui-Artola et al., 2017), to induce nuclear  
95 swelling or shrinking, thereby affecting the tension in the nuclear envelope (Dahl et al., 2004;  
96 Enyedi et al., 2016), which in turn affects NPC diameter (Zimmerli et al., 2021). We applied the  
97 osmotic shocks on cells while we imaged confocally Sencyt and the nucleus (through Hoechst  
98 staining) (Figure 1c). The well-described responses for hypo-osmotic shocks include an inflow of  
99 water into the cell that causes an increase of cell and nuclear volumes, and a decrease in the  
100 concentration of solutes inside of the cell (Churney, 1942; Finan et al., 2009; Lemière et al.,  
101 2022). Opposite to hypo-osmotic shocks, hyper-osmotic shocks cause an outflow of water from  
102 the cell, that causes a decrease in the cell and nuclear volumes and increase the concentration  
103 of solutes (Churney, 1942; Finan et al., 2009; Lemière et al., 2022). To track changes in nuclear  
104 volume, and nuclear shape in general, we segmented nuclear images in 3D, and calculated  
105 different shape parameters (see methods and Supp. figure 1). By measuring volume changes,  
106 we reproduce these trends (Figure 1d-f and Supp. figure 2). For both cell lines, hypo-osmotic  
107 shocks increased nuclear volume (by a 50% for MCF7 and a 30% for C26). Inversely, hyper-  
108 osmotic shocks reduced nuclear volume (up to 40% in both cell lines, Figure 1e-f, Supp. figure  
109 2a-b). In C26, the hypo-osmotic shock changes are milder than in MCF7, potentially due to  
110 different properties of the nucleoskeleton or initial differences in cell and nuclear osmolarity,  
111 which resists nuclear deformations. In MCF7, we also observed an initial nuclear volume  
112 increase by a 50%, followed by a decrease to a 40%. This may be explained by an adaptative  
113 mechanism, by which cells decrease hypo-osmotic stress by reducing the internal ion  
114 concentration (Enyedi et al., 2016; Hoffmann et al., 2009; Lang et al., 1998).

115 The nucleus is delimited by a double lipidic membrane that is not elastic (Hallett et al., 1993;  
116 Needham & Nunn, 1990). Assuming it is finite, increasing the volume of a wrinkled nucleus  
117 should, first, increase the nuclear membrane area until the exhaustion of the membrane  
118 reservoirs, and second, decrease the number of wrinkles and make the nucleus smoother by  
119 increasing nuclear membrane tension, as previously suggested (Niethammer, 2021). Regarding  
120 the first part, nuclear surface area increased/decreased for both cell lines when submitted to  
121 hypo/hyper-osmotic shocks (Supp. figure 2e-f). To tackle the second part, we measured the  
122 nuclear Solidity index (see methods). The Solidity index quantifies the overall concavity of a 3D  
123 volume, with high values corresponding to a taut nucleus, and low values corresponding to a  
124 wrinkled nucleus (Supp. figure 1). It can thus be understood as an indirect assessment of nuclear

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575167>; this version posted January 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY 4.0 International license](#).

125 membrane tension, since we would expect a high Solidity index for a nucleus submitted to high  
126 membrane tension. Consistent with this framework, the Solidity index increased in the hypo  
127 shock condition, and decreased in the hyper shock condition (Figure 1g-h), suggesting changes  
128 in nuclear envelope tension.

129 Then, we measured the Sencyt index, defined as the logarithm (in base 2) of the nuclear-to-  
130 cytoplasmic ratio of Sencyt signal (see methods). Thus, a positive Sencyt index indicates nuclear  
131 localization, a negative one indicates cytoplasmic localization, and zero an equal distribution  
132 between both compartments. By measuring changes in the Sencyt index, we can track the ability  
133 of the cell NCT system to localize a cargo protein in the nucleus. Upon hypo-osmotic shocks, the  
134 Sencyt index increased along with nuclear volume and solidity (Figure 1i-j). On the other hand,  
135 upon hyper-osmotic shocks, the Sencyt index decreased along with nuclear volume and solidity  
136 (Figure 1i-j). As a control, we transfected the cells with mCherry, which behaves in a completely  
137 diffusive way, and occupies evenly all accessible spaces in the cell. The localization of mCherry  
138 was not affected by osmotic shocks, except for a small increase in response to hyper-osmotic  
139 shocks in MCF7 cells (i.e., in the opposite direction to the effect on Sencyt, Supp. figure 2g-l)).  
140 Thus, the changes in Sencyt index are not due to potential effects in the water fluxes, geometry,  
141 available space, or effective volume that Sencyt can occupy in the two compartments. Therefore,  
142 our data show that osmotic shocks regulate the ability of NCT to accumulate cargoes in the  
143 nucleus, in a manner consistent with a role of nuclear envelope tension.

144 **Myosin II and Arp2/3 inhibition decrease NCT.**

145 As a second mechanical perturbation, we inhibited actomyosin activity. To this end, we combined  
146 25 $\mu$ M para-NitroBlebbistatin (to inhibit Myosin II) and 50 $\mu$ M CK666 (to inhibit Arp2/3 and  
147 therefore actin branching) (Képiró et al., 2014; Nolen et al., 2009). Of note, we combined both  
148 drugs because, in an epithelial context, Para-NitroBlebbistatin alone is not sufficient to deplete  
149 nuclear mechanotransduction. Indeed, myosin contractility inhibition alone can lead to  
150 increased cell spreading and nuclear deformation, increasing (rather than decreasing) YAP  
151 nuclear concentration (Kechagia et al., 2023).

152 In this set-up, we performed 3 conditions in parallel: (1) a negative control treated with the  
153 vehicle, (2) a positive control treated with the drug combination, and (3) a drug washout  
154 condition. In the drug washout condition the drugs were washed out after 2 h of imaging (Figure  
155 2a). Then, we analyzed the changes in Sencyt index with time in all three conditions. Treating the  
156 cells with the drug combination decreased the Sencyt index when compared with non-treated  
157 cells (Figure 2b-c). In the case of the drug washout condition, retrieving the treatment restored  
158 the levels of NCT after 1h of drug washout, though not entirely (Figure 2b-c). Surprisingly, when  
159 we checked for changes in nuclear volume and Solidity index before and after the treatment  
160 there were no remarkable trends and no significant changes (Supp. figure 3a-d). Thus,  
161 mechanical force can affect NCT, even without clear nuclear deformations. To explain this, we  
162 hypothesize that there may be changes in nuclear envelope tension without requiring high  
163 deformations, as the nuclear envelope is a planar mechanical stiff material (Hallett et al., 1993;  
164 Needham & Nunn, 1990).

165 **Sencyt correlates with nuclear shape but not cell density in monolayers.**

166 Next, we studied the relationship between nuclear shape and Sencyt in cell layers without  
167 imposed mechanical perturbations. To this end, we seeded cell monolayers laterally confined by  
168 a PDMS gasket. After removing the gasket, cells spread for 24h, leading to monolayer areas with  
169 very different cell densities (Figure 3a, f). Performing the same image analyses than in the

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575167>; this version posted January 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

170 previous experiments, we observed that the different cell densities also led to different nuclear  
171 shapes (Figure 3b, g). Specifically, decreased density, corresponding to increased cell spreading,  
172 led to progressive deformation of the nucleus, as indicated by increased oblateness and  
173 decreased prolateness (Figure 3b,g, see parameter description in Supp. figure 1). As expected,  
174 this also led to an increase in the Solidity index.

175 Then we analyzed separately the effect of density and Solidity index in the Sencyt index. The  
176 Sencyt index did not correlate with cell density for MCF7 (Figure 3c) and correlated but very  
177 mildly for C26 (Figure 3h). In contrast, the Sencyt index correlated with the Solidity index in both  
178 cell lines, with a higher correlation for C26, and milder in MCF7 (Figure 3d,i). In summary, Sencyt  
179 index correlated much more with the Solidity index than with cell density for both cell lines  
180 (Figure 3e, j). In fact, solidity was the nuclear geometrical parameter that best correlated with  
181 the Sencyt index for both cell types (Supp. figure 4). Interestingly, C26 cells not only exhibited  
182 higher correlations between Sencyt and overall nuclear shape parameters, but also a higher  
183 range of Sencyt index values in response to nuclear shape parameters. Differences between cell  
184 lines could arise from several factors, including different nuclear mechanical properties, which  
185 depend on cell type (Hobson et al., 2020; Kechagia et al., 2023). This may lead to different  
186 tension/shape relationships.

### 187 **Cell layers show different regulation for Sencyt and for YAP**

188 Finally, we set out to understand if NCT in monolayers is affected in the same way as YAP, a well-  
189 known transcription factor that has NCT-regulated mechanosensitivity (Elosegui-Artola et al.,  
190 2017), but which also undergoes complex biochemical regulation through the Hippo pathway  
191 (Piccolo et al., 2014). To this end, we immunostained for YAP the same cell samples we imaged  
192 live for Sencyt (Figure 4a-b, g-h). The YAP nuclear-to-cytoplasmic concentration ratio strongly  
193 correlated with density in both cell lines (Figure 4c, i). This is an expected behavior since YAP  
194 nuclear localization has been proven to depend on cell-cell contacts: an increase of cell-cell  
195 contacts decreases nuclear localization, decreasing proliferation (Aragona et al., 2013; Dupont  
196 et al., 2011; Zhao et al., 2007, 2008).

197 The YAP N/C ratio also correlated with solidity in both cell lines (Figure 4d, j), although to a lesser  
198 degree than with cell density. Overall, the combined effects of both factors were clearly visible  
199 (Figure 4f, l). Correlations with solidity were similar for YAP and Sencyt in C26 cells (Figure 3l,  
200 Figure 4j), but much higher for YAP in MCF7 cells (Figure 3d, 4d). Further, for both cell lines Sencyt  
201 and YAP localization correlated significantly with each other, more in MCF-7 than in C-26 (Figure  
202 4e, k). However, correlations were low, likely reflecting the fact that both parameters are not  
203 molecularly tied, and that the different layers of YAP regulation reduce the correlations. In fact,  
204 YAP localization correlated better than Sencyt index with most nuclear shape and other  
205 geometrical parameters (Supp. figure 4).

## 206 **Discussion**

207 In this work, we harness the Sencyt sensor to demonstrate that NCT in cell monolayers is  
208 regulated by mechanical stimuli, leading to altered nuclear accumulation of shuttling proteins.  
209 The role of mechanics in NCT had been previously demonstrated in single cells, in response to  
210 either increased substrate stiffness, force applied to the nucleus (Andreu et al., 2022; Elosegui-  
211 Artola et al., 2017), or hypo-osmotic shocks (Zimmerli et al., 2021). Here, we demonstrate that  
212 mechanics also plays a role in multicellular systems, in response to both hypo and hyper-osmotic  
213 shocks, and to cell contractility. The mechanism involved is likely the same: increased nuclear

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575167>; this version posted January 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [a \[CC-BY 4.0 International license\]\(#\)](#).

214 membrane tension caused by applied force (Darl et al., 2004; Enyedi et al., 2016), a subsequent  
215 increase in the diameter of the NPC (Zimmerli et al., 2021), and resulting differential alteration  
216 in passive versus facilitated diffusion through NPCs (Andreu et al., 2022).

217 Certainly, other factors beyond nuclear envelope tension could also be playing a role. Hyper-  
218 osmotic shocks have been shown to slow intracellular signaling due to molecular crowding  
219 (Miermont et al., 2013), and to decrease nuclear import (Ng et al., 2014) by impairing the Ran  
220 system (Kelley & Paschal, 2007). Further, osmotic swelling due to tissue damage, and  
221 subsequently increased nuclear envelope tension, induces signaling by translocating cytosolic  
222 phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LOX) into the inner nuclear membrane (Cho &  
223 Stahelin, 2005; Enyedi et al., 2016). The contribution of these different mechanisms in response  
224 to specific perturbations remains to be elucidated. However, the common response to very  
225 different stimuli (osmotic shocks versus contractility inhibition), combined with the correlation  
226 with nuclear solidity, strongly suggest a role of nuclear envelope tension, and direct effects on  
227 NPC permeability.

228 Comparing some of our results leads to interesting implications. First, mechanically induced  
229 changes in NCT can occur both with nuclear deformation (in response to osmotic shocks) and  
230 without (in response to contractility inhibition). This suggests that mechanical perturbations can  
231 affect NCT and likely nuclear envelope tension without visible changes in nuclear shape. This  
232 could potentially be explained by different means of transmitting force: through global nuclear  
233 swelling in the case of osmotic shocks, versus specifically through the LINC complex in response  
234 to cell contractility. Indeed, in our previous work we found a very different response of Sencyt in  
235 single cells when nuclei were deformed in the presence or absence of LINC complexes (Andreu  
236 et al., 2022). Such differences could also explain the fact that nuclear solidity and the Sencyt  
237 index correlate, but with rather low correlation values. Still, larger deformations will lead to  
238 larger effects, as indicated by the correlations between Sencyt index and Solidity index.

239 Second, we found very interesting differences when comparing Sencyt versus YAP responses.  
240 Importantly, both Sencyt and YAP responded to nuclear solidity, but only YAP showed a clear  
241 response to cell density. This differential behavior allowed us to decouple the effects of  
242 mechanics and cell-cell adhesion, showing that the role of cell-cell adhesion in YAP cannot be  
243 explained by mechanical effects on NCT. This is likely due to the several layers of YAP regulation,  
244 and specifically the role of cell-cell adhesion in the hippo pathway (Aragona et al., 2013; Zhao et  
245 al., 2007, 2008). Interestingly, even if it also responded to density, YAP correlated better than  
246 Sencyt with nuclear solidity, at least for MCF7 cells. This suggests that YAP properties may have  
247 evolved to result in a more optimal mechanosensor than the synthetic Sencyt. In the future,  
248 further optimization of Sencyt may increase sensitivity, potentially revealing interesting insights  
249 on how physiological mechanosensitive molecules such as YAP evolved.

250 Methodologically, our results also show that a sensor of nucleocytoplasmic transport (Sencyt),  
251 together with image analysis, is a valuable tool to understand NCT regulation in multicellular  
252 environments *in vitro* and potentially *in vivo*, merely by using confocal fluorescence in live  
253 imaging. Using Sencyt is likely to reveal much finer NCT regulation than merely employing  
254 fluorophores tagged with a strong NLS sequence, as those strongly localize to the nucleus unless  
255 NCT is acutely disrupted. Potentially, Sencyt may for instance be used to identify other  
256 mechanosensitive transcriptional regulators purely regulated by NCT and not cell-cell adhesion  
257 in multicellular systems, overriding YAP-like regulation systems. Beyond mechanics, it could also  
258 be used to study alterations in NCT due to any other factor.

## 259 Methods

### 260 Cell lines

261 MCF-7 and C-26 cells were cultured in Dulbecco's modified Eagle medium (DMEM)  
262 supplemented with fetal bovine serum (FBS, 10% aq.), L-glutamine (2 mM), penicillin (100 U/mL)  
263 and streptomycin (100 µg/mL) in a humidified atmosphere with 5% CO<sub>2</sub> at 37 °C in humidified  
264 atmosphere. C-26 was kindly offered by Onno Kranenburg. A plasmid transiently expressing  
265 Sencyt was previously described as L-NLS 41kDa (Andreu et al., 2022) and is available in  
266 addgene (Addgene plasmid # 201342 ; <http://n2t.net/addgene:201342> ; RRID:  
267 Addgene\_201342). For the creation of stable cell lines expressing Sencyt, pLentiPGK coding for  
268 SV40A4-EGFP-2PrA (Andreu et al., 2022) was cloned using these primers to excise it from the  
269 parental plasmid: Infusion\_SV40A4-EGFP-2PrA\_Fwd cg<sup>g</sup> tac c<sup>g</sup>c g<sup>g</sup> c<sup>cc</sup> at<sup>g</sup> g<sup>gc</sup> c<sup>ca</sup> a<sup>aa</sup> a<sup>ag</sup> g<sup>c</sup>;  
270 Infusion\_SV40A4-EGFP-2PrA\_Rev g<sup>a</sup>a g<sup>c</sup>c t<sup>g</sup> g<sup>t</sup>c tag a<sup>c</sup>c act t<sup>t</sup>g tac a<sup>a</sup>g a<sup>aa</sup> g<sup>c</sup>t g<sup>g</sup> g<sup>t</sup>c g. The  
271 plasmid was then used for viral production in HEK293T (ATCC® CRL-1573™) of low passage in  
272 media IMDM supplemented with 10% heat-inactivated FCS, 1% pen/strep. Reagents used were:  
273 2.5 M CaCl<sub>2</sub>, 0.1x TE buffer, 2x HBS pH 7.12 (fresh). Cell lines were transduced with a mix of  
274 supernatant containing virus and polybrene (Sigma H9268 suspended at 4mg/ml in sterile water,  
275 1:1000), at 37°C for 24 hours. Transduced cells were selected by Hygromycin 200µg/ml, and a  
276 FACS sorting procedure based on GFP fluorescence.

### 277 Transient transfection

278 Cells were transfected the day before the experiment using Neon transfection device (Thermo  
279 Fisher Scientific) according to the manufacturer's instructions. MCF-7: Pulse voltage 1250 V;  
280 Pulse width 20 ms; Pulse Number 2. C-26: Pulse voltage 1350 V; Pulse width 20 ms; Pulse  
281 Number 2. pcDNA3.1-mCherry was a gift from David Bartel (Addgene plasmid # 128744;  
282 <http://n2t.net/addgene:128744>; RRID:Addgene\_128744).

### 283 Imaging settings

284 Image acquisition was done with a Zeiss LSM880 inverted confocal microscope objective and  
285 using Zeiss ZEN2.3 SP1 FP3 (black, version 14.0.24.201), using a 63X 1.46 NA oil immersion  
286 objective and a 403, 488, 561 and 633nm wavelength lasers, in the Fast Airyscan mode. Voxel  
287 size was of 0.1413 µm for xy and z-step of 0.4 µm. This allowed us to activate the Definite  
288 Focus system, so the sample was autofocus every time frame. Pixel sizes are of 0.1409 µm,  
289 and z-spacing for the objective is 0.4 microns, which turns into 0.3440 µm after correction. Z-  
290 spacing was corrected following the literature (Diel et al., 2020), considering cell refractive  
291 index of 1.36 and Immersol immersion oil of 1.518.

292 For cell layers image positioning was automatically set to fit a tile positioning with an 15% image  
293 overlap. In the case of YAP immunostaining for cell layers, only properly permeabilized regions  
294 were imaged. To recognize the properly permeabilized regions a control staining of Sencyt was  
295 performed (not shown).

### 296 Osmotic shock experiments

#### 297 Cell seeding

298 Single-well, Mattek, glass-bottom dishes were incubated with 10 µg/mL of fibronectin in PBS for  
299 1 hour at room temperature. Cells were seeded on the plate to achieve an approximate density  
300 of 1000 cells/mm<sup>2</sup> the day after. Minimum 1h prior to experiment, the medium of the cells was  
301 changed to 500µL of medium containing 1/10.000 Hoechst 33342 (Invitrogen).

#### 302 Image acquisition and Osmotic shock

303 The time frame was set to 30s, for every sample we imaged 5 timepoints without disturbances  
304 before the shock was applied. Then we imaged for 45 timepoints more. To decrease image drift  
305 while acquiring images of the same position through time, we started the imaging of the sample  
306 with 0.5mL of medium containing the nuclei stain. At the time of the shock, we added 1mL of  
307 1.5x solution either for hypo or hyper-osmotic shock conditions. The control worked as an  
308 imaging control condition.

309 Cell medium has an osmolarity of ~340 mOsm. ~113 mOsm hypo-osmotic shocks (66%) were  
310 performed by mixing the 500 $\mu$ L of medium with 1.5x de-ionized water with Ca<sup>2+</sup> and Mg<sup>2+</sup> ion  
311 concentration corrected to match those of the medium (264mg/L CaCl<sub>2</sub> · 2H<sub>2</sub>O, 164.67mg/L  
312 MgCl<sub>2</sub> · 6H<sub>2</sub>O). ~695 mOsm hyper-osmotic shocks (204%) were performed by adding 1mL of  
313 1.5x solution containing 96.9g/L D-mannitol (Sigma) to the medium.

314 For the analyses, t=30 s was discarded because it was noisy due to out of focus imaging after the  
315 medium pipetting.

### 316 **Drug treatment experiments**

#### 317 Cell seeding

318 6-well, Mattek, glass-bottom dishes were incubated with 10  $\mu$ g/mL of fibronectin in PBS for 2  
319 hours at room temperature. Cells were seeded on the plate in mediums containing 1/10.000  
320 Hoechst 33342 (Invitrogen) and either the drug vehicle (3.5  $\mu$ L DMSO/1 mL of medium) or a  
321 combination of the drugs (25  $\mu$ M para-NitroBlebbistatin, 50  $\mu$ M CK666). Cells were left to attach  
322 to the substrate for 2 hours before the imaging started.

#### 323 Image Acquisition and Drug washout

324 Image acquisition parameters were identical as the Osmotic Shock experiments unless specified  
325 otherwise. For the Drug washout experiment, cells were imaged every hour, starting 2 h after  
326 seeding. For 2 timepoints cells were left untouched. After the imaging of the 2 timepoint finished  
327 we aspirated the drug-containing medium of the condition of the Drug washout, washed twice  
328 with warm medium, and added the vehicle containing medium for the following timepoints.

### 329 **Cell layer experiments**

#### 330 Cell seeding

331 Mattek, glass-bottom dishes were incubated with 10  $\mu$ g/mL of fibronectin in PBS for 2 hours at  
332 room temperature. Magnetic PDMS gaskets (Rodriguez-Franco et al., 2017) sized 4mm times  
333 8mm at the inner side, were treated water and soap, washed in EtOH, washed in MiliQ,  
334 incubated in Pluronic® F-127 (20g/L) 1h room temperature, washed twice in PBS, and air dried.  
335 Both Mattek and gaskets were UV sterilized before seeding. For cell seeding, gaskets were put  
336 in the center of the Mattek dishes, and the dishes were placed on top of a holder including a  
337 magnet to keep them in place. Approximately 60k cells were seeded in every gasket (0.3 cm<sup>2</sup>).  
338 Cells were incubated for 4h, and then some washes with medium were performed to retrieve  
339 non-attached cells. Enough medium was added to cover the gaskets completely. Cells were then  
340 incubated for 24h with the gasket. The gasket was then retrieved, and cells were incubated O/N  
341 before imaging started.

#### 342 Staining

343 Immunostainings were performed as previously described (Elosegui-Artola et al., 2017). Cells  
344 were fixed with 4% v/v paraformaldehyde for 10 minutes, permeabilized and blocked with 0.1%  
345 (MCF-7) and 1% (C-26) v/v Triton X-100 and with 2% v/v Fish-Gelatin in PBS 1X for 45 minutes,  
346 incubated with primary antibody for 1 hour at room temperature or O/N at 4°C, washed 3 times  
347 with Fish-Gelatin-PBS for 5 minutes, incubated with secondary antibody for 1 hour, washed with  
348 Fish-Gelatin-PBS 3X for 5 minutes, and image in PBS with the same conditions as the live imaging.  
349 YAP mouse monoclonal antibody (Cat# sc101199; RRID: AB\_1131430), and secondary Alexa  
350 Fluor-555 (ThermoFisher, goat anti-Mouse, A-21424; RRID: AB\_141780) were used diluted  
351 1:400.

352 **Image analysis**

353 Images were processed to .czi format with Zeiss ZEN2.3 SP1 FP3 (black, version 14.0.24.201).  
354 Then they were binned in xy by a factor of 4 calculating the median using Fiji (Schindelin et al.,  
355 2012), leaving the voxel size in xy at 0.5652  $\mu\text{m}$  (z remained untouched, values were averaged)  
356 then they were separated by channels (the nuclei staining was filtered with a median filter of 2  
357 pixels, for osmotic shock experiments, to decrease the effects of chromatin staining changes  
358 into segmentation). The processed nuclei image was then segmented in 3D using Cellpose  
359 (Stringer et al., 2021).  
360 Code used for Osmotic shocks experiments: `python -m cellpose --dir [directory] --do_3D --`  
361 `cellprob_threshold=-2.0 --batch_size 2 --pretrained_model nuclei --chan 1 --diameter 34. --`  
362 `save_tif --no_npy --use_gpu --verbose --anisotropy 0.6`.  
363 Code used for Drug washout experiments: `python -m cellpose --dir [directory] --do_3D --`  
364 `cellprob_threshold=-2.0 --batch_size 2 --pretrained_model nuclei --chan 1 --diameter 34. --`  
365 `save_tif --no_npy --use_gpu --verbose`  
366 Code used for cell layer experiments: `python -m cellpose --dir [directory] --do_3D --`  
367 `cellprob_threshold=0.0 --batch_size 2 --pretrained_model nuclei --chan 1 --diameter 34. --`  
368 `save_tif --no_npy --use_gpu --verbose`  
369 Using the masks created by Cellpose we measured fluorescent intensities inside and outside of  
370 the nucleus for the plane of biggest area for every nucleus. The nuclear area was created by  
371 eroding this plane by 1 pixel (0.5652  $\mu\text{m}$ ), and the cytoplasmic by creating a ring outside the  
372 nucleus. This was done by subtracting a 3-pixel-increased area, by a 1-pixel-increased area. Then  
373 any pixel in the cytoplasmic area was excluded if it fell inside any neighbouring nucleus. This was  
374 done for all channels, as well as measuring geometrical and size parameters of the masks using  
375 MATLAB2020b. To avoid spurious measurements some filters were applied. For cell brightness:  
376 minimal signal to noise ratio filter was applied. For dim cells next to very bright cell, or vice versa:  
377 all measurements of areas with a coefficient of variation higher than 0.8 were discarded. For  
378 bad nuclei segmentation: nuclei with nuclear-to-cytoplasmic brightness ratios of Hoechst lower  
379 than 4 were discarded.

380 **Data quantification and parameters**

381 Once the nuclei masks were obtained, in MATLAB we calculated the different nuclear shape  
382 parameters (see Supp. figure 1) in two ways: directly from the mask (Volume, Solidity index) and  
383 fitting an ellipsoid and obtaining the length of the three radii (Oblateness, Prolateness). In the  
384 case of the Solidity index, the convex hull volume is the smallest convex volume that contains a  
385 shape.

386 Sencyt index was calculated as the logarithm in base 2 of the ratio of the mean nuclear  
387 fluorescence ( $\overline{FI}_{Sencyt\ Nuc}$ ) and the mean cytoplasmic fluorescence ( $\overline{FI}_{Sencyt\ Cyt}$ ) of Sencyt,  
388 after subtracting mean background fluorescence ( $\overline{FI}_{Sencyt\ Background}$ , assessed in cell-free  
389 regions of the image):

$$390 \quad \text{Log}_2 \left( \frac{\overline{FI}_{Sencyt\ Nuc} - \overline{FI}_{Sencyt\ Background}}{\overline{FI}_{Sencyt\ Cyt} - \overline{FI}_{Sencyt\ Background}} \right)$$

391 Log2 N/C YAP ratio was calculated as the logarithm in base 2 of the ratio of the mean nuclear  
392 fluorescence ( $\overline{FI}_{YAP\ Nuc}$ ) and the mean cytoplasmic fluorescence ( $\overline{FI}_{YAP\ Cyt}$ ) of YAP staining, also  
393 after subtracting mean background fluorescence ( $\overline{FI}_{YAP\ Background}$ ):

$$394 \quad \text{Log}_2 \left( \frac{\overline{FI}_{YAP\ Nuc} - \overline{FI}_{YAP\ Background}}{\overline{FI}_{YAP\ Cyt} - \overline{FI}_{YAP\ Background}} \right)$$

395 For Solidity index, Sphericity, Oblateness and Prolateness, see Supp. figure 1.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575167>; this version posted January 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY 4.0 International license](#).

396 Cell Density was calculated with the xy coordinates by measuring the number of nuclei around  
397 the  $n^{\text{th}}$  nucleus. This was done by centering a square in the  $n^{\text{th}}$  nucleus with a side size of 200  
398 pixels, which is 113.03  $\mu\text{m}$ .

399 For Figure 4e, k, direct nuclei correlation between the live Sencyt images and the YAP staining  
400 images was done by nuclei image registration and overlap of the masks. This way we obtained a  
401 table with the corresponding mask identifiers in live and staining images.

## 402 Conflict of Interests

403 The authors declare that they have no conflict of interest.

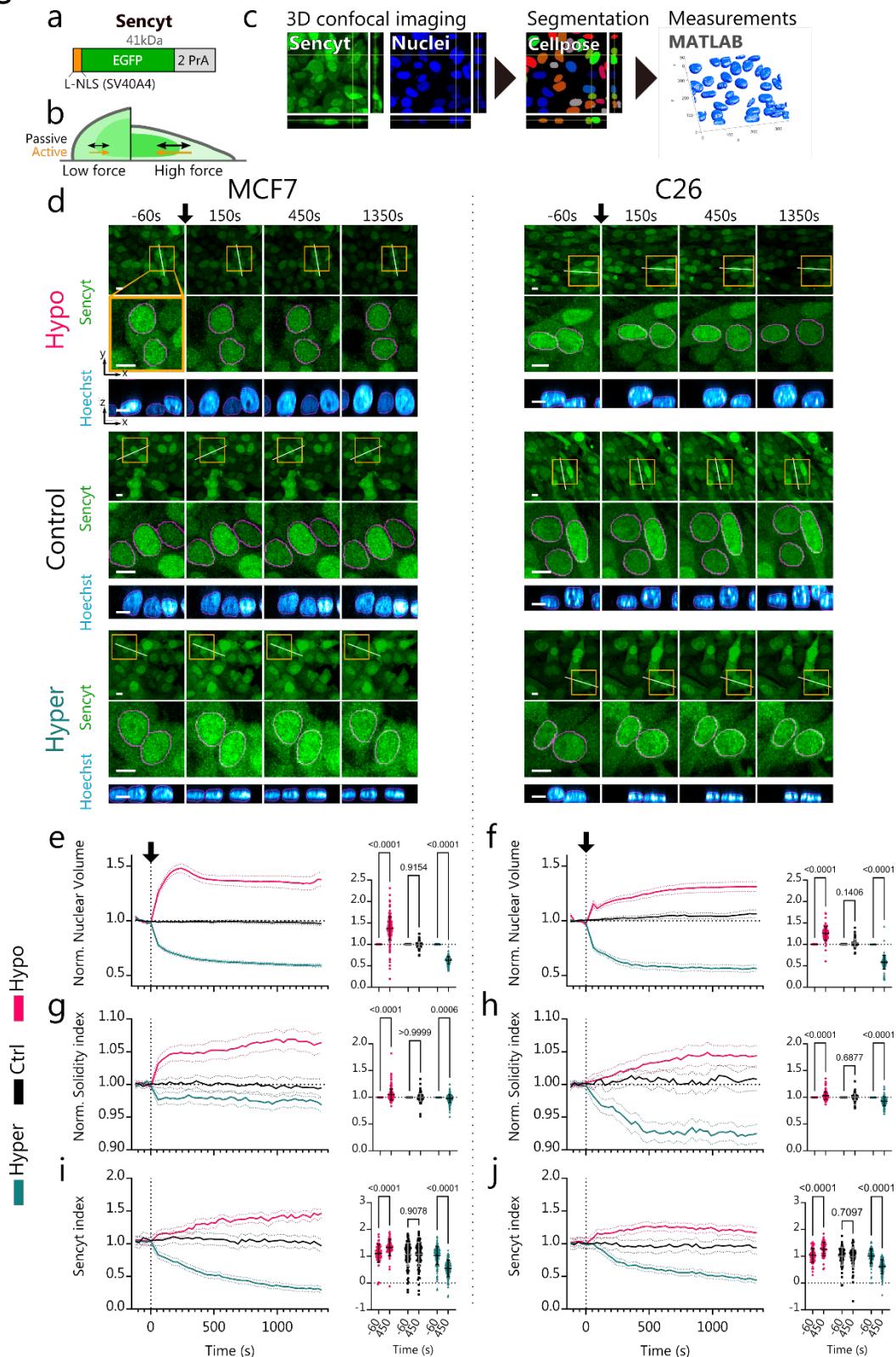
## 404 Acknowledgements

405 We thank S. Usieto, A. Menédez, N. Castro, M. Purciolas-Casas and M. Morcillo for providing  
406 technical support. We acknowledge funding from “la Caixa” Foundation (grant  
407 LCF/PR/HR20/52400004 to X.T., J.V.R., and P.R.-C. and fellowships LCF/BQ/DR19/11740009 to  
408 I.G.-M. and LCF/BQ/DR19/11740009 to M.M.J.), the Spanish Ministry of Science and Innovation  
409 (PID2022-142672NB-I00 to P.R.-C., PID2021-128635NB-I00 to X.T., and PID2022-141040NA-I00  
410 to I.A.), the Generalitat de Catalunya (2021 SGR 01425 to X.T. and P.R.-C.), The prize “ICREA  
411 Academia” for excellence in research to P.R.-C., Fundació la Marató de TV3 (201936-30-31 to  
412 P.R.-C.), the European Research Council (grant 101097753 MechanoSynth to P.R.-C. and Adv-  
413 883739 Epifold to X.T.), and The Basque government (grant PIBA\_2023\_1\_0033 to I.A.). This  
414 work was supported in part by the Fundación Biofísica Bizkaia and the Basque Excellence  
415 Research Centre (BERC) program of the Basque Government. IBEC is a recipient of a Severo  
416 Ochoa Award of Excellence from MINCIN.

417

## 418 Author contributions

419 Conceptualization: I.G.-M., I.A., P.R.-C.  
420 Resources: I.G.-M., G.B., X.T., J.V.R., I.A.  
421 Data curation: I.G.-M., I.A.  
422 Software: I.G.-M.  
423 Formal analysis: I.G.-M., I.A.  
424 Supervision: I.A., P.R.-C.  
425 Funding acquisition: X.T., J.V.R., I.A., P.R.-C.  
426 Validation: I.A., P.R.-C.  
427 Investigation: I.G.-M., B.G., M.M., M.G., I.A.  
428 Visualization: I.G.-M.  
429 Methodology: I.G.-M., G.B., X.T., J.V.R., I.A.  
430 Writing—original draft: I.G.-M.  
431 Project administration: P.R.-C.  
432 Writing—review and editing: I.G.-M., I.A., P.R.-C.


433

## 434 Data availability

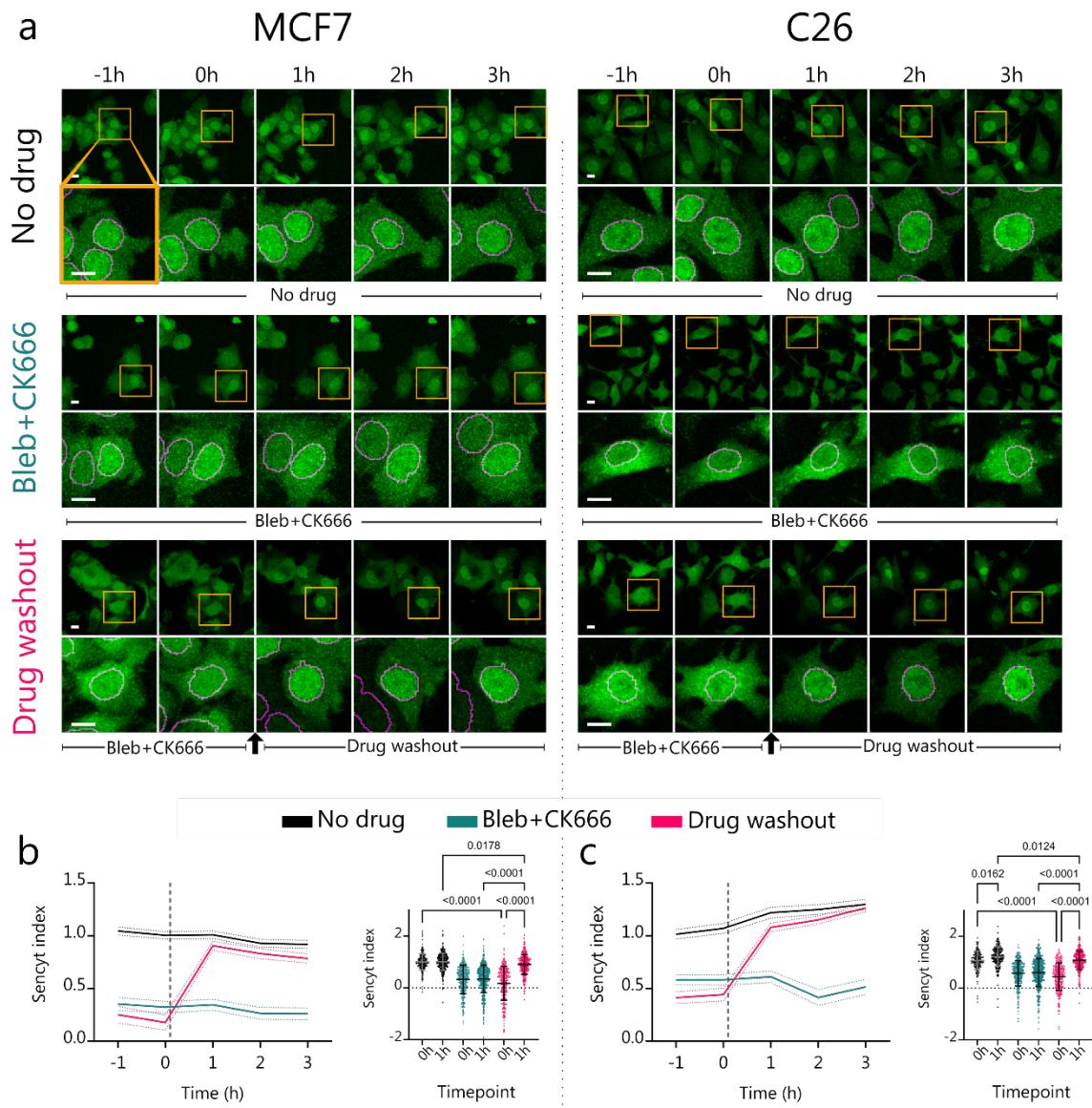
435 Source data for all figures is available as a supplementary file.

436

437 **Figures**



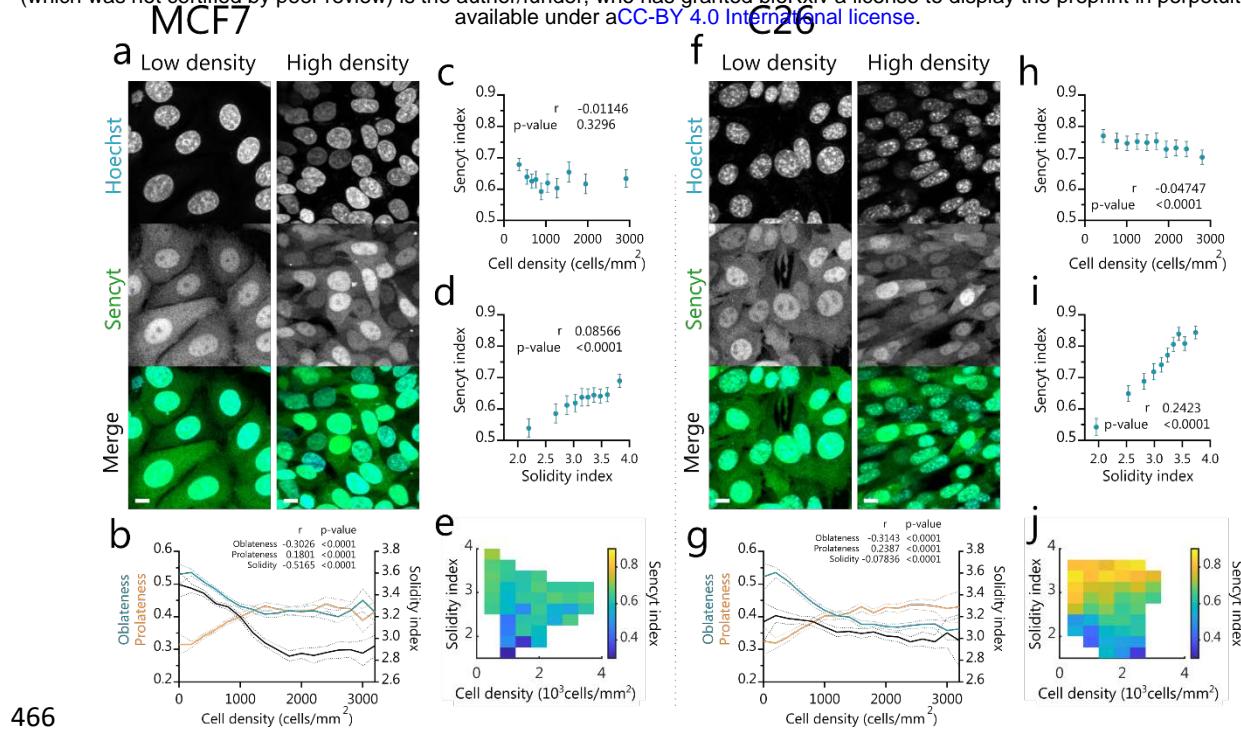
438


439 **Figure 1.** Hypo- and hyper-osmotic shocks increase and decrease nucleocytoplasmic transport respectively. *a)*  
440 schematic representation of Sencyt. Its elements include *i*) an NLS (SV40A4) based on that from the SV40 virus, but  
441 with a point mutation to reduce affinity to importins. *ii*) An EGFP molecule for visualization. *iii*) 2 repeats of the inert  
442 protein PrA to confer a final molecular weight of 41 kDa, thereby regulating passive diffusion. *b*) Scheme of Sencyt  
443 response to force. When force exerted to the nucleus increases, passive diffusion increases, but active transport  
444 increases even more. This increases Sencyt nuclear localization (Andreu et al., 2022). *c*) Image processing workflow

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575167>; this version posted January 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

445 chart. Cells stably transfected with Sencyt are then segmented,  
446 and nuclei shape parameters and Sencyt index are calculated (see methods). d) representative images as a function of  
447 time of cells submitted to hypo-, control, or hyper-osmotic shocks, both for MCF7 and C26 cell lines. Arrow indicates  
448 the beginning of treatment. In top panels, yellow squares indicate zoomed areas in middle panel, white lines indicate  
449 the location of vertical nuclear cross-sections shown in bottom panel. Magenta lines show nuclear mask limits. Scale  
450 bar is 10  $\mu$ m. e,f) Nuclear volume measurements normalized to the 5 first timepoints, and statistics pre/post treatment  
451 (N=170, 130, 188, 81, 72, 107 cells) f,h) Solidity index measurements normalized to the 5 first timepoints and statistics  
452 pre/post treatment (N=230, 170, 231, 121, 104, 142 cells) i,j) Sencyt index measurements and statistics pre/post  
453 treatment (N=66, 101, 152, 60, 63, 103 cells). Sencyt index is defined as the logarithm in base 2 of the ratio of the  
454 mean nuclear fluorescence and the mean cytoplasmic fluorescence (see Methods). p-values calculated with 2-way  
455 ANOVA corrected with Šídák's multiple comparisons test. Error bars represent 95% CI for timelapse graphs and SD for  
456 statistical graphs. All data include 3 independent repeats.

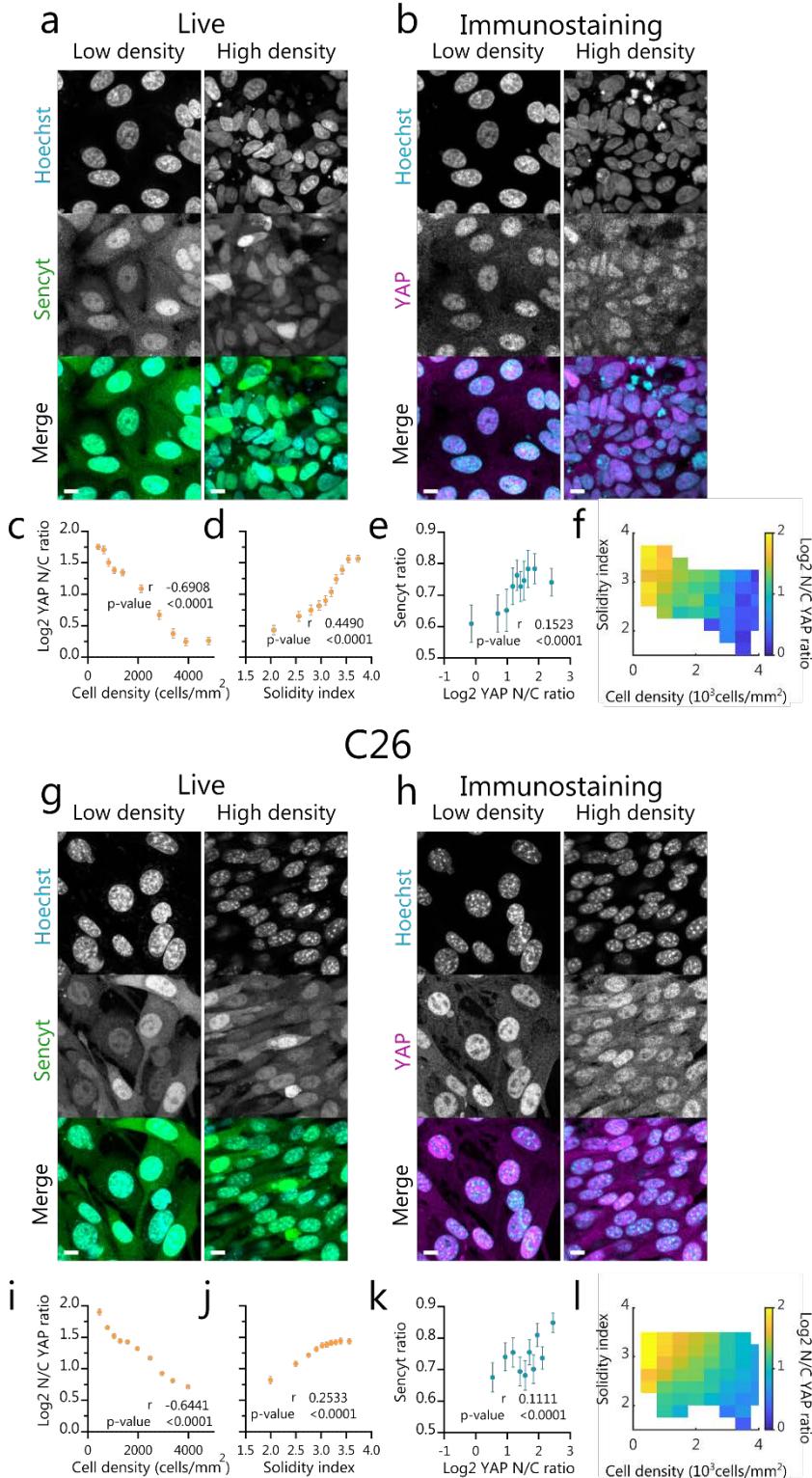
457


458



459

460  
461  
462  
463  
464  
465


**Figure 2. Myosin II and Arp2/3 inhibition decreases NCT.** **a)** representative images as a function of time of cells submitted to different treatments, both for MCF7 and C26 cell lines. In top panels, yellow squares indicate zoomed areas in middle panel. Magenta lines show nuclear mask limits. Scale bar is 10  $\mu$ m. **b,c)** Corresponding measurements and statistics for Sencyt index. ( $N=301, 307, 376, 413, 327, 299$  cells).  $p$ -values calculated with Kruskal-Wallis test corrected with Dunn's multiple comparisons test. Error bars represent 95% CI for timelapse graphs and SD for statistical graphs. All data include 3 independent repeats.



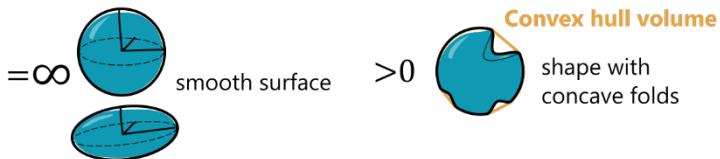
466

467 **Figure 3.** Sencyt correlates better with nuclear shape than cell density in monolayers. **a,f**) Representative live images  
468 of cells in low and high density showing Sencyt and nuclei staining. Scale bars are 10  $\mu$ m. **b,g**) nuclear shape parameters  
469 versus density ( $N=20560, 16711$  cells), **c,h**) Sencyt index versus cell density ( $N=7237, 7522$  cells), **d,i**) Sencyt index versus  
470 Solidity index ( $N=7865, 7647$  cells), **e,j**) Average Sencyt index as a function of Solidity index and cell density, for both  
471 cell types ( $N= 7118, 7522$  cells). *p*-values calculated with Two-tailed non-parametric Spearman correlation test. Error  
472 shading and error bars represent 95% CI. All data include 3 independent repeats.

MCF7



473


474 **Figure 4. Cell layers show different regulation for Sencyt and for YAP.** *a,g* Representative images of cells in low and  
 475 high density showing Sencyt and nuclei staining. *b,h* representative images of the fixed same cells in low and high  
 476 density for YAP immunostaining and nuclei staining. Scale bars are 10  $\mu$ m. *c,i* Log2 N/C YAP ratio versus cell density  
 477 ( $N= 4889, 7204$  cells), *d,j* Log2 N/C YAP ratio versus Solidity index ( $N= 4889, 7204$  cells), *e,k* cell-by-cell correlation of  
 478 Sencyt index versus Log2 N/C YAP ratio ( $N= 1548, 1782$  cells), *f,l* Log2 N/C YAP ratio in colour versus cell density and  
 479 Solidity index, both for MCF7 and C26 cell lines, respectively. ( $N= 4679, 7050$  cells). *p*-values calculated with Two-tailed  
 480 non-parametric Spearman correlation test. Error bars represent 95% CI. All data include 3 independent repeats.

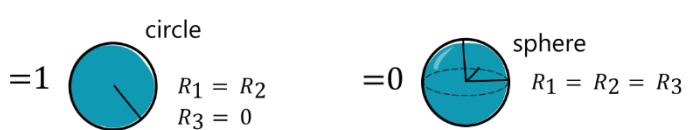
Parameter

Examples

Solidity index

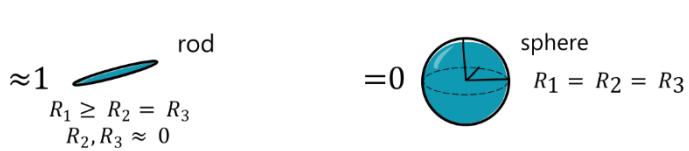
$$-\log_2 \left( 1 - \frac{\text{Volume}}{\text{Convex hull volume}} \right)$$




Sphericity

$$\pi^{\frac{1}{3}} \frac{(6 \text{ Volume})^{\frac{2}{3}}}{\text{Surface Area}}$$

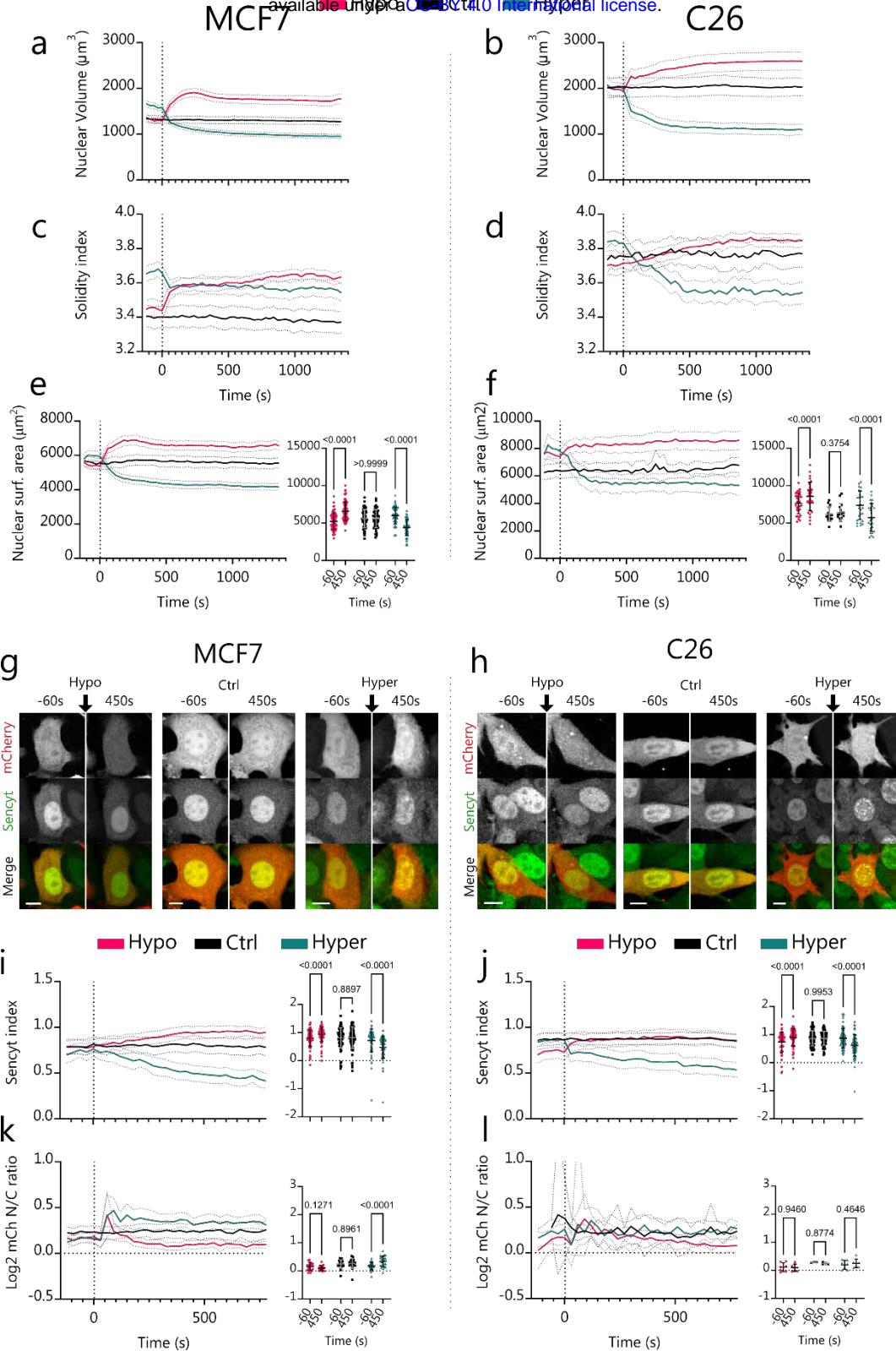



Oblateness (disk shape)

$$\frac{2 R_2^2}{R_2^2 + R_1^2} \cdot \left( 1 - \frac{2 R_3^2}{R_2^2 + R_1^2} \right)$$



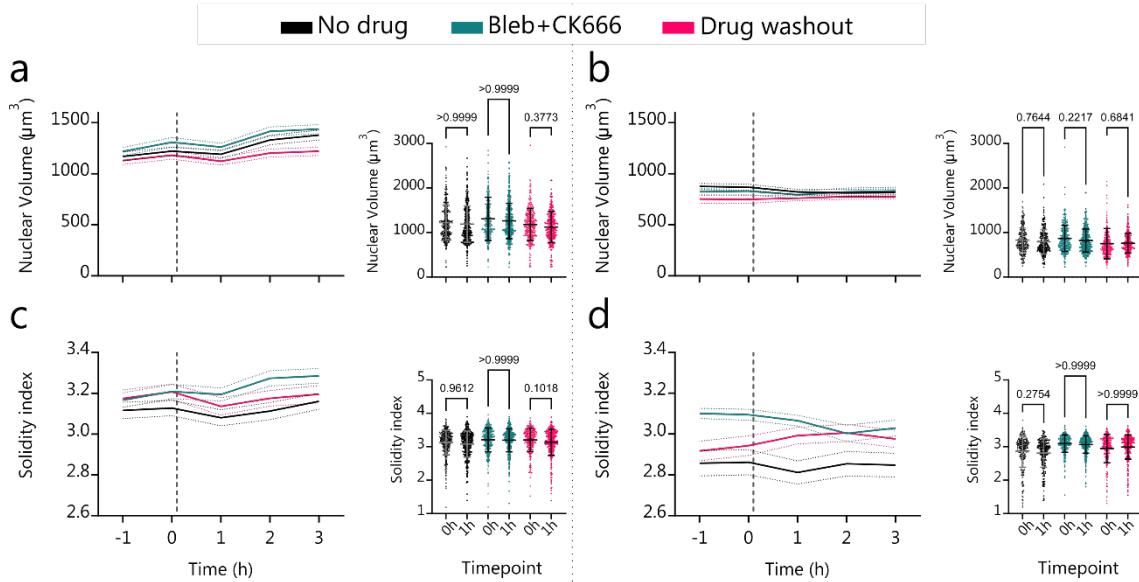
Prolateness (bullet shape)


$$\frac{2 R_3^2}{R_3^2 + R_2^2} \cdot \left( 1 - \frac{2 R_3^2 + R_2^2}{2 R_1^2} \right)$$



481

482 **Supp. figure 1.** Nuclear shape parameters description.  $R_1, R_2, R_3$  correspond to the three radii (from the largest to the  
 483 smallest;  $R_1 \geq R_2 \geq R_3$ ) of an ellipsoid fitted to the segmented nucleus. Volume and surface areas are the measured  
 484 volume and surface area of the nucleus as obtained from nuclear segmentation. Convex hull volume is the volume of  
 485 the convex hull, defined as the smallest convex shape (that is, not containing any concave folds) that encloses the  
 486 nucleus.


487



488

489 **Supp. figure 2.** Additional measurements of effects of osmotic shocks. Absolute values for Nuclear Volume (a-b)  
490 ( $N=170, 130, 188, 81, 72, 107$  cells) and Solidity index (c-d) ( $N=230, 170, 231, 121, 104, 142$  cells), for MCF7 and C26, respectively. e-f) Change of nuclear surface area over time for MCF7 and C26, with corresponding statistics ( $N=68, 50, 59, 32, 15, 26$  cells). g-h) Representative images of cells transfected with mCherry, submitted to osmotic shocks as in Figure 1. Scale bar is  $10 \mu\text{m}$ . i-j) Corresponding quantification of Sencyt index ( $N=71, 78, 73, 58, 67, 69$  cells) and k-l) Log2 mCherry Nucleo-cytoplasmic ratio ( $N=20, 20, 27, 7, 3, 7$  cells). p-values calculated with 2-way ANOVA corrected with Šidák's multiple comparisons test. Error bars represent 95% CI for timelapse graphs and SD for statistical graphs.  
491 All data include 3 independent repeats.  
492  
493  
494  
495  
496

MCF7 C26

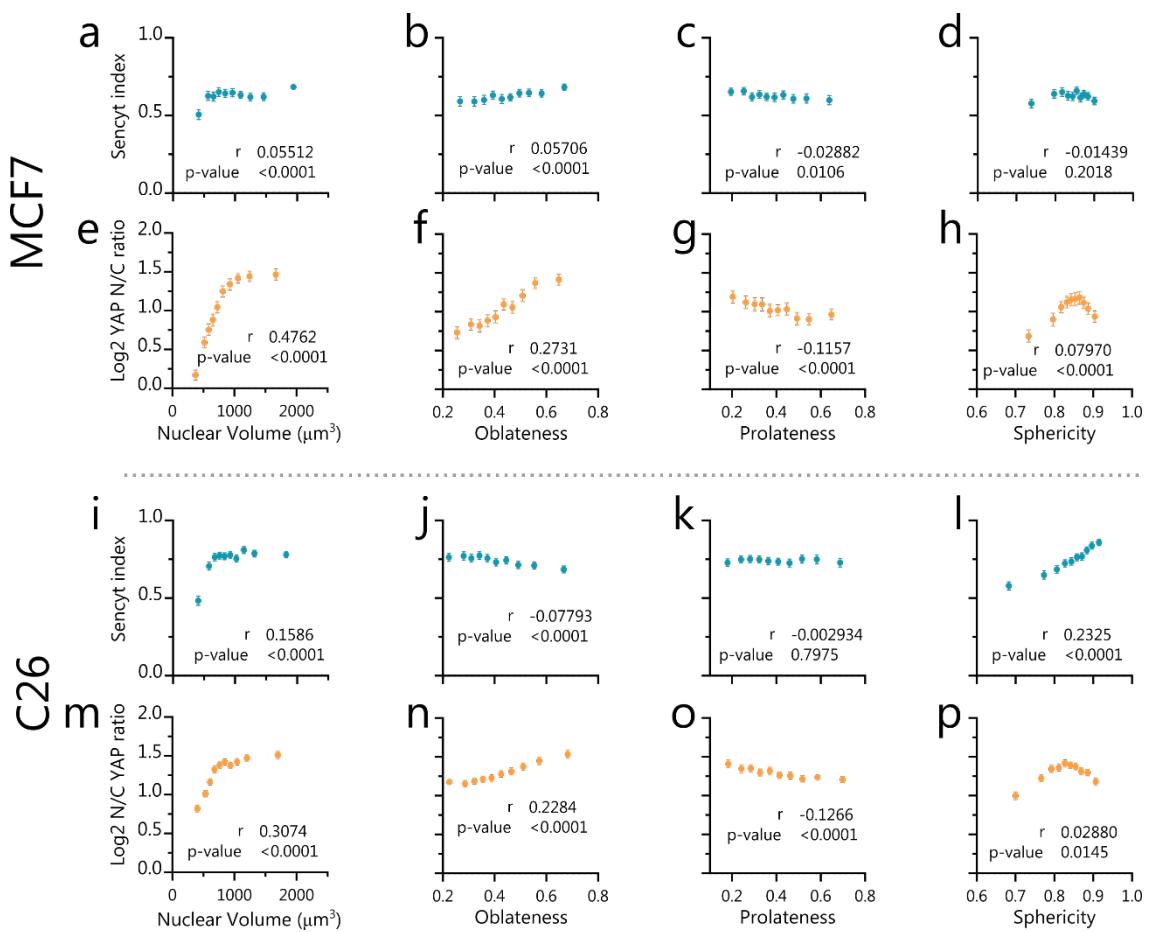


497

498

499

500


501

502

**Supp. figure 3.** Nuclear volume and Solidity index values corresponding to Figure 2 data. a-b) Nuclear Volume ( $N=368, 370, 398, 436, 335, 332, 230, 218, 368, 394, 303, 302$  cells) and c-d) Solidity index measurements and statistics for MCF7 and C26 as a function of time. ( $N=368, 370, 398, 436, 335, 332, 230, 218, 368, 394, 303, 302$  cells).  $p$ -values calculated with Kruskal-Wallis test corrected with Dunn's multiple comparisons test. Error bars represent 95% CI for timelapse graphs and SD for statistical graphs. All data include 3 independent repeats.

503

504



505

506 **Supp. figure 4.** Sencyt index and YAP localization versus nuclear shape parameters. (a-d  $N=7865$  cells, e-h  $N=4889$  cells,  
 507 i-l  $N=7647$  cells, m-p  $N=7204$  cells). p-values calculated with Two-tailed non-parametric Spearman correlation test.  
 508 Error error bars represent 95% CI. All data include 3 independent repeats.

509

## 510 References

511 Ahlstrom, J. D., & Erickson, C. A. (2007). Organization of cells into higher-ordered structures.  
512 *Principles of Tissue Engineering*, 67–79. <https://doi.org/10.1016/B978-012370615-7/50010-X>

513

514 Andreu, I., Granero-Moya, I., Chahare, N. R., Clein, K., Molina-Jordà, M., Beedle, A. E. M.,  
515 Elosegui-Artola, A., Abenza, J. F., Rossetti, L., Trepaut, X., Raveh, B., & Roca-Cusachs, P.  
516 (2022). Mechanical force application to the nucleus regulates nucleocytoplasmic transport.  
517 *Nature Cell Biology*, In press. <https://doi.org/10.1038/s41556-022-00927-7>

518 Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., &  
519 Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ  
520 regulation by actin-processing factors. *Cell*, 154(5), 1047–1059.  
521 <https://doi.org/10.1016/j.cell.2013.07.042>

522 Broders-Bondon, F., Ho-Bouloires, T. H. N., Fernandez-Sanchez, M. E., & Farge, E. (2018).  
523 Mechanotransduction in tumor progression: The dark side of the force. In *Journal of Cell  
524 Biology* (Vol. 217, Issue 5, pp. 1571–1587). Rockefeller University Press.  
525 <https://doi.org/10.1083/jcb.201701039>

526 Brunet, T., Bouclet, A., Ahmadi, P., Mitrossilis, D., Driuez, B., Brunet, A. C., Henry, L., Serman,  
527 F., Béalle, G., Ménager, C., Dumas-Bouchiat, F., Givord, D., Yanicostas, C., Le-Roy, D.,  
528 Dempsey, N. M., Plessis, A., & Farge, E. (2013). Evolutionary conservation of early  
529 mesoderm specification by mechanotransduction in Bilateria. *Nature Communications*, 4.  
530 <https://doi.org/10.1038/ncomms3821>

531 Cho, W., & Stahelin, R. V. (2005). Membrane-protein interactions in cell signaling and membrane  
532 trafficking. *Annual Review of Biophysics and Biomolecular Structure*, 34, 119–151.  
533 <https://doi.org/10.1146/annurev.biophys.33.110502.133337>

534 Churney, L. (1942). The Osmotic Properties of the Nucleus. *The Biological Bulletin*, 82(1), 52–67.  
535 <https://doi.org/10.2307/1537936>

536 Corbett, T. H., Griswold, D. P., Roberts, B. J., Peckham, J. C., & Schabel, F. M. (1975). Tumor  
537 Induction Relationships in Development of Transplantable Cancers of the Colon in Mice for  
538 Chemotherapy Assays, with a Note on Carcinogen Structure. *Cancer Research*, 35(9), 2434–  
539 2439.

540 Dahl, K. N., Kahn, S. M., Wilson, K. L., & Discher, D. E. (2004). The nuclear envelope lamina  
541 network has elasticity and a compressibility limit suggestive of a molecular shock absorber.  
542 *Journal of Cell Science*, 117(20), 4779–4786. <https://doi.org/10.1242/jcs.01357>

543 Diel, E. E., Lichtman, J. W., & Richardson, D. S. (2020). Tutorial: avoiding and correcting sample-  
544 induced spherical aberration artifacts in 3D fluorescence microscopy. *Nature Protocols*,  
545 15(9), 2773–2784. <https://doi.org/10.1038/s41596-020-0360-2>

546 Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le  
547 Digabel, J., Forcato, M., Bicciato, S., Elvassore, N., & Piccolo, S. (2011). Role of YAP/TAZ in  
548 mechanotransduction. *Nature*, 474(7350), 179–183. <https://doi.org/10.1038/nature10137>

549 Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., Oria,  
550 R., Kechagia, J. Z., Rico-Lastres, P., Le Roux, A.-L. L., Shanahan, C. M., Trepaut, X., Navajas,  
551 D., Garcia-Manyes, S., & Roca-Cusachs, P. (2017). Force Triggers YAP Nuclear Entry by  
552 Regulating Transport across Nuclear Pores. *Cell*, 171(6), 1397–1410.e14.  
553 <https://doi.org/10.1016/j.cell.2017.10.008>

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575167>; this version posted January 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY 4.0 International license](#).

554 Enyedi, B., Jelcic, M., & Niethammer, P. (2016). The Cell Nucleus Serves as a Mechanotransducer  
555 of Tissue Damage-Induced Inflammation. *Cell*, 165(5), 1160–1170.  
556 <https://doi.org/10.1016/j.cell.2016.04.016>

557 Finan, J. D., Chalut, K. J., Wax, A., & Guilak, F. (2009). Nonlinear osmotic properties of the cell  
558 nucleus. *Proceedings of the ASME Summer Bioengineering Conference 2009, SBC2009,*  
559 *PART A*, 93–94. <https://doi.org/10.1115/SBC2009-206197>

560 Hallett, F. R., Marsh, J., Nickel, B. G., & Wood, J. M. (1993). Mechanical properties of vesicles. II.  
561 A model for osmotic swelling and lysis. *Biophysical Journal*, 64(2), 435–442.  
562 [https://doi.org/10.1016/S0006-3495\(93\)81384-5](https://doi.org/10.1016/S0006-3495(93)81384-5)

563 Hamant, O., & Saunders, T. E. (2020). Shaping Organs: Shared Structural Principles Across  
564 Kingdoms. *Annual Review of Cell and Developmental Biology*, 36(1), null.  
565 <https://doi.org/10.1146/annurev-cellbio-012820-103850>

566 Hobson, C. M., Kern, M., O'Brien, E. T., Stephens, A. D., Falvo, M. R., & Superfine, R. (2020).  
567 Correlating nuclear morphology and external force with combined atomic force  
568 microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear  
569 mechanics. *Molecular Biology of the Cell*, 31(16), 1788–1801.  
570 <https://doi.org/10.1091/mbc.E20-01-0073>

571 Hoffmann, E. K., Lambert, I. H., & Pedersen, S. F. (2009). Physiology of cell volume regulation in  
572 vertebrates. *Physiological Reviews*, 89(1), 193–277.  
573 <https://doi.org/10.1152/physrev.00037.2007>

574 Kechagia, Z., Sáez, P., Gómez-González, M., Canales, B., Viswanadha, S., Zamarbide, M., Andreu,  
575 I., Koorman, T., Beedle, A. E. M., Elosegui-Artola, A., Derksen, P. W. B., Trepat, X., Arroyo,  
576 M., & Roca-Cusachs, P. (2023). The laminin–keratin link shields the nucleus from  
577 mechanical deformation and signalling. *Nature Materials*, 22(11), 1409–1420.  
578 <https://doi.org/10.1038/s41563-023-01657-3>

579 Kelley, J. B., & Paschal, B. M. (2007). Hyperosmotic Stress Signaling to the Nucleus Disrupts the  
580 Ran Gradient and the Production of RanGTP. *Molecular Biology of the Cell*, 18(11), 4365–  
581 4376. <https://doi.org/10.1091/mbc.e07-01-0089>

582 Képíró, M., Várkuti, B. H., Végner, L., Vörös, G., Hegyi, G., Varga, M., & Málnási-Csizmadia, A.  
583 (2014). para -Nitroblebbistatin, the Non-Cytotoxic and Photostable Myosin II Inhibitor.  
584 *Angewandte Chemie International Edition*, 53(31), 8211–8215.  
585 <https://doi.org/10.1002/anie.201403540>

586 Lang, F., Busch, G. L., Ritter, M., Völkl, H., Waldegger, S., Gulbins, E., & Häussinger, D. (1998).  
587 Functional significance of cell volume regulatory mechanisms. *Physiological Reviews*, 78(1),  
588 247–306. <https://doi.org/10.1152/physrev.1998.78.1.247>

589 Lemière, J., Real-Calderon, P., Holt, L. J., Fai, T. G., & Chang, F. (2022). Control of nuclear size by  
590 osmotic forces in *Schizosaccharomyces pombe*. *ELife*, 11.  
591 <https://doi.org/10.7554/ELIFE.76075>

592 Lomakin, A. J., Cattin, C. J., Cuvelier, D., Alraies, Z., Molina, M., Nader, G. P. F. F., Srivastava, N.,  
593 Sáez, P. J., Garcia-Arcos, J. M., Zhitnyak, I. Y., Bhargava, A., Driscoll, M. K., Welf, E. S., Fiolka,  
594 R., Petrie, R. J., de Silva, N. S., González-Granado, J. M., Manel, N., Lennon-Duménil, A. M.,  
595 ... Piel, M. (2020). The nucleus acts as a ruler tailoring cell responses to spatial constraints.  
596 *Science*, 370(6514), 863514. <https://doi.org/10.1126/science.aba2894>

597 Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575167>; this version posted January 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY 4.0 International license](#).

598 between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear  
599 structure. *Proceedings of the National Academy of Sciences of the United States of America*,  
600 94(3), 849–854. <https://doi.org/10.1073/pnas.94.3.849>

601 Miermont, A., Waharte, F., Hu, S., McClean, M. N., Bottani, S., Léon, S., & Hersen, P. (2013).  
602 Severe osmotic compression triggers a slowdown of intracellular signaling, which can be  
603 explained by molecular crowding. *Proceedings of the National Academy of Sciences of the*  
604 *United States of America*, 110(14), 5725–5730. <https://doi.org/10.1073/pnas.1215367110>

605 Nava, M. M., Miroshnikova, Y. A., Biggs, L. C., Whitefield, D. B., Metge, F., Boucas, J., Vihinen, H.,  
606 Jokitalo, E., Li, X., García Arcos, J. M., Hoffmann, B., Merkel, R., Niessen, C. M., Dahl, K. N.,  
607 & Wickström, S. A. (2020). Heterochromatin-Driven Nuclear Softening Protects the  
608 Genome against Mechanical Stress-Induced Damage. *Cell*, 181(4), 800-817.e22.  
609 <https://doi.org/10.1016/j.cell.2020.03.052>

610 Needham, D., & Nunn, R. S. (1990). Elastic deformation and failure of lipid bilayer membranes  
611 containing cholesterol. *Biophysical Journal*, 58(4), 997–1009.  
612 [https://doi.org/10.1016/S0006-3495\(90\)82444-9](https://doi.org/10.1016/S0006-3495(90)82444-9)

613 Ng, I. H. W., Jans, D. A., & Bogoyevitch, M. A. (2014). Hyperosmotic stress sustains cytokine-  
614 stimulated phosphorylation of STAT3, but slows its nuclear trafficking and impairs STAT3-  
615 dependent transcription. *Cellular Signalling*, 26(4), 815–824.  
616 <https://doi.org/10.1016/j.cellsig.2013.12.012>

617 Niethammer, P. (2021). Components and Mechanisms of Nuclear Mechanotransduction. *Annual*  
618 *Review of Cell and Developmental Biology*, 37, 233–256. <https://doi.org/10.1146/annurev-cellbio-120319-030049>

620 Nolen, B. J., Tomasevic, N., Russell, A., Pierce, D. W., Jia, Z., McCormick, C. D., Hartman, J.,  
621 Sakowicz, R., & Pollard, T. D. (2009). Characterization of two classes of small molecule  
622 inhibitors of Arp2/3 complex. *Nature*, 460(7258), 1031–1034.  
623 <https://doi.org/10.1038/nature08231>

624 Philip, J. T., & Dahl, K. N. (2008). Nuclear mechanotransduction: Response of the lamina to  
625 extracellular stress with implications in aging. *Journal of Biomechanics*, 41(15), 3164–3170.  
626 <https://doi.org/10.1016/j.jbiomech.2008.08.024>

627 Piccolo, S., Dupont, S., & Cordenonsi, M. (2014). The biology of YAP/TAZ: Hippo signaling and  
628 beyond. *Physiological Reviews*, 94(4), 1287–1312.  
629 <https://doi.org/10.1152/physrev.00005.2014>

630 Schuller, A. P., Wojtynek, M., Mankus, D., Tatli, M., Kronenberg-Tenga, R., Regmi, S. G., Dip, P.  
631 V., Lytton-Jean, A. K. R., Brignole, E. J., Dasso, M., Weis, K., Medalia, O., & Schwartz, T. U.  
632 (2021). The cellular environment shapes the nuclear pore complex architecture. *Nature*,  
633 598(7882), 667–671. <https://doi.org/10.1038/s41586-021-03985-3>

634 Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. C., Pinter, J., Pajerowski, J. D., Spinler,  
635 K. R., Shin, J. W., Tewari, M., Rehfeldt, F., Speicher, D. W., & Discher, D. E. (2013). Nuclear  
636 lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. *Science*,  
637 341(6149), 1240104. <https://doi.org/10.1126/science.1240104>

638 Tajik, A., Zhang, Y., Wei, F., Sun, J., Jia, Q., Zhou, W., Singh, R., Khanna, N., Belmont, A. S., &  
639 Wang, N. (2016). Transcription upregulation via force-induced direct stretching of  
640 chromatin. *Nature Materials*, 15(12), 1287–1296. <https://doi.org/10.1038/nmat4729>

641 Venturini, V., Pezzano, F., Català Castro, F., Häkkinen, H.-M. M., Jiménez-Delgado, S., Colomer-

642 Rosell, M., Marro, M., Tofosa-Ramón, Q., Faz-López, S., Valverde, M. A., Weghuber, J., Loza-  
643 Alvarez, P., Krieg, M., Wieser, S., Ruprecht, V., Castro, F. C., Häkkinen, H.-M. M., Jiménez-  
644 Delgado, S., Colomer-Rosell, M., ... Ruprecht, V. (2020). The nucleus measures shape  
645 changes for cellular proprioception to control dynamic cell behavior. *Science*, 370(6514),  
646 eaba2644. <https://doi.org/10.1126/science.aba2644>

647 Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., Zheng, P.,  
648 Ye, K., Chinnaiyan, A., Halder, G., Lai, Z. C., & Guan, K. L. (2007). Inactivation of YAP  
649 oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth  
650 control. *Genes and Development*, 21(21), 2747–2761.  
651 <https://doi.org/10.1101/gad.1602907>

652 Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J. D., Wang, C. Y., Chinnaiyan, A. M., Lai, Z. C.,  
653 & Guan, K. L. (2008). TEAD mediates YAP-dependent gene induction and growth control.  
654 *Genes and Development*, 22(14), 1962–1971. <https://doi.org/10.1101/gad.1664408>

655 Zimmerli, C. E., Allegretti, M., Rantos, V., Goetz, S. K., Obarska-Kosinska, A., Zagoriy, I., Halavatyi,  
656 A., Hummer, G., Mahamid, J., Kosinski, J., & Beck, M. (2021). Nuclear pores dilate and  
657 constrict in cellulo. *Science*, 374(6573), eabd9776.  
658 <https://doi.org/10.1126/science.abd9776>