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Abstract

Motivation: Computational analyses of plasma proteomics provide translational insights into complex
diseases such as COVID-19 by revealing molecules, cellular phenotypes, and signaling patterns that
contribute to unfavorable clinical outcomes. Current in silico approaches dovetail differential
expression, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like

post-translational modifications, and provide limited biological interpretability beyond feature ranking.

Results: We introduce APNet, a novel computational pipeline that combines differential activity
analysis based on SJARACNe co-expression networks with PASNet, a biologically-informed sparse
deep learning model to perform explainable predictions for COVID-19 severity. The APNet driver-
pathway network ingests co-expression and classification weights to aid result interpretation and
hypothesis generation. APNet outperforms alternative models in patient classification across three
COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed

in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.

Availability and Implementation: APNet’s R, Python scripts and Cytoscape methodologies are
available at https://github.com/BiodataAnalysisGroup/APNet

Contact: ggeorav(@certh.gr

Supplementary information: Supplementary information can be accessed in Zenodo

(10.5281/zenodo.10438830).

Abbreviations

APNet Activity PASNet

ARDS Acute Respiratory Distress Syndrome

AUC Area Under the Curve

DAPs Differential Active Proteins

DEPs Differential Expressed Proteins

DL Deep Learning

DOME Data, Optimization, Model, Evaluation
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EXP  Expression Values

ICU Intensive Care Unit

KG  Knowledge Graph

Mayo Mayo Clinic

MGH Massachusetts General Hospital

MI Mutual Information

MLP  Multi-Layer Perceptron

NPX Normalized Protein eXpression

PASNet Pathway-Associated Sparse Deep Neural Network

PBMC Peripheral Blood Mononuclear Cell

PEA  Proximity Extension Assay

RF Random Forest

ROC  Receiver Operating Characteristic

SFA  Signal Flow Analysis

SHAP Shapley additive explanation

Stanford Stanford Hospital

SVM  Support Vector Machine

WHO World Health Organization

XAl  eXplainable Artificial Intelligent
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74 1. Introduction

75  Human plasma is a vital clinical specimen encompassing a broad spectrum of proteins, including tissue
76  markers, immunoglobulins, transcription factors, kinases, metabolites, and secreted factors (Eldjarn et
77  al., 2023; Zhong et al., 2021). With the advent of high-throughput technologies (-omics), the human
78  plasma proteome has become a focal point for discovering novel biomarkers and therapeutic targets for
79  complex diseases. This has been especially the cases with severe COVID-19, a condition besetting
80  many patients infected with the SARS-CoV-2 coronavirus (Babaci¢ et al., 2023). Plasma proteomics
81  have provided significant biological insights into the immunopathology of severe COVID-19, which is
82  characterized by the inflammatory "cytokine storm", Acute Respiratory Distress Syndrome (ARDS),
83  PANoptosis-induced cell death, and multiorgan failure (Diamond and Kanneganti, 2022). Plasma
84  proteomics has also been explored in long-COVID-19 syndromes and vaccine response variations
85 (Liangetal., 2023).
86  Many studies have measured plasma proteomics using Olink Proximity Extension Assay (PEA) in
87  COVID-19 research due to this technology's specificity, scalability and multiplexing benefits (Wik et
88 al., 2021). In our recent work, we assessed pertinent Machine Learning models applied in these high-
89  dimensional datasets like Random Forest, Gradient Boosted Decision Tree, XGBoost, Extra Tree
90 classifiers, Logistic regression, Lasso Logistic regression, Support Vector Machine (SVM), and Deep
91  Learning (DL) (e.g., AutoGluon-Tabular). Some models exhibited eXplainable Al (XAI) features by
92  deploying Shapley additive explanation (SHAP) values, the minimal-optimal variables method or a
93  random forest explainer. In the same work, we managed to dovetail an explainable, computational
94  pipeline to benchmark a wide assortment of ML tools on predicting COVID-19 severity from Olink
95  plasma proteomics which revealed Multi-Layer Perceptron (MLP) as the highest-performing algorithm
96  (Dimitsaki et al., 2023).
97  However, most of the above studies can partially approximate proteomic non-linear dynamics (e.g.,
98  post-translational modifications, protein co-expression networks, complex formation, and subcellular
99  localization), thus missing signaling proteins that may drive critical COVID-19 pathways. Moreover,
100 these studies’' ML/DL findings often lack extensive external validation in large independent datasets,
101 while their biological explainability is usually restricted to mere feature ranking (Paul et al., 2023)
102  (Dimitsaki et al., 2023).
103  Acknowledging these challenges, we introduce Activity PASNet (APNet) in this manuscript. This
104  computational DL pipeline initially uses the STARACNe data-driven network algorithms to uncover
105  disease drivers prioritized based on "activity," an aggregate metric of their capacity to regulate their
106 transcriptional targets non-linearly (Ding et al., n.d.; Dong et al., 2023). These drivers can be overt
107  (differentially expressed and possibly active) or “hidden” (differentially active but not expressed). Next,
108  APNet feeds these drivers into Pathway-Associated Sparse Deep Neural Network (PASNet) (Hao et
109  al., 2018), which incorporates biological priors as hidden layers to ultimately deliver interpretable
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110  clinical classifications, validated by the eXplainable Al component of SHAP values. Finally, APNet
111 facilitates the analysis of SJARACNe co-expression networks, equipped with the weights from the DL
112  classification task, to streamline data exploration and the formation of mechanistic hypotheses for
113  further biological investigation.

114  We extensively trained, tested, and validated APNet on activity matrices from 3 distinct Olink plasma
115  proteomic datasets (MGH, Mayo, Stanford) (Byeon et al., 2022; Feyaerts et al., 2022; Filbin et al.,
116 2021). APNet managed to pinpoint ground-truth drivers of severity, predicted new proteomic markers
117  with potential theranostic potential (some of which were traced to circulating PBMCs through scRNA -
118  seq analysis), outperformed alternative ML/DL models in demarcating severe COVID-19 cases and
119  enabled the inference of a potential signaling network from predictive factors in the liver of individuals
120  with severe COVID-19.

121

122 2. Materials and methods

123 2.1 APNet overview

124  APNetis a modular pipeline (Figure 1) which aims to facilitate the discovery of novel predictive drivers
125  of severe clinical outcomes and to facilitate the formulation of mechanistic hypotheses. In this present

126 work, we considered cases experiencing severe and non-severe COVID-19.
127

128 2.2 Brief description of APNet modular architecture

129  2.2.1 Module 1- Differential activity analysis for drivers of COVID-19 severity

130 In this module, conversions of expression values to activity values for plasma proteomics were
131  accomplished with NetBID2 (Dong et al., 2023) toolkit whereas for scRNA-seq data with sScMINER
132  toolkit (Ding et al., 2023). For the plasma proteomics, we applied the NetBID2 algorithm, which
133  reverse-engineers context-specific interactomes and integrates network activity inferred from large-
134  scale multi-omics data, empowering the identification of hidden drivers that traditional analyses cannot
135  detect. By leveraging the MSigDB database, we compiled distinct lists of Transcription Factors (TF)
136  and signaling molecule proteins. Separate TF and signaling molecule networks were constructed using
137  SJARACNe. These networks featured drivers (hubs) connected to their targets through protein-protein

138 interactions, derived from their expression patterns.


https://www.zotero.org/google-docs/?2WrAIP
https://www.zotero.org/google-docs/?2WrAIP
https://www.zotero.org/google-docs/?rDeWbv
https://www.zotero.org/google-docs/?AWnrWM
https://doi.org/10.1101/2024.01.11.575161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.11.575161; this version posted January 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

APNet uncovers predictive drivers of COVID-19 severity

139  To calculate the activities of driver proteins in each dataset based on protein expression, we employed
140  the "cal.Activity" function in NetBID2. The weighted mean activity of a driver candidate protein

141 (Driver{i}) in sample s, was computed using the following equation:

;-l=] SIGNU * MIU * EXPSJ
n

142 Drivery; =

143  Here, the NPX count proteomics matrix, EXP{sj} represented the expression value of gene j in sample
144 s, MI{ij} indicated the mutual information between master regulator protein i and its target protein j,
145  and SIGN({ij} was the sign of the Spearman correlation between protein i and its target protein j. The

146  total number of targets for DRIVER i was denoted by n.

147  Differential activities were then computed for Severe and Non-Severe Status across the three datasets,
148 Dby using the "getDE.BID.2G" function, allowing us to identify genes exhibiting distinct regulatory

149  patterns in response to severity variations, through Bayesian model.

150  Also, we deployed the scMINER workflow, based also on STARACNe, to discover severity drivers in
151  MGH scRNAseq data. For both differential expression and differential activity, the function get.DA
152  was performed by using the SCT matrix and activity matrix, respectively. Data visualisation for single-

153  cell analysis was performed through the Seurat pipeline (4.3.0).

154 2.2.2 Module 2- Driver-pathway mapping

155  To prepare input data for the biologically explainable PASNet DL model on Module 3, joint
156  differentially active drivers of severity from the three Olink studies were mapped to biological pathways
157  using the Enrichr KG (Evangelista et al., 2023). 30 pathways from each of the following resources were
158  leveraged (KEGG, Reactome, GO:BP and Wikipathways 2021) for the commonly decreased and
159  increased drivers of severity separately. Drivers were mapped to the retrieved pathways in a binary
160  fashion with Os and 1s, i.e. when a driver was participating in the gene set of a pathway it was assigned

161 the value of 1 and vice versa.

162  2.2.3 Module 3-Deep Learning classification of Severe COVID-19 cases with biological
163  explainability

164  The findings from Modules 1 and 2 served as input for Module 3, where a sparse neural network model
165  called PASNet was used to predict COVID-19 severity. The model was trained on MGH data, validated
166  on Mayo and tested on Mayo and Stanford datasets. A separate model was trained and tested using

167  scMGH data. Model performance was evaluated using Area Under the Curve (AUC) and F1-scores,
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168  along with ROC curve analysis. The PASNet training phase is expressed through the following
169  equations.

170  Sparsity of the PASNet sub-network function: D = a(W® « M (l))h(l) +b®)

171 MO ={(wO|=QW),ifL=0
172 MO ={4,ifl=0
173  where

174 QWO is the S-th percentile of |W(l)| ifl #0
175  M: mask matrix for each layer

176 [llayer
177  W: weight matrix

178 b: vias vector

179  Cost-sensitive learning for imbalanced data: L = YK_, Cj + §A||W|| P

I <
180 Ce=—> " cOuy)
" = -

181  Thus, the weights and biases on the [-th layer are updated by:

K
dcC
Q) _ o _ Tk
191 WY « (1 —n)W nE FITRO
k=1
S dc
Q) o _ E =k
192 b « p n 750
k=1
182  where

183  Cy:mean error on the class k

184  y;:ground truth

185  y;:prediction

186  ng:number of samples in the class k

187  L: total cost

188  c¢(.):cost function (e.g., cross-entropy loss)
189  A: regularization hyperparameter

190  n:learning rate


https://doi.org/10.1101/2024.01.11.575161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.11.575161; this version posted January 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

APNet uncovers predictive drivers of COVID-19 severity

193  Biological explainability of the whole sparse DL model is predicated in the combination of Shapley
194  values (SHAP) and the driver-pathway mappings that PASNet architecture offers, assigning learning
195  weights.

SPM —|S|— D!
196 w=y PR - o)
SEN\(D)

197  N: is the set of all input features
198  i: feature

199  f:model

200  M: is the number of features

201

202 2.2.4 Module 4- Bipartite graph analysis

203  This final APNet module leverages the SJARACNe co-expression networks from each study for the
204  joint differential active drivers and augments it by connecting drivers to pathways based on Module 2.
205  The weights of driver-driver edges contain the Mutual Information (MI) metric and the Spearman
206  correlation coefficient (positive values signify activation, negative values the opposite), amongst other
207  metrics. Driver-pathway edges contain as weights the PASNet-weights that PASNet learned during
208  training-testing tasks from Module 3. Our study used Cytoscape to perform network visualization, basic
209  analysis for network statistics and centrality metrics (Betweenness Centrality algorithm),
210  dimensionality reduction using tSNE (cluster signal propagation simulation (OCSANA+) and analysis
211 for shortest paths (PathLinker tool)(Gil et al., 2017; Marazzi et al., 2020).

212  OCSANA+ is a Cytoscape application that analyses the structure of large-scale complex networks. It
213  identifies nodes that drive the system towards a desired long-term behavior and ranks the combinations
214  ofinterventions that are likely to be more effective. Additionally, it estimates the effects of perturbations
215  in signaling networks. We used the Signal Flow Analysis (SFA) feature of OCSANA+ to simulate
216  signal propagation. The SFA algorithm estimates the signal flow in a signaling network by analyzing
217  the topological information. It employs a linear difference equation that considers a node's previous
218  activity, the effect and influence of incoming edges, and the initial activities of the node. The algorithm
219  focuses on the information conveyed by a series of biological interactions represented in a signaling

220  network (Marazzi et al., 2020).

221  PathLinker is a Cytoscape app based on an algorithm reconstructing interactions in a signaling pathway.
222 Tt requires a directed network, a set of sources, and a set of targets as inputs. The algorithm computes

223  the k best-scoring loopless paths and outputs the sub-network of the k best paths. The algorithm offers
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224  three choices for managing edge weights: (i) No weights: Path score is based solely on the number of
225  edges in the path, and PathLinker identifies the k paths with the lowest scores, (ii) Additive edge
226  weights: Path score results from the summation of edge weights, and PathLinker finds the k paths with
227  thelowest scores in this scenario as well, (iii) Probabilistic edge weights: Common in protein interaction
228  networks, where weight represents experimental reliability. PathLinker treats these weights as
229  multiplicative, seeking the k paths with the highest cost, where the product of edge weights determines
230  cost. Internally, PathLinker transforms each weight by taking the absolute value of its logarithm to map
231 the problem to the additive case (Gil et al., 2017) (Figure 2).

232
233 2.3 Technical benchmarking and bioinformatic validation based on COVID-19 prior knowledge

234  To benchmark APNet’s performance on patient classification from Olink plasma proteomics, we
235  deployed the PASNet approach on original NPX values of Olink plasma proteomics and a Random
236  Forest model on the transformed activity values. Firstly, for PASNet we used the expression values for
237  training, validation and test, by using the count matrices of MGH, Mayo and Stanford, respectively.
238  The count matrices were filtered by keeping only the common significant proteins across 3 datasets
239  from Differential Expression analysis to perform the PASNet approach on expression data. Similarly to
240  the APNet approach, pathways collected from EnrichR-KG, by using (KEGG, Reactome, GO:BP and
241  Wikipathways 2021) for the commonly decreased and increased drivers of severity separately. PASNet
242  used the count matrices across 3 datasets for training, validation, and test, by using MGH, Mayo, and
243  Stanford respectively. Then for Random Forest, we used activity matrices from 3 datasets, by applying

244  training, validation and test into MGH, Mayo and Staford, respectively.

245  Bioinformatic validation of the top 20 most predictive drivers for each experiment was pursued by
246  mapping these drivers to the 9 curated networks regarding COVID-19 immunopathological hallmarks
247 by SIGNOR (https://signor.uniroma?2.it/covid/). Level 4 networks were obtained for each COVID-19

248  hallmarks and downstream processing was conducted in Cytoscape.

249  Finally, selective data mining for key drivers of interest was performed in the web tool

250 https://www.covid19dataportal.org/.

251

252 2.4 DOME recommendations

253  The assembly of APNet was performed considering the recently published DOME recommendations,

254  a set of community-wide recommendations for reporting supervised machine learning—based analyses
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255  applied to biological studies (see supplementary information) (Walsh et al., 2021) (Supplementary
256  Material 1).

257

258 3. Results

259 3.1 Harmonization of COVID-19 patient cohorts and assembly of plasma proteomic datasets

260  Initially, we harmonized patient stratification for COVID-19 severity based on WHOscore (“Severe”
261  vs “NonSevere”) across the three Olink proteomic datasets. In particular, COVID-19 cases who had a
262  fatal outcome or were admitted in the ICU or were intubated were designated as “severe” and the
263  residual cases were designated as “non-severe”. In the MGH study, we designated 80 severe and 225
264  non-severe cases. In the Mayo study, we demarcated 268 severe and 181 non-severe COVID-19 cases.
265  Furthermore, we determined 24 severe and 40 non-severe cases in the Stanford study. Associations with

266  respective WHOscores and age can be seen in (Sup. Figure 1).

267  From all 3 Olink studies, 1463 common plasma proteins were bioinformatically studied within APNet

268  and were used for downstream processing to uncover predictive markers of severity.
269

270 3.2 Data preprocessing and detection of severity drivers across proteomic studies

271  Next, we used the NetBID2 toolkit through APNet to detect common differentially active proteins
272  (DAPs) in severe COVID-19 cases, for all three Olink studies. Notably, for MGH, the prominent
273  positive drivers included TACSTD2, BAG3, POLR2F, DPY30, and CAPG. Conversely, the top
274  negative drivers for MGH were CCL22, BTC, IGFBP3, TNFSF11, and ICOSLG (Sup. Figure 2A).
275  Similarly, in the case of Mayo, the leading positive drivers consisted of VSIG4, ILIRL1, IL27, KRT19,
276  and JUN, while negative drivers entailed CDON, CDIC, ITGB7, TNFSF11, and LRRNT1 (Sup. Figure
277  2B). For Stanford, the primary positive drivers were LGALS1, CSTB, MADI1L1, DDAHI, and CCL7
278  and the negative were EPCAM, CPA2, CDNF, DSG4, and CDIC. Pathway enrichment showed that
279  these severe COVID-19 top-drivers were associated with cell migration, monocyte activation,

280  methylation changes and immune cell dysregulation (Sup. Figure 2A-C).

281  From hereon, we focused on the commonly perturbed drivers across the three studies. APNet captured
282 333 common differentially active proteins (DAPs) across the three studies and encompassed 163
283  differentially expressed proteins (DEPs) and 170 hidden drivers (i.e., hidden in at least one of the three
284  Olink datasets) (Figure 3A-B). Among the 333 common drivers, 150 were differentially hyper-active
285  and 183 were hypo-active in severe COVID-19. When analyzing the STRINGdb network of common

10
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286  DAPs, centrality analysis prioritized DEPs like immuno-regulatory interleukins IL4-IL6, keratin
287  modulators (KRT19), chemokines for macrophages and neutrophils (CXCL8/CCL20) and transcription
288  factors (JUN). Other central decreased DEPs were effectors of T cell activation and proliferation
289 (CD8A, CD28), mediators of developmental pathways like the SCF/c-Kit pathway
290 (KIT/KITLG/IL7R/FLT3/CD34) and cellular adhesion surface molecules (ITGB1). Similarly, central
291 hyper-active hidden drivers (“positive”) pertained to growth factors (HGF), ECM remodellers
292  (metalloprotease inhibitor TIMP1), chemoattractants of monocytes, natural killer and T-cells
293 (CXCLY/CXCLI10/CCL3) and biomarkers of systemic organ failure (the lipocalin LCN2 indicating
294  acute kidney injury). Other central hypo-active hidden drivers included cellular adhesion molecules
295 (NCAMI, ITGB2, ITGAV), growth factors (FLT3LG, ligand for the FLT3 receptor found in DEPs) or
296  cognate receptors (EGFR, receptor for the Epidermal Growth Factor) and the tumour suppressor
297  molecule PTEN (Figure 3C).

298  Pathway enrichment through the Enrichr KG (KEGG, Wikipathways, Reactome, GO:BP) highlighted
299  several biological ground truths involved in COVID-19 immunopathology such as increased activation
300  of innate immunity, lung fibrosis, MAPK signaling, Sars-CoV-2 immuno-evasion, neutrophil
301  degranulation and viral protein interaction with cytokines and cognate receptors (Figure 3D).
302  Conversely, dwindling pathways in severe COVID-19 included the hematopoietic system, inhibitors of
303  the PI3K-Akt signaling pathway, cellular adhesion mechanisms through integrins and the Hippo-Merlin
304  signaling pathway, revealing an impairment of physiological proliferation and migration for circulating

305  immune cells (Figure 3E).

306  To better dissect the increased perturbational space captured by APNet, distinct cellular enrichment for
307  DEPs and hidden drivers was conducted using the GTEx_Tissues database through Enrichr. DEPs
308  exhibited an over-representation for peripheral blood, spleen, liver, brain, and adipose tissue. Hidden
309  drivers, conversely, implicated other organs like oesophagus, tibial nerve and the cardio-vascular
310  system (Sup. Figure 3A-D). Ensuing pathway enrichment with WikiPathways and GO:BP uncovered
311 an expected affiliation of DEPs with key COVID-19 molecular “landmarks” like apoptosis, viral life
312 cycle, neutrophil degranulation, PI3K Akt signaling and impediments in synapse functionality and
313  angiogenesis. Interestingly, the hidden drivers were skewed towards aberrant insulin signaling, cellular
314  adhesion imbalances (L1cam interactions), propagation of hypoxia and abnormal neuronal behaviour

315  (increased neuroinflammation, decreased neuroplasticity) (Sup. Figure 3E-F, Sup. Figure 4).

316  These preliminary findings underline the importance of employing activity transformations on distinct
317  COVID-19 plasma proteomic datasets using APNet. Beyond mere differential expression, this approach
318  identified shared, systemic damages caused by Sars-CoV-2 across multiple organs and tissues

319  (Supplementary Material 2-3).
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320 3.3 APNet classifies severe COVID-19 cases among distinct plasma proteomic studies

321 At this point, we hypothesized that the newly discovered hidden drivers had untapped biological
322  potential, which could enhance the clinical prediction of severe COVID-19 cases from plasma

323  proteomics.

324  We used the common DAPs across the three Olink studies for the ensuing clinical predictions. After
325  initial training in the MGH dataset (for details, see Materials and Methods), APNet accurately predicted
326  severe COVID-19 patients during the early testing phase (MGH-Mayo experiment) with significant
327  robustness (AUC = 0.96, F1 score = 0.9). Biological explainability highlighted the prognostic
328  significance of various DEPs (JUN, IL6, MAPK9, TNFRSF1A, AREG, NTF4, NCF2, TNFRSF10A,
329  FLT3, CKAP4, FLT3LG, SDC1, TNFRSF10B, TNFSF11) but also several hidden drivers (FTL3LG,
330 LYN, PTEN, EFNAI1, ACAAI, HGF, TIMP1) (top-20). The most predictive pathways involved the
331  ground-truth “cytokine storm”, MAPK signaling, vascular damage reflected on atherosclerosis

332  potential, protein folding (through HSP90 chaperone), and PI3K-Akt signaling pathway (Figure 4A-B).

333  During the second testing phase (MGH-Stanford experiment), APNet once again exhibited significant
334  predictive robustness since, on the Stanford dataset, it could foreshadow severe COVID-19 efficiently
335 (AUC=0.91, FI score = 0.68). Biological explainability revealed predictive drivers of severity, many
336  of which overlapped with the ones from the previous testing experiment (i.e. PTEN, JUN, IL6, LYN,
337  TNFRSFIA, TNFRSF10A, TNFRSF10B, TNFSF10) but also unveiled novel ones (BAX, LTA, KDR,
338 COLIAI1,CCL7,EGFR, ERBB2, CCL22, PODXL, SEMA4D, KIT, ROBO1). The hidden drivers were
339  PTEN, BAX, CCL22, EGFR, LYN, ROBOI (Figure 4C).

340  The most predictive pathways in this experiment involved viral infection and disruption of cytokines
341 and cognate receptors, PI3K-Akt signaling pathway, MAPK signaling, Hippo-Merlin signaling
342  dysregulation, and intensified Interleukin signaling pathway, apoptotic TRAIL signaling, neurotoxicity

343  concerning axonogenesis, and imbalances in lipid metabolism (Figure 4D) (Supplementary Material 4).

344  Hierarchical clustering on all cases across studies revealed associations of the most predictive drivers
345  with COVID-19 severity, while in the MGH study, further associations with diabetes and kidney disease

346  were also uncovered (Figure 4E).

347
348 3.4 APNet bridges plasma proteomics with single-cell transcriptomics

349 At this point, we decided to use APNet for a joint analysis between bulk plasma proteomics (MGH
350  dataset) and scRNA-seq data from circulating peripheral blood mononuclear cells (PBMCs, 4 severe
351  and 10 non-severe MGH cases). We sought to (a) prioritize which predictive drivers of COVID-19
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352  severity could be important for both -omic modalities and (b) trace the cellular origin of various
353  predictive drivers of COVID-19 severity from all the insofar classification experiments among the

354  PBMC cellular populations. (Figure SA).

355  Initially, we deployed the scMINER toolkit to convert the typical sparse scRNA-seq expression matrix
356  into a non-sparse activity matrix based on the STARACNe/MICA/MINIE algorithms (see Materials and
357  Methods for details). Single-cell differential activity analysis revealed 282 differentially active drivers
358 (140 DEGs and 142 hidden drivers) in severe COVID-19, which were also perturbed in the MGH
359  plasma proteomic analysis (Sup. Figure 5A). STRINGdb PPI network modeling and pathway
360  enrichment implicated several key COVID-19 severity drivers in innate/adaptive immunity, viral
361  replication, inflammatory signaling, cell adhesion and lipid metabolism (e.g., IL6, NCAM, LYN, PTEN,
362  ITGBI, ITGAM) (Sup. Figure 5B-D), in line with our findings from the previous plasma proteomic
363  analyses.

364  Next, we trained APNet on the MGH plasma proteomic dataset and tested it on the MGH single-cell
365  dataset (scMGH). APNet was highly robust in classifying severe COVID-19 cases (AUC: 0.99, F1-
366  score: 0.975). The driver-pathway heatmaps pointed towards expected inflammatory and immune
367  pathways (e.g., IL18 signaling, TLR4 stimulation, T cell differentiation) as predictive signalling motifs
368  of severe COVID-19. Five predictive drivers from the previous plasma proteomic experiments were
369  found as predictive genes (MAPKY, TIMPI, JUN, IL6, TNFSF10). The other multi-omic predictive
370  drivers were S100412, CD63, LAMP2, BIRC2, HMOXI, LGALS1, NFATCI, ILIORA, ATP6AP2, CDA4,
371 ITGBI (Figure 5B-C).

372  Lastly, we probed for the single-cell activity profile of various predictive drivers from the MGH-
373  Mayo/MGH-Stanford/MGH-scMGH experiments. We discovered that the most active drivers in severe
374  cases were JUN (B/T cells) and TIMP1 (all PBMCs except B cells and NKs). In contrast, in non-severe
375  cases, it was PTEN (monocytes and platelets) and ACAA! (all PBMCs but especially B cells). Like
376  ACAAI, which opposed its proteomic counterpart, CKAP4 was also increased in non-severe cases
377  (monocytes). Other active genes in all non-severe PBMCs were FLT3LG, BAX, LYN and TNFSF10,
378  while NCF2 was mainly in severe monocytes (Figure 5D-E) (Supplementary Material 5).

379  Overall, these results elaborate on the cellular origins of certain predictive drivers for severe COVID-
380 19 inferred by APNet in PBMCs and were attained through APNet’ noticeable versatility in bridging

381 across -omic modalities.

382
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383 3.5 Benchmarking APNet against alternative ML/DL methods

384  To benchmark APNet’s significant performance on COVID-19 classification tasks, we initially
385  retrieved from the literature the predictive models published by the authors of the MGH study (Filbin
386  etal.), the Stanford study (Feyarts et al.), and of an independent study from Qatar which used the MGH
387  study for independent validation. As shown in Table 1, APNet outperformed the MGH and Stanford
388  models (Table 1). Although APNet showed similar performance to Qatar's predictive model (AUC >
389  0.95, training-testing on the authors’ in-house data) in demarcating severe COVID-19 cases, it
390  outperformed Qatar's model in terms of generalizability. This was evident as the latter achieved an AUC

391  0of 0.79 when independently tested on the MGH study (Table 1).

392

393 Table 1. Published ML/DL analyzing MGH and Stanford Olink datasets

Study Al model AUC
Filbin et al. (MGH study) Random Forest (elastic-net 0.85
logistic regression with cross-
validation)
Fayerts et al. (Stanford study) (LASSO) linear regression 0.77 - 0.79 (Stanford study)
Al-Nesf et al. (Qatar study with MUVR >0.959 (Qatar data)

Boruta algorithm)

0.76 (D0) (MGH validation)

394 At this point, we performed more specific benchmarking experiments using (a) a variation of APNet
395  where we provided only DEPs to the DL model instead of DAPs (PASNet-expression) and (b) an
396 alternative variation where we substituted the PASNet architecture with one of the most widely used,
397  explainable Machine Learning approaches like Random Forest (RF). The training, validation and testing

398 datasets remained the same as before.

399  Noticeably, APNet outperformed all alternative DL/ML models based on activity or expression data
400 regarding AUC and Fl-score (Figure 6A - B). More specifically, the PASNet-expression model
401  performed poorly on the Mayo dataset (AUC: 0.645, F1 score: 0.7475), and none of the predicted
402  molecules were hidden drivers. Biological explainability indicated ground-truth biological pathways

403  related to COVID-19 immunopathology were the most predictive pathways. However, some more
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404  nuanced pathways that APNet retrieved during the MGH-Mayo experiment were missing or under-
405  represented (e.g., lipid imbalances) (Figure 6C-D).

406  The PASNet-expression model also under-performed in the Standford study compared to APNet, with
407  an AUC of 0.89 and an Fl-score of 0.54. Unsurprisingly, this expression-driven investigation in the
408  Stanford study could only reveal a limited scope of predictive biological pathways like Cellular
409  response to stress, positive regulation of intracellular signaling transduction, Neutrophil degradation,

410  and viral protein response (Figure 6E-F).

411  The second alternative model based on Random Forest (RF) under-performed even more on Mayo and
412  Stanford datasets than the previous one since the models were validated with AUC: 0.65, F1-score:
413  0.4746, and AUC: 0.7375, Fl-score: 0.6486, respectively, for each dataset. Noticeably, the top-
414  predictive proteins were almost identical across the Mayo and Stanford datasets analysis. Concerning
415  the multi-omic experiment, we opted not to test the PASNet expression-driven model. This decision
416  was based on the intrinsic sparsity of the ScRNA-seq data's expression and the apparent requirement for
417  specific data harmonization or more advanced ML/DL manipulations, which were beyond the scope of
418  our current project. Consequently, we exclusively employed the RF model on the shared perturbational
419  space identified through activity analysis between plasma proteomics and scRNA-seq data. This
420  approach underperformed compared to APNet, as evidenced by an AUC of 0.87 and an Fl-score of
421 0.73 (Figure 6G).

422  With regards to associations with clinico-biological covariates, the most predictive proteins or drivers
423  from the benchmarking studies exhibited correlations with COVID-19 severity but not to the extend
424  that APNet’s results did (e.g., this is evident in the expression-PASNet MGH-Mayo/Stanford and the
425  RF MGH-Stanford experiments). Furthermore, associations with diabetes and kidney disease were not

426  as straightforward as in the case of APNet (Supplementary Figure 6-7) (Supplementary Material 6).

427
428 3.6 In silico evaluation of APNet’s results based on COVID-19 curated prior knowledge

429  To evaluate the degree of COVID-19 ground truths that APNet and the other classification models
430  recovered, we mapped each model's top 20 most predictive proteins from the various experiments to
431  the SIGNOR 3.0 COVID-19 Hallmark pathways (i.e. Virus Entry, Cytokine storm, Inflammation,
432  Fibrosis, Apoptosis, Innate response to dsRNA, MAPK Activation, ER stress and Stress granules,

433  https.//signor.uniromaZ.it/covid/). APNet's most predictive drivers from the MGH-Mayo and the multi-
434  omic experiments were considerably over-represented (1.5 to 2 fold) on the SIGNOR 3.0 COVID-19
435  Hallmark pathways than their counterparts from the PASNet-expression and RF models. Concerning
436  the MGH-Stanford experiment, APNet and PASNet-expression exhibited almost an equal number of
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437  mappings but different in type, while the RF model was again significantly under-represented. In the
438 case of MAPK activation, a cardinal pathway in COVID-19 pathobiology, APNet accomplished
439  approximately twice as many mappings (8) as the expression-PASNet model (4), revealing higher
440  robustness in connecting predictive drivers of severity with COVID-19 biological underpinnings (Table

441  2) (Supplementary material 7).

442 Table 2. Biological benchmarking of APNet vs PASNet Expression and RF-Activity. The table measures the number of
443 top-20 predictive drivers that were mapped to the respective SIGNOR 3.0 pathway networks, in each classification experiment
444  (SIGNOR 3.0 COVID-19 Hallmarks).

MGH-Mayo MGH-Stanford scMGH
SIGNOR 3.0 | APNet PASNet- RF-Activity | APNet PASNet- RF-Activity | APNet RF-Activity
COVID-19 Expression Expression
Hallmark
Virus Entry 4 2 1 4 5 1 4 2
Cytokine Storm | 5 5 0 5 7 0 7 3
Inflammation 6 5 0 9 7 0 7 2
Fibrosis 4 3 1 3 5 1 7 4
Apoptosis 9 5 1 8 7 1 5 2
Innate 3 3 0 3 5 0 4 2
response to
dsRNA
MAPK 6 3 1 8 5 1 6 3
activation
ER stress 3 2 0 4 3 0 3 1
Stress granules | 5 3 1 5 6 1 6 3
Total mappings | 45 31 5 49 50 5 49 22
445
446

447 3.7 APNet enables the creation of weighted graph models for mechanistic hypotheses: The case of
448 ACAAl

449  We postulated that combining STARACNe co-expression networks, with pathways that APNet ingested
450  as biological priors before classification tasks and the weights it assigned to them upon completion of
451 demarcating severe COVID-19 could be helpful to in silico predict regulatory motifs and signaling
452  patterns driving severe COVID-19.

453  To demonstrate this feature, we focused on the MGH-Mayo experiment, we assembled a multipartite

454  graph of with driver-driver and driver-pathway connections and we sought to leverage information
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455  about ACAA1 (Acetyl-CoA Acyltransferase 1), which was one of the top 20 most predictive drivers,
456  was designated as a hidden driver by our analysis and it was significantly hypo-active in severe PBMCs

457  which suggested the its plasma proteomic signature derived from an alternative tissue or organ.

458 By retrieving the MGH SJARACNe SHAP graph (a series of small positive, coherent feedforward loops
459  with NCF2, TIMP1, CKAP4 as sources, TNFRSF10B as a significant “sink” and FLT3 as the primary
460 inhibitor), it was apparent that no obvious connection existed between ACAA1 and the other predictive
461  drivers (Figure 7A). To validate the biological plausibility of the STARACNe graph, the respective PPI
462  network from STRINGdb was leveraged (interaction score > 0.4), indicating high interconnectivity for
463 most of the predictive drivers. Interestingly, ACAAl and CKAP4 remained unconnected
464  (https://version-12-0.string-db.org/cgi/network ?networkld=bmlgZrzN1Cex) (Figure 7B).

465  Next, considering that ACAALI is predominantly expressed in the liver based on our previous GTEx
466  analysis, we took inspiration from representation learning (Zitnik et al., 2019) and performed
467  dimensionality reduction on the APNet complex graph with the tSNE algorithm, looking for maximum
468  variance in liver expression based on TISSUES 2.0 scores. A distinct cluster with highly liver-specific
469  drivers was detected. To gain a better insight on them, we isolated their subgraph with their most
470  prognostic connected pathways (PASNet weight > 0.5 and < -0.5). We detected a graph “island” which
471 contained four highly predictive drivers of COVID-19 severity among other proteins (ACAA1, SDCI,
472  HGF, CKAP4) and connected pathways involved Immune System signaling, neutrophil degranulation,
473  MAPK signaling, chaperone activation (HSP90) and VEGEF signaling (Figure 7C-D).

474  Based on these findings, we posited that there should be an underlying connection between ACAA1
475  and some of the other three predictive drivers of severity. We resorted to the OCSANA+ Cytoscape
476  application to simulate signal propagation from SDC1, HGF and CKAP4 on the APNet complex graph.
477 By calculating the Signal Flow Analysis (SFA, see Materials and Methods) metric, it became apparent
478  that HGF and SDC1 signal propagation converged towards ACAA1 through various intermediate
479  proteins. A similar effect on ACAA1 was not observed in the case of CKAP4, which did not appear to
480  propagate any signal towards ACAA1 (Figure 7E).

481  To better elucidate these findings, we calculated the shortest paths from SDCI1, HGF and CKAP4
482  towards ACAALI using the PathwayLinker application on Cytoscape. When selecting the “additive
483  weight method” for the MI score as edge weight, PathLinker highlighted 2 critical shortest paths: (a) a
484  signaling cascade commencing from SDC1 and reaching ACAAT1 through KRT18 and GRPEL1 and
485  (b) an incoherent feed-forward loop starting from HGF and through inhibiting ICOSLG which activated
486  PTPRS which inhibited ACAA1. The “unweighted method” in PathwayLinker returned the same
487  results. Notwithstanding, when selecting the “probabilistic weight method” for the MI score as edge
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488  weight, PathwayLinker suggested a larger signaling cascade commencing from CKAP4, and extending
489  through TRIAPI, LBR and GRPEL1 towards ACAA1 (Figure 7F).

490 To computationally validate these APNet shortest paths, we queried the STRINGdb database for the
491  respective PPI networks. After 2 rounds of expansion, we retrieved a singular PPI network (14 nodes,
492 23 edges, https://version-12-0.string-db.org/cgi/network ?networkId=b57tJ84116 T8), connecting SDC1,
493 GRPELI1, KRT18 and ACAA1 which upon k-means clustering revealed three components relative to
494  fatty-acid metabolism (ACAA1, ACOX1, HADHA, HSD17B4, EHHADH), mitochondrial protein
495  transport (HSPA9, KRT18, KRT8, GRPEL1, TIMM44) and cell surface interactions (FN1, SDCI,
496  SDCBP, FGF2). In the case of the other shortest paths, the corresponding STRINGdb queries required

497  more than 5 cycles of expansion to produce PPI networks encompassing all drivers of interest (CKAP4:
498 55 nodes, 375 edges, https://version-12-0.string-db.org/cgi/network?networkld=bjbqEWsYzPw4;
499 HGF: 44 nodes, 214 edges, https://version-12-0.string-db.org/cgi/network ?networkld=bcT91syOCwJ7)
500  (Sup. Figure 8).

501  Finally, as an additional step to assess the potential significance of these paths in a more COVID-19-
502  specific biological context, we queried the BYCOVIDI19 data portal
503  (https://www.covidl9dataportal.org/) for the “COVID-19 association score” provided by the

504  OpenTargets platform. SDC1 exhibited the highest score (0.555) with a considerable difference from
505 some of the other drivers of severity (KRT18=0.05, LBR=0.004, CKAP4=0.006, HGF=0.025),
506  confirming the biological prioritization of the SDC1-ACAA 1 nascent connection that APNet uncovered
507  (Supplementary Material 8-9).

508

509 4. Discussion - Conclusion

510  In the current work, focusing on COVID-19 omics, we present APNet, a computational DL pipeline to

511 elucidate complex biological motifs while classifying patients based on their clinical severity.

512  APNet is inspired by computational approaches modeling Gene Regulatory Networks (GRNs), which
513  have been instrumental in discovering new interactions between biological entities and formulating
514 novel scientific hypotheses. APNet combines some of the best practices in the field by combining an
515  Information Theory model (SJARACNe algorithm) through a Bayesian scope (NetBID2/scMINER
516  toolkits) (Delgado and Gomez-Vela, 2019) and a biologically-informed neural network with enhanced
517  explainability (PASNet and SHAP values) for supervised patient clustering. The above bioinformatic
518  tools have been shown independently to effectively discover potential biomarkers and druggable targets
519  in diseases however, to the best of our knowledge, they have never been used as a unified pipeline for

520 COVID-19 or any other disease type (Wang et al., 2021) (Ding et al., 2023) (Hao et al., 2018).
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521  In our study, we utilized APNet to predict severe COVID-19 cases in three different Olink plasma
522  proteomic datasets (MGH, Mayo, Stanford), and a complementary scRNA-seq study. APNet conducted
523  biologically informed predictions using driver-pathway associations (KEGG, Reactome, GO:BP,
524  Wikipathways) with remarkable robustness, outperforming alternative ML/DL approaches which either
525  lacked (a) the activity transformations enabled by the NetBID2/scMINER toolkits (PASNet-expression
526  model) or (b) the PASNet DL architecture (Random Forest classifications). Based on the biological
527  explainability of each model (SHAP values, driver-pathway mapping with learning DL weights) and
528 COVID-19 curated biological ground-truths (SINGOR COVID-19 pathway networks), evidently,
529  APNet was able to better approximate the systemic nature of severe COVID-19 from the provided
530  Dbiological data. We posit that APNet performed so efficiently due to the sparse regularization of the
531  hierarchical relationships of drivers and pathways after initial differential activity analysis. Hence,
532  APNet was able to capture both well known but also more nuanced perturbations in severe COVID-19
533  (i.e., known drivers but also “hidden drivers” like ACAA1, FLT3) implicating several potential tissues
534  of origin and a diverse repertoire of critical pathways. Indicatively, some of the most predictive drivers
535 and pathways that APNet captured concerned apoptosis, dishevelled PI3K-Akt stimulation
536  (FLT3/FLT3LG, PTEN, NTF4, KIT), neurodegeneration (EGFR, SEMAD4), cell differentiation
537  (TNFSF11), neutrophil degranulation (ACAA1), lipid metabolism (TNFRSF10A), immune and
538 interleukin signaling (CD63, TIMP1, JUN), T cell receptor signaling (BIRC2, NFATC1, CD4,
539 IKBKG), oxidative phosphorylation (ATP6AP2). These signaling cascades and some of these drivers
540  have already been implicated with COVID-19, which attests to APNet’s overall capacity to make
541  biologically plausible predictions. (Basile et al., 2022; Chidambaram et al., 2022; Merad and Martin,
542  2020; Pistollato et al., 2022; Thompson et al., 2021). A paradigmatic case concerning the translational
543  value of APNet’s findings was the implication of MAPK pathway in severe COVID-19 based on various
544  drivers (e.g., MAPK9, AREG, KIT, JUN, FLT3LG). These drivers were not prioritized to the same
545  extend as highly predictive by the alternative ML/DL models — if prioritized at all. This could explain
546  in part why APNet surpassed these models as a classifier of COVID-19 severity since components of
547  the MAPK pathway (sH-RAS, C-RAF, MAPK1, MAPK2 and ERK) have emerged as critical tenets of
548  Sars-CoV-2 tropism in PBMCs and have been associated with adverse clinical covariates like hypoxia,

549  dyspnoea and vascular damages (Cusato et al., 2023).

550  Finally, APNet extends beyond biological explainability to actionability regarding the formulation of
551  mechanistic hypotheses, by providing the capacity to generate a weighted driver-pathway network that
552  incorporates information from SJARACNe co-expression networks, the differential activity analysis,
553  the PASNet DL clinical predictions and external dedicated bioinformatic databases like STRINGdb.
554  APNet enabled through graph representation learning, shortest path detection, and signal propagation
555  simulation the prediction of a liver-specific signaling cascade in severe COVID-19 involving ACAA1

556  (hidden driver with prognostic significance but no apparent connections to other predictive drivers),
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557  SDCI1, KRT18, and GRPEL1. These predictions are not biologically implausible given the implication
558  of SDCI and KRTI18 in inflammation and epithelial damage (Ghondaghsaz et al., 2023; Liao et al.,
559  2020), the involvement of the mitochondrial GRPELI in host/Sars-CoV-2 interactions (Zhang et al.,
560  2022), the clinical correlation of ACAA1 (a mediator of fatty acid oxidation in the mitochondria and
561  the peroxisomes) with ICU-admittance in COVID-19 (Penrice-Randal et al., 2022) and a severe
562  mitochondria dysfunction in the liver of severe COVID-19 cases (Guarnieri et al., 2023).

563  The work herein is not without its limitations. One limitation concerns the restricted number of studies
564  involved and the binary assignment of drivers to pathways. Pathway activation is a dynamic process
565  controlled by fluctuations in expression or activity changes of a protein or drivers, respectively. Outputs
566  from more advanced pathway enrichment techniques like GSEA could be more instructive for the DL
567  model to perform classifications more aptly. Another limitation is the need to perform several manual
568  steps in APNet’s complex graphs to test hypotheses and leverage new insights, which might hinder data
569  exploration and analysis. Another issue worth noting is that APNet does not include clinical covariates
570  asclinical-biological priors, which could be addressed in the future by adopting in our pipeline the more

571 clinically-oriented version of Cox-PASNet (Hao et al., 2019).

572  Overall, APNet is a robust pipeline that can simplify the extraction of intricate biological insights from
573  complex biological data while also performing clinical predictions and testing mechanistic hypotheses.
574  In vitro/in vivo validations should accompany future implementations of APNet to validate the
575  pipeline's true translational credibility. Additionally, APNet’s scalability to other multi-factorial
576  disease-omic datasets (such as cancer and neurodegenerative diseases) should be explored along with
577  its potential deployment in other computational tasks (like multi-omic data integration and interactions

578  with knowledge graph pipelines).
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Other supplementary material can be found at the “Supplementary Materials for Online” folder and on

Zenodo: 10.5281/zenodo.10438830

Description of supplementary materials

File name

Description

Supplementary Material 1 DOME.pdf

DOME recommendations for the APNet models

Supplementary Material 2 MGH Mayo_Stanf
ord matrices.xlsx

Expression, and Activity matrices for MGH,
Mayo, and Stanford datasets

Supplementary Material 3 DA MGH_Mayo S
tanford.xslx

Differential Activity outputs of MGH, Mayo,
Staford and there relevant master file

Supplementary Material 4 APNet weights.xls
X

APNet activity s1_weights outputs for MGH-
Mayo, MGH-Stanford

Supplementary Material 5 scMGH_MGH.xlsx

Differential Activity outputs of ssMGH +
APNet activity s1_weights outputs for MGH-
scMGH

Supplementary Material 6 PASNet Expr Ben
chmarking.xslx

PASNet expression s1_weights outputs for
MGH-Mayo, MGH-Stanford

Supplementary Material 7 SIGNOR_COVID _
Hallmarks.cys

Cytoscape file that contains the SIGNOR 3.0
COVID-19 hallmark pathways and the mapping
of the most predictive drivers from APNet and
the benchmarking experiments

Supplementary Material 8 The ACAA1 case
study.cys

Cytoscape file that contains the bipartite driver-
pathway weighted network based on the MGH
SJARACNe co-expression graph (MGH-Mayo
experiment). This bipartite network is used to
leverage information about ACAAL.

Supplementary Material 9 The ACAAl case
study OCSANA.txt

Txt file guiding through the Cytoscape analysis
for the ACAAL case study.
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Figure 3. APNet uncovers a large COVID-19 perturbational proteomic space underpinning the 3 distinct Olink datasets
(MGH, Mayo, Stanford). (A) Venn diagrams showing overlapping differentially expressed proteins (DEPs) and differentially
active proteins (DAGs) among the three studies. (B) SuperVenn diagram depicting the joint differentially expressed
(increased/decreased) or active proteins (hyper/hypo-active) in severe COVID-19 compared to non-severe COVID-19 cases,
across the three Olink studies. (C) STRINGdD protein-protein interaction networks for joint DEPs and hidden drivers of severity
across the three studies (STRINGdb score > 0.4). The size of the nodes is analogous to the centrality of each protein/driver
(BetweenessCentrality algorithm) and the colour denotes perturbational direction (red for increased, blue for decreased). (D-E)
Bubble plots depicting over-representation analysis based on the Enrichr Knowledge Graph (Wikipathways 2021, Reactome,
GO:BP, KEGG) for joint drivers with increased (D) and decreased activity (E) in severe COVID-19 cases, among the three
27

Olink plasma proteomic studies.


https://doi.org/10.1101/2024.01.11.575161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.11.575161; this version posted January 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

805

APNet uncovers predictive drivers of COVID-19 severity

Proteins
JUN Flid shear stress nd aheroscercsis
s - - | o s Hoison 4 Seing
. w:‘w?’mmmmmmumm
Toqizion
MAPK9 - Ras signaling| oo
Trm\mmﬁsgummByTPi
N Coroavius s
Diferetaton Pathway
TNFRSF1A Chages disease
[ PISP, PP2A And IER3 Reguiate PBKIAKT Signaling
AREG 105 Remlals TrarcriienOf ol D Gt
2
Sonescente an Aty in Carcer
NTF4 Cra ety s bted
= CYIDK\IECYT‘WWS receﬂl; interaction
NCF2 esiiverequton ascade
- - g
INFRSFI0A wmwmmmmmmm Welghts
o
MAYO AUC: 0.96 - F1: 0.91 2 Noroia st iz
HGF g - e n?sakuvmmvsbmmkecevw |
100 £ T sgralingpatwy 0
FLT3 % m Viamib R,
a r(agu\amoﬁd\ hka'ww signaling pathway -1
o5 = - Jikine Sgnaiing i mmine Sysem [
CKAP4 3§ HEPOD.Craperans Cycle for SHR E
VEGFA-VEGFR2 Signaing Patiay
i s — = = e
H Pawa
speL 8 m ™ mmﬁwmummmx sigpel rarschcion
] - e Syslen
EFNAL Eozs
mégvekmgmmm o; Caldar i reoms
TNFRSF108 - m u m'?é'?‘“’f et
cacleross
0.00
TNFSF11 cceptor senaingpatway
000 025 050 075  1.00 - - - zg‘f"“s'?f' patway
ACAAL False Positive Rate u Pathogeri Eschercia ca rfecion
Sonelaeden
i
TIMPL - - - -. o ]
PTEN = Class 1 Sr9RZ8INCIEISLELNZE
m—Class 0 Chpeag Ec@EEgE23EE3E s
P 2285038 TSEE" g
@ w g 17} i 5w <
0.000 0.005 1 0.020 025 EE £ L
mean(|SHAP value|) (average impact on model output magnitude) £ E =
D Proteins
Cc pren — ety R
. - PISKIAKT Signaiing In Cancer
TNFRSF1A | cxtracelliar marx crgaizaton
Paifways Reuating Hippo Signaiing
6 positve recuiaion o ol mraton
reguiation of apoplolic process
= RAF/MA:;K:HBS@C@;;;)& U
o reguiason o protan kinase B sgnai
BAX | | H\mMaanSwg\alngysregu\a\mng "
- . - S i Systom
N — pmm rodaton of nracallar sgnal ransduction
LTA - NagmvaR-gﬂanmofF\:wMNmm
AP Soing s
Soaingpani
KDR el o sty ion
- i Sorsing inmn Sysim
CcoL1AL CYickine-cyioking recepte neracion
Crveae s cyiine i
JUN ® TNF sigraing petway Weights
2 Toll-ike Recepior Sgnalng Pty 2
e g TSy (Y 1
STANFORD AUC: 0.91 - F1: 0.68 Z - NF-kappa Bsignaing paifvay o
TNFRSF10B 1.00 $ o Ryt s -1
Q ipional Regulation By
- fivo reqiaion of MAPK ca
TNFRSF10A - B e AT S L
— — W Sigra Trarsccton
TNFSF10 Lors T sigrngpaiway
% - . — \f&?&agn.va?mmmmmcmwm
EGrR 20s0 Regdsion i ne et g vy
2 as
ERBB2 & - Axon Guidar
< - - Samonsiarction
a5 Sgring e
ccL22 Zozs 218 sgnaiing pathway
- - Kaposi sarcoma-associated herpesvirus infection
Nocropiosis
PODXL P ic Escherichia coli infection
Signaing By Ineriek
SEMA4D 000 - N;«’ngyc«mnw Gsoase
000 025 05 075 100 - - - postoropiaion s ity
> Rocptoeis lokdaton and Sgna
KT False Positive Rate - - —_— el i raing
rebaionof ol migraton
ROBOL == Class0 ceygszEcdpEonEEEIIez ’
- Class 1 XuAerQmﬂwﬁgoﬁ——§u—3
538 Z¥88EQZ67EL "8
i g e @ @
0.602 0.004 o z o 3 2z £
mean(|SHAP value|) (average impact on model output magnitude) EE F

E MGH Activity matrix - Mayo top20 SHAP values

Il Kidney
100 N NN A ) A
M ] \‘ 1 \‘ | NCF2
| | Il HGF
il | il i Il IL6
H‘\ | Il | I ‘

| | | ‘

’ |

| | |
||\ i |
I 11 I CKAP4
Ll i /1 ||TNFRSF10A
| | i1
|
il
|

TNFRSF10B
| | INFRSF1A
| EF

0B IR LI FLT3LG
| TNFSF11

FL

NTF4

P

L

I\HH | |
u1 i || ]
I | TEN
I

‘I HI\AHI\ i ‘Ilh [T AcAat

Cpeg

1GH Activity matrix - Stanford top20 SHAP values

BAX
TNFRSF1A
TNFRSF10A
| TNFRSF10B
UN

J
IL6
CCL7
ROBO1

SEMA4D
KIT

FR
ERBB2
PODXL
PTEN

Tl \I | CCL22
| I LTA
| phn i I I COL1A1

TNFSF10
11§ (1A 1T I'em

Mayo Activity - Mayo top20 SHAP values

Condition
'/ | ‘l MAF‘KQ
(L H \ | AAT
'I I IH \NCFZ
Activity Condition il \|| \ i AR
2 =§ZC§,ZV“ M Il \‘ Il }\I
TNFRSF10B
0
Diabetes f i \ \ ‘ H TIMP1
Ij M no I . spc Activity Condition
M yes | Il | TNFRSF10A IA M NonSevere
poar ” o 5o e
IL6
Mo
yos \ ‘ | | EFNA1 I 2
i i TNFRSF1A
ney HI ‘ | I IHI I
no
- I ‘h MH‘
Age NTF4
2034 I Ir\ \I\ [ TNFSF11
3649 FLT3LG
| Esd T N
Stanford Activity - Stanford top20 SHAP values
IR RN Condition
1 | 1 PTEN
{ | .SEMA4D
1mIE
Actlvl!y Condition || IL6
2 =NonSevere W ccL?
Severe TNFRSF10A
02 Diabetes i 1JuN
I Mo | TNFRSF10B  Activity Condition
Hyes 1 TNFRSF1A I“ M NonSevere
Heart ‘ COL1A1 2 M severe
LTA 0
Mo 2
! 1 A
Kidney 1 I ERBB2
no N | ROBO1
Myes PODXL
Age | 11} TNFSF10
2034 | KIT
i 3649 I ccL22
50-64
MWe5-79 LN

Figure 4. APNet deploys sparse regularization of driver-pathway connections through the PASNet Deep Learning model
and robustly classifies severe from non-severe COVID-19 cases in the three Olink proteomic studies. (A-B) Bar plots for
SHAP values and driver-pathway mapping from PASNet signifying the top-20 predictive drivers and their corresponding
pathways, for the MGH (training) / Mayo (testing) experiment. Furthermore, the AUC and F1-score values are depicted. (C-D)
Same as (A) for the MGH (training) / Stanford (testing) experiment. Class 0 refers to nonsevere and Class 1 refers to severe 28
COVID-19 cases. (E) Hierarchical clustering of MGH, Mayo and Stanford cases on the basis on the predictive proteomic drivers,

along with selected clinical covariates.
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Figure 5. APNet classifies severe COVID-19 cases across multi-omic studies. (A) scRNA-seq data from the Villani group for 14 MGH
cases. (B-C) Bar plots for SHAP values and driver-pathway mapping from PASNet signifying the top-20 predictive drivers and their
corresponding pathways, for the MGH plasma proteomic (training) / scRNA-seq (testing) experiment. Furthermore, the AUC and F1-score
values are depicted. Class 0 refers to nonsevere and Class 1 refers to severe COVID-19 cases. (D-E) Heatmaps depicting the activity and the
expression of predictive drivers from all the APNet experiments, across various PBMC cell types. The scMINER toolkit and visualisation
performed the activity calculations were attained through Seurat. Only the predictive drivers with positive activity values are depicted.
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Figure 6. APNet outperforms alternative ML/DL models in classifying severe and non-severe COVID-19 cases. (A)
ROC curves depicting the performance of APNet and alternative approaches in classifying severe from non-severe cases in
respective experiments. Distinct AUC scores are referenced also. (B) Lollipop plot depicting the F1-scores from each model
from (A). (C-F) Barplots with SHAP values for the top 20 most predictive plasma proteins of COVID-19 severity and
protein-pathway mapping from PASNet-expression model for MGH-Mayo experiment (C-D) and MGH-Stanford
experiment (E-F). (G) Barplots with SHAP values showing top 20 most predictive drivers of severity based on the Random
Forest (RF) alternative model for the various classification experiments. Class 0 refers to non-severe and Class 1 refers to

severe COVID-19 cases.
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Figure 7. APNet enables the assembly of complex graphs that can be leveraged to discover non-apparent
connections of ACAA1 with other predictive drivers of COVID-19 severity. (A) STARACNe co-expression
(adj.pvalue<0.05 for MI calculation) directed network from APNet’s complex graph showing the interactions of the

top 20 most predictive drivers of COVID-19 severity for the MGH-Mayo scenario. (B) STRINGdb network with
(interaction score > 0.4) for the same severity drivers. (C) APNet’s complex graph after tSNE dimensionality

reduction using the clusterMaker app in Cytoscape, based on the “liver” score from the TISSUES 2.0 database for

each driver/node. The darkest colour denotes a higher liver-specific association. The most liver-specific cluster of 31
drivers is designated within the circle (continue to next page...)
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810 Figure 7. APNet enables the assembly of complex graphs that can be leveraged to discover non-apparent
connections of ACAA1 with other predictive drivers of COVID-19 severity (continued..) (D) Part of APNet’s
complex graph showing highly liver-specific drivers and connected pathways with high prognostic significance,
based on their PASNet weights. (E) Lollipop plots showing the SFA scores from the OCSANA+ app in Cytoscape
in each node, after signal propagation from SDC1, CKAP4 and HGF on the entire APNet complex graph. (F) Part of
APNet’s complex graph showing shortest paths based on the PathLinker app in Cytoscape starting from CKAP4,
SDC1 and HGF and extending towards ACAAL1. Below, the STRINGdD equivalent PPI network (interaction score >
0.4) of the SDC1-KRT18-GRPEL1-ACAA1 path with intermediate nodes provided by STRINGdb, after k-means
clustering.
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