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Abstract 26 

Motivation: Computational analyses of plasma proteomics provide translational insights into complex 27 

diseases such as COVID-19 by revealing molecules, cellular phenotypes, and signaling patterns that 28 

contribute to unfavorable clinical outcomes. Current in silico approaches dovetail differential 29 

expression, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like 30 

post-translational modifications, and provide limited biological interpretability beyond feature ranking. 31 

Results: We introduce APNet, a novel computational pipeline that combines differential activity 32 

analysis based on SJARACNe co-expression networks with PASNet, a biologically-informed sparse 33 

deep learning model to perform explainable predictions for COVID-19 severity. The APNet driver-34 

pathway network ingests co-expression and classification weights to aid result interpretation and 35 

hypothesis generation. APNet outperforms alternative models in patient classification across three 36 

COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed 37 

in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19. 38 

Availability and Implementation: APNet’s R, Python scripts and Cytoscape methodologies are 39 

available at https://github.com/BiodataAnalysisGroup/APNet  40 

Contact: ggeorav@certh.gr    41 

Supplementary information: Supplementary information can be accessed in Zenodo 42 

(10.5281/zenodo.10438830). 43 

 44 

Abbreviations 45 

APNet Activity PASNet 46 

ARDS Acute Respiratory Distress Syndrome 47 

AUC Area Under the Curve 48 

DAPs Differential Active Proteins 49 

DEPs Differential Expressed Proteins 50 

DL Deep Learning 51 

DOME Data, Optimization, Model, Evaluation 52 
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EXP Expression Values 53 

ICU Intensive Care Unit 54 

KG Knowledge Graph 55 

Mayo Mayo Clinic 56 

MGH Massachusetts General Hospital 57 

MI Mutual Information 58 

MLP Multi-Layer Perceptron 59 

NPX Normalized Protein eXpression 60 

PASNet  Pathway-Associated Sparse Deep Neural Network 61 

PBMC Peripheral Blood Mononuclear Cell 62 

PEA Proximity Extension Assay 63 

RF Random Forest 64 

ROC Receiver Operating Characteristic 65 

SFA Signal Flow Analysis 66 

SHAP Shapley additive explanation 67 

Stanford Stanford Hospital 68 

SVM Support Vector Machine 69 

WHO World Health Organization 70 

XAI eXplainable Artificial Intelligent 71 

 72 

 73 
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1. Introduction 74 

Human plasma is a vital clinical specimen encompassing a broad spectrum of proteins, including tissue 75 

markers, immunoglobulins, transcription factors, kinases, metabolites, and secreted factors  (Eldjarn et 76 

al., 2023; Zhong et al., 2021). With the advent of high-throughput technologies (-omics), the human 77 

plasma proteome has become a focal point for discovering novel biomarkers and therapeutic targets for 78 

complex diseases. This has been especially the cases with severe COVID-19, a condition besetting 79 

many patients infected with the SARS-CoV-2 coronavirus (Babačić et al., 2023). Plasma proteomics 80 

have provided significant biological insights into the immunopathology of severe COVID-19, which is 81 

characterized by the inflammatory "cytokine storm", Acute Respiratory Distress Syndrome (ARDS), 82 

PANoptosis-induced cell death, and multiorgan failure (Diamond and Kanneganti, 2022). Plasma 83 

proteomics has also been explored in long-COVID-19 syndromes and vaccine response variations 84 

(Liang et al., 2023). 85 

Many studies have measured plasma proteomics using Olink Proximity Extension Assay (PEA) in 86 

COVID-19 research due to this technology's specificity, scalability and multiplexing benefits (Wik et 87 

al., 2021). In our recent work, we assessed pertinent Machine Learning models applied in these high-88 

dimensional datasets like Random Forest, Gradient Boosted Decision Tree, XGBoost, Extra Tree 89 

classifiers, Logistic regression, Lasso Logistic regression, Support Vector Machine (SVM), and Deep 90 

Learning (DL) (e.g., AutoGluon-Tabular). Some models exhibited eXplainable AI (XAI) features by 91 

deploying Shapley additive explanation (SHAP) values, the minimal-optimal variables method or a 92 

random forest explainer.  In the same work, we managed to dovetail an explainable, computational 93 

pipeline to benchmark a wide assortment of ML tools on predicting COVID-19 severity from Olink 94 

plasma proteomics which revealed Multi-Layer Perceptron (MLP) as the highest-performing algorithm 95 

(Dimitsaki et al., 2023). 96 

However, most of the above studies can partially approximate proteomic non-linear dynamics (e.g., 97 

post-translational modifications, protein co-expression networks, complex formation, and subcellular 98 

localization), thus missing signaling proteins that may drive critical COVID-19 pathways. Moreover, 99 

these studies' ML/DL findings often lack extensive external validation in large independent datasets, 100 

while their biological explainability is usually restricted to mere feature ranking (Paul et al., 2023) 101 

(Dimitsaki et al., 2023). 102 

Acknowledging these challenges, we introduce Activity PASNet (APNet) in this manuscript. This 103 

computational DL pipeline initially uses the SJARACNe data-driven network algorithms to uncover 104 

disease drivers prioritized based on "activity," an aggregate metric of their capacity to regulate their 105 

transcriptional targets non-linearly (Ding et al., n.d.; Dong et al., 2023). These drivers can be overt 106 

(differentially expressed and possibly active) or <hidden= (differentially active but not expressed). Next, 107 

APNet feeds these drivers into  Pathway-Associated Sparse Deep Neural Network (PASNet) (Hao et 108 

al., 2018), which incorporates biological priors as hidden layers to ultimately deliver interpretable 109 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.11.575161doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?OHx2SJ
https://www.zotero.org/google-docs/?OHx2SJ
https://www.zotero.org/google-docs/?ia2FHB
https://www.zotero.org/google-docs/?960ZLK
https://www.zotero.org/google-docs/?S06zLD
https://www.zotero.org/google-docs/?xY6zhg
https://www.zotero.org/google-docs/?xY6zhg
https://www.zotero.org/google-docs/?eCQqAv
https://www.zotero.org/google-docs/?bxDH8x
https://www.zotero.org/google-docs/?cUw1re
https://www.zotero.org/google-docs/?FU0UGo
https://www.zotero.org/google-docs/?XZ18ff
https://www.zotero.org/google-docs/?XZ18ff
https://doi.org/10.1101/2024.01.11.575161
http://creativecommons.org/licenses/by/4.0/


APNet uncovers predictive drivers of COVID-19 severity 

5 

clinical classifications,  validated by the eXplainable AI component of SHAP values. Finally, APNet 110 

facilitates the analysis of SJARACNe co-expression networks, equipped with the weights from the DL 111 

classification task, to streamline data exploration and the formation of mechanistic hypotheses for 112 

further biological investigation. 113 

We extensively trained, tested, and validated APNet on activity matrices from 3 distinct Olink plasma 114 

proteomic datasets (MGH, Mayo, Stanford) (Byeon et al., 2022; Feyaerts et al., 2022; Filbin et al., 115 

2021). APNet managed to pinpoint ground-truth drivers of severity, predicted new proteomic markers 116 

with potential theranostic potential (some of which were traced to circulating PBMCs through scRNA-117 

seq analysis), outperformed alternative ML/DL models in demarcating severe COVID-19 cases and 118 

enabled the inference of a potential signaling network from predictive factors in the liver of individuals 119 

with severe COVID-19. 120 

 121 

2. Materials and methods 122 

2.1 APNet overview 123 

APNet is a modular pipeline (Figure 1) which aims to facilitate the discovery of novel predictive drivers 124 

of severe clinical outcomes and to facilitate the formulation of mechanistic hypotheses. In this present 125 

work, we considered cases experiencing severe and non-severe COVID-19. 126 

  127 

2.2 Brief description of APNet modular architecture 128 

2.2.1 Module 1- Differential activity analysis for drivers of COVID-19 severity 129 

In this module, conversions of expression values to activity values for plasma proteomics were 130 

accomplished with NetBID2 (Dong et al., 2023) toolkit whereas for scRNA-seq data with scMINER 131 

toolkit (Ding et al., 2023). For the plasma proteomics, we applied the NetBID2 algorithm, which 132 

reverse-engineers context-specific interactomes and integrates network activity inferred from large-133 

scale multi-omics data, empowering the identification of hidden drivers that traditional analyses cannot 134 

detect. By leveraging the MSigDB database, we compiled distinct lists of Transcription Factors (TF) 135 

and signaling molecule proteins. Separate TF and signaling molecule networks were constructed using 136 

SJARACNe. These networks featured drivers (hubs) connected to their targets through protein-protein 137 

interactions, derived from their expression patterns. 138 
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To calculate the activities of driver proteins in each dataset based on protein expression, we employed 139 

the "cal.Activity" function in NetBID2. The weighted mean activity of a driver candidate protein 140 

(Driver{i}) in sample s, was computed using the following equation: 141 

Ā���ă��ÿ =  ∑�Ā = 1  ���āÿĀ  ∗  Ā�ÿĀ  ∗  āĀÿ�Ā�  142 

Here, the NPX count proteomics matrix, EXP{sj} represented the expression value of gene j in sample 143 

s, MI{ij} indicated the mutual information between master regulator protein i and its target protein j, 144 

and SIGN{ij} was the sign of the Spearman correlation between protein i and its target protein j. The 145 

total number of targets for DRIVER i was denoted by n. 146 

Differential activities were then computed for Severe and Non-Severe Status across the three datasets, 147 

by using the "getDE.BID.2G" function, allowing us to identify genes exhibiting distinct regulatory 148 

patterns in response to severity variations, through Bayesian model. 149 

Also, we deployed the scMINER workflow, based also on SJARACNe, to discover severity drivers in 150 

MGH scRNAseq data. For both differential expression and differential activity, the function get.DA 151 

was performed by using the SCT matrix and activity matrix, respectively. Data visualisation for single-152 

cell analysis was performed through the Seurat pipeline (4.3.0).  153 

2.2.2 Module 2- Driver-pathway mapping 154 

To prepare input data for the biologically explainable PASNet DL model on Module 3, joint 155 

differentially active drivers of severity from the three Olink studies were mapped to biological pathways 156 

using the Enrichr KG (Evangelista et al., 2023). 30 pathways from each of the following resources were 157 

leveraged (KEGG, Reactome, GO:BP and Wikipathways 2021) for the commonly decreased and 158 

increased drivers of severity separately. Drivers were mapped to the retrieved pathways in a binary 159 

fashion with 0s and 1s, i.e. when a driver was participating in the gene set of a pathway it was assigned 160 

the value of 1 and vice versa. 161 

2.2.3 Module 3-Deep Learning classification of Severe COVID-19 cases with biological 162 

explainability 163 

The findings from Modules 1 and 2 served as input for Module 3, where a sparse neural network model 164 

called PASNet was used to predict COVID-19 severity. The model was trained on MGH data, validated 165 

on Mayo and tested on Mayo and Stanford datasets. A separate model was trained and tested using 166 

scMGH data. Model performance was evaluated using Area Under the Curve (AUC) and F1-scores, 167 
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along with ROC curve analysis. The PASNet training phase is expressed through the following 168 

equations. 169 

Sparsity of the PASNet sub-network function: ℎ(Ă+1) = ÿ((ÿ(Ă) ∗ Ā(Ă))ℎ(Ă) + Ā(Ă))  170 

Ā(Ă) = {1(|ÿ(Ă)| ≥ Ā(Ă)), �Ą � b 0 171 

Ā(Ă) = {�, �Ą � = 0 172 

where 173 Ā(Ă) is the S-th percentile of |ÿ(Ă)| if � b 0 174 

M: mask matrix for each layer 175 �:layer 176 

W: weight matrix 177 

b: vias vector 178 

Cost-sensitive learning for imbalanced data: ÿ =  ∑�ā=1 ÿā + 1
2

�‖ÿ‖2 179 

ÿā = 1�ā ∑��
ÿ=1

ā(�ÿ , �ÿ) 180 

Thus, the weights and biases on the �-th layer are updated by: 181 

ÿ(Ă) ←  (1 2 ��)ÿ(Ă) 2 � ∑�
ā=1

ĂÿāĂÿ(Ă) 191 

Ā(Ă) ←  Ā(Ă) 2 � ∑�
ā=1

ĂÿāĂĀ(Ă) 192 

where 182 ÿā:mean error on the class k 183 �ÿ:ground truth 184 �ÿ:prediction 185 �ā:number of samples in the class k 186 ÿ: total cost 187 ā(. ):cost function (e.g., cross-entropy loss) 188 �: regularization hyperparameter 189 �:learning rate 190 
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Biological explainability of the whole sparse DL model is predicated in the combination of Shapley 193 

values (SHAP) and the driver-pathway mappings that PASNet architecture offers, assigning learning 194 

weights. 195 

�ÿ  = ∑ �∈�\(ÿ)
|�|! (Ā 2 |�| 2 1)!Ā! [Ą(� ∪ {�} 2 Ą(�))]   196 

ā: is the set of all input features 197 �: feature 198 Ą: model 199 Ā: is the number of features 200 

 201 

2.2.4 Module 4- Bipartite graph analysis 202 

This final APNet module leverages the SJARACNe co-expression networks from each study for the 203 

joint differential active drivers and augments it by connecting drivers to pathways based on Module 2. 204 

The weights of driver-driver edges contain the Mutual Information (MI) metric and the Spearman 205 

correlation coefficient (positive values signify activation, negative values the opposite), amongst other 206 

metrics. Driver-pathway edges contain as weights the PASNet-weights that PASNet learned during 207 

training-testing tasks from Module 3. Our study used Cytoscape to perform network visualization, basic 208 

analysis for network statistics and centrality metrics (Betweenness Centrality algorithm), 209 

dimensionality reduction using tSNE (cluster signal propagation simulation (OCSANA+) and analysis 210 

for shortest paths (PathLinker tool)(Gil et al., 2017; Marazzi et al., 2020). 211 

OCSANA+ is a Cytoscape application that analyses the structure of large-scale complex networks. It 212 

identifies nodes that drive the system towards a desired long-term behavior and ranks the combinations 213 

of interventions that are likely to be more effective. Additionally, it estimates the effects of perturbations 214 

in signaling networks. We used the Signal Flow Analysis (SFA) feature of OCSANA+ to simulate 215 

signal propagation. The SFA algorithm estimates the signal flow in a signaling network by analyzing 216 

the topological information. It employs a linear difference equation that considers a node's previous 217 

activity, the effect and influence of incoming edges, and the initial activities of the node. The algorithm 218 

focuses on the information conveyed by a series of biological interactions represented in a signaling 219 

network (Marazzi et al., 2020). 220 

PathLinker is a Cytoscape app based on an algorithm reconstructing interactions in a signaling pathway. 221 

It requires a directed network, a set of sources, and a set of targets as inputs. The algorithm computes 222 

the k best-scoring loopless paths and outputs the sub-network of the k best paths. The algorithm offers 223 
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three choices for managing edge weights: (i) No weights: Path score is based solely on the number of 224 

edges in the path, and PathLinker identifies the k paths with the lowest scores, (ii) Additive edge 225 

weights: Path score results from the summation of edge weights, and PathLinker finds the k paths with 226 

the lowest scores in this scenario as well, (iii) Probabilistic edge weights: Common in protein interaction 227 

networks, where weight represents experimental reliability. PathLinker treats these weights as 228 

multiplicative, seeking the k paths with the highest cost, where the product of edge weights determines 229 

cost. Internally, PathLinker transforms each weight by taking the absolute value of its logarithm to map 230 

the problem to the additive case (Gil et al., 2017) (Figure 2). 231 

 232 

2.3 Technical benchmarking and bioinformatic validation based on COVID-19 prior knowledge 233 

To benchmark APNet’s performance on patient classification from Olink plasma proteomics, we 234 

deployed the PASNet approach on original NPX values of Olink plasma proteomics and a Random 235 

Forest model on the transformed activity values. Firstly, for PASNet we used the expression values for 236 

training, validation and test, by using the count matrices of MGH, Mayo and Stanford, respectively. 237 

The count matrices were filtered by keeping only the common significant proteins across 3 datasets 238 

from Differential Expression analysis to perform the PASNet approach on expression data. Similarly to 239 

the APNet approach, pathways collected from EnrichR-KG, by using (KEGG, Reactome, GO:BP and 240 

Wikipathways 2021) for the commonly decreased and increased drivers of severity separately. PASNet 241 

used the count matrices across 3 datasets for training, validation, and test, by using MGH, Mayo, and 242 

Stanford respectively. Then for Random Forest, we used activity matrices from 3 datasets, by applying 243 

training, validation and test into MGH, Mayo and Staford, respectively.  244 

Bioinformatic validation of the top 20 most predictive drivers for each experiment was pursued by 245 

mapping these drivers to the 9 curated networks regarding COVID-19 immunopathological hallmarks 246 

by SIGNOR (https://signor.uniroma2.it/covid/). Level 4 networks were obtained for each COVID-19 247 

hallmarks and downstream processing was conducted in Cytoscape.  248 

Finally, selective data mining for key drivers of interest was performed in the web tool 249 

https://www.covid19dataportal.org/.  250 

 251 

2.4 DOME recommendations 252 

The assembly of APNet was performed considering the recently published DOME recommendations, 253 

a set of community-wide recommendations for reporting supervised machine learning–based analyses 254 
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applied to biological studies (see supplementary information) (Walsh et al., 2021) (Supplementary 255 

Material 1). 256 

 257 

3. Results 258 

3.1 Harmonization of  COVID-19 patient cohorts and assembly of plasma proteomic datasets 259 

Initially, we harmonized patient stratification for COVID-19 severity based on WHOscore (<Severe= 260 

vs <NonSevere=) across the three Olink proteomic datasets. In particular, COVID-19 cases who had a 261 

fatal outcome or were admitted in the ICU or were intubated were designated as <severe= and the 262 

residual cases were designated as <non-severe=. In the MGH study, we designated 80 severe and 225 263 

non-severe cases. In the Mayo study, we demarcated 268 severe and 181 non-severe COVID-19 cases. 264 

Furthermore, we determined 24 severe and 40 non-severe cases in the Stanford study. Associations with 265 

respective WHOscores and age can be seen in (Sup. Figure 1).  266 

From all 3 Olink studies, 1463 common plasma proteins were bioinformatically studied within APNet 267 

and were used for downstream processing to uncover predictive markers of severity. 268 

 269 

3.2 Data preprocessing and detection of severity drivers across proteomic studies 270 

Next, we used the NetBID2 toolkit through APNet to detect common differentially active proteins 271 

(DAPs) in severe COVID-19 cases, for all three Olink studies. Notably, for MGH, the prominent 272 

positive drivers included TACSTD2, BAG3, POLR2F, DPY30, and CAPG. Conversely, the top 273 

negative drivers for MGH were CCL22, BTC, IGFBP3, TNFSF11, and ICOSLG (Sup. Figure 2A). 274 

Similarly, in the case of Mayo, the leading positive drivers consisted of VSIG4, IL1RL1, IL27, KRT19, 275 

and JUN, while negative drivers entailed CDON, CD1C, ITGB7, TNFSF11, and LRRN1 (Sup. Figure 276 

2B). For Stanford, the primary positive drivers were LGALS1, CSTB, MAD1L1, DDAH1, and CCL7 277 

and the negative were EPCAM, CPA2, CDNF, DSG4, and CD1C. Pathway enrichment showed that 278 

these severe COVID-19 top-drivers were associated with cell migration, monocyte activation, 279 

methylation changes and immune cell dysregulation (Sup. Figure 2A-C). 280 

From hereon, we focused on the commonly perturbed drivers across the three studies. APNet captured 281 

333 common differentially active proteins (DAPs) across the three studies and encompassed 163 282 

differentially expressed proteins (DEPs) and 170 hidden drivers (i.e., hidden in at least one of the three 283 

Olink datasets) (Figure 3A-B). Among the 333 common drivers, 150 were differentially hyper-active 284 

and 183 were hypo-active in severe COVID-19. When analyzing the STRINGdb network of common 285 
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DAPs, centrality analysis prioritized DEPs like immuno-regulatory interleukins IL4-IL6, keratin 286 

modulators (KRT19), chemokines for macrophages and neutrophils (CXCL8/CCL20) and transcription 287 

factors (JUN). Other central decreased DEPs were effectors of T cell activation and proliferation 288 

(CD8A, CD28), mediators of developmental pathways like the SCF/c-Kit pathway 289 

(KIT/KITLG/IL7R/FLT3/CD34) and cellular adhesion surface molecules (ITGB1). Similarly, central 290 

hyper-active hidden drivers (<positive=) pertained to growth factors (HGF), ECM remodellers 291 

(metalloprotease inhibitor TIMP1), chemoattractants of monocytes, natural killer and T-cells 292 

(CXCL9/CXCL10/CCL3) and biomarkers of systemic organ failure (the lipocalin LCN2 indicating 293 

acute kidney injury). Other central hypo-active hidden drivers included cellular adhesion molecules 294 

(NCAM1, ITGB2, ITGAV), growth factors (FLT3LG, ligand for the FLT3 receptor found in DEPs) or 295 

cognate receptors (EGFR, receptor for the Epidermal Growth Factor) and the tumour suppressor 296 

molecule PTEN (Figure 3C). 297 

Pathway enrichment through the Enrichr KG (KEGG, Wikipathways, Reactome, GO:BP) highlighted 298 

several biological ground truths involved in COVID-19 immunopathology such as increased activation 299 

of innate immunity, lung fibrosis, MAPK signaling, Sars-CoV-2 immuno-evasion, neutrophil 300 

degranulation and viral protein interaction with cytokines and cognate receptors (Figure 3D). 301 

Conversely, dwindling pathways in severe COVID-19 included the hematopoietic system, inhibitors of 302 

the PI3K-Akt signaling pathway, cellular adhesion mechanisms through integrins and the Hippo-Merlin 303 

signaling pathway, revealing an impairment of physiological proliferation and migration for circulating 304 

immune cells (Figure 3E). 305 

To better dissect the increased perturbational space captured by APNet, distinct cellular enrichment for 306 

DEPs and hidden drivers was conducted using the GTEx_Tissues database through Enrichr. DEPs 307 

exhibited an over-representation for peripheral blood, spleen, liver, brain, and adipose tissue. Hidden 308 

drivers, conversely, implicated other organs like oesophagus, tibial nerve and the cardio-vascular 309 

system (Sup. Figure 3A-D). Ensuing pathway enrichment with WikiPathways and GO:BP uncovered 310 

an expected affiliation of DEPs with key COVID-19 molecular <landmarks= like apoptosis, viral life 311 

cycle, neutrophil degranulation, PI3K Akt signaling and impediments in synapse functionality and 312 

angiogenesis. Interestingly, the hidden drivers were skewed towards aberrant insulin signaling, cellular 313 

adhesion imbalances (L1cam interactions), propagation of hypoxia and abnormal neuronal behaviour 314 

(increased neuroinflammation, decreased neuroplasticity) (Sup. Figure 3E-F, Sup. Figure 4).  315 

These preliminary findings underline the importance of employing activity transformations on distinct 316 

COVID-19 plasma proteomic datasets using APNet. Beyond mere differential expression, this approach 317 

identified shared, systemic damages caused by Sars-CoV-2 across multiple organs and tissues 318 

(Supplementary Material 2-3). 319 
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3.3 APNet classifies severe COVID-19 cases among distinct plasma proteomic studies 320 

At this point, we hypothesized that the newly discovered hidden drivers had untapped biological 321 

potential, which could enhance the clinical prediction of severe COVID-19 cases from plasma 322 

proteomics. 323 

We used the common DAPs across the three Olink studies for the ensuing clinical predictions. After 324 

initial training in the MGH dataset (for details, see Materials and Methods), APNet accurately predicted 325 

severe COVID-19 patients during the early testing phase (MGH-Mayo experiment) with significant 326 

robustness (AUC = 0.96, F1 score = 0.9). Biological explainability highlighted the prognostic 327 

significance of various DEPs (JUN, IL6, MAPK9, TNFRSF1A, AREG, NTF4, NCF2, TNFRSF10A, 328 

FLT3, CKAP4, FLT3LG, SDC1, TNFRSF10B, TNFSF11) but also several hidden drivers (FTL3LG, 329 

LYN, PTEN, EFNA1, ACAA1, HGF, TIMP1) (top-20).  The most predictive pathways involved the 330 

ground-truth <cytokine storm=, MAPK signaling, vascular damage reflected on atherosclerosis 331 

potential, protein folding (through HSP90 chaperone), and PI3K-Akt signaling pathway (Figure 4A-B). 332 

During the second testing phase (MGH-Stanford experiment), APNet once again exhibited significant 333 

predictive robustness since, on the Stanford dataset, it could foreshadow severe COVID-19 efficiently 334 

(AUC = 0.91, F1 score = 0.68). Biological explainability revealed predictive drivers of severity, many  335 

of which overlapped with the ones from the previous testing experiment (i.e. PTEN, JUN, IL6, LYN, 336 

TNFRSF1A, TNFRSF10A, TNFRSF10B, TNFSF10) but also unveiled novel ones (BAX, LTA, KDR, 337 

COL1A1, CCL7, EGFR, ERBB2, CCL22, PODXL, SEMA4D, KIT, ROBO1). The hidden drivers were 338 

PTEN, BAX, CCL22, EGFR, LYN, ROBO1 (Figure 4C).  339 

The most predictive pathways in this experiment involved viral infection and disruption of cytokines 340 

and cognate receptors, PI3K-Akt signaling pathway, MAPK signaling, Hippo-Merlin signaling 341 

dysregulation, and intensified Interleukin signaling pathway, apoptotic TRAIL signaling, neurotoxicity 342 

concerning axonogenesis, and imbalances in lipid metabolism (Figure 4D) (Supplementary Material 4).  343 

Hierarchical clustering on all cases across studies revealed associations of the most predictive drivers 344 

with COVID-19 severity, while in the MGH study, further associations with diabetes and kidney disease 345 

were also uncovered (Figure 4E). 346 

 347 

3.4 APNet bridges plasma proteomics with single-cell transcriptomics 348 

At this point, we decided to use APNet for a joint analysis between bulk plasma proteomics (MGH 349 

dataset) and scRNA-seq data from circulating peripheral blood mononuclear cells (PBMCs, 4 severe 350 

and 10 non-severe MGH cases). We sought to (a) prioritize which predictive drivers of COVID-19 351 
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severity could be important for both -omic modalities and (b) trace the cellular origin of various 352 

predictive drivers of COVID-19 severity from all the insofar classification experiments among the 353 

PBMC cellular populations.  (Figure 5A).  354 

Initially, we deployed the scMINER toolkit to convert the typical sparse scRNA-seq expression matrix 355 

into a non-sparse activity matrix based on the SJARACNe/MICA/MINIE algorithms (see Materials and 356 

Methods for details). Single-cell differential activity analysis revealed 282 differentially active drivers 357 

(140 DEGs and 142 hidden drivers) in severe COVID-19, which were also perturbed in the MGH 358 

plasma proteomic analysis (Sup. Figure 5A). STRINGdb PPI network modeling and pathway 359 

enrichment implicated several key COVID-19 severity drivers in innate/adaptive immunity, viral 360 

replication, inflammatory signaling, cell adhesion and lipid metabolism (e.g., IL6, NCAM, LYN, PTEN, 361 

ITGB1, ITGAM) (Sup. Figure 5B-D), in line with our findings from the previous plasma proteomic 362 

analyses. 363 

Next, we trained APNet on the MGH plasma proteomic dataset and tested it on the MGH single-cell 364 

dataset (scMGH). APNet was highly robust in classifying severe COVID-19 cases (AUC: 0.99, F1-365 

score: 0.975). The driver-pathway heatmaps pointed towards expected inflammatory and immune 366 

pathways (e.g., IL18 signaling, TLR4 stimulation, T cell differentiation) as predictive signalling motifs 367 

of severe COVID-19. Five predictive drivers from the previous plasma proteomic experiments were 368 

found as predictive genes (MAPK9, TIMP1, JUN, IL6, TNFSF10). The other multi-omic predictive 369 

drivers were S100A12, CD63, LAMP2, BIRC2, HMOX1, LGALS1, NFATC1, IL10RA, ATP6AP2, CD4, 370 

ITGB1 (Figure 5B-C). 371 

Lastly, we probed for the single-cell activity profile of various predictive drivers from the MGH-372 

Mayo/MGH-Stanford/MGH-scMGH experiments. We discovered that the most active drivers in severe 373 

cases were JUN (B/T cells) and TIMP1 (all PBMCs except B cells and NKs). In contrast, in non-severe 374 

cases, it was PTEN (monocytes and platelets) and ACAA1 (all PBMCs but especially B cells). Like 375 

ACAA1, which opposed its proteomic counterpart, CKAP4 was also increased in non-severe cases 376 

(monocytes). Other active genes in all non-severe PBMCs were FLT3LG, BAX, LYN and TNFSF10, 377 

while NCF2 was mainly in severe monocytes (Figure 5D-E) (Supplementary Material 5).  378 

Overall, these results elaborate on the cellular origins of certain predictive drivers for severe COVID-379 

19 inferred by APNet in PBMCs and were attained through APNet’ noticeable versatility in bridging 380 

across -omic modalities.  381 

 382 
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 3.5 Benchmarking APNet against alternative ML/DL methods 383 

To benchmark APNet’s significant performance on COVID-19 classification tasks, we initially 384 

retrieved from the literature the predictive models published by the authors of the MGH study (Filbin 385 

et al.), the Stanford study (Feyarts et al.), and of an independent study from Qatar which used the MGH 386 

study for independent validation. As shown in Table 1, APNet outperformed the MGH and Stanford 387 

models (Table 1). Although APNet showed similar performance to Qatar's predictive model (AUC > 388 

0.95, training-testing on the authors’ in-house data) in demarcating severe COVID-19 cases, it 389 

outperformed Qatar's model in terms of generalizability. This was evident as the latter achieved an AUC 390 

of 0.79 when independently tested on the MGH study (Table 1). 391 

 392 

Table 1. Published ML/DL analyzing MGH and Stanford Olink datasets 393 

Study AI model AUC 

Filbin et al. (MGH study) Random Forest (elastic-net 

logistic regression with cross-

validation) 

0.85 

Fayerts et al. (Stanford study) (LASSO) linear regression 0.77 - 0.79 (Stanford study) 

Al-Nesf et al. (Qatar study with 

Boruta algorithm) 

MUVR >0.959 (Qatar data) 

0.76 (D0) (MGH validation) 

At this point, we performed more specific benchmarking experiments using (a) a variation of APNet 394 

where we provided only DEPs to the DL model instead of DAPs (PASNet-expression) and (b) an 395 

alternative variation where we substituted the PASNet architecture with one of the most widely used, 396 

explainable Machine Learning approaches like Random Forest (RF). The training, validation and testing 397 

datasets remained the same as before. 398 

Noticeably, APNet outperformed all alternative DL/ML models based on activity or expression data 399 

regarding AUC and F1-score (Figure 6A - B). More specifically, the PASNet-expression model 400 

performed poorly on the Mayo dataset (AUC: 0.645, F1 score: 0.7475), and none of the predicted 401 

molecules were hidden drivers. Biological explainability indicated ground-truth biological pathways 402 

related to COVID-19 immunopathology were the most predictive pathways. However, some more 403 
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nuanced pathways that APNet retrieved during the MGH-Mayo experiment were missing or under-404 

represented (e.g., lipid imbalances) (Figure 6C-D). 405 

The PASNet-expression model also under-performed in the Standford study compared to APNet, with 406 

an AUC of 0.89 and an F1-score of 0.54. Unsurprisingly, this expression-driven investigation in the 407 

Stanford study could only reveal a limited scope of predictive biological pathways like Cellular 408 

response to stress, positive regulation of intracellular signaling transduction, Neutrophil degradation, 409 

and viral protein response (Figure 6E-F). 410 

The second alternative model based on Random Forest (RF) under-performed even more on Mayo and 411 

Stanford datasets than the previous one since the models were validated with AUC: 0.65, F1-score: 412 

0.4746, and AUC: 0.7375, F1-score: 0.6486, respectively, for each dataset. Noticeably, the top-413 

predictive proteins were almost identical across the Mayo and Stanford datasets analysis. Concerning 414 

the multi-omic experiment, we opted not to test the PASNet expression-driven model. This decision 415 

was based on the intrinsic sparsity of the scRNA-seq data's expression and the apparent requirement for 416 

specific data harmonization or more advanced ML/DL manipulations, which were beyond the scope of 417 

our current project. Consequently, we exclusively employed the RF model on the shared perturbational 418 

space identified through activity analysis between plasma proteomics and scRNA-seq data. This 419 

approach underperformed compared to APNet, as evidenced by an AUC of 0.87 and an F1-score of 420 

0.73 (Figure 6G).  421 

With regards to associations with clinico-biological covariates, the most predictive proteins or drivers 422 

from the benchmarking studies exhibited correlations with COVID-19 severity but not to the extend 423 

that APNet’s results did (e.g., this is evident in the expression-PASNet MGH-Mayo/Stanford and the 424 

RF MGH-Stanford experiments). Furthermore, associations with diabetes and kidney disease were not 425 

as straightforward as in the case of APNet (Supplementary Figure 6-7) (Supplementary Material 6). 426 

 427 

3.6 In silico evaluation of APNet’s results based on COVID-19 curated prior knowledge 428 

To evaluate the degree of COVID-19 ground truths that APNet and the other classification models 429 

recovered, we mapped each model's top 20 most predictive proteins from the various experiments to 430 

the SIGNOR 3.0 COVID-19 Hallmark pathways (i.e. Virus Entry, Cytokine storm, Inflammation, 431 

Fibrosis, Apoptosis, Innate response to dsRNA, MAPK Activation, ER stress and Stress granules, 432 

https://signor.uniroma2.it/covid/). APNet's most predictive drivers from the MGH-Mayo and the multi-433 

omic experiments were considerably over-represented (1.5 to 2 fold) on the SIGNOR 3.0 COVID-19 434 

Hallmark pathways than their counterparts from the PASNet-expression and RF models. Concerning 435 

the MGH-Stanford experiment, APNet and PASNet-expression exhibited almost an equal number of 436 
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mappings but different in type, while the RF model was again significantly under-represented. In the 437 

case of MAPK activation, a cardinal pathway in COVID-19 pathobiology, APNet accomplished 438 

approximately twice as many mappings (8) as the expression-PASNet model (4), revealing higher 439 

robustness in connecting predictive drivers of severity with COVID-19 biological underpinnings (Table 440 

2) (Supplementary material 7). 441 

Table 2. Biological benchmarking of APNet vs PASNet Expression and RF-Activity. The table measures the number of 442 

top-20 predictive drivers that were mapped to the respective SIGNOR 3.0 pathway networks, in each classification experiment 443 

(SIGNOR 3.0 COVID-19 Hallmarks).  444 

 MGH-Mayo MGH-Stanford scMGH 

SIGNOR 3.0 

COVID-19 

Hallmark 

APNet PASNet- 

Expression 

RF-Activity APNet PASNet- 

Expression 

RF-Activity APNet RF-Activity 

Virus Entry 4 2 1 4 5 1 4 2 

Cytokine Storm 5 5 0 5 7 0 7 3 

Inflammation 6 5 0 9 7 0 7 2 

Fibrosis 4 3 1 3 5 1 7 4 

Apoptosis 9 5 1 8 7 1 5 2 

Innate 

response to 

dsRNA 

3 3 0 3 5 0 4 2 

MAPK 

activation 

6 3 1 8 5 1 6 3 

ER stress 3 2 0 4 3 0 3 1 

Stress granules 5 3 1 5 6 1 6 3 

Total mappings 45 31 5 49 50 5 49 22 

 445 

 446 

3.7 APNet enables the creation of weighted graph models for mechanistic hypotheses: The case of 447 

ACAA1 448 

We postulated that combining SJARACNe co-expression networks, with pathways that APNet ingested 449 

as biological priors before classification tasks and the weights it assigned to them upon completion of 450 

demarcating severe COVID-19 could be helpful to in silico predict regulatory motifs and signaling 451 

patterns driving severe COVID-19.  452 

To demonstrate this feature, we focused on the MGH-Mayo experiment, we assembled a multipartite 453 

graph of with driver-driver and driver-pathway connections and we sought to leverage information 454 
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about ACAA1 (Acetyl-CoA Acyltransferase 1), which was one of the top 20 most predictive drivers,  455 

was designated as a hidden driver by our analysis and it was significantly hypo-active in severe PBMCs 456 

which suggested the its plasma proteomic signature derived from an alternative tissue or organ.  457 

By retrieving the MGH SJARACNe SHAP graph (a series of small positive, coherent feedforward loops 458 

with NCF2, TIMP1, CKAP4 as sources, TNFRSF10B as a significant <sink= and FLT3 as the primary 459 

inhibitor), it was apparent that no obvious connection existed between ACAA1 and the other predictive 460 

drivers (Figure 7A). To validate the biological plausibility of the SJARACNe graph, the respective PPI 461 

network from STRINGdb was leveraged (interaction score > 0.4), indicating high interconnectivity for 462 

most of the predictive drivers. Interestingly, ACAA1 and CKAP4 remained unconnected 463 

(https://version-12-0.string-db.org/cgi/network?networkId=bmlgZrzN1Cex) (Figure 7B). 464 

Next, considering that ACAA1 is predominantly expressed in the liver based on our previous GTEx 465 

analysis, we took inspiration from representation learning (Zitnik et al., 2019) and performed 466 

dimensionality reduction on the APNet complex graph with the tSNE algorithm, looking for maximum 467 

variance in liver expression based on TISSUES 2.0 scores. A distinct cluster with highly liver-specific 468 

drivers was detected. To gain a better insight on them, we isolated their subgraph with their most 469 

prognostic connected pathways (PASNet weight > 0.5 and < -0.5).  We detected a graph <island= which 470 

contained four highly predictive drivers of COVID-19 severity among other proteins (ACAA1, SDC1, 471 

HGF, CKAP4) and connected pathways involved Immune System signaling, neutrophil degranulation, 472 

MAPK signaling, chaperone activation (HSP90) and VEGF signaling (Figure 7C-D).  473 

Based on these findings, we posited that there should be an underlying connection between ACAA1 474 

and some of the other three predictive drivers of severity. We resorted to the OCSANA+ Cytoscape 475 

application to simulate signal propagation from SDC1, HGF and CKAP4 on the APNet complex graph. 476 

By calculating the Signal Flow Analysis (SFA, see Materials and Methods) metric, it became apparent 477 

that HGF and SDC1 signal propagation converged towards ACAA1 through various intermediate 478 

proteins. A similar effect on ACAA1 was not observed in the case of CKAP4, which did not appear to 479 

propagate any signal towards ACAA1 (Figure 7E). 480 

To better elucidate these findings, we calculated the shortest paths from SDC1, HGF and CKAP4 481 

towards ACAA1 using the PathwayLinker application on Cytoscape. When selecting the <additive 482 

weight method= for the MI score as edge weight,  PathLinker highlighted 2 critical shortest paths: (a) a 483 

signaling cascade commencing from SDC1 and reaching ACAA1 through KRT18 and GRPEL1 and 484 

(b) an incoherent feed-forward loop starting from HGF and through inhibiting ICOSLG which activated 485 

PTPRS which inhibited ACAA1. The <unweighted method= in PathwayLinker returned the same 486 

results. Notwithstanding, when selecting the <probabilistic weight method= for the MI score as edge 487 
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weight, PathwayLinker suggested a larger signaling cascade commencing from CKAP4, and extending 488 

through TRIAP1, LBR and GRPEL1 towards ACAA1 (Figure 7F).  489 

To computationally validate these APNet shortest paths, we queried the STRINGdb database for the 490 

respective PPI networks. After 2 rounds of expansion, we retrieved a singular PPI network (14 nodes, 491 

23 edges, https://version-12-0.string-db.org/cgi/network?networkId=b57tJ84II6T8), connecting SDC1, 492 

GRPEL1, KRT18 and ACAA1 which upon k-means clustering revealed three components relative to 493 

fatty-acid metabolism (ACAA1, ACOX1, HADHA, HSD17B4, EHHADH), mitochondrial protein 494 

transport (HSPA9, KRT18, KRT8, GRPEL1, TIMM44) and cell surface interactions (FN1, SDC1, 495 

SDCBP, FGF2). In the case of the other shortest paths, the corresponding STRINGdb queries required 496 

more than 5 cycles of expansion to produce PPI networks encompassing all drivers of interest (CKAP4: 497 

55 nodes, 375 edges, https://version-12-0.string-db.org/cgi/network?networkId=bjbqEWsYzPw4; 498 

HGF: 44 nodes, 214 edges, https://version-12-0.string-db.org/cgi/network?networkId=bcT9lsyOCwJ7) 499 

(Sup. Figure 8).  500 

Finally, as an additional step to assess the potential significance of these paths in a more COVID-19-501 

specific biological context, we queried the BYCOVID19 data portal 502 

(https://www.covid19dataportal.org/) for the <COVID-19 association score= provided by the 503 

OpenTargets platform. SDC1 exhibited the highest score (0.555) with a considerable difference from 504 

some of the other drivers of severity (KRT18=0.05, LBR=0.004, CKAP4=0.006, HGF=0.025), 505 

confirming the biological prioritization of the SDC1-ACAA1 nascent connection that APNet uncovered 506 

(Supplementary Material 8-9). 507 

 508 

4. Discussion - Conclusion 509 

In the current work, focusing on COVID-19 omics, we present APNet, a computational DL pipeline to 510 

elucidate complex biological motifs while classifying patients based on their clinical severity.  511 

APNet is inspired by computational approaches modeling Gene Regulatory Networks (GRNs), which 512 

have been instrumental in discovering new interactions between biological entities and formulating 513 

novel scientific hypotheses. APNet combines some of the best practices in the field by combining an 514 

Information Theory model (SJARACNe algorithm) through a Bayesian scope (NetBID2/scMINER 515 

toolkits) (Delgado and Gómez-Vela, 2019) and a biologically-informed neural network with enhanced 516 

explainability (PASNet and SHAP values) for supervised patient clustering. The above bioinformatic 517 

tools have been shown independently to effectively discover potential biomarkers and druggable targets 518 

in diseases however, to the best of our knowledge, they have never been used as a unified pipeline for 519 

COVID-19 or any other disease type (Wang et al., 2021) (Ding et al., 2023) (Hao et al., 2018).  520 
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In our study, we utilized APNet to predict severe COVID-19 cases in three different Olink plasma 521 

proteomic datasets (MGH, Mayo, Stanford), and a complementary scRNA-seq study. APNet conducted 522 

biologically informed predictions using driver-pathway associations (KEGG, Reactome, GO:BP, 523 

Wikipathways) with remarkable robustness, outperforming alternative ML/DL approaches which either 524 

lacked (a) the activity transformations enabled by the NetBID2/scMINER toolkits (PASNet-expression 525 

model) or (b) the PASNet DL architecture (Random Forest classifications). Based on the biological 526 

explainability of each model (SHAP values, driver-pathway mapping with learning DL weights) and 527 

COVID-19 curated biological ground-truths (SINGOR COVID-19 pathway networks), evidently, 528 

APNet was able to better approximate the systemic nature of severe COVID-19 from the provided 529 

biological data. We posit that APNet performed so efficiently due to the sparse regularization of the 530 

hierarchical relationships of drivers and pathways after initial differential activity analysis. Hence, 531 

APNet was able to capture both well known but also more nuanced perturbations in severe COVID-19 532 

(i.e., known drivers but also <hidden drivers= like ACAA1, FLT3) implicating several potential tissues 533 

of origin and a diverse repertoire of critical pathways. Indicatively, some of the most predictive drivers 534 

and pathways that APNet captured concerned apoptosis, dishevelled PI3K-Akt stimulation 535 

(FLT3/FLT3LG, PTEN, NTF4, KIT), neurodegeneration (EGFR, SEMAD4), cell differentiation 536 

(TNFSF11), neutrophil degranulation (ACAA1), lipid metabolism (TNFRSF10A), immune and 537 

interleukin signaling (CD63, TIMP1, JUN), T cell receptor signaling (BIRC2, NFATC1, CD4, 538 

IKBKG), oxidative phosphorylation (ATP6AP2). These signaling cascades and some of these drivers 539 

have already been implicated with COVID-19, which attests to APNet’s overall capacity to make 540 

biologically plausible predictions. (Basile et al., 2022; Chidambaram et al., 2022; Merad and Martin, 541 

2020; Pistollato et al., 2022; Thompson et al., 2021).  A paradigmatic case concerning the translational 542 

value of APNet’s findings was the implication of MAPK pathway in severe COVID-19 based on various 543 

drivers (e.g., MAPK9, AREG, KIT, JUN, FLT3LG). These drivers were not prioritized to the same 544 

extend as highly predictive by the alternative ML/DL models – if prioritized at all. This could explain 545 

in part why APNet surpassed these models as a classifier of COVID-19 severity since components of 546 

the MAPK pathway (sH-RAS, C-RAF, MAPK1, MAPK2 and ERK) have emerged as critical tenets of 547 

Sars-CoV-2 tropism in PBMCs and have been associated with adverse clinical covariates like hypoxia, 548 

dyspnoea and vascular damages (Cusato et al., 2023). 549 

Finally, APNet extends beyond biological explainability to actionability regarding the formulation of 550 

mechanistic hypotheses, by providing the capacity to generate a weighted driver-pathway network that 551 

incorporates information from SJARACNe co-expression networks, the differential activity analysis, 552 

the PASNet DL clinical predictions and external dedicated bioinformatic databases like STRINGdb. 553 

APNet enabled through graph representation learning, shortest path detection, and signal propagation 554 

simulation the prediction of a liver-specific signaling cascade in severe COVID-19 involving ACAA1 555 

(hidden driver with prognostic significance but no apparent connections to other predictive drivers), 556 
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SDC1, KRT18, and GRPEL1. These predictions are not biologically implausible given the implication 557 

of SDC1 and KRT18 in inflammation and epithelial damage (Ghondaghsaz et al., 2023; Liao et al., 558 

2020), the involvement of the mitochondrial GRPEL1 in host/Sars-CoV-2 interactions (Zhang et al., 559 

2022), the clinical correlation of ACAA1 (a mediator of fatty acid oxidation in the mitochondria and 560 

the peroxisomes) with  ICU-admittance  in COVID-19 (Penrice-Randal et al., 2022) and a severe 561 

mitochondria dysfunction in the liver of severe COVID-19 cases (Guarnieri et al., 2023). 562 

The work herein is not without its limitations. One limitation concerns the restricted number of studies 563 

involved and the binary assignment of drivers to pathways. Pathway activation is a dynamic process 564 

controlled by fluctuations in expression or activity changes of a protein or drivers, respectively. Outputs 565 

from more advanced pathway enrichment techniques like GSEA could be more instructive for the DL 566 

model to perform classifications more aptly. Another limitation is the need to perform several manual 567 

steps in APNet’s complex graphs to test hypotheses and leverage new insights, which might hinder data 568 

exploration and analysis. Another issue worth noting is that APNet does not include clinical covariates 569 

as clinical-biological priors, which could be addressed in the future by adopting in our pipeline the more 570 

clinically-oriented version of Cox-PASNet (Hao et al., 2019). 571 

Overall, APNet is a robust pipeline that can simplify the extraction of intricate biological insights from 572 

complex biological data while also performing clinical predictions and testing mechanistic hypotheses. 573 

In vitro/in vivo validations should accompany future implementations of APNet to validate the 574 

pipeline's true translational credibility. Additionally, APNet’s scalability to other multi-factorial 575 

disease-omic datasets (such as cancer and neurodegenerative diseases) should be explored along with 576 

its potential deployment in other computational tasks (like multi-omic data integration and interactions 577 

with knowledge graph pipelines).   578 
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Other supplementary material can be found at the <Supplementary Materials for Online= folder and on 620 

Zenodo: 10.5281/zenodo.10438830 621 
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Description of supplementary materials 623 

 624 

 625 

File name Description 

Supplementary_Material_1_DOME.pdf DOME recommendations for the APNet models 

Supplementary_Material_2_MGH_Mayo_Stanf

ord_matrices.xlsx 

Expression, and Activity matrices for MGH, 

Mayo, and Stanford datasets 

Supplementary_Material_3_DA_MGH_Mayo_S

tanford.xslx 

Differential Activity outputs of MGH, Mayo, 

Staford and there relevant master file 

Supplementary_Material_4_APNet_weights.xls

x 

APNet activity s1_weights outputs for MGH-

Mayo, MGH-Stanford 

Supplementary_Material_5_scMGH_MGH.xlsx Differential Activity outputs of scMGH + 

APNet activity s1_weights outputs for MGH-

scMGH 

Supplementary_Material_6_PASNet_Expr_Ben

chmarking.xslx 

PASNet expression s1_weights outputs for 

MGH-Mayo, MGH-Stanford 

Supplementary_Material_7_SIGNOR_COVID_

Hallmarks.cys 

Cytoscape file that contains the SIGNOR 3.0 

COVID-19 hallmark pathways and the mapping 

of the most predictive drivers from APNet and 

the benchmarking experiments 

Supplementary_Material_8_The_ACAA1_case_

study.cys 

Cytoscape file that contains the bipartite driver-

pathway weighted network based on the MGH 

SJARACNe co-expression graph (MGH-Mayo 

experiment). This bipartite network is used to 

leverage information about ACAA1. 

Supplementary_Material_9_The_ACAA1_case_

study_OCSANA.txt 

Txt file guiding through the Cytoscape analysis 

for the ACAA1 case study. 
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 794 

Figure 1. APNet workflow, as implemented in the herein COVID-19 multi-omic study to discover predictive drivers of 795 

severity. Image made using the Biorender toolkit. 796 

 797 

 798 

 799 

Figure 2. Outline of APNet complex graph and the ensuing analysis with shortest path algorithms for uncovering non-intuitive 800 

connections among drivers and pathways. 801 

 802 
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Figure 3. APNet uncovers a large COVID-19 perturbational proteomic space underpinning the 3 distinct Olink datasets 

(MGH, Mayo, Stanford). (A) Venn diagrams showing overlapping differentially expressed proteins (DEPs) and differentially 

active proteins (DAGs) among the three studies. (B) SuperVenn diagram depicting the joint differentially expressed 

(increased/decreased) or active proteins (hyper/hypo-active) in severe COVID-19 compared to non-severe COVID-19 cases, 

across the three Olink studies. (C) STRINGdb protein-protein interaction networks for joint DEPs and hidden drivers of severity 

across the three studies (STRINGdb score > 0.4). The size of the nodes is analogous to the centrality of each protein/driver 

(BetweenessCentrality algorithm) and the colour denotes perturbational direction (red for increased, blue for decreased). (D-E) 

Bubble plots depicting over-representation analysis based on the Enrichr Knowledge Graph (Wikipathways 2021, Reactome, 

GO:BP, KEGG) for joint drivers with increased (D) and decreased activity (E) in severe COVID-19 cases, among the three 

Olink plasma proteomic studies. 
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Figure 4. APNet deploys sparse regularization of driver-pathway connections through the PASNet Deep Learning model 

and robustly classifies severe from non-severe COVID-19 cases in the three Olink proteomic studies. (A-B) Bar plots for 

SHAP values and driver-pathway mapping from PASNet signifying the top-20 predictive drivers and their corresponding 

pathways, for the MGH (training) / Mayo (testing) experiment. Furthermore, the AUC and F1-score values are depicted. (C-D) 

Same as (A) for the MGH (training) / Stanford (testing) experiment. Class 0 refers to nonsevere and Class 1 refers to severe 

COVID-19 cases. (E) Hierarchical clustering of MGH, Mayo and Stanford cases on the basis on the predictive proteomic drivers, 

along with selected clinical covariates. 
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Figure 5. APNet classifies severe COVID-19 cases across multi-omic studies. (A) scRNA-seq data from the Villani group for 14 MGH 

cases. (B-C) Bar plots for SHAP values and driver-pathway mapping from PASNet signifying the top-20 predictive drivers and their 

corresponding pathways, for the MGH plasma proteomic (training) / scRNA-seq (testing) experiment. Furthermore, the AUC and F1-score 

values are depicted. Class 0 refers to nonsevere and Class 1 refers to severe COVID-19 cases. (D-E) Heatmaps depicting the activity and the 

expression of predictive drivers from all the APNet experiments, across various PBMC cell types. The scMINER toolkit and visualisation 

performed the activity calculations were attained through Seurat. Only the predictive drivers with positive activity values are depicted. 
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Figure 6. APNet outperforms alternative ML/DL models in classifying severe and non-severe COVID-19 cases. (A) 

ROC curves depicting the performance of APNet and alternative approaches in classifying severe from non-severe cases in 

respective experiments. Distinct AUC scores are referenced also. (B) Lollipop plot depicting the F1-scores from each model 

from (A). (C-F) Barplots with SHAP values for the top 20 most predictive plasma proteins of COVID-19 severity and 

protein-pathway mapping from PASNet-expression model for MGH-Mayo experiment (C-D) and MGH-Stanford 

experiment (E-F). (G) Barplots with SHAP values showing top 20 most predictive drivers of severity based on the Random 

Forest (RF) alternative model for the various classification experiments. Class 0 refers to non-severe and Class 1 refers to 

severe COVID-19 cases. 
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Figure 7. APNet enables the assembly of complex graphs that can be leveraged to discover non-apparent 

connections of ACAA1 with other predictive drivers of COVID-19 severity. (A) SJARACNe co-expression 

(adj.pvalue<0.05 for MI calculation) directed network from APNet’s complex graph showing the interactions of the 
top 20 most predictive drivers of COVID-19 severity for the MGH-Mayo scenario. (B) STRINGdb network with 

(interaction score > 0.4) for the same severity drivers. (C) APNet’s complex graph after tSNE dimensionality 

reduction using the clusterMaker app in Cytoscape, based on the <liver= score from the TISSUES 2.0 database for 
each driver/node. The darkest colour denotes a higher liver-specific association. The most liver-specific cluster of 

drivers is designated within the circle (continue to next page…) 
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  810 Figure 7. APNet enables the assembly of complex graphs that can be leveraged to discover non-apparent 

connections of ACAA1 with other predictive drivers of COVID-19 severity (continued..) (D) Part of APNet’s 
complex graph showing highly liver-specific drivers and connected pathways with high prognostic significance, 

based on their PASNet weights. (E) Lollipop plots showing the SFA scores from the OCSANA+ app in Cytoscape 

in each node, after signal propagation from SDC1, CKAP4 and HGF on the entire APNet complex graph. (F) Part of 

APNet’s complex graph showing shortest paths based on the PathLinker app in Cytoscape starting from CKAP4, 
SDC1 and HGF and extending towards ACAA1. Below, the STRINGdb equivalent PPI network (interaction score > 

0.4) of the SDC1-KRT18-GRPEL1-ACAA1 path with intermediate nodes provided by STRINGdb, after k-means 

clustering. 
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