

1 RNase-mediated reprogramming of *Yersinia* virulence

2

3 **Ines Meyer¹ Marcel Volk¹, Ileana Salto¹, Theresa Moesser¹, Anne-Sophie**
4 **Herbrüggen¹, Manfred Rohde², Michael Beckstette², Ann Kathrin Heroven²,**
5 **and Petra Dersch^{1,3*}**

6

7 ¹ Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE),
8 University of Münster, Germany

9 ² Department of Molecular Infection Biology, Helmholtz Centre for Infection Research,
10 Braunschweig, Germany

11 ³ German Center for Infection Research (DZIF), Partner site HZI Braunschweig and
12 associated site University of Münster, Germany

13

14 ***Corresponding author:**

15 Petra Dersch
16 Institute for Infectiology,
17 Center for Molecular Biology of Inflammation (ZMBE)
18 Von Esmarch Str. 56
19 48149 Münster
20 Germany
21 Phone: +49-251-835-6466
22 FAX: +49-251-835-6467
23 e-mail: petra.dersch@uni-muenster.de

24

25

26

27 Running title: RNase-mediated reprogramming of *Yersinia*

28 **Keywords:** *Yersinia*, RNase, RNase III, PNPase, type III secretion, Ysc-Yop, gene
29 regulation, virulence

30

31 **Abstract**

32 RNA degradation is an essential process that allows bacteria to regulate gene
33 expression and has emerged as an important mechanism for controlling virulence.
34 However, the individual contributions of RNases in this process are mostly unknown.
35 Here, we report that of 11 tested potential RNases of the intestinal pathogen *Yersinia*
36 *pseudotuberculosis*, two, the endoribonuclease RNase III and the exoribonuclease
37 PNPase, repress the synthesis of the master virulence regulator LcrF. LcrF activates
38 the expression of virulence plasmid genes encoding the type III secretion system (Ysc-
39 T3SS) and its substrates (Yop proteins), that are employed to inhibit immune cell
40 functions during infection. Loss of both RNases led to an increase in *lcrF* mRNA levels
41 and stability. Our work indicates that PNPase exerts its influence via YopD, known to
42 accelerate *lcrF* mRNA degradation. Loss of RNase III results in the downregulation of
43 the CsrB and CsrC RNAs, leading to increased availability of active CsrA, which has
44 previously been shown to enhance *lcrF* mRNA translation and stability. Other factors
45 that influence the translation process and were found to be differentially expressed in
46 the RNase III-deficient mutant could support this process.

47 Transcriptomic profiling further revealed that Ysc-T3SS-mediated Yop secretion
48 leads to global reprogramming of the *Yersinia* transcriptome with a massive shift of the
49 expression from chromosomal towards virulence plasmid-encoded genes. A similar
50 extensive transcriptional reprogramming was also observed in the RNase III-deficient
51 mutant under non-secretion conditions. This illustrates that RNase III enables
52 immediate coordination of virulence traits, such as Ysc-T3SS/Yops, with other
53 functions required for host-pathogen interactions and survival in the host.

54 **Author Summary**

55 Bacterial pathogens need to quickly adapt the expression of virulence- and fitness-
56 relevant traits in response to host defenses. Pathogenic *Yersinia* species rapidly
57 upregulate a type III secretion system (T3SS) to inject antiphagocytic and cell toxic
58 effector proteins, named *Yersinia* outer proteins (Yops), into attacking immune cells.
59 For this purpose, they display complex and resilient regulatory mechanisms. At the
60 post-transcriptional level, this is mediated by different RNA-binding regulators including
61 YopD and CsrA, while the fate of mRNAs is balanced by ribonucleases. Here, we
62 demonstrate that out of 11 tested putative RNases of *Yersinia*, two major RNases, the
63 endoribonuclease RNase III, and the exonuclease and degradosome component
64 PNPase play a crucial role in the activation of the Ysc-T3SS/Yop machinery. We show
65 that they promote the decay of the *lcrF* mRNA encoding the common transcriptional
66 activator LcrF of the Ysc-T3SS/Yop components. PNPase seems to act through the
67 control of the effector YopD, known to promote the decay of the *lcrF* transcript. In
68 contrast, RNase III triggers processes that reduce *lcrF* mRNA translation and stability,
69 and involve CsrA.

70 A transcriptome analysis further revealed that RNase III controls a series of events
71 that include rapid and massive genetic reprogramming from mainly chromosomal-
72 encoded genes to virulence-plasmid-encoded *ysc*-T3SS/*yop* genes. This control
73 process does not only ensure immediate counter-measures during an immune attack,
74 it also helps to overcome accompanying energetic and stress burdens and allows to
75 rapidly readjust the genetic program after a successful defense.

77 Introduction

78 Bacterial pathogens employ a large variety of regulators and integrate control
79 mechanisms to tightly control the synthesis of crucial virulence factors on the
80 transcriptional and post-transcriptional levels. In particular, RNA-mediated control
81 processes provide pathogens with a highly efficient strategy to quickly respond to
82 changes in their environment outside and inside their hosts [1][2][3]. Among these
83 mechanisms are sensory and regulatory RNAs, which were shown to modulate
84 virulence factor expression in response to external stimuli [1][2][3]. Other important
85 players, which have been less addressed in this scenario, are ribonucleases (RNases).
86 They play a critical role in RNA metabolism as they degrade RNA and are involved in
87 the processing and quality control of transcripts [4]. RNases are enzymes that catalyze
88 the cleavage of a phosphodiester bond within a double- or single-stranded RNA
89 molecule (endonucleases) or from the 3'- or 5'-end (exonucleases) [5][6]. While some
90 RNases are highly conserved across different species (e.g. RNase E, PNPase), some
91 are only present in certain bacteria, e.g. RNase III in Gram-negative bacteria. The
92 susceptibility of a particular RNA to an RNase thereby depends on multiple factors: (i)
93 intrinsic RNA properties, e.g. RNA secondary structure, (ii) rate of translation, (iii) RNA-
94 binding proteins, and (iv) sRNAs [4][7][8][9][10].

95 More recently, certain RNases have also been found to be crucial regulators of
96 virulence genes. Among them are specific exonucleases, i.e. PNPase, and endo-
97 ribonucleases such as RNase Y in Gram-positive bacteria (*Staphylococcus aureus*,
98 *Streptococcus pyogenes*, and *Clostridium perfringens*) or RNase III in Gram-negative
99 bacteria (*Escherichia coli*, *Salmonella enterica* serovar Typhimurium) [7][8][9][11].
100 Roughly 15-20 different RNases are encoded in a single bacterium, and the functions
101 of some of the enzymes are coregulated and can be complemented and/or

102 compensated to a certain degree by others [12][13][14]. Considering the essential role
103 of RNases in RNA metabolism, it is expected that the expression and the activity of
104 RNases are tightly regulated [5][15][16]. Bulk RNA degradation was found to be
105 dependent on a membrane-bound, multiprotein complex, the degradosome, including
106 RNases, such as RNase E and the polynucleotide phosphorylase (PNPase), and
107 auxiliary proteins, which assist and/or regulate the degradation process. The
108 composition of the degradosome varies between different bacteria and can change in
109 response to environmental conditions [7][8][17]. Both degradosome components
110 RNase E and PNPase are involved in the control of *Yersinia* virulence [18][19][20][21].

111 *Yersiniae* are Gram-negative bacteria of which *Y. pestis*, the causative agent of
112 plague, and its enteric relatives *Y. enterocolitica* and *Y. pseudotuberculosis* are human
113 pathogens. *Y. pseudotuberculosis*, the most closely related, direct ancestor of *Y. pestis*
114 is an intestinal pathogen [22]. It causes a variety of gut-associated diseases, such as
115 watery diarrhea, enteritis, and mesenteric lymphadenitis, called Yersiniosis. Upon oral
116 uptake, the bacteria enter and transfer through the intestinal epithelial layer into the
117 underlying lymphatic tissues (Peyer's patches) where they rapidly proliferate extra-
118 cellularly [23][24][25]. During this infection phase, the *yersiniae* induce the expression
119 and formation of the Ysc type III secretion system (Ysc-T3SS) encoded on the 70 kb
120 virulence plasmid pYV/pIB1 [26][27]. The Ysc-T3SS, a syringe-like machinery called
121 the injectisome injects 7-8 Yop effector proteins into professional phagocytes to protect
122 the bacteria from phagocytosis, manipulate inflammatory processes, and induce cell
123 death [28][29]. Expression of the Ysc-T3SS/Yop machinery is tightly regulated in
124 response to temperature and host cell contact by a complex network of regulatory
125 factors [22][26][18][30]. The majority of the *ysc/yop* genes is induced by the AraC-type
126 transcriptional activator LcrF [31]. Synthesis of LcrF is thermally regulated on the

127 transcriptional and post-transcriptional levels. This is mediated by the thermo-sensitive
128 transcriptional repressor YmoA and a *cis*-acting RNA thermometer element including
129 the ribosomal binding site of *lcrF* [32][33]. Synthesis of the Ysc-T3SS/Yop apparatus
130 is also tightly linked to the activity of the secretion machinery. Pettersson *et al.*
131 demonstrated that expression of the injectisome components and the Yops are
132 strongly induced upon host cell contact [30]. Cell contact-mediated induction can be
133 mimicked by depletion of Ca^{2+} , a phenomenon known as the low calcium response.
134 This converts the T3SS apparatus into the secretion state and enables a strong,
135 synchronized activation of the *ysc*-T3SS and *yop* genes [34][35]. In a previous study,
136 we demonstrated that one of the secreted Yop proteins, YopD, plays a pivotal role as
137 a host cell contact sensing device and negative regulator of Ysc-T3SS/Yop synthesis
138 in the absence of inducing cues [18]. YopD was found to coopt important global
139 riboregulators to control the Ysc-T3SS/Yop master regulator LcrF. Secretion of the
140 YopD translocator upon cell contact increases the ratio of the post-transcriptional RNA-
141 binding regulator CsrA to its antagonistic small RNAs CsrB and CsrC. YopD secretion
142 also reduces the levels of the degradosome RNases PNPase and RNase E [18]. This
143 indicated that riboregulators and RNA-mediated control processes play a pivotal role
144 in the coordinated control of *Yersinia* virulence traits.

145 In this study, we extended our analysis and found that in particular RNase III and
146 PNPase reduce the stability of the *lcrF* mRNA. PNPase exerts its main influence on
147 Ysc-T3SS/Yop synthesis through the RNA-regulatory function of YopD [18], whereas
148 RNase III influences translation and stability of *lcrF* mRNAs via (i) CsrA-antagonizing
149 Csr RNAs, and (ii) likely by the control of ribosomal and translation-related factors.

150

151

152 Results

153 Identification of RNases implicated in type III secretion of *Y. pseudotuberculosis*

154 In our attempt to identify RNases that influence virulence traits of *Y. pseudotuber-*
155 *closis*, in particular the expression of the T3SS machinery, we constructed in-frame
156 deletions in genes of identified putative RNases (*rnb*, RNase II; *rnc*, RNase III, *rnd*,
157 RNase D; *rng*, RNase G; *rnhA*, RNase HI; *rph*, RNase PH; *yoaB*, L-PSP(YoaB); *tcdF*,
158 *TdcF*; *tcdF-1*, *TdcF-1*; *tcdF-2*, *TdcF-2*; and *pnp* PNPase), except RNase E as its loss
159 is lethal [19]. The chosen RNases differ in their target specificity, cleavage mechanism,
160 and role in bacterial physiology [9][10], and previous global expression analysis by
161 RNA-seq showed that these RNases are all controlled in response to virulence-
162 relevant parameters such as temperature and/or nutrient availability [36][37].

163 A first phenotypic characterization of the RNase mutants demonstrated that the
164 PNPase and RNase III-deficient strains (YP139 (Δpnp), YP356 (Δrnc)) exhibited a
165 small growth delay at 25°C. However, in contrast to the Δpnp mutant, the growth defect
166 of the *rnc* mutant was much stronger at 37°C. Complementation by the respective
167 RNase gene could restore the phenotype of the wildtype (Fig. 1A-B). A similar growth
168 arrest has been observed upon a constitutive expression of the Ysc-T3SS of *Yersinia*
169 [38][39][40]. We further tested growth at 37°C under Ca²⁺-limiting conditions, as a
170 substitute for host cell contact, to induce Ysc-T3SS/Yop expression and Yop secretion
171 (secretion conditions). In agreement with previous results [38][39][40], induction of Yop
172 secretion is accompanied by a strong growth reduction of the wildtype which was more
173 severe in both RNase-deficient mutants (Fig. 1A). All other tested RNases did not
174 influence bacterial growth (Supplementary Fig. S1A-B).

175 Moreover, motility, which is promoted by the flagellar T3SS, was found to be signi-
176 ficantly reduced for the Δrnc mutant grown on semi-solid agar plates at 25°C but not
177 as drastic as the non-motile *flihDC* mutant missing the main activator of the flagellar
178 synthesis genes (Fig. 1C [41]). In contrast, a fuzzier, but not significantly larger
179 concentric swarm ring was observed for the Δpnp mutant strain (Fig. 1C), whereas the
180 motility of all other RNase mutant strains was not significantly affected (Supplementary
181 Fig. S1C). Scanning electron microscopy revealed that wildtype and PNPase-deficient
182 bacteria contained two-three flagella of the bacteria grown at 25°C, whereas the Δrnc
183 mutant largely lacked flagella at 25°C (Fig. 2A). This indicated that motility loss of the
184 Δrnc mutant did result from the reduction of flagella and not of an inability to use flagella
185 (i.e. a Mot-negative phenotype). In agreement with previous studies demonstrating a
186 down-regulation of the transcription of flagellar genes at body temperature [42][43],
187 flagella are absent at 37°C in all tested strains (Fig. 2A). However, in contrast to the
188 wildtype and the Δpnp mutant, additional surface-exposed structures resembling
189 needles of T3S injectisomes [44] were detected at 37°C with scanning and negative
190 staining electron microscopy, which are also seen with the wildtype under secretion
191 conditions (37°C/-Ca²⁺) (Fig. 2A-B). This indicated that the production of the Ysc-
192 T3SS/Yop machinery is induced at 37°C in the Δrnc mutant, conditions under which
193 the production and assembly of the apparatus are normally repressed [35][45].

194

195 **Analysis of the influence of RNase III and PNPase on Yop secretion and
196 expression**

197 In order to test and characterize the influence of the PNPase and RNase III on the Ysc-
198 T3SS/Yop machinery, *Y. pseudotuberculosis* wildtype strain YPIII and the isogenic

199 Δpnp and Δrnc mutants were cultivated at 25°C (environmental, non-expression
200 conditions), 37°C (host, non-secretion conditions) and 37°C/Ca²⁺-limiting conditions
201 (mimicking host cell contact/secretion conditions) to trigger expression and activity of
202 the Ysc-T3SS/Yop machinery [35][45]. A mutant strain deficient of the T3SS compo-
203 nent YscS was used as a negative control as the encoded protein is known to be
204 essential for Yop secretion [46]. Yop secretion by the wildtype was only detectable at
205 37°C/-Ca²⁺ (secretion conditions), but not at 25°C and 37°C (Fig. 3A). In contrast,
206 slightly higher amounts of Yops were already secreted by the Δpnp mutant under non-
207 secretion conditions (37°C), and a significantly higher amount of secreted Yop proteins
208 was detectable under identical conditions in the absence of RNase III (Fig. 3A). This
209 did not result from bacterial cell lysis (Supplementary Fig. S2A) and the derepressed
210 effect of the Δrnc mutant could be complemented by an *rnc*-positive plasmid (Supple-
211 mentary Fig. S2B). The observed Yop secretion pattern is in full agreement with the
212 detection of numerous T3S injectisome-like structures on the surfaces of the bacteria
213 (Fig. 2). This might also explain the growth reduction observed at 37°C for the Δrnc
214 mutant (Fig. 1A, B), the phenotype which is characteristic for Yop secretion conditions
215 (37°C/-Ca²⁺) [38][39][40].

216 To confirm the influence of RNase III on the secretion of a specific Yop protein, we
217 quantified the secretion of an introduced, plasmid-encoded YopE- β -lactamase fusion
218 protein (YopE-BlaM) by nitrocefin assays after a shift from 25°C to 37°C +/- Ca²⁺ (Fig.
219 3B). In agreement with our previous results, secretion of the YopE-BlaM fusion protein
220 was significantly increased in the Δrnc mutant at 37°C, but not in the wildtype, whereas
221 similar high amounts of secreted YopE-BlaM were detectable with both wildtype and
222 Δrnc mutant under secretion conditions (37°C/- Ca²⁺).

223 To test, whether the intracellular amount or solely secretion of Yop proteins is
224 affected, Yop protein levels in whole cell extracts of *Y. pseudotuberculosis* YPIII (wt),
225 and the Δpnp and Δrnc RNase mutant strains grown under secretion (37°C/-Ca²⁺) or
226 non-secretion conditions (37°C) were analyzed by Western blotting using an anti-all
227 Yop antibody (Fig. 4). This revealed that considerably higher amounts of the Yops are
228 synthesized in the Δpnp and the Δrnc mutant at 37°C/non-secretion conditions. The
229 overall Yop protein levels of both mutants are almost identical under secretion and
230 non-secretion conditions and comparable to the Yop levels of the wildtype under
231 secretion conditions (37°C/-Ca²⁺); except for YopE. This effector seems to be consi-
232 derably reduced in the absence of RNase III compared to the wildtype (Fig. 4B-C).
233 Notably, similar to the other Yop proteins, the expression of the *yopE-blaM* reporter in
234 the Δrnc strain was strongly increased at 37°C (Fig. 3C), whereas the YopE protein
235 was barely detectable in the same strain (Fig. 4C). This indicated that not *yopE*
236 expression but rather post-transcriptional steps of YopE synthesis/stability are affected
237 in the absence of RNase III.

238 To elucidate how the loss of PNPase and RNase III triggers the synthesis of the
239 Ysc-T3SS/Yop components under non-inducing conditions, we next addressed the
240 impact of the *pnp* and *rnc* knock-out mutations on known Ysc-T3SS/Yop control
241 mechanisms and regulators.

242

243 **PNPase and RNase III influence on Ysc-T3SS/Yops does not occur through an**
244 **increase of the pYV copy number**

245 Synthesis of the Ysc-T3SS/Yop injectisome components is controlled on different
246 levels, including the regulation of the copy number of the virulence plasmid pYV (also
247 named pIB1) in response to temperature and host cell contact/secretion [47]. As the

248 copy number of plasmids is subjected to complex regulation involving RNases [48], we
249 employed qPCR to determine whether a knockout of the *rnc* or the *pnp* gene influences
250 the pYV copy number. However, similar to the wildtype, we found only a subtle
251 increase of the copy number from 1 to 2 copies in the mutants upon a shift from 25°C
252 to 37°C (Supplementary Figure **S3**). Accordingly, increased Yop expression and
253 synthesis at 37°C (Fig. **3,4**) cannot be explained by an increase in the pYV copy
254 number and must be based on the deregulation of other control factors.

255

256 **RNase III and PNPase mainly influence Yop protein expression through the**
257 **control of LcrF**

258 Expression of the *yop* and the Ysc-T3S component genes is mainly activated by the
259 AraC-type transcriptional activator LcrF in response to temperature and host cell
260 contact [18][31][32]. Therefore, we tested whether the absence of RNase III and
261 PNPase influenced LcrF synthesis. We found that the amount of the LcrF protein was
262 considerably increased at 37°C/non-inducing conditions in both RNase mutant strains
263 (Fig. **5A-C**). The overall influence of the loss of RNase III was more pronounced
264 compared to the loss of PNPase (Fig. **5A-B**), and could be fully complemented by the
265 *rnc*-encoding plasmid (Fig. **5C**). Interestingly, high LcrF levels in the Δrnc strain at 37°C
266 (no secretion) and 37°C-/Ca²⁺ (secretion) were comparable, demonstrating that LcrF
267 synthesis is independent of the secretion control process in the absence of RNase III
268 (Fig. **5B-C**).

269

270 **RNase III and PNPase influence *lcrF* transcript levels**

271 To unravel the molecular mechanism by which the RNases control LcrF levels, we first
272 investigated the *lcrF* transcript level in the Δrnc and Δpnp mutant compared to wildtype

273 at 37°C. In agreement with previous studies [18][32], we observed that the *lcrF*
274 transcript is generally very unstable in the wildtype as visualized by a diffuse pattern
275 of different-length transcripts hybridizing with the *lcrF* probe on Northern blots (Fig. 6A).
276 Although this general pattern did not change in the absence of both RNases a
277 significantly higher amount of *lcrF* transcripts was observed in the absence of RNase
278 III at 37°C (Fig. 6A), and this effect could be fully complemented by a plasmid-encoded
279 copy of the *rnc* gene (Fig. 6B). Loss of PNPase caused a smaller upregulation of *lcrF*
280 mRNAs under these conditions, whereas no influence of the RNases was observed
281 under secretion conditions at 37°C/-Ca²⁺ (Fig. 6A).

282 In a parallel experiment, we also performed a comparative transcription profile
283 analysis of the wildtype and the Δrnc mutant grown at 37°C by RNA-sequencing (for
284 more detail see also below). In agreement with the results of the Northern blots, we
285 could detect a massive increase of reads mapping to *lcrF* in the RNA-seq data set (Fig.
286 6C; Supplementary Dataset S4).

287 Uptregulation of *lcrF* transcript levels in the Δrnc and Δpnp mutant could have
288 occurred by the direct influence of the RNases on the stability of the *lcrF* mRNA or by
289 an indirect effect on the activation of *lcrF* transcription. We first tested whether the
290 overall increase of *lcrF* transcript levels in the absence of RNase III and PNPase is
291 indirect and caused by an increase of *lcrF* transcription. For this purpose, we first used
292 two reporter constructs, which both harbor the promoter region of the *yscW-lcrF* operon
293 from -311 to +8 fused to *phoA* (transcriptional fusion, pMV53) and from -304 to +281
294 (including the entire 5' untranslated region) relative to the transcriptional start site fused
295 to *lacZ* (translational fusion, pKB35) to compare the activity of the promoter at 37°C.
296 However, no increase in promoter $P_{yscW-lcrF}$ activity was detectable with both reporters
297 in the Δrnc and the Δpnp mutant, respectively (Fig. 7A-B). This demonstrated that an

298 influence of the RNases on the initiation of *lcrF* transcription can be excluded.
299 To investigate whether the absence of RNase III and PNPase affects the stability of
300 the *lcrF* transcript, we determined the effects of RNase III on *lcrF* mRNA decay and
301 measured the half-life of the transcript in the wildtype, the Δrnc , Δpnp , and $\Delta rnc/\Delta pnp$
302 mutant by Northern blot analysis (Fig. 8A,B). The half-life of the *lcrF* mRNA in the Δrnc
303 mutant was two-fold higher than in the wildtype. Loss of PNPase also increased *lcrF*
304 stability although to a lesser extent, and the effect of both RNases on *lcrF* transcript
305 stabilization seems to be additive (Fig. 8B).

306 Next, we investigated whether the RNases act directly on the *lcrF* mRNA, but
307 according to our analysis, it is very unlikely that the *lcrF* transcript is a direct target of
308 RNase III. Firstly, we did not identify potential RNase III cleavage sites (e.g. ~22 nt
309 double-stranded RNA segments including base-pairing preferences such as 5'
310 GAAAnnAAAG/CUUUnnUUUG 3') within the *yscW-lcrF* transcript, which were identi-
311 fied in direct targets in previous surveys [49][50][53]. Only one longer double-stranded
312 RNA segment without a potential RNase III cleavage sequence was identified in the 5'
313 untranslated region (5'-UTR) of the *yscW-lcrF* transcript. However, its presence in the
314 5'-UTR of the $P_{yscW-lcrF}$ -*lacZ* reporter fusion (pKB35) did not result in an expression
315 change in the Δrnc mutant compared to wildtype (Fig. 7B). Secondly, no smaller-size
316 degradation products of the *lcrF* transcript were detectable in the mRNA pool of the
317 wildtype compared to the Δrnc strain in gels with a high resolution (Supplementary
318 Figure S4). Thirdly, although we detected a massive increase of reads mapping to the
319 *lcrF* mRNA in our RNA-seq analysis when visualized with the same nucleotide score
320 height (Fig. 6C), an enlargement of the transcript profile resolution of the wildtype (from
321 the nucleotide score height of 1000 to 100) revealed that the overall read pattern of
322 *lcrF* was comparable with that of the Δrnc mutant. No typical endoribonuclease-

323 mediated processing events generating additional sharp/trimmed read ends in the
324 wildtype were identified (Fig. 6D) as described for direct mRNA targets [55,56]. These
325 results indicated that RNase III is unlikely to target the *lcrF* mRNA directly at 37°C, but
326 rather affects post-transcriptional regulators that have an overall influence on *lcrF*
327 transcript levels, such as the effector protein YopD and the carbon storage regulatory
328 system CsrABC [18].

329

330 **Mutual influence of RNase III, PNPase, and the translocon protein YopD**

331 Besides its role as a structural component of the translocation pore of the T3SS for
332 Yop delivery [57][58], YopD also acts as a negative post-transcriptional regulator that
333 represses the synthesis of the master regulator LcrF and components of the Ysc-
334 T3SS/Yop system under non-secretion conditions [18][59][60]. To test whether
335 PNPase and RNase III affect YopD synthesis, we compared intracellular YopD levels
336 between wildtype and RNase mutants.

337 The amount of YopD was strongly increased in the absence of RNase III at 37°C
338 with a similar level observed in the wildtype at 37°C/-Ca²⁺ (Fig. 9A). However, YopD
339 upregulation does not explain the observed phenotypes of the Δrnc mutant, as the
340 presence of YopD was shown to reduce and not increase *lcrF* mRNA levels, and Ysc-
341 T3SS/Yop synthesis [18][59][60]. On the contrary, YopD seems to be upregulated in
342 the absence of RNase III as part of the entire Ysc-T3SS/Yop secretion complex due to
343 higher LcrF levels (Fig. 5B).

344 Moreover, the amount of the transcriptional activator LcrF is similarly increased in
345 the Δrnc and $\Delta yopD$ mutant compared to wildtype, but the overall LcrF level is much
346 higher in the $\Delta rnc/\Delta yopD$ double compared to the single mutants (Fig. 9B), indicating
347 an additive effect. This shows that RNase III regulates ysc-T3SS/yop gene expression

348 not via but rather together with YopD.

349 Loss of PNPase resulted also in the upregulation of YopD, but its influence was
350 much less pronounced (Fig. 9A). A comparison of the $\Delta yopD$ and the $\Delta pnp/\Delta yopD$
351 mutant revealed no difference in LcrF levels, whereby the overall repressive effect of
352 YopD was generally stronger than that of PNPase (Fig. 9B). Together, this suggested
353 that PNPase could act upstream of YopD.

354 Surprisingly, the production of LcrF and YopD did not further increase in the
355 $\Delta pnp/\Delta rnc$ double mutant as expected from the single mutation. In contrast, the
356 $\Delta rnc/\Delta pnp$ double mutant contained less YopD and LcrF than the Δrnc single mutant
357 (Fig. 9A,B). This indicated an interplay of the RNases in which the loss of PNPase
358 seems to counteract the upregulation of LcrF promoted by the loss of RNase III. It is
359 known that RNase III cleaves within the 5' end of the *pnp* transcript and initiates its
360 rapid degradation in *E. coli*; as a result, PNPase mRNA levels are significantly
361 increased in the *E. coli* Δrnc mutant strain [61][62]. Significantly higher amounts of the
362 *pnp* transcripts were also identified in the *rnc* mutant of *Y. pseudotuberculosis* grown
363 at 37°C by the RNA-seq analysis ($\log_2 = 2.2$ (T1) 1.9 (T2); Data sheet S4) and by
364 Northern blotting (Fig. 9C), indicating a similar process in this pathogen. This suggests
365 an interactive, regulatory pattern illustrated in Fig. 9D, in which RNase III strongly
366 represses LcrF production via a YopD-independent pathway, which is partially
367 compensated by a second pathway controlling PNPase and YopD.

368

369 **Impact of RNase III on the Csr system**

370 As the mechanism of how RNase III controls *lcrF* mRNA levels independently of YopD
371 remained unclear, we tested whether RNase III influences the amount of CsrA. CsrA
372 is another post-transcriptional regulator known to increase the stability of the *lcrF*

373 transcript in response to host cell contact/secretion [18]. CsrA belongs to the carbon
374 storage regulator (Csr) system together with the two regulatory RNAs CsrB and CsrC
375 which sequester multiple CsrA dimers to eliminate their function (Fig. 10A, right panel).

376 Loss of RNase III did not influence the overall amount of CsrA (Fig. 10A). However,
377 expression of the counteracting CsrB and CsrC sRNAs was significantly reduced in
378 the absence of RNase III (Fig. 10B). This, in turn, increases the amount of unbound,
379 active CsrA, which is known to strongly reduce the degradation of the *lcrF* mRNA [18].

380 The molecular mechanism of how CsrA stabilizes the *lcrF* mRNA is currently un-
381 known [18]. However, as CsrA was found to enhance translation of the *lcrF* transcript
382 [18], and a higher ribosome occupancy upon upregulation of translation was shown to
383 protect mRNAs from RNase-mediated degradation [63][64], it seemed possible that
384 increased availability of active CsrA in the Δrnc mutant enhances translation and thus
385 *lcrF* mRNA stability. Based on this assumption, we tested the influence of RNase III on
386 the expression of a translational reporter fusion in which the *lacZ* gene is fused to
387 codon 25 of the *lcrF* gene, harboring the intergenic RBS and the entire promoter region
388 of the *yscW-lcrF* operon up to position -304 according to the transcriptional start site
389 (Fig. 7C). In contrast to the transcriptional fusions (Fig. 7A,B), the translational reporter
390 revealed a significant increase in the synthesis of the LcrF-LacZ fusion protein in the
391 absence of RNase III (Fig. 7C).

392

393 **RNase III influence on the translational machinery**

394 The increase of active CsrA could explain the Δrnc phenotype as the CsrB and CsrC
395 levels are reduced to approximately 50% in the RNase III-deficient strain (Fig. 10B).
396 However, additional identified expression changes of components of the translation
397 machinery may have also an influence. Our RNA-Seq analysis comparing the

398 transcription profiles of the wildtype and the Δrnc mutant revealed that the transcript
399 levels of 11 ribosomal proteins (r-proteins), as well as several translation initiation
400 factors and rRNA/tRNA-modifying enzymes, were significantly altered with a \log_2 fold
401 change of +/- ≤ 1 (Table S1). Among them are (i) the r-protein transcripts of *rpsJ* (S10,
402 $\log_2 = 3.059$) and *rpIC* (L3, 2.784) encoded by the S10 operon involved in rRNA and r-
403 protein regulation [65]; (ii) the translational initiation factor IF-3 (InfC) (\log_2 of 1.02), an
404 essential bona fide factor that promotes 30S initial complex formation, accurate tRNA
405 selection, and fidelity of bacterial translation initiation [66][67], (iii) the 16S rRNA
406 methyltransferase RsmG/GidB with the ability to enhance the loading of r-proteins and
407 30S ribosome assembly in the presence of the 5'-leader [68], and (iv) the 16S rRNA-
408 processing protein RimM assisting in the assembly of the 30S subunit, and promoting
409 translation efficiency [69][70]. The higher abundance of these translation factors in the
410 Δrnc mutant could also increase (or assist CsrA-mediated activation of) *lcrF* translation
411 and thus *lcrF* mRNA stability.

412

413 **RNase III-mediated global reprogramming of the *Y. pseudotuberculosis* trans-
414 criptome in response to virulence-relevant conditions**

415 Based on our results, we assumed that loss of RNase III has a global influence on the
416 gene expression pattern of the *Yersinia* chromosome and the virulence plasmid. To
417 obtain more information about the overall influence of RNase III, we performed
418 transcriptomic profiling by strand-specific RNA sequencing followed by a differential
419 expression analysis (DESeq) by comparing sequence reads from strand-specific
420 libraries of *Y. pseudotuberculosis* wildtype and the Δrnc mutant strain. For this
421 purpose, the bacteria were grown at 25°C (T0) (environmental, non-T3SS expression

422 conditions), and then shifted to 37°C (host, T3SS non-secretion), and 37°C/-Ca²⁺ (host,
423 T3SS secretion conditions) for 1 h (T1) and 4 h (T2). 1 h was chosen as this is the
424 earliest time point at which an LcrF/Yop upregulation can be detected, and 4 h was
425 chosen for maximal T3SS induction indicated by the strong expression of the activator
426 LcrF, and synthesis of the Yops (Fig. S5). From each library, between 2-3 million cDNA
427 reads were generated and mapped to the YPIII genome sequence (NC_010465) and
428 the pYV virulence plasmid (NC_006153) (Dataset S1). The global gene expression
429 profiles of the different samples were distinct, and profiles of the three biological
430 triplicates clustered together (Fig. S6).

431 The detailed analysis of the transcriptome revealed that approximately >99% of the
432 reads of the *Y. pseudotuberculosis* YPIII (wt) and the Δrnc mutant grown at 25°C
433 mapped to the chromosome (4.7 Mb, 4,250 genes). The read distribution was only
434 slightly changed in the wildtype when the bacteria were shifted to 37°C. Under these
435 conditions, more reads were found to map to the virulence plasmid pYV (99 genes, 66
436 kb) at T1 and T2. However, this still accounts for less than 3% of the total reads (Fig.
437 11A) (Datasets S2). This changed significantly under secretion conditions (induced by
438 the depletion of Ca²⁺). Approximately 56% (T2) of the reads were assigned to the pYV,
439 and only 44% (T2) were mapped to the chromosome. This indicated a major shift of
440 the transcriptome from chromosomally- to virulence plasmid-encoded genes. Most
441 strikingly, a similar shift was observed in the Δrnc mutant grown at 37°C under non-
442 secretion conditions (+Ca²⁺) (Fig. 11A, Datasets S3). About 47% (T2) of the entire
443 transcripts originated from the virulence plasmid, which resembled the situation in the
444 wildtype under secretion conditions (-Ca²⁺). This is particularly striking because the
445 virulence plasmid represents only 1.5% of the entire *Y. pseudotuberculosis* genome.

446 To identify which global pathways are particularly affected by the absence of RNase
447 III at 37°C under non-secretion conditions, we summarized the genes up- or
448 downregulated (log2-fold change (log2FC) $\geq +/- 2$, p-value ≤ 0.05) in groups based on
449 their association with the pathway categories found in the KEGG Orthology database.
450 (Fig. 11B, Dataset S4). We found that mostly pYV-encoded genes and several
451 regulatory RNAs are upregulated in the wildtype and the Δrnc mutant 1 h (T1) after the
452 shift from non-secretion (37°C) to secretion conditions (37°C/-Ca²⁺) (Fig. 11C, left
453 panel, Datasets S2, S3). This pattern changed after 4 h (T2) when an additional
454 upregulation of chromosomally encoded transcripts mostly for metabolic enzymes and
455 transporters was observed in the wildtype (likely to compensate for the energetic
456 burden caused by T3SS/Yop synthesis), but not in the Δrnc strain (Fig. 11C, left panel,
457 Datasets S2, S3).

458 Our results further showed that loss of RNase III at 25°C (T0: 33 genes) was rather
459 moderate, whereas a shift to 37°C had a significant impact on the transcripts of
460 numerous genes compared to wildtype (37°C, T1: 194 genes, T2: 252 genes) (Dataset
461 S4, Fig. 11C, right panel). This indicated that the influence of RNase III is strongly
462 temperature-dependent. At 37°C, many more metabolic gene transcripts were
463 detected in the wildtype (Dataset S4, Fig. 11C, right panel). This may explain the
464 generally lower fitness of the RNase III-deficient strain at this growth condition (Fig.
465 1A).

466 Notably, the abundance of almost all pYV-encoded Ysc-T3SS/Yop-encoding trans-
467 cripts, including the transcripts of the *yscW-lcrF* operon was strongly increased in the
468 Δrnc mutant at 37°C compared to wildtype at 37°C (Table S2, Dataset S2, Fig. 11B,
469 right panel), but it was very similar to the wildtype at 37°C/-Ca²⁺ (Table S2, Dataset
470 S2, Fig. 11C, right panel). Based on this analysis, we hypothesized that secretion-

471 relevant genes are already induced under non-secretion conditions at 37°C in the
472 absence of RNase III. To prove this assumption, we compared transcriptome changes
473 of the wildtype upon the shift from non-secretion to secretion conditions (YPIII,
474 37°C/+Ca²⁺ vs. 37°C/-Ca²⁺) (Dataset **S2**) with changes of the wildtype and the Δrnc
475 mutant at 37°C under non-secretion conditions (YPIII, 37°C/+Ca²⁺ vs. Δrnc ,
476 37°C/+Ca²⁺) (Dataset **S4**). Notably, of the 28 pYV-encoded transcripts which were
477 found in a higher abundance in the Δrnc mutant at 37°C at T2, 27 were also increased
478 under secretion conditions in the wildtype to almost the same magnitude. This
479 indicated that *lcrF* and T3SS/*yop* expression upon host cell contact could be triggered
480 by a reduction of functional RNase III during the infection.

481 We further found that besides pYV-encoded factors, only a few other chromo-
482 somally-encoded transcripts were induced in the Δrnc mutant at 37°C at T1; among
483 them are several translation-relevant factors, e.g. the ribosome-association factor
484 *Rai/YfiA* (log2FC=1.5), the ribosomal protein S2/RpsB (log2FC=1.3), and the trans-
485 lation initiation factor IF3 (log2FC=1). These components of the translational
486 machinery could also promote/assist in the global reprogramming of the *Yersinia* trans-
487 criptome in the absence of RNase III.

488

489 **Discussion**

490 Gram-negative bacteria possess roughly 20 RNases which control RNA turnover and
491 maturation, and this plays an important role in many virulence-relevant processes
492 [4][9][10]. RNases can possess specificity towards certain RNA types (e.g. sRNA or
493 dsRNA) and their activity can also depend on the intrinsic folding of the RNA, length of
494 the transcript, bound ribosomes, and regulatory proteins [4][9][10]. Among them are

495 the highly conserved 3'->5' exonuclease PNPase and the endoribonuclease RNase III.
496 In this study, we demonstrate that both RNases are global regulators in *Y. pseudo-*
497 *tuberculosis* with multiple cellular targets, including virulence factors, such as the type
498 III secretion systems affecting motility and Yop secretion.

499 Loss of PNPase had a moderate influence on the expression of T3SS/yop genes,
500 and did not severely affect flagella T3SS-mediated motility. In contrast, the absence of
501 RNase III abolished motility and flagella synthesis (similar to *E. coli* *rnc* mutants, which
502 have no more than 1 in 1000-10,000 cells with sufficient flagella [71]) and led to a
503 strong increase of T3SS injectisome formation and Yop protein synthesis and secretion
504 under normally non-inducing conditions (37°C/+Ca²⁺). The *ysc*-T3SS/yop expression
505 pattern of the *rnc* strain was very similar to that of the wildtype under secretion
506 conditions (37°C/-Ca²⁺), suggesting that loss of RNase III triggered a process
507 equivalent to host-cell contact/Ca²⁺ depletion.

508 A detailed analysis assigned to identify the underlying molecular mechanism re-
509 vealed that Ysc-T3SS/Yop induction in the Δpnp and Δrnc mutant occurred through the
510 upregulation of the AraC-type master activator LcrF of the *ysc*-T3SS/yop genes. As
511 expression of the *lcrF* gene is part of a complex regulatory network, implicating multiple
512 transcriptional regulators (YmoA, H-NS, IscR, RcsB), post-transcriptional regulatory
513 elements (e.g. a fourU RNA thermometer, RNA binding proteins YopD and CsrA)
514 [18][31][32] as well as plasmid-copy number control systems (RepA, CopA/B) [47], we
515 tested the influence of both RNases on different control levels of LcrF synthesis.

516 We found that the loss of both RNases did not affect the transcription of the *lcrF*
517 gene and the copy number of the virulence plasmid, but led to increased *lcrF* mRNA
518 levels/stability. However, against our first assumption, the *lcrF* mRNA is most likely not
519 a direct target of the RNases. RNase III is known to target intramolecular and

520 intermolecular double-stranded RNA segments located mostly 5' or 3' to a coding
521 sequence [49][50]. However, no sequences with similarity to the described base-
522 pairing preferences of RNase III cleavage sites could be identified within the *yscW-lcrF*
523 transcript. Moreover, no characteristic RNase-mediated degradation products and no
524 typical sequencing read pattern changes of the *lcrF* mRNA due to processing by
525 RNase III or PNPase were detectable, as described for targeted mRNAs of other
526 bacteria [55,56].

527 This suggested that the observed RNase-mediated influence on *lcrF* transcript
528 levels may be an indirect consequence of the control of regulators known to affect the
529 stability of the *lcrF* mRNA. One such regulator is YopD, whose intracellular presence
530 in the absence of host cell contact/secretion was shown to destabilize the *lcrF* trans-
531 cript [18]. The comparative analysis of Δpnp , Δrnc , and $\Delta yopD$ single and double
532 mutants and their influence on LcrF synthesis revealed a complex control circuit in
533 which RNase III, PNPase, and YopD are tightly interconnected and mutually affect their
534 synthesis (Fig. 12). In this network, PNPase reduces the stability of the *lcrF* mRNA,
535 most likely through downregulation of YopD. The overall influence of PNPase on *lcrF*
536 transcript levels via YopD is rather moderate. This can be explained by feedback
537 control (Fig. 12), as the loss of YopD also resulted in a significantly lower abundance
538 of *pnp* mRNAs [18]. Similar to PNPase, RNase III reduces the stability of the *lcrF*
539 transcript, but its overall influence is much more pronounced. Loss of the *rnc* gene led
540 to much higher *lcrF* mRNA levels, and this effect could be further enhanced by the
541 deletion of the *yopD* gene. We also observed that *pnp* transcript levels were
542 significantly increased in the Δrnc mutant, indicating that RNase III cleaves within the
543 *pnp* transcript and initiates its degradation as described for *E. coli* [61][62]. These
544 observations suggested two separate pathways in which (1) RNase III has a very

545 strong and dominant negative influence on the *lcrF* mRNA independent of YopD, and
546 (2) RNase III exerts a YopD-dependent compensatory effect on *lcrF* mRNA stability
547 via the repression of the PNPase (Fig. 12). The second pathway may have evolved to
548 balance the negative influence of RNase III on *lcrF* mRNA stability in the absence of
549 host cell contact, whereby an additional upregulation of LcrF production is still possible
550 upon YopD secretion.

551 The exact molecular mechanism of how RNase III promotes the destabilization of
552 the *lcrF* mRNA by pathway (1) is still unknown. However, the results of this study
553 indicate that this may (at least in part) occur through the control of the RNA-binding
554 protein CsrA (Fig. 12), a post-transcriptional regulator of the Csr system, known to
555 stabilize the *lcrF* mRNA and activate its translation by binding to the *lcrF* 5'-UTR [18].
556 Here, we show that loss of RNase III has no effect on the overall levels of CsrA but
557 leads to a significant decrease in the regulatory RNAs CsrB and CsrC. As both Csr
558 RNAs were shown to bind and sequester multiple CsrA dimers to block their activity
559 [72], a higher amount of unbound, active CsrA is expected in the Δrnc mutant. An
560 increase in active CsrA could explain (i) higher stability of the *lcrF* mRNA, and (ii) higher
561 expression of the translational *lcrF-lacZ* fusion in the absence of RNase III. It is known
562 that CsrA interacts directly with the 5'-untranslated region of the *lcrF* transcript and
563 enhances *lcrF* mRNA translation [18] which could also increase *lcrF* mRNA stability. In
564 fact, studies with *E. coli* showed that translation initiation regions (5'-UTR + first 11
565 codons of the downstream gene) that dictate high translation initiation rates (e.g. high
566 RBS indexes and/or absence of strong local secondary structures) recruit more
567 ribosomes to the mRNA, and the high ribosome occupancy can protect the transcript
568 from degradation by RNases [73][74].

569 It is also possible that other translation-relevant factors that were shown to be differ-

570 rentially expressed in the Δrnc mutant support this CsrA function or enhance translation
571 initiation separately, which could increase ribosome coverage and thus *lcrF* transcript
572 stability. Among these factors are 11 ribosomal proteins, and the essential bona fida
573 translation initiation factor IF-3 (InfC) promoting 30S initial complex formation [66][67].
574 Moreover, transcripts of the 16S rRNA methyltransferase RsmG/GidB and the 16S
575 rRNA-processing protein RimM were significantly increased in the absence of RNase
576 III which both also have a positive influence on translation initiation, e.g. by subverting
577 problems that occur during the *in vivo* assembly of the 30 S ribosome [68][69][70][75]
578 or by guiding the folding of the rRNAs to facilitate the formation of productive r-protein-
579 RNA interactions [76]. In contrast, the transcript of the ribosome-associated inhibitor A
580 (RaiA/YfiA), which accumulates in the stationary phase, and stabilizes 70S ribosomes
581 in an inactive state [77], was less abundant in the absence of RNase III.

582 The observed changes regarding the translation-relevant factors could be a conse-
583 quence of defects in rRNA processing associated with the loss of RNase III. It is well
584 known that RNase III initiates maturation of the ribosomal RNAs encoded on the pre-
585 rRNA transcript by an initial series of processing events, which are subsequently
586 cleaved and trimmed by other ribonucleases [78–81][82]. In RNase III-deficient bac-
587 teria 30 S rRNA precursors (including 16S, 23S, 5S rRNA, and tRNA sequences) are
588 produced [78–81][83]. The 30 S rRNA can be processed by alternative maturation
589 pathways. However, this involves the formation and incorporation of not fully matured
590 rRNAs (prRNAs) into the ribosomes, which alter their overall activity [84][82,85,86].
591 The RNase III-deficient bacteria may indirectly compensate for these alterations by the
592 upregulation of translation factors. However, the influence of RNase III on translation
593 factors could also be direct. Multiple RNase III *in vivo* cleavage sites were recently
594 found in mRNAs encoding ribosomal proteins, translation elongation factors, and

595 enzymes involved in RNA modification in *E. coli* [52][87]. This indicated that the role of
596 RNase III in the control of translation is much larger than expected, and could support
597 global reprogramming of bacterial gene expression, e.g. upon host cell contact, by
598 altering the translational machinery.

599 Apart from the *ysc*-T3SS/*yop*-related alterations, the RNase III-deficient strain is
600 characterized by a wide range of transcriptional changes, including mRNAs and
601 sRNAs across all categories (e.g. metabolism, additional virulence traits, responses to
602 environmental stresses, genetic/environmental information processing). Among them
603 are several other RNA-controlling factors, i.e. small regulatory RNAs encoded on the
604 virulence plasmid (e.g. *Ysr291-293* overlapping with the *IcrV*-*IcrH*-*yopD* transcript),
605 which could also affect *IcrF* mRNA stability.

606 Approximately 10% of all mRNAs are affected by the introduction of the Δrnc mutant
607 in *Yersinia*. This is similar to other bacteria, whereby the impact on individual genes
608 varies substantially among the species [88][89][90]. Our comparison further revealed
609 that only 1-2% of the total uniquely mapped reads were generated from the virulence
610 plasmid pYV at conditions reflecting the environment or initial stages of the infection.
611 However, this drastically changed under Ysc-T3SS/Yop-inducing conditions mimicking
612 host cell contact. Although only approximately 1% of the genetic information of *Y.*
613 *pseudotuberculosis* is encoded on pYV, it accounts for more than 50% of the trans-
614 cripts detected under secretion conditions, whereas the ratio of the chromosomally-
615 encoded transcripts was drastically reduced (from >99% to less than 50%). This may
616 also explain the growth arrest associated with the induction of Ysc-T3S-mediated
617 secretion as the abundance of many transcripts important for metabolism and physio-
618 logical traits is affected. It also became apparent that in particular mRNAs of pYV were
619 already upregulated in the Δrnc mutant under non-secretion conditions. This suggested

620 that reprogramming observed under secretion conditions in the wildtype might be
621 triggered by a reduction of functional RNase III. However, no change in *rnc* transcript
622 levels was detectable upon a shift from non-secretion to secretion conditions. In this
623 respect, RNase III is either not the superior trigger of LcrF/Ysc-T3SS/Yops or it is
624 modulated on the post-translational level.

625 In summary, several aspects of this study indicate that RNase III-mediated control
626 of LcrF and Ysc-T3SS/Yop production is (i) linked to components or regulators, such
627 as CsrA and YopD, cooperating with the translational machinery, and (ii) accompanied
628 by a global reprogramming of gene expression. Interestingly, translation has also
629 previously been reported to play a role in LcrF, and Ysc-T3SS/Yop synthesis in another
630 context. For instance, it was demonstrated that the RNA-binding translocator protein
631 YopD associates with the 30S ribosomal particles in an LcrH-dependent manner and
632 that this prevents translation initiation of its target mRNAs, including *lcrF* and the *yop*
633 transcripts [91]. Hence, RNase III-mediated alterations of the composition and activity
634 of the ribosome could in turn also modulate the interaction of YopD with the ribosome
635 and affect its function as a regulator of *lcrF* mRNA translation and stability.

636 Our current understanding of the role of RNases in the complex post-transcriptional
637 control of *Yersinia* virulence is still in its infancy. However, it is clear, that their involve-
638 ment not only enables *Yersinia* to rapidly adjust its gene expression profile to efficiently
639 block immune cell attacks, but it also allows the bacteria to overcome accompanying
640 energetic and stress burdens and to rapidly resume its genetic pre-attack program after
641 a successful defense.

642

643 **Experimental Procedures**

644 *Cell culture, media, and growth conditions*

645 Overnight cultures of *E. coli* were routinely grown in LB at 37°C, *Yersinia* strains were
646 grown at 25°C or 37°C in LB (Luria Bertani) broth. For the analysis of Yop and LcrF
647 synthesis and secretion under secretion and non-secretion conditions, overnight cul-
648 tures of the *Yersinia* strains grown at 25°C were diluted in LB to an OD₆₀₀ of 0.2, grown
649 for 2 h at 25°C and then either further grown at 25°C, or shifted to 37°C in the presence
650 or absence of the Ca²⁺ chelators 20 mM NaOx and 20 mM MgCl₂ (37°C/-Ca²⁺). If
651 necessary, antibiotics were added at the following concentrations: carbenicillin 100 µg
652 ml⁻¹, chloramphenicol 30 µg ml⁻¹, kanamycin 50 µg ml⁻¹, rifampicin 1 mg/ml and
653 Triclosan 20 µg ml⁻¹.

654

655 *Strain and plasmid constructions*

656 All DNA manipulations, restriction digestions, ligations, and transformations were
657 performed using standard genetic and molecular techniques [92][93]. Plasmid DNA
658 was isolated using QIAprep Spin Miniprep Kit (Qiagen) or Nucleospin Plasmid Kit
659 (Macherey-Nagel). DNA-modifying enzymes and restriction enzymes were purchased
660 from New England Biolabs. The oligonucleotides used for amplification by PCR,
661 sequencing, and primer extension were purchased from Metabion and Eurofins. PCRs
662 were done in a 50 µl mix for 30 cycles using Phusion High-Fidelity DNA polymerase
663 (New England Biolabs). Purification of PCR products was routinely performed using
664 the QIAquick PCR Purification Kit (Qiagen) or the NucleoSpin Gel and PCR Clean-up
665 Kit (Macherey-Nagel). All constructed plasmids were sequenced by Microsynth AG
666 (Balgach, Switzerland).

667 Strains and plasmids used in this study are listed in Supplement Table **S3** and
668 primers for plasmid generation are listed in Supplement Table **S4**. Plasmid pIVO13
669 was constructed by the insertion of a PCR fragment harboring the regulatory region of

670 the encoding region of *yopE*. The fragment was amplified from total DNA of *Y.*
671 *pseudotuberculosis* strain YPIII using primer set VIII193/VIII194 cloned into the
672 *Bam*HI/*Xba*I sites of plasmid pPCH1, replacing the full-length coding sequence of
673 *yopE*. The resulting plasmid pIVO13 was sequenced using primers I984 and V824.
674 Plasmids encoding the *rnc* and *pnp* genes for complementation analyses were
675 constructed by amplification of DNA segments including the respective native promoter
676 identified by Nuss *et al.* [36], the coding sequence and the 3'-UTR of the RNase gene
677 using primer pairs VIII365/VIII387 for *rnc* and VIII636/VIII/637 for *pnp* (Table **S4**). The
678 generated PCR fragments were cloned into plasmid pAKH85 generating pIVO20 and
679 pIVO21, and their sequence was confirmed using primer VIII385 and VIII388. Plasmid
680 pTT15 was constructed by ligation of the *tet* promoter and the MCS with primers VI527
681 and II143 into the *Bam*HI and *Not*I sites of pFU86. The *yscW-lcrF* promoter region was
682 amplified with primers IX729 and IX730 and ligated into the *Bam*HI and *Kpn*I sites of
683 pTT15, generating pMV53.

684

685 *Construction of the Y. pseudotuberculosis deletion mutants*

686 The *Y. pseudotuberculosis* strains used in this study are derived from wild-type strain
687 YPIII. All deletion mutants were generated via homologous recombination. The mutant
688 strains YP356, YP372, and YP375 in which the RNase III gene *rnc* was deleted were
689 constructed in a three-step PCR. First, the *Yersinia* genomic DNA was used as a
690 template to amplify 500-bp regions flanking the *rnc* gene. The upstream fragment was
691 amplified with primer pairs (VII882/VII881) of which the reverse primer contained an
692 additional 20 nt at the 5'-end which were homologous to the upstream region of the
693 *rnc* gene. The downstream fragment was amplified with primer pairs (VII879/VII880) of
694 which the forward primer contained additional 20 nt at the 5'-end which were homo-

695 logous to the downstream region of *rnc*. Subsequently, a PCR reaction was performed
696 with the forward primer of the upstream fragment and the reverse primer of the
697 downstream fragment using the upstream and downstream PCR products as
698 templates. The PCR fragment was digested with *SacI* and was ligated into the *SacI*
699 site of the suicide plasmid pAKH3 generating plasmid pIVO11. The resulting plasmid
700 was sequenced using primers III981/III982. Next, the plasmid was transformed into
701 S17-1 λ pir and was transferred into *Y. pseudotuberculosis* YPIII, YP91 (Δ *yopD*), and
702 YP139 (Δ *pnp*) via conjugation. Chromosomal integration of the plasmid was selected
703 by plating on LB supplemented with kanamycin. Single colonies were tested for the
704 correct integration of the plasmid via colony PCR using primer pair VII366/VII367.
705 Mutants were subsequently grown on LB agar plates containing 10% sucrose. Single
706 colonies were tested for growth on carbenicillin and sequenced using primer pair
707 VII366/VII367.

708

709 *RNA isolation and Northern blotting*

710 Bacterial cultures were grown under the desired conditions. The bacteria were pelleted
711 by centrifugation for 1 min at 16000 x g. The pellets were resuspended in 0.2 volume
712 parts of stop solution (5% water-saturated phenol, 95% ethanol) and immediately
713 snap-frozen in liquid nitrogen. After thawing on ice, bacteria were pelleted for 1 min at
714 16,000 x g at 4°C. The pellet was resuspended in lysozyme solution (50 mg lyso-
715 zyme/ml TE-buffer) and incubated for at least 5 min at RT. The total RNA of lysed
716 bacteria was isolated with the 'SV Total RNA Isolation System' (Promega, USA)
717 according to the manufacturer's instructions. RNA concentration and quality were
718 determined by measurement of A₂₆₀ and A₂₈₀.

719 For the analysis of *lcrF* transcripts total cellular RNA (5-30 μ g) was separated on

720 MOPS agarose gels (1.2%) or 8% urea acrylamide (RNA <250 nt), and transferred in
721 10 x SSC buffer (1.5 M NaCl, 0.15 M sodium citrate pH 7.0) for 1.5 h at a pressure of
722 5 cm Hg to a positively charged nylon membrane by vacuum blotting or by semi-dry
723 blotting (250 mA, 2.5 h) and UV cross-linked. Prehybridization, hybridization to DIG-
724 labeled *lcrF* PCR probes, and membrane washing were conducted using the DIG
725 luminescent Detection kit (Roche) according to the manufacturer's instructions. The
726 *lcrF* transcripts of interest were detected with a DIG-labeled PCR fragment (DIG-PCR
727 nucleotide mix, Roche) amplified with primer pairs for the individually detected
728 according to the manufacturer's instructions. (Table S4). For the detection of the CsrB
729 and CsrC RNAs and the 5S and 16S control rRNA, fluorophore-coupled DNA
730 oligonucleotide primers purchased from Integrated DNA technologies were used
731 (Table S4). The primers were incubated with the membrane in a final concentration of
732 15 nM for CsrB and CsrC and 5 nM for 5 S rRNA in church moderate buffer (10 mg/ml
733 BSA, 500 nM Na₂HPO₄, 0.34% (w/v) H₃PO₄, 15% (v/v) formamide, 1 mM EDTA, 7%
734 SDS, adjusted to pH 7.2) for 6 h. The membrane was washed with 2 x SSC and 0,2%
735 SDS for 5 min and the RNAs were detected at 700 nm (CsrB, CsrC) or 800 nm (5 S
736 rRNA) with the Odyssey Fc Imaging system (Li-COR).

737

738 *RNA isolation for RNA-seq*

739 To yield intact high-quality RNA for RNA-seq analyses, hot phenol RNA extraction was
740 performed. The bacteria were harvested by centrifugation at 4,000 rpm and the
741 bacterial pellets were snap-frozen in liquid nitrogen. Bacterial pellets were
742 resuspended in 1/8 volume of RNA resuspension buffer (0.3 M saccharose, 0.01 M
743 NaOAc) on ice. An equal volume of RNA lysis buffer (2% SDS, 0.01 M NaOAc pH 4.5)
744 was added, mixed, and incubated at 65°C for 90 sec. An equal volume of pre-heated

745 (65°C) saturated aqua-phenol was added, mixed with the lysate, incubated for 3 min
746 at 65°C, and then immediately frozen in liquid nitrogen. Subsequently, the samples
747 were centrifuged at 16,000 x g for 10 min at room temperature and the aqueous layer
748 was extracted and the procedure was repeated three times. For the final extraction of
749 phenol, an equal volume of chloroform/isoamyl alcohol (24:1) was added, mixed, and
750 centrifuged for 10 min at 16,000 x g at room temperature. The RNA in the aqueous
751 layer was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 4.5) and 2.5
752 volumes of ice-cold ethanol at -20°C. The RNA was recovered by centrifugation at
753 16,000 x g for 30 min at 4°C, the pellets were washed at 4°C with ice-cold 70% (v/v)
754 ethanol two times and the RNA pellets were air-dried and resuspended in nuclease-
755 free water.

756

757 *RNA stability assay*

758 *Y. pseudotuberculosis* strains YPIII, YP139 (Δpnp), YP356 (Δrnc), and YP375 (Δpnp ,
759 Δrnc) were grown at 37°C. Subsequently, rifampicin was added in a final concentration
760 of 1 mg/ml to block transcription, and samples were taken in intervals before (0), and
761 1, 3, and 7.5 min after the addition of rifampicin. To finally analyze the decay rate of
762 the RNA transcripts, Northern blots were performed with an *lcrF*-specific probe as
763 described [18], and the detected relative amount of RNA in each sample was
764 determined using the Odyssey Fc Imaging system and software (LiCor).

765

766 *Quantitative PCR (qPCR) analysis of the copy number of pYV*

767 The copy number of the *Y. pseudotuberculosis* virulence plasmid pYV was determined
768 using quantitative PCR (qPCR). Total DNA of YPIII or its derivatives, grown at the
769 indicated conditions, was isolated by the addition of chloroform:isoamylalcohol (24:1).

770 The sample was mixed, centrifuged at 16,000 x g and the supernatant was mixed with
771 four volumes of 100% ethanol. The precipitated DNA was pelleted by centrifugation
772 (16,000 x g) and the pellet was resuspended in nuclease-free water. For the qPCR,
773 three primer pairs for chromosomal genes (*glnA* (VII922/VII923), *rpoB* (VII924/VII925),
774 *YPK_3178* (VII926/VII927) and two primer pairs for plasmid genes (*yscM*
775 (VII918/VII919), *repA* (VII920/VII921)) were chosen adapted from Wang *et al.* [47]. 1
776 ng/μl of total DNA was amplified using the primer sets in SensiFAST SYBR No-ROX
777 (Bioline). qPCR was realized in technical duplicates in the Rotor-Gene Q real-time
778 PCR cycler (Qiagen). Two reactions with nuclease-free water without DNA were used
779 as controls. A melting curve was employed to ensure specificity. The plasmid copy
780 number of the strains was calculated as described by Wang *et al.* [47].

781

782 *RNA sequencing (RNA-seq)*

783 *Y. pseudotuberculosis* YPIII and the isogenic *rnc* mutant YP356 were grown in LB
784 medium to exponential phase (OD₆₀₀ 0.5). The cultures were split and grown at 25°C
785 (T0), 37°C, or 37°C in the presence of 20 mM Na₂C₂O₄ and 20 mM MgCl₂ in triplicates.
786 After 1 h (T1) and 4 h (T2), total bacterial RNA was isolated by a hot phenol extraction
787 protocol (see above), DNA was digested using the TURBO DNase (Ambion), purified
788 with phenol:chlorophorm:isopropanol, and the quality was assessed using the Agilent
789 RNA 6000 Nano Kit on the Agilent 2100 Bioanalyzer (Agilent Technologies) or Qubit
790 (Thermo Scientific). Samples with an RIN of >8 were considered for RNA-Seq sample
791 preparation. From the total RNA the rRNA was depleted using Ribo-Zero (Illumina).
792 ERCC spike-ins (external RNA controls consortia Mix 1 and Mix 2) were added before
793 rRNA depletion as a means to control for sequencing and platform performance.

794 Further processing included fragmentation by sonication to a median size of 200 nt,
795 and cDNA library preparation (NEBNext Ultra II Directional RNA Library Prep Kit -
796 Bacteria (New England Biolabs) according to the manufacturer's instructions. Multiple
797 oligos for Illumina sequencing (#E6440L) were obtained from New England Biolabs
798 and used as indices that allow uniqueness in both directions. Illumina sequencing was
799 performed with the NovaSeq 6000 sequencing system (S1 flow cell, Illumina) with 100
800 cycles and paired-end reads (PE50, 2 x 50 bp reads). The fluorescent images were
801 processed into sequences and transformed to FastQ format using the Genome
802 Analyzer Pipeline Analysis software 1.8.2 (Illumina). The sequence output was
803 controlled for general quality features, sequencing adapter clipping, and demultiplexing
804 using the fastq-mcf and fastq-multx tools of ea-utils [91].

805

806 *Read mapping, bioinformatics and statistics*

807 Quality of the sequencing output was analyzed using FastQC (Babraham Bioinfor-
808 matics). All sequenced libraries were mapped to the YPIII genome (NC_010465) and
809 the pYV plasmid (accessions NC_006153) using Bowtie2 (version 2.1.0) [92] with
810 default parameters [94]. After read mapping, SAMtools [93] was employed to filter the
811 resulting bam files for uniquely mapped reads (both strands), which were the basis for
812 downstream analyses. To detect ORFs and *trans*-encoded sRNAs that are differen-
813 tially expressed in YPIII and the *rnc* mutant YP356, we used DESeq2 [73] for all
814 differential expression (DE) analyses following the default analysis steps described in
815 the package's vignette. For each comparison, HTSeq in union count mode was used
816 to generate raw read counts required by DESeq as the basis for DE analysis.

817

818 *Data access*

819 The high-throughput read data is deposited at the Gene Expression Omnibus (GEO)
820 with accession no.: GSE
821 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE249386>). The comparative
822 transcriptome analyses are given in Datasets **S2-S4**.

823

824 *Gel electrophoresis, preparation of cell extracts, and Western blotting*

825 For the detection of proteins of interest, *Y. pseudotuberculosis* cultures were grown
826 under indicated growth conditions. Cell extracts of equal amounts of bacteria were
827 prepared and separated on 12-15% SDS polyacrylamide gels [93]. The gels were
828 either stained with Coomassie Blue or the samples were transferred onto a PVDF
829 membrane via electro-blotting and probed with the respective antibody as described
830 [95]. For visualization of the proteins mentioned below, generated polyclonal (Davids
831 Biotechnology) or purchased monoclonal antibodies were used (anti-LcrF 1:1,000, gift
832 of G. Plano; anti-CsrA 1:8000 anti-rabbit, anti-β-lactamase 1:10,000 anti-mouse,
833 Abcam; anti-YopD 1:6,000 and anti all Yops 1:12,000 gift of A. Forsberg).

834

835 *Yop effector secretion assay*

836 The Yop secretion assay was performed as described [96]. Bacteria were grown
837 overnight at 25°C in LB medium, diluted 1/50 in fresh LB medium, and grown at 25°C
838 for 2 h and then shifted to 37°C in the presence or absence of 20 mM NaOx and 20
839 mM MgCl₂. Proteins in the filtered medium supernatant were precipitated with TCA and
840 harvested by centrifugation. Precipitated proteins were washed with 95% acetone with
841 0.5% SDS and resuspended in equal amounts of sample buffer. Subsequently, the
842 proteins were separated on 15% SDS polyacrylamide gels and visualized by Coo-

843 massie brilliant blue staining or Western blotting with polyclonal antibodies directed
844 against secreted Yop proteins of *Y. pseudotuberculosis*.

845

846 *Nitrocefin-based Yop effector secretion assay*

847 A Nitrocefin-based secretion assay was used to quantify Yop effector secretion of *Y.*
848 *pseudotuberculosis* strains. For this purpose, *Y. pseudotuberculosis* strains harboring
849 plasmid pIVO13 encoding a *yopE-blaM* fusion were grown under indicated conditions
850 and adjusted to an OD₆₀₀ of 0.8. Bacterial cells were pelleted and 95 µl of the
851 supernatant were mixed with 5 µl of a 2 mmol Nitrocefin diluted in PBS and incubated
852 for 1 h at room temperature. The absorption at 486 nm (A₄₈₆) and 390 nm (A₃₉₀) was
853 measured at specific time points using the Varioskan Flash (Thermo Scientific). The
854 specific β-lactamase activity was calculated as ratio between A₄₈₆/A₃₉₀ (sample) /
855 A₄₈₆/A₃₉₀ (medium).

856

857 *β-galactosidase assays*

858 *Y. pseudotuberculosis* strains, carrying *lacZ* reporter fusions of interest were grown
859 under indicated growth conditions in LB medium. The β-galactosidase activity of the
860 *lacZ* fusion constructs was measured in permeabilized cells as described previously
861 [92]. The activities were calculated as follows: β-galactosidase activity OD₄₁₅ · 6,75 ·
862 OD₆₀₀⁻¹ · t (min)⁻¹ · Vol (ml)⁻¹.

863

864 *Spotting assays*

865 Overnight cultures were diluted 1:10 in fresh LB medium with the respective antibiotics.
866 Bacteria were grown at 25°C for 1 hour. The OD₆₀₀ was adjusted to 0.45 in LB medium
867 and serial dilutions from 10⁻¹-10⁻⁷ were prepared. 10 µl of each dilution were spotted

868 onto LB plates and incubated at either 25°C and 37°C.

869

870 *Motility assay*

871 A 5 μ l portion of overnight culture grown at 25°C, adjusted to an OD₆₀₀ of 0.8, was
872 spotted onto semisolid tryptone swarm plates (1% tryptone, 0.5% yeast extract, 1%
873 NaCl, 0.25% Difco Bacto agar). The capacity of each strain to spread was monitored
874 after 28 hours at 25°C by measuring the diameter of the bacterial colony.

875

876 *Cell viability assay*

877 Cell viability of bacterial cultures was measured using the BacTiter-Glo Microbial Cell
878 Viability Assay (Promega) by detection of present ATP. Bacterial cultures were
879 cultivated under indicated conditions and the OD₆₀₀ adjusted to 0.8 in the growth
880 medium. The culture was mixed 1:1 with the BacTiter-Glo substrate and luminescence
881 was measured using the Varioskan Flash (Thermo Scientific). Cell viability was
882 determined in duplicates by calculating the ratio of luminescence of the sample and
883 medium.

884

885 *Scanning and transmission electron microscopy*

886 In order to identify T3SS needles on the bacterial surface, negative staining for
887 transmission electron microscopy and field emission scanning electron microscopy
888 was used. Bacterial overnight cultures were diluted 1:50 in LB and grown at 25°C,
889 37°C, and 37°C/-Ca²⁺ for 4 h. Three independent cultures were pooled and cultures
890 were mixed with cooled glutaraldehyde (2%) and formaldehyde (5%). For transmission
891 electron microscopy thin carbon support films were prepared by sublimation of carbon
892 on freshly cleaved mica. Using 300 mesh copper grids, the samples were negatively

893 stained with 2% (w/v) aqueous uranyl acetate, according to the method of Valentine *et*
894 *al.* [97], and examined in a transmission electron microscope (TEM910, Zeiss,
895 Germany) at an acceleration voltage of 80 kV at calibrated magnifications. Images
896 were recorded digitally with a Slow-Scan CCD-Camera (ProScan, 1024 x 1024,
897 Scheuring, Germany) applying the ITEM-Software (Olympus Soft Imaging Solutions,
898 Münster, Germany).

899 For field emission scanning electron microscopy glass coverslips were coated with
900 a poly-L-lysine solution (Sigma, Munich, Germany), 30 µl of the samples were added,
901 left for 10 min, washed gently with TE buffer (TRIS EDTA 0,01 M, pH 6.9) and then
902 fixed in 2% glutaraldehyde in cacodylate buffer. After washing with TE buffer
903 dehydration was carried out in a graded series of acetone (10, 30, 50, 70, 90, 100%)
904 on ice for 15 min for each step. Samples were then critical-point dried with liquid CO₂
905 (CPD 300, Leica, Wetzlar) and covered with a gold film by sputter coating (SCD 040,
906 Balzers Union, Liechtenstein). For examination in a field emission scanning electron
907 microscope (Merlin, Zeiss, Germany), an Everhart Thornley SE-detector was used with
908 the inlens SE-detector in a 25:75 ratio at an acceleration voltage of 5 kV. Images were
909 recorded applying the SmartSEM software version 6.06.

910

911 **Acknowledgements**

912 We thank Dr. Martin Fenner for helpful discussions, and Tanja Krause, Bettina Elxnat,
913 and Karin Paduch for excellent technical support.

914

915 **References:**

916 1. Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J.

917 RNAs: regulators of bacterial virulence. *Nat Rev Microbiol.* 2010;8: 857–866.

918 doi:10.1038/nrmicro2457

919 2. Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic

920 bacteria. *Cold Spring Harb Perspect Med.* 2013;3: a010298.

921 doi:10.1101/cshperspect.a010298

922 3. Quereda JJ, Cossart P. Regulating Bacterial Virulence with RNA. *Annu Rev*

923 *Microbiol.* 2017;71: 263–280. doi:10.1146/annurev-micro-030117-020335

924 4. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, et

925 al. The critical role of RNA processing and degradation in the control of gene

926 expression. *FEMS Microbiol Rev.* 2010;34: 883–923. doi:FMR242 [pii]

927 10.1111/j.1574-6976.2010.00242.x

928 5. Deutscher MP. How bacterial cells keep ribonucleases under control. *FEMS*

929 *Microbiol Rev.* 2015;39: 350–61. doi:10.1093/femsre/fuv012

930 6. Arraiano CM, Mauxion F, Viegas SC, Matos RG, Séraphin B. Intracellular

931 ribonucleases involved in transcript processing and decay: precision tools for

932 RNA. *Biochim Biophys Acta.* 2013;1829: 491–513.

933 doi:10.1016/j.bbagr.2013.03.009

934 7. Hui MP, Foley PL, Belasco JG. Messenger RNA degradation in bacterial cells.

935 *Annu Rev Genet.* 2014;48: 537–59. doi:10.1146/annurev-genet-120213-092340

936 8. Lawal A, Jejelowo O, Chopra AK, Rosenzweig JA. Ribonucleases and bacterial

937 virulence. *Microb Biotechnol.* 2011;4: 558–71. doi:10.1111/j.1751-

938 7915.2010.00212.x

939 9. Matos RG, Casinhas J, Bárria C, Dos Santos RF, Silva IJ, Arraiano CM. The Role

940 of Ribonucleases and sRNAs in the Virulence of Foodborne Pathogens. *Front*

941 *Microbiol.* 2017;8: 910. doi:10.3389/fmicb.2017.00910

942 10. Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA
943 metabolism. Crit Rev Biochem Mol Biol. 2019;54: 242–300.
944 doi:10.1080/10409238.2019.1651816

945 11. Leskinen K, Varjosalo M, Skurnik M. Absence of YbeY RNase compromises the
946 growth and enhances the virulence plasmid gene expression of *Yersinia*
947 *enterocolitica* O:3. Microbiology. 2015;161: 285–99. doi:10.1099/mic.0.083097-0

948 12. Awano N, Inouye M, Phadtare S. RNase activity of polynucleotide phosphorylase
949 is critical at low temperature in *Escherichia coli* and is complemented by RNase
950 II. J Bacteriol. 2008;190: 5924–5933. doi:10.1128/JB.00500-08

951 13. Zilhão R, Cairão F, Régnier P, Arraiano CM. PNPase modulates RNase II
952 expression in *Escherichia coli*: implications for mRNA decay and cell metabolism.
953 Mol Microbiol. 1996;20: 1033–1042. doi:10.1111/j.1365-2958.1996.tb02544.x

954 14. Guarneros G, Portier C. Different specificities of ribonuclease II and
955 polynucleotide phosphorylase in 3'mRNA decay. Biochimie. 1991;73: 543–549.
956 doi:10.1016/0300-9084(91)90021-r

957 15. Hadjeras L, Poljak L, Bouvier M, Morin-Ogier Q, Canal I, Cocaign-Bousquet M,
958 et al. Detachment of the RNA degradosome from the inner membrane of
959 *Escherichia coli* results in a global slowdown of mRNA degradation, proteolysis
960 of RNase E and increased turnover of ribosome-free transcripts. Mol Microbiol.
961 2019;111: 1715–1731. doi:10.1111/mmi.14248

962 16. Khemici V, Prados J, Linder P, Redder P. Decay-Initiating Endoribonucleolytic
963 Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and
964 Sub-cellular Localisation. PLoS Genet. 2015;11: e1005577.
965 doi:10.1371/journal.pgen.1005577

966 17. Kaberdin VR, Lin-Chao S. Unraveling new roles for minor components of the E.

967 *coli* RNA degradosome. *RNA Biol.* 2009;6: 402–405. doi:10.4161/rna.6.4.9320

968 18. Kusmierenk M, Hoßmann J, Witte R, Opitz W, Vollmer I, Volk M, et al. A bacterial
969 secreted translocator hijacks riboregulators to control type III secretion in
970 response to host cell contact. *PLoS Pathog.* 2019;15: e1007813.
971 doi:10.1371/journal.ppat.1007813

972 19. Yang J, Jain C, Schesser K. RNase E regulates the *Yersinia* type 3 secretion
973 system. *J Bacteriol.* 2008;190: 3774–8. doi:10.1128/JB.00147-08

974 20. Rosenzweig JA, Chromy B, Echeverry A, Yang J, Adkins B, Plano GV, et al.
975 Polynucleotide phosphorylase independently controls virulence factor expression
976 levels and export in *Yersinia* spp. *FEMS Microbiol Lett.* 2007;270: 255–64.
977 doi:10.1111/j.1574-6968.2007.00689.x

978 21. Rosenzweig JA, Weltman G, Plano GV, Schesser K. Modulation of *Yersinia* type
979 three secretion system by the S1 domain of polynucleotide phosphorylase. *J Biol
980 Chem.* 2005;280: 156–63. doi:10.1074/jbc.M405662200

981 22. McNally A, Thomson NR, Reuter S, Wren BW. “Add, stir and reduce”: *Yersinia*
982 spp. as model bacteria for pathogen evolution. *Nat Rev Microbiol.* 2016;14: 177–
983 90. doi:10.1038/nrmicro.2015.29

984 23. Koornhof HJ, Smego RA, Nicol M. Yersiniosis. II: The pathogenesis of *Yersinia*
985 infections. *Eur J Clin Microbiol Infect Dis.* 1999;18: 87–112.

986 24. Ljungberg P, Valtonen M, Harjola VP, Kaukoranta-Tolvanen SS, Vaara M. Report
987 of four cases of *Yersinia pseudotuberculosis* septicemia and a literature review.
988 *Eur J Clin Microbiol Infect Dis.* 1995;14: 804–10.

989 25. Fujimura Y, Kihara T, Mine H. Membranous cells as a portal of *Yersinia*
990 *pseudotuberculosis* entry into rabbit ileum. *J Clin Electron Microsc.* 1992;25: 35–
991 45.

992 26. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, et al.
993 Assembly, structure, function and regulation of type III secretion systems. *Nat*
994 *Rev Microbiol.* 2017;15: 323–337. doi:10.1038/nrmicro.2017.20

995 27. Cornelis GR. The type III secretion injectisome. *Nat Rev Microbiol.* 2006;4: 811–
996 25. doi:nrmicro1526 [pii] 10.1038/nrmicro1526

997 28. Matsumoto H, Young GM. Translocated effectors of *Yersinia*. *Curr Opin*
998 *Microbiol.* 2009;12: 94–100. doi:S1369-5274(08)00192-6 [pii]
999 10.1016/j.mib.2008.12.005

1000 29. Bliska JB, Wang X, Viboud GI, Brodsky IE. Modulation of innate immune
1001 responses by *Yersinia* type III secretion system translocators and effectors.
1002 *Cellular Microbiology.* 2013;15: 1622–31. doi:10.1111/cmi.12164

1003 30. Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M, Magnusson
1004 KE, et al. Modulation of virulence factor expression by pathogen target cell
1005 contact. *Science.* 1996;273: 1231–3.

1006 31. Schwiesow L, Lam H, Dersch P, Auerbuch V. *Yersinia* type III secretion system
1007 master regulator LcrF. *J Bacteriol.* 2015;198: 604–14. doi:10.1128/JB.00686-15

1008 32. Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, et al.
1009 Concerted actions of a thermo-labile regulator and a unique intergenic RNA
1010 thermosensor control *Yersinia* virulence. *PLoS Pathog.* 2012;8: e1002518.
1011 doi:10.1371/journal.ppat.1002518

1012 33. Heroven AK, Böhme K, Dersch P. Regulation of virulence gene expression by
1013 regulatory RNA elements in *Yersinia* pseudotuberculosis. *Adv Exp Med Biol.*
1014 2012;954: 315–323. doi:10.1007/978-1-4614-3561-7_39

1015 34. Straley SC. The low-Ca²⁺ response virulence regulon of human-pathogenic
1016 *Yersiniae*. *Microb Pathog.* 1991;10: 87–91.

1017 35. Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA. Regulation by Ca²⁺ in
1018 the *Yersinia* low-Ca²⁺ response. *Mol Microbiol*. 1993;8: 1005–10.

1019 36. Nuss AM, Heroven AK, Waldmann B, Reinkensmeier J, Jarek M, Beckstette M,
1020 et al. Transcriptomic profiling of *Yersinia pseudotuberculosis* reveals
1021 reprogramming of the Crp regulon by temperature and uncovers Crp as a master
1022 regulator of small RNAs. *PLoS Genet*. 2015;11: e1005087.
1023 doi:10.1371/journal.pgen.1005087

1024 37. Nuss AM, Beckstette M, Pimenova M, Schmühl C, Opitz W, Pisano F, et al.
1025 Tissue dual RNA-seq: a fast discovery path for infection-specific functions and
1026 riboregulators shaping host-pathogen transcriptomes. *Proc Natl Acad Sci U S A*.
1027 2017;114(5): E791–E800.

1028 38. Milne-Davies B, Helbig C, Wimmi S, Cheng DWC, Paczia N, Diepold A. Life After
1029 Secretion-Yersinia enterocolitica Rapidly Toggles Effector Secretion and Can
1030 Resume Cell Division in Response to Changing External Conditions. *Front
1031 Microbiol*. 2019;10: 2128. doi:10.3389/fmicb.2019.02128

1032 39. Brubaker RR. The Vwa⁺ virulence factor of yersinia: the molecular basis of the
1033 attendant nutritional requirement for Ca⁺⁺. *Rev Infect Dis*. 1983;5 Suppl 4: S748–
1034 758. doi:10.1093/clinids/5.supplement_4.s748

1035 40. Cornelis GR, Biot T, Lambert de Rouvroit C, Michiels T, Mulder B, Sluiters C, et
1036 al. The *Yersinia* yop regulon. *Mol Microbiol*. 1989;3: 1455–9.

1037 41. Young GM, Smith MJ, Minnich SA, Miller VL. The *Yersinia enterocolitica* motility
1038 master regulatory operon, flhDC, is required for flagellin production, swimming
1039 motility, and swarming motility. *J Bacteriol*. 1999;181: 2823–33.

1040 42. Kapatral V, Campbell JW, Minnich SA, Thomson NR, Matsumura P, Pruss BM.
1041 Gene array analysis of *Yersinia enterocolitica* FlhD and FlhC: regulation of

1042 enzymes affecting synthesis and degradation of carbamoylphosphate.

1043 *Microbiology*. 2004;150: 2289–300. doi:10.1099/mic.0.26814-0 150/7/2289 [pii]

1044 43. Kapatral V, Olson JW, Pepe JC, Miller VL, Minnich SA. Temperature-dependent

1045 regulation of *Yersinia enterocolitica* Class III flagellar genes. *Mol Microbiol*.

1046 1996;19: 1061–1071. doi:10.1046/j.1365-2958.1996.452978.x

1047 44. Kudryashev M, Stenta M, Schmelz S, Amstutz M, Wiesand U, Catano-Diez D, et

1048 al. *In situ* structural analysis of the *Yersinia enterocolitica* injectisome. *Elife*.

1049 2013;2: e00792.

1050 45. Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G. Secretion of Yop

1051 proteins by *Yersinia*. *Infect Immun*. 1990;58: 2840–9.

1052 46. Bergman T, Erickson K, Galyov E, Persson C, Wolf-Watz H. The lcrB (yscN/U)

1053 gene cluster of *Yersinia pseudotuberculosis* is involved in Yop secretion and

1054 shows high homology to the spa gene clusters of *Shigella flexneri* and *Salmonella*

1055 *typhimurium*. *J Bacteriol*. 1994;176: 2619–26.

1056 47. Wang H, Avican K, Fahlgren A, Ertmann SF, Nuss AM, Dersch P, et al.

1057 Increased plasmid copy number is essential for *Yersinia* T3SS function and

1058 virulence. *Science*. 2016;353: 492–5. doi:10.1126/science.aaf7501

1059 48. Nishio S, Itoh T. Replication initiator protein mRNA of ColE2 plasmid and its

1060 antisense regulator RNA are under the control of different degradation pathways.

1061 *Plasmid*. 2008;59: 102–110. doi:10.1016/j.plasmid.2007.11.002

1062 49. Nicholson AW. Ribonuclease III mechanisms of double-stranded RNA cleavage.

1063 *Wiley Interdisciplinary Reviews: RNA*. 2014;5: 31–48. doi:10.1002/wrna.1195

1064 50. Court DL, Gan J, Liang Y-H, Shaw GX, Tropea JE, Costantino N, et al. RNase

1065 III: Genetics and function; structure and mechanism. *Annu Rev Genet*. 2013;47:

1066 405–431. doi:10.1146/annurev-genet-110711-155618

1067 51. Bardwell J c., Régnier P, Chen S m., Nakamura Y, Grunberg-Manago M, Court
1068 D I. Autoregulation of RNase III operon by mRNA processing. *The EMBO Journal*.
1069 1989;8: 3401–3407. doi:10.1002/j.1460-2075.1989.tb08504.x

1070 52. Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage
1071 rules and target repertoire of RNase III in *Escherichia coli*. *Nucleic Acids Res.*
1072 2018;46: 10530–10531. doi:10.1093/nar/gky816

1073 53. Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage
1074 rules and target repertoire of RNase III in *Escherichia coli*. *Nucleic Acids*
1075 *Research*. 2018 [cited 21 Jan 2022]. doi:10.1093/nar/gky684

1076 54. Sim M, Lim B, Sim S-H, Kim D, Jung E, Lee Y, et al. Two tandem RNase III
1077 cleavage sites determine *betT* mRNA stability in response to osmotic stress in
1078 *Escherichia coli*. *PLoS One*. 2014;9: e100520.
1079 doi:10.1371/journal.pone.0100520

1080 55. Le Rhun A, Lécrivain AL, Reimegard J, Proux-Wera E, Broglia L, Della Beffa C,
1081 et al. Identification of endoribonuclease specific cleavage positions reveals novel
1082 targets of RNase III in *Streptococcus pyogenes*. *Nucleic Acids Res.* 2017;45:
1083 2329–2340. doi:10.1093/nar/gkw1316

1084 56. Broglia L, Materne S, Lécrivain A-L, Hahnke K, Le Rhun A, Charpentier E. RNase
1085 Y-mediated regulation of the streptococcal pyrogenic exotoxin B. *RNA Biol.*
1086 2018;15: 1336–1347. doi:10.1080/15476286.2018.1532253

1087 57. Costa TR, Amer AA, Farag SI, Wolf-Watz H, Fallman M, Fahlgren A, et al. Type
1088 III secretion translocon assemblies that attenuate *Yersinia* virulence. *Cellular*
1089 *Microbiology*. 2013;15: 1088–110. doi:10.1111/cmi.12100

1090 58. Francis MS, Wolf-Watz H. YopD of *Yersinia pseudotuberculosis* is translocated
1091 into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary

1092 for translocation. *Mol Microbiol*. 1998;29: 799–813.

1093 59. Chen Y, Anderson DM. Expression hierarchy in the *Yersinia* type III secretion
1094 system established through YopD recognition of RNA. *Mol Microbiol*. 2011;80:
1095 966–80. doi:10.1111/j.1365-2958.2011.07623.x

1096 60. Anderson DM, Ramamurthi KS, Tam C, Schneewind O. YopD and LcrH regulate
1097 expression of *Yersinia enterocolitica* YopQ by a posttranscriptional mechanism
1098 and bind to *yopQ* RNA. *J Bacteriol*. 2002;184: 1287–95.

1099 61. Portier C, Dondon L, Grunberg-Manago M, Régnier P. The first step in the
1100 functional inactivation of the *Escherichia coli* polynucleotide phosphorylase
1101 messenger is a ribonuclease III processing at the 5' end. *The EMBO Journal*.
1102 1987;6: 2165–2170. doi:10.1002/j.1460-2075.1987.tb02484.x

1103 62. Takata R, Mukai T, Hori K. RNA processing by RNase III is involved in the
1104 synthesis of *Escherichia coli* polynucleotide phosphorylase. *Mol Gen Genet*.
1105 1987;209: 28–32. doi:10.1007/BF00329832

1106 63. Bylund GO, Wipemo LC, Lundberg LA, Wikström PM. RimM and RbfA are
1107 essential for efficient processing of 16S rRNA in *Escherichia coli*. *J Bacteriol*.
1108 1998;180: 73–82. doi:10.1128/JB.180.1.73-82.1998

1109 64. Lövgren JM, Bylund GO, Srivastava MK, Lundberg LAC, Persson OP, Wingsle
1110 G, et al. The PRC-barrel domain of the ribosome maturation protein RimM
1111 mediates binding to ribosomal protein S19 in the 30S ribosomal subunits. *RNA*.
1112 2004;10: 1798–1812. doi:10.1261/rna.7720204

1113 65. Burgos HL, O'Connor K, Sanchez-Vazquez P, Gourse RL. Roles of
1114 Transcriptional and Translational Control Mechanisms in Regulation of
1115 Ribosomal Protein Synthesis in *Escherichia coli*. *J Bacteriol*. 2017;199: e00407-
1116 17. doi:10.1128/JB.00407-17

1117 66. Ganoza MC, Cunningham C, Chung DG, Neilson T. A proposed role for IF-3 and
1118 EF-T in maintaining the specificity of prokaryotic initiation complex formation. *Mol*
1119 *Biol Rep.* 1991;15: 33–38. doi:10.1007/BF00369898

1120 67. Singh J, Mishra RK, Ayyub SA, Hussain T, Varshney U. The initiation factor 3
1121 (IF3) residues interacting with initiator tRNA elbow modulate the fidelity of
1122 translation initiation and growth fitness in *Escherichia coli*. *Nucleic Acids*
1123 *Research.* 2022;50: 11712–11726. doi:10.1093/nar/gkac1053

1124 68. Abedeera SM, Hawkins CM, Abeysirigunawardena SC. RsmG forms stable
1125 complexes with premature small subunit rRNA during bacterial ribosome
1126 biogenesis. *RSC Adv.* 2020;10: 22361–22369. doi:10.1039/D0RA02732D

1127 69. Agafonov DE, Kolb VA, Spirin AS. Ribosome-associated protein that inhibits
1128 translation at the aminoacyl-tRNA binding stage. *EMBO Rep.* 2001;2: 399–402.
1129 doi:10.1093/embo-reports/kve091

1130 70. Maki Y, Yoshida H, Wada A. Two proteins, YfiA and YhbH, associated with
1131 resting ribosomes in stationary phase *Escherichia coli*. *Genes Cells.* 2000;5:
1132 965–974. doi:10.1046/j.1365-2443.2000.00389.x

1133 71. Apirion D, Watson N. Ribonuclease III is involved in motility of *Escherichia coli*. *J*
1134 *Bacteriol.* 1978;133: 1543–1545. doi:10.1128/jb.133.3.1543-1545.1978

1135 72. Kusmierek M, Dersch P. Regulation of host-pathogen interactions via the post-
1136 transcriptional Csr/Rsm system. *Curr Opin Microbiol.* 2018;41: 58–67.
1137 doi:10.1016/j.mib.2017.11.022

1138 73. lost I, Dreyfus M. The stability of *Escherichia coli* lacZ mRNA depends upon the
1139 simultaneity of its synthesis and translation. *EMBO J.* 1995;14: 3252–3261.
1140 doi:10.1002/j.1460-2075.1995.tb07328.x

1141 74. Chen F, Cocaign-Bousquet M, Girbal L, Nouaille S. 5'UTR sequences influence

1142 protein levels in *Escherichia coli* by regulating translation initiation and mRNA
1143 stability. *Front Microbiol.* 2022;13: 1088941. doi:10.3389/fmicb.2022.1088941

1144 75. Bylund GO, Persson BC, Lundberg LA, Wikström PM. A novel ribosome-
1145 associated protein is important for efficient translation in *Escherichia coli*. *J*
1146 *Bacteriol.* 1997;179: 4567–4574. doi:10.1128/jb.179.14.4567-4574.1997

1147 76. Shajani Z, Sykes MT, Williamson JR. Assembly of bacterial ribosomes. *Annu Rev*
1148 *Biochem.* 2011;80: 501–526. doi:10.1146/annurev-biochem-062608-160432

1149 77. Polikanov YS, Blaha GM, Steitz TA. How hibernation factors RMF, HPF, and YfiA
1150 turn off protein synthesis. *Science.* 2012;336: 915–918.
1151 doi:10.1126/science.1218538

1152 78. Babitzke P, Granger L, Olszewski J, Kushner SR. Analysis of mRNA decay and
1153 rRNA processing in *Escherichia coli* multiple mutants carrying a deletion in
1154 RNase III. *Journal of Bacteriology.* 1993;175: 229–239.
1155 doi:10.1128/jb.175.1.229-239.1993

1156 79. Iost I, Chabas S, Darfeuille F. Maturation of atypical ribosomal RNA precursors
1157 in *Helicobacter pylori*. *Nucleic Acids Research.* 2019;47: 5906–5921.
1158 doi:10.1093/nar/gkz258

1159 80. Kordes E, Jock S, Fritsch J, Bosch F, Klug G. Cloning of a gene involved in rRNA
1160 precursor processing and 23S rRNA cleavage in *Rhodobacter capsulatus*.
1161 *Journal of Bacteriology.* 1994;176: 1121–1127. doi:10.1128/jb.176.4.1121-
1162 1127.1994

1163 81. Haddad N, Saramago M, Matos RG, Prevost H, Arraiano CM. Characterization
1164 of the biochemical properties of *Campylobacter jejuni* RNase III. *Bioscience*
1165 *Reports.* 2013;33: 889–901. doi:10.1042/bsr20130090

1166 82. Lejars M, Kobayashi A, Hajnsdorf E. RNase III, Ribosome biogenesis and

1167 beyond. *Microorganisms*. 2021;9. doi:10.3390/microorganisms9122608

1168 83. Gegenheimer P, Watson N, Apirion D. Multiple pathways for primary processing

1169 of ribosomal RNA in *Escherichia coli*. *J Biol Chem*. 1977;252: 3064–3073.

1170 84. Appropriate maturation and folding of 16S rRNA during 30S subunit biogenesis

1171 are critical for translational fidelity. [cited 17 Nov 2022].

1172 doi:10.1073/pnas.0912305107

1173 85. Kaczanowska M, Ryden-Aulin M. Ribosome Biogenesis and the Translation

1174 Process in *Escherichia coli*. *Microbiology and Molecular Biology Reviews*.

1175 2007;71: 477–494. doi:10.1128/MMBR.00013-07

1176 86. Smith BA, Gupta N, Denny K, Culver GM. Characterization of 16S rRNA

1177 Processing with Pre-30S Subunit Assembly Intermediates from *E. coli*. *Journal of*

1178 *Molecular Biology*. 2018;430: 1745–1759. doi:10.1016/j.jmb.2018.04.009

1179 87. Brandi A, Giangrossi M, Paoloni S, Spurio R, Giuliodori AM, Pon CL, et al.

1180 Transcriptional and post-transcriptional events trigger de novo *infB* expression in

1181 cold stressed *Escherichia coli*. *Nucleic Acids Res*. 2019;47: 4638–4651.

1182 doi:10.1093/nar/gkz187

1183 88. Lasa I, Toledo-Arana A, Dobin A, Villanueva M, de los Mozos IR, Vergara-Irigaray

1184 M, et al. Genome-wide antisense transcription drives mRNA processing in

1185 bacteria. *Proc Natl Acad Sci U S A*. 2011;108: 20172–20177.

1186 doi:10.1073/pnas.1113521108

1187 89. Gordon GC, Cameron JC, Pfleger BF. RNA Sequencing Identifies New RNase III

1188 Cleavage Sites in *Escherichia coli* and Reveals Increased Regulation of mRNA.

1189 *mBio*. 2017;8: e00128-17. doi:10.1128/mBio.00128-17

1190 90. Stead MB, Marshburn S, Mohanty BK, Mitra J, Pena Castillo L, Ray D, et al.

1191 Analysis of *Escherichia coli* RNase E and RNase III activity in vivo using tiling

1192 microarrays. *Nucleic Acids Res.* 2011;39: 3188–3203. doi:10.1093/nar/gkq1242

1193 91. Kopaskie KS, Ligtenberg KG, Schneewind O. Translational regulation of *Yersinia*
1194 *enterocolitica* mRNA encoding a type III secretion substrate. *J Biol Chem.*
1195 2013;288: 35478–88. doi:10.1074/jbc.M113.504811

1196 92. Miller JH. A short course in bacterial genetic: a laboratory manual and handbook
1197 for *Escherichia coli* and related bacteria. Cold Spring Harbor, New York; 1992.

1198 93. Sambrook J. Molecular Cloning: A Laboratory Manual,. Cold Spring Harbor
1199 Laboratories, Cold Spring Harbor, NY; 2001.

1200 94. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat*
1201 *Methods.* 2012;9: 357–9. doi:10.1038/nmeth.1923

1202 95. Heroven AK, Dersch P. RovM, a novel LysR-type regulator of the virulence
1203 activator gene *rovA*, controls cell invasion, virulence and motility of *Yersinia*
1204 *pseudotuberculosis*. *Mol Microbiol.* 2006;62: 1469–83.

1205 96. Cornelis G, Vanootegem JC, Sluiters C. Transcription of the yop regulon from *Y.*
1206 *enterocolitica* requires trans acting pYV and chromosomal genes. *Microb Pathog.*
1207 1987;2: 367–79.

1208 97. Valentine RC, Shapiro BM, Stadtman ER. Regulation of glutamine synthetase.
1209 XII. Electron microscopy of the enzyme from *Escherichia coli*. *Biochemistry.*
1210 1968;7: 2143–2152.

1211

1212

1213 **Figure Legends**

1214

1215 **Figure 1: Loss of RNases PNPase and RNase III affects growth and motility of *Y. pseudotuberculosis*.**

1217 (A) Overnight cultures of *Y. pseudotuberculosis* YPIII and the isogenic RNase mutants
1218 YP139 (Δpnp) and YP356 (Δrnc) harboring the empty vector (pV) or the comple-
1219 mentation plasmids ($prnc^+$ or $ppnp^+$) were diluted to an OD_{600} of 0,2 in LB and growth
1220 at 25°C, 37°C, and 37°C/-Ca²⁺ was followed by measurement of OD_{600} . Data represent
1221 the mean \pm SD from experiments done in triplicates. (B) One representative example
1222 of three independent spotting assays of serial dilutions of strains, used in A, on LB agar
1223 plates incubated at 25°C and 37°C overnight. (C) An equal amount of *Y. pseudo-*
1224 *tuberculosis* wildtype YPIII and the RNase mutants YP139 (Δpnp) and YP356 (Δrnc)
1225 was spotted onto tryptone swarm semi-soft agar plates and incubated at 25°C. A
1226 $\Delta fthDC$ mutant was used as negative control (upper panel). The mean \pm SD of the
1227 diameters of the bacterial colonies is shown from experiments done in triplicates (lower
1228 panel). Statistical significance was determined using Student's t-test. Asterisks indicate
1229 results significantly different from the wildtype; ****P<0.0001.

1230

1231 **Figure 2: RNase III-dependent synthesis of flagella and T3S-like structures.**

1232 Scanning (A) and transmission (B) microscopy of *Y. pseudotuberculosis* strains YPIII
1233 (wt), YP139 (Δpnp), and YP356 (Δrnc) grown at 25°C, 37°C and 37°C/-Ca²⁺. Flagella
1234 are indicated by grey and T3S injectisome-like structures by white arrows, respectively.
1235 Bars indicate 200 nm.

1236

1237 **Figure 3: Influence of PNPase and RNase III on Yop protein secretion.**

1238 **(A)** *Y. pseudotuberculosis* strains YPIII (wt), YP139 (Δpnp), and YP356 (Δrnc) were
1239 grown at 25°C, 37°C, and 37°C/-Ca²⁺; the secreted proteins in the supernatant of the
1240 cultures were precipitated with TCA and separated on SDS gels (left panels). The Yop
1241 secretion-deficient mutant YP101 ($\Delta yscS$) was used as negative control. Secreted Yop
1242 proteins were quantified using ImageJ. Data represent the mean \pm SD from three
1243 independent biological replicates relative to the amounts of Yops secreted by the
1244 wildtype at 25°C (right panel). Significant differences were determined using the one-
1245 way Anova test and are indicated by asterisks (*P <0.05, **P = 0.01). **(B)** Secretion of
1246 a plasmid-encoded YopE-beta-lactamase (BlaM) fusion protein (illustrated in the upper
1247 panel) expressed in *Y. pseudotuberculosis* strains YPIII (wt), and YP356 (Δrnc) grown
1248 at 37°C and 37°C/-Ca²⁺ for 4 h was determined. Data represent the mean \pm SD from
1249 three independent biological replicates (lower panel). Significant differences were
1250 determined using the Student's t-test and are indicated by asterisks (****P<0.0001).
1251

1252 **Figure 4: Yop synthesis is altered in PNPase- and RNase III-deficient strains.**

1253 *Y. pseudotuberculosis* strains YPIII (wt), YP139 (Δpnp), and YP356 (Δrnc) without
1254 (**A,B**) or with a plasmid-encoded YopE-beta-lactamse (BlaM) fusion protein (**C**) were
1255 grown at 37°C (+) and 37°C/-Ca²⁺ (-); whole cell extracts were prepared and separated
1256 on SDS gels (left panels). Synthesized Yop proteins in the YPIII (wt) (**A-C**), YP139
1257 (Δpnp) (**A**), YP356 (Δrnc) (**B**), and (**C**) YP356 (Δrnc) pIVO13 (*yopE-blaM*) were
1258 detected by Western blotting using a multi-Yop antiserum (left panel) and were
1259 quantified by ImageJ (right panel). An antiserum against H-NS was used for loading
1260 control. Data represent the mean \pm SD from three independent biological replicates
1261 and relative amounts are documented with respect to the wildtype grown at 37°C.

1262 Significant differences were determined using Student's t-test and indicated by
1263 asterisks (*P <0.05; ****P<0.0001).

1264

1265 **Figure 5: Influence of RNase III and PNPase on the synthesis of LcrF.**

1266 *Y. pseudotuberculosis* strains YPIII (wt), YP139 (Δpnp) (A), and YP356 (Δrnc) (B) were
1267 grown at 37°C (+) and 37°C/-Ca²⁺ (-). The secretion-deficient mutant YP101 ($\Delta yscS$)
1268 and the LcrF-deficient mutant strain YP179 ($\Delta lcrF$) were used as a negative control.
1269 Whole-cell extracts were prepared and separated by SDS-PAGE. The transcriptional
1270 activator LcrF was detected by Western blotting using an LcrF-specific polyclonal anti-
1271 serum. An antiserum against H-NS was used for loading control (left panel). Data were
1272 quantified by ImageJ and represent the mean \pm SD from three independent biological
1273 replicates (right panel). Significant differences were determined using Student's t-test
1274 and indicated by asterisks (*P <0.05; ***P<0.001). (C) *Y. pseudotuberculosis* strains
1275 YPIII (wt), YP139 (Δrnc), and YP356 (Δrnc) pIV20 ($prnc^+$) were grown at 37°C (+) and
1276 37°C/-Ca²⁺ (-); the LcrF-deficient mutant strain YP179 was used as a negative control.
1277 Whole-cell extracts were prepared and separated on SDS gels. Synthesized LcrF was
1278 detected by Western blotting using a polyclonal LcrF antiserum. An antiserum against
1279 RNA polymerase (RNAP) was used for loading control.

1280

1281 **Figure 6: Influence of RNase III and PNPase on *lcrF* transcript levels.**

1282 (A) *Y. pseudotuberculosis* strains YPIII (wt), YP139 (Δpnp), YP356 (Δrnc), and YP375
1283 (Δrnc , Δpnp) were grown at 37°C and 37°C/-Ca²⁺. Total RNA of the samples was
1284 prepared and the *lcrF* transcript was detected by Northern blotting; 16S rRNA was
1285 used as loading control. (B) *Y. pseudotuberculosis* strains YPIII (wt), YP139 (Δpnp),

1286 YP356 (Δrnc), and YP356 (Δrnc) pIVO20 ($prnc^+$) and the $\Delta lcrF$ strain (YP179) were
1287 grown at 37°C. Total RNA of the samples was prepared and the *lcrF* transcript was
1288 detected by Northern blotting (left panel) and quantified by ImageJ (right panel). Data
1289 represent the mean \pm SD from three independent biological replicates. Significant
1290 differences were determined using Student's t-test and indicated by asterisks
1291 (*P<0.05). (C) RNA-Seq coverage tracks of the *yscW-lcrF* locus in *Y. pseudotuber-*
1292 *culosis* YPIII (wt) and YP356 (Δrnc) grown at 37°C. RNA-Seq reads were mapped to
1293 the pYV virulence plasmid (NC_006153.2) and analyzed using a DESeq2 pipeline. The
1294 mapping visualizes the nucleotide score of the combined biological replicates for the
1295 two strains with an equal score for both. (D) RNA-Seq coverage tracks of the *yscW-*
1296 *lcrF* locus of the YPIII (wt) and YP356 (Δrnc) were adjusted to nucleotide scores of 900
1297 and 150, respectively to compare the read pattern of both strains.

1298

1299 **Figure 7: Influence of RNase III on *lcrF* transcription.**

1300 (A) Plasmid pMV53 encoding the *yscW-phoA* transcriptional fusion and (B) plasmids
1301 pKB35 and pKB34 encoding the *yscW-lacZ* transcriptional fusion and the *yscW/lcrF-*
1302 *lacZ* translational fusion were transformed into *Y. pseudotuberculosis* strains YPIII (wt)
1303 pAKH85 (pV, empty vector), YP356 (Δrnc) pAKH85 (pV, empty vector) and the com-
1304 plementing strains YPIII (wt) pIVO20 ($prnc^+$) and YP356 pIVO20 ($prnc^+$). The trans-
1305 formants were grown at 37°C and alkaline phosphatase or beta-galactosidase activity
1306 was determined, respectively. Data represent the mean \pm SD from three independent
1307 biological replicates. Significant differences were determined using Student's t-test and
1308 indicated by asterisks (*P <0.05).

1309

1310 **Figure 8: Influence of RNase III and PNPase on the stability of the *lcrF* transcript.**

1311 *Y. pseudotuberculosis* strains YPIII (wt), YP356 (Δrnc), YP139 (Δpnp), and YP375
1312 (Δrnc Δpnp) were grown at 37°C. Rifampicin was added to the cultures to stop
1313 transcription. Samples were taken before (0 min) and 1, 3 and 7.5 min after rifampicin
1314 addition. Total RNA of the samples was extracted and subjected to Northern blotting,
1315 using an *lcrF*-specific probe. 16S and 23S rRNA served as loading controls. A
1316 representative Northern blot for each strain is shown from three independent biological
1317 replicates. (B) The three independent biological replicates were used for the
1318 quantification of *lcrF* transcript levels with ImageJ software. 16S rRNA was used as a
1319 control for quantification. Relative transcript levels were plotted in Graphpad Prism 8
1320 to determine the *lcrF* mRNA decay rate. Data represent the mean \pm SD from three
1321 independent biological replicates. Significant differences were determined at 7.5 min
1322 using Student's t-test and indicated by asterisks (*P <0.05).

1323

1324 **Figure 9: Influence of RNase III on the synthesis of YopD.**

1325 *Y. pseudotuberculosis* strains YPIII (wt), YP91 ($\Delta yopD$), YP179 ($\Delta lcrF$), YP139 (Δpnp),
1326 YP218 ($\Delta yopD/\Delta pnp$), YP372 ($\Delta yopD/\Delta rnc$), and YP375 ($\Delta pnp/\Delta rnc$) were grown at
1327 37°C and 37°C/-Ca²⁺. Whole-cell extracts were prepared and separated by SDS-
1328 PAGE. Synthesized YopD (A) and LcrF (B) were detected by Western blotting using a
1329 YopD-detecting polyclonal antiserum. An antiserum against H-NS was used for loading
1330 control. (C) *Y. pseudotuberculosis* strains YPIII (wt), YP139 (Δpnp), YP356 (Δrnc) and
1331 YP375 ($\Delta pnp/\Delta rnc$) were grown at 37°C. The *pnp* (left) and the *rnc* (right) transcripts
1332 were detected by Northern blotting using specific probes. 16S RNA served as loading
1333 controls. (D) Scheme illustrating the control of LcrF and Ysc-T3SS-Yop synthesis by
1334 PNPase and RNase III.

1335

1336 **Figure 10: Influence RNase III on the carbon storage system components CsrA,**
1337 **CsrB and CsrC.**

1338 **(A)** (Left) *Y. pseudotuberculosis* strains YPIII (wt) and YP356 (Δrnc) were grown at
1339 37°C in the presence (+) and absence of Ca²⁺ (-). Whole-cell extracts were prepared
1340 and separated by SDS-PAGE. Synthesized CsrA protein was detected by Western
1341 blotting using a polyclonal antiserum against CsrA. An antiserum against H-NS was
1342 used for loading control. (Right) Scheme of the interaction of the carbon storage
1343 regulatory systems components: the RNA binding protein CsrA and the CsrA-
1344 sequestering regulatory RNAs CsrB and CsrC. **(B)** (Left) *Y. pseudotuberculosis* strains
1345 YPIII (wt), YP356 (Δrnc), and the complemented strains were grown at 37°C in the
1346 presence of Ca²⁺ (non-secretion conditions). Total RNA of the samples was prepared
1347 and CsrB and CsrC were detected by Northern blotting. (Right) Amounts of the CsrB
1348 and CsrC RNA were quantified by ImageJ and represent the mean \pm SD from three
1349 independent biological replicates. Significant differences were determined using
1350 Student's t-test and indicated by asterisks (**P<0.01).

1351

1352 **Figure 11: Global influence of RNase III on the *Y. pseudotuberculosis***
1353 **transcriptome.**

1354 *Y. pseudotuberculosis* strains YPIII (wt), and YP356 (Δrnc) were grown at 25°C, and
1355 at 37°C in the presence and absence of Ca²⁺ for 1 h (T1) or 4 h (T2). Total RNA of the
1356 different strains was prepared and transcriptional profiling by strand-specific RNA
1357 sequencing followed by a differential expression analysis (DESeq) by comparing
1358 sequencing reads of wildtype and the Δrnc mutant strain was performed. **(A)** RNA-Seq
1359 read the distribution on the chromosome and the virulence plasmid (pYV). RNA-Seq

1360 reads which uniquely mapped to the chromosome or pYV under the different tested
1361 conditions are shown. **(B)** Influence of RNase III on global pathways at T1 and T2 at
1362 37°C. Differentially expressed genes between wildtype and the Δrnc mutant with a
1363 log2FC cut-off of -2/+2 and P-value ≤ 0.05 were used for the analysis of global
1364 biological pathways based on the categories established according to the KEGG
1365 database. **(C)** Quantitative analysis of differentially expressed genes between wildtype
1366 and the Δrnc mutant. Bar plots show the absolute number of differentially expressed
1367 genes (left panel) after Ca²⁺ depletion after 1 h (T1) or 4 h (T2) of the wildtype (wt) or
1368 the Δrnc mutant, or (right panel) between the wildtype (wt) and the Δrnc mutant at 25°C
1369 (T0), before the shift to 37°C for 1 h (T1) or 4 h (T2) in the presence or absence of
1370 Ca²⁺.

1371

1372 **Figure 12: Scheme of PNPase and RNase III-dependent synthesis of LcrF and**
1373 **the T3SS/Yops under non-secretion and secretion conditions.**

1374 Regulatory network of the LcrF-T3SS/Yop system is illustrated under non-secretion
1375 (left panel) and secretion condition (right panel). Strong control is indicated by a thick
1376 solid arrow for activation or T for inhibition, low level of control is indicated by dashed
1377 arrows for activation or T for inhibition.

1378

1379 **Supplementary Figure Legends**

1380

1381 **Figure S1:** Influence of the loss of different RNases on growth and motility of *Y.*
1382 *pseudotuberculosis*.

1383 (A) Overnight cultures of *Y. pseudotuberculosis* YPIII (wt) and the isogenic RNase
1384 mutants indicated on the right were diluted 1:50 in LB and growth at 25°C and 37°C
1385 was followed by measurement of OD₆₀₀. Data represent the mean ± SD from
1386 experiments performed in triplicates. (B) One representative example of three
1387 independent spotting assays of serial dilutions of strains, used in A, on LB agar plates
1388 at 25°C is shown. (C) An equal amount of *Y. pseudotuberculosis* wildtype YPIII and
1389 the indicated RNase mutants was spotted onto tryptone swarm semi-soft agar plates
1390 and incubated at 25°C for 16 h. A *ΔflhDC* mutant was used as negative control (right
1391 spot).

1392

1393 **Figure S2:** Influence of RNase III on Yop protein secretion.

1394 (A) Viability of *Y. pseudotuberculosis* strains YPIII (wt), YP356 (*Δrnc*), and YP356
1395 (*Δrnc*) pIVO20 (*prnc*⁺). Data represent the mean ± SD from four independent biological
1396 replicates (lower panel). No significant differences compared to the wildtype were
1397 determined using the Student's t-test. (B) *Y. pseudotuberculosis* strains YPIII (wt),
1398 YP356 (*Δrnc*), and YP356 (*Δrnc*) pIVO20 (*prnc*⁺) were grown at 37°C for 4 h; the
1399 secreted proteins in the supernatant of the cultures were precipitated with TCA and
1400 separated on SDS gels. The Yop secretion-deficient mutant YP101 (*ΔyscS*) was used
1401 as a negative control.

1402

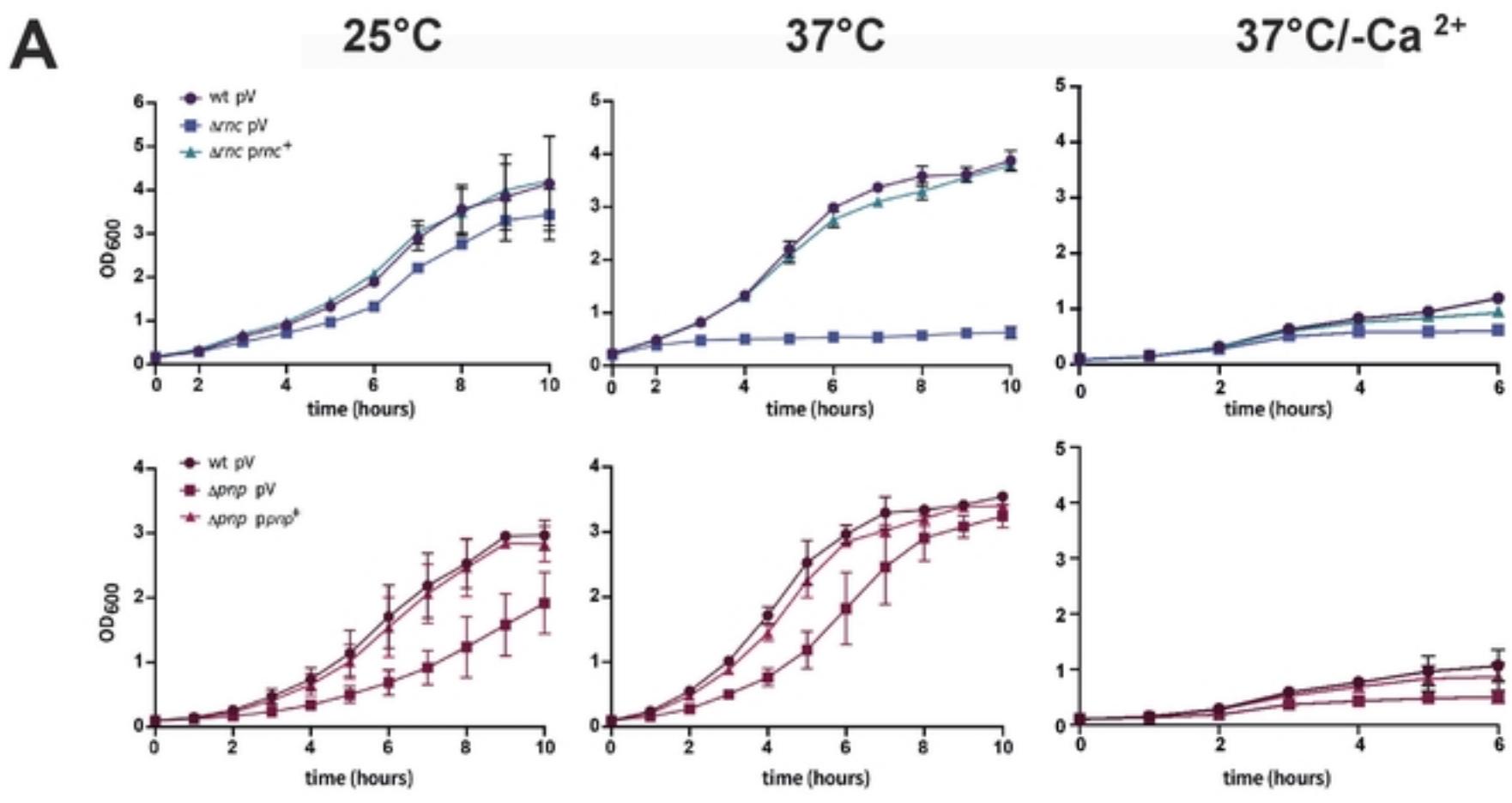
1403 **Figure S3:** Influence of RNase III and PNPase on the copy number of the virulence
1404 plasmid pYV.

1405 *Y. pseudotuberculosis* strains YPIII (wt), YP139 (Δpnp), and YP356 (Δrnc), were grown
1406 at 25°C, and 37°C. Total DNA of the strains grown under the different conditions was
1407 prepared and the copy number of the virulence plasmid was determined by qPCR. The
1408 relative plasmid copy number of wildtype was compared with the different mutant
1409 strains. Data represent the mean \pm SD from three independent biological replicates.
1410 No significant differences were determined using Student's t-test.

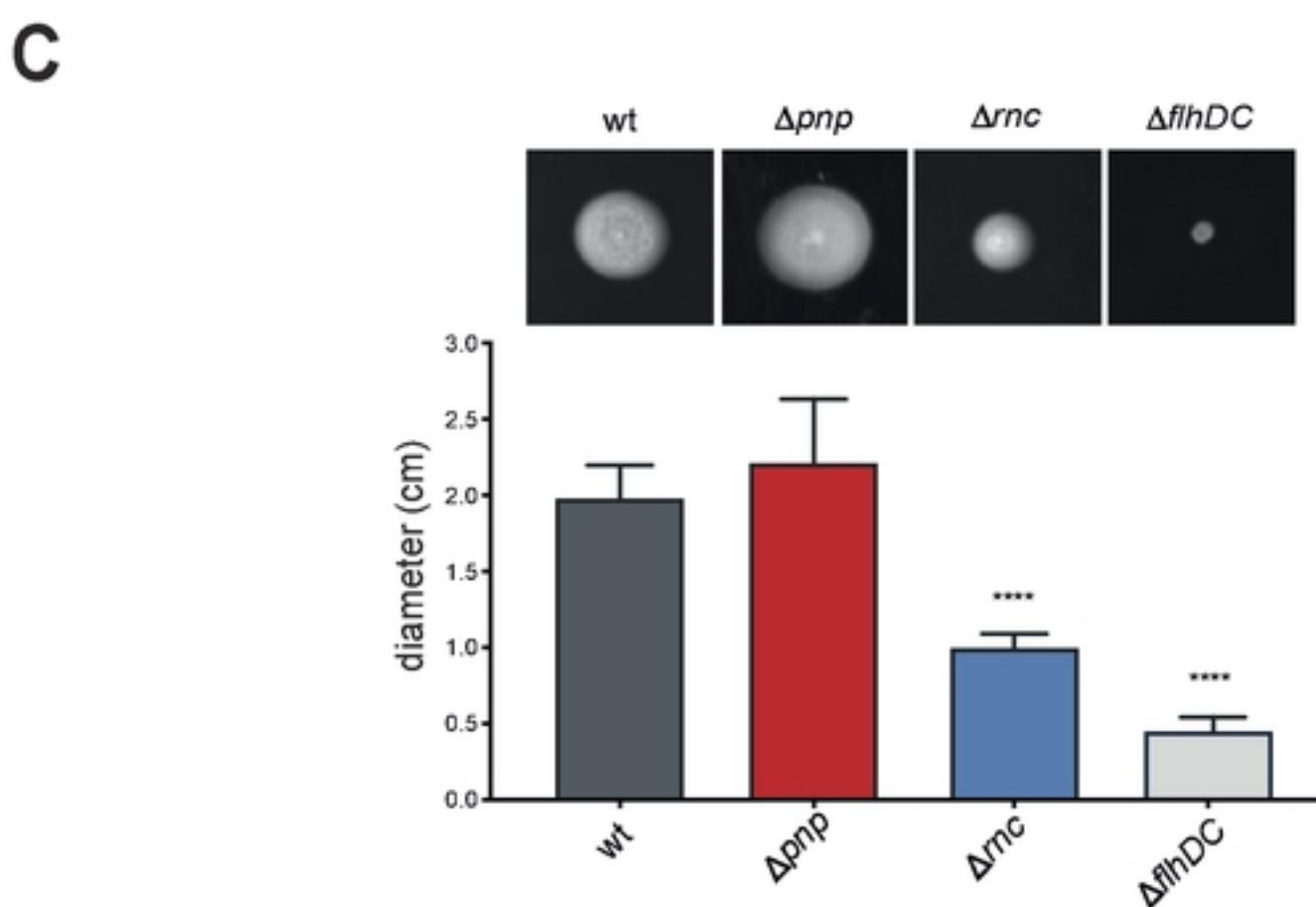
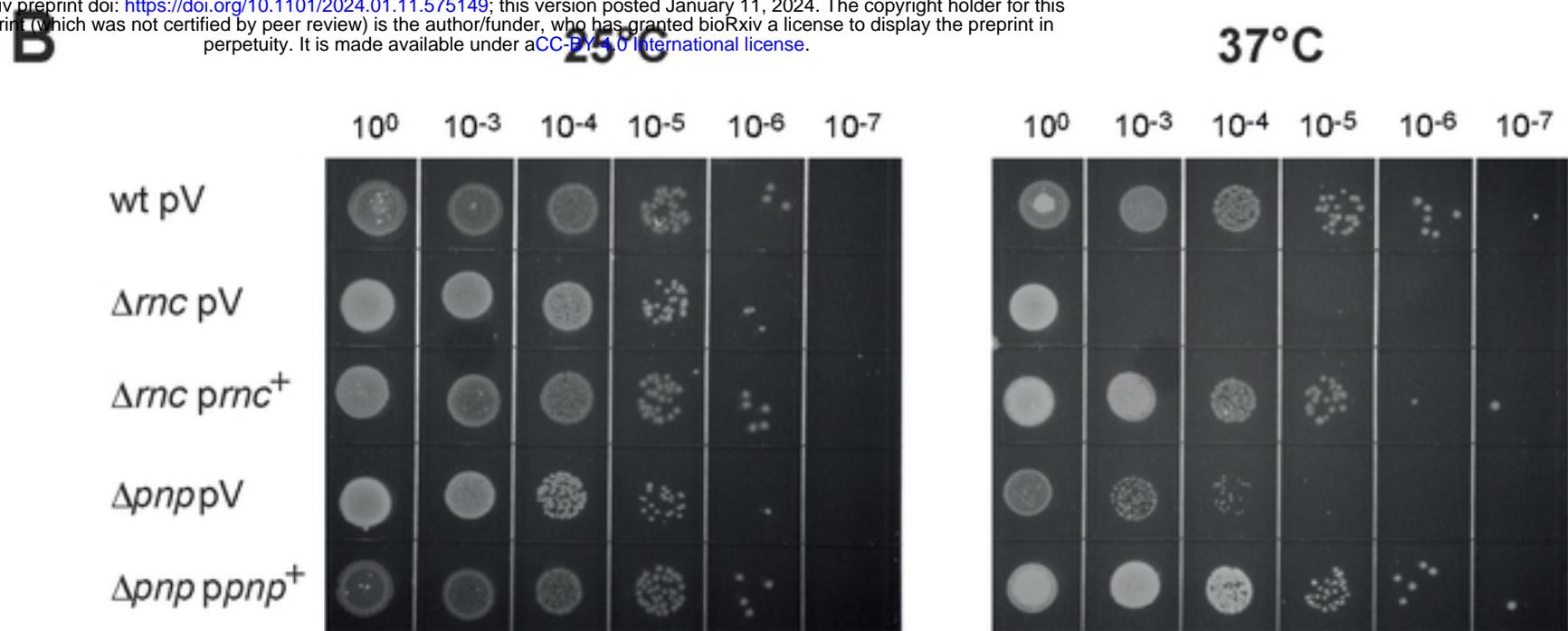
1411

1412 **Figure S4:** *lcrF* transcript detection.

1413 *Y. pseudotuberculosis* (YPIII), YP356 (Δrnc), and YP139 (Δpnp) were grown at 37°C,
1414 and the total RNA of the strains was prepared. 10 μ g of total RNA of the different strains
1415 were loaded onto a denaturing acrylamide gel to allow the detection of smaller
1416 degradation products. The *lcrF* transcripts were identified by Northern blot using a
1417 probe covering the *lcrF* coding sequence. The blot represents one of two biological
1418 replicates. The 5 S rRNA was used as loading control.


1419

1420 **Figure S5:** Analysis of the expression of the Yops and LcrF at different time points
1421 after induction of the T3SS.



1422 *Y. pseudotuberculosis* (YPIII) was grown over day at 25°C to exponential phase and
1423 was then shifted to 37°C in the presence (37°C) or absence of Ca²⁺ (-Ca²⁺). Whole-
1424 cell extracts were prepared and the amounts of Yops (**A**) and LcrF (**B**) were analyzed
1425 by Western blotting using all-Yop and LcrF polyclonal antisera. H-NS was used as
1426 loading control. The $\Delta lcrF$ mutant was used as a negative control.

1427

1428 **Figure S6:** RNA-Seq quality control. **(A)** Two-dimensional biplot and **(B)** three-
1429 dimensional principal component analysis of mean-centered and scaled rlog-
1430 transformed read count values of the *Y. pseudotuberculosis* wildtype strain YPIII and
1431 the isogenic Δrnc mutant grown over day at 25°C to exponential phase (T0) and then
1432 shifted to 37°C in the presence or absence of Ca^{2+} for 1 h (T1) or 4 h (T2).

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575149>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Fig. 1: Meyer *et al.* 2024

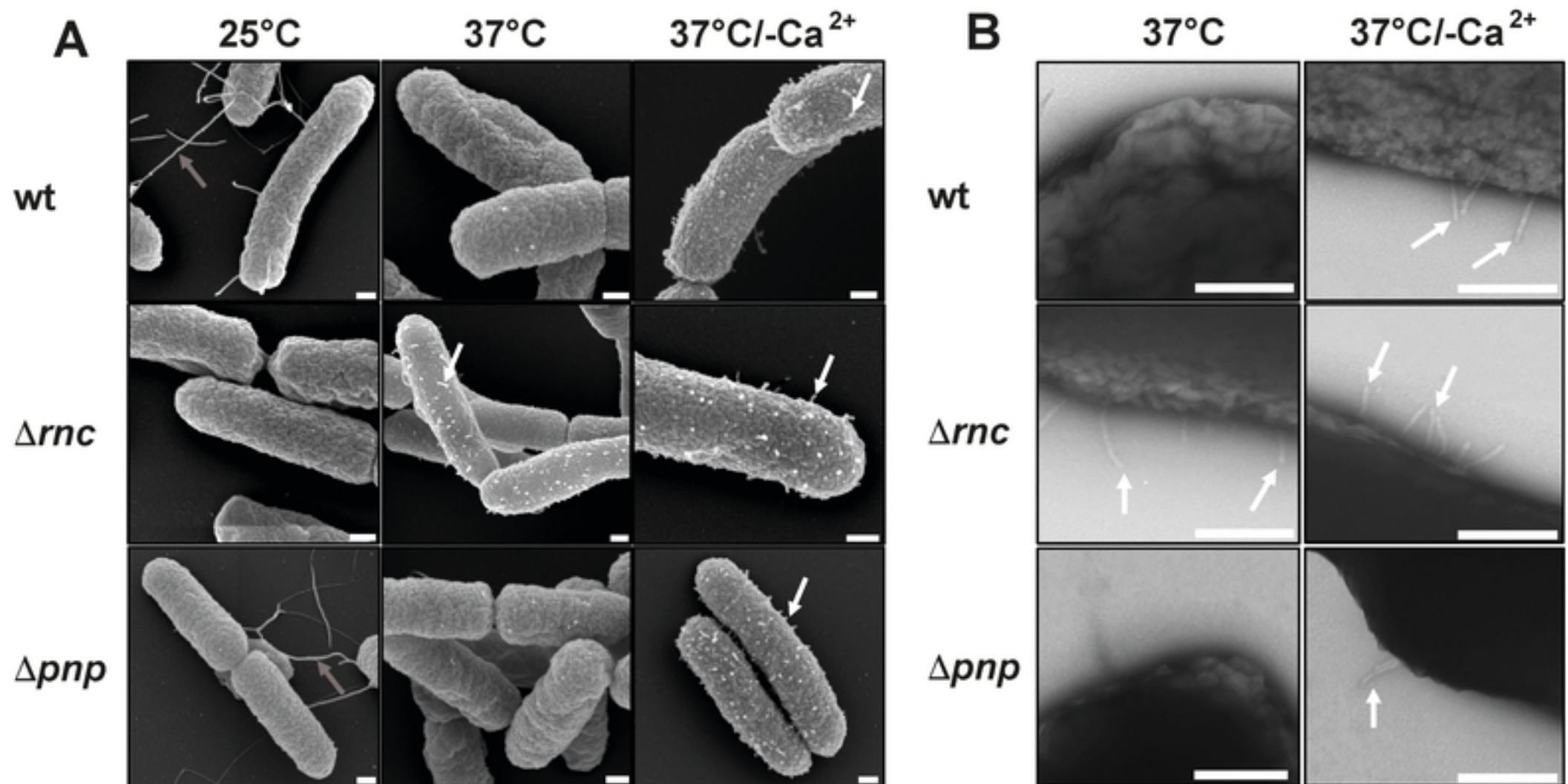
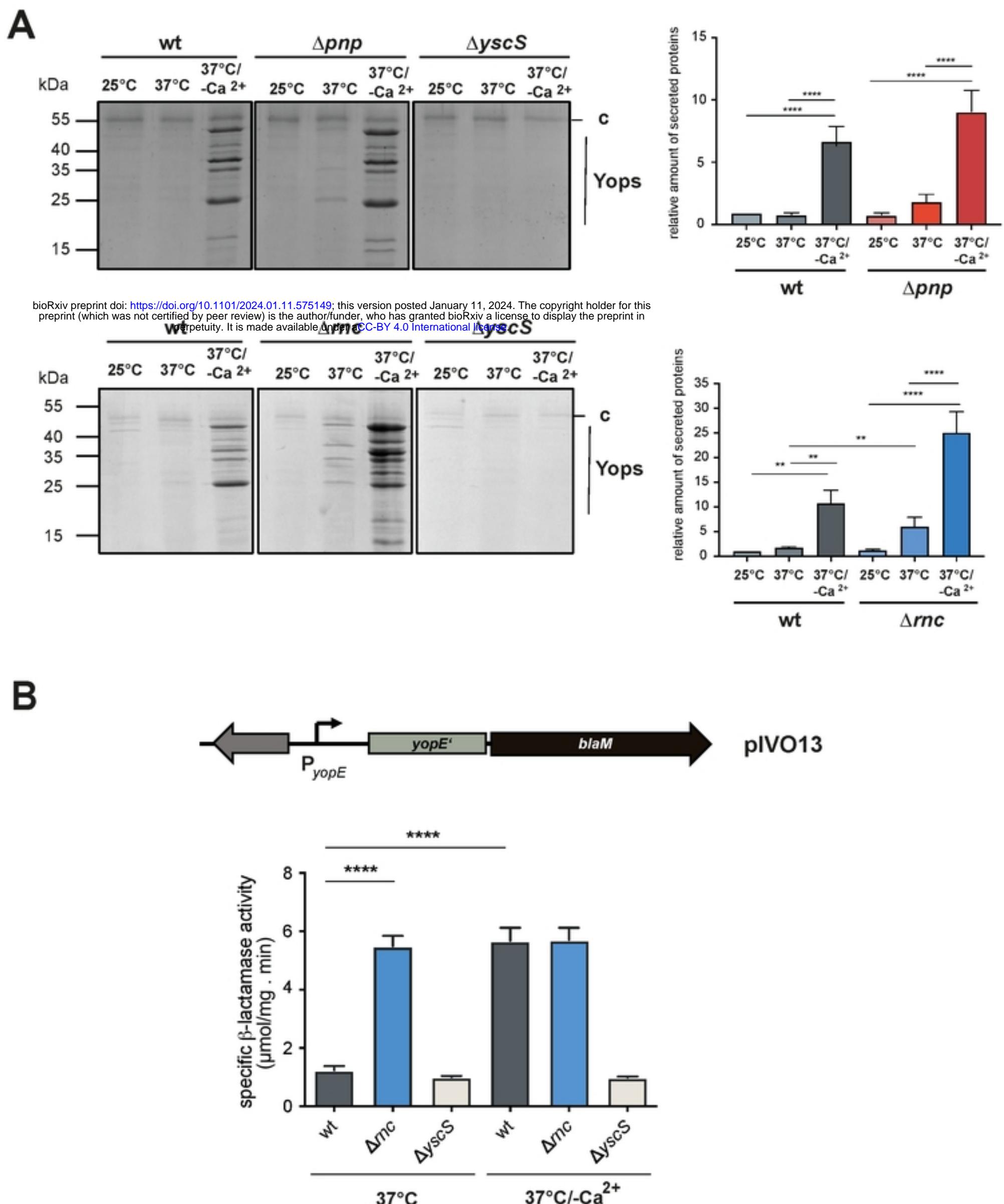
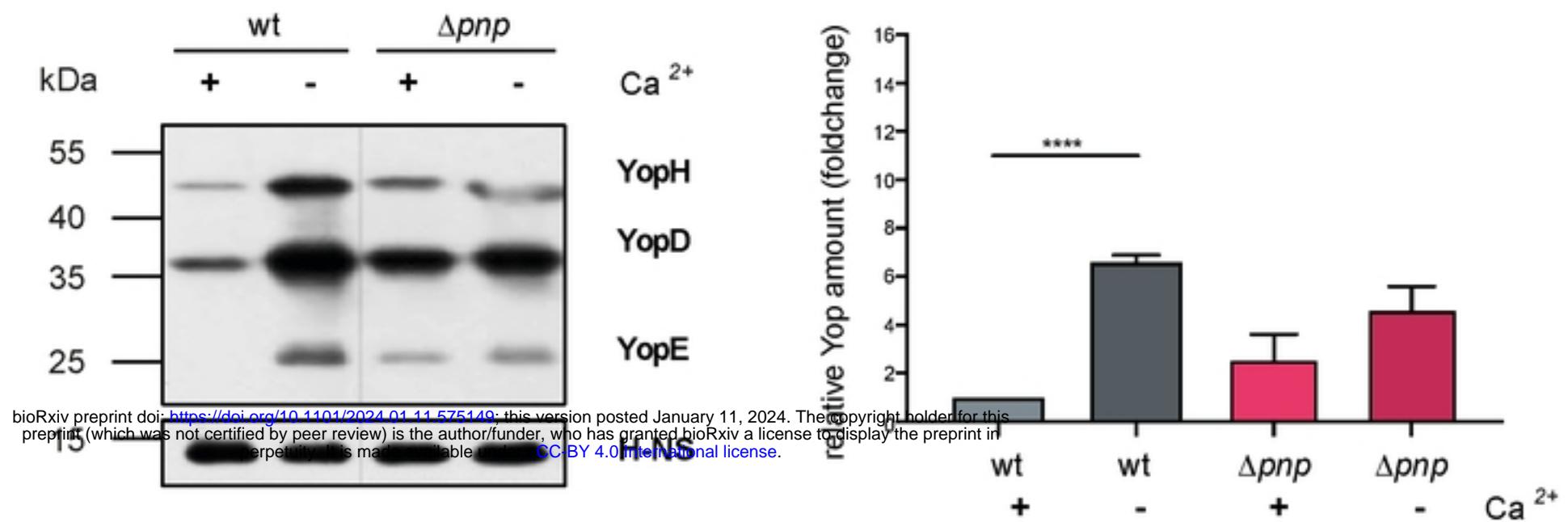
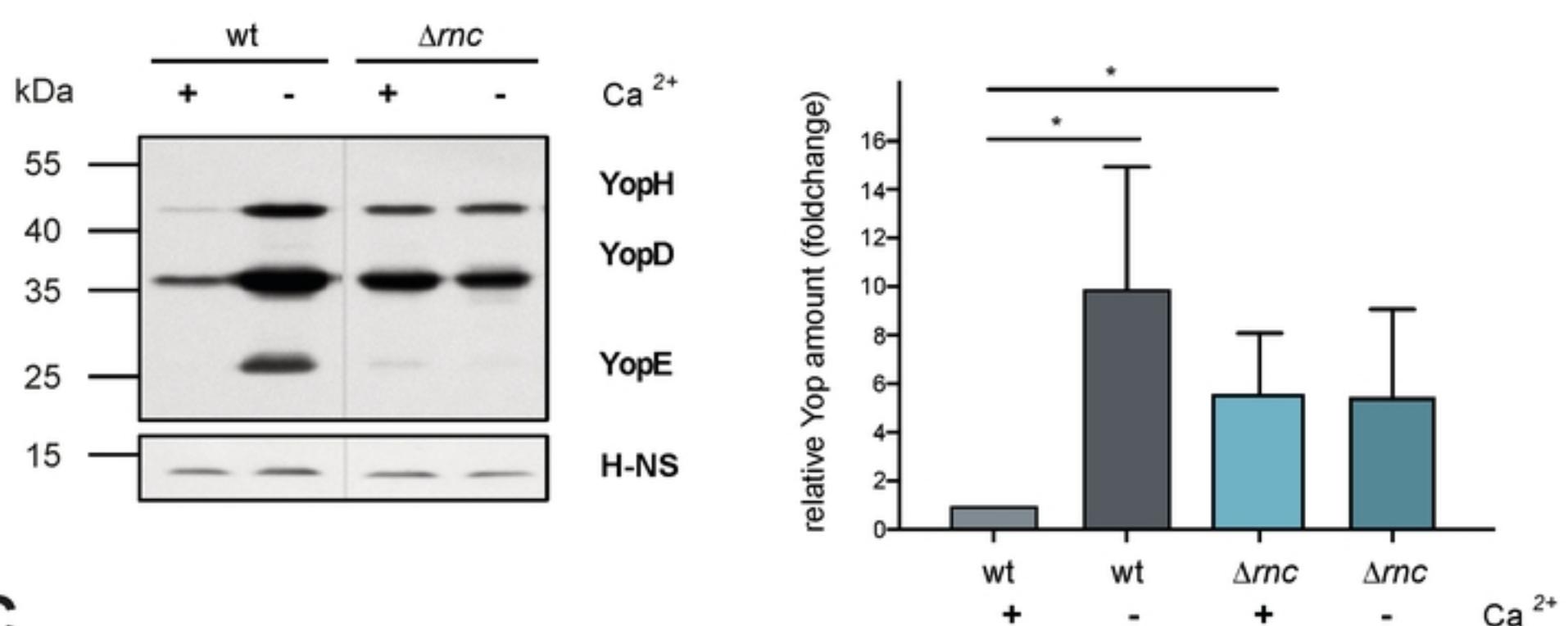
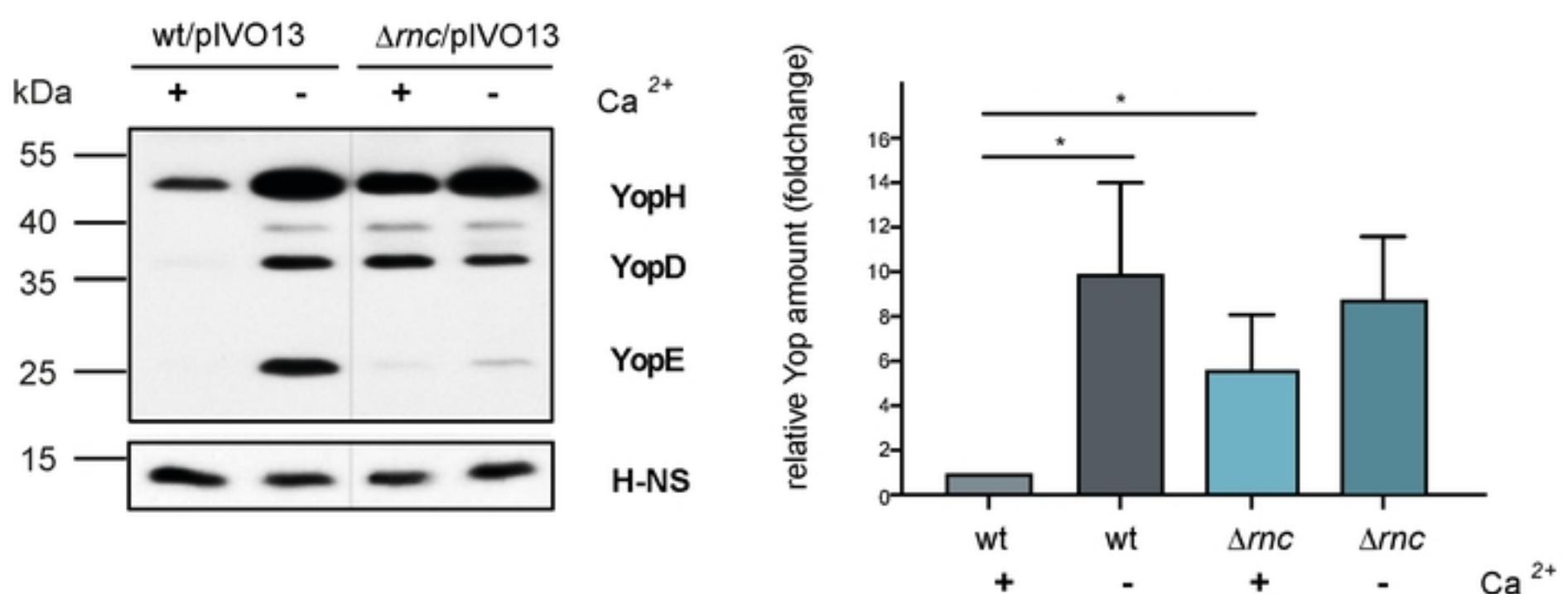
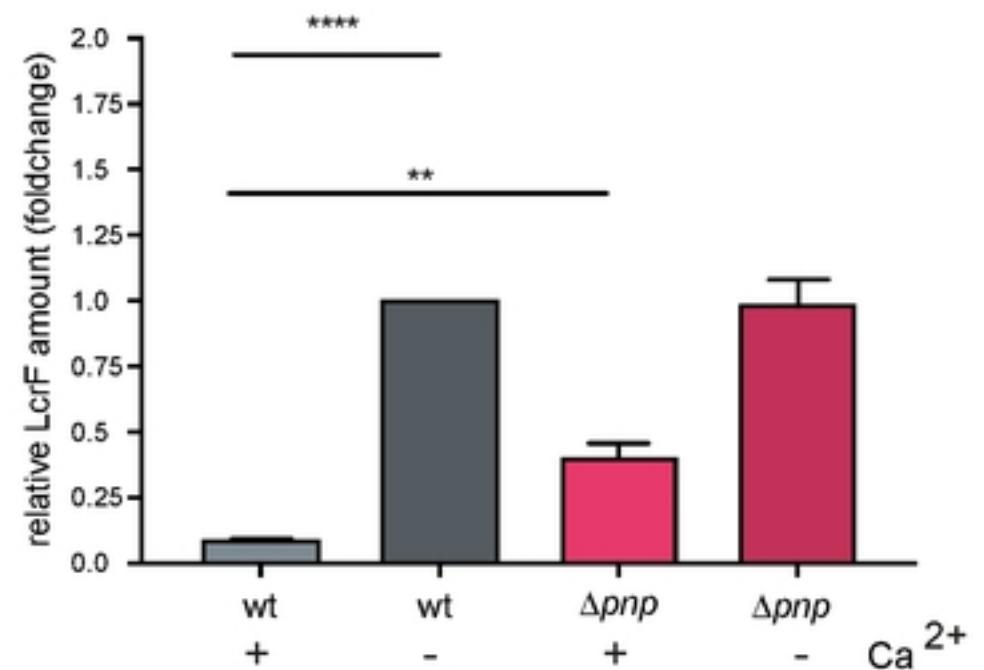
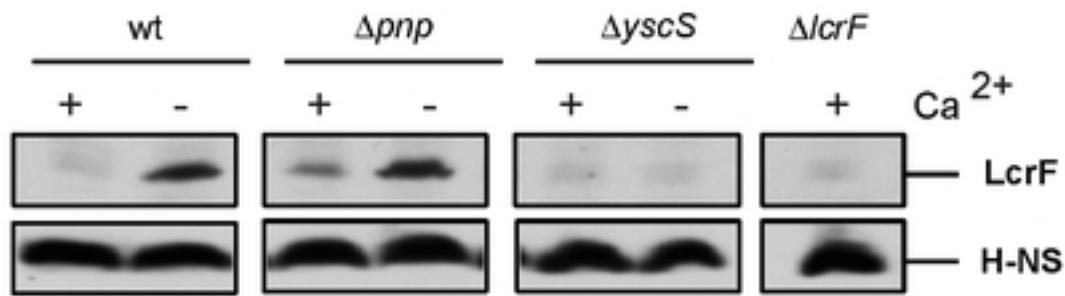
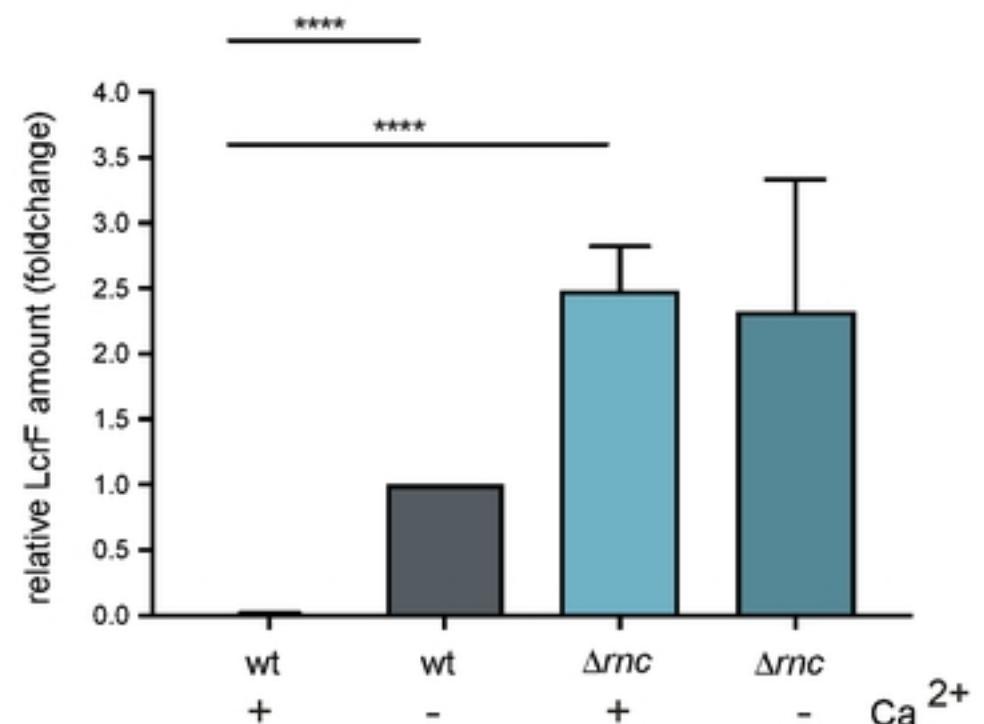
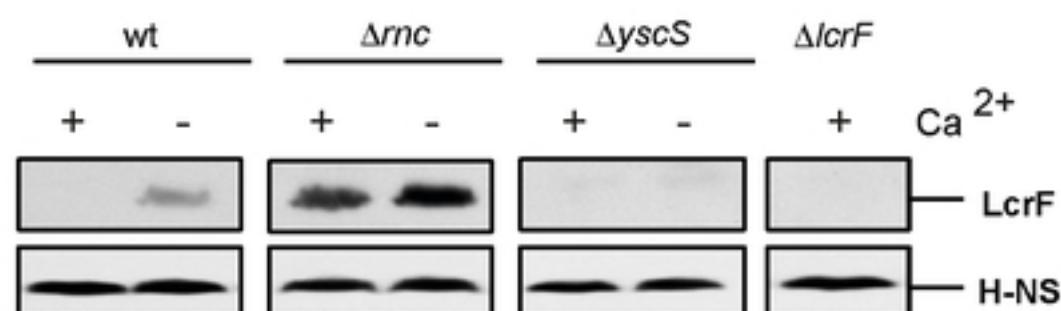
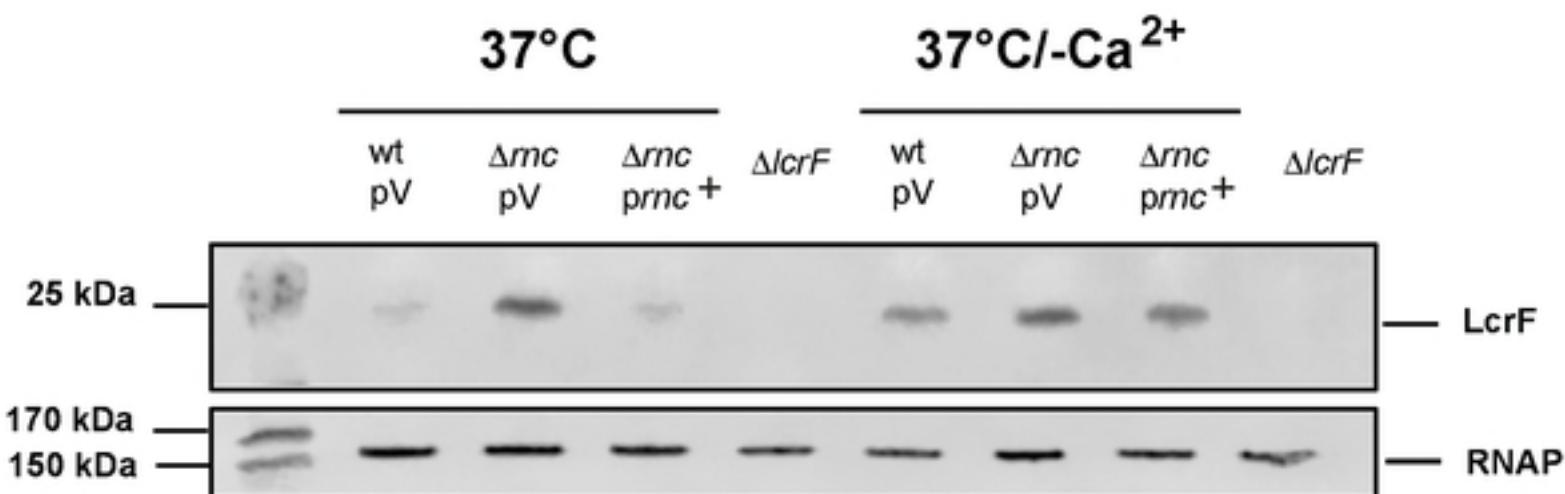






Fig. 2: Meyer et al. 2024

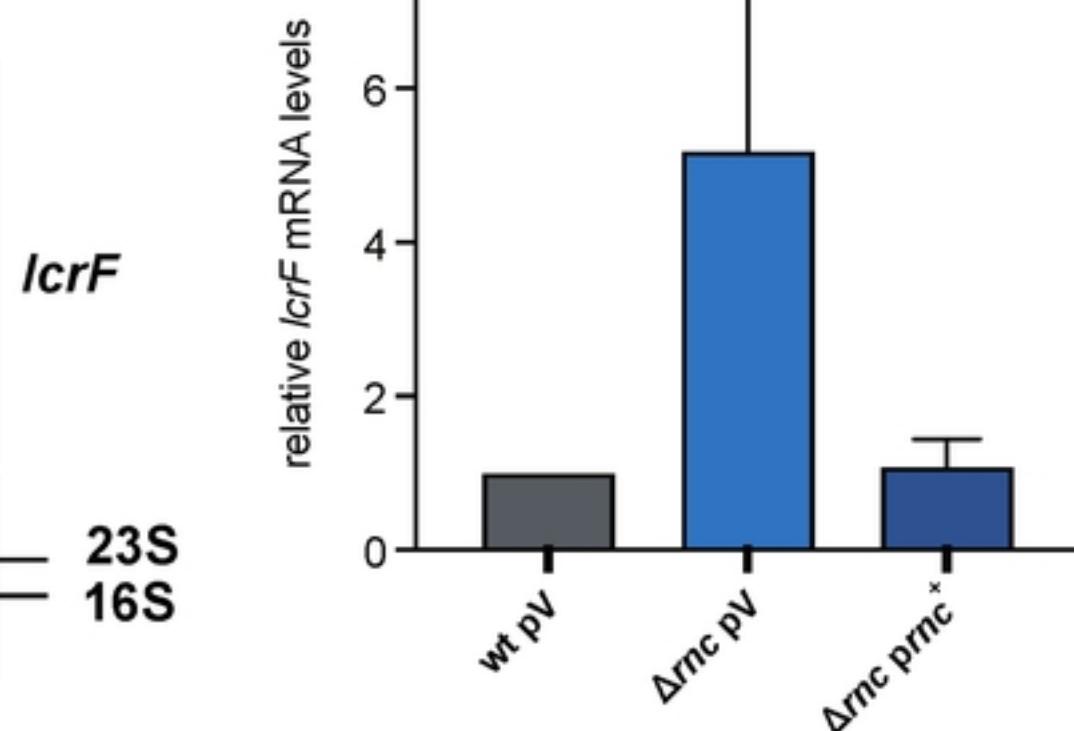
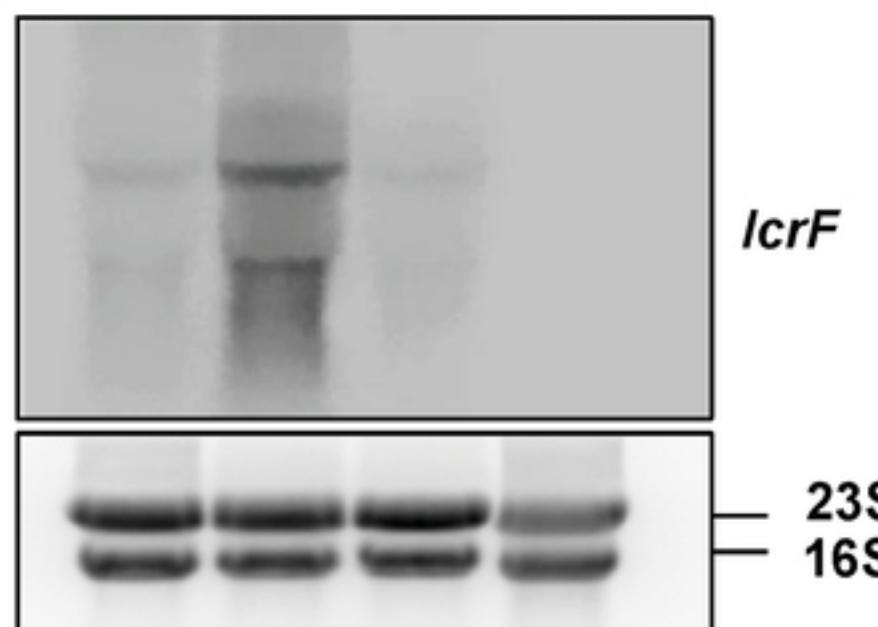
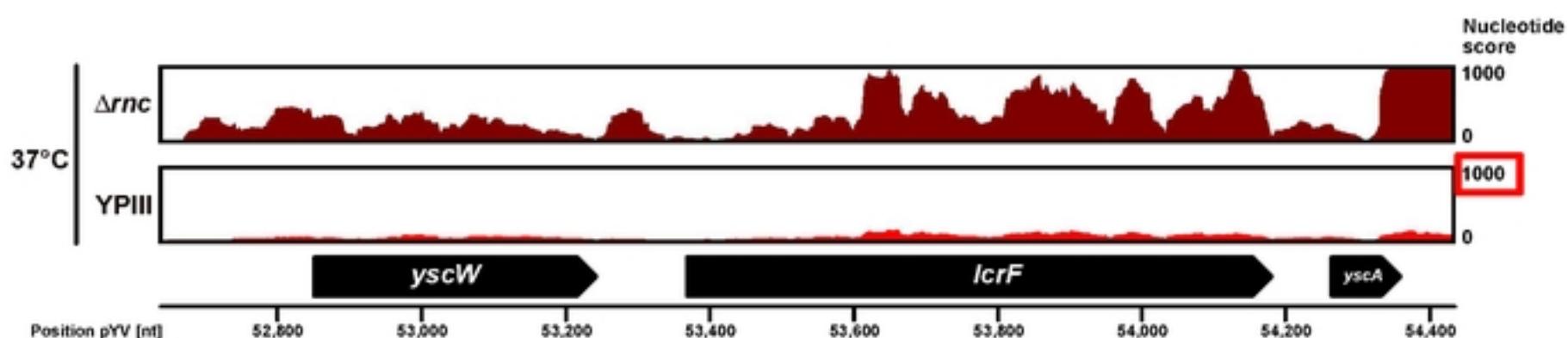
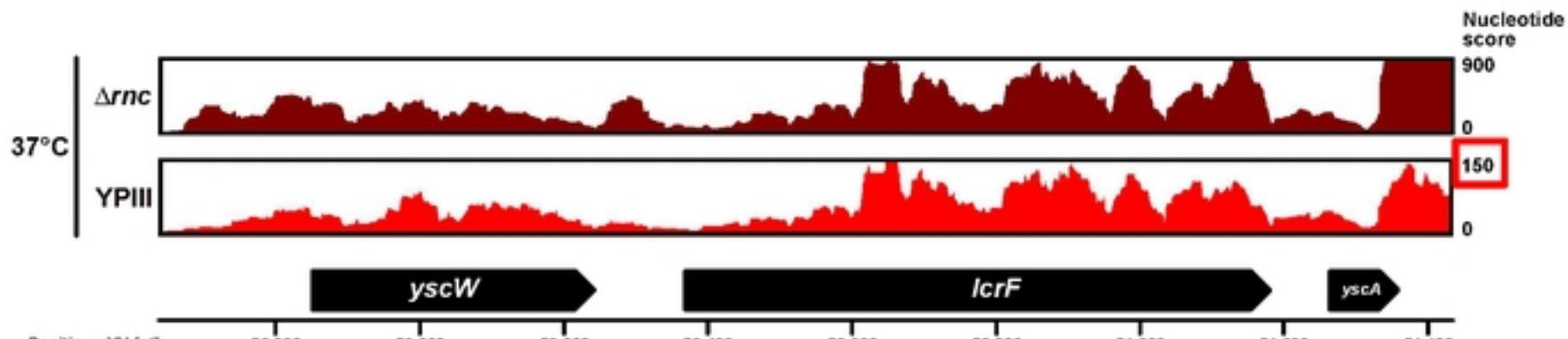


Figure 2

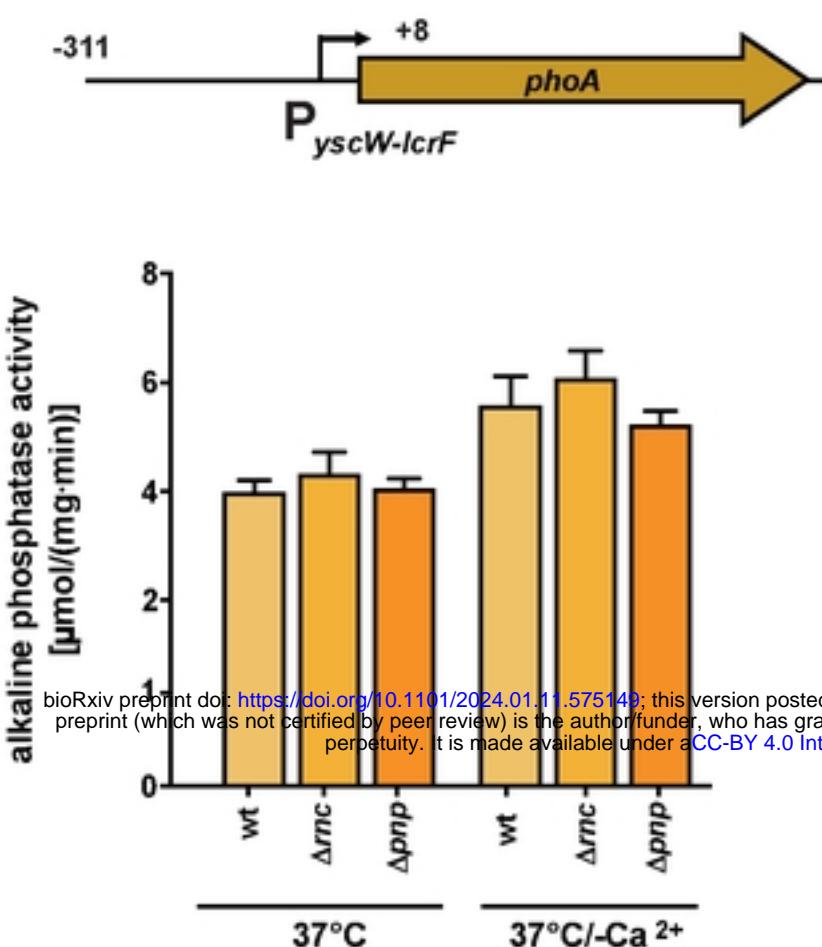
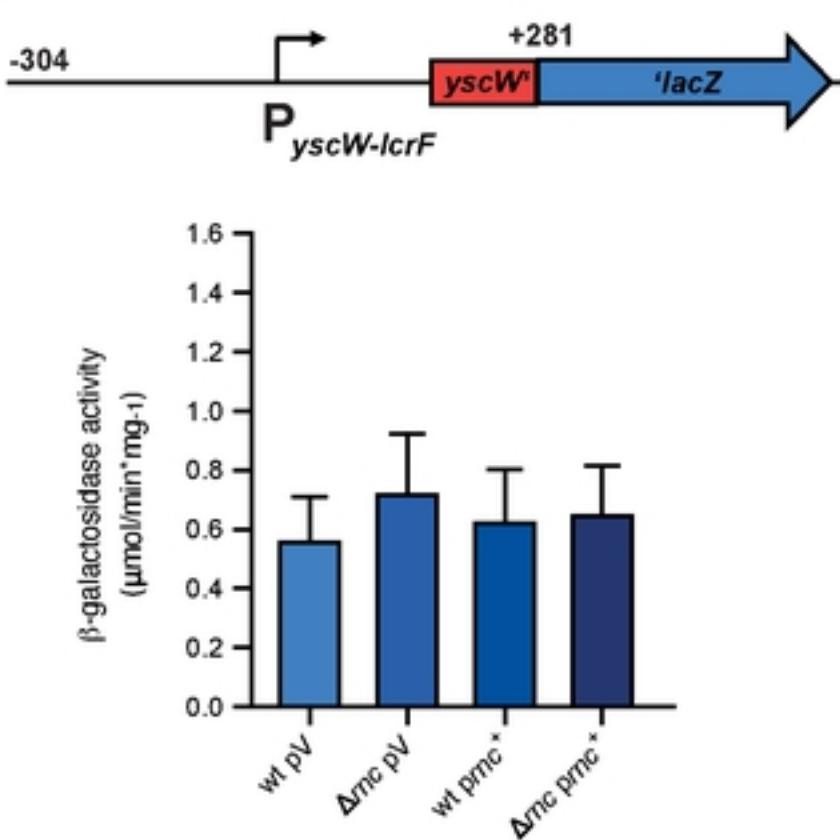
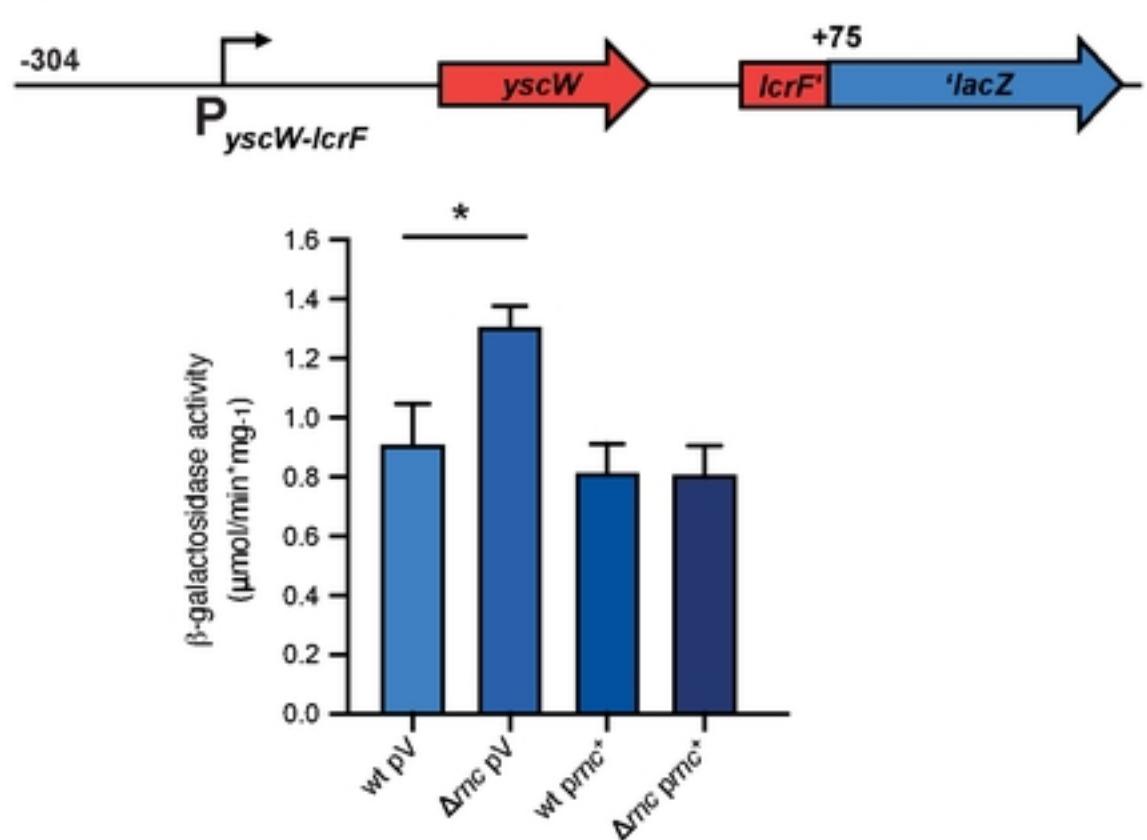



Fig. 3: Meyer *et al.* 2024

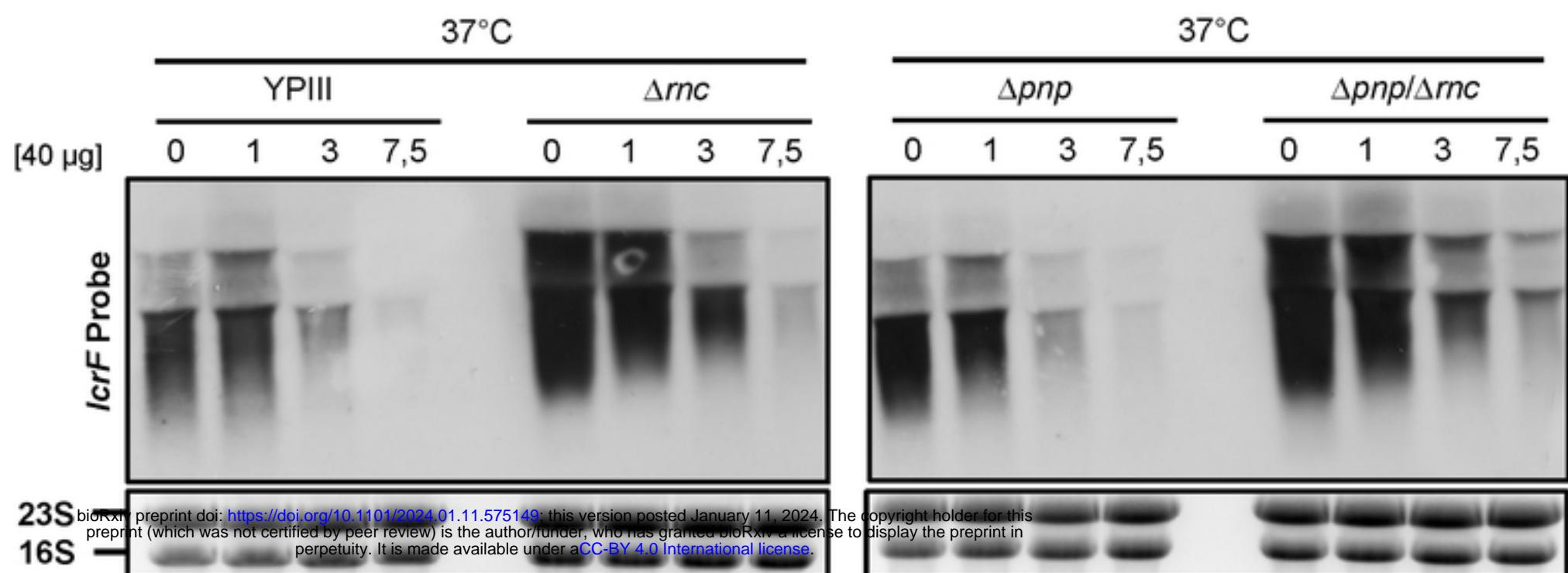
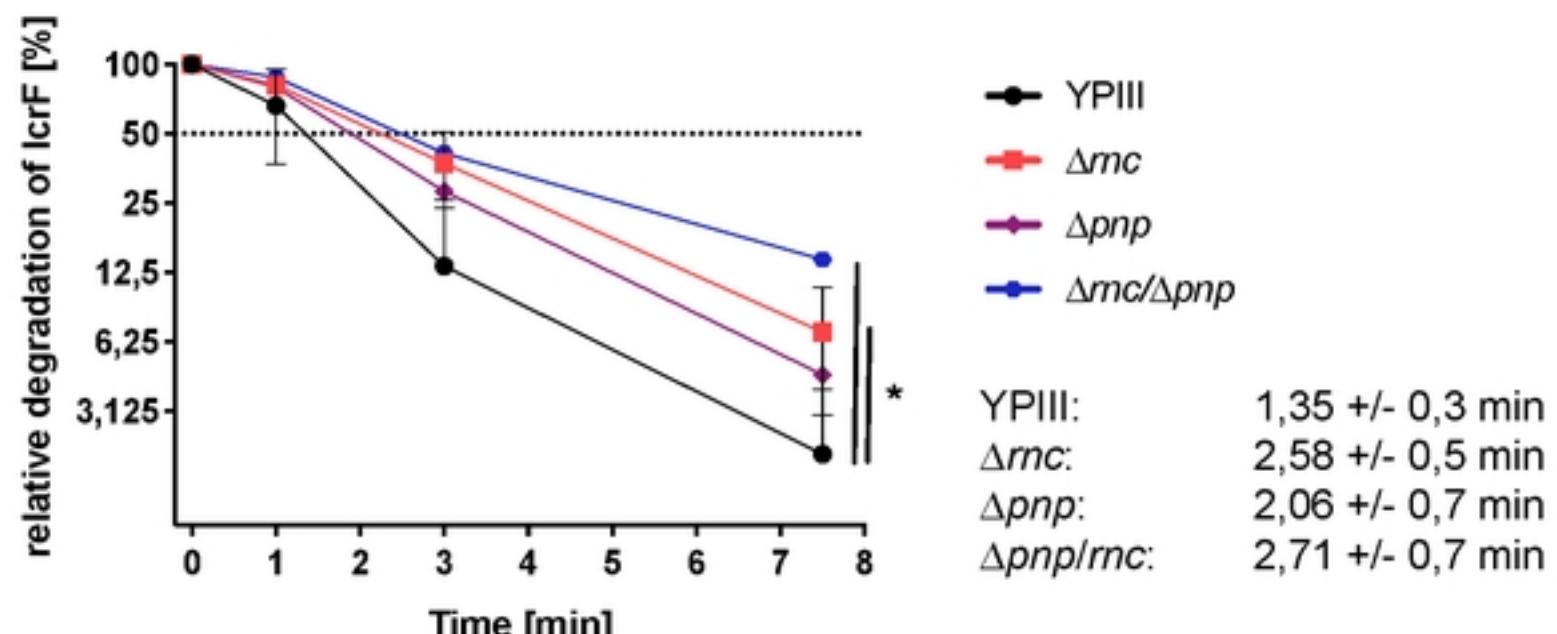
A**B****C**


Fig. 4: Meyer *et al.* 2024

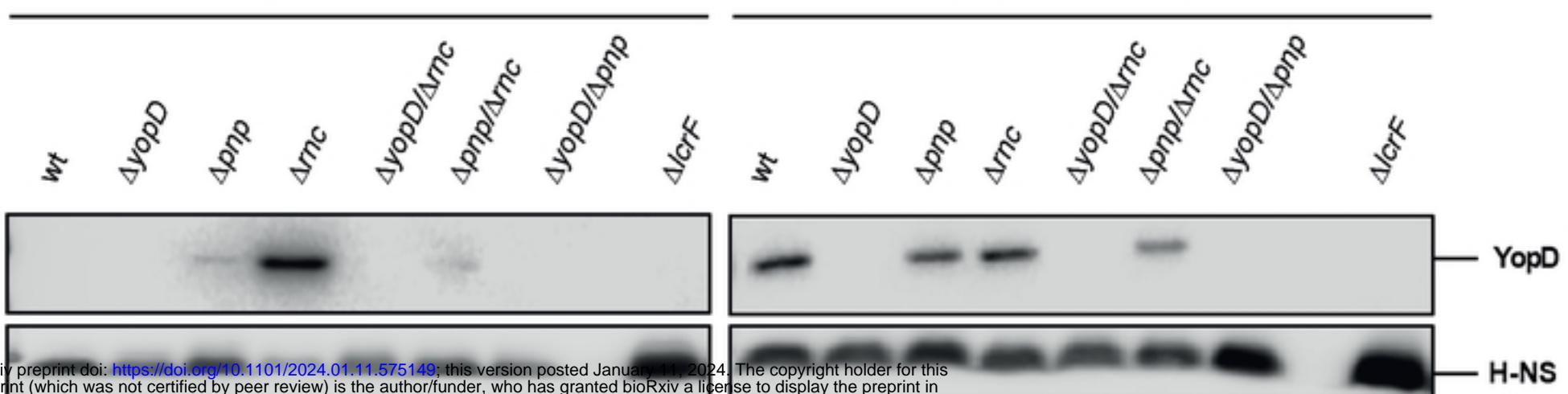
A





bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575149>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

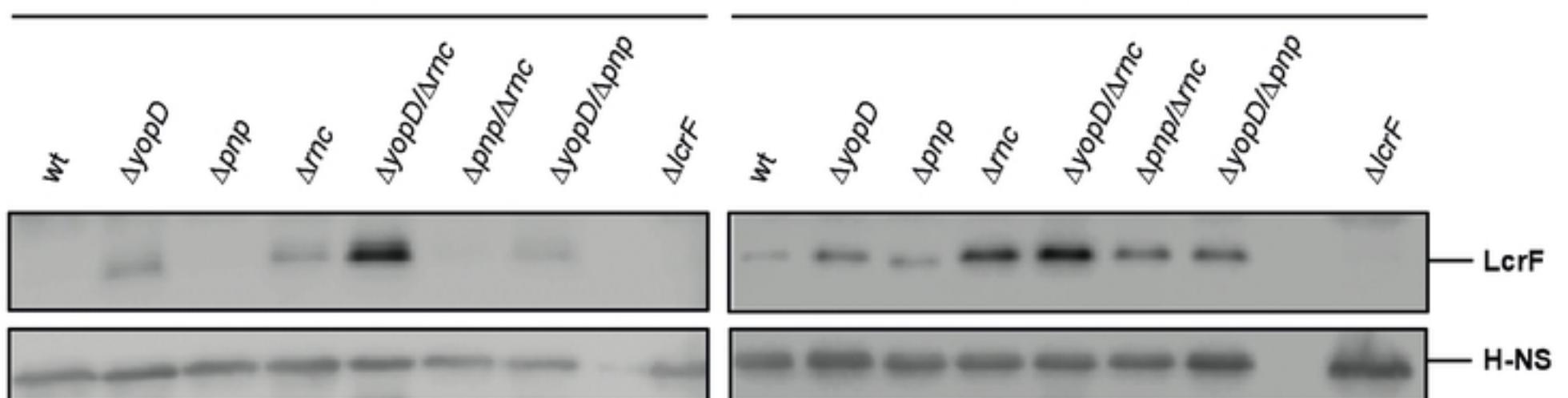
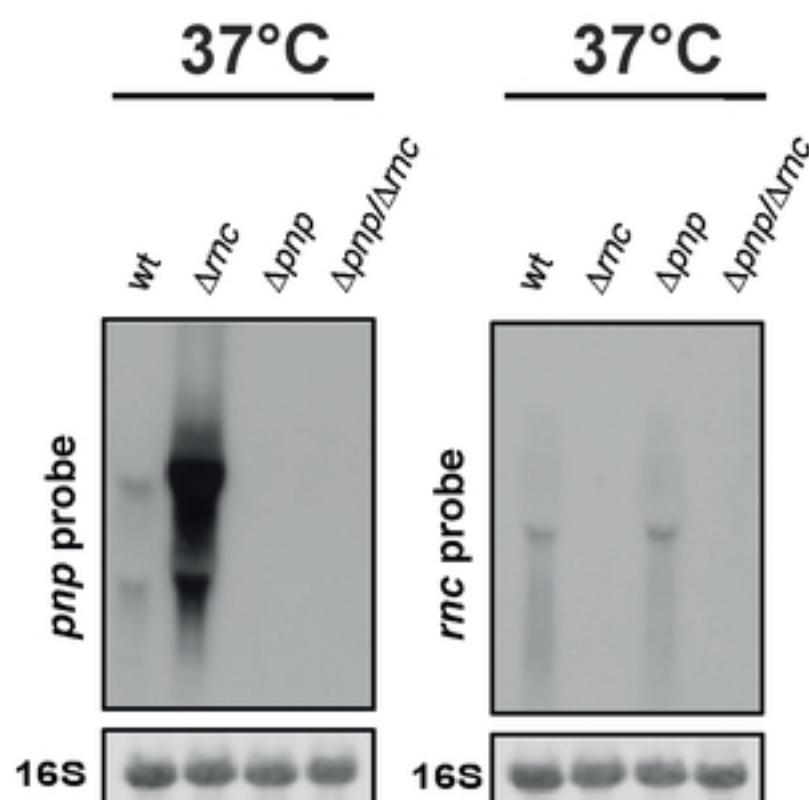
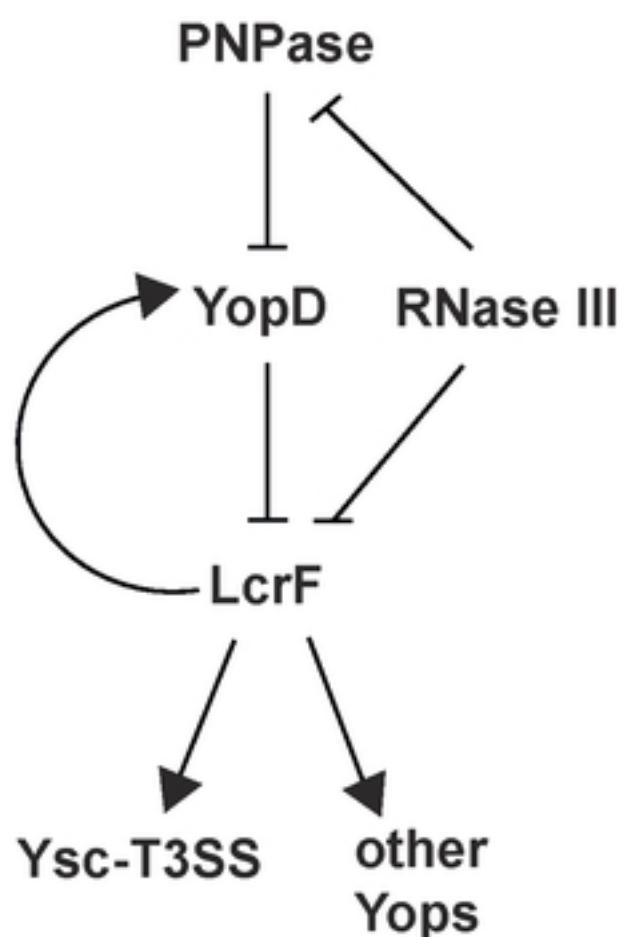



B**C**



Fig. 5: Meyer et al. 2024

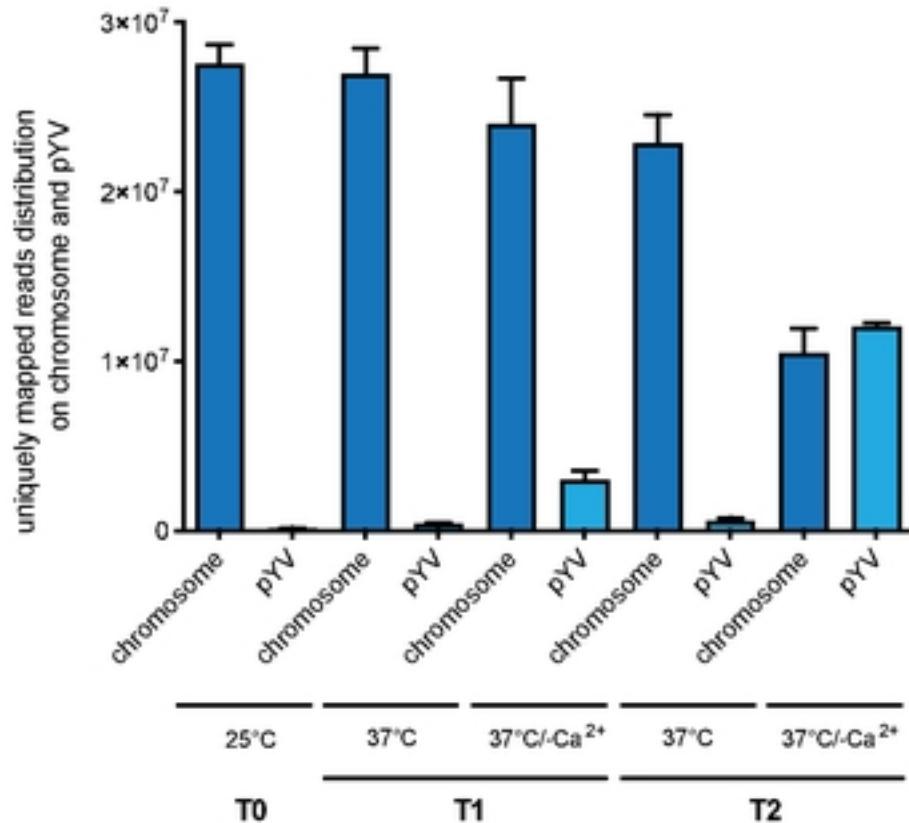
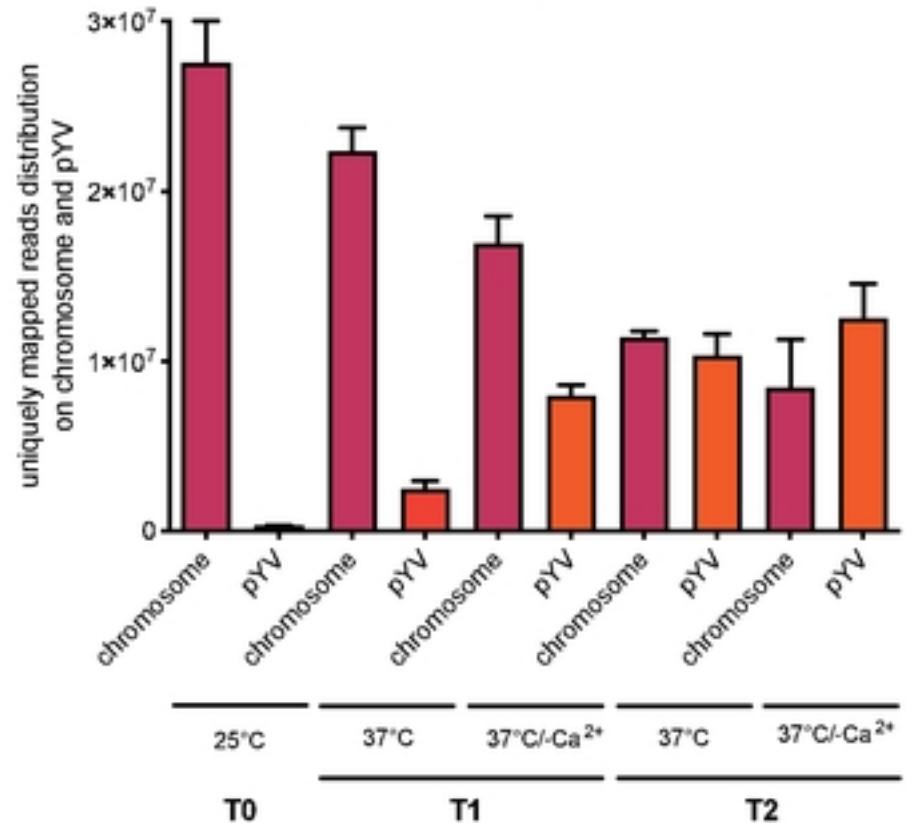
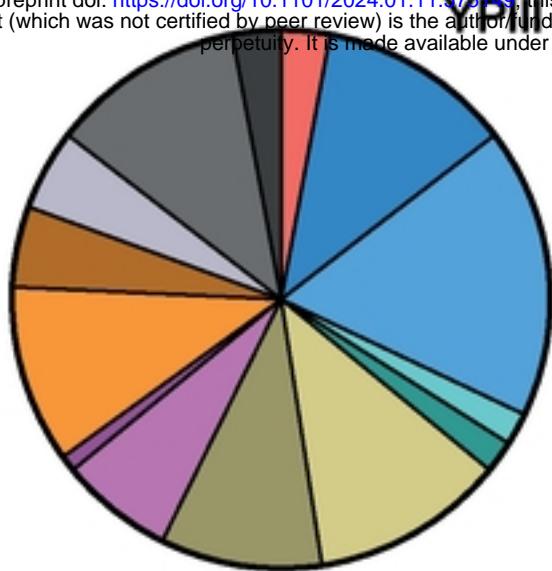
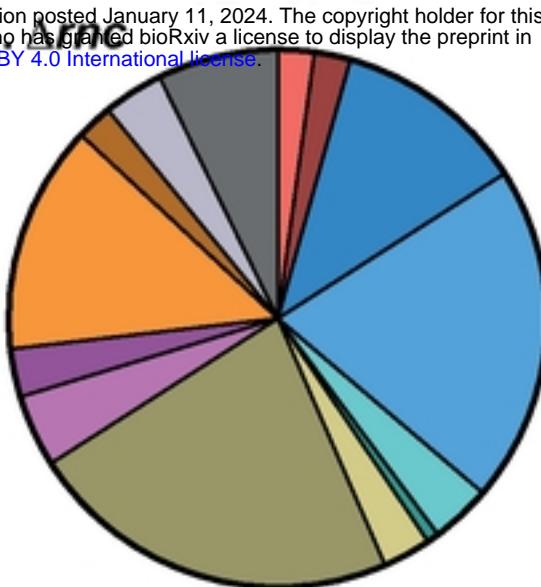
A**B**


bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575149>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

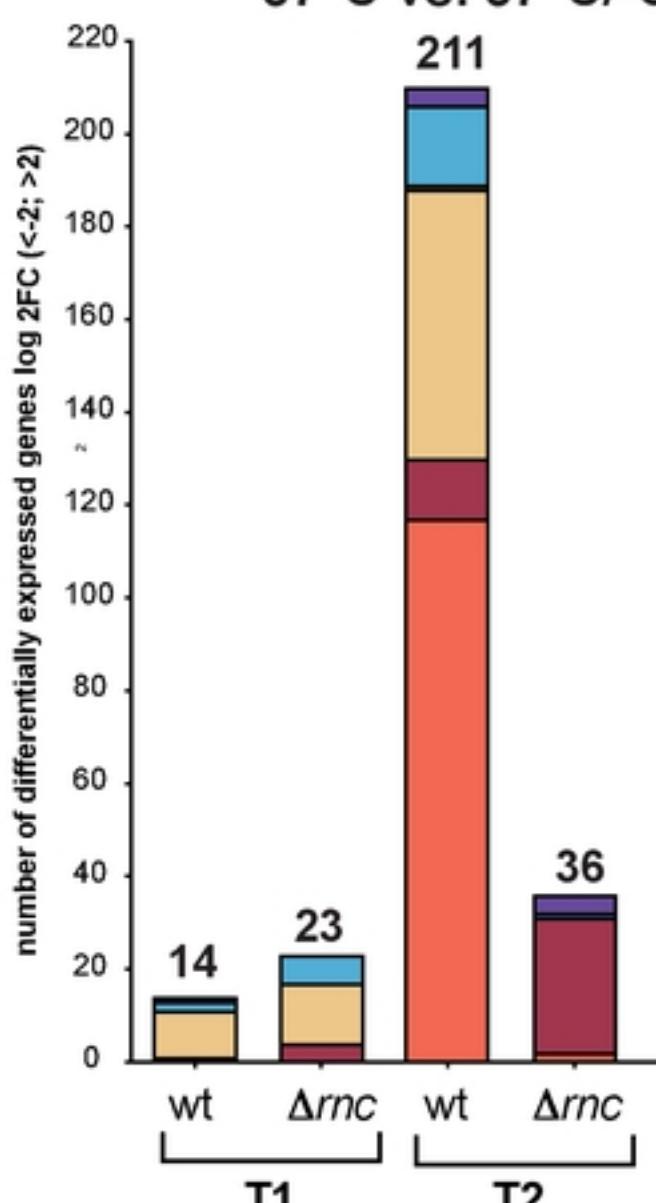
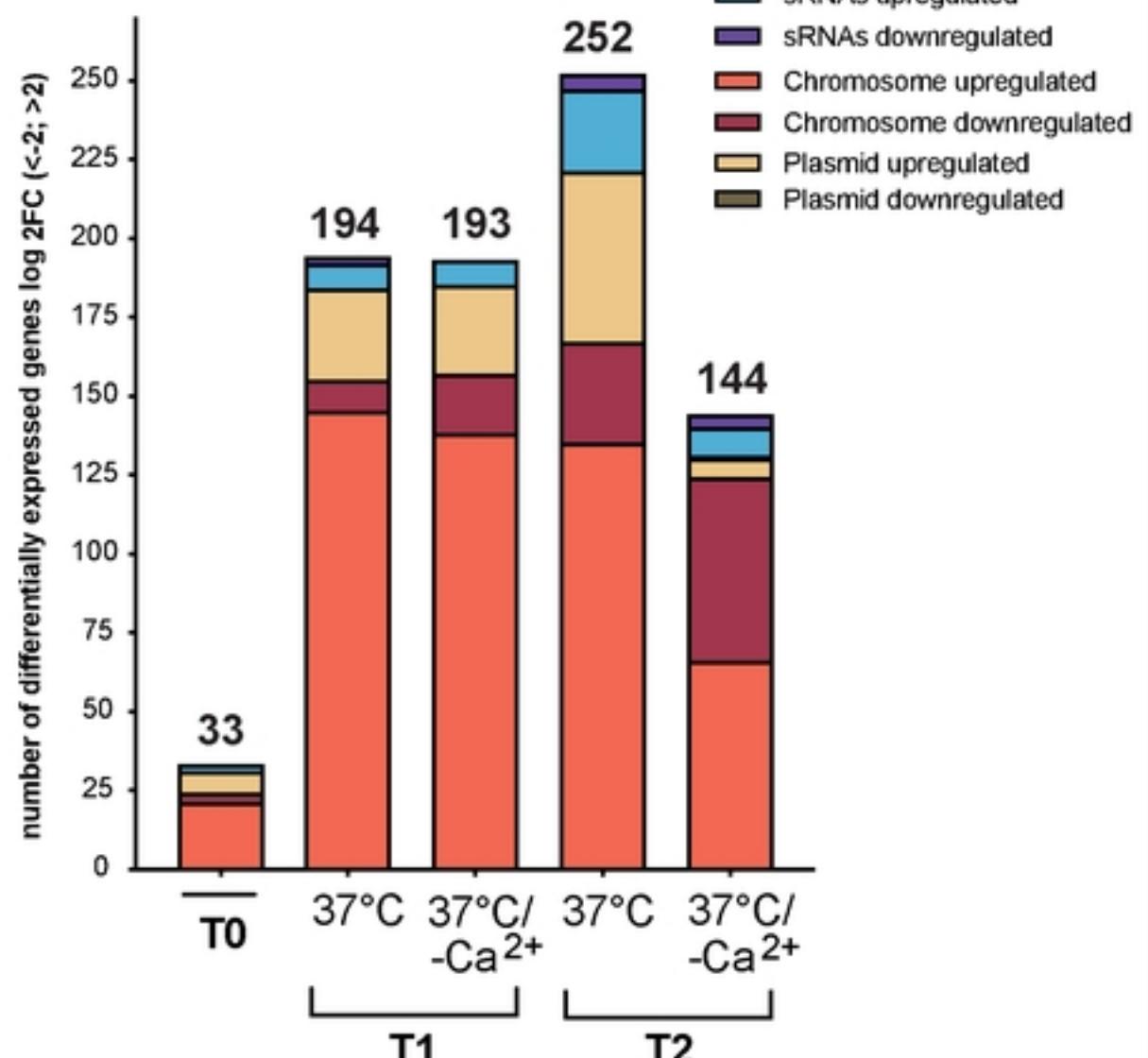
37°C**C****D****Fig. 6:** Meyer et al. 2024




A**B****C****Fig. 7:** Meyer *et al.* 2024

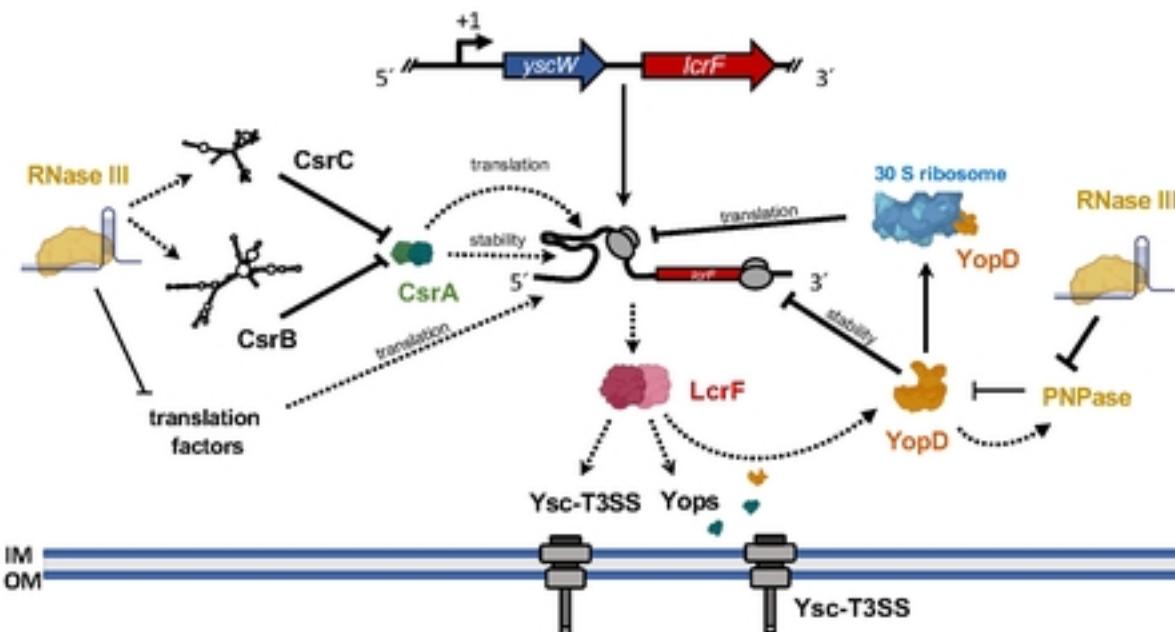
A**B**





Fig. 8: Meyer et al. 2024

A**37°C****37°C/ Ca^{2+}**



bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575149>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**37°C****37°C/ Ca^{2+}** **C****D**


Fig. 9: Meyer et al. 2024

A**YPIII (wt)****YP356 (Δrnc)****B****T1 37°C****T2 37°C**

- Drug resistance
- Adhesins
- Transporters
- Secretion systems
- Motility/Quorum sensing
- RNA degradation (RNases/Degradosome)
- Ribosome (rRNAs/tRNAs)
- sRNAs
- Outer membrane
- Two component system
- Putative transposase/phage related proteins
- Prokaryotic defense system
- Toxin/Antitoxin
- Transcription

C**37°C vs. 37°C/-Ca²⁺****wt vs. Δrnc** **Fig. 11:** Meyer *et al.* 2024

37°C (non-secretion)

37°C/-Ca²⁺ (secretion/host cell contact)

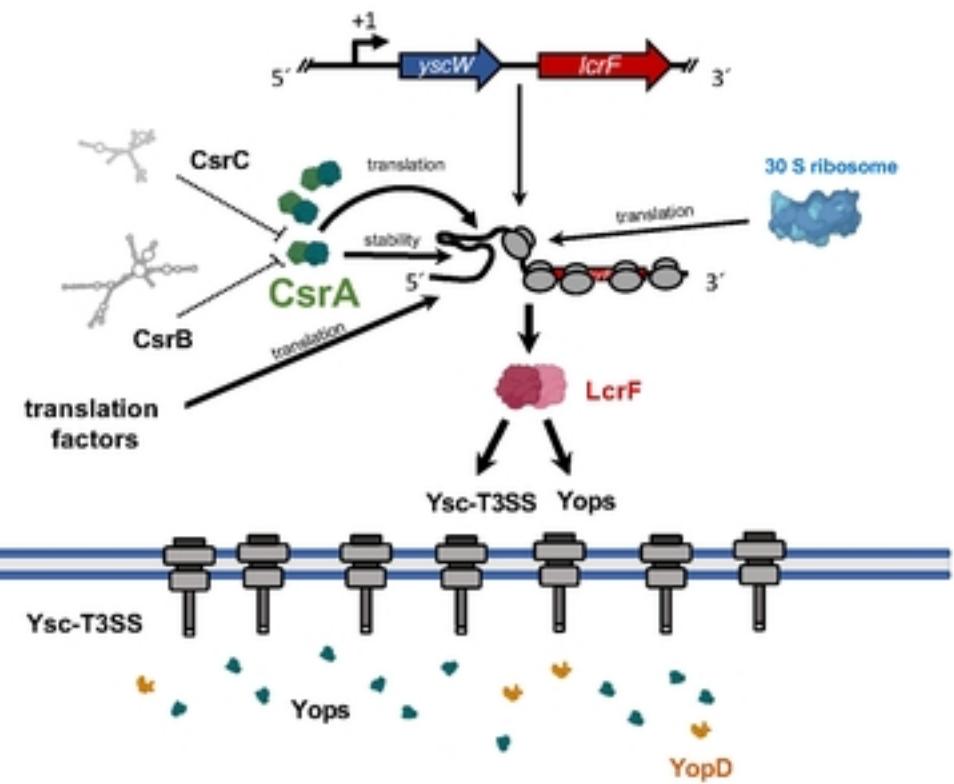
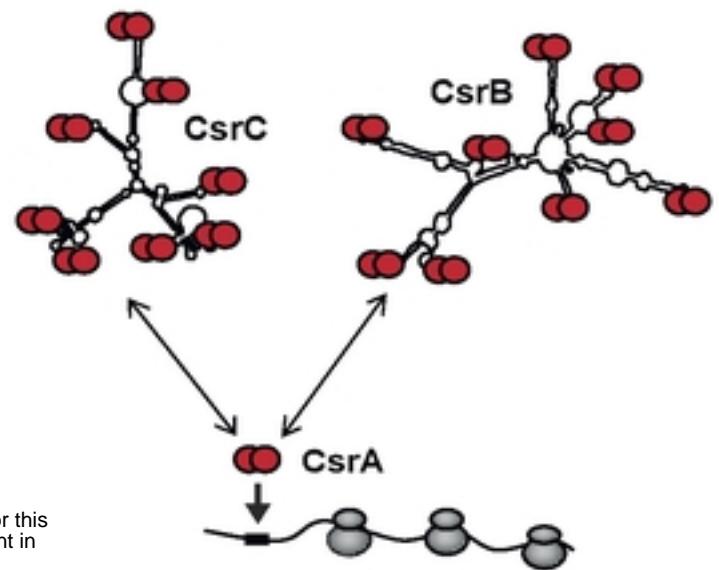
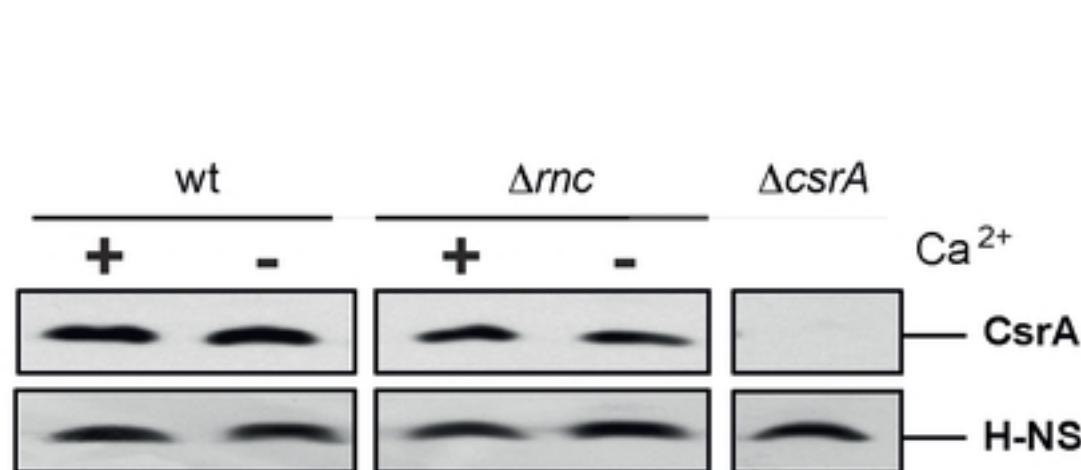
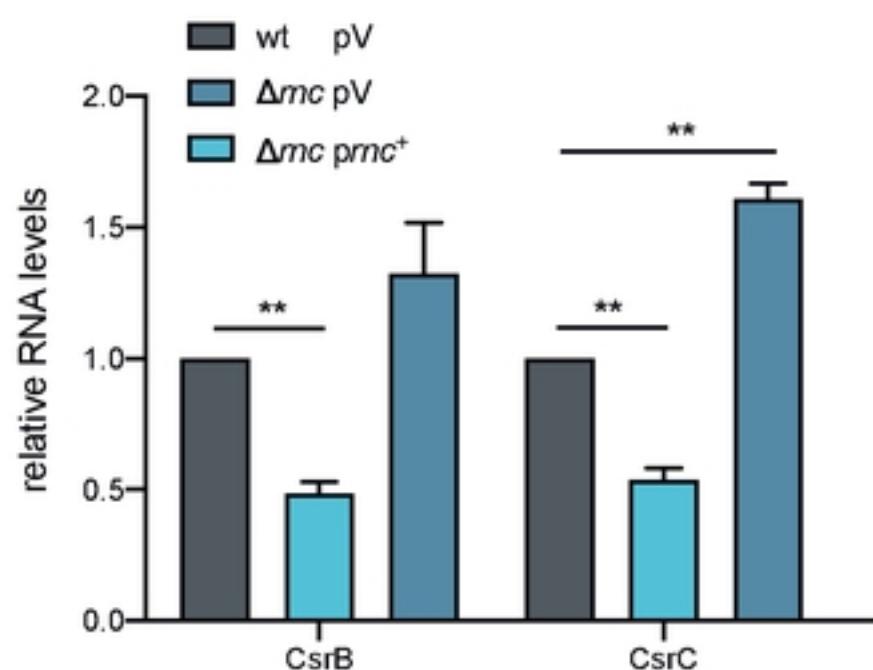
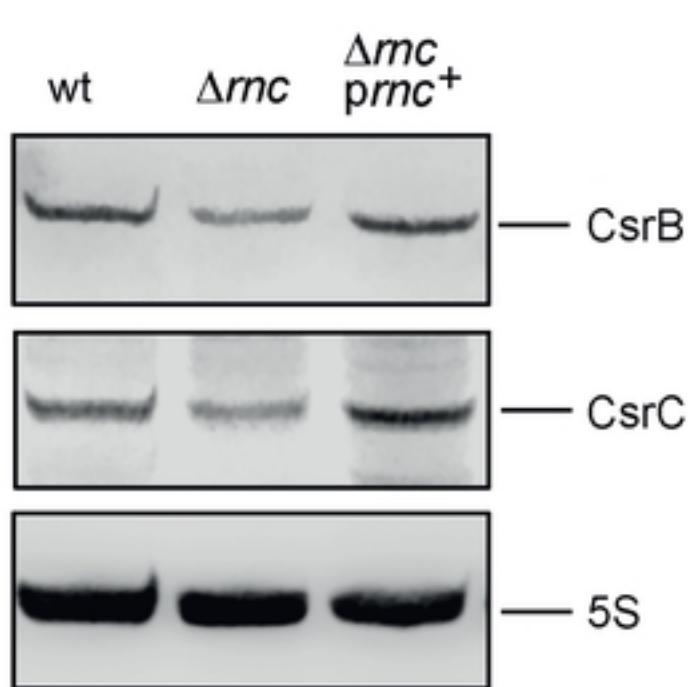






Fig. 12: Meyer et al. 2024

A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.11.575149>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

Fig. 10: Meyer et al. 2024