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Abstract

The Yellow Warbler (Sefophaga petechia) is a small songbird in the New World Warbler family
(Parulidae) that exhibits phenotypic and ecological differences across a widespread distribution
and is important to California's riparian habitat conservation. Here, we present a high-quality de
novo genome assembly of a vouchered female Yellow Warbler from southern California. Using
HiFi long-read and Omni-C proximity sequencing technologies, we generated a 1.22 Gb assembly
including 687 scaffolds with a contig N50 of 6.80 Mb, scaffold N50 of 21.18 Mb, and a BUSCO
completeness score of 96.0%. This highly contiguous genome assembly provides an essential
resource for understanding the history of gene flow, divergence, and local adaptation and can

inform conservation management of this charismatic bird species.
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Introduction
The Yellow Warbler (Setophaga petechia) is a widespread songbird species distributed from
Alaska to northern South America (Figure 1). The species complex comprises up to 43 subspecies
in four distinct subspecies groups that display notable diversity in phenotype and ecology across
their range (Browning, 1994; Klein & Brown, 1994; Salgado-Ortiz et al., 2008; Wilson &
Holberton, 2004). This phenotypic diversity and the presence of both migratory and resident
populations have encouraged investigation into the history of adaptation, divergence, and gene
flow in this species (Chavarria-Pizarro et al., 2019; Chaves et al., 2012; Gibbs et al., 2000;
Machkour-M’Rabet et al., 2023; Milot et al., 2000). Additionally, as a widespread migratory bird
species, the Yellow Warbler inhabits variable environmental conditions across its range, allowing
for the investigation into the influence of climate on geographic variation and genomic capacity to
adapt to climate change (Bay et al., 2018; Chen et al., 2022; DeSaix et al., 2022).

In California, Yellow Warblers are listed as a Species of Special Concern (Shuford et al.,
2008) and have experienced notable declines over the last 50 years (Sauer et al., 2014). Previous
genomic work indicates that the inability to adapt to climate change may play a role in population
declines in California (Bay et al., 2018). California wetlands and riparian corridors are crucial
stopover and breeding habitats for Yellow Warblers and other species of migratory birds. In the
last century, 90-95% of historic wetland and riparian habitats have been lost, and those that remain
are threatened by development and climate change (Dahl, 1990; Krueper, 1996; Poff et al., 2012).
As indicators of healthy riparian habitat, understanding how California Yellow Warbler
populations adapt to dramatic changes in their environment will inform conservation action and
help mitigate habitat loss in other vulnerable and threatened riparian species, like the California

Red-legged Frog (Rana draytonii), the Riparian Brush Rabbit (Sylvilagus bachmani riparius), and
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the Valley Elderberry Longhorn Beetle (Desmocerus californicus dimorphus) (Collinge et al.,
2001; Davidson et al., 2001; Heath & Ballard, 2003; Phillips et al., 2005).

The evolutionary and conservation genomics studies needed to address these questions
increasingly rely on low-coverage, whole genome sequencing (WGS), which requires a high-
quality reference genome for alignment. Reference genome assemblies provide a map of the
structural features and organization of the genome and the choice of reference genome assembly
for WGS studies can impact evolutionary inferences like demographic history and genetic
diversity (Gopalakrishnan et al., 2017). Currently, there are four genome assemblies generated
with short-read sequencing technology for the genus Setophaga. There is one Yellow-rumped
Warbler (S. coronata) chromosome-level assembly (Toews et al., 2016), two Kirtland’s Warbler
(S. kirtlandii) scaffold-level assemblies (Feng et al., 2020), and the existing draft genome assembly
for Yellow Warbler has a length of 1.26 Gb, a total of 18,414 scaffolds, and a scaffold N50 491.7
kb (Bay et al., 2018). The use of an interspecific reference genome assembly can lead to many
errors and biases, including lower mapping ability (especially in regions with higher evolutionary
rates) and inaccurate gene order (Prasad et al., 2022). The high number and relatively short scaffold
length of the existing Yellow Warbler genome assembly could hinder the identification of
structural variants often maintained between and within species and are important in adaptive
evolution, speciation, and generating morphological diversity (Lamichhaney et al., 2016; Mérot et
al., 2020; Wellenreuther & Bernatchez, 2018). Additionally, reference genome assemblies
generated solely from short-read sequencing technology fail to resolve lengths and placement of
repeat regions, such as transposable elements or telomeres, leading to gaps in avian genome
assemblies (Peona et al., 2021). This highlights the need for a high-quality, species-specific

reference genome for WGS studies.
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85 Here, we present a new genome assembly for the Yellow Warbler generated as part of the

86  California Conservation Genomics Project (CCGP) consortium (Shaffer et al., 2022). We used

87  high-molecular-weight (HMW) genomic DNA (gDNA) extracted from a vouchered, female bird

88  collected in California and leveraged Pacific Biosciences (PacBio) HiFi long-read and Dovetail

89  Genomics Omni-C proximity sequencing technologies. This produced a high-quality genome

90  assembly that will allow us to better understand evolutionary processes like phenotypic variation

91  and migration and conduct conservation genomics studies to inform conservation initiatives.

92

93  Methods

94 Biological Materials

95  We sampled muscle, liver, and other tissues from a female Yellow Warbler collected using mist

96  nets near Stephen Sorensen Park (34.60549°N, 117.8306°W) in Los Angeles County, California

97  on September 25, 2020. This migrant Yellow Warbler can presumably be assigned to S. p.

98  brewsteri based on collection date and locality (Browning, 1994) and was collected with approval

99  from the following entities: California Department of Fish and Wildlife Scientific Collecting
100  Permit (#SC-000939), US Fish and Wildlife Services Scientific Collecting Permit (MB708062-0),
101  and US Geological Survey Banding Permit (22804-B). Tissue samples were retrieved and flash-
102 frozen in liquid nitrogen, and the first muscle tissues were frozen within two minutes of specimen
103 collection. A voucher specimen and tissue are deposited at the Natural History Museum of Los
104  Angeles (LACM Bird #122168, KLG4550, LAF9440). Additional tissues for this individual are
105 housed in the CCGP tissue repository at the University of California, Los Angeles under
106  identification YEWA CCGP3.

107
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108  Nucleic acid extraction, library preparation, and sequencing

109  We extracted HMW gDNA from 30mg of flash-frozen heart tissue. We homogenized the tissue
110 by grinding it in a mortar and pestle in liquid nitrogen. We lysed the homogenized tissue at room
111  temperature overnight with 2 ml of lysis buffer containing 100mM NacCl, 10 mM Tris-HCI pH 8.0,
112 25 mM EDTA, 0.5% (w/v) SDS, and 100pg/ml Proteinase K. We treated the lysate with 20pg/ml
113 RNAse at 37:C for 30 minutes. We cleaned the lysate with equal volumes of phenol/chloroform
114  using phase lock gels (Quantabio, MA; Cat # 2302830). We precipitated the DNA from the cleaned
115  lysate by adding 0.4X volume of 5M ammonium acetate and 3X volume of ice-cold ethanol. We
116 ~ washed the pellet twice with 70% ethanol and resuspended it in elution buffer (10mM Tris, pH
117  8.0). We measured DNA purity using absorbance ratios (260/280 = 1.87 and 260/230 = 2.29) using
118  a NanoDrop ND-1000 spectrophotometer. We quantified DNA yield (30pg) using a Qubit 2.0
119  Fluorometer (Thermo Fisher Scientific, MA). We verified HMW gDNA integrity on a Femto pulse
120  system (Agilent Technologies, CA), where 80% of the DNA was found in fragments above 120
121  Kb.

122 According to the manufacturer’s instructions, we constructed the HiFi Single Molecule,
123 Real-Time (SMRT) library using SMRTbell Express Template Prep Kit v2.0 (PacBio, CA; Cat.
124 #100-938-900). We sheared HMW gDNA to a target DNA size distribution between 15 — 20 kb
125  and concentrated it using 0.45X of AMPure PB beads (PacBio; Cat. #100-265-900). We performed
126  the enzymatic incubations as follows: removal of single-strand overhangs at 37°C for 15 minutes,
127  DNA damage repair at 37°C for 30 minutes, end repair at 20°C for 10 minutes, A-tailing at 65°C
128  for 30 minutes, ligation of overhang adapter v3 at 20°C for 60 minutes, ligase inactivation at 65°C
129  for 10 minutes, and nuclease treatment at 37°C for 1 hour. We purified and concentrated the library

130 with 0.45X Ampure PB beads for size selection to collect fragments greater than 7-9 kb using the
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131  BluePippin/PippinHT system (Sage Science, MA; Cat #BLF7510/HPE7510). The HiFi library
132 averaged 15 — 20 kb. It was sequenced at UC Davis DNA Technologies Core (Davis, CA) using
133 two 8M SMRT cells, Sequel II sequencing chemistry 2.0, and 30-hour movies each on a PacBio
134 Sequel II sequencer.

135 We used the Omni-C™ Kit (Dovetail Genomics, CA) for Omni-C proximity sequencing
136  according to the manufacturer’s protocol with slight modifications. First, we ground muscle tissue
137  (Sample YEWA CCGP3; LACM Bird #122168, KLG4550, LAF9440) with a mortar and pestle
138  while cooled with liquid nitrogen. Subsequently, chromatin was fixed in place in the nucleus. We
139  passed the suspended chromatin solution through 100 pum and 40 um cell strainers to remove large
140  debris. We digested fixed chromatin under various conditions of DNase I until a suitable fragment
141  length distribution of DNA molecules was obtained. We repaired chromatin ends, ligated a
142 biotinylated bridge adapter, and performed proximity ligation of adapter-containing ends. After
143 proximity ligation, crosslinks were reversed, and the DNA was purified from proteins. We treated
144 purified DNA to remove biotin that was not internal to ligated fragments. We generated a next-
145  generation sequencing library using an NEB Ultra Il DNA Library Prep kit (New England Biolabs,
146  MA) with an Illumina-compatible y-adapter. Then, we captured biotin-containing fragments using
147  streptavidin beads. We split the post-capture product into two replicates before PCR enrichment
148  to preserve library complexity, with each replicate receiving unique dual indices. The library was
149  sequenced at the Vincent J. Coates Genomics Sequencing Lab (Berkeley, CA) on an Illumina
150  NovaSeq platform 6000 (Illumina, CA) to generate approximately 100 million 2 x 150 bp read
151  pairs per GB genome size.

152

153 Nuclear genome assembly
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154  We assembled the Yellow Warbler genome following the CCGP assembly pipeline Version 4.0, as
155 outlined in Table 1, which lists the tools and non-default parameters used in the assembly. The
156  pipeline uses PacBio HiFi reads and Omni-C data to produce high-quality and highly contiguous
157  genome assemblies, minimizing manual curation. We removed remnant adapter sequences from
158  the PacBio HiFi dataset using HiFiAdapterFilt (Sim et al., 2022). Then, we obtained the initial
159  phased diploid assembly using HiFiasm (Cheng et al., 2022) with the filtered PacBio HiFi reads
160  and the Omni-C dataset. We aligned the Omni-C data to both assemblies following the Arima
161  Genomics Mapping Pipeline (https://github.com/ArimaGenomics/mapping_pipeline) and then
162  scaffolded both assemblies with SALSA (Ghurye et al., 2017, 2019).

163 We generated Omni-C contact maps for both assemblies by aligning the Omni-C data with
164 BWA-MEM (Li, 2013), identified ligation junctions, and generated Omni-C pairs using pairtools
165  (Goloborodko et al., 2018). We generated a multi-resolution Omni-C matrix with a cooler
166  (Abdennur & Mirny, 2020) and balanced it with hicExplorer (Ramirez et al., 2018). We used
167  HiGlass [Version 2.1.11] (Kerpedjiev et al., 2018) and the PretextSuite (https://github.com/wtsi-
168  hpag/PretextView; https://github.com/wtsi-hpag/PretextMap; https://github.com/wtsi-
169  hpag/PretextSnapshot) to visualize the contact maps and then we checked the contact maps for
170  major mis-assemblies. In detail, if we identified a strong off-diagonal signal and a lack of signal
171  in the consecutive genomic region in the proximity of a join made by the scaffolder, we dissolved
172 it by breaking the scaffolds at the coordinates of the join. After this process, no further manual
173 joins were made. Some remaining gaps (joins generated by the scaffolder) were closed using the
174  PacBio HiFi reads and YAGCloser (https://github.com/merlyescalona/yagcloser). Finally, we

175  checked for contamination using the BlobToolKit Framework (Challis et al., 2020). Given the
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176  fragmentation of the assemblies, these were tagged as primary or alternate based on overall
177  metrics.

178

179  Genome assembly assessment

180 We  generated k-mer counts from the PacBio HiFi reads using meryl
181  (https://github.com/marbl/meryl). The k-mer database was then used in GenomeScope2.0
182  (Ranallo-Benavidez et al., 2020) to estimate genome features, including genome size,
183  heterozygosity, and repeat content. To obtain general contiguity metrics, we ran QUAST
184  (Gurevichetal., 2013). To evaluate genome quality and functional completeness, we used BUSCO
185  (Manni et al., 2021) with the Aves ortholog database (aves odb10) containing 8,338 genes. Base
186  level accuracy (QV) and k-mer completeness were assessed using the previously generated meryl
187  database and merqury (Rhie et al., 2020). We further estimated genome assembly accuracy via
188  BUSCO gene set frameshift analysis using the pipeline described in (Korlach et al., 2017).
189  Measurements of the size of the phased blocks are based on the size of the contigs generated by
190  HiFiasm on HiC mode. We follow the quality metric nomenclature established by (Rhie et al.,
191  2021), with the genome quality code x.y. P.Q.C, where x =log10[contig NG50]; y = log10[scaffold
192 NG50]; P = logl0 [phased block NG50]; Q = Phred base accuracy QV (quality value); C = %
193  genome represented by the first ‘n’ scaffolds, following a known karyotype of 2n =80 for S.
194  petechia (Bird Chromosome Database, Chromosome number data V3.0/2022 - (Degrandi et al.,
195  2020; Hobart, 1991) ). Quality metrics for the notation were calculated on the primary assembly
196  (bSetPetl.0.p).

197

198  Mitochondrial genome assembly
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199  We assembled the mitochondrial genome of S. petechia from the PacBio HiFi reads using the
200  reference-guided pipeline MitoHiFi (Allio et al., 2020; Uliano-Silva et al., 2021). We used the
201  mitochondrial sequence of Setophaga kirtlandii (NCBI:NC 051027.1) as the starting reference
202  sequence. After completion of the nuclear genome, we searched for matches of the resulting
203  mitochondrial assembly sequence in the nuclear genome assembly using BLAST+ (Camacho et
204  al., 2009) and filtered out contigs and scaffolds from the nuclear genome with a percentage of
205  sequence identity >99% and size smaller than the mitochondrial assembly sequence.

206

207  Results

208  Sequencing Data

209  The Omni-C and PacBio HiFi sequencing libraries generated 85.3 million read pairs and 2.7
210  million reads, respectively. The latter yielded 40.87-fold coverage (N50 read length 17,523 bp;
211  minimum read length 41 bp; mean read length 17,110 bp; maximum read length of 54,497 bp).
212 Based on PacBio HiFireads, we estimated a genome assembly size of 1.14 Gb, 0.245% sequencing
213 error rate and 1.16% nucleotide heterozygosity rate using Genomescope2.0. The k-mer spectrum
214  based on PacBio HiFi reads shows (Figure 2A) a bimodal distribution with two major peaks at 19-
215  and 39-fold coverage, where peaks correspond to homozygous and heterozygous states of a diploid
216  species.

217

218  Nuclear genome assembly

219  The final assembly consists of two haplotypes tagged as primary and alternate (bSetPet1.0.p and
220  bSetPetl.0.a). Both genome assembly sizes are similar but not equal to the estimated value from

221  Genomescope2.0 (Figure 2A). The primary assembly (bSetPetl.0.p) consists of 687 scaffolds

10
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222 spanning 1.22 Gb with contig N50 of 6.8 Mb, scaffold N50 of 21.18 Mb, longest contig of 53.52
223  Mb, and largest scaffold of 66.28 Mb. The alternate assembly (bSetPetl.0.a) consists of 530
224 scaffolds, spanning 1.24 Gb with contig N50 of 8.3Mb, scaffold N50 of 21.18 Mb, largest contig
225  40.02 Mb and largest scaffold of 74.56 Mb. The Omni-C contact maps suggest highly contiguous
226  primary and alternate assemblies (Figure 2C and Supplementary Figure S1B). The primary
227  assembly has a BUSCO completeness score of 96.0% using the Aves gene set, a per-base quality
228  (QV)of 62.34, a k-mer completeness of 84.95, and a frameshift indel QV of 41.54. In comparison,
229  the alternate assembly has a BUSCO completeness score of 93.5% using the same gene set, a per-
230  base quality (QV) of 62.79, a k-mer completeness of 81.57, and a frameshift indel QV of 40.43.
231 During manual curation, we identified 13 misassemblies requiring breaking nine joins on
232 the primary assembly and four on the alternate assembly. We were able to close a total of five
233 gaps, three on the primary and two on the alternate assembly. We removed two contigs, one per
234 assembly, corresponding to mitochondrial contaminants. Detailed assembly statistics are reported
235 in Table 2, and a graphical representation of the primary assembly in Figure 2B (see
236  Supplementary Figure SI1A for the alternate assembly). We have deposited both assemblies on
237  NCBI (See Table 2 and Data Availability for details).

238

239 Mitochondrial genome assembly

240  We assembled a mitochondrial genome with MitoHiFi. The final mitochondrial assembly has a
241  size of 16,809 bp. The base composition of the final assembly version is A=30.19%, C=31.77%,
242 G=14.19%, T=23.85%, and consists of 22 unique transfer RNAs and 13 protein-coding genes.
243

244  Discussion

11
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245  Here, we present a highly contiguous genome assembly for the Yellow Warbler with two pseudo
246  haplotypes. Our genome assemblies meet thresholds for proposed quality standards for vertebrate
247  and avian genomes (Jarvis, 2016; Kapusta & Suh, 2017; Rhie et al., 2021). Compared to the
248  existing Setophaga genomes, the primary Yellow Warbler genome assembly presented here has
249  the highest BUSCO completeness (96.0% of Aves orthologs present) and the highest contig N50
250 (6.8 Mb). Although the Yellow-rumped and Kirtland’s Warbler genome assemblies have higher
251  scaffold N50 values, our Yellow Warbler genome assembly has the fewest gaps greater than 5 N’s
252 (284 compared to 49-67K in other Setophaga genome assemblies), which highlights the
253  improvement gained when using long-read sequencing technology in combination with short reads
254  for more contiguous and complete genomes.

255 The reference genome presented here provides an essential resource for evolutionary
256  research and conservation efforts in California and beyond. Future range-wide genomic analyses
257  will facilitate investigations into the history of gene flow and divergence between the various
258  subspecies groups in this complex (Browning, 1994; Chaves et al., 2012; Machkour-M’Rabet et
259  al., 2023). This system-wide genomic context lends itself to investigations into the genetic basis
260  underlying both phenotypic diversity and the evolution of migration (Aguillon et al., 2021;
261  Caballero-Lopez et al., 2022; Delmore et al., 2020; Franchini et al., 2017; Toews et al., 2016).
262  Future landscape genomic analyses investigating environmental associations with genomic
263  variation could identify loci important for local adaptation in this widespread species (Bay et al.,
264  2018; Chen et al., 2022; Forester et al., 2018). Using this framework with future climate models
265  will allow for predictions of how Yellow Warblers may adapt to future climate change and identify
266  both populations that are likely to persist in and vulnerable to future climate change regimes, which

267  will guide local conservation implementation (Fitzpatrick & Keller, 2015; Shaffer et al., 2022).

12
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268  This will be especially important for California populations experiencing population declines and
269  dwindling breeding habitat, which could benefit from direct conservation and management efforts
270  (Heath & Ballard, 2003; Shuford et al., 2008). Overall, the Yellow Warbler genome presented here
271  provides a key resource for investigating phenotypic and ecological evolution and conservation in
272 this charismatic migratory bird species.
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531  Tables
532 Table 1. Assembly pipeline and software used for assembly of the Yellow Warbler genome.

533 Software citations are listed in the text.

Purpose Software” Version

Assembly

adapters HiFiAdapterFilt Commit 64d1c7b

K-mer counting Meryl (k=21) 1

Estimation of genome size and

h . GenomeScope 2
eterozy gosity

De novo assembly (contiging)  HiFiasm (Hi-C Mode, —primary, output

p_ctg.hapl, p_ctg.hap2) 0.16.1-r375
Scaffolding
Omni-C data alignment Arima Genomics Mapping Pipeline Commint 2e74ea4
Omni-C Scaffolding SALSA (-DNASE, -i 20, -p yes) 2
Gap closin YAGCloser (-mins 2 -f 20 -mcc 2 -prt .
P 0.25 -cft 0.2(-p1d 0.2) PT Commit0e34c3b
Omni-C Contact map generation
Short-read alignment BWA-MEM (-5SP) 0.7.17-r1188
SAM/BAM processing samtools 1.11
SAM/BAM filtering pairtools 0.3.0
Pairs indexing pairix 0.3.7
Matrix generation cooler 0.8.10
Matrix balancing hicExplorer (hicCorrectmatrix correct -- 36
filterThreshold -2 4) '
Contact map visualization HiGlass 2.1.11
PretextMap 0.1.4
PretextView 0.1.5
PretextSnapshot 0.0.3
Genome quality assessment
Basic assembly metrics QUAST (--est-ref-size) 5.0.2
Assembly completeness BUSCO (-m geno, -1 aves) 5.0.0
Merqury 2020-01-29
Contamination screening
Local alignment tool BLAST+ (-db nt, -outfmt '6 gseqid
staxids bitscore std' , -max_target seqs 2.1
1, -max_hsps 1, -evalue 1e-25)
General contamination BlobToolKit (PacBlo HiFi Coverage,
screening NCBI Taxa ID =123631, BUSCODB= 2.3.3
aves)

534 *Options detailed for non-default parameters.
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535 Table 2. Sequencing and assembly statistics and accession information for the primary and
536  alternate assemblies of the Yellow Warbler (Setophaga petechia) genome.
Bio Projects CCGP NCBI BioProject PRINA720569
& Vouchers  Genera NCBI BioProject PRINA765861
Species NCBI BioProject PRINAT777222
NCBI BioSample SAMN29044059, SAMN29044060
Specimen identification LACM:Birds122168
NCBI Genome accessions Primary Alternate
Assembly accession JANCRA000000000 JANCRB000000000
Genome sequences GCA 024362935.1 GCA 024372515.1
Genome PacBio HiFi reads Run 1 PACBIO _SMRT (Sequel II) run: 2.7M spots, 46.9G
Sequence bases, 35.6Gb downloads
Accession SRX16742538
Omni-C [llumina reads ~ Run 1 ILLUMINA (Illumina NovaSeq 6000) run: 85.3M spots,
25.8G bases, 8.6Gb
Accession SRX16742539, SRX16742540
Genome  Assembly identifier (Quality code”) bSetPet1(6.7.P6.Q62.C)
As.sembly . HiFi Read coverageb 40.87X
Quality Metrics Primary Alternate
Number of contigs 971 776
Contig N50 (bp) 6,807,045 8,368,636
Contig NG50° 7,219,428 8,924,963
Longest Contigs 53,526,829 40,027,624
Number of scaffolds 687 530
Scaffold N50 21,188,473 21,188,473
Scaffold NG50° 21,769,140 20,409,353
Largest scaffold 66,288,485 74,562,066
Size of final assembly 1,222,385,128 1,249,765,916
Phased block NG50° 7,391,252 9,325,426
Gaps per Gbp (# Gaps) 232(284) 197(246)
Indel QV (Frame shift) 41.54557 40.4344848
Base pair QV 62.3497 62.7988
Full assembly = 62.5709
k-mer completeness 84.9555 81.57
Full assembly = 99.2811
BUSCO c s D° F M
completeiess P 96.00% 95.30% 0.70% 0.60% 3.40%
(aves) n=
Al 93.50% 92.50% 1.00% 0.60% 5.90%
Organelles 1 complete mitochondrial sequence CMO044545.1
*Assembly quality code x.y.P.Q.C derived notation, from (Rhie et al. 2021). x = log10[contig NG50]; y = log10[scaffold
NG50]; P = log10 [phased block NG50]; Q = Phred base accuracy QV (Quality value); C = % genome represented by the
first ‘n’ scaffolds, following a known karyotype for S. petechia of 2n=80 (Bird Chromosome Database, Chromosome
number data V3.0/2022; Degrandi et al., 2020; Hobart, 1991). Quality code for all the assembly denoted by primary
assembly (bSetPet1.0.p)
°Read coverage and NGx statistics have been calculated based on the estimated genome size of 1.14 Gb
“BUSCO Scores. Complete BUSCOs (C). Complete and single-copy BUSCOs (S). Complete and duplicated BUSCOs
(D). Fragmented BUSCOs (F). Missing BUSCOs (M).
537 d(P)n'mary and (A)lternate assembly values.
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538  Figures

[ Year-round
[l Breeding

[ Migrating

[l Non-breeding

539

540  Figure 1. Geographic variation and distribution of Yellow Warblers (Setophaga petechia). A) The
541  Northern (aestiva) group includes migratory subspecies with chestnut streaking on the breast.
542  Northern subspecies breed in North America and winter in Central and northern South America.
543  Photo taken by R. S. Terrill at Piute Ponds, Los Angeles, CA, USA. B) The Mangrove
544 (erithachorides) group includes resident subspecies with a characteristic all chestnut head.
545  Mangrove subspecies inhabit mangroves along the coasts of Central and northern South America
546  year-round. Photo taken by R. S. Terrill on Isla Holbox, Quintana Roo, MX. C) The Galapagos
547  (aureola) and Golden (petechia) subspecies groups includes resident subspecies with a chestnut
548  cap and thick breast streaking except for S. p. ruficapilla from Martinique which exhibits the

549  Mangrove phenotype. Populations of the Galapagos subspecies are found on the Galapagos Islands
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550  and Cocos Island off Costa Rica and Golden subspecies are found on the islands of the Caribbean.
551 Photo taken by W. L. E. Tsai on Isla Cozumel, Quintana Roo, MX. D) Map of species
552  distributional abundance (Fink et al., 2022). Shaded colors indicate seasonal shifts in distributions:

553  year-round (purple), breeding (red), migrating (yellow), and non-breeding (blue).
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555  Figure 2. Visual overview of genome assembly metrics. A) Kmer spectra output generated from
556  PacBio HiFi data without adapters using GenomScope2.0. The bimodal pattern observed
557  corresponds to a diploid genome. K-mers covered at lower coverage and lower frequency
558  correspond to differences between haplotypes, whereas the higher coverage and higher frequency
559  k-mers correspond to the similarities between haplotypes. B) BlobToolKit Snail plot showing a
560  graphical representation of the quality metrics presented in Table 2 for the Sefophaga petechia
561  primary assembly (bSetPet1.0.p). The plot circle represents the full size of the assembly. From the
562  inside-out, the central plot covers scaffold and length-related metrics. The central light gray spiral
563  shows the cumulative scaffold count with a white line at each order of magnitude. The red line
564  represents the size of the longest scaffold; all other scaffolds are arranged in size-order moving
565  clockwise around the plot and drawn in gray starting from the outside of the central plot. Dark and
566  light orange arcs show the scaffold N50 and scaffold N90 values. The outer light and dark blue
567  ring show the mean, maximum, and minimum GC versus AT content at 0.1% intervals (Challis et
568 al. 2020). C) Omni-C contact map for the primary genome assembly generated with
569  PretextSnapshot. Omni-C contact maps translate proximity of genomic regions in 3D space to
570  contiguous linear organization. Each cell in the contact map corresponds to sequencing data
571  supporting the linkage (or join) between 2 such regions. Scaffolds are separated by black lines and
572 higher density corresponds to higher levels of fragmentation.
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