

1 **Mechanism and regulation of cargo entry into the Commander**

2 **recycling pathway**

3

4 Rebeka Butkovič^{1,*}, Alexander P. Walker^{1,†}, Michael D. Healy^{2,†}, Kerrie E. McNally^{1,‡},
5 Meihan Liu², Kohji Kato¹, Brett M. Collins^{2,*}, Peter J. Cullen^{1,*}.

6

7 ¹School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8
8 1TD, UK.

9 ²Centre for Cell Biology of Chronic Disease, Institute for Molecular Biosciences, The
10 University of Queensland, St. Lucia, QLD 4072, Australia.

11 [†]equal contributions

12 [‡]present address: MRC Laboratory of Molecular Biology, CB2 0QH, Cambridge, UK

13 *co-corresponding authors: rebeka.butkovic@bristol.ac.uk; b.collins@imb.uq.edu.au;
14 pete.cullen@bristol.ac.uk

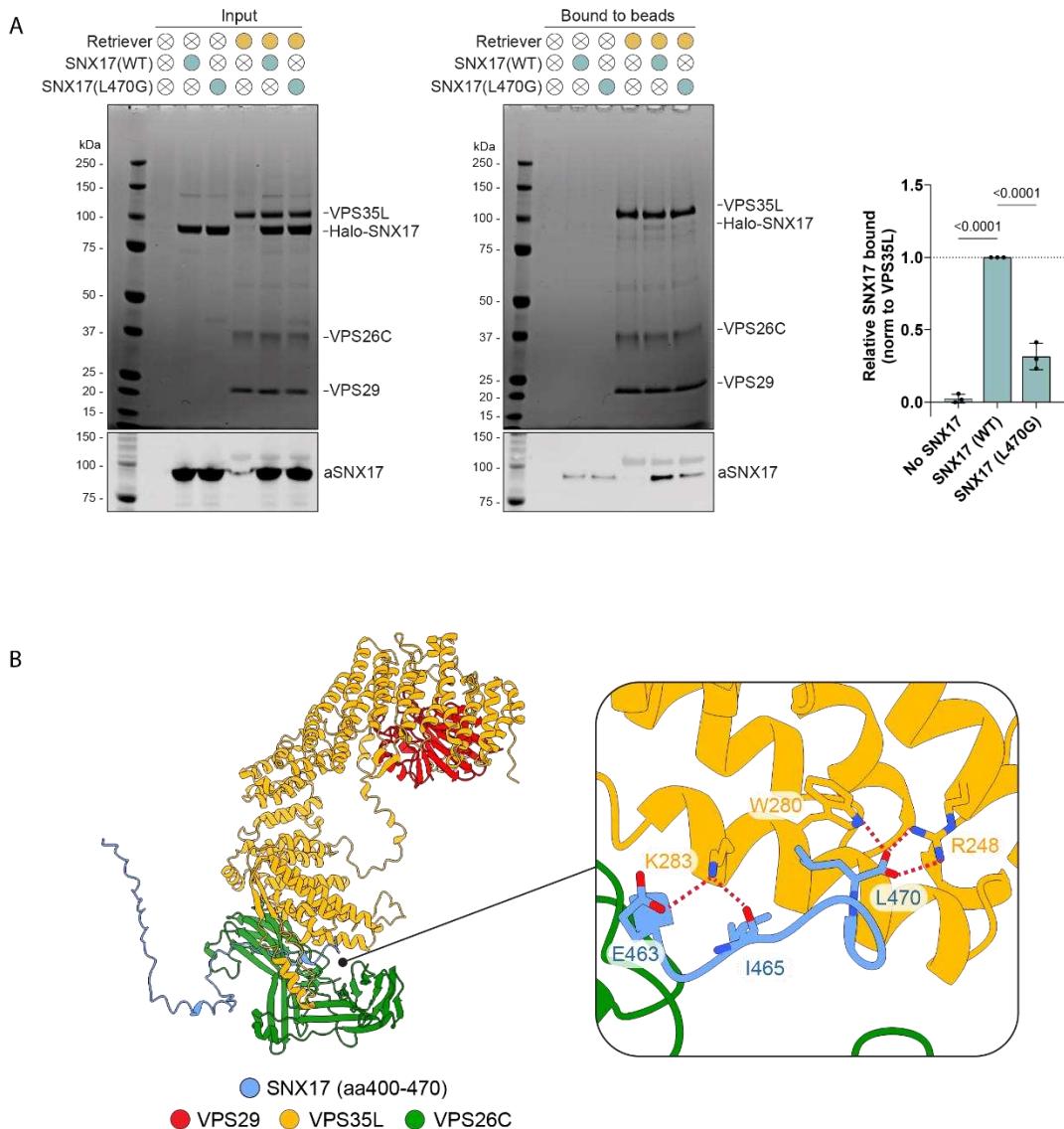
15

19 **ABSTRACT (word count - 189)**

20 Commander is a multiprotein complex that orchestrates endosomal recycling of diverse
21 integral cargo proteins and in humans is required for normal skeletal, brain, kidney, and
22 cardiovascular development. While the structure of this complex has recently been
23 described, the central question of how cargo proteins are selected for entry into the
24 Commander recycling pathway remains unclear. Here using recombinant protein
25 reconstitution and *in silico* predictions we identify the evolutionary conserved mechanism
26 through which the unstructured carboxy-terminal tail of the integral protein adaptor sorting
27 nexin-17 (SNX17) directly binds to the Retriever sub-complex of Commander. SNX17
28 adopts an autoinhibited conformation where its carboxy-terminal tail occupies the cargo
29 binding groove. Competitive cargo binding overcomes this autoinhibition, promoting
30 SNX17 endosomal residency and the release of the carboxy tail for Retriever association.
31 Using molecular cell biology and high-resolution microscopy, we establish the central
32 importance of SNX17-Retriever association in the handover of integrin and lipoprotein
33 receptor cargoes into pre-existing endosomal retrieval sub-domains for entry into the
34 recycling pathway. In describing the principal mechanism of cargo entry into the
35 Commander recycling pathway we provide key insight into the function and regulation of
36 this evolutionary conserved sorting complex.

37

38 **INTRODUCTION**


39 The intracellular eukaryotic endosomal network sorts and transports thousands of integral
40 membrane proteins and their associated proteins and lipids (Cullen and Steinberg, 2018;
41 Norris and Grant, 2020; Weeratunga et al., 2020). Central to network function are multi-
42 protein complexes that coordinate sequence-dependent recognition of integral proteins
43 with the biogenesis of vesicular and tubular transport carriers (McNally and Cullen, 2018;
44 Chen et al., 2019; McDonald, 2021). Retriever is an essential cargo sorting complex and
45 is a stable heterotrimer of VPS26C, VPS35L and VPS29, that together with the
46 dodecameric CCDC22, CCDC93, COMMD (CCC) complex and DENND10, forms the 16-
47 subunit Commander super-assembly (Phillips-Krawczak et al., 2015; Mallam and
48 Marcotte, 2017; McNally et al., 2017; Boesch et al., 2023; Healy et al., 2023; Laulumaa
49 et al., 2023). Defects in Commander assembly and function are associated with metabolic
50 disorders including hypercholesterolemia (Bartuzi et al., 2016; Fedoseienko et al., 2018;
51 Rimbert et al., 2020; Vos et al., 2023), viral infection (Daniloski et al., 2021; Zhu et al.,
52 2021), and lead to Ritscher-Schinzel syndrome, a multi-system developmental disorder
53 characterized by abnormal craniofacial features, cerebellar hypoplasia, and stunted
54 cardiovascular development (Kolanczyk et al., 2015; Kato et al., 2020; Otsuji et al., 2023).
55 In the Commander trafficking pathway sequence-dependent integral protein recognition
56 is principally mediated by the cargo adaptor sorting nexin-17 (SNX17) (McNally et al.,
57 2017), the FERM domain of which binds to a ØxNxx[Y/F] sorting motif presented in the
58 cytoplasmic facing domains of integral proteins (where Ø is a hydrophobic residue and x
59 is any residue) (van Kerkhof et al., 2005; Bottcher et al., 2012; Steinberg et al., 2012;
60 Ghai et al., 2013). Over 100 integral proteins require SNX17 and Retriever for their
61 endosomal sorting through the Commander axis including members of the integrin and
62 lipoprotein receptor families (McNally et al., 2017). Fundamental to our understanding of
63 the Commander pathway and the dissection of its functional role in health and disease is
64 a central unanswered question: how is SNX17 coupled to Retriever to allow access into
65 the Commander endosomal retrieval and recycling pathway and how is this coupling
66 regulated?

68 **RESULTS AND DISCUSSION**

69 **SNX17 associates with Commander via its extended C-terminal domain**

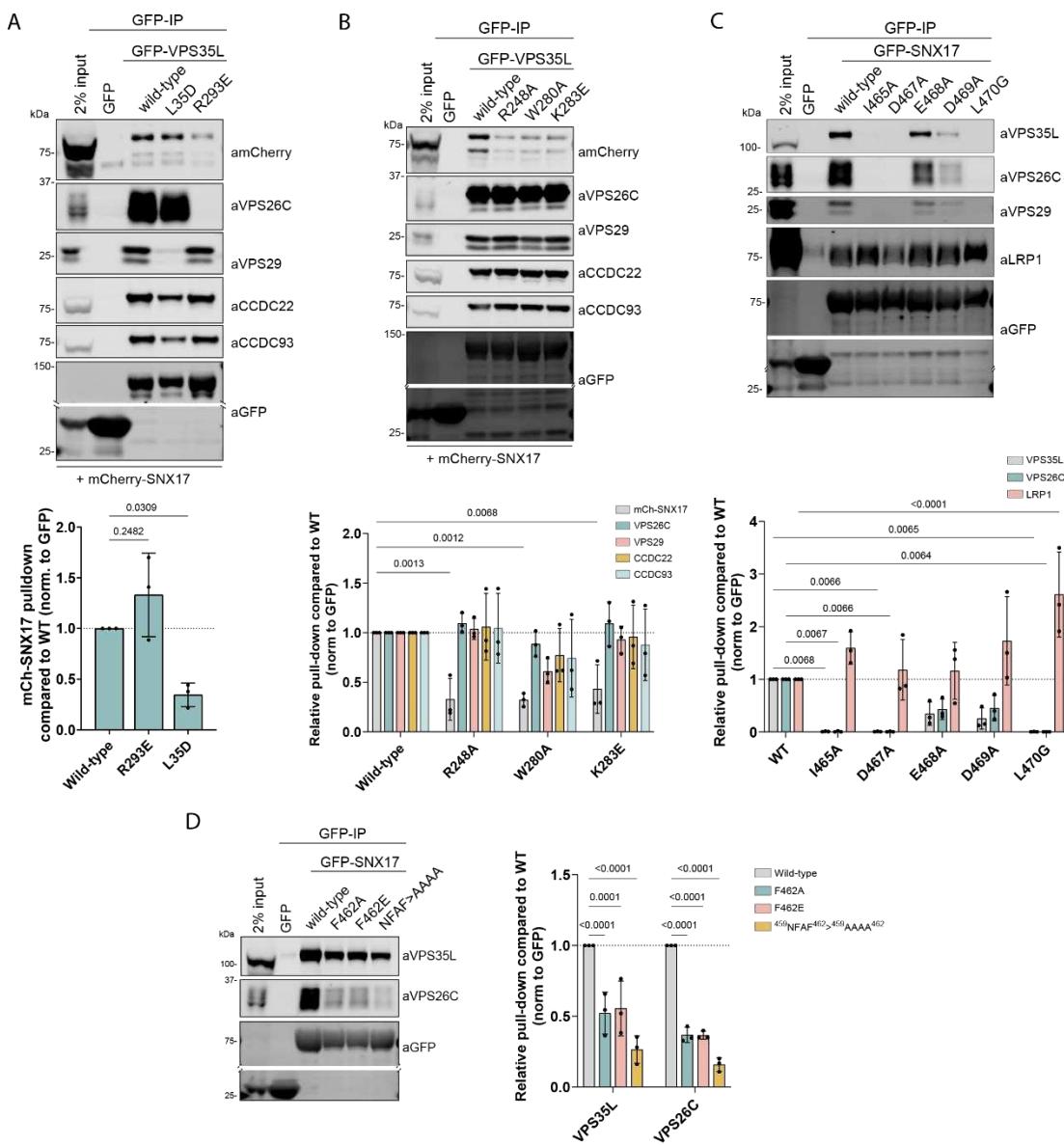
70 Previously we showed that the carboxy-terminal unstructured $^{465}\text{IGDEDL}^{470}$ tail of SNX17,
71 Leu470 being the terminal residue, can bind directly to the PDZ domain of the PDLIM
72 family of proteins (Healy et al., 2022). The same sequence is essential for binding to
73 Commander, and we speculated that this was through direct binding to Retriever (McNally
74 et al., 2017; Healy et al., 2022). To test this association, we used biGbac insect cell
75 expression (Healy et al., 2023) to purify human Retriever and full-length human SNX17
76 (Supp. Fig. 1A). When SNX17 was incubated with nickel affinity resin bound Retriever we
77 observed specific but non-stoichiometric association (Fig. 1A). Consistent with the
78 requirement of the carboxy-terminal Leu470 residue (McNally et al., 2017), recombinant
79 SNX17(L470G) bound to Retriever at significantly lower levels (Fig. 1A, Supp. Fig. 1B).
80 These data establish that SNX17 directly binds to Retriever through a mechanism that
81 involves its unstructured carboxy-terminal tail, a region that is highly conserved across
82 eukaryotic SNX17 (Supp. Fig. 1C).

83

84

85 **Figure 1. SNX17 directly binds to the Retriever complex**

86 **(A)** Purified His-tagged Retriever was mixed with purified SNX17 (WT) or SNX17 (L470G) and
87 incubated with anti-His-tag TALON® Superflow beads. Input mixtures (left) and protein bound to
88 the beads after washing (middle) were analysed by SDS-PAGE followed by Coomassie staining
89 and western blotting. SNX17 bound to the beads was quantified and normalised to the level of
90 VPS35L (right). n = 3, 1-way ANOVA with Dunnett's multiple comparison test, error bars represent
91 s.d. **(B)** AlphaFold2 predictions show a high confidence interaction between the unstructured
92 carboxy-terminal region of SNX17 and Retriever (Fig. S4A).


93

94 Retriever is assembled around a central VPS35L subunit to which VPS26C and VPS29
95 associate at spatially distant amino- and carboxy-terminal regions of the VPS35L a-
96 solenoid (Fig. 1B) (Boesch et al., 2023; Healy et al., 2023; Laulumaa et al., 2023). We
97 employed AlphaFold2 modelling (Jumper et al., 2021; Mirdita et al., 2022) to predict the
98 association between Retriever and the unstructured human SNX17 tail corresponding to
99 residues Gly400-to-Leu470. This predicted a high confidence model where the
100 ⁴⁶⁵IGDEDL⁴⁷⁰ motif of SNX17 bound to a pocket in VPS35L defined by Arg248, Trp280,
101 and Lys283, that resided close to the VPS35L:VPS26C interface: this pocket is highly
102 conserved across eukaryotic Retriever (Fig. 1B). The interface between SNX17 and
103 Retriever extended to include upstream residues ⁴⁵⁹NFAF⁴⁶² in the SNX17 tail engaging
104 primarily with VPS26C. One striking feature of the predicted complex is that the extreme
105 carboxy-terminal Leu470 residue of SNX17 makes extensive contact with VPS35L
106 through hydrophobic interaction with Trp280 and via an electrostatic interaction of the
107 carboxy-terminal carboxyl group with Arg248 (Fig. 1B). This agrees with the critical
108 importance of Leu470 for interaction with Retriever (Fig. 1) and the larger Commander
109 complex in cells (McNally et al., 2017; Healy et al., 2022).

110

111 Consistent with SNX17 binding to Retriever being a feature of the VPS35L:VPS26C
112 interface, a VPS35L mutant that specifically disrupted binding to VPS26C,
113 VPS35L(R293E) (Healy et al., 2023), failed to associate with SNX17 in quantitative cell-
114 based immunoprecipitations where mCherry-SNX17 was co-expressed alongside
115 VPS35L-GFP (Fig. 2A). In contrast a mutant that selectively disrupted VPS29 binding to
116 VPS35L, VPS35L(L35D) (Healy et al., 2023), had no effect on SNX17 association (Fig.
117 2A). Based on the predicted structure of the SNX17-Retriever complex we performed
118 mutagenesis of the proposed SNX17 binding pocket. These mutations confirmed the
119 AlphaFold2 model; VPS35L(R248A), -(W280A), and -(K283E) all showed a pronounced
120 loss of SNX17 association (Fig. 2B). Highlighting the selectivity of these mutations, all
121 VPS35L mutants targeting SNX17 binding retained assembly into Retriever, binding to
122 the CCC complex, and assembly into Commander.

123

124

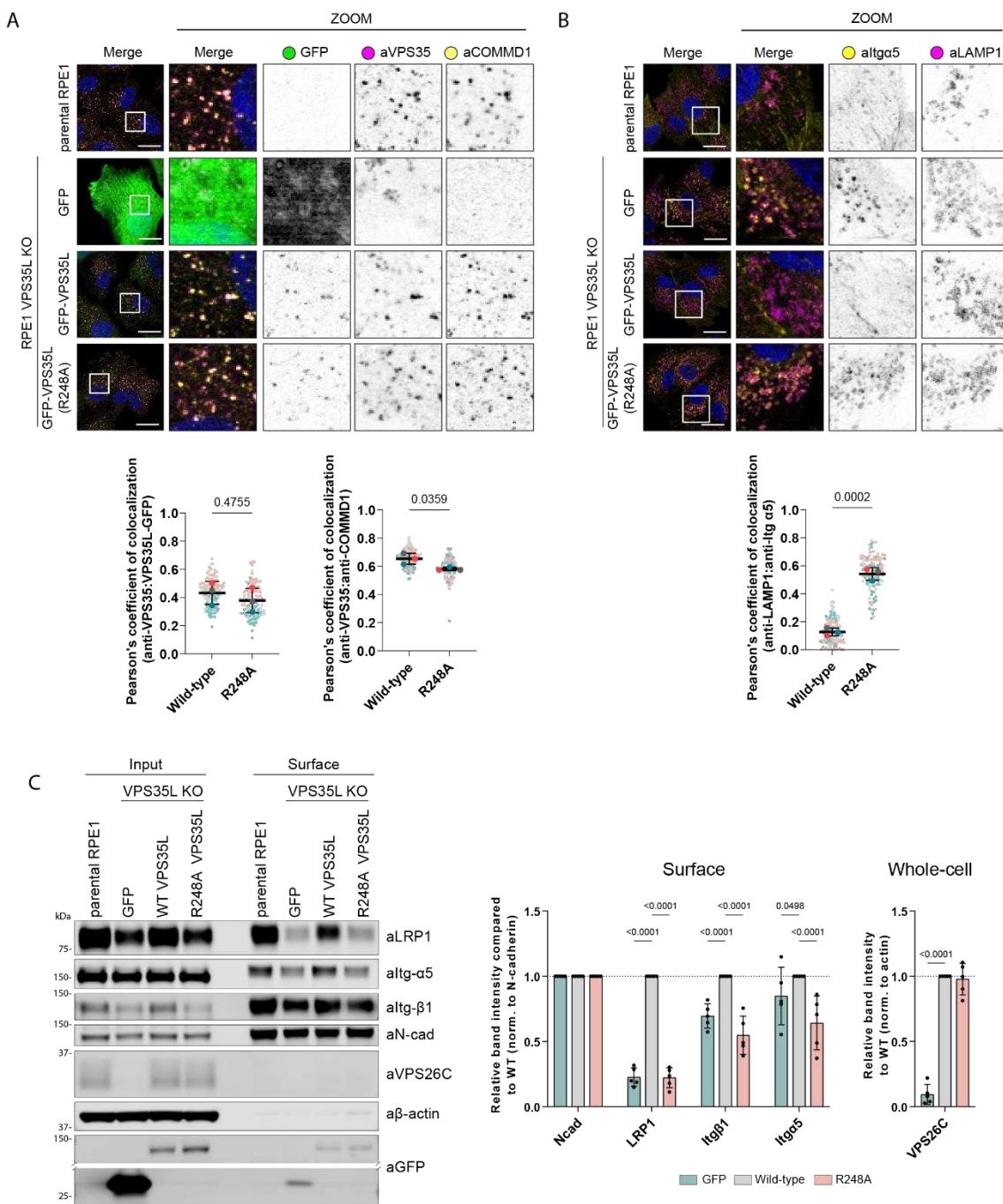
125 **Figure 2. SNX17 binds to the VPS35L-VPS26C interface of Retriever complex**

126 **(A)** HEK293T cells were transiently co-transfected with mCherry-SNX17 and either GFP,
127 VPS35L-GFP or VPS35L-GFP mutants that perturb VPS35L-VPS26C (VPS35L(R293E)) and
128 VPS35L-VPS29 (VPS35L(L35D)) associations prior to GFP-nanotrap isolation and quantitative
129 western analysis of protein band intensities. n = 3, 1-way ANOVA with Dunnett's multiple
130 comparison test, error bars represent s.d. **(B)** HEK293T cells were transiently co-transfected with
131 GFP, or VPS35L-GFP or VPS35L-GFP mutants that target SNX17 binding, and mCherry-SNX17.
132 Protein lysates were then used in GFP-nanotrap experiments. Below, the quantitative analysis of
133 protein band intensities is shown. n = 3, 2-way ANOVA with Dunnett's multiple comparison test,
134 error bars represent s.d., only changes with p < 0.05 are shown. **(C, D)** HEK293T cells were
135 transiently co-transfected with GFP or GFP-SNX17 or GFP-SNX17 mutants in all conserved
136 residues of the terminal ⁴⁶⁵IGDED⁴⁷⁰ motif (C) or conserved ⁴⁵⁹NFAF⁴⁶² motif (D) that target
137 Retriever binding. Protein lysates were then used in GFP-nanotrap experiments. Below, the

138 quantitative analysis of protein band intensities is shown. n = 3, 2-way ANOVA with Dunnett's
139 multiple comparison test, error bars represent s.d., only changes with p < 0.05 are shown.

140

141 To further validate the AlphaFold2 model, we performed targeted mutagenesis of the
142 SNX17⁴⁵⁹NFAF⁴⁶² and⁴⁶⁵IGDEDL⁴⁷⁰ sequences. Quantitative GFP-trap experiments in
143 transiently transfected HEK293T cells established that GFP-SNX17(I465A), -(D467A)
144 and -(L470G) mutants led to near-complete loss of Retriever binding (Fig. 2C). Similarly,
145 SNX17(NFAF-AAAA) and the more conservative SNX17(F462A) and -(F462E) mutants
146 also displayed reduced Retriever and CCC complex association (Fig. 2D). In contrast,
147 SNX17(E468A) and -(D469A) mutations had only a modest impact on Retriever
148 association (Fig. 2C), consistent with the predicted structure where these sidechains
149 make no direct contacts with the Retriever complex (Fig. 1B). Collectively these data
150 show that Retriever coupling of SNX17 is mediated by motifs within its unstructured
151 carboxy termini binding to surfaces at the VPS26C:VPS35L interface of Retriever.
152 Modeling the association of Retriever and Snx17 from *Drosophila melanogaster* (Supp.
153 Fig. 2B) and other species such as zebrafish (not shown) predict essentially identical
154 interactions between SNX17 and the Retriever assembly, supporting the evolutionary
155 conservation of the coupling mechanism.


156

157 Although the molecular details are all very different, at a general level this coupling
158 mechanism is reminiscent of how the related Retromer complex engages its own cargo
159 adaptors sorting nexin-3 (SNX3) and sorting nexin-27 (SNX27): an unstructured region
160 of SNX3 binding to the VPS26A/B:VPS35 interface (Lucas et al., 2016; McGough et al.,
161 2018; Leneva et al., 2021) and the PDZ domain of SNX27 binding to VPS26A/B
162 (Steinberg et al., 2013; Gallon et al., 2014) (Supp. Fig. 2A). While the relative orientation
163 of Retriever to the endosomal membrane has yet to be resolved, we speculate that the
164 similarity in SNX3-Retromer binding, and the ability of SNX17 to associate with PI(3)P,
165 indicates that the SNX17 binding VPS26C-VPS35L interface likely lies in close proximity
166 to the membrane surface (Supp. Fig. 2A).

167

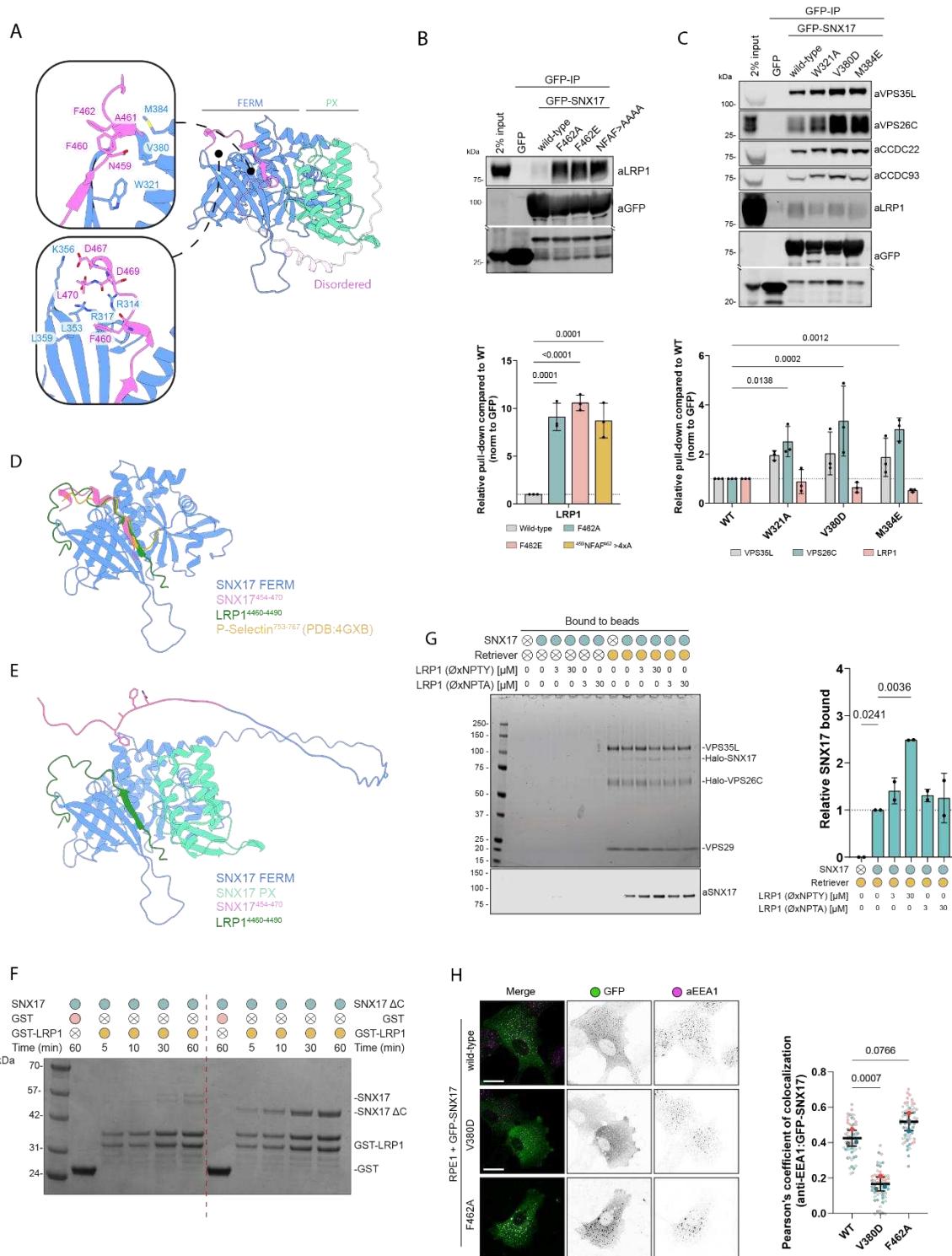
168 **The SNX17-Commander interaction is required for cargo recycling to the plasma
169 membrane**

170 To test the functional importance of direct SNX17-Retriever coupling we performed
171 rescue experiments in a VPS35L CRISPR/Cas9 knock-out RPE1 cell line. Re-expressed
172 wild-type GFP-VPS35L localised to the endosomal network as expected, as did the
173 VPS35L(R248A) mutant which associates normally to Retriever and the CCC complex
174 but is defective in binding to SNX17 (Fig. 3A). Previous studies have shown that loss of
175 VPS35L expression leads to Commander dysfunction including a reduction in the
176 association of endogenous COMMD1, a marker of the CCC complex and Commander
177 assembly to Retromer labelled endosomes (Healy et al., 2023). This phenotype was
178 rescued by re-expression of either GFP-VPS35L or GFP-VPS35L(R248A), although
179 there was a slight but significant trend towards reduced COMMD1 recruitment for the
180 R248A mutant (Fig. 3A). At the functional level, VPS35L KO leads to a reduction in the
181 steady-state cell surface enrichment of a5b1-integrin and the mis-sorting of the
182 internalized integrin into LAMP1-positive late endosomes/lysosomes (McNally et al.,
183 2017), but does not significantly perturb whole-cell levels of SNX17 (Supp. Fig. 2C). In
184 imaging experiments these phenotypes were fully rescued by re-expression of wild-type
185 GFP-VPS35L but not by the SNX17-binding defective GFP-VPS35L(R248A) mutant (Fig.
186 3B). Quantification of the level of cell surface a5b1-integrin confirmed the plasma
187 membrane recycling defect caused by SNX17 binding deficiency and extended the
188 significance of the coupling mechanism to another functionally important SNX17 cargo
189 the lipoprotein receptor LRP1 (van Kerkhof et al., 2005) (Fig. 3C). Together, these data
190 reveal the core mechanism of SNX17 coupling to Retriever and the essential importance
191 of coupling for endosomal retrieval and recycling of SNX17 selected cargoes through the
192 Commander pathway.

194 **Figure 3. SNX17-Retriever coupling is essential for Retriever-cargo retrieval to plasma**
 195 **membrane**

196 **(A)** VPS35L KO RPE1 cells were lentivirally transduced with GFP, VPS35L-GFP or VPS35L-
 197 GFP(R248A). The stably expressed VPS35L(R248A) localizes to endosomes and can partially
 198 rescue COMMD1 localization. Scale bars corresponds to 20 μ m. Pearson's coefficients were
 199 quantified from 3 independent experiments (GFP-VPS35 colocal. wt: n=114 cells, R248A: n=107
 200 cells, VPS35-COMMD1 colocal. wt: n=117 cells, R248A: n=106 cells). Pearson's coefficients for
 201 individual cells and means are presented by smaller and larger circles, respectively, colored

202 according to the independent experiment. The means (n = 3) were compared using a two-tailed
203 unpaired t-test. Error bars represent the mean, S.D. **(B)** VPS35L KO RPE1 cells were lentivirally
204 transduced with GFP, VPS35L-GFP or VPS35L-GFP(R248A). The stably expressed
205 VPS35L(R248A) failed to rescue Itga5 missorting as evidenced by increased co-localisation with
206 lysosomal marker LAMP1. Scale bars corresponds to 20 μ m. Pearson's coefficients were
207 quantified from 3 independent experiments (wt: n=125 cells, R248A: n=113 cells). Pearson's
208 coefficients for individual cells and means are presented by smaller and larger circles,
209 respectively, colored according to the independent experiment. The means (n = 3) were compared
210 using a two-tailed unpaired t-test. Error bars represent the mean, s.d. **(C)** Cell surface proteins
211 were biotinylated in stably rescued RPE1 cells and enriched with streptavidin pull-down to analyze
212 surface protein levels. The VPS35L(R248A) mutant failed to rescue cell surface levels of Itga5,
213 Itgb1 and LRP1, but stabilised VPS26C. The quantitative analysis of protein band intensities is
214 shown. The band intensities were normalised to the respective cell surface N-cadherin levels. n
215 = 5, 2-way ANOVA with Dunnett's multiple comparison test, error bars represent s.d., only
216 changes with p < 0.05 are shown.


217

218 **A SNX17 autoinhibitory sequence regulates cargo and Retriever interactions**

219 We next explored how the coupling between SNX17 and Retriever could be regulated.
220 The FERM domain of SNX17 comprises three submodules, F1, F2 and F3 (Ghai et al.,
221 2013). Alphafold2 modelling suggested that cargo proteins carrying the conserved
222 \emptyset xNxx[Y/F] sorting motif, including β 1-integrin and LRP1, bind through β -sheet
223 augmentation in a complementary groove of the F3 module, in agreement with previous
224 X-ray crystallographic structures (e.g. P-selectin (PDB:4GXB) (Fig. 4A, D). In models of
225 apo SNX17 from various species, the carboxy-terminal 459 NFAF 462 sequence (human
226 numbering) invariably formed an intramolecular association with the F3 groove, mimicking
227 cargo sequences in what would be an autoinhibitory conformation (Fig. 4A). The carboxy-
228 terminal 465 IGDEDL 470 also adopted an intramolecular conformation that would be
229 mutually exclusive of Retriever binding. In our initial modelling of the SNX17 interaction
230 with Retriever we used only the isolated carboxy-terminal disordered region, which yields
231 essentially identical structure predictions across all five models (Fig. 1B, Supp. Fig 4A).
232 However, when we expanded the AlphaFold2 modelling to incorporate full-length SNX17
233 only two of the five predicted structures displayed the same mechanism of SNX17 binding
234 to the VPS26C:VPS35L interface. Three of the five predicted structures showed no
235 interaction with Retriever; in these cases, the 459 NFAF 462 sequence of SNX17 adopted
236 the intramolecular association as seen in apo SNX17 predictions (Fig. 4A; Supp. Fig. 2D).
237 This led us to speculate that such a conformation may reflect an autoinhibited state that

238 negatively regulates coupling to Retriever and hypothesized that such autoinhibition could
239 be released by competitive binding of \emptyset xNxx[Y/F]-containing cargo.

240

241

242 **Figure 4. Intramolecular association between SNX17 FERM domain and ⁴⁵⁹NFAF⁴⁶² 243 autoinhibits SNX17 binding to cargo and Retriever**

244 (A) The C-terminus of SNX17 contains an ⁴⁵⁹NFAF⁴⁶² motif highlighted in bright pink that is 245 predicted by AlphaFold2 (Fig. S4B) to bind into the canonical cargo binding pocket, in addition a

246 number of residues in the extreme C-terminus ($^{467}\text{DEDL}^{470}$) are predicted to stabilize this
247 interaction. **(B)** HEK293T cells were transiently co-transfected with GFP, or GFP-SNX17 or GFP-
248 SNX17 mutants in the $^{459}\text{NFAF}^{462}$ motif to target its intra-molecular association with SNX17-FERM
249 domain. Protein lysates were then used in GFP-nanotrap experiments. Below, the quantitative
250 analysis of protein band intensities is shown. n = 3, 1-way ANOVA with Dunnett's multiple
251 comparison test, error bars represent s.d. **(C)** HEK293T cells were transiently co-transfected with
252 GFP, or GFP-SNX17 or GFP-SNX17 mutants in the FERM(F3) domain to target its intra-
253 molecular association with the $^{459}\text{NFAF}^{462}$ motif. Protein lysates were then used in GFP-nanotrap
254 experiments. Below, the quantitative analysis of protein band intensities is shown. n = 3, 1-way
255 ANOVA with Dunnett's multiple comparison test, error bars represent s.d., only changes with p <
256 0.05 are shown. **(D)** Overlay of the FERM domain of SNX17 bound to P-selectin (PDB: 4GXB),
257 LRP1 (Fig. S4C) and the intramolecular SNX17 peptide (Fig. S4B) (as predicted by AlphaFold2)
258 shows a clear overlap in peptide occupancy within the canonical cargo binding pocket. **(E)** When
259 full length SNX17 is modeled with the cytoplasmic tail of LRP1 $^{4460-4490}$ the intramolecular
260 interaction is perturbed, LRP1 preferentially binds the cargo binding pocket which in turn releases
261 the disordered carboxy-tail of SNX17. **(F)** A GST tagged fragment of the LRP1 cytoplasmic tail
262 was mixed with purified SNX17 (WT) (left) or SNX17 $^{1-390}$ (ΔC) (right) for various lengths of time
263 before been washed and analyzed via Commassie staining of an SDS-PAGE gel. Removal of the
264 disordered carboxy-tail increased both the rate and degree of SNX17 recruitment to GST-LRP1
265 consistent with the proposed autoinhibitory model. GST was used as a negative control to confirm
266 the specificity of the interaction. **(G)** Purified His-tagged Retriever was mixed with purified SNX17
267 (WT) and 3 μM - 30 μM of LRP1 (OxNPTY) or LRP1 (OxNPTA) peptide. The mixtures were
268 incubated with anti-His-tag TALON® Superflow beads, then input mixtures and protein bound to
269 the beads after washing were analyzed by SDS-PAGE followed by Coomassie staining and
270 western blotting. SNX17 bound to beads was quantified and normalised to the level of VPS35L
271 (right). n = 2, 1-way ANOVA with Dunnett's multiple comparison test, error bars represent s.d.,
272 only changes with p < 0.05 are shown. **(H)** RPE1 cells were transiently transfected with GFP-
273 SNX17 wild-type, or SNX17(V380D) or SNX17(F462A) mutants that decrease or enhance cargo
274 binding, respectively. Fixed cells were examined with confocal microscope, and the localisation
275 of the GFP-tagged constructs was compared to the localisation of early endosome marker EEA1.
276 Scale bars corresponds to 20 μm . Pearson's coefficients were quantified from 3 independent
277 experiments (wt: n=62 cells, V380D: n=60 cells, F462A n=64 cells). Pearson's coefficients for
278 individual cells and means are presented by smaller and larger circles, respectively, coloured
279 according to the independent experiment. The means (n = 3) were compared using a were
280 compared using a 1-way ANOVA with Dunnett's multiple comparison test. Error bars represent
281 the mean, s.d.

282
283 To test this hypothesis, we quantified the association of LRP1, a model OxNxx[Y/F] cargo,
284 to SNX17 wild-type and mutants targeting the conserved (Supp. Fig. 1C) intramolecular
285 $^{459}\text{NFAF}^{462}$ motif: SNX17(NFAF-AAAA), SNX17(F462A) and -(F462E). In all cases,
286 immuno-isolation of GFP-tagged SNX17 mutants from HEK293T cells revealed a robust
287 enhancement of LRP1 binding compared to the wild-type protein (Fig. 4B). This suggests
288 that weakening or ablating the intramolecular interaction of the $^{459}\text{NFAF}^{462}$ sequence
289 allows for increased intermolecular binding of OxNxx[Y/F] -containing cargo to the FERM
290 domain. We modelled the association of full-length SNX17 with the cytosolic tail of LRP1

291 using AlphaFold2 which showed the expected β -sheet augmentation of the LRP1
292 $^{4470}\text{NPTY}^{4473}$ sequence with the FERM domain (Ghai et al., 2013) and a displacement of
293 the intramolecular $^{459}\text{NFAF}^{462}$ interaction (Fig. 4E).

294

295 The mutations in the SNX17 carboxy-terminus that enhance LRP1 binding also perturb
296 intermolecular binding of the SNX17 carboxy-terminus to Retriever (Fig. 2D, 4B),
297 therefore we designed a set of complementary mutations in the SNX17 FERM domain
298 required for binding to OxNxx[Y/F] -containing cargo (Ghai et al., 2013); we predicted that
299 these would relieve the autoinhibition with the carboxy-terminal $^{459}\text{NFAF}^{462}$ sequence and
300 thus enhance Retriever association. Indeed, the GFP-tagged SNX17(W321A), -(V380D)
301 and -(M384E) mutants all displayed a modest but significant increase in binding to
302 Retriever and the Commander super-assembly (Fig. 4C). These mutants also showed a
303 reduced binding to the LRP1 cargo, consistent with binding being mediated through the
304 same groove.

305

306 To demonstrate the presence of an autoinhibitory interaction we next preformed a GST
307 pull down with recombinant wild-type SNX17 and SNX17 Δ C, a deletion mutant lacking
308 the carboxy-terminal tail motifs predicted to form the intramolecular inhibition. Consistent
309 with the autoinhibitory model, recruitment of SNX17 Δ C to a recombinant GST-fusion of
310 the cytoplasmic tail of LRP1 was significantly higher than observed to wild-type SNX17
311 (Fig. 4F, Supp. Fig. 2E). Interestingly, at 60 min of co-incubation low level recruitment of
312 wild-type SNX17 to GST-LRP1 was observed consistent with this peptide being sufficient
313 to displace the SNX17 intramolecular autoinhibition.

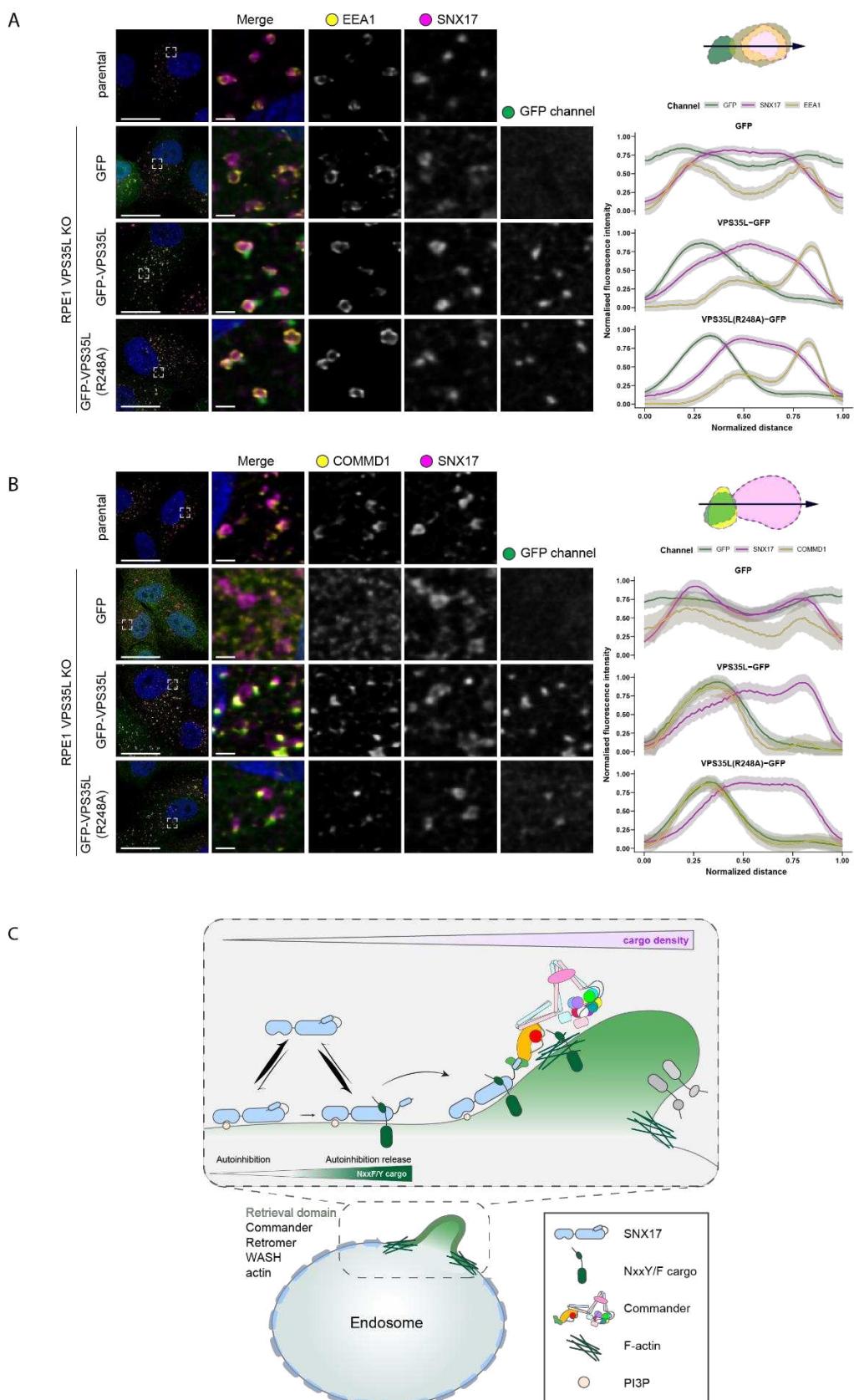
314

315 Finally, to directly test that cargo-binding can relieve auto-inhibition and promote
316 subsequent Retriever binding, we purified recombinant Retriever and full-length SNX17
317 and reconstituted their association in the presence of a synthetic peptide corresponding
318 to the LRP1 cytoplasmic tail containing the $^{4470}\text{NPTY}^{4473}$ OxNxx[Y/F] motif. SNX17
319 associated with Retriever coated beads, and this association was enhanced in a dose-
320 dependent manner by inclusion of the LRP1 peptide (Fig. 4G, Supp. Fig. 2F). In control
321 experiments, a corresponding LRP1 peptide carrying a Y4473A mutation in the

322 \emptyset xNxx[Y/F] motif failed to enhance SNX17 association to Retriever. Collectively, these
323 data support the proposed model whereby an autoinhibited SNX17 conformation is
324 released through a competitive interaction with \emptyset xNxx[Y/F] cargo, which allows for the
325 subsequent association of SNX17 and bound cargos with Retriever and the Commander
326 super-assembly.

327

328 **SNX17 is not enriched with Commander at endosomal retrieval sub-domains**


329 A number of studies have shown that specific endosomal membrane sub-domains are
330 enriched for either degradative components such as ESCRT or recycling machinery
331 including Retromer, Retriever, the CCC complex, and WASH-dependent actin patches
332 (Puthenveedu et al., 2010; Temkin et al., 2011; Derivery et al., 2012; Gomez et al., 2012;
333 van Weering et al., 2012; Bowman et al., 2016; Takatori et al., 2016; Varandas et al.,
334 2016; McNally et al., 2017; Norris et al., 2017; Kvainickas et al., 2019; Singla et al., 2019;
335 reviewed in Norris and Grant, 2020). We therefore explored the importance of SNX17
336 coupling to Retriever and cargo for their endosomal association and sub-domain
337 organization. Like other cargo binding coat complexes, for example AP2 (Jackson et al.,
338 2010), the endosomal localization of SNX17 requires avidity-based co-incident sensing
339 of phosphoinositides, specifically phosphatidylinositol 3-monophosphate (PI(3)P) and
340 \emptyset xNxx[Y/F]-containing cargo proteins (Ghai et al., 2013). Consistent with this, the FERM-
341 domain mutant GFP-SNX17(V380D) that exhibited decreased cargo-binding failed to
342 localize to the endosomal network when transiently transfected into RPE1 cells (Fig. 4H).
343 In contrast, the enhanced cargo-binding GFP-SNX17(F462A) mutant displayed an even
344 more pronounced endosomal association, as evidenced by increased co-localisation with
345 the endosomal marker EEA1 compared with wild-type GFP-SNX17 (Fig. 4H). These
346 results suggest that SNX17 can cycle between the cytoplasm and the endosomal
347 membrane through low affinity sensing of PI(3)P with the density of incoming \emptyset xNxx[Y/F]-
348 containing cargo providing an additional affinity to prolong the endosomal residency of
349 SNX17 and release the autoinhibited conformation thereby facilitating coupling to
350 Retriever and the Commander assembly.

351

352 To examine the endosomal organization of SNX17 and its relationship to Retriever
353 association we used a VPS35L KO cell line engineered to stably express control GFP, or
354 re-express GFP-VPS35L and GFP-VPS35L(R248A) – a mutant that retains Retriever
355 assembly but inhibits binding to SNX17 (Fig. 2C) – uncoupling SNX17 mediated cargo
356 recognition from the downstream process of cargo recycling. To evaluate the relative
357 organization of GFP-VPS35L with endogenous SNX17 and other endosomal markers,
358 we analyzed multiple endosomes through high-resolution confocal immunofluorescence
359 imaging, and plotted the normalized average fluorescence intensity profiles to evaluate
360 the relative distributions of endosomal markers within a single endosome. Endogenous
361 SNX17 displayed a general distribution over the bulk of EEA1-positive endosomal
362 membranes (Fig. 5A). In contrast GFP-VPS35L and GFP-VPS35L(R248A) were enriched
363 on one or more foci of the SNX17-labelled endosomes, and co-localized with endogenous
364 COMMD1 (Fig. 5B) and FAM21 (Supp. Fig. 3A), markers of the CCC and WASH
365 complexes respectively. Retriever, CCC and WASH complex markers also co-localized
366 with the core Retromer component VPS35 and SNX1, an ESCPE-1 subunit that drives
367 endosomal tubulation during the biogenesis of transport carriers (van Weering et al.,
368 2012, Simonetti et al., 2019; Lopez-Robles et al., 2023) (Supp. Fig. 3B, C). These foci
369 therefore represent the previously described retrieval sub-domains from where cargo-
370 enriched transport carriers exit the endosome for transport to their destination
371 (Puthenveedu et al., 2010; Temkin et al., 2011; Bowman et al., 2016; Varandas et al.,
372 2016; McNally et al., 2017). Our data shows that the association of SNX17 (and cargo)
373 with Retriever was not a pre-requisite for sub-domain organization, as GFP-
374 VPS35L(R248A) retained localization to the retrieval sub-domain. We also noticed that
375 VPS35L KO cells displayed a partial perturbation in the sub-domain organization of
376 FAM21, SNX1 and VPS35 (Supp. Fig. 3A-C). Interestingly, in VPS35L KO cells, these
377 markers occupied multiple, less well-defined foci on the EEA1 and SNX17 endosomal
378 membrane with greater localization overlap with EEA1 or SNX17 (Supp. Fig. 3A-C).
379 Altogether these data indicate: (i) that VPS35L and the Retriever complex plays a role in
380 organizing endosomal retrieval sub-domains; (ii) that cargo sensing by SNX17 can
381 promote its recruitment to EEA1-positive endosomes but is not a pre-requisite for the
382 formation of the retrieval sub-domain; and (iii) whilst present SNX17 is not enriched in

383 these retrieval sub-domains. Rather it appears that the transient coupling of cargo bound
384 SNX17 to Retriever and Commander may serve to handover cargo into a pre-existing
385 retrieval sub-domain for endosomal exit and recycling to the cell surface (Fig. 5C).

386

388 **Figure 5. Retriever complex resides on retrieval subdomain of endosome and colocalises**
389 **with markers of the CCC complex.**

390 **(A-B)** VPS35L KO RPE1 cells were lentiviral transduced with GFP, VPS35L-GFP or VPS35L-
391 GFP(R248A). The localisation of GFP-tagged proteins was compared to the localisation of
392 endogenous endosomal markers SNX17, EEA1 (A) and COMMD1 (B). Representative high-
393 resolution confocal microscopy images are shown. The relative distributions of endosomal
394 markers were evaluated in ImageJ by generating fluorescence intensity line profiles. Line profiles
395 of 30 endosomes from 3 independent experiments were analysed in Rstudio, where the lengths
396 of line scans and raw fluorescence intensities were normalised and averaged. The average
397 profiles are shown on the right. The shading corresponds to the 95% confidence interval. **(C)**
398 Model of SNX17-Commander association and its regulation through OxNxxY/F cargo-density
399 sensing and endosomal subdomain organisation. SNX17 associates with the endosomal
400 membrane that is enriched for PI3P. We hypothesize that endosomal localization is enhanced
401 through the binding of transmembrane cargoes. With increasing density of OxNxxY/F cargo, auto-
402 inhibitory sequence within SNX17 tail is displaced, consequently enabling the presentation of
403 SNX17 carboxy-tail to the conserved VPS26C:VPS35L interface. The direct binding of cargo-
404 bound SNX17 to Retriever ultimately leads to Commander-WASH complex-mediated recycling of
405 cargo back to the plasma membrane. For simplicity, other endosomal sorting complexes, such as
406 WASH, ESCPE-1 and Retromer are not shown.

407

408

409 In summary, by identifying the molecular details of SNX17 coupling to Retriever we have
410 revealed the evolutionarily conserved mechanism through which hundreds of integral
411 membrane proteins, including integrins and lipoprotein receptors, enter the Commander
412 retrieval and recycling pathway. Importantly, we establish that cargo binding facilitates
413 SNX17 endosomal association, and that cargo occupancy relieves an autoinhibited
414 SNX17 conformation to promote Retriever association and the entry of cargo into a pre-
415 existing retrieval sub-domain for the promotion of Commander mediated cell surface
416 recycling. Overall, our study provides fundamental mechanistic and regulatory insight into
417 the role of the SNX17-dependent Commander retrieval and recycling pathway during
418 essential cellular processes ranging from directed cell migration through to cholesterol
419 homeostasis.

420

421 **LIMITATIONS OF THIS STUDY**

422 Our work provides the mechanism for SNX17 coupling to Retriever and the Commander
423 super-assembly, the influence of cargo occupancy on this association and the importance
424 for entry into the retrieval sub-domain. However, while we have provided strong
425 biochemical and functional data supportive of the proposed coupling mechanism full

426 validation will require high resolution structural analysis of the SNX17-Retriever and
427 SNX17-Commander assemblies. Further experiments will also be required to broaden
428 our mechanistic understanding of the dynamics of cargo handover into the retrieval sub-
429 domain and the process of tubular-based exit, and how these events are controlled in
430 response to changes in the cellular state.

431

432 **ACKNOWLEDGEMENTS**

433 We thank the Wolfson Bioimaging Facility at the University of Bristol for their support and
434 Manu Derivery (MRC-LMB) for insightful discussions. Work in the Cullen laboratory is
435 supported by the Wellcome Trust (104568/Z/14/Z and 220260/Z/20/Z), the Medical
436 Research Council (MR/L007363/1 and MR/P018807/1), the Lister Institute of Preventive
437 Medicine, and the award of a Royal Society Noreen Murray Research Professorship to
438 P.J.C. (RSRP/R1/211004). R.B. is supported by the EndoConnect European Research
439 Training Network (No. 953489). B.M.C. is supported by an Investigator Grant, Senior
440 Research Fellowship and Project Grant from the National Health and MRC (APP2016410,
441 APP1136021 and APP1156493). M.D.H is supported by a Dementia Australia Research
442 Foundation (DARF) project grant.

443

444 **AUTHOR CONTRIBUTIONS**

445 Cell-based biochemistry and analysis: R.B., M.D.H Protein purification and recombinant
446 reconstitution: A.P.W., M.D.H., M.L. AlphaFold2 modelling: R.B., M.D.H. and B.M.C.
447 Manuscript Writing - 1st draft: R.B., B.M.C. and P.J.C; Final Version: all authors. Initial
448 Concept: R.B., M.D.H., K.E.M., B.M.C. and P.J.C. Concept Development: all authors.
449 Funding and Supervision: M.D.H., K.E.M., B.M.C. and P.J.C.

450

451 **CONFLICTS OF INTEREST**

452 The authors declare that they have no conflict of interest.

453

454

455

456

457

458 **MATERIAL AND METHODS**

459 **Cell culture**

460 HEK293T and RPE1-hTERT cell lines were maintained in DMEM (Sigma, D5796) with
461 10% (v/v) fetal bovine serum (Sigma, F7526) in presence of penicillin/streptomycin
462 (Gibco) at 37°C with 5% CO₂.

463

464 **VPS35L CRISPR KO cell line generation**

465 A RPE1-hTERT cell line lacking VPS35L was generated using CRISPR/Cas9 technology.
466 The target sequence of CCTGTTCTTGTTCGAGAGCTTC on exon28 (NM_020314.7)
467 was inserted into the px458 plasmid (Addgene plasmid no. 48138) and transfected to
468 cells using PEI. After 48 hrs of transfection, GFP-positive cells were sorted by FACS for
469 single clone isolation. VPS35L-KO was confirmed by WB analysis.

470

471 **Site-directed mutagenesis**

472 Primers for site-directed mutagenesis were designed using Agilent QuikChange Primer
473 design tool. QuikChange II Site-Directed Mutagenesis Kit (Agilent, 200523-5) was used
474 for mutagenesis of GFP-VPS35L constructs following the manufacturer's protocol. All other
475 site-directed mutagenesis was carried out using Q5 High-Fidelity 2X Master Mix (NEB,
476 M0492) following the manufacturer's protocol. Nonmutated template DNA was digested
477 after the PCR SDM reactions by 1h incubation with Dpn1 enzyme at 37°C. This DNA was
478 used for bacterial transformation into XL10 Gold (Agilent, 200315) chemically competent
479 cells according to manufacturer's instructions. The bacteria were grown on appropriate
480 antibiotic-containing agar plates. Full open-reading frames were sequenced to verify the
481 results of mutagenesis.

482

483 **Gibson assembly**

484 To subclone VPS35L-GFP into lentiviral pLVX vector, wild-type or mutant VPS35L
485 sequences were amplified using Q5 High-Fidelity 2X Master Mix (NEB, M0492) following
486 the manufacturer's protocol. After amplification, PCR samples were resolved on agarose
487 gel and amplified fragments extracted from gel using GFX PCR DNA and Gel Band

488 purification kit (GE Healthcare, 28-9034-70). The purified DNA or 1µg of plasmid DNA
489 were digested with XmaI and XbaI for 1 h at 37°C in 1x CutSmart buffer and nuclease-
490 free water. To eliminate self-ligation, the plasmid was also treated with 1.5 µl of quick-CIP
491 (NEB, M0525). Following digestion, DNA was again purified as above and a ligation
492 reaction between 1:6 ratio of backbone:vector was carried out with T4 DNA ligase
493 (Invitrogen, 15224017). Ligation mixture was incubated at 10, 20 and 30°C for 30s, for a
494 total of 200 cycles.

495

496 **Recombinant protein expression and purification**

497 Retriever with a VPS29-His tag and a Strep-VPS26C or Halo-VPS26C tag was expressed
498 in Sf21 insect cells and purified as described previously (Healy et al., 2023). A gene
499 encoding full-length human SNX17 with an N-terminal Strep-tag and HaloTag® was
500 codon optimised for *S. frugiperda* and purchased from Twist Biosciences (San Francisco,
501 CA). The gene was cloned into pACEBac1 using BamHI/HindIII restriction sites and the
502 resulting pACEBac1-Strep-Halo-SNX17 vector was used to generate V1 and V2
503 baculoviruses as described previously (Healy et al., 2023). For protein expression, 4mL
504 V1 or V2 virus was added to Sf21 cells at a density of 0.5-1.0x10⁶mL in 400mL Sf-900 II
505 SFM (Thermo). Cells were harvested 72 hours post-infection and cell pellets were stored
506 at -80°C until use. For SNX17 purification, insect cells were resuspended in cold lysis
507 buffer (50mM HEPES pH7.2, 150mM NaCl, 2mM β-mercaptoethanol, 0.1% (v/v) Triton
508 X-100, EDTA-free protease inhibitor (Pierce)) and lysed on ice using a 130-Watt
509 Ultrasonic Processor (Cole-Palmer) for 2 mins 30s using a 10s-on 30s-off cycle. Insoluble
510 material was removed by centrifugation at 20000rpm in a JA-20 fixed-angle rotor
511 (Beckman Coulter) for 25 mins at 4°C, then the soluble lysate was incubated with 1mL
512 equilibrated Strep-Tactin® Sepharose® resin (IBA Lifesciences) rotating for 1 hour at
513 4°C. After binding, the resin was washed 3x in lysis buffer and protein was eluted with a
514 further 3 washes in elution buffer (50mM HEPES pH7.2, 150mM NaCl, 2mM β-
515 mercaptoethanol, EDTA-free protease inhibitor (Pierce), 2.5mM desthiobiotin (IBA
516 Lifesciences)). Eluates containing protein were concentrated to <500µL and size-
517 exclusion was performed at 4°C using an ÄKTA Pure Protein Purification System (GE
518 healthcare) and Superose® 6 Increase 100/300 GL column (Cytiva), with 0.5mL fractions

519 collected using an F9-C Fraction Collector (Cytiva). Fractions containing SNX17 were
520 pooled and concentrated.

521

522 SNX17 full length (residue 1-470) and SNX17 Δ C (residue 1-390) were synthesised with
523 an intramolecular decaHis tag between residue 335 and 346 by GeneUniversal and
524 subcloned into pET28a (XbaI and XhoI). GST-LRP1 was available in a pGex4T-2 vector,
525 GST was produced from expression of a native pGEX6P-1 vector (Ghai et al., 2013).
526 These plasmids were transformed into *E.coli* BL21 DE3 competent cell (New England
527 Biolabs) and plated on agar plates containing Ampicillin or Kanamycin. Clones from this
528 agar plate were grown overnight in 30 mL of LB broth. 5 mL from these cultures was
529 added to 1 L of LB supplemented with 40 mM NH₄Cl, 4 mM MgCl₂, 4 mM NaSO₄, 2.5%
530 glycerol and 30 mM α -lactose and grown at 25 $^{\circ}$ C for 24 h. Cells were harvested by
531 centrifugation at 6000 x g for 10 min at 4 $^{\circ}$ C and the harvested cell pellet was resuspended
532 in 50 mM Tris pH 8.0, 500 mM NaCl, 5 mM imidazole, 2 mM β -mercaptoethanol, 10%
533 glycerol, 50 μ g/mL benzamidine and 100 units of DNasel. Cells were lysed by cell
534 disruption at 35 kPSI and clarified by centrifugation 50,000 x g for 30 mins at 4 $^{\circ}$ C. Talon
535 or glutathione Sepharose (Clonetech) was used to isolated SNX17 constructs and GST
536 constructs, respectively. His tagged constructs were eluted via 500 mM imidazole and
537 GST-tagged proteins were removes via 50 mM glutathione, other buffer components were
538 as above. These eluted proteins were subsequently passed through a superdex s75
539 16/60 column attached to an AKTA Pure system (GE healthcare) in 50 mM Tris pH 8.0
540 and 300 mM NaCl.

541

542 ***In vitro* SNX17-Retriever interaction assays**

543 0.1 mg/mL purified Retriever with a VPS29-His tag was mixed with 0.075 mg/mL purified
544 SNX17 (WT) or SNX17 (L470G) in a total volume of 0.1 mL cold lysis buffer (50 mM
545 HEPES pH7.2, 150 mM NaCl, 2 mM β -mercaptoethanol, 0.1% (v/v) Triton X-100, EDTA-
546 free protease inhibitor (Pierce)). LRP1 (NPXY) (Biotin-
547 GRMTNGAMNVEIGNPTYKMYEGGEPPDG) and LRP1 (NPXA) (Biotin-
548 GRMTNGAMNVEIGNPTAKMYEGGEPPDG) peptides corresponding to human LRP1
549 amino acid residues 4458-4483 were purchased from GenScript and, where indicated,

550 added to a final concentration of 3 μ M or 30 μ M. Protein mixtures were incubated with 20
551 μ L equilibrated TALON® Superflow beads (Cytiva) rotating for 1 hour at 4°C, then beads
552 were washed 3x in cold wash buffer (50 mM HEPES pH7.2, 150 mM NaCl, 2 mM β -
553 mercaptoethanol, 0.1% (v/v) Triton X-100, 10 mM imidazole, EDTA-free protease inhibitor
554 (Pierce)). Washed beads were resuspended in 4x SDS loading dye + 2.5% β -
555 mercaptoethanol for analysis by SDS PAGE followed by Coomassie staining and western
556 blotting.

557

558 In the presence of 20 μ L of glutathione Sepharose (Clonetech) 2 nmol SNX17 or
559 SNX17 Δ C was mixed with 1 nmol GST-LRP1 for 5, 10, 30 or 60 mins and 1 nmol GST
560 for 60 mins. At each time point the protein resin mixture was centrifuged at 5000 x g for
561 1 min and the supernatant was removed to stop further interaction. After 60 min
562 glutathione resin was washed 5 times with a buffer containing 20 mM Tris pH 8.0, 300
563 mM NaCl, 2 mM β -mercaptoethanol, 10% glycerol, 0.5% igepal and EDTA-free protease
564 inhibitor (Pierce). All buffer was removed, and beads were resuspended in 30 μ L of buffer
565 (100 NaCl, 20 mM Tris pH 8.0) and 10 μ L 4x SDS loading dye before incubation at 100°C
566 for 5 min. 10 μ L of sample was loaded onto precast SDS-PAGE gels (Novex) and after
567 running for 43 min at 165v were stained using Coomassie blue (Sigma).

568

569 **Transient transfection**

570 For GFP trap experiments and lentiviral particle production, HEK293T cells were
571 transiently transfected using PEI (polyethyleneimine). 10 ml of Opti-MEM were equally
572 split between 2 sterile tubes. The first tube was used to dilute 15 μ g plasmid DNA (or as
573 described in 'Lentiviral particle generation'), and the second to dilute PEI at 3:1 PEI:DNA
574 ratio. The PEI dilution was sterilised through 0.2 μ m filter. The total contents of both tubes
575 were then mixed and incubated for 15 min prior to transfection of cells. The cells were
576 incubated with DNA:PEI mixture in Opti-MEM for 6h, and after incubation, this was
577 replaced for normal growth media for 24 or 48h. For imaging experiments, RPE1-hTERT
578 cells were transfected using Lipofectamine LTX Reagent with PLUS Reagent (Invitrogen,
579 A12621) according to manufacturer's instructions. Briefly, 200 μ l of Opti-MEM were split
580 equally between 2 sterile tubes. The first tube was used to dilute 0.5 μ g plasmid DNA in

581 the presence of 3 μ l Plus reagent. The other tube was used to dilute 3 μ l of Lipofectamine.
582 The total contents of both tubes were then mixed and incubated for 5 min at room
583 temperature. Following the incubation, transfection mixture was added drop wise to cells
584 grown on coverslips in 6-well plates and cells were grown for 24h before fixation.

585

586 **Lentiviral particle and stable cell line generation**

587 To generate lentivirus, HEK293T cells were grown in 15 cm dishes and transfected with
588 15 μ g of PAX2, 5 μ g pMD2.G and 20 μ g of lentiviral expression vector using PEI
589 transfection. After the 48h incubation, the growth media containing the lentivirus was
590 harvested and filtered through a 0.45 μ m filter. 6-wells of VPS35L KO RPE1-hTERT cells
591 were transduced at 25% confluence with varying volumes of lentiviral media. After 48h,
592 cells were treated with 15 μ g/ml of puromycin to select cells with successfully integrated
593 lentiviral constructs.

594

595 **Quantitative GFP-nanotrap**

596 Transiently transfected HEK293T cells, expressing GFP or GFP-tagged proteins were
597 rinsed twice with ice-cold PBS and then lysed in a buffer containing 0.5 % NP-40, 50 mM
598 Tris pH7.5 in ddH₂O (in GFP-SNX17 pull-downs) or PBS (co-transfections). Supernatant
599 was collected after 10 min centrifugation at 15000 rpm. 30 μ l of supernatant was removed
600 to serve as whole-cell input and diluted in 1:1 ratio with 4x loading buffer containing 2.5
601 % β -mercaptoethanol. The remaining supernatant was incubated with 25 μ l of GFP-
602 nanotrap (gta-20, Chromotek) beads for 1h at 4°C. The beads were then washed twice in
603 a buffer containing 0.25 % NP-40, 50 mM Tris pH7.5 in PBS and once in 50 mM Tris
604 pH7.5 in PBS (or diluted in ddH₂O for GFP-SNX17 pull-downs). Between the washes, the
605 beads were collected at the bottom of the tube by 1min centrifugation at 2000 rpm. Beads
606 were resuspended in a 2x loading buffer, containing 2.5 % β -mercaptoethanol and all
607 samples were denatured at 95°C for 10 minutes.

608

609 **Cell surface protein biotinylation**

610 RPE1-hTERT cells were washed generously with ice-cold PBS prior to labelling with cell-
611 impermeable 0.2 mg/mL Sulfo-NHS-SS Biotin (ThermoFisher Scientific, no. 21217) in

612 PBS (pH 7.4). The biotinylation reaction was then quenched by incubating the cells in
613 TBS for 10 minutes, During the labelling, quenching and washing steps, cells were
614 incubated on ice to prevent endocytosis and unspecific labelling of intra-cellular proteins.
615 After quenching, cells were lysed in lysis buffer containing 2% triton x-100 with protease
616 inhibitors in PBS. Supernatant was collected after 10min centrifugation at 15000 rpm, and
617 total protein levels analysed using BCA reaction. Inputs were collected and stored
618 separately. Equal amounts of protein were incubated with Streptavidin beads (GE
619 Healthcare, USA) for 30 min at 4°C. The samples were then washed once in PBS with
620 1% triton x-100, twice in PBS with 1% triton x-100 with 1M NaCl and once with PBS.
621 Between the washes, the beads were collected at the bottom of the tube by 1min
622 centrifugation at 2000 rpm. Beads were resuspended in a 2x loading buffer, containing
623 2.5 % β -mercaptoethanol and all samples were denatured at 95°C for 10 minutes.

624

625 **Immunoblot**

626 Equal amounts of samples were loaded onto NuPAGE® 4-12% gradient Bris-Tris gels
627 (NP0322BOX, Invitrogen) and resolved at 130V. Proteins were transferred onto a
628 methanol-activated PVDF membrane at 100V for 75 minutes in a transfer buffer
629 containing 25 mM tris, 192 mM glycine, and 10% methanol. After transfer, membranes
630 were blocked in 10% milk in TBST (tris-buffered saline with Tween: 150 mM NaCl, 10 mM
631 tris pH7.5, 0.1% Tween-20) for 1 hour at room temperature. They were then washed in
632 TBST and incubated overnight in primary antibody diluted in 3% BSA in TBST. After the
633 incubation, the membrane was washed three times in TBST for 5 minutes and incubated
634 with fluorophore-conjugated secondary antibodies diluted 1:20000 in 5% milk for 1 hour
635 at room temperature. Prior to imaging on LI-COR Odyssey CLx system, membranes were
636 washed generously in TBST buffer. Quantification of band intensities was performed in
637 Image Studio Lite software and GraphPad Prism 8 was used for the statistical analysis.

638

639 **Microscopy sample preparation**

640 Cells, grown on 13mm glass coverslips, were fixed with 4% PFA (Invitrogen, 28906) in
641 PBS for 15min at room temperature. To remove fixative, cells were washed three times
642 before permeabilisation in 0.1% (v/v) Triton X-100 in PBS or, in case of LAMP1 co-

643 staining, 0.1% (w/v) saponin. Coverslips were then washed again three times with PBS
644 before 20 min incubation with 1% (w/v) BSA in PBS. Coverslips were then incubated with
645 primary antibodies diluted in 0.1 % (w/v) BSA in (with added 0.01% (w/v) saponin in case
646 of saponin permeabilisation) for 1h at room temperature. After primary antibody detection,
647 coverslips were washed generously in PBS, before secondary detection with Alexa Fluor-
648 conjugated secondary antibodies and DAPI for 1 h at room temperature. The coverslips
649 were finally washed three times with PBS and once in destillled water before mounting
650 onto glass microscopy slides using Fluoromount-G (Invitrogen, 004958-02) and kept
651 refrigerated before analysis on the microscope.

652

653 **Confocal microscopy and image analysis**

654 Fixed cells were imaged on Leica SP8 multi-laser point scanning confocal microscope,
655 using a 63x NA1.4 UV oil-immersion lens. Endosomal sub-domains were resolved using
656 Leica 'Lightning' mode for adaptive deconvolution to improve lateral resolution. Leica LAS
657 X software was used for the acquisition of images. Pearson's colocalisation coefficients
658 were determined using Volocity 6.3.1 software (PerkinElmer) with automatic Costes
659 background thresholding. Representative images for colocalisation images were also
660 prepped using the Volocity software. For line fluorescence analysis, high-resolution
661 microscopy images were opened in Fiji software. 30 endosomes from 3 independent
662 experiments per condition were analysed. Briefly, a line was drawn from 'retrieval sub-
663 domain' to the end of 'endosomal core' and fluorescence intensity along line for each
664 channel obtained using 'Plot Profile' function. In R studio software, the fluorescence
665 intensities were normalies to maximum fluorescence intensity of respective channel and
666 endosome. The data was analysed and represented in R studio software using 'ggplot2'
667 package. Representative images for subdomain organisation were prepared in Fiji.

668

669 **AlphaFold2 modelling**

670 All AlphaFold2 models were generated using AlphaFold multimer version 3 (Jumper,
671 2021 and Evans 2022) implemented in the ColabFold interface available of the Google
672 Colab platform (Mirdita, 2022). The models present in this study include: Retriever
673 (VPS35L, VPS26C and VPS29) in complex with SNX17⁴⁰⁰⁻⁴⁷⁰ (Model archive:), SNX17¹⁻

674 470 in complex with LRP1⁴⁴⁶⁰⁻⁴⁴⁹⁰ (Model archive:), Retriever in complex with SNX17¹⁻⁴⁷⁰
675 (Model archive:), *D.melanogaster* Retriever in complex with SNX17¹⁻⁴⁷⁰ (Model archive:
676) and SNX17¹⁻⁴⁷⁰. 5 independent models were generated for each complex and the quality
677 of the predicted complexes was assessed through examination of iPTM score and the
678 predicted alignment error plot.

679

680 **Antibodies**

Target	Supplier	Cat. Number
CCDC22	Proteintech	16636
CCDC93	LSBio	C336997
COMMD1	Sigma Aldrich	WHO150684M1
EEA1	BD Biosciences	610457
FAM21	Gift from Dan Billadeau	N/A
GFP	Roche	11814460001
Itg α 5	Abcam	ab150361
Itg β 1	BD Biosciences	610467
LAMP1	Developmental Studies Hybridoma Bank	H4A3
LRP1	Abcam	ab92544
mCherry	Antibodies.com	A85306
N-cadherin	Cell Signalling Technology	(13A9) 14215
SNX1	BD biosciences	611482
SNX17 (IF)	Sigma	HPA043867
SNX17 (WB)	Proteintech	10275
VPS26C	Millipore/Sigma Aldrich	ABN87
VPS29	Santa Cruz	SC-398874
VPS35	Antibodies.com	A83699
VPS35L	Abcam	ab97889
β -actin	Sigma	A1978

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 680	Invitrogen	A-21057
Goat anti-Rabbit IgG (H+L) Secondary Antibody, DyLight 800	Invitrogen	SA5-35571
Alexa Fluor 568 anti-mouse IgG	Invitrogen	A10037
Alexa Fluor 568 anti-rabbit IgG	Invitrogen	A10042
Alexa Fluor 647 anti-mouse IgG	Invitrogen	A31571
Alexa Fluor 647 anti-rabbit IgG	Invitrogen	A31573
Alexa Fluor 647 anti-goat IgG	Invitrogen	A21447

681

682 **Primers**

Name	Sequence
VPS35L-R248A_F	ACACACATGGAAAAGATGGCCTCGTACACGAGCTTCC
VPS35L-R248A_R	GGAAAGCTCGTGTACGAGGCCATCTTCCATGTGTGT
VPS35L-W280A_F	ATGGAGGCAATCTGAAAAACGCATTAGGCATGTTCCCTGGC
VPS35L-W280A_R	GCCAAGGAAACATGCCTAAATGCCTTTCAAGATTGCCTCCAT
VPS35L-K283E_F	CCCTGATGGAGGCAATCTGAAAAACCAATTAGGCA
VPS35L-K283E_R	TGCCTAAATTGGTTTCGAGATTGCCTCCATCAGGG
SNX17_I465A_F	TTACAGATCCTCATCTCCAGCGCCCTCGAAGGCGAAATTG
SNX17_I465A_R	CAATTTCGCCTTCGAGGGCGCTGGAGATGAGGATCTGTAA
SNX17_D467A_F	ATCCTTACAGATCCTCAGCTCCAATGCCCTCGAAG
SNX17_D467A_R	CTTCGAGGGCATTGGAGCTGAGGATCTGTAAGGAT
SNX17_E468A_F	GGATCCTTACAGATCCGCATCTCCAATGCCCTC
SNX17_E468A_R	GAGGGCATTGGAGATGCGGATCTGTAAGGATCC
SNX17_D469A_F	GGTGGATCCTTACAGAGCCTCATCTCCAATGCC

SNX17_D469A_R	GGCATTGGAGATGAGGCTCTGTAAGGATCCACC
SNX17_F462A_F	ATCTCCAATGCCCTCGGCCGAAATTGCCGTGG
SNX17_F462A_R	CCACGGCAATTGCCGCCGAGGGCATTGGAGAT
SNX17_F462E_F	CTCATCTCCAATGCCCTCCTCGGCCGAAATTGCCGTGGAC
SNX17_F462E_R	GTCCACGGCAATTGCCGCCGAGGGCATTGGAGATGAG
SNX17_NFAFtoAAA A_F	CCTCATCTCCAATGCCCTCGGCCGGCAGCGCCGTGGACATC ACTGGCAC
SNX17_NFAFtoAAA A_R	GTGCCAGTGATGTCCACGGCGCTGCCGCCGAGGGCATTG GAGATGAGG
SNX17_W321A_F	GGAGGTGACCCGCGCGCATCGCATGCGG
SNX17_W321A_R	CCGCATGCGATGCGCGCGGGTCACCTCC
SNX17_V380D_F	TCACCATCAGTTCATCATCCATGGACTGCAAGCAG
SNX17_V380D_R	CTGCTTGCAGTCCATGGATGATGAAGTGTGGTGA
SNX17_M384E_F	GCCGCCAGATTCTTCACCTCCAGTTCATCAACCATGGAC
SNX17_M384E_R	GTCCATGGTTGATGAAGTGGAGGTGAAGAAATCTGGCGGC
VPS35L (transfer to pLVX) F	GACTCCGGGTAATGGCCGTCTTCCTTGG
VPS35L (transfer to pLVX) R	CTATTCTAGATTACTTGTACAGCTCGTC

683

684

685

686 **REFERENCES**

687 Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, Fieten H, Wijers
688 M, Levels JH, Huijckman N, Kloosterhuis N, et al. (2016). CCC- and WASH-mediated
689 endosomal sorting of LDLR is required for normal clearance of circulating LDL. *Nat
690 Commun* 7:10961.

691 Boesch D, Singla A, Han Y, Kramer DA, Liu Q, Suzuki K, Juneja P, Zhao X, Long X,
692 Medlyn MJ, et al. (2023). Structural organization of the Retriever-CCC endosomal
693 recycling complex. *Nat Struct Mol Biol*, doi: 10.1038/s41594-023-01184-4.

694 Bottcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng H-Y, Fassler R. (2012).
695 Sorting nexin 17 prevents lysosomal degradation of b1 integrins by binding to the b1-
696 integrin tail. *Nat Cell Biol* 14:584-592.

697 Bowman SL, Shiawski DJ, Puthenveedu MA. (2016). Distinct G protein-coupled receptor
698 recycling pathways allow spatial control of downstream G protein signaling. *J Cell Biol*
699 214:797-806.

700 Chen K-E, Healey MD, Collins BM. (2019). Towards a molecular understanding of
701 endosomal trafficking by Retromer and Retriever. *Traffic* 20:465-478.

702 Cullen PJ, Steinberg F. (2018). To degrade or not to degrade: mechanisms and
703 significance of endocytic recycling. *Nat Rev Mol Cell Biol* 19:679-696.

704 Daniloski Z, Jordan TX, Wessels H-H, Hoagland DA, Kasela S, Legut M, Maniatis S,
705 Mimitou EP, Lu L, Geller E, et al. (2021). Identification of required host factors for
706 SARS-CoV-2 infection in human cells. *Cell* 184:92-105.

707 Derivery E, Helfer E, Henriot V, Gautreau A. (2012). Actin polymerization controls the
708 organization of WASH domains at the surface of endosomes. *PLoS One* 7:e39774.

709 Fedoseienko A, Wijers M, Wolters JC, Dekker D, Smit M, Huijckman N, Kloosterhuis N,
710 Klug H, Schepers A, Willems van Dijk K, et al. (2018). The COMMD family regulates
711 plasma LDL levels and attenuates atherosclerosis through stabilizing the CCC complex
712 in endosomal LDLR trafficking. *Circ Res* 122:1648-1660.

713 Gallon M, Clairfeuille T, Steinberg F, Mas C, Ghai R, Sessions RB, Teasdale RD, Collins
714 BM, Cullen PJ. (2014) A unique PDZ domain and arrestin-like fold interaction reveals
715 mechanistic details of endocytic recycling by SNX27-retromer. *Proc Natl Acad Sci USA*
716 111:E3604-E3613.

717 Ghai R, Burgarcic A, liu H, Norwood SJ, Skeldal S, Coulson EJ, Li SS-C, Teasdale RD,
718 Collins BM. (2013). Structural basis for endosomal trafficking of diverse
719 transmembrane cargos by PX-FERM proteins. *Proc Natl Acad Sci USA* 110:E643-652.

720 Gomez TS, Gorman JA, de Narvajas AAM, Koenig AO, Billadeau DD. (2012). Trafficking
721 defects in WASH-knockout fibroblasts originate from collapsed endosomal and
722 lysosomal networks. *Mol Biol Cell* 23:3215-3228.

723 Healy MD, Sacharz J, McNally KE, McConville C, Tillu VA, Hall RJ, Chilton M, Cullen PJ,
724 Mobli M, Ghai R, et al. (2022). Proteomic identification and structural basis for the
725 interaction between sorting nexin SNX17 and PDLIM family proteins. *Structure*
726 30:1590-1602.

727 Healy MD, McNally KE, Butkovic R, Chilton M, Kato K, Sacharz J, McConville C, Moody
728 ERR, Shaw S, Planelles-Herrero VJ, et al. (2023). Structure of the endosomal
729 Commander complex linked to Ritscher-Schinzel syndrome. *Cell* 186:2219-2237.

730 Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Honing S, Evans PR,
731 Owen DJ. (2010). A large-scale conformational change couples membrane recruitment
732 to cargo binding in the AP2 clathrin adaptor complex. *Cell* 141:1220-1229.

733 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool
734 K, Bates R, Zidek A, Potapenko A, et al. (2021). Highly accurate protein structure
735 prediction with AlphaFold. *Nature* 596:583-589.

736 Kato K, Oka Y, Muramatsu H, Vasilev FF, Otomo T, Oishi H, Kawano Y, Kidokoro H,
737 Nakazawa Y, Ogi T, Takahashi Y, Saitoh S. (2020). Biallelic VPS35L pathogenic
738 variants cause 3C/Ritscher-Schinzel-like syndrome through dysfunction of Retriever
739 complex. *J Med Genet* 57:245-253.

740 Kolanczyk M, Krawitz P, Hecht J, Hupalowska A, Miaczynska M, Marschner K, Schlack
741 C, Emmerich D, Kobus K, Kornak U, et al. (2015). Missense variant in CCDC22 causes
742 X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C
743 syndrome. *Eur J Hum Genet* 23:633-638.

744 Kvainickas A, Nagele H, Qi W, Dokladal L, Jimenez-Orgaz A, Stehl L, Gangurde D, Zhao
745 Q, Hu Z., Dengjel J., et al. (2019). Retromer and TBC1D5 maintain late endosomal
746 RAB7 domains to enable amino acid-induced mTORC1 signaling. *J Cell Biol* 218:3019-
747 3038.

748 Laulumaa S, Kumpula E-P, Huiskonen JT, Varjosalo M. (2023). Structure and interactions
749 of the endogenous human Commander complex. *bioRxiv* 2023.04.03.535349.

750 Leneva N, Kovtun O, Morado DR, Briggs JAG, Owen DJ. (2021). Architecture and
751 mechanism of metazoan retromer:SNX3 tubular coat assembly. *Sci Adv* 7:eabf8598.

752 Liu N, Liu K, Yang C. (2022). WDR91 specifies the endosomal retrieval subdomain for
753 Retromer-dependent recycling. *J Cell Biol* 221:e202203013.

754 Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Banos-
755 Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrezaga A, Fernandez-Recio J,
756 Rojas AL, Bonifacino JS, Castano-Diez D, Hierro A. (2023). Architecture of the ESCPE-
757 1 membrane coat. *Nat Struct Mol Biol* 30:958-969.

758 Lucas M, Gershlick DC, Vidaurrezaga A, Rojas AL, Bonifacino JS, Hierro A. (2016).
759 Structural mechanism for cargo recognition by the Retromer complex. *Cell* 167:1623-
760 1635.

761 Mallam AL, Marcotte EM. (2017). Systems-wide studies uncover Commander, a
762 multiprotein complex essential to human development. *Cell Syst* 4:483-494.

763 McDonald FJ. (2021). Explosion in the complexity of membrane protein recycling. *Am J
764 Physiol Cell Physiol* 320:C483-C494.

765 McGough IJ, de Groot REA, Jellett AP, Betist MC, Varandas KC, Danson CM, Heesom
766 KJ, Korswagen HC, Cullen PJ. (2018). SNX3-retromer requires an evolutionary
767 conserved MON2:DOPEY2:ATP9A complex to mediate Wntless sorting and Wnt
768 secretion. *Nat Commun* 9:3737.

769 McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N,
770 Danson CM, Nagele H, et al. (2017). Retriever is a multiprotein complex for retromer-
771 independent endosomal cargo recycling. *Nat Cell Biol* 19:1214-1225.

772 McNally KE, Cullen PJ. (2018). Endosomal retrieval of cargo: Retromer is not alone.
773 *Trends Cell Biol* 28:807-822.

774 Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. (2022).
775 ColabFold: making protein folding accessible to all. *Nat Methods* 19:679-682.

776 Norris A, Tammineni P, Wang S, Gerdes J, Murr A, Kwan KY, Cai Q, Grant BD. (2017).
777 SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative
778 microdomains on endosomes. *Proc Natl Acad Sci USA* 114:E307-E316.

779 Norris A, Grant BD. (2020). Endosomal microdomains: Formation and function. *Curr Opin*
780 *Cell Biol* 65:86-95.

781 Otsuji S, Nishio Y, Tsujita M, Rio M, Huber C, Anton-Plagaro C, Mizuno S, Kawano Y,
782 Miyatake S, Simon M, et al. (2023). Clinical diversity and molecular mechanism of
783 VPS35L-associated Ritscher-Schinzel syndrome. *J Med Genet* 60:359-367.

784 Phillips-Krawczak CA, Singla A, Starokadomskyy P, Deng Z, Osborne DG, Li H, Dick CJ,
785 Gomes TS, Koenecke M, Zhang J-S, et al. (2015). COMMD1 is linked to the WASH
786 complex and regulates endosomal trafficking of the copper transporter ATP7A. *Mol*
787 *Biol Cell* 26:91-103.

788 Putthenveedu MA, Lauffer B, Temkin P, Vistein R, Carlton P, Thorn K, Taunton J, Weiner
789 OD, Parton RG, von Zastrow M. (2010). Sequence-dependent sorting of recycling
790 proteins by actin-stabilized endosomal microdomains. *Cell* 143:761-773.

791 Rimbert A, Dalila N, Wolters JC, Huijckman N, Smit M, Kloosterhuis N, Riemsma M, van
792 der Veen Y, Singla A, van Dijk F, et al. (2020). A common variant in CCDC93 protects
793 against myocardial infarction and cardiovascular mortality by regulating endosomal
794 trafficking of low-density lipoprotein receptor. *Eur Heart J* 41:1040-1053.

795 Simonetti B, Paul B, Chaudhari K, Weeratunga S, Steinberg F, Gorla M, Heesom KJ,
796 Bashaw GJ, Collins BM, Cullen PJ. (2019). Molecular identification of a BAR domain-
797 containing coat complex for endosomal recycling of transmembrane proteins. *Nat Cell*
798 *Biol* 21:1219-1233.

799 Singla A, Fedoseienko A, Giridharan SSP, Overlee BL, Lopez A, Jia D, Song J, Huff-
800 Hardy K, Weisman L, Burstein E, Billadeau DD. (2019). Endosomal PI(3)P regulation
801 by the COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein
802 recycling. *Nat Commun* 10:4271.

803 Steinberg F, Heesom KJ, Bass MD, Cullen PJ. (2012). SNX17 protects integrins from
804 degradation by sorting between lysosomal and recycling pathways. *J Cell Biol* 197:219-
805 230.

806 Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavare JM, Cullen
807 PJ. (2013). A global analysis of SNX27-retromer assembly and cargo specificity
808 reveals a function in glucose and metal ion transport. *Nat Cell Biol* 15:461-471.

809 Takatori S, Tatematsu T, Cheng J, Matsumoto J, Akano T, Fujimoto T. (2016).
810 Phosphatidylinositol 3,5-bisphosphate-rich membrane domains in endosomes and
811 lysosomes. *Traffic* 17:154-167.

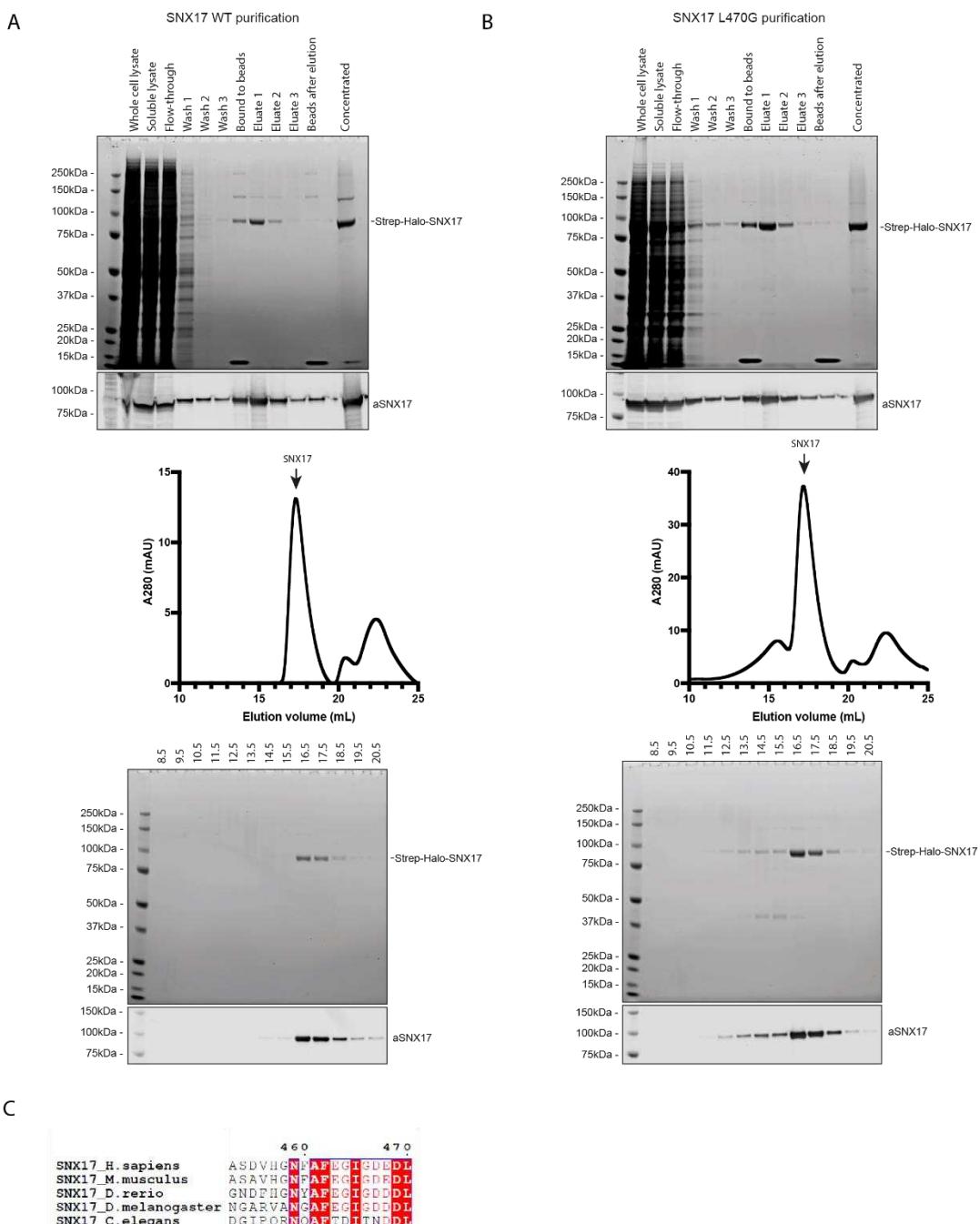
812 Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M. (2011). *Nat*
813 *Cell Biol* 13:715-721.

814 van Kerkhof P, Lee J, McCormick L, Tetrault E, Lu W, Schoenfish M, Oorschot V, Strous
815 GJ, Klumperman J, Bu G. (2005). Sorting nexin 17 facilitates LRP recycling in the early
816 endosome. *EMBO J* 24:2851-2861.

817 van Weering JRT, Verkade P, Cullen PJ. (2012). SNX-BAR-mediated endosome
818 tubulation is co-ordinated with endosome maturation. *Traffic* 13:94-107.

819 van Weering JRT, Sessions RB, Traer CJ, Kloer DP, Bhatia VK, Stamou D, Carlsson SR,
820 Hurley JH, Cullen PJ. (2012) Molecular basis for SNX-BAR-mediated assembly of
821 distinct endosomal sorting tubules. *EMBO J* 31:4466-4480.

822 Varandas KC, Iannejad R, von Zastrow M. (2016). Retromer endosome exit domains
823 serve multiple trafficking destinations and regulate local G protein activation by
824 GPCRs. *Curr Biol* 26:3129-3142.

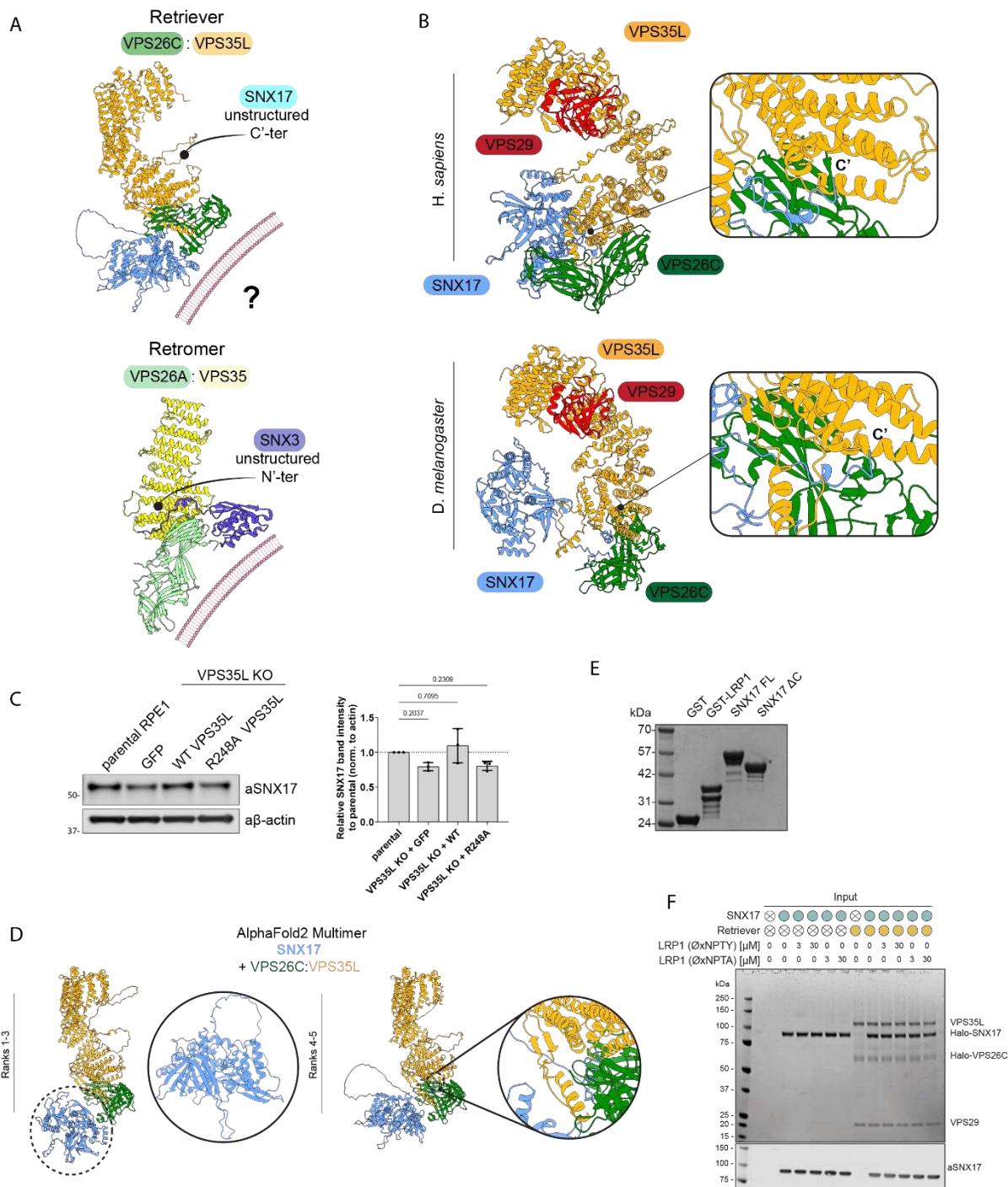

825 Vos DY, Wijers M, Smit M, Huijkman N, Kloosterhuis NJ, Wolters JC, Tissink JJ, Pronk
826 ACM, Kooijman S, Rensen PCN, Kuivenhoven JA, van de Sluis B. (2023). Cargo-
827 specific role for Retriever subunit VPS26C in hepatocyte lipoprotein receptor recycling
828 to control postprandial triglyceride-rich lipoproteins. *Arterioscler Thromb Vasc Biol*
829 43:e29-e45.

830 Weeratunga S, Paul B, Collins BM. (2020). Recognising the signals for endosomal
831 trafficking. *Curr Opin Cell Biol* 65:17-27.

832 Zhu Y, Feng F, Hu G, Wang Y, Yu Y, Zhu Y, Xu W, Cai X, Sun Z, Han W, et al. (2021). A
833 genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry.
834 *Nat Commun* 12:961.

835

836 **SUPPLEMENTARY INFORMATION**

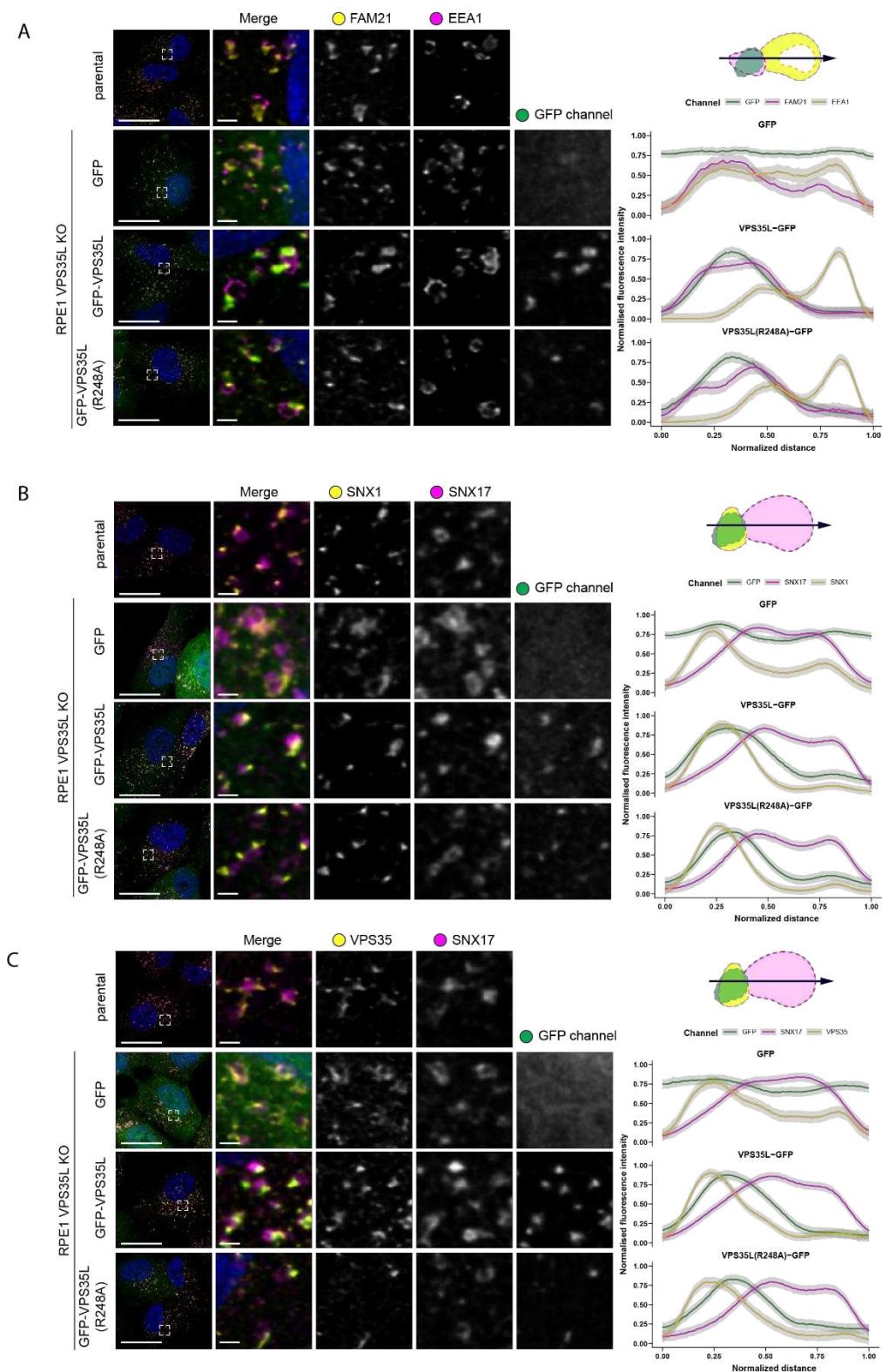


837
838

Figure S1

839 Purification of wild-type SNX17 (**A**) and SNX17(L470G) (**B**). (**C**) Evolutionary conservation of C-
840 terminus of SNX17 was evaluated by aligning full length SNX17 protein sequences from different
841 model organisms in Clustal Omega online tool and depicted using ESPript3.0. Last 18 residues
842 from each species are shown. The residue numbering corresponds to human SNX17 protein.

843

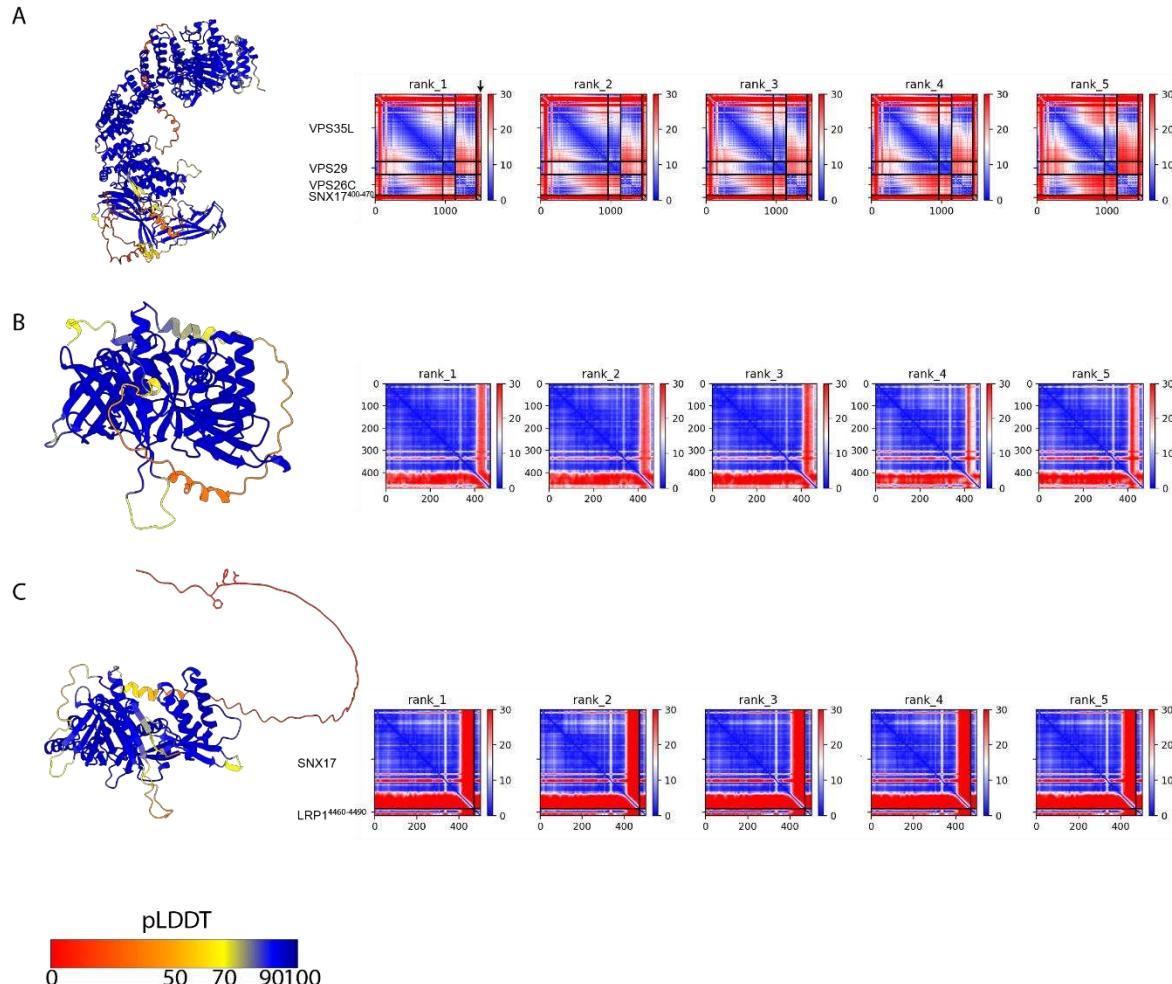


844

845 **Figure S2**

846 **(A)** Comparison of SNX17 binding to the VPS35L-VPS26C interface (AlphaFold2) and SNX3
 847 binding to VPS35-VPS26A interface of the Retromer complex (X-ray, PDB 5F0J). Previously
 848 characterised membrane binding interface within retromer is depicted with the cartoon of
 849 phospholipid bilayer. The possible orientation of SNX17-Retriever complex relative to membrane
 850 is shown. **(B)** Comparison of AlphaFold2-predicted conformations of SNX17-Retriever complex
 851 in human and Drosophila emphasizes evolutionary conservation of the assembly. **(C)** VPS35L

852 KO RPE1 cells were lentivirally transduced with GFP, VPS35L-GFP or VPS35L-GFP(R248A).
853 Protein lysates were then resolved using immunoblot and whole-cell levels of SNX17 were
854 compared in all samples. The quantification from 3 independent experiments is shown on the
855 right. n = 3, 1-way ANOVA with Dunnett's multiple comparison test, error bars represent s.d. **(D)**
856 AlphaFold2 was used to predict the binding of full-length SNX17 to the VPS35L-VPS26C
857 interface. Ranks were automatically assigned to the 5 predicted models, with ranks 1-3 predicting
858 no binding between SNX17 and Retriever and showing unbound, monomeric SNX17, whereas
859 ranks 4-5 predict the interaction between the unstructured C-terminus of SNX17 and VPS35L-
860 VPS26C interface of the Retriever complex. **(E)** Input mixtures for Fig. 4G. **(F)** Input proteins for
861 Fig. 4F.


862

863 **Figure S3 Retriever complex colocalises with the markers of the WASH, ESCPE**
 864 **and Retromer complexes**

865 (A-C) VPS35L KO RPE1 cells were lentivirally transduced with GFP, VPS35L-GFP or VPS35L-
866 GFP(R248A). The localisation of GFP or GFP-tagged proteins was compared to the localisation
867 of endogenous endosome markers SNX17 and FAM21 (WASH complex subunit) (A), SNX1
868 (ESCPE-1 subunit) (B) or VPS35 (Retromer) (C). Representative high-resolution confocal
869 microscopy images are shown. The relative distributions of endosomal markers were evaluated
870 in ImageJ by generating fluorescence intensity line profiles. Line profiles of 30 endosomes from
871 3 independent experiments were analysed in Rstudio, where the lengths of line scans and raw
872 fluorescence intensities were normalised and averaged. The average profiles are shown on the
873 right. The shading corresponds to the 95% confidence interval. Scale bars shown for full image
874 or inset correspond to 20 μ m and 2 μ m, respectively.

875

876

877

878 **Figure S4 AlphaFold2 models and associated predicted alignment error plots.**

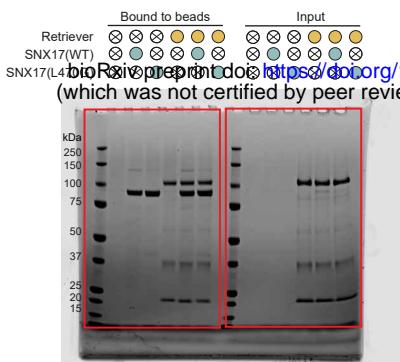
879 **(A)** AlphaFold2 prediction of Retriever (VPS35L, VPS26C, VPS29) and the residue 400 to 470 of
880 SNX17, **(B)** SNX17 full length and **(C)** SNX17 full length modelled against the LRP1 carboxy-tail.
881 Each structure model is coloured by pLDDT score, a measure of confidence where blue is a more
882 confident prediction. Each structure is also accompanied by the predicted alignment error (PAE)
883 plot for each of the five models. PAE plots show the correlation between any given residue in
884 angstroms (Å). Blue indicates that two residues are highly correlated while red indicates no
885 correlation.

886

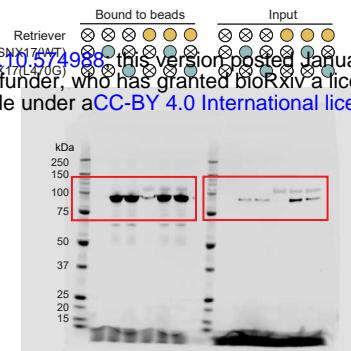
887

888

889


890

891

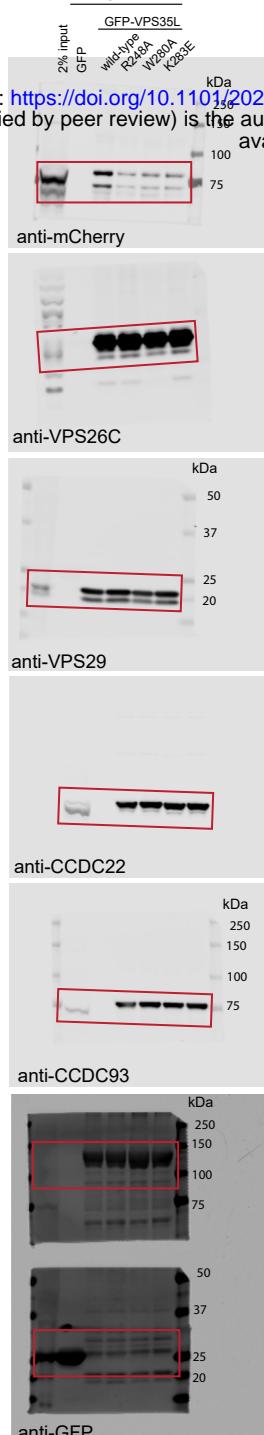

892

893 **SOURCE DATA**

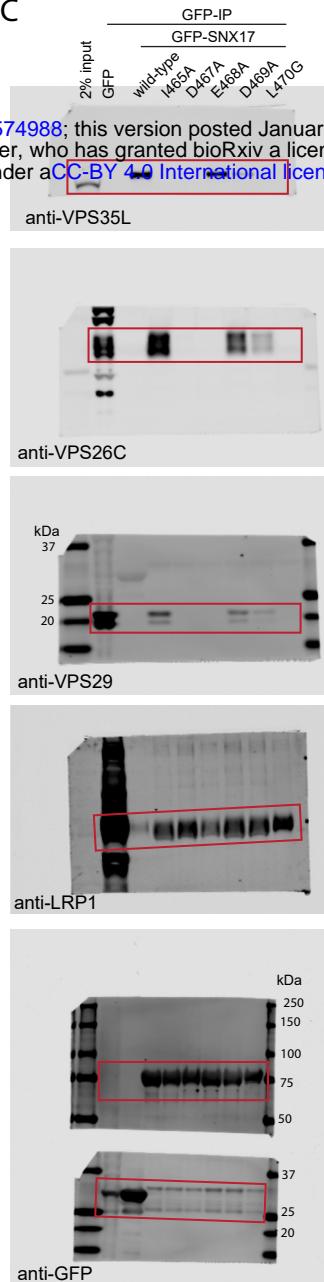
Comassie

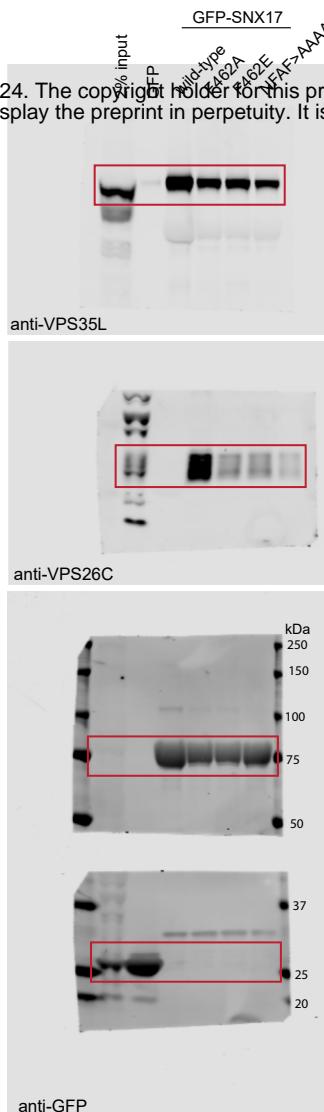


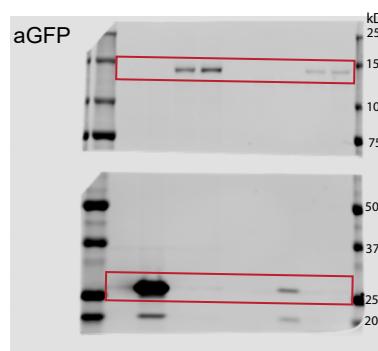
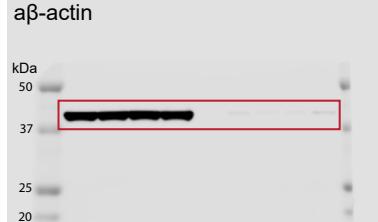
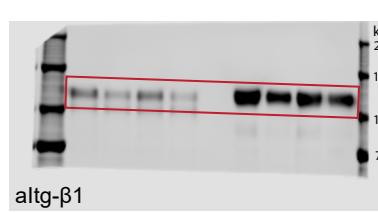
aSNX17

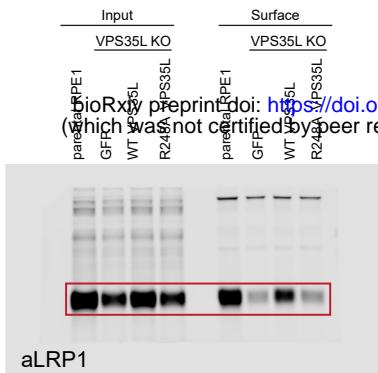


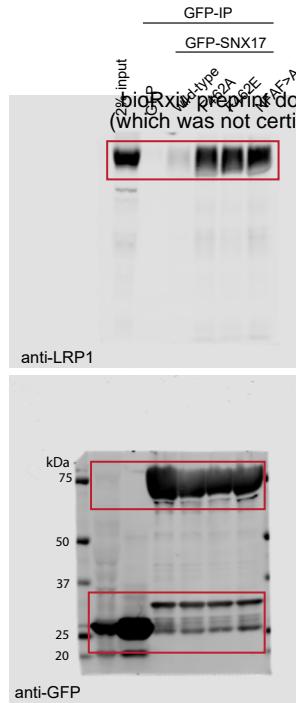
bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.10.574988>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

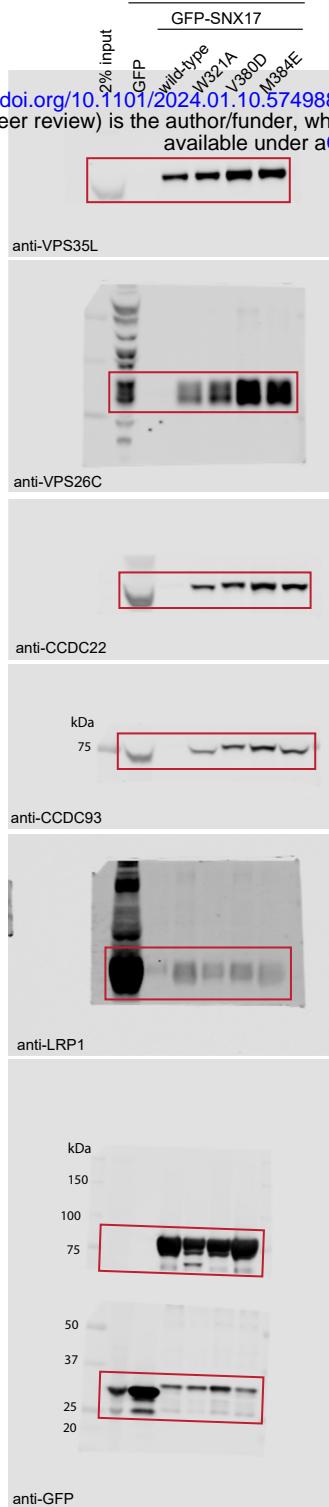

2A

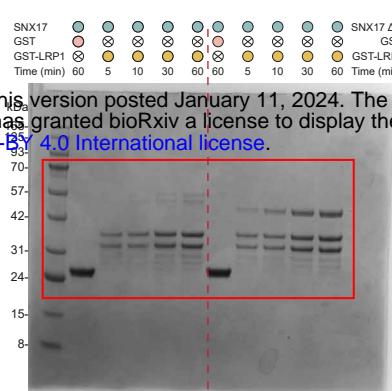

2B

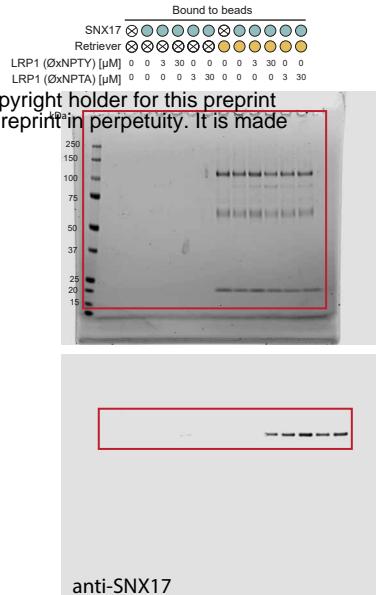




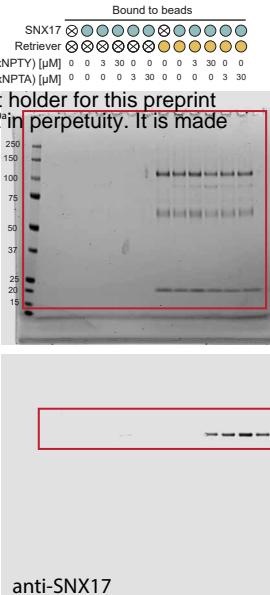

2C


2D

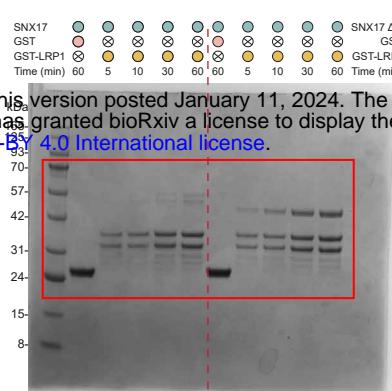

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.10.574988>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


4B

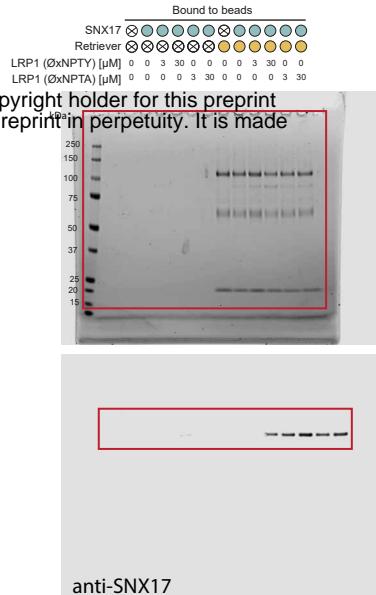

4C


4F

4G

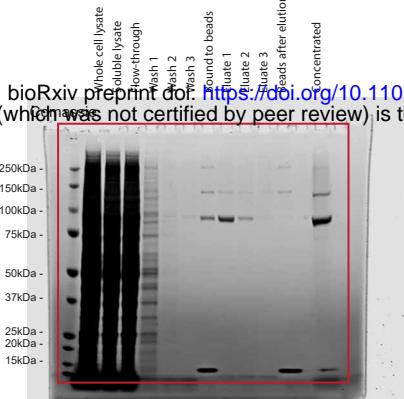


Comassie

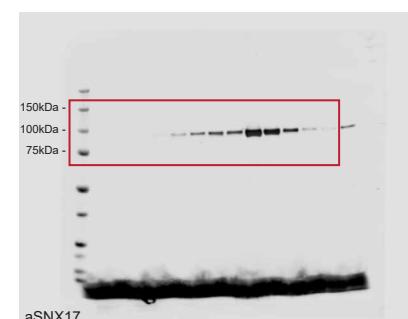
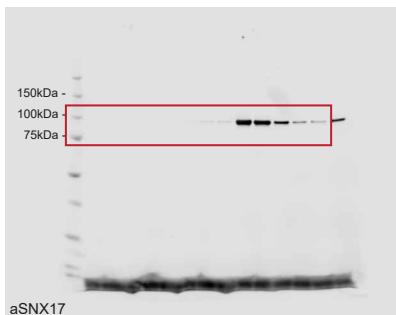
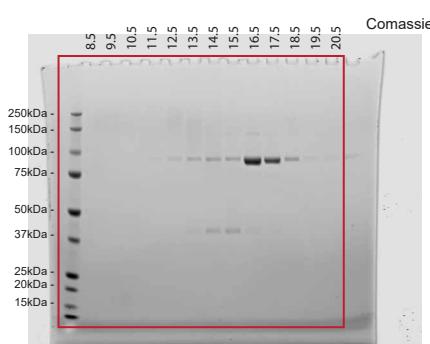
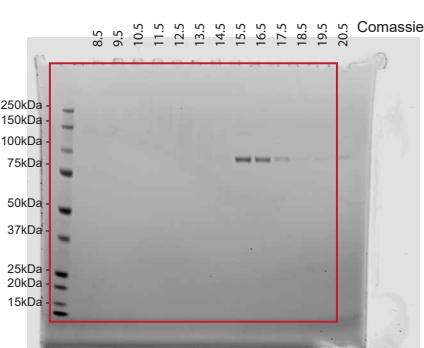
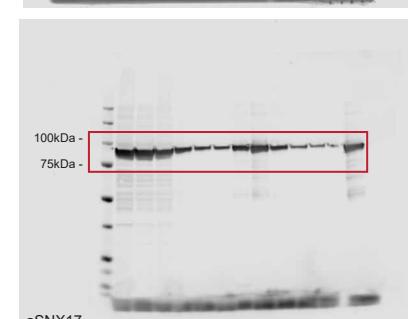
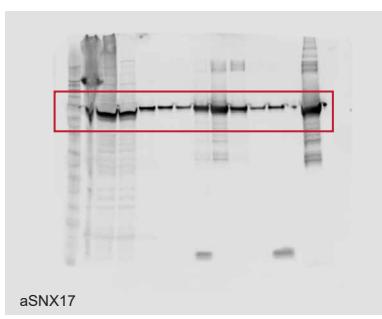
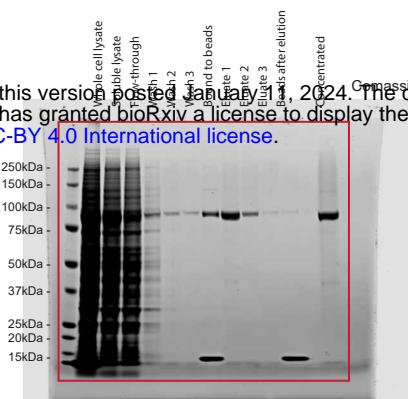



bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.10.574988>; this version posted January 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

4F

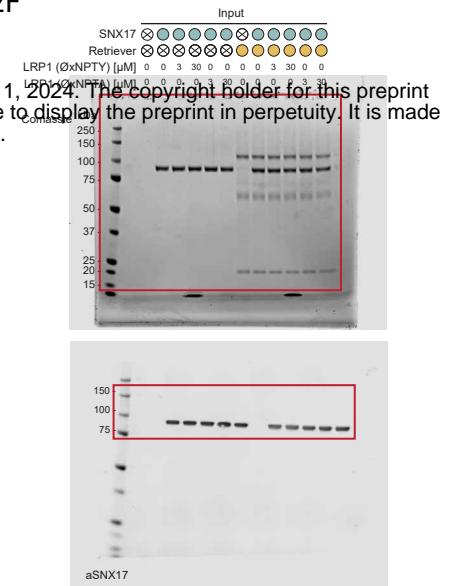
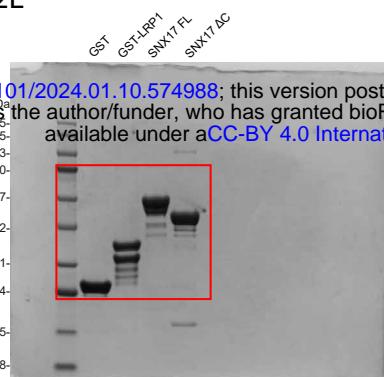
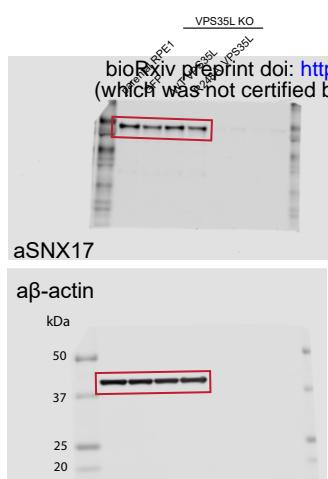


4G

S1A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.10.574988>; this version posted January 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.




S1B

S2C

S2E

S2F

