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Abstract

Glioblastomas exhibit remarkable heterogeneity at various levels, including motility modes and
mechanoproperties that contribute to tumor resistance and recurrence. In a recent study using
gridded micropatterns mimicking the brain vasculature, we linked glioblastoma cell motility modes,
mechanical properties, formin content, and substrate chemistry. We now introduce SP2G (SPheroid
SPreading on Grids), an analytic platform designed to identify the migratory modes of patient-
derived glioblastoma cells and rapidly pinpoint the most invasive sub-populations. Tumorspheres
are imaged as they spread on gridded micropatterns and analyzed by our semi-automated, open-
source, Fiji macro suite that characterizes migration modes accurately. With SP2G, we could reveal
intra-patient motility heterogeneity with molecular correlations to specific integrins and EMT
markers. Thus, our system presents a versatile and potentially pan-cancer workflow to detect
diverse invasive tumor sub-populations in patient-derived specimens and offers a valuable tool for

therapeutic evaluations at the individual patient level.

Teaser

Cracking the inter and intra-patient diversity in Glioblastoma migration profiles
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Introduction

Glioblastoma (GBM) tumors are highly aggressive and debilitating primary brain tumors that lead
to the destruction of the brain and the rapid death of the patients (8-14 months median survival) (/,
2). To this day, GBMs remain incurable, even with aggressive treatments that include brain surgery,
radio- and chemo-therapies (7, 3, 4).

The massive invasiveness and the inter- and intra-patient heterogeneity of GBM cells, represent
two major clinical challenges in GBM treatment. High heterogeneity precludes distinguishing the
most aggressive cells from the rest of the tumor and thus, defining precise and valuable therapeutic
targets (5-12). Invasiveness allows cells to escape treatment and to generate secondary tumors
responsible for the systematic recurrence observed in GBM patients (13, /4). Previous treatments
targeting classical migratory pathways have failed to improve GBM outcome (/3, 15, 16). This is
probably because GBM cells use their own specific motility modes to invade the brain (13, 14, 17).
In contrast to metastatic cells, glioma cells do not rely on the bloodstream for spreading. Instead,
they engage in active migration along specific pathways, such as the abluminal surface of brain
blood vessels and the white matter tracts, commonly referred to the ‘structures of Scherer’, and
invade, albeit less efficiently, by navigating into the brain parenchyma (/8-32). These diverse
motility modes need to be inventoried and understood in order to find specific molecular targets to
stop GBM cells from spreading into the brain.

Currently, the most effective biological tool for studying the cell biology of GBM is the utilization
of cell lines derived from patient samples. These cells are able to grow and form a GBM tumor
when injected into mouse brains (and hence are called human glioma propagating cells, hGPCs)
(33-35). hGPCs are usually grown as spheroids (tumorspheres) in serum-deprived medium,
allowing keeping their original properties including cell stemness and heterogeneity (33-35).
Spheroids constitute a great tool to dissect the motility modes of cell escaping the tumor core. They
have been used in many motility studies including those aiming at understanding the influence of
biomaterials, microenvironmental cues, drugs, mostly in 3D systems that do not recapitulate the
brain linear tracks exploited by GBM cells as invasive highways (36-44). Spheroids have also been
used in brain slices and xenografts that fully recapitulate the brain linear tracks and allow the
interconnection of invading GBM in communicating networks, but that require laborious protocols
and are inappropriate for robust analytical tool development needed to accelerate discoveries and
diagnosis (38, 45-48). Altogether, these impediments preclude a holistic dissection of GBM

migration and motility modes and fail to provide a robust and broadly applicable platform to unveil


https://doi.org/10.1101/2024.01.10.574982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.10.574982; this version posted January 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is ;Cgi%%tlgo&%relcri%r,c \,CVhl?S)Yhﬁsé g_;’r\lagtg% lﬁggﬁ;& Iricz:jﬂgg r]tgec.iisplay the preprint in perpetuity. It is made

80  how the cancer heterogeneity found in patients impacts on cell invasiveness through motility along

81  brain topographical cues.

82  Bioengineered systems have been set up to recapitulate the brain linear tracks in controlled

83  environments such as micropatterns, channels, nanofibers and grooves (49-52) and that promote

84  glioma motility, especially if laminin is used (53-57). Nanofibers and linear grooves recapitulate

85  well the 3D environments but are difficult to image at high resolution (53, 54, 57, 58). Engineered

86  vessels and microvascular networks potentiate GBM migration but are inadequate for broad

87  systematic investigation due to the co-culture setups that add complexity and compromise

88  reproducibility (49-51). In previous studies, we demonstrated that linear micropatterns were

89  excellent proxy to mimic the brain blood vessel tracks (50, 56, 59). These micropatterns allow high-

90  resolution imaging and analysis, while recapitulating the stroke motion observed in vivo. They also

91  present the advantages of simple in vitro systems, such as experimental reproducibility and

92  relatively short experimental duration (50, 56, 59, 60).

93  Recently, we further improved the linear system with gridded micropatterns that recapitulate better

94  the brain vasculature complexity and could reveal differences in motility that were not identifiable

95  using lines only (55, 61). Using this system, two different motile behaviors were defined: hurdling

96  and gliding. The hurdlers could ‘jump’ over the passivated area of the substrate and cut grid corners,

97  while gliders were diligently following the tracks. We also found that hurdlers and gliders were

98  mechanically different and displayed diverse formin expression profiles (55).

99  In the present study, we further improved our system by combining the gridded micropatterns with
100 spheroid spreading assays (SP2G for SPheroid SPreading on Grids) and tailored an Imagel/Fiji
101 toolbox able to translate the imaging data into numerical outputs reflecting the migration efficiency
102 of the cells and their motility modes. This system allows a fast and semi-automatized analysis and
103 can rapidly detect heterogeneous populations.

104
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105  Results

106

107  SP2G: a bona fide assay to mimic brain blood vessel motility

108  To perform SP2G assays, fluorescent glioma spheroids were seeded on gridded micropatterns and
109  imaged immediately, allowing recording the first steps of the cells reaching linear substrates
110  mimicking the blood vessel network. The features of the grids (7 um width and 75 pm gaps) were
111 chosen to match the blood vessel features and density found in the brain (Fig. S1C) (67). Grids were
112 coated with laminin since this matrix protein is enriched around brain blood vessels and promotes
113 single glioma cell motility (50, 55, 56, 62-65). Moreover, in accordance with previous studies (66,
114 67), we found that glioma spheroids spread faster on laminin than on other substrates (Fig. S1A-
115  B). To evaluate the efficiency of our system, we compared SP2G with several conventional assays.
116  Rat C6 glioma cells, a well-established model that migrate efficiently on brain vasculature (22, 24,
117 25, 28), were cultured as spheroids, stained and seeded on mouse brain slices, in 3D gels (collagen
118  and reconstituted basement membrane (rBM)), on laminin-coated dishes (2D-flat) and on our
119 gridded-micropatterns (Fig. 1). Cells were imaged immediately after seeding (movie 1) and the
120  spheroid spreading was quantified by measuring the areas of the spheroids at different time points.
121 Asobserved in fig. 1A-E, G, spheroids spread faster on 2D flat and gridded micropatterns (~8h for
122 the complete dissolution of the spheres) than on 3D gels (>24h) and brain slices (>48h). Single cell
123 migration was quantified by tracking manually the cells escaping the spheroids and calculating
124 mean square displacement and mean velocity. Cells migrated faster in the setups providing linear
125  guidance (brain slices and grids) compared to the other conditions (Fig. 1H, S1F-G). Moreover, on
126 grids and brain slices, cells displayed elongated shapes and ‘stick-slip’ motility features (Fig 11-J)
127 (22, 55, 56, 59, 68), while in 3D gels cells protruded multiple finger-like structures, likely due to
128  the tangled architecture of the microenvironment (Fig. 11, arrowheads). On 2D flat, cells adopted a
129 fan-like shape as previously described on homogeneous substrates (56, 68). Moreover, we found
130 that spheroid spreading and single cell migration were independent of the spheroid original size,
131 highlighting the flexibility of our assay since spheroid projected area can be highly variable ranging
132 from 1,000 um? to 15,000 um? for the rat C6 (Fig. S1H-I). Overall, SP2G appeared as the closest
133 decoy to recapitulate the conditions of a cell leaving the tumor core and encountering blood vessels.
134 We compared SP2G with the other techniques for important parameters in GBM motility analysis,
135 such as duration of the experiment (gain of time), presence of linear topographic cues, experimental
136 reproducibility, optical accessibility, possibility to implement semi-automated analysis, 3D
137 confinement and in vivo mimicry. SP2G appeared as an optimal technique in term of gain of time,

138 optical accessibility and presence of linear topographic cues allowing stick-slip motility (Fig. 1F).


https://doi.org/10.1101/2024.01.10.574982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.10.574982; this version posted January 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SP2 - Brain Slice SP2- 3D rBM

()]
£
=
S
=
£
[}
£
-
©
£
TR
o=t
e
e}
(&)
2
o]
P
Q.
[
£
-
Gaind time

8 In vivo Linear in vivo Linear In vivo Linear In vive Linear
6 cues cues mimicry cues mirmicry. cues
[&]
n Repro- Repro- D Repro- D Repro-
a ducbity ducbity 3 ducbity 3 duciity
i

Analyticd Optical Anayticad Optical Analticd Optical Analytica Optical Analyticd Optical

tools accessibiity tools accessibiity tools accessibiity tools accessibility tools accessibiity
G Spheroid spreading H Mean Velocity [pm/min]
% kok ok * K kK KRKX budududad

el — 06 e _—

S 10 i § 30 . oo B &

5 Z L] “l‘ n.s

< = 20 e % .-

< 5 c o8 j8e > 1.0

) © 10 ¢ > s

E < s

CN rBM 2D flat Grid BrainSI CN rBM 2Dflat  Grid
7]
£
©
S
m ID** BD***
Z
O
) ) Collagen™**
Brain Slice*** "

[
—
©
a 2D flat**
] rBM**
O

139


https://doi.org/10.1101/2024.01.10.574982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.10.574982; this version posted January 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

140  Fig. 1. Spheroid spreading on grids (SP2G) mimics glioblastoma invasion on brain blood vessels. (A-
141  E) Rat C6 glioma cells cultured as spheroids were stained (green, DiIOC6 dye) and seeded in brain slices
142 (A), in collagen gel (B), in reconstituted basement membrane (rBM) (C), on laminin-coated dishes (D), on
143 gridded micropatterns (E) and imaged for 48h (A), 24h (B, C) or 8h (D, E). First and last images of the
144  movies (upper panels) and time-projections (lower panels) are shown. The dashed oval in (A) corresponds
145  to the initial area of the spheroid in the brain slice. (F) Radar plots summarizing experimental scores (1 to
146  5) of gain of time, presence of linear cues, experimental reproducibility, optical accessibility, possibility to
147  develop analytical tools, three-dimensionality (3D) and in vivo mimicry for each setting. (G) Quantification
148  of spheroid spreading in collagen gel, rBM, 2D flat and grid (n = 14, 15, 35, 35 spheroids respectively). (H)
149  Mean velocities of single cells migrating in brain slices, collagen gel, rBM, 2D flat and grid (n = 80, 95, 90,
150 215, 215 tracks respectively, 5 to 7 tracks per spheroid, each dot is a cell). (I) Snapshots of single cells
151  moving away from the spheroid in each setting, extracted from movie S1. (J) Panel summarizing cell shapes
152 for C6 cell motility in each setting. Time is color-coded as indicated. Bars are 100 pm (A-E), 20 pm (I), and
153 50 um (J).

154

155  SP2G experimental setup and image analysis workflow.

156  To quantitatively describe cell migration and motility modes, we designed a toolbox relying on 7
157  macros that deliver 3 outputs for cell migration (area, diffusivity, boundary speed) and 3 outputs
158  for the motility modes (collective migration, directional persistence, hurdling) (Fig. 2A,B, see
159  Supplementary Appendix for computational details and user manual). Since area measurements,
160  A(t), neglect the temporal dimension, we integrated into SP2G diffusivity and boundary speed.
161  Diffusivity, D(t), accounts for how quickly cells fill up the surrounding space. Boundary speed,
162 V(t), indicates how quickly cells travel in a monodimensional space, providing a value equivalent
163 to single cell velocity. Essentially, this toolbox allows translating migration modes and efficiency
164  into unbiased numerical outputs, thus, defining a proper ‘motility signature’. For a better cell
165  segmentation and a stable readout, grids and spheroids were stained with fluorescent dyes and
166  spreading was imaged by fluorescence and phase contrast microscopy (Fig. 2A and Supplementary
167  Video 2). We divided SP2G analysis workflow in 2 main steps: the first step processes the raw data
168 semi-automatically and characterizes cell migration (outputs #1, 2, 3, Fig. 2C) and the second step
169  characterizes motility modes (outputs #4, 5, 6, Fig. 2C). Cells and grid images are segmented in
170 binary images that are multiplied to isolate grid nodes covered by the invasive cells. These binary
171 images are combined to construct a polygon that connects the grid nodes travelled by the spheroid
172 invasive front at each time point. An average migration area A(t) per cell line (>10 spheres per cell
173 line) is represented by aligning the barycenter of all the polygons at time 0 and extrapolating all the
174 mean xy coordinates at each time point (Fig. 2C, output #1). The corresponding numerical values
175  are smoothed and differentiated to obtain diffusivity values D(t) (Fig. 2C, output 2). A(t) and D(t)
176 values are then used to obtain the boundary speed v(t), from the formula v(t) = D(t) / (2V(A(t))

177 (output #3) (see Methods and Supplementary Appendix).
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178
179  Fig. 2. SP2G experimental setup and image analysis workflow. (A) Spheroids are stained (red, Dil),
180  seeded on fluorescent gridded micro-patterns (coated with laminin mixed with BSA 647) and imaged for 8h.
181  (B) Cells and grids images are segmented in binary images that are multiplied to isolate the grid nodes
182 covered by the invasive boundary. Polygons tracking the spheroid spreading are reconstructed and averaged.
183  (C) The time trend is projected and color-coded to visualize migration area A(t) (output #1). Diffusivity D(t)
184  is obtained by differentiating A(t) (output #2). Spheroid boundary speed v(t) is obtained from D(t) and
185  A(t)(output #3). Normalization of A(t) and v(t): T, corresponding to the frame at which each cell line has
186  migrated the same distance as the slowest cell line (C2) at the end of the acquisition (8h or more), and A,
187  corresponding to the time window to complete 100 um, are identified and all the movies are cut at 7. Running
188  average (RA) movies are created by shifting A in the interval 1:t and cell motility modes are characterized
189 by extrapolating features from the RA movies: collective migration (output #4) is obtained by thresholding
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190  the area (outlined in green) of pixels belonging to the last bin of the histogram; directional persistence (output
191  #5) is obtained by evaluating image orientation; hurdling (output #6) is obtained by sampling the intensities
192 of the grid squares.

193

194  The second step of SP2G analysis provides the 3 other numerical outputs that characterize motility
195  modes: collective migration (output #4: the higher the values, the more cells migrate as collective
196  strands), directional persistence (output #5: the higher the values, the more cells move in the same
197  direction) and hurdling (output #6: the higher the value the more cells are cutting angles). For the
198  analysis of motility modes, only motile cells are considered. We defined motile cells by an average
199  boundary speed higher than 100 um / 8 h (0.21 pm/min). The characterization of motility modes is
200  based on running average movies of the spreading spheroids and requires the identification of 2
201  parameters specific to each condition, A and t, that allow normalization over migration area and
202  boundary speed (see Supplementary File 1). A corresponds to the time window necessary to migrate
203 100 um and t corresponds to the frame at which each cell line has migrated the same distance as
204  the slowest condition at the end of the acquisition (8h or more). Movies are cut at T and running
205 average (RA) movies are created by shifting A in the interval 1 to t. Cell motility modes are
206  characterized by extrapolating features from RA movies. Collective migration (output #4) is
207  obtained by thresholding the area of pixels belonging to the last bin of the image histogram (outlined
208  in green); directional persistence (output #5) is obtained by evaluating image orientation; hurdling
209  (output #6) is obtained by sampling the intensities of the grid squares (i.e. the passivated areas
210 covered by cells that cut angles) (Fig. 2C and S2). To test our SP2G analytical tool, we used
211 simulated data of 100 round particles (radius=5 pixels) mimicking cells in spreading spheroid with
212 different properties. Particles were diffusing at 3 speed regimes with full constraint (Continuous,
213 100% probability of being attached to a neighbor), partial constraint (Pseudo-continuous, 90%
214  probability of being attached to a neighbor), or no constraint (Simple diffusion). As depicted in Fig.
215 S2H, our analytical tool was able to distinguish accurately the different particle properties of
216  collective migration.

217 SP2G quantifies known migratory tactics.

218 We tested our SP2G toolbox with 3 patient-derived cell lines known for their different motility
219 modes on grids: NNI-11 (non-motile), NNI-21 (hurdler) and NNI-24 (glider) (55). As observed in
220  fig. 3, SP2G confirmed their migratory behavior: within the same time window (4h), the most
221 motile NNI-21 spread further away than the NNI-24 and NNI-11. This behavior could be quantified
222 with diffusivity and boundary speed that were higher in the NNI-21 (Fig. 3A, F-G). The specific
223 motility modes (hurdler vs glider) could also be quantified (Fig. 3D, H-K). Following our previous

224 observations (55), NNI-21 cells migrated stochastically, with jumpy motions reflected by a low
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225  directional persistence (Fig. 3J) and high hurdling (Fig. 3K). Hurdling was visualized with
226  cumulative distribution functions (CDF, lower slopes indicating more hurdling) and converted to

227  numbers by dividing the average square intensity of the NNI-21 by the one of the NNI-24, returning
228  arelative value of 2.08. NNI-24 displayed higher collective migration than NNI-21 (Fig. 3D, I).
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230  Fig. 3. SP2G quantifies cell migratory tactics. Patient-derived glioblastoma spheroids were
231  seeded on fluorescent gridded micropatterns, imaged for 8h, and analyzed as indicated in fig. 2 (n
232 =10, 11, 13 spheroids, n = 2, 2, 2 independent experiments for NNI-21, NNI-24 and NNI-11
233 respectively). (A) Snapshots of the movies at 0 h, 4 h, and corresponding time projections. (B-D)
234 Cellular edges (B) and corresponding overlays of the phase contrast and the fluorescent grid images
235 (C) at 4 time points (Oh, 2.5h, 5h, 7.5h) and corresponding running average (RA) (D). The time
236  window A constituting the corresponding RA frame is indicated at the bottom of each panel: for the
237 non-motile T =94, A =24. (E) Averaged polygons visualizing migration areas. (F) Diffusivity over
238 3.5 h; dashed lines are standard deviation. (G) Mean boundary speed over 3.5 h. Each dot represents
239 atime-point and is color-coded as in (E). (H) A (number of frames needed to travel 100 um) and t
240 - A (number of frames in the RA movie) in motile cell lines. (I) Collective migration quantification.
241 Each dot represents a spheroid. (J) Directional persistence visualized as the ratio between the
242 orientation along 0° and along 45° (Or(0°) / Or(45°), see methods). Each dot represents a spheroid.
243 (K) Hurdling visualized as the Cumulative Distribution Function (CDF) of the normalized mean
244 intensity of the grid squares (image intensity is sampled in each square). The ratio indicates the
245  relationship between the average mean intensities (the sum of the mean intensity from all the
246  squares divided by the total number of squares) of the 2 cell lines. Scale bars are 100 um. Time and
247  image intensity are color-coded as indicated. Statistical analyses are shown for NNI-21 compared
248  to the other cell lines (see Supplemental for complete analysis).
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249  We then evaluated SP2G sensitivity by applying a set of cytoskeleton-perturbing drugs to NNI-21
250  in a dose-dependent manner. We recorded the effects for the Arp2/3 inhibitor CK666, the myosin
251 II inhibitor blebbistatin, the microtubule poison nocodazole, and the actin poison latrunculin-A
252 (Fig. S3 and Supplementary Video 4). CK666 did not affect NNI-21 migration and motility mode,
253 whereas all the other drugs reduced spheroid spreading and affected motility modes differently.
254  Blebbistatin and latrunculin-A increased collective migration and persistence, and decreased
255  hurdling while Nocodazole kept collective migration and directional persistence but slightly
256  decreased hurdling. Overall, these results validated SP2G as a sensitive method for motility
257  screening and highlighted its potency as a platform for drug testing.
258  Cells can sense changes in their microenvironment, including the chemical composition of the
259  substrate. As observed previously, GBMs have a strong affinity for laminin (53-56). We tested
260  SP2G sensitivity to perturbations of substrate density by micropatterning the grids with various
261  laminin concentrations (400, 200, 100, 50, 25, 12.5, 6.25 pg/ml) and a blank condition (no laminin)
262 (Fig. S4). Spheroids did not adhere in the blank and at the lowest concentration. Diffusivity and
263  boundary speed measurements showed that cell migration increased with laminin concentration
264  from 12.5 pg/ml up to 50 pg/ml where it reached a plateau (Fig. S4 E-F). Above 50 pg/ml LN,
265  migration didn’t increase dramatically and didn’t decrease either. Interestingly, the boundary speed
266  data indicated that the fastest cells were the cells monitored toward the end of the acquisition (red
267  and yellow points) while the slowest were monitored at the beginning (dark blue points) (See Fig.
268 3G NNI-21, Fig. S3H control, Fig. S4F, LN 50-25-12.5) suggesting that cells accelerated with time
269  after touching the substrate. However, at the highest LN concentrations (Fig. S4F, LN 200-400),
270  the sorting of the cells was less obvious.
271 Altogether, SP2G emerged as sensitive in characterizing inter-patient heterogeneity in cell
272 migration (NNI-11 vs 21 vs 24) and could detect subtle motility differences under fine biochemical
273 perturbations (NNI-21). Therefore, we hypothesized that SP2G could unveil potential intra-patient
274 cancer heterogeneity in migration and motility modes.
275  SP2G reveals heterogeneity in the migratory tactics adopted by glioblastoma sub-
276  populations isolated from patient-derived tumor-spheres.
277  GBMs have been characterized both as inter- and intra-patient heterogeneous tumors.
278  Heterogeneous GBM displayed difference in their genomic (5, 11, 69), epigenetic (8, 70),
279  transcriptomic (6, 7, 10, 12, 71) and proteomic (9) profiles, which can be mutating under therapy
280  (72) and maintained when cultured in vitro (73). Heterogeneity in motility has also been observed
281  in mouse brains, but from these experiments it is unclear if the motile heterogeneity is due to the

282  intrinsic properties of the cells or their surrounding environment (74-76). Using SP2G, we tested
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283 the motility heterogeneity of the patient-derived cell line GBM7 (Fig. 4 and Supplementary Video
284 5). Strikingly, when GBM?7 spheroids spread on the grid, the single spheres separated in several
285 small ones instead of spreading homogenously, suggesting that motile subpopulations were
286  carrying non-motile cells, packed in mini spheroids (Fig. 4A and Supplementary Video 5). This
287  implied that the GBM7 cell line was composed of heterogeneous populations displaying different
288 intrinsic motility properties. Therefore, we decided to isolate these sub-populations and analyze
289  their phenotype. Single clones were isolated by serial dilutions in 96 well plates and amplified as
290  spheroids, from which we identified 3 motile (GBM?7 clones #09, #01, #07) and 2 non-motile (#03,
291  #02) sub-populations (Fig. 4B). The motile clones displayed two different cell morphologies.
292 Clones #09 and #07 had small cell bodies and two thin polarized processes, whereas clone #01
293 displayed larger cell bodies, with multiple thick processes (Fig. 4B and Supplementary Video 5).
294 From the live imaging, we could also observe that clone #01 was behaving differently than clones
295 #07 and #09 (Supplementary Video 5). However, the 3 clones migrated with similar migration
296  parameters (no significant differences in migration area and diffusivity with the exception of clone
297  #09 that displayed higher boundary speed) (Fig. 4D-G, I-J). Clone #01 displayed higher collective
298  migration, higher persistence and higher hurdling than clones #07 and #09 even though each of
299  those differences were not significant (Fig. 4K-M). These results, together with the clear cell
300  morphology differences observed on laminin, suggested that clone #01 belonged to another motile
301  category than clone #07 and #09. The non-motile clones also displayed two different cell
302 morphologies, with clone #03 presenting larger cell bodies and processes than clone #02. Both
303  clones were not spreading on 2D or on grids, with low migration area, diffusivity and boundary
304  speeds (Fig. 4D-G, I-J). To confirm SP2G as a bona-fide alternative to brain tissue assays, we tested
305  these 5 populations in our brain slice assay. The brain slice assay confirmed the results obtained by
306  SP2G (Fig. 4C,N and Supplementary Video 5), with 3 motile (#09, #01, #07) and 2 non-motile (#03
307 and #02) clones. However, a detailed quantitative characterization of behaviors and speeds was
308  impossible with the brain slice assay. At the opposite, SP2G analysis, together with the cell
309  morphology, could separate the 3 motile clones into 2 potential motile clusters: one cluster (clone
310 #1) with higher hurdling, collective and persistence properties than the other cluster (clones #7 and
311 #9) (Fig. 4B, K-M).

312 In conclusion, these results confirmed that sub-populations hidden in patient-derived samples
313  spanned a range of migration modes comparable to those from different patients and demonstrated
314  that SP2G was a valuable platform to unveil them. Next, we asked whether the transcriptional
315  profiles of our sub-populations could account for their differences in cell motility.

316
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317

318  Fig. 4. SP2G reveals migration heterogeneity in glioblastoma sub-populations isolated from
319  patient-derived tumor-spheres. Spheroids from GBM?7 original cell line (bulk) and isolated
320  subpopulations (clones #01, #02, #03, #07, #09) were seeded on fluorescent gridded micropatterns,
321  imaged for 8h, and analyzed as indicated in fig. 2. (A) Snapshots of the movies of the original
322 population (bulk) at the indicated time-points. (B) Phase-contrast pictures of the GBM7 sub-
323 populations cultured on laminin (top) and after SP2G at 8 hours. (C) Spheroid spreading of GBM7
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324  sub-populations (green, DiOC6 dye) in brain slices at 0 h and 40 h. (D-G) SP2G analysis of the
325  clones #01, #02, #03, #07, #09 (n = 22, 23, 20, 22, 22 spheroids respectively; n = 3 independent
326  experiments): Cellular edges (D), corresponding overlays of the phase contrast and the fluorescent
327  grid images at 4 time points (E), and corresponding running average (RA) (F). The time window A
328  constituting the corresponding RA frame is indicated at the bottom of each panel: for the non-motile
329  t=94, A =24. (G) Averaged polygons visualizing migration areas. (H) A and 1 - A of the motile
330  subpopulations. (I) Diffusivity over 3 h 30°. Dashed lines are the standard deviation. (J) Mean
331  boundary speed over 3h 30’. Each dot represents a time-point and is color-coded as in (G). (K)
332 Collective migration for the motile cells. Each dot represents a spheroid. (L) Directional persistence
333 for the motile cells visualized as the ratio between the orientation along 0° and along 45° (see
334 methods). Each dot represents a spheroid. (M) Hurdling, visualized as the Cumulative Distribution
335  Function (CDF) of the normalized mean intensity of the grid squares. The ratio indicates the
336  relationship between the average mean intensities of the most hurdling (#01) against the others. (N)
337  Mean velocities of single cells migrating in brain slices n = 20, 13 15, 15, 22 tracks for clones #1,
338 2,3,7,9 respectively, each dot is a cell). Bars are 100 pum (A, B bottom panel, C) and 50 pm (B,
339  top panel). Time and image intensity are color-coded as indicated. Statistical analyses are shown
340  for clone #07 compared to all the other clones (see Data S3 for complete analysis).

341

342

343 Intra-patient heterogeneity in motility modes is correlated with specific molecular signatures.
344 We profiled transcriptional landscapes of the clones GBM7 by RNA-seq to see if their signatures
345  correlated with their motile phenotype defined by SP2G. RNA samples from three different cultures
346  of each clone were sequenced by our onsite genomic unit (50.10° reads per sample). Differential
347  expression analysis followed by principal component analysis (PCA) showed that the motile (#01,
348  #07 and #09) and the non-motile (#02, #03) clones grouped in 2 distinct clusters, and that inside
349 the motile cluster, clone #07 and #09 grouped together away from clone #01, as suggested by SP2G
350  and the morphology of the cells (Fig. 5A). Gene set enrichment analysis (GSEA) of differentially
351  expressed genes in motile versus non-motile groups showed enrichment in the ECM-receptor
352 interaction and focal adhesion pathways (KEGG) (Fig. 5B), EMT pathways (Hallmark), integrin
353  and TGFp pathways (Biocarta) (Fig. SSA-B) that are all linked to motility. Strikingly, z-score of
354  expression levels of integrin genes indicated that the laminin-binding integrins (particularly ITGA3
355  and ITGAG6) were enriched in the motile clones compared to the non-motile (Fig. 5C). In opposition,
356  fibronectin-binding integrins were either poorly expressed or uncorrelated to cell motility (Fig. 5C).
357  We confirmed these results by qPCR that showed that the laminin-binding integrins ITGA3 and
358  ITGAG6 were enriched in the motile clones while the fibronectin-binding integrin ITGAV was not
359  (Fig. SE). ITGAS, ITGA7 and ITGA10 were also enriched but to a lower extent. These results were
360  confirmed by western blot (Fig. 5D) and are in agreement with glioma preference for laminin and
361  with the large presence of laminin on brain blood vessels (53-56, 62-67). The comparison of the

362 top 50 upregulated genes in the motile group versus the non-motile (Fig. S5C) showed that while
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most of the genes that were upregulated in clones #07 and #09 were also upregulated in the clone
#01, some genes such as LMO3 and HHIP were upregulated only in clone #01 and others such as
CRABP2, MOXD1, MTLS5, CTSZ were upregulated in clones #07 and #09 but not in clone #01
confirming the clustering of the motile clones in 2 different groups. On the other hand, all the top
50 downregulated genes showed the same trends in all the 3 motile clones (Fig. S5D).
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Fig. 5. Intra-patient heterogeneity in migration ability is correlated with specific molecular
signatures. (A) Principal component analysis showing segregation of the 5 GBM7 sub-populations
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371  in motile and non-motile groups. (B) Gene set enrichment analysis (GSEA) of differentially
372 expressed genes in the motile vs non-motile group. GSEA was performed using the Kyoto
373  Encyclopedia of Genes and Genomes (KEGG) gene set in the GSEA molecular signatures database.
374  Moderated t-statistic was used to rank the genes. Reported are Normalized Enrichment Scores
375  (NES) of enriched pathways (with the fill color of the bar corresponding to the P-value). P-value
376  was calculated as the number of random genes with the same or more extreme ES value divided by
377  the total number of generated gene sets. (C) Heatmap representing z-score of expression levels of
378  integrins. (D) Expression of ITGA6, ITGAV, tubulin, in total cell extracts of the 5 GBM7 sub-
379  populations growing on laminin. (E) Relative mRNA expression levels of ITGA1, ITGA2, ITGA3,
380 ITGAS, ITGAG6, ITGA7, ITGA10, ITGAV, and CD44 in the 5 GBM7 sub-populations. Each
381  integrin expression is reported to its expression in clone #3. GAPDH and B2M were used as
382 housekeeping genes. n=3 independent experiments. Error bars are S.E.M. (F) Quantification of the
383  expression of ITGA6 and ITGAV in each condition reported to their expression in clone #3. 2
384  independent western blots were quantified.

385

386

387

388  To assert more precisely the differences between the 2 motile groups, we analyzed them without
389  the non-motile. The differential expression analysis followed by principal component analysis
390  (PCA) showed 75% variance between the clone #01 and the 2 remaining clones while the variance
391  between the clone #07 and #09 was only 19% (Fig. 6A). Interestingly, Gene set enrichment analysis
392 (GSEA) of differentially expressed genes showed a depletion in the EMT pathway (hallmark), and
393  in the ECM-Receptor interaction and focal adhesion (KEGG) suggesting that the clone #01 was
394  more mesenchymal than clones #07 and #09 (Fig. 6C, S6A). This was confirmed with the
395  comparison of the top variable 20 genes between clone #01 and clones #07-09 that contained genes
396  involved in the EMT and matrix organization with TGFB1 being the most variable gene between
397  these clones (Fig. 6B). Within these twenty genes, 6 encoded for extra cellular matrix proteins:
398 EMILIN1 (Elastin Microfibril Interfacer 1, that is involved in Elastic fiber formation and
399  Extracellular matrix organization), MGP (Matrix Gla Protein, that is normally secreted by
400  chondrocytes and vascular smooth muscle cells, and functions as a physiological inhibitor of
401  ectopic tissue calcification); XYLT1 (Xylosyltransferase 1, necessary for biosynthesis of
402  glycosaminoglycan chains), FN1 (Fibronectin), COL4AS5 (Collagen Type IV Alpha 5), NCAN
403  (Neurocan, a chondroitin sulfate proteoglycan thought to be involved in the modulation of cell
404  adhesion and migration). Hence, we could assign different transcriptional signatures to the two
405  motile behaviors. Taken together, these results validated the motile versus non-motile classification
406  as well as subtle distinctions in motility mode, and provided insights on the molecular determinants
407  that characterize GBM intra-patient heterogeneity in cell motility.

408
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410  Fig. 6. Intra-patient heterogeneity in motility modes is correlated with specific molecular
411  signatures. (A) Principal component analysis showing segregation of the 3 motile sub-populations
412 in 2 groups. (B) Heatmap representing row-normalized expression levels of the 20 most variable
413 genes between the 2 motile groups. Genes belonging to the EMT pathway are upregulated in clone
414  #01 compared to clones #07 and #09. (C) Gene set enrichment analysis (GSEA) of differentially
415  expressed genes in the motile groups (clones #07 and #09 versus clone #01). GSEA was performed
416  using the KEGG gene set in the GSEA molecular signatures database as in fig. 5.

417

418  DISCUSSION

419  In heterogeneous tumors such as glioblastoma, some cells can be highly aggressive, migrating long
420  distances from the tumor core while other cells can be less motile, remaining in the tumor core (7,
421 71, 74-78). Within the motile populations, cells may also display significant heterogeneity in term
422 of motility modes and molecular signatures, and in consequence display different sensitivity to

423  targeting drugs. Our goal, here, was to develop a method to analyze rapidly the various motility
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424  modes present in single patients in order to identify the most aggressive clones and their specific
425  molecular signatures. We tested SP2G using patient-derived cell lines NNI-11, NNI-21, and NNI-
426 24, which have known migration behaviors. In our previous work, we extensively studied the
427  migration and motility modes of these cell lines (55). NNI-11 showed non-motile and highly
428  proliferative behavior, while NNI-21 and NNI-24 exhibited motile characteristics with distinct
429  patterns: NNI-21 showing stochastic, jumpy motion (hurdlers), and NNI-24 following defined
430  tracks (gliders). SP2G outperformed our previous system with many advantages:
431 1) SP2G allowed a faster, semi-automated, analysis of the cell migration, by tracking the spreading
432 area of the spheres instead of manually tracking single cells like in (55). The differences in motility
433 were clearer and more complete than our previous results. NNI-11 were not spreading at all, and
434 NNI-21 and NNI-24 mirrored their known migration proficiency (for NNI-21: 90 pm/h with SP2G
435 vs 60 um/h for single cells on grid; for NNI-24: 40 um/h with SP2G and 30 pm/h single cell on grid
436 (55).
437 2) SP2G could quantify the hurdling of NNI-21 as opposed to the high directional persistence of
438  NNI-24. Originally, we defined hurdling and gliding with the projection of all the frames of a 6h
439  movie. The projection of glider movies resulted in a quasi-perfect grid, drawn by the cells, while
440  the projection of hurdler movies resulted in grids that were filled-up in the non-adhesive area with
441  cell processes (55). However, quantification was not straightforward and could depend on the cell
442 density. With SP2G, hurdling evolution could be analyzed in time and cell lines could be compared.
443 Hence, SP2G can define and score hurdling motility in an unbiased way. Using different doses of
444  cytoskeleton-perturbing drugs, we demonstrated that SP2G was sensitive and suitable as a motility-
445  screening platform. We confirmed the requirement of myosin II and microtubules and the
446  independence of Arp2/3 for the motility of GBM cells as we previously reported (55, 56).
447  3) SP2G highlighted the formation of collective strands as observed in vivo (22, 24, 46), that cannot
448  be recapitulated using the single cell migration assay. Indeed, the spheroid acts as a reservoir for
449  the cells to spread diffusively, allowing many cells to move in the same direction. Moreover, the
450  short duration of our experiments (8 hours) reasonably ensures the independence of cell migration
451  from cell proliferation. SP2G highlighted and quantified the formation of collective strands in the
452 NNI-24. These collective migration properties could not be identified in our previous work with
453 single cell assays (55).
454 4) SP2G allows the migration of cells on a highly controlled substrate, in shape and in composition
455  that has not been in contact with cells. In this regards, SP2G mimics the conditions encountered by
456  the first migrating cells leaving the tumor core and invading the naive blood vessel surface. SP2G

457  can be adapted to any matrix proteins, allowing the analysis of other cell type than glioma. By
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458  modifying the concentration of laminin of the grid, we found that the NNI-21 were sensitive to
459  small substrate variations and SP2G was able to pick these subtle differences. Interestingly,
460  diffusivity and boundary speed measurements showed that cell migration increased with laminin
461  concentration up to 50 pg/ml where it reached a plateau above which migration didn’t change. This
462  migration increased with laminin concentration was previously observed with the GBM cell lines
463  GaMG and U373 (66). These results are in opposition with previous modelling and experimental
464  studies with different cell types, showing that cell migration exhibited a biphasic response to
465 changes in fibronectin concentration (79, 80) or in laminin concentration for melanoma cells,
466  revealing a dose optimum of 10 pg/ml laminin (66). Our results suggest that the laminin —binding
467  integrins involved in GBM cells are behaving differently than the fibronectin-binding integrins,
468  leading to variations in cell migration. Moreover, the boundary speed data indicated that cells
469  accelerated with time after touching the substrate. This could be due to a gradually increase in the
470  expression of pro-migration molecules triggered by the laminin substrate. In accordance, we
471  previously showed that the expression of the formin FMNI1 increased upon increased laminin
472 concentrations in NNI-21 (55). At the highest concentration, however, the sorting of the cells was
473 less obvious, suggesting that at high LN concentration cells expressed pro-migratory factors at
474  earlier time points.

475  5) SP2G can unveil migratory heterogeneity and render it easy to see by eye. This is an important
476  feature of SP2G. Identifying and demonstrating cell heterogeneity with single cells seeding on the
477  grid would necessitate single cell tracking coupled to a deep analysis of the shape of each cell.
478  Moreover, cells that do not adhere very well on the grid and are floating around could be under-
479  evaluated. Here, by seeding spheroids of the bulk GBM7 cell line, we could detect the presence of
480  migration heterogeneity right away, because single spheres separated in several small ones instead
481  of spreading homogenously, suggesting that motile subpopulations were carrying non-motile cells,
482 packed in mini spheroids. We do not know if this behavior occurs in vivo which would drive non-
483  motile GBM cells away from the tumor core. However, we know that such ‘hitchhiking
484  mechanisms’ exist for other cancer cells like melanoma (87). In this regard, this phenomenon could
485  be tested via SP2G with mixed spheroids containing motile and non-motile populations. Correlative
486  single cell RNA-seq in patient samples could then help deciphering if indeed motile cells could
487  carry non-motile cells away from the tumor core in vivo. If this is the case and that non-motile cells
488  can be found at the tumor margin, then, previous statements using high throughput approaches
489  comparing tumor core and tumor margin, without corresponding cell migration assays might need

490  to be re-evaluated (82). Also, motile and non-motile cells might communicate via networks or extra
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491  cellular messengers. Our method could be adapted to analyze the influence of the clones on each
492  other, as it has been suggested (45, 75, 83).
493  6) SP2G can pick subtle differences and translate ‘eye’ observations into numbers. When we
494  analyzed the GBM?7 clones, we could observe that the motile clone GBM7 #01 was behaving
495  differently than the motile clones #07 and #09. Importantly, these motility clusters were assembled
496  similarly using RNA-seq. In accordance with their motility on laminin, the 3 motile clones differed
497  from the non-motile clones with the high expression of the laminin-binding integrins ITGA3 and
498 ITGA6 while there was no difference for the fibronectin-binding integrin ITGAV. This also
499  confirmed that the motility on laminin reflected better what it is happening in the brain since our
500  motile and non-motile clones on laminin were the same motile and non-motile on brain slices. The
501  fact that they did not displayed differences in the expression of fibronectin-binding integrin ITGAV
502  could explain the negative results obtained with cilengitide, the integrin alpha V inhibitor, in clinical
503 trials (15, 16): these cells may not use fibronectin-binding integrins to invade the brain. The
504  expression of ITGAG6 in the motile GBM?7 clones could also reflect on their stemness, since integrin
505 alpha 6 is known to regulate glioblastoma stem cells (84). At this stage, we do not know whether
506  there is a correlation between stemness markers and sub-population motility. The integration of
507  SP2G data and RNA-seq analysis of the clones, combined with observations on 2D dishes, revealed
508 the existence of two distinct motile behaviors. Through the corresponding RNA-seq data, we can
509  now outline a molecular signature that sets apart these two motile behaviors, with a notable EMT
510  signature predominantly present in clone #01.
511 So far, GBM heterogeneity was mostly studied with genomics and transcriptomic tools (5-8, 10-
512 12,69-71, 73,77, 85, 86). Here, we are demonstrating intra-patient heterogeneity at the phenotypic
513 level by reporting how 5 sub-populations isolated from a single patient-derived sample migrate
514  differently. Our RNA-seq data implied that specific transcriptional signatures could define motility
515  modes and that the motile behavior is not driven only by the environment (73, 76, 87, 88) but some
516  of its core component are anchored within the cell. Interestingly, differential transcriptional
517  signatures have been linked to different invaded brain locations in xenograft experiments (17, 87).
518  These preferential localizations maybe due to the various motility modes that various cell lines are
519  using and it would be interesting to connect motility modes defined by SP2G with brain localization
520  and transcriptional signatures.
521  Opverall, these results highlight SP2G strengths in identifying motility modes with great details and
522 alevel of refinements hard to reach with other experimental approaches.
523 In summary, we have presented a methodology that integrates the time-lapse imaging of spheroid

524  spreading on grids with an ImagelJ/Fiji analytical toolbox that quantitatively characterizes cell
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525  migration and motility modes. It is nicknamed SP2G, and we hope it opens up a new standard for
526  motility screenings, potentially extendable as a pan-spheroid approach that helps answering
527  questions on how cell migration affects cancer dissemination.

528

529  Materials and Methods
530
531  Cell culture. Rat C6 cells were cultured in high-glucose DMEM supplemented with glutamine and

532 10% fetal bovine serum (FBS). To form spheroids, ~2- 10° C6 cells were seeded in 6-cm petri dishes
533  previously treated for 1h with 0.2% pluronic F127 at room temperature. After 1 day, spheroids
534  between 75 and 150 um in diameter were obtained. Patient-derived GBM cell lines from the
535  laboratory of Carol Tang at the National Neuroscience Institute in Singapore (NNI-11, NNI-21 and
536  NNI-24) were collected with informed consent and de-identified in accordance with the SingHealth
537  Centralised Institutional Review Board A. Patient-derived cell line GBM7 from the laboratory of
538  G. Pelicci (IEO, Milan, Italy) was collected according to protocols approved by the Institute Ethical
539  Committee for animal use and in accordance with the Italian laws (D.L.vo 116/92 and following
540  additions), which enforce EU 86/609 Directive (Council Directive 86/609/EEC of 24 November
541 1986 on the approximation of laws, regulations and administrative provisions of the Member States
542 regarding the protection of animals used for experimental and other scientific purposes). All patient-
543  derived GBM cell lines were kept as previously reported (89). Briefly, GBM cell lines were grown
544  in non-adherent conditions in DMEM/F-12 supplemented with sodium pyruvate, non-essential
545  amino acid, glutamine, penicillin/streptomycin, B27 supplement, bFGF (20 ng/ml), EGF (20
546  ng/ml), and heparin (5 mg/ml). Patient-derived GBM cell lines were passaged every 5 days. All the
547  cell lines were maintained at 37 °C and 5% COx.

548  Brain slice invasion assays and staining. C57BL/6J mice were used for these studies. Both males
549  and females (in equal proportions) within each experiment originated from different litters. All of
550  the animal procedures were in accordance with the Institutional Animal Care and Use Committee,
551 and in compliance with the guidelines established in the Principles of Laboratory Animal Care
552 (directive 86/609/EEC); they were also approved by the Italian Ministry of Health. The brain slice
553  assay was performed as reported in Er et al. (90) and Polleux and Ghosh (97). Prior to sacrifice,
554  mice were anesthetized, their chest was cut and intra-cardiac injection was performed with 5 ml
555  solution of Dil stain to label the luminal side of blood vessels. The Dil stain was diluted at 0.5
556  mg/ml in 100% ethanol and this solution was further diluted 1:10 in a 30% w/v solution of sucrose-
557  DPBS. Brains were then isolated in ice-cold CaCl,*/MgCl* 1X HBSS (Euroclone ECB4006)
558  supplemented with 2.5mM HEPES (complete HBSS). Brains were sectioned in 150 or 100 pm thick
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559  slices using a Leica VT1200S vibratome and placed in a glass bottom 24-well, which was
560  previously coated at 37 °C overnight using a solution of 12.5 mg/ml laminin and 12.5 mg/ml Poly-
561  L-lysine (1 slice/well). Slices were left 3h at 37 °C and 5% CO2 to consolidate on the substrate.
562 Subsequently, glioma spheroids were gently added and the co-culture was kept 4h at 37 °C and 5%
563  CO; prior to imaging. Movies were recorded for 72h on a confocal SP5 microscope equipped with
564  temperature, humidity, and CO; control utilizing a 20X air objective (1 frame/15 min for rat C6, 1
565  frame/30 min for GBM-7 sub-populations). All the brain-slice live experiments were performed
566  with brain-slice culture medium (68% L-glutamine supplemented DMEM, 26% complete HBSS,
567 5% FBS, 1% Penicillin-Streptomycin). For immunofluorescence staining of C6 and blood vessels,
568  the co-culture was fixed with 4% PFA for 20 min and incubated for 1h at room temperature with a
569  blocking solution (5% BSA, 5% Normal-Donkey-Serum (NDS), 0.3% Triton-X 100 in DPBS). The
570  co-culture was incubated overnight at 4 °C with 10 pg/ml of Tomato Lectin (Vector Laboratories,
571 #DL-1178) in blocking solution. DAPI was added afterwards. Images were acquired with a Leica
572 SP8 microscope utilizing a 63X oil objective (1 um Z step).

573  Collagen and reconstituted basement membrane (rBM) invasion assays. Collagen and rBM
574  assays were adapted from Shin et al., (92). Briefly, 20 ml of polydimethylsiloxane (PDMS; Sylgard
575 184 Dow Corning) were casted at 1:10 ratio by mixing curing agent and silicone elastomer base,
576  respectively, in a 10-cm plate. 6-mm PDMS wells were obtained by punching holes with a biopsy
577  puncher in 18x18 mm PDMS squares. The PDMS wells were bound on 24 mm coverslips via
578  plasma treatment (90 s) followed by 5 min at 80 °C. Each 6-mm well was then coated with 1 mg/ml
579  poly-d-lysine at 37 °C for 3h, rinsed in milliQ water, and cured overnight at 80 °C. Meanwhile, rat
580  C6 spheroids were incubated in medium with 5 uM Dil stain for 3 h, centrifuged at 500 rpm for 2
581  minutes and re-suspended in 1 ml of medium. 10 pl of spheroid suspension was then mixed with
582 80 ul of 6 mg/ml collagen solution (Collagen I diluted in cell culture medium, 10% v/v 1.2%
583  NaHCOs, 5% 1M HEPES, 1.5% 1M NaOH) or 10 mg/ml reconstituted basement membrane (rBM).
584  The spheroids embedded in unpolymerized solutions were placed in the 6-mm PDMS wells and
585  left at 37 °C for 1h to polymerize. With this method 5 to 15 spheroids per well were obtained.
586  Medium was then added and movies of invading spheroids were acquired on an IX83 inverted
587  microscope (Olympus) equipped with a Confocal Spinning Disk unit, temperature, humidity, and
588  COz control. Images were collected with a 10X objective, an IXON 897 Ultra camera (Andor) and
589  OLYMPUS cellSens Dimension software for > 24 hours (1 frame / 15 min) with 7.5mm Z step for
590  RFP and DIC channels.

591  Quantification of spheroid spreading. Spheroid spreading quantification in collagen and

592 reconstituted basement membrane (rBM) assays was obtained as the ratio between the area
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593  occupied by spheroids at O and 24 hours. The area was calculated as the maximum intensity
594  projection of the fluorescent channel in Z and in time. For spheroid spreading quantification in 2D
595  flat and grid assays, the ratio between the areas at 8 and 0 hours was calculated, and the areas were
596  obtained using the maximum intensity projection in time. For MSD calculation we applied the
597  protocol of Gorelik at al. (93). XY coordinates over-time were obtained by manual tracking with
598  the dedicated plugin in Fiji. For brain slice and 3D gels assays, cells were tracked for 14 h. To track
599  well-identified single cells, initial time points were taken several hours after the start of the
600  acquisition (24 h for brain slice and 10 h for 3D gels).

601  Microcontact printing. Microcontact printing was performed as we previously described (50, 89).
602  Briefly, we casted 1:10 PDMS from a dedicated silicon mold, cut it into 1x1 or 1x2 cm? stamps,
603  and coated with 50 pg/ml laminin in DPBS for 20 min. Each stamp was then air-blow dried, leant
604  on a 35-mm dish, then gently removed. In case of plastic dishes, the surface was passivated with
605  0.2% pluronic F127 in DPBS at room temperature for 1 h, whereas for glass poly-Il-lysine-grafted
606  polyethylene glycol (0.1 mg/ml, pLL-g-PEG, SuSoS) was used. Dishes were then rinsed 4 times
607  with DPBS and kept in medium until spheroids were seeded. For printing laminin concentrations
608  from 400 to 6.25 pg/ml, a sequence of 6 serial dilutions (1:1 in DPBS) was carried out.

609  SP2G experimental and image analysis workflow. To stain the micropatterns, the laminin
610  solution for was mixed with 7 pg/ml BSA-conjugated-647. To stain the spheroids, 1-day old (for
611  rat C6 glioma cells ) or 5-days old spheroids (for human patient-derived glioma) were incubated in
612  medium with 5 uM Dil stain for 3 hours in 6-well plates previously passivated with 0.2% pluronic
613 F127. Spheroids were then seeded on the grid and the samples were placed under the microscope
614  and left 5 to 15 min to equilibrate. 8-hours time-lapse movies were recorded using a 10X objective
615  mounted on a Leica AM TIRF MC system or onto an Olympus ScanR inverted microscope (1 frame
616 /5 min). 3 channels per time point (phase contrast, Dil stain fluorescence for the cells, BSA-647
617  fluorescence for the grid) were acquired in live cell imaging for the experiments in Fig. 3 and Fig.
618  S4. 2 channels per time point were acquired in the other experiments, since the grid fluorescence
619  was recorded for just 1 frame before and 1 frame after the time-lapse movie. For the Experiments
620 in Fig. S4 cells were not fluorescently labeled, the drugs were injected 25 min after starting the
621  acquisition. For the characterization of cell migration, we used the SP2G analytical toolbox that
622  measured the polygonal area A(t). Briefly, as SP2G formed the polygon to track the invasive
623  boundary, the code initially multiplied the binarized grid nodes with the binarized spreading
624  spheroid in order to obtain only the node traveled by at least 1 cell. Then, SP2G iteratively checked
625  whether a node has blinked for at least 3 consecutive time frames to add the node to the polygon.

626  Therefore, SP2G always stopped tracking 2 frames earlier than the total duration of any movie.
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627  From A(t) we derived the diffusivity D(t) = dA(t) / dt, where dt was the time frame in the time-
628  lapse movies (5 min) and dA(t) was the difference between 2 polygonal areas at subsequent time

629  steps. For the calculation of single cell velocity v(t) =D(t) / (2 * / A(t)), being now L = [A(t)) the

630  edge of the square having an area equivalent to the polygon, the following 2-equation system was

631 solved:
632
JA(D)
D) =——=
633 ® ot
L) = VA(Y)
634

635 That inferred

0% DO =5 5t 5t 5t
637
638  The following was obtained
SL(t) oJAM 1 1
0% 8t~ o8t 2L (t)z\/m
640

641  that corresponded to the value of the boundary speed. In this way, a length gradient was inferred
642  from an area gradient.

643  For the characterization of the motility modes, we extrapolated all the parameters from RA movies
644 and averaged data from several spheroids. Collective migration values were obtained by
645  thresholding each frame of the RA within the last histogram bin, that necessarily spans up to 255

646  (the maximum value of an 8-bit image). The ratio

647

648 #Counts[Last bin]
#Total Counts

649

650  returns the collective migration. The rationale behind this assumption was that collective strands
651  generated high intensity values when averaged, since many cells travelled the same path. Therefore,
652 in the RA movie there were zones of high intensity. Vice versa, single entities generated low
653  intensities when averaged, since no cells other than the single one contributed to the final average
654  value. Background pixels were set to NaN (see Supplementary Appendix).

655  Directional persistence is calculated through the function “Orientation] distribution” of the

656  OrientationJ plugin (94), which returns the orientation field (OF): it consists in 180 values (1 per
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657  direction, sampled every 1°). Reasonably, we assumed that the spheroid spreading is isotropic, and

658  therefore SP2G averages the values 0-90, 1-91, etc. and gets 90 values. The following ratio

659

660 OF[0°] + OF[1°] + OF[2°] + OF[3°] + OF[87°] + OF[88°] + OF[89°]
OF[42°] + OF[43°] + OF[44°] + OF[45°] + OF[46°] + OF[47°] + OF[48°]

661

662  returns the directional persistence. It is the ratio between the direction of least resistance to cell
663  migration (i.e. the ones provided by the grid segments) and the direction of most resistance (the one
664  a cell has necessarily to face when undergoing a directional change).

665  Simulation of particle diffusion. Simulated data were generated with a custom-written code in
666  imagelJ/Fiji. Briefly, the function

667

668  Speed_particle = speed*(1+random("gaussian"));

669

670  was applied at each time step to generate motion. “speed” was equal to 2, 2.5 or 3 and
671  “random(“gaussian”)” returned a Gaussian distributed pseudorandom number with mean O and
672  standard deviation 1. Continuity was set by imposing a 100% overlap probability to moving
673  particles, pseudo-continuity a 99% probability, pure diffusivity with no constraints.

674  RNA extraction and qPCR analysis. Cells cultured on laminin were lysed and RNA was extracted
675  with the RNAeasy Mini Kit (Qiagen) as per manufacturer’ specifications. About 1 ug of RNA was
676  retrotranscribed using ‘qScript cDNA synthesis kit’ (Quantabio). For gene expression analysis, 5
677  ngof cDNA was amplified (in triplicate) in a reaction volume of 10 pl containing 5 pl of TagMan®
678  Fast Advance Master Mix and 0.5 pl of TagMan gene expression assay 20X (Thermofisher). The
679  entire process (retrotranscription, gene expression, and data analysis) was performed by the qPCR
680  service at Cogentech-Milano, following ABI assay ID data base (Thermo Fisher). The qPCR sets
681  of primers for ITGA1 (Hs00235006_m1), ITGA2 (Hs0018127_m1), ITGA3 (Hs01076873_m1),
682  ITGAS (Hs00233732_ml), ITGA6 (Hs00173952_ml), ITGA7 (Hs01056475_ml), ITGA10
683  (Hs01006910_m1), ITGAV (Hs00233808_m1), CD44 (Hs00153304_m1) and the housekeeping
684  genes GAPDH (Hs99999905_m1) and GusB (Hs99999908_m1) were from Thermofisher. Real
685  time PCR were carried out on the 7500 Real-Time PCR System (Thermo Fisher), using pre-PCR
686  step of 20 s at 95 °C, followed by 40 cycles of 1 s at 95 °C and 20 s at 60 °C. Samples were amplified
687  with primers and probes for each target, and for all the targets, one NTC sample was run. Raw data
688  (Ct) were analyzed with Excel using the AACT method to calculate the relative fold gene

689  expression. ACT was calculated using 2 housekeeping genes and averaged (3 independent
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690  experiments). For the mRNA expression of selected integrins, data were normalized against the
691  expression of the GBM7 sub-population #03.
692  RNA-sequencing and analysis.
693  RNA-sequencing was performed by the qPCR service at Cogentech-Milano. Prior sequencing,
694  RNA concentrations were measured using Qubit 4.0 and RNA integrity evaluated with an Agilent
695  Bioanalyzer 2100 utilizing Nano RNA kit (RIN > 8). An indexed-fragment library per sample was
696  arranged from 500 ng total RNA using [llumina Stranded mRNA Prep ligation kit (Illumina) as per
697  manufacturer’s instructions. Libraries were checked for proper size using Agilent Bioanalyzer 2100
698  High Sensitivity DNA kit, then normalized and equimolarly pooled to perform a multiplexed
699  sequencing run and quantified with Qubit HS DNA kit. As a positive control, 5% of Illumina pre-
700  synthesized PhiX library was incorporated in the sequencing mix. Sequencing was carried out in
701 Paired End mode (2x75nt) with an Illumina NextSeq550Dx, generating on average 60 million PE
702 reads per library. Reads were aligned to the GRCh38/hg38 assembly human reference genome
703 using the STAR aligner (v 2.6.1d) (95) and reads were quantified using Salmon (v1.4.0) (96).
704  Differential gene expression analysis was performed using the Bioconductor package DESeq?2 (v
705 1.30.0) (97) that estimates variance-mean dependence in count data from high-throughput
706  sequencing data and tests for differential expression exploiting a negative binomial distribution-
707  based model. The Bioconductor package fgsea (v 1.16.0) (98) and GSEA software (including
708  Reactome, KEGG, oncogenic signature and ontology gene sets available from the GSEA Molecular
709  Signatures Database, https://www.gsea- msigdb.org/gsea/msigdb/genesets.jsp?collections) were
710  used for preranked gene set enrichment analysis (GSEA) to assess pathway enrichment in
711  transcriptional data.
712 Protein extraction and western blots. Total cell extracts were prepared in RIPA buffer (100 mM
713 NaCl; 1 mM EGTA; 50 mM Tris pH7.4; 1% TX100) complemented with a cocktail of protease
714 inhibitors (Roche). Proteins were quantified using the Pierce BCA protein assay kit #23225
715 (ThermoScientific). Proteins were denatured with SDS and resolved by SDS-PAGE using typically
716 8% acrylamide gels. Transfers were done on PVDF membranes in methanol-containing transfer
717  buffer. Blocking was done with milk diluted to 5% in PBS-0.1% tween for 1h at room temperature
718  and antibodies were blotted overnight at 4 °C. HRP-secondary antibodies were incubated for 1-2
719 hours at room temperature in 5% milk and ECL were performed using the Amersham ECL Western
720  Blotting Detection Reagents (Cat.no. RPN2106 from GE Healthcare). Detection was done using
721 the Chemidoc XRS imaging system (Bio-Rad)..
722 Reagents . Rabbit anti-integrin alpha V antibody (ab179475) was from abcam. Rabbit anti-integrin
723 alpha 6 (NBP1-85747) was from Novus. Mouse Anti-tubulin (T9026) antibody was from Sigma.
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724 Laminin (#23017015), Dil stain (#D282) and BSA-conjugated-647 (#A34785) were from
725  ThermoFisherScientific. Collagen I was from Corning (#354249). Reconstituted basement
726  membrane (rBM) was from Trevigen (# 3445-005-01).

727  Statistical analysis. All the statistical analysis was performed with Prism 9 (GraphPad). Number
728  of samples and independent experiments are indicated in figure legends. The plots were generated
729 with Prism 9 and ggplot2. In all the boxplots, the middle horizontal line represents the median and
730  the black dot is the mean value. *** means p<0.001, **** means p<0.0001. All the statistical
731  analyses are detailed in the Excel file ‘data S3’. Radar plots were generated with Google sheets.
732 Codes and macros. All the SP2G macros and the supplementary appendix containing detailed
733 instructions on installation and run are freely available on the repository figshare at the following
734 link: https://figshare.com/projects/SP2G/148246.
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