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+ Abstract

18 Understanding morphological variation is an important task in many areas of computational biology.
19 Recent studies have focused on developing computational tools for the task of sub-image selection which
2 aims at identifying structural features that best describe the variation between classes of shapes. A major
a1 part in assessing the utility of these approaches is to demonstrate their performance on both simulated
22 and real datasets. However, when creating a model for shape statistics, real data can be difficult to access
;3 and the sample sizes for these data are often small due to them being expensive to collect. Meanwhile,
a  the current landscape of generative models for shapes has been mostly limited to approaches that use
s black-box inference—making it difficult to systematically assess the power and calibration of sub-image
s models. In this paper, we introduce the a-shape sampler: a probabilistic framework for generating

2z realistic 2D and 3D shapes based on probability distributions which can be learned from real data. We
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s demonstrate our framework using proof-of-concept examples and in two real applications in biology where
2 we generate (i) 2D images of healthy and septic neutrophils and (i) 3D computed tomography (CT) scans
s of primate mandibular molars. The a-shape sampler R package is open-source and can be downloaded at

s https://github.com/lcrawlab/ashapesampler.

» Author Summary

13 Using shapes and images to understand genotypic and phenotypic variation has proven to be an effective
u strategy in many biological applications. Unfortunately, shape data can be expensive to collect and,
3 as a result, sample sizes for analyses are often small. Despite methodological advancements in shape
3% statistics and machine learning, benchmarking standards for evaluating new computational tools via
37 data simulation is still underdeveloped. In this paper, we present a probability-based pipeline called the
3 «-shape sampler which has the flexibility to generate new and unobserved shapes based on an input set
s of data. We extensively evaluate the generative capabilities of our pipeline using 2D cellular images of

w0 neutrophils and 3D mandibular molars from two different suborders of primates.

« Introduction

2 Shape statistics has become an integral component of several applications within computational biology
5 including medical imaging', geometric morphometrics?#, and cell biology®°. Recently, there has been
a a focus to develop computational tools that address the subimage analysis problem: given a collection
s of images or shapes, find the features that best explain the variation between them with respect to a
s response variable”. One example of this type of analysis is identifying the biologically-relevant atomic
w7 and residue-level differences between two protein structural ensembles®. To date, several approaches
s have been proposed with the aim to quantify the global variation between images and shapes including

12

w some in topological data analysis? 2, methods leveraging landmark-based 315 or diffeomorphic-based

2,16-18

s representations , and tools that use “functional maps” to identify similarities and differences between

si shapes via a learned latent space'®.
5 Despite the many methodological advances being made for the subimage selection problem in shape

53 analysis, there has yet to be a principled framework to assess the power and limitations of these new
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s tools. Traditionally, there are two common strategies for benchmarking feature selection methods in
ss  computational biology: (i) by analyzing real data where there is a “ground truth” about which features
s are associated with a given phenotype of interest, or (ii) by using simulations where synthetic data
s is generated such that we know the causal relationship between features and the response variable.
ss  Both of these strategies have well-established statistical practices for tabular data (e.g., gene expression
5o in genomics) but they become increasingly difficult to implement when working with shapes. Using
60 data from real biomedical studies for methodological benchmarking is a challenge because shape-based
e modalities can be hard to collect. On the other hand, when data is able to be collected, sample sizes within
62 studies are usually small, which both compromises the statistical power of the methods being assessed
63 and inhibits the ability to study algorithmic robustness to variance between observations. Lastly, the
e relationship between shape and phenotype is largely speculative for many biological applications. For
6s example, there have been radiomic studies which have proposed an association between tumor morphology
e and survival prognostics for patients with glioblastoma, but the exact biological mechanisms connecting
& the two remains unknown 20,

68 Simulation studies are an alternative way to evaluate newly developed computational tools in shape
e analyses. The key to performing these studies is to have an interpretable generative model such that
w0 the process for creating synthetic (yet realistic) shapes is well understood. This facilitates the ability
n  to assess how powered a tool is at identifying causal features driving the morphological variation across
2 samples. In general, algorithmic frameworks for generating synthetic shapes consists of two steps: (i)
1 a procedure to generate a point set and (ii) a set of rules for reconstructing a shape from those points.
= Multiple end-to-end shape generation pipelines have been introduced in the literature but each have their
7 own sets of limitations. For example, to sample random points from a probability distribution over a
% manifold, one theoretically needs to know the manifold itself which can be impractical to estimate for many
7 applications?' 24, Recently, there are have been machine learning algorithms that have been developed for
s generating point clouds and reconstructing shapes using dual generators??, diffusion-based methods?S,
7o encoders?”, and generative adversarial networks?®2?; but each of these frameworks lack transparency
w0 into the generative process for creating new synthetic shapes3°. From a more mathematical perspective,
a1 several methods have been proposed to infer shapes from randomly generated point clouds. Many of
2 these approaches use Cech and Vietoris Rips complexes®'32; however, unfortunately, they require tens

s (and sometimes hundreds) of simplicial complexes to be constructed for each point set resulting in long
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s runtimes. There are 2D shape reconstruction methods based on contours? and curves3#, but their theory

& does not directly translate to higher dimensional objects?®

. Lastly, probability-based shape generative
s pipelines are still in their infancy and have thus far relied on component vector analysis where parts of 2D
& and 3D objects are broken into smaller components and the assembly /connectivity between components
s are hidden variables learned by a pre-specified model36:37.

80 In this work, we present the a-shape sampler: a probabilistic framework which takes in a collection of
o real shapes or images as input and generates new synthetic ones with features that both quantitatively
o and qualitatively resemble data in the input set. Methodologically, a-shapes require a single numerical
oo parameter « for reconstruction which can be interpreted as a measure of shape detail or granularity
s (Fig 1). They can also be generated in O(Plog P) time where P is the number of points in the point

w cloud that is input into the algorithm?32.

As part of our contributions, we introduce a scalable naive,
o data-driven algorithm to estimate the reach3” for a given set of shapes and theoretically relate it to
o6 the numerical o parameter. Altogether these properties allow our proposed framework to scale and
o7 accommodate the growing sizes of emerging imaging and shape-based databases. It is worth mentioning
s that, while the mathematical concept of reach has been used extensively in topological data analysis to
w reconstruct shapes and sample point clouds?®*!, to our knowledge, we are the first to tie it a-shapes
w0 parameter for an end-to-end generative modeling pipeline. Shape generation using a-shapes has been
w1 previously studied in two-dimensions where the underlying manifold is known*? and to learn about
2 shape boundaries*3%*; while shape reconstruction with a-shapes has primarily been studied in three
03 dimensions?® 7. They have also been previously used structural biology application in ecology *®%° but,
s overall, the focus of these studies was to understand the interpretation of the parameter of « itself rather
105 than attempting to use a-shapes as a basis to create a framework for generating new data.

106 Throughout the rest of the paper, we will describe the a-shape sampler using a combination of
w7 probability theory, topology, and tools from differential geometry. We then translate the theoretical
108 components of the pipeline into a series of algorithmic steps for practical implementation. Finally, we
0o illustrate the utility of our approach on small proof-of-concept examples (annuli in two dimensions and
1o tori in three dimensions) and real datasets (neutrophils in two dimensions and primate mandibular molars
i in three dimensions). We find that the a-shape sampler is effective at generating new shapes which honor

12 major local and global characteristics of realistic data, while also maintaining algorithmic transparency

us  so that the pipeline can be used for a wide-range of biological applications.
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= Results

us  Algorithmic overview of the a-shape sampler

ue  Statistically, a-shapes are convenient because they require a single numerical parameter a to encode all
u7  connectivity information for a point set. For example, in Fig la-c, we see that all points are a-extreme
us  (i.e., on the border); while in Fig 1d, we see that « becomes large enough such that one point is not
ne  a-extreme and is therefore an interior point of the shape. Finally, in Fig le, there are three interior
120 points and the rest are boundary or a-extreme points. An extension of this figure showing different a-
121 shapes being formed as a function of the number of points sampled from a unit square and the parameter
122« can be found in Fig S1. With this theory in mind, a probability distribution on a-shapes can be
123 explicitly estimated via uniform point sampling on a given (approximate) manifold and then shapes can
e be constructed from that point set using « (see Supporting Information). Recent work has investigated
s using the o parameter as a shape characteristic*®4% but, to our knowledge, it has yet to be used for
126 shape generation. This is likely due to the requirement that point sets need to be in general position,
127 a characteristic often not seen in nature. However, we work within the confines of this assumption in
18 return for theoretical soundness, statistical simplicity, and algorithmic transparency.

129 We will detail our probabilistic generative framework while assuming that we are working with shapes
1 that are d = 2 or 3-dimensions. The a-shape sampler involves five key steps (see Fig 2a). To begin,
131 the pipeline receives real shapes; throughout the rest of this paper, we will refer to these input data
12 as “reference” shapes. Note that we depict these reference shapes as binary masks in Fig 2, but the
133 a-shape sampler software can take shape data in any format as input. In the second step, the reference
1 shapes are aligned, scaled (if applicable), and converted to triangular meshes which we treat as simplicial
135 complexes. In the third step, the reference meshes are used in a generative algorithm which, in the fourth
136 step, outputs newly generated shapes in the form of new a-complexes. In the fifth and final step, these
1w newly generated a-complexes are converted back into binary masks (or any other data representation),
s  to match the same format as the original input reference data.

139 We assume that all reference shapes from a phenotypic class (e.g., healthy cells or molars from a given
1o species of primate) have vertices sampled from the same underlying manifold and that the variation
1 observed across shapes within the class stems from a finite sampling of points. With this in mind, the

w2 generative algorithm proportion of the a-shape sampler is comprised of four main steps (see Fig 2b).
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13 First, the IV collection reference meshes are input into the algorithm. We represent the i-th reference
we mesh as K; = {V;, E;, F;, T;} which is collection of vertices V;, edges E;, faces F;, and tetrahedra T; (if
s applicable). In the second step, we estimate the reach 7; for every i-th reference mesh by computing the
s distance to edge neighbors and the circumcenter distance to neighboring faces (and tetrahedra for 3D
wr objects) for each boundary vertex in the complex p € 0K;. After completing this for all N reference
us  shapes, we have a vector of shape-specific reach estimates 7 = (71,...,7n). In the third step, we select
w 2 < J < N reference shapes from the input dataset which we use as a basis to generate new shapes.
150 Here, we combine the point clouds from the J shapes into a joint partial point and take the minimum
11 between their corresponding values in 7 to be the reach estimate 7;. Next, we sample candidate points
152 for the newly generated shapes from balls of radius 7;/8 around vertices in the joint partial point cloud.
153 A radius of 7;/8 is chosen to force newly sampled points to remain relatively close to the boundary of the
1« reference point cloud. Each new candidate point is accepted or rejected according to a probability-based
155 rule with parameter 6 (see Materials and Methods). The 6 parameter is the minimum number of points
156 in the joint partial point cloud that need to neighbor the new candidate point in order to accept it. It
157 effectively determines the level of confidence needed to believe that a randomly sampled point is from
158 the same underlying manifold as the reference data. Once we have the newly sampled point cloud, in
150 the fourth step of the algorithm, we set a = 7; — €, where € > 0 is arbitrarily small, and generate the
10 a-complexes for new shapes. By default, the a-shape sampler software sets J = 2, 6§ = d (i.e., same
11 dimensions as the input data), and € = 0.001 (see URLs). Unless otherwise stated, these are the values
12 that we also use to generate all of the results presented throughout the rest of the paper.

163 There are two important components to the implementation of our pipeline. First, the a-shape
s sampler uses a function to compute the reach for each shape that is completely separate from the shape
165 generation function (again see Fig 2b). This serves two purposes: (i) it increases computational speed by
166 avoiding redundant calculations, and (ii) it provides an informal check for potential outlier shapes before
17 using those shapes as reference inputs for the generative part of algorithm (e.g., this can be done by
s empirically assessing the tails of the distribution for 7). Second, setting « to be just under 7; for some
10 subset of reference shapes guarantees that we will preserve the original homology and most of the local
o geometry that is present in the reference dataset without losing any features or generating any atypical
i ones. Theoretical details of our implementation are fully detailed in the Materials and Methods and

12 Supporting Information.
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i 2D proof-of-concept study with simulated annuli

e  To demonstrate the a-shape sampler, we begin with a two-dimensional (2D) toy example where we
ws simulate N = 50 “real” (i.e., reference) annuli with inner radius r = 0.25, outer radius R = 0.75,
e and thickness equal to R — r = 0.5. Each reference annulus is constructed by sampling P = 500
177 points uniformly from the annulus and then connecting them using true e« = 0.15. The reach value for
s these reference annuli is given by the inner radius of the hole such that 7 = 0.25. We consider these
19 measurements to be the “ground truth” during evaluation.

180 Using the real 2D annuli as input data, we generate another N* = 10 annuli using the a-shape sampler.
11 Figs 3a and 3b show that the generated annuli preserve the homology of the original reference shapes (i.e.,
12 each generated shape is singular connected component and has exactly one hole). To further evaluate
183 how “realistic” the geometric characteristics were for the newly generated annuli, we first identified their
s a-extreme points and separated them into two categories: (i) radii less than 0.5 and (ii) radii greater
155 than 0.5. The averages of both categories were used to numerically define each generated shape’s inner
155 and outer radii, respectively. The thickness of each generated shape was then found by subtracting the
7 inner radius from the outer radius. Table S1 gives the root mean square error (RMSE) for each of these
188 characteristics when comparing the generated annuli to the real reference annuli. Overall, we see relatively
180 low RMSEs (values below 0.01 for each category) which aligns with the aesthetic similarity between the
100 shapes seen in Fig 3. It is important to note that the mean estimated reach for the generated annuli
11 produced by the a-shape sampler was 7 = 0.1749 & 0.009. While less than the true value of 7 = 0.25,
102 this is unexpected given that we are estimating the reach from the data directly (rather than estimating
103 it using the true radius). Indeed, we would rather our estimate of the reach be smaller than the truth
s and, consequently, have to sample more points rather than our estimate of 7 be too large and we lose

15 geometric information about the shapes.

ws 3D proof-of-concept study with simulated tori

17 Next, we extend our demonstration of the a-shape sampler to a three-dimensional (3D) toy example
s where we simulate N = 50 “real” (i.e., reference) tori with major radius R = 0.75 and minor radius
1w r = 0.25. Each reference torus was constructed by sampling P = 5000 points uniformly using the

20 alphashape3d R package®® with the Computational Geometry Algorithms Library (CGAL)®! where the
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21 points were connected using a true v = 0.25. The reach value for these reference tori is 7 = 0.5 which
22 corresponds to the radius of the hole (or tube) of the tori. As with the previous proof-of-concept study
203 using the 2D annuli, we again consider the geometric measurements for the real reference tori to be the
2 “ground truth” during our assessment. Examples of the real reference tori can be found in Fig 3c.

205 Using the real 3D tori as input data, we generate another N* = 10 tori using the a-shape sampler.
206 An example of these generated shapes can be found in Fig 3d. Here, we see that the generated tori
207 qualitatively preserve the homology of the original data where each have one connected component and
208 one hole. To get estimates of the major and minor radii for the generated torus, we start by examining

200 their boundary points. The following relates the major and minor radii for a torus centered at the origin
2
210 T2:<\/W—R> +Z2

au where (2,y, z) are the Cartesian coordinates of the boundary points for the torus. Rearranging the above

22 equation then yields the following relationship
213 (x2+y2—|—z2):2R 3;‘2—|—y2+(7“2—R2).

as By treating Y = 22 + 32 4 22 to be a response variable, X = QW to be a covariate, 5 = R to be
x5 a coefficient, and ¢ = (r? — R?) to be a residual, the above rewritten equation mirrors a linear model.
26 As a result, we can use ordinary least squares to estimate the appropriate values for (8,¢). This then
a7 allows us to infer corresponding estimates for the major R and minor r radii for each generated torus,
xns  respectively.

219 Table S2 compares the major and minor radii estimates for the tori generated by the a-shape sampler
20 to same characteristics in the original reference shapes. We see that while the major radius R is well
o1 preserved (RMSE = 0.002), the minor radius r is slightly larger for the generated shapes (RMSE =
22 0.02). This result translated to a slightly larger thickness for the generated tori (again see Fig 3d). While
23 generally still close, it does demonstrate a potential shortcoming in our data-driven approach for shape
2a  generation where our random sampling algorithm can be prone to accept points outside of the reference
»s  boundary, particularly for shapes with smooth surfaces. While this issue may be corrected via some
26 post-processing step to assure that the generated shapes are on a desired scale, we still caution that the

27 probabilistic nature of the a-shape sampler is not perfect and may lead to a slight distortion of shape
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»s  geometry. It is still worth noting that, despite the slightly larger thickness, the mean reach estimate
»9 for the generated tori produced by our algorithm was 7 = 0.402 £ 0.006, lower than the true value of
0 7 = 0.5. Again, the lower reach estimate helps us to preserve the majority of geometric and topological

2 characteristics in the generated shapes even if the overall scale is slightly misrepresented.

x» Comparison of real and generated shapes based on primary human neutrophils

»s from healthy and septic patients

24 Human cells display diverse and dynamic morphologies, driven by the rich interplay between the intracel-
25 lular cytoskeleton and matrix adhesion during cell migration®%°3. For example, neutrophils are versatile
2 “first responders” of the innate immune system that are rapidly recruited to tissue sites of injury and

54 Neutrophils become adherent and polarized after “activation” by proinflammatory media-

27 infection
2 tors®S, exhibiting a leading edge with protrusive pseudopods as well as a trailing edge with a contractile
20 uropod®®. Indeed, such polarized morphologies appear to be correlated with faster neutrophil motility,
20 but can be considerably more heterogeneous for slower moving cells®”. Further, neutrophils exhibit pro-
21 found defects in migration and antimicrobial function during sepsis, an aberrant host response to infection
22 that can result in multi-organ failure and death®®. An unresolved problem is to meaningfully classify
23 neutrophils, since they plastically transition through distinct phenotypic states but also occur as distinct
2 subsets defined by biomarkers and gene expression®?.

25 As a first case study, we applied the a-shape sampler to two-dimensional cell shapes acquired from
xus phase microscopy images of primary human neutrophils. Briefly, neutrophils were isolated from consented
a7 healthy donors and septic patients at Rhode Island Hospital (with approval from the Institutional Re-
us  view Board), then plated at compliant polyacylamide hydrogel substrates functionalized with fibronectin
uo  (see Materials and methods and Witt et al. % for more details). Representative cell morphologies were
0 manually traced, converted to binary masks, and then turned into simplicial complexes (similar to what
1 was shown in Fig 2a). The a-shape sampler was used to synthetically generate additional cells using the
s default parameters J = 2, § = 2, and € = 0.001. The training set consisted of approximately N = 20
3 neutrophil shapes each from the healthy donors and septic patients, which were then used to generate
s N* = 25 new neutrophil shapes from each class. Qualitatively, real healthy neutrophils exhibited rela-

»s  tively rounded and compact morphologies (including a uropod®%) with a typical diameter of ~10 microns

256 (pm), which were visually similar to the generated healthy neutrophils (Fig 4a). In comparison, real sep-
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»7  tic neutrophils exhibited greater ruffling and elongated protrusions relative to real healthy neutrophils,
s which was visually recapitulated in the generated septic neutrophils (again see Fig 4a). Further, septic
»0  neutrophils showed greater spread areas than healthy neutrophils, with diameters approaching 15-20 pm.
%0 These differences between healthy and septic neutrophil shapes were captured in the reach estimates pro-
21 duced by the a-shape sampler, with the healthy neutrophils having mean 7 = 3.3689x 10~ 3+1.0152x 1073
22 compared to the septic neutrophils having mean 7 = 5.3409 x 1072 4 4.6246 x 10~3. The larger mean
%3 7T can be explained by the larger variation along the border of the septic neutrophils, while the larger
s standard deviation reflects the greater single cell heterogeneity in shape.

265 To further quantify the differences between the real healthy and septic neutrophils and the similarities
%6 between real and generated neutrophils, 33 shape characteristics were calculated including area, perimeter

1.1 for more

7 length, compactness, and number of protrusions (see Materials and methods and Bhaskar et a
xs  details). These vectors were then projected onto a two-dimensional space using a manifold regularized
20 autoncoder (MRAE)? as applied to Potential of Heat-diffusion for Affinity-based Transition Embedding
w0 (PHATE) coordinates (Fig 4b). In this lower dimensional representation, real healthy neutrophils are
on roughly grouped together for larger MRAEL, while real septic neutrophils are roughly grouped together
o2 for smaller MRAEL; although, there is not a large separation of these two groupings. Moreover, generated
o3 healthy neutrophils also group together with real healthy neutrophils for larger MRAE1, while generated
oa - septic neutrophils group together with real septic neutrophils for smaller MRAE1L. These general trends
s were confirmed to be independent of the choice of dimension reduction method, including Uniform Man-
26 ifold Approximation (UMAP)%3, PHATE®*, Principal Component Analysis (PCA), and a generalized
o7 autoencoder with an Adam optimizer and mean square error loss (Fig S3). For PCA, in particular,
;s the top two principal components were most heavily weighted by area and perimeter in the loadings.
a9 Although MRAE is more difficult to interpret due to the nonlinear representation, the components were
20 similarly weighted by area and perimeter but also solidity and circularity (based on inspection of cell
21 shapes for varying MRAEL and MRAE2).

282 Additional examination of these shape metrics revealed statistically significant quantitative differ-
3 ences between healthy and septic neutrophils (Fig 4c and Table S3). Notably, healthy real and generated
2 neutrophils had comparable median area of ~125 um? (P-value = 0.066). Moreover, septic real neu-
2 trophils had a median area of 246 pm?, but septic generated neutrophils had a significantly larger median

s area of 332 um? (P-value = 1.71 x 107%). Similarly, healthy real and generated neutrophils had median
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s perimeters of ~47 pum (P-value = 0.189), while septic real neutrophils had a median perimeter of 75 ym
28 and septic generated neutrophils had a median perimeter of 89 pm (P-value = 0.0032). In comparison,
20 circularity (expressed as a ratio between 0 and 1 describing similarity to a circle, with 1 denoting a perfect
20 circle), solidity (the fraction of the area of the cell over the area of the convex hull), convexity (the ratio of
21 the convex hull perimeter to the cell perimeter), and compactness (the ratio of the diameter of the circle
22 with the same area of the cell to the major axis of rectangular fit) showed statistically significant differ-
23 ences between the real healthy and septic neutrophils that were maintained by the generated healthy and
2 septic neutrophils, but no statistically significant differences between the real and generated neutrophils.
205 In order to elucidate this discrepancy between real and generated septic neutrophil shapes, we re-
26 examined how the a-shape generator was sampling from the training set to define a “manifold” based
27 on the union of point clouds from J = 2 reference shapes (see Material and methods). Without perfect
2 alignment, in this setting, the corresponding combined manifold will retain the outermost protruding
200 points associated with both reference shapes, which will bias the generated shape towards larger areas
w0 and perimeters. Since septic real neutrophils exhibit pronounced single cell heterogeneity, the inclusion of
sm  a few unusually large cells with this pairwise sampling skewed the shape distribution of septic generated
32 neutrophils towards larger areas and perimeters. In comparison, healthy real and generated neutrophils
33 exhibited no statistical difference in any of the measured shape features, likely since they were more
3¢ homogeneous in shape. It should be noted that the septic neutrophils could include some subsets that
w5 are more dysregulated (perhaps prematurely released from the bone marrow) and others that are phe-
36  notypically more similar to healthy neutrophils. If so, the presence of this latter subset could obfuscates

307 the separation of healthy and septic neutrophils by morphology.

s  Comparison of real and generated shapes based on primate mandibular molars

30 As a final case study with three-dimensional shapes, we applied the a-shape sampler to a dataset consist-
s ing of N =15 computed tomography (CT) scans of mandibular molars from two suborders of primates:
a8 of these real teeth came from the genus Microcebus of the Strepshirine suborder and the remaining 7
sz came from the Tarsius of the Haplorhini suborder 29266, The a-shape sampler was used to synthetically
a3 generate an additional N* = 10 teeth from each genus using the parameters J = 2, § = 0, and ¢ = 0.001.
s In this analysis, we had to set § = 0 because the CT scans for each molar came in the form of boundary

a5 meshes, which are technically a “hollowed” representation of fully dense 3D objects (see Materials and


https://doi.org/10.1101/2024.01.09.574919
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574919; this version posted January 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

12

a6 methods). This effectively meant that each reference tooth had volumes equal to 0. As a result, we had
a7 to avoid setting 8 > 0 to keep the acceptance probability of new candidate points from being nearly 0
a8 (i.e., we would reject nearly 100% of new candidate points).

319 It is worth briefly noting that the original dataset started with N = 10 Microcebus teeth and N = 18
w0 Tarsius teeth, respectively. Some of these references were removed from the analysis after we estimated
a1 their reach values (see, again, the second step in Fig 2b) and observed some distinct outliers which would
322 affect our ability to generate new and realistic shapes downstream. For the Microcebus genus, the teeth we
23 used in our analysis had estimated reach values in the range 7 € [0.0242,0.0793], while the unused teeth
24 had values T = {0.253,0.459,1.597} (somewhere 10x to 100x larger than the rest of the data). Similarly,
s for the Tarsius genus, data for our analysis was restricted to teeth with estimated reach values which
26 fell in the range of 7 € [0.0241,0.1124], while the omitted teeth had reaches between 7 € [0.9358, 6.6698].
sz When using all teeth, even with proper alignment and scaling, we generated unrealistic shapes (e.g.,
28 synthetic teeth with six or eight roots, which do not occur in either species). A key feature of the a-
9 shape sampler is that it allows users to use the estimated 7 to identify reference shapes that are outliers
;0 relative to the rest of input dataset. This can be used to proactively prune reference shapes or use the 7
s values post hoc to diagnose why the algorithm produced a shape that does not fit with the original set.
33 A comparison of the quality controlled real teeth and the generated teeth from the a-shape sampler
sz can be found in Fig 5a-5d. Overall, we chose this specific collection of molars for our analysis because
s of the phylogentic relationship between the Microcebus and the Tarsius (Fig 5e)®7. Morphologists and
335 evolutionary anthropologists have previously used this data to understand variations of the paraconid,

68,69 and are only

336 the cusp of a primitive lower molar. The paraconids do not appear in other genera
s retained by Tarsius which allows this genus of primate to eat a wider range of foods”™. When using these
18 teeth as reference data in our shape generation pipeline, we see that the a-shape sampler is indeed able
;9 to produce newly generated teeth that qualitatively preserve key features shared between both species
a0 (e.g., the four roots) as well as recapitulate species-specific variation that is driven by the presence of the
a1 paraconids in the Tarsius. More specifically, the generated Microcebus teeth are missing the distinguished
s paraconid that is captured in the generated Tarsius teeth (again see Fig 5a-5d), repeating the patterns
u3  we see in the real data.

4 To further assess the quality of the shapes produced by the a-shape sampler, we follow Turner et al. 12

us and used Procrustes analysis™7? to assign 400 landmarks onto each reference and newly generated
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us  tooth (Materials and methods). The (400x 3)-dimensional matrix of landmark points for each shape was
a7 reshaped to a scalar vector of length 1200. This was then projected onto a two-dimensional space using
us  the manifold regularized autoencoder (MRAE) on PHATE coordinates (Fig 5f). As expected, we see
us  the real Microcebus and the real Tarsius teeth form distinctly separate groups along both MRAE1 and
0 MRAE2. We also see the generated Microcebus teeth group together with the real Microcebus teeth,
1 while the generated Tarsius teeth group together with the real Tarsius teeth. These general trends were
32 again confirmed to be independent of the choice of dimension reduction method (Fig S4). For a more
353 quantitative analysis, we also computed the average pairwise Euclidean distance between each tooth
3¢ group (e.g., Table S4). Here, we observe that the generated Microcebus and generated Tarsius teeth are
355 nearly twice as close to their respective real groups than to any other group. We attribute the nonzero
36 distance between the generated and real teeth to the fact that we end up accepting all randomly sampled

s7 points during our shape generation algorithm (see Materials and methods).

s 1iscussion

350 In this paper, we introduced the a-shape sampler: a probability-based generative model for two-dimensional
0 and three-dimensional shapes. The underlying theoretical innovation of connecting the mathematical con-
1 cept “reach” with the a parameter in a-shapes allows us to implement a data-driven algorithm with the
s scalability to accommodate the growing sizes of emerging imaging and shape-based databases. We applied
%3 our generative pipeline to both 2D and 3D datasets and demonstrated its ability to successfully capture
w4 important geometric, morphometric, and topological characteristics of complex objects. In the main text,
s we focus on demonstrating our generative model when reference shapes are available. This is meant to
s approximate the reality that the underlying manifold for shapes observed in many biological applications
7 is often unknown. In the Supporting Information, we derive theory and discuss how to generate new
sss  shapes when the true manifold is indeed known and available (Fig S5-S12). This includes detailing how
w0 one might sample new shapes directly from probability distributions (code for this “exact” approach is
s also included in our open-source R package; see URLSs).

a7 The current implementation of the a-shape sampler framework offers many directions for future
sz development. For example, there are a few considerations to be made when choosing the J number

sz of reference shapes and the 6 threshold for accepting new candidate points in the a-shape sampler
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s pipeline. Almost counter-intuitively, the smaller we select J to be, the more variation there will be
a5 in the generated shapes. This is because the joint point cloud starts to converge as the number of J
s shapes that are included grows. Additionally, the number of J reference shapes limits the number of
sz new shapes that can be produced. Combinatorially, we can only generate ({\][) new shapes. While this
s may be seen as a limitation, it also prevents us from augmenting a study with generated shapes that
s are too far outside of what has been observed in real data. Similarly, when selecting 6, our suggestion
0 s to choose 6§ = d (the dimension of the shape space) so that one avoids noisy points and edges around
s the boundary. The exception to this rule is when the reference shapes are in the form of boundary
s meshes which are technically a lower dimensional representation of the full shape data. For example,
33 the primate teeth meshes analyzed in the main text are two-dimensional simplices in three dimensions.
s In this case, we recommend 6 = 0 such that all points are accepted. While this removes the possibility
s for noise and variation between iterative runs of the a-shape sampler, even choosing # = 1 will result in
s such a strict threshold of acceptance that the new shape will be a few isolated points scattered in space.
s We believe this happens because the volume of intersection of a two-dimensional surface mesh with a
s three-dimensional ball is 0 due to the mesh having Lebesgue measure 0. While the generated shapes may
s end up being thicker meshes, this can be fixed via post-processing of the data. To avoid this issue, it is
30 best to use shapes that are “filled” in (such as the neutrophil example), but sometimes this is not feasible
s or practical for the given dataset.

302 In its current form, the a-shape sampler performs considerably better when the reference shapes in
33 the input dataset are well aligned. Indeed, alignment was performed with the simulated annuli and tori
s (Fig 3), as well as with the mandibular molars which included landmarks amenable to unsupervised
s learning methods (Fig 5). In comparison, neutrophil morphologies lacked such landmarks and so shapes
26 were only centered on their centroids (Materials and methods). Nevertheless, real and generated shapes
s7  for healthy neutrophils were statistically similar, since the real morphologies exhibited comparable areas
s and were relatively compact (Fig 4). However, some generated shapes for septic neutrophils considerably
o exceeded the corresponding real shapes in area and perimeter, since the a-shape sampler generates
wo manifolds that retains the outermost protruding points associated with both shapes (Table S3). To
w1 address this artifact, we attempted to rescale shapes after generation to match areas and perimeters,
w2 which distorted circularity and convexity. Alternatively, aligning neutrophils along their long axis tended

w3 to bias towards the generation of more elongated morphologies. It is conceivable that septic neutrophils
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ws  with very different morphologies belong to different subsets, and so the generated cell is a chimera
ws  based on different subsets without a plausible biological basis. These issues could be addressed in highly
ws heterogeneous populations by sampling a larger number of single cells to limit the biasing effect of outliers,
w7 and to discard any generated cells that deviate excessively from the real shape distribution. Future work

ws  could also utilize additional information based on cell migration or tractions 07374

, along with single-cell
w0 genomics’® to gain additional insight into septic cell phenotype. Finally, this approach could be effective
a0 for other cell types, such as analyzing the epithelial-mesenchymal transition, since the associated spindle-
a1 like morphology displays more consistent landmarks for shape alignment 7678,

a2 From a statistical perspective, the assumption that all points in the input data point clouds are
a3 uniformly distributed over the same underlying manifold may not be suitable for all applications. When
as  points are not uniformly distributed, the calculation of reach becomes less precise because there is too
a5 much variance between boundary points. As a result, the 7 estimate ends up too big in some parts
as  of the point cloud and too small in others, leading to the loss of local geometric information and the
a7 possible addition of global topological information, both of which hinder the ability to generate new
ss  realistic shapes that properly fit in the same class as the input dataset. Where points are not uniformly
a0 distributed, it may be the case that a-shapes are the appropriate tool for modeling shapes, as was studied
20 in Gerritsen ™. This is particularly true when points have additional contextual meaning (e.g., molecular
a1 structures such as proteins or strands of DNA) or in cases where meshes are very detailed in some areas
a2 and less so in others. An immediate future avenue of work is to extend our pipeline to work for weighted

s a-shapes®, coupled a-shapes®!, and B-shapes®? to fit a broader range of applications.

= URLSs

w5 Code for the a-shape sampler and data simulations is available at https://www.github.com/lcrawlab/
w6 ashapesampler. Slicer auto3dgm paradigm is available at https://toothandclaw.github.io/. Binary
a7 masks of the healthy and septic neutrophils and 3D meshes of the primate mandibular molars are avail-
w2s able on the Harvard Dataverse at https://doi.org/10.7910/DVN/K9AOEG. Scripts to reproduce the
w9 results in this paper are also publicly available and can be found at https://github.com/lcrawlab/

40 ashapesampler_paper_results.
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«~ Materials and methods

» Introduction on a-shapes

a3 In this work, we consider a shape to be the simplicial complex approximation of a compact Riemannian
s manifold embedded in Euclidean space. We use the same definitions for simplices and simplicial com-
s plexes as presented in Edelsbrunner and Harer®3. We also assume that all shapes considered in a given
16 phenotypic class (e.g., healthy septic cells or molars from a given species of primate) have vertices sam-
s pled from the same underlying manifold and that the variation observed across shapes within the class
a8 stems from a finite sampling of points. When we know the true underlying manifold, we can generate
10 shapes using hierarchical probability distributions (see Supporting Information). The demonstration of
w0 the a-shape sampler in the main text (and what we detail throughout this section) demonstrates how we
w1 can generate new shapes when we have data instead of the underlying manifold. Given our applications
a2 in the main text, we will derive the details of our probabilistic generative framework while assuming that
a3 we are working with shapes that are d = 2 or 3 dimensions; however, also note that the theory we present
aa is generally applicable to larger finite dimensions as well.

a5 We define a-shapes using Voronoi cells and the Deluanay triangulation. The main motivation behind
ws  this choice is that it mirrors how we compute a-shapes in practice and we believe that this construction
w7 provides a more intuitive framing for understanding the parameters in our sampling algorithm. For a

L. 38

ws  more rigorous definition, we refer the reader to Edelsbrunner et al. °®. To begin, we assume that all points

84

mo are in general position. That is, in the d-th dimension®*, we assume the following:

450 e No d + 1 points are colinear or coplanar;

251 e No d + 2 points are cocircular or cospherical;

52 e No points form a smallest circle or cicumsphere of radius «;

453 e No points lie on the smallest circumsphere of d + 1 other points.

4 In practice, this assumption is relatively strict and rarely occurs naturally; however, in the Supporting
»ss  Information, we prove that this assumption holds true in our generative algorithm so long as points are
w6 sampled uniformly. In real data applications, users can either ignore the points during the estimation of
»s7 reach 7 (e.g., as we do with the primate mandibular molars) or perturb the points slightly to correct for

8 this assumption (e.g., as we do with the segmented images of the neutrophils).
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459 Let S denote a set of P points in R? in general position. The Voronoi cell of a point p € S is the set
w0 of points in R? for which p is the closest. We denote the Voronoi cell as the following
o1 V(p) = {z R [ |lz —pl| <z —p'||, ¥p' € S —p}. (1)

w2 The Voronoi diagram of S is then the union of all Voronoi cells and takes up the space of R%. The
w3 Delaunay complex of S is isomorphic to the nerve of the Voronoi diagram. As long as the points of S are
w4 in general position, the Delauany complex of S is well-defined and forms the convex hull of the points S

ws in R?. This is often referred to as the Delaunay triangulation of S and is denoted by

DT(S)=48"CS| [ V) #0;, (2)
pES*
w7 where S* is a subset of points in & and () represents the empty set. The example in Fig 1 depicts the
s  Delaunay triangulation and the convex hull for a point set. Instead of Voronoi cells which together take
w0 up the entire space, we can look at subsets of those cells. Let B, (p) denote a ball of radius « centered at
w0 point p. Furthermore, let Ry,(a) = B, (p) N V(p) denote the intersection of the Voronoi cell of p and the
s ball of radius «v centered at p (e.g., see the gray shapes in Fig 1). The union of R,(«) for all points p € S
a2 form a cover of S, the nerve of which forms the a-complex which we will denote as S,,. The boundary of
az S, defines the a-shape. Formally, the border is defined by a-extreme points, which are the points p* € S
s such that there exists a ball of radius a with p* on the border where the complement of the disc contains
a5 all other points in §. In Fig la-c, we see that all points are a-extreme; while in Fig 1d, we see that
s« becomes large enough such that one point is not a-extreme and is therefore an interior point of the

a7 shape. Finally, in Fig le, there are three interior points and the rest are boundary or a-extreme points.

»s  Estimating the reach parameter 7

s Assume that we have a dataset with N shapes or images. We will refer to these samples as “reference
w0 shapes” from which we will generate new shapes. Let K; = {V;, E;, F;,T;} denote the mesh for the i-th
w1 observation in the reference set comprised of a collection of vertices V;, edges E;, faces F;, and tetrahedra
w2 T (if applicable). Recall that (i) we assume that all vertices for reference shapes in the same phenotypic

w3 class come from the same underlying manifold, and (ii) most real shape and imaging data do not readily
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ss  come in the form of a-shapes or a-complexes. In order to generate new shapes, we must derive an
w5 appropriate point set from the reference shapes (both in terms of location in space and in the total
s number of vertices) and we must find an appropriate value of a. To do so, we use the concept of reach

1.39 which can also be related to the inverse of the condition

w7 (denoted by 7) as presented in Aamari et a
ws  number as introduced in Niyogi et al. 8> (see Supporting Information for a formal definition). In practice,
a0 7 is the minimum distance from the boundary of a shape to its medial axis and can be approximated
w0 as either the minimum distance between connected components or the minimum radius of any holes (or
w1 voids) in a shape.

192 At a high level, we estimate the reach 7; for the i-th reference shape by using the boundary points of its
w3 simplicial complex p € 9K (i.e., the a-extreme points in an a-shape). We do this because the boundary
s+ information is all that is relevant to estimating reach. The collection of 7 = (71, ..., 7x) values from the
ws N reference shapes are then used to estimate an appropriate value of « for the newly generated shapes.
ws  Other theoretical methods for estimating reach using an underlying manifold have been proposed 3%-:86-87
w7 but we use this approximate estimate to optimize computational speed. By connecting o to 7, we ensure
w8 the preservation of major topological and geometric characteristics for the simplicial complex derived
w0 from the o parameter over a point set. The reach estimates 7 can also be used to sample a point set for
so the new shapes, both in point set size (i.e., how many vertices we need to sample from the underlying
sn  manifold) and in point density. We substitute the minimum number of points needed to preserve the
sz homology of the underlying manifold with an a-dense cover using the main result in Niyogi et al.®®
ss  (Supporting Information). Once 7 is derived from the input reference dataset, the appropriate a can be
s0  selected and a new point set can be sampled—the combination of which will allow use to generate new
ss  Shapes.

506 Algorithmically, the process of estimating the reach 7; for the i-th reference shape is done using the

sor  following procedure.

508 e Examining a boundary vertex p € 0K, we first learn its distance to neighboring sets of vertices
509 q € N;(p) by studying the corresponding edges F; that are present in the mesh. We save the largest
510 of these distances using the Euclidean distance, dp = maxgen, () |p — ¢l|-

511 e Next, we define C, to be the set of circumcenters of all faces in F; and tetrahedra 7; containing p.

512 These circumcenters are the points at which any three or four points would meet in the Voronoi
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513 diagram and, hence, where faces and tetrahedra would form in the resulting a-complex. We also
514 save the largest of these distances do = 2max.cc, ||p — c||. Here, we take twice the value of the
515 circumcenter distance in an effort to preserve consistency across dimensions. Recall that for dg, we
516 consider the entire lengths of edges, not just the midpoints. The circumcenter can be interpreted
517 as a rough estimate of a “midpoint” for faces and tetrahedra; as a result, we multiply that value
518 by 2 to capture the full “distance” d¢.
519 e Once we have these two distances corresponding to edges and circumcenters involving point p, we
520 take the maximum which we denote as d, = max(dg,dc). Each value d, indicates how large o
521 needs to be in order to recover the geometric properties in a localized region of the reference mesh.
522 e In practice, we find the next furthest point outside of the minimum d,, range because it establishes
523 the largest that o can be without us losing any geometric information. To do so, we consider the
524 set of vertices in V; that do not share an edge with p but are more than d, distance away. Formally,
525 this set is Vy = {v € V; | [|[v — p|| > dp,}. The 7 value for a given point is computed as
T, = min ||s — p||. 3
p = min [ls — ] (3)
527 In the event that V' is empty (e.g., when p shares an edge, face, or tetrahedra with all other vertices
528 in V;), we take 7, = dp.
529 e The reach for the i-th mesh shape is approximated by
> 0
T R Tp,
530 % |8K1‘ | D
peEIK;
531 which is the mean 7 value for all boundary points in the shape where |0K;| denotes the cardinality
532 of the set.

s13 Note that other summary statistics could be used in the final step, such as taking the minimum 7, across
su  all points, but empirically we find that taking the mean gives robust estimates and keeps outliers from
35 artificially deflating the value of 7;. For example, in theory, the true reach estimate would take the
s3  minimum of 7, over all boundary points; however, a small outlier 7, value would lead to a small 7; when

s7  we take the minimum and that would result in computational bottlenecks when we later generate shapes.
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s  Therefore, we choose to trade the precise theoretical implementation for computational scale without
s compromising major shape information. Repeating this procedure for all N meshes in the dataset yields
s0 a collection of estimated reach parameters T = (71,...,7y) which we will use to generate new point

s clouds and shapes.

s Algorithm for generating new shapes

ses - When generating new shapes, the first task is to create a corresponding point cloud. This step requires
su  developing a method for sampling points from some underlying manifold M. Ideally, one could fit a
ss  function to each reference shape from a given dataset, average the functions to approximate the true
s manifold, and then sample new points directly from that manifold via rejection sampling to simulate
sv  uniformity. This strategy is similar to what Diaconis et al.?! illustrates on the torus; however, this
ss same approach is computationally infeasible for modern datasets with tens to hundreds of shapes. One
se0  could use techniques from manifold learning to generate point clouds, but the available techniques involve

ss0  black-box methods such as dual generators?® and autoencoders?’.

While these approaches have been
ss1 shown to be useful for assessing predictive models, these do not provide enough interpretability to learn
ss2 much about the underlying functional representation of the manifold. We could recover a function for
55 each shape using Gaussian processes, as what is done in Albrecht et al. '3, but to practically implement
s this strategy, we need to have access to landmarks for each shape. Once we have our point set, we need
s to find an « parameter for the shape to dictate how to reconstruct the shape. Most imaging and shape
56 datasets will not be in the form of a-complexes as the points in many applications are not in general
ss7  position. As a result, we need an algorithm that can give us both an accurate point cloud from the
ss  underlying sub-manifold and the correct parameter for constructing the a-shape.

559 Sampling uniformly from balls with radius 7/8 around points in a given reference point cloud allows
s0  US stay close to what we assume to be the true manifold without directly calculating the manifold itself.
s Additionally, while this procedure is not exactly the same as uniform sampling (i.e., points that are
s2  closer together will have balls with greater overlap), we conjecture that the overall sampling ends up
ss  matching the true density of the point set. Adding a rejection-like step to the sampling scheme then
sea  gives the algorithm robustness to outlying points or atypical features that are present in shapes from the
sss reference dataset. We will work with the “approximate manifold” given by the union of balls around

s the corresponding reference point clouds of radius 7/8; call this manifold M=~ M. In practice, we
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sz avoid estimating or calculating the underlying manifold, but we stay true to the given reference data by

s implementing a “rejection sampling-like” algorithm via the following five step procedure:

560 1. Choose 2 < J < N number of reference shapes from the input dataset to serve as references and
570 combine their corresponding point clouds into a joint set denoted as Q.

571 2. Determine the number of candidate points y to sample based on a ball of radius 7;/8 centered
572 around reference points x € Q. Here, 7, is the minimum value in 7 corresponding to the subset
573 of J selected reference shapes. Note that this 7; value will change depending on the subset of
574 J reference shapes chosen for the generation of new shapes. The variation of 7; across different
575 subsets of reference shapes contributes to the variation observed in newly generated shapes.

576 3. Given a reference point x € Q in the joint point cloud of the J reference shapes, sample random
577 candidate points y from Bz, g(x)— that is, sample random points y from a small ball of radius
578 77/8 centered at point x.

579 4. Calculate the number of additional points in the joint point cloud z € Q that lie within a ball

580 centered at each candidate point y which we define as pqo(y) = #{z € Q | z € Bz, 4(y)}. This
581 number does not include the original reference point x from the previous step. Next, choose 6§ <
582 po(y) to be the minimum number of points needed to accept each new candidate point y. This sets
583 up the following accept-reject decision rules for the generation of new shapes where:

584 o If po(y) > JO, accept point y.

585 o If po(y) < JO, accept point y with rate 1 — exp{—2(pg(y) — 6)/J6}.

586 o If po(y) < 6, reject point y.

587 We detail the logic behind this rejection rule below.

588 5. Repeat these steps for all points in the combined point cloud z € Q.

ss9  There are a few key takeaways in the procedure specified above. First, we sample new points uniformly
s from one ball at a time rather than from the union of balls. This means that the new point cloud will
s reflect the density of the combined point cloud Q from the subset of J reference shapes. Second, to

s add some variance to the sampled point cloud and to ensure confidence in the newly sampled points, we
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s3  implement the following rejection-like rule:
0 po(y) <0
) =91 —exp{—2(po(y) —0)/J0} 0<poly) < .Jo (5)
1 po(y) = JO

sss  where, again, po(y) is the number of points in the joint point cloud Q that are within a 7 /4 radius of the
ss  candidate point y; 6 is the minimum number of points we require from the reference point cloud Q — x to
sv  be within a 7;/4 radius of the candidate point y in order to accept y (as the reference point z is already
ss  within that radius by definition); and J is again the number of reference shapes. Note that in Eq (5),
so0  the choice of J will affect the rate of acceptance and will approach 1 as pg(y) — J6. The three-part
oo rule in Eq (5) is designed to accommodate three scenarios when we consider to accept a newly sampled
o1 point y. If pg(y) < 6, then there are fewer neighboring reference points than desired and indicates that
s the candidate point y is likely to be far away from the boundary of the point cloud. We have little
s03 confidence that these points are from the manifold that we wish to approximate M and S0, consequently,
s we reject these points. In the scenario where pg(y) > J6, the candidate point y is near more than 6 real
s points (on average) from the J reference shapes. In this case, we have high confidence that y is from the
e approximated manifold M and automatically accept it as a newly sampled point.

607 In the middle scenario, where 6 < pgo(y) < J6, we want a rule that allows for some uncertainty in
os Yy as a function of the number of nearby points pg(y) from the J reference shapes. Here, we choose
oo 1 — exp{—2(pg(y) — 0)/J0}, which is the cumulative distribution function (CDF) for an exponential
s random variable with rate J0/2 that is shifted to be 0 when pg(y) = 6 (i.e., the threshold for the
su minimum number of points needed to accept each new candidate point y). The exponential distribution
ez is typically used to model the amount of time until some specific event occurs—where there are fewer
e13  large values and more small values. The main motivation behind this choice is to reward candidate points
sy that with higher values of pg(y). When we have J = 2 reference shapes, the rate of the distribution will
e be 0; as we add more reference shapes to the algorithm, the rate at which we find more neighboring points
eis for any candidate point y will increase. In practice, using our proposed rejection-like rule, the acceptance
sr rate will be roughly 100% for randomly drawn candidate points that are near the interior of the point

s cloud (particularly in regions where the J reference shapes being used all overlap). Intuitively, the rate of
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e10  acceptance will decrease for new candidate points that are sampled near the boundaries of the J reference
&0 shapes. The range of the overall acceptance probability will depend on the intraclass heterogeneity of

61 the reference dataset and the quality of alignment of the point clouds during preprocessing.

« Patient blood sample collection and primary neutrophil isolation

e Blood was drawn from healthy donors or septic patients with written informed consent at Rhode Island
e4 Hospital, in accordance with the guidelines and approval of the Institutional Review Board. Briefly,
e healthy donors had no known acute infection or chronic systemic disease within one month prior to the
e blood draw. We did not collect blood from minors, pregnant women, prisoners, mentally retarded or
sz mentally disabled patients or volunteers. Septic patients from the surgical intensive care unit (ICU) and
es the trauma ICU displayed at least two systemic inflammatory response syndrome criteria with a source
60 of infection, and enrolled within 48 hours of their diagnosis or admission. Patients also had to be at least
s 18 years of age without a massive blood transfusion. Further details on study design are documented
e elsewhere0.

632 For both healthy donors and septic patients, 10-30 milliliters (mL) of blood was collected in EDTA-
633 containing Vacutainer tubes. Buffy coat was separated by centrfiguation with Histopaque-1077 with
s an additional sedimenation step for neutrophils using 3% Dextran (400-500 kDa). Any contaminating
65 erthrocytes were eliminated by hypotonic lysis, and neutrophils were then resuspended in cation-free

e3s  HBSS media.

« Polyacrylamide gel preparation and neutrophil imaging

s Briefly, polyacrylamide gel substrates were polymerized on a 25 millimeters (mm) glass coverslip, using
s 3% acrylamide and 0.2% bisacrylamide for a Young’s modulus of E = 1.5 kPa, along with fluorescent
s red 0.5 pm carboxylate-modified polystyrene beads. Gel substrates were then coated with human fi-
s bronectin (Gibco 33016015) using the photoactivatable crosslinker sulfo-SANPAH (Sigma 803332) and
ez rinsed extensively. Further experimental details are documented elsewhere in Oakes et al. ™ and Witt

1.9 respectively. The polyacrylamide gel and coverslip were mounted in a coverslip holder, then

613 et a
sa covered with 1 mL of Leibovitz L-15 media. About 50,000 neutrophils were plated and allowed to adhere
ss for 15 minutes. Approximately 20-60 adherent cells were imaged in phase microscopy using a Nikon T1-2

as  epifluorescent microscope using a 40X air objective with a 0.6 numerical aperture. An Okolab enclosure
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s7 around the TT-2 maintained the apparatus at 37° and 5% COs for the duration of the experiments. Only
ss adherent cells were selected for imaging. The IV represents the number of individual neutrophils imaged

so and analyzed, with an n > 3 for individual septic or healthy donors.

« Converting segmented neutrophil images to 2D simplicial complexes

es1 1o convert tif files into two-dimensional simplicial complexes, we used a multi-step procedure. For the
e2 healthy neutrophils, each image was first cropped to include only the middle 50%. Septic neutrophil
63 images were already cropped. Next, the centroid of each shape was found using the median row and
e column; cells were centered by placing this centroid at the center of the new matrix. The black-and-
65 white cell images were converted into a binary matrix representing black-and-white pixels. This matrix
ess was then searched to find all the black pixels, which were used as vertices for the complex. To add
67 randomness to the pixel points, all vertices were also perturbed within their pixel areas. Next, edges
es  were formed by finding pairs of vertices that were either orthogonally or diagonally adjacent according to
60 the matrix. However, in order to avoid overlapping edges, the upper left and downward right diagonals
w0 Of each vertex were removed except when upper right and downward left diagonals could not exist (such
s1  that the overlap would be impossible). Finally, every three edges that could form a triangle were listed
62 as a face to construct a group of adjacent faces, which was plotted to generate a 2D simplicial complex

63 for the image.

« IEvaluation of generated neutrophils

es Representative cell morphologies were manually traced, converted to binary masks, and then turned
s into simplicial complexes (Fig 2a). The a-shape sampler was used to synthetically generate additional
67 cells with parameters J = 2 and 0 = 2. These newly generated neutrophils were then converted to bi-
es  nary masks. We computed 33 geometric characteristics using the masks of the original and the generated
eo shapes, respectively, including: area, perimeter length, number of protrusions, compactness, and others as
s described in Bhaskar et al. 6'. The vectors of these characteristics were projected onto a two-dimensional
en latent space using a manifold regularized autoencoder (MRAE)®? where the loss function is the com-
ez bination of a mean square error loss on the autoencoder itself and the “Potential of Heat-diffusion for

o3 Affinity-based Transition Embedding” (PHATE) coordinates in latent space. This combined loss function


https://doi.org/10.1101/2024.01.09.574919
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574919; this version posted January 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

25

o 1s formally defined as the following

N N N
75 L() ZZH%‘ =22+ )Yz — =il = llo(a) — dain)l |, (6)

i=14'=1

e where L£(-) denotes the loss function associated with the autoencoder; N is the number of shapes in the
o7 dataset; x; is the input data for the i-th shape; || - || is the L?-norm; Z; is the reconstructed version
es  of the i-th shape as determined by the decoder portion of the MRAE; z; is the two-dimensional latent
so embedding for the the data associated with the i-th shape; and ¢(-) is the PHATE function mapping the
0 shape data to R2. The idea behind the loss function is to train an autoencoder to not only minimize the
es1 difference between the input and reconstructed data, but also force the latent space to behave as similarly
e2 as possible to the PHATE function ¢. Since PHATE is a dimensionality reduction method designed to
s honor the original local and global structure of high-dimensional data®*, adding the extra loss component
e based on the PHATE coordinates in the latent space forces the autoencoder to also honor the original
65 structure of the data as well.

686 In addition to the MRAE, we also assess the new shapes generated by the a-shape sampler using
67 other dimensionality reduction approaches including: the uniform manifold approximation projection
s (UMAP)% PHATE, principal component analysis (PCA), and a generic autoencoder. Each of these
s0 analyses were used to demonstrate that our conclusions about the shapes produced by the a-shape sampler
s0 are robust regardless of the unsupervised dimension reduction method that we choose. Briefly, UMAP
s1 was implemented with 5 nearest neighbors, 2 connected components, Euclidean distance, and a minimum
ez distance set to 0.1. PHATE was implemented with 5 nearest neighbors, 2 connected components, a Von
e3 Neumann Entropy diffusion operator, log potential, Fuclidean distance, and we used stochastic gradient
ea descent for the multi-dimensional scaling method. Both the autoencoder and the MRAE were trained

65 with 500 epochs.

o Evaluation of generated primate manibular molars

s7 To generate synthetic primate manibular molars, we used parameters J = 2 and # = 0 in the a-shape
es sampler software, which meant an automatic 100% acceptance rate of sampled points. Since the reference
e0 teeth data were given as two-dimensional surface meshes in three-dimensional space, they had volumes

w0 equal to 0. In this case, setting 8 > 0 would send the acceptance probability of new candidate points to
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w nearly 0 (i.e., we would reject nearly 100% of new candidate points). Our evaluation for the generated
72 shapes with this dataset were similar to the landmarking and subsequent dimensionality reduction analy-
723 ses used in Turner et al. 2. First, the reference teeth were aligned using the sofware pacakge auto3dgm®®.
s We then generated 10 new synthetic teeth each from the Microcebus and the Tarisus genera, respectively.
s We used Procrustes analysis "7 to assign 400 landmarks to each newly generated tooth so that these
w6 could also be aligned and scaled. The (400x3)-dimensional matrices of landmark points for both the
o newly generated and real reference teeth were reshaped to scalar vectors of length 1200. These were
ws  then projected onto a two-dimensional space using the same manifold regularized autoencoder (MRAE)
0 and other dimensionality reduction techniques (UMAP, PHATE, PCA, and an autoencoder) as was done
7o the neutrophils. UMAP was implemented with 5 nearest neighbors, 2 connected components, Euclidean
m  distance, and a minimum distance set to 0.1. PHATE was implemented with 5 nearest neighbors, 2
n2  connected components, a Von Neumann Entropy diffusion operator, log potential, Euclidean distance,
ns  and we used stochastic gradient descent for the multi-dimensional scaling method. Both the autoencoder
ns  and the MRAE were trained with 500 epochs. For quantitative results, we calculate Euclidean distances
ns  between the length 1200 scalar vectors representing each tooth and gather the pairwise distances to

ne  reaffirm that the generated teeth are appropriately spaced from the original reference datasets.
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« Figures and Tables

~~

(a) a=0.05 (b)a=0.10 (0 a=0.15 (d)a=0.25 (e)a=0.35

Figure 1. An example of various a-shapes for the same set of points under different choices
for the numerical parameter a. Here, we consider different parameter values (a) a = 0.05, (b),
a = 0.10, (¢) a = 0.15, (d) @ = 0.2, and (e) o« = 0.35. In each panel, the gray shapes are the
intersection of balls of radius o and the Voronoi cells at each point. The pink triangles are then faces
representing the collective interior, and the blue lines are edges of the a-complex. The bold blue edges are
known as the “boundary edges” and denote the a-shape for each panel. In (a) and (b), where « is smaller,
we have disconnected components. In (c), we see an instance where edges may form the boundary of a
face, but the face is not quite yet filled in since the three Voronoi cells have not collectively met. In (d),
the faces are filled in and one of the points becomes an interior point while the rest remain a-extreme
points. In (e), « is large enough such that the given a-complex is the Deluanay triangulation and convex
hull of the point set. When determining how to generate a new shape from an existing dataset, we use
information within the given simplicial complex to determine how many points are needed, where the
points should be sampled, and the appropriate o parameter to connect the points. For a more detailed
overview and theoretical discussion of concepts surrounding a-shapes, see Materials and Methods and
Supporting Information.
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Figure 2. Schematic overview of the a-shape sampler: a probabilistic framework for sim-
ulating realistic 2D and 3D images and shapes. (a) A general illustration of the pre- and post-
processing workflow in the a-shape sampler software. In step (i), the user inputs data of real shapes in
some format—in this case, binary masks for illustration. We refer to these data as “reference” shapes.
In step (ii), the reference masks are converted to triangular meshes which are treated as simplicial com-
plexes. In step (iii), the reference meshes are input into the shape generation pipeline which, in step
(iv), outputs newly generated shapes in the form of a-complexes. Finally, in step (v), these generated
a-complexes are converted back to match the same format as the original input data (again, here, binary
masks). (b) Details underlying the algorithm for generating new shapes via the a-shape sampler. (i) A
collection meshes from IV reference shapes are given to the software. For simplicity, we assume that these
shapes are from the same phenotypic class and, thus, their points are from the same manifold. (ii) Next,
we estimate the reach 7; for each reference shape by computing the distance to edge neighbors for each
point (i.e., vertex in the mesh) and the circumcenters to neighboring faces (note that we also evaluate
tetrahedra for 3D objects). The next closest vertex is the value 7, for point p, and the smallest 7, among
all points is the value of 7; for the i-th reference shape. We then take the minimum 7 = (7,...,7n)
to be the representative estimate of the reach 7 for all reference shapes. (iii) We create a partial point
cloud by combining points from J reference shapes in our input dataset, where 2 < J < N. Next, we
sample new points from a ball of radius 7/8 around vertices in the partial point cloud. Each new point
is accepted or rejected according to a probability-based rule. (iv) Once we have the newly sampled point
cloud, we set & = T — ¢, where € > 0 is arbitrarily small, and generate the a-complexes for new shapes.
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(a) Real Annuli (b) Generated Annuli (c) Real Torus (d) Generated Torus
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Figure 3. Qualitative comparisons of real and generated 2D annuli and 3D tori using the
a-shape sampler. Panels (a) and (b) show real (gray) and generated (orange) annuli. Similarly, in
panels (c) and (d), we show real (gray) and generated (orange) tori. Overall, we see that the a-shape
sampler generates slightly thicker shapes than the examples in the original dataset (see Tables S1 and S2
for a quantitative evaluation). Nonetheless, the generated shapes preserve the most important topological
property in that they all have exactly one connected component and exactly one hole.
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Figure 4. Application of the a-shape sampler to generate synthetic 2D images of healthy
and septic neutrophils. (a) Examples of real healthy (blue), generated healthy (light blue), real
septic (black), and generated septic (gray) neutrophils in gels with stiffness 1.5 kilopascals (kPa). Each
synthetic neutrophil in the second row was generated using the two shapes it sits in between in the row
above. Variation in the newly generate cells can be most seen along the boundary, which is a function
of the sampling process in the a-shape pipeline. When comparing the generated and real cells, perhaps
most noticeable are (i) the differences in area and (ii) the number of protrusions in the healthy versus
septic cells. (b) We use a manifold regularized autoencoder (MRAE) to show that the generated shapes
cluster and intermix with real cells in their respective categories. This provides evidence that the images
being generated by the a-shape sampler are realistic. (c) We compute the area, perimeter, circularity,
solidity, convexity, and compactness of each real and generated cell. Next, we compare the distribution
of these measurements for the healthy and septic groups, respectively. Here, if the a-shape is able to
preserve geometric and morphological characteristics while generating new data, then we would expect
the distributions of these measurements to line up within a group. Note that due to the high heterogeneity
and difficulty aligning shapes, the generated septic neutrophils are slightly larger in area and perimeter
than the real ones. However, the generated neutrophils with the a-shape sampler still capture other key
shape characteristics.
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(a) Real Microcebus Teeth (b) Generated Microcebus Teeth (c) Real Tarsius Teeth (d) Generated Tarsius Teeth

.

(e) (f)
MRAE of Teeth Landmarks
Microcebus i
—— L] icrocebus (gen)
-~ ® Microcebus (real)
0 4 % Tarsius (gen)

® Tarsius (real)

Mirza
~ 27
w
<
o
= —4 A
Saimiri
_6 - .

Tarsius

-5.0 =25 0.0 2.5
MRAE 1

Figure 5. Application of the a-shape sampler to generate synthetic 3D primate mandibular
molars. Here, we qualitatively compare meshes of (a) real Microcebus, (b) generated Microcebus, (c) real
Tarsius, and (d) generated Tarsius teeth. Morphologically, we know that tarsier teeth have an additional
high cusp (highlighted in red) which allows this genus of primate to eat a wider range of foods™. Here,
we see that the generated Tarsius teeth from the a-shape sampler preserve the unique paraconids. In
panel (e), we show the phylogenetic relationship between the Microcebus and Tarsius genus. It has
been estimated that the divergence dates of the Microcebus and Mirza from Tarsius happened around
five million years before the branching of Tarsius from Saimiri8”. (f) We use a manifold regularized
autoencoder (MRAE) to show that the generated teeth cluster and intermix with the real Microcebus and
Tarsius teeth, respectively. Figure S4 shows that the same results hold regardless of the dimensionality
reduction technique that is used.
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