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Abstract17

Understanding morphological variation is an important task in many areas of computational biology.18

Recent studies have focused on developing computational tools for the task of sub-image selection which19

aims at identifying structural features that best describe the variation between classes of shapes. A major20

part in assessing the utility of these approaches is to demonstrate their performance on both simulated21

and real datasets. However, when creating a model for shape statistics, real data can be difficult to access22

and the sample sizes for these data are often small due to them being expensive to collect. Meanwhile,23

the current landscape of generative models for shapes has been mostly limited to approaches that use24

black-box inference—making it difficult to systematically assess the power and calibration of sub-image25

models. In this paper, we introduce the α-shape sampler: a probabilistic framework for generating26

realistic 2D and 3D shapes based on probability distributions which can be learned from real data. We27
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demonstrate our framework using proof-of-concept examples and in two real applications in biology where28

we generate (i) 2D images of healthy and septic neutrophils and (ii) 3D computed tomography (CT) scans29

of primate mandibular molars. The α-shape sampler R package is open-source and can be downloaded at30

https://github.com/lcrawlab/ashapesampler.31

Author Summary32

Using shapes and images to understand genotypic and phenotypic variation has proven to be an effective33

strategy in many biological applications. Unfortunately, shape data can be expensive to collect and,34

as a result, sample sizes for analyses are often small. Despite methodological advancements in shape35

statistics and machine learning, benchmarking standards for evaluating new computational tools via36

data simulation is still underdeveloped. In this paper, we present a probability-based pipeline called the37

α-shape sampler which has the flexibility to generate new and unobserved shapes based on an input set38

of data. We extensively evaluate the generative capabilities of our pipeline using 2D cellular images of39

neutrophils and 3D mandibular molars from two different suborders of primates.40

Introduction41

Shape statistics has become an integral component of several applications within computational biology42

including medical imaging1, geometric morphometrics2–4, and cell biology5,6. Recently, there has been43

a focus to develop computational tools that address the subimage analysis problem: given a collection44

of images or shapes, find the features that best explain the variation between them with respect to a45

response variable7. One example of this type of analysis is identifying the biologically-relevant atomic46

and residue-level differences between two protein structural ensembles8. To date, several approaches47

have been proposed with the aim to quantify the global variation between images and shapes including48

some in topological data analysis9–12, methods leveraging landmark-based13–15 or diffeomorphic-based49

representations2,16–18, and tools that use “functional maps” to identify similarities and differences between50

shapes via a learned latent space19.51

Despite the many methodological advances being made for the subimage selection problem in shape52

analysis, there has yet to be a principled framework to assess the power and limitations of these new53
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tools. Traditionally, there are two common strategies for benchmarking feature selection methods in54

computational biology: (i) by analyzing real data where there is a “ground truth” about which features55

are associated with a given phenotype of interest, or (ii) by using simulations where synthetic data56

is generated such that we know the causal relationship between features and the response variable.57

Both of these strategies have well-established statistical practices for tabular data (e.g., gene expression58

in genomics) but they become increasingly difficult to implement when working with shapes. Using59

data from real biomedical studies for methodological benchmarking is a challenge because shape-based60

modalities can be hard to collect. On the other hand, when data is able to be collected, sample sizes within61

studies are usually small, which both compromises the statistical power of the methods being assessed62

and inhibits the ability to study algorithmic robustness to variance between observations. Lastly, the63

relationship between shape and phenotype is largely speculative for many biological applications. For64

example, there have been radiomic studies which have proposed an association between tumor morphology65

and survival prognostics for patients with glioblastoma, but the exact biological mechanisms connecting66

the two remains unknown1,20.67

Simulation studies are an alternative way to evaluate newly developed computational tools in shape68

analyses. The key to performing these studies is to have an interpretable generative model such that69

the process for creating synthetic (yet realistic) shapes is well understood. This facilitates the ability70

to assess how powered a tool is at identifying causal features driving the morphological variation across71

samples. In general, algorithmic frameworks for generating synthetic shapes consists of two steps: (i)72

a procedure to generate a point set and (ii) a set of rules for reconstructing a shape from those points.73

Multiple end-to-end shape generation pipelines have been introduced in the literature but each have their74

own sets of limitations. For example, to sample random points from a probability distribution over a75

manifold, one theoretically needs to know the manifold itself which can be impractical to estimate for many76

applications21–24. Recently, there are have been machine learning algorithms that have been developed for77

generating point clouds and reconstructing shapes using dual generators25, diffusion-based methods26,78

encoders27, and generative adversarial networks28,29; but each of these frameworks lack transparency79

into the generative process for creating new synthetic shapes30. From a more mathematical perspective,80

several methods have been proposed to infer shapes from randomly generated point clouds. Many of81

these approaches use Čech and Vietoris Rips complexes31,32; however, unfortunately, they require tens82

(and sometimes hundreds) of simplicial complexes to be constructed for each point set resulting in long83
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runtimes. There are 2D shape reconstruction methods based on contours33 and curves34, but their theory84

does not directly translate to higher dimensional objects35. Lastly, probability-based shape generative85

pipelines are still in their infancy and have thus far relied on component vector analysis where parts of 2D86

and 3D objects are broken into smaller components and the assembly/connectivity between components87

are hidden variables learned by a pre-specified model36,37.88

In this work, we present the α-shape sampler: a probabilistic framework which takes in a collection of89

real shapes or images as input and generates new synthetic ones with features that both quantitatively90

and qualitatively resemble data in the input set. Methodologically, α-shapes require a single numerical91

parameter α for reconstruction which can be interpreted as a measure of shape detail or granularity92

(Fig 1). They can also be generated in O(P logP ) time where P is the number of points in the point93

cloud that is input into the algorithm38. As part of our contributions, we introduce a scalable näıve,94

data-driven algorithm to estimate the reach 39 for a given set of shapes and theoretically relate it to95

the numerical α parameter. Altogether these properties allow our proposed framework to scale and96

accommodate the growing sizes of emerging imaging and shape-based databases. It is worth mentioning97

that, while the mathematical concept of reach has been used extensively in topological data analysis to98

reconstruct shapes and sample point clouds40,41, to our knowledge, we are the first to tie it α-shapes99

parameter for an end-to-end generative modeling pipeline. Shape generation using α-shapes has been100

previously studied in two-dimensions where the underlying manifold is known42 and to learn about101

shape boundaries43,44; while shape reconstruction with α-shapes has primarily been studied in three102

dimensions45–47. They have also been previously used structural biology application in ecology48,49 but,103

overall, the focus of these studies was to understand the interpretation of the parameter of α itself rather104

than attempting to use α-shapes as a basis to create a framework for generating new data.105

Throughout the rest of the paper, we will describe the α-shape sampler using a combination of106

probability theory, topology, and tools from differential geometry. We then translate the theoretical107

components of the pipeline into a series of algorithmic steps for practical implementation. Finally, we108

illustrate the utility of our approach on small proof-of-concept examples (annuli in two dimensions and109

tori in three dimensions) and real datasets (neutrophils in two dimensions and primate mandibular molars110

in three dimensions). We find that the α-shape sampler is effective at generating new shapes which honor111

major local and global characteristics of realistic data, while also maintaining algorithmic transparency112

so that the pipeline can be used for a wide-range of biological applications.113
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Results114

Algorithmic overview of the α-shape sampler115

Statistically, α-shapes are convenient because they require a single numerical parameter α to encode all116

connectivity information for a point set. For example, in Fig 1a-c, we see that all points are α-extreme117

(i.e., on the border); while in Fig 1d, we see that α becomes large enough such that one point is not118

α-extreme and is therefore an interior point of the shape. Finally, in Fig 1e, there are three interior119

points and the rest are boundary or α-extreme points. An extension of this figure showing different α-120

shapes being formed as a function of the number of points sampled from a unit square and the parameter121

α can be found in Fig S1. With this theory in mind, a probability distribution on α-shapes can be122

explicitly estimated via uniform point sampling on a given (approximate) manifold and then shapes can123

be constructed from that point set using α (see Supporting Information). Recent work has investigated124

using the α parameter as a shape characteristic48,49 but, to our knowledge, it has yet to be used for125

shape generation. This is likely due to the requirement that point sets need to be in general position,126

a characteristic often not seen in nature. However, we work within the confines of this assumption in127

return for theoretical soundness, statistical simplicity, and algorithmic transparency.128

We will detail our probabilistic generative framework while assuming that we are working with shapes129

that are d = 2 or 3-dimensions. The α-shape sampler involves five key steps (see Fig 2a). To begin,130

the pipeline receives real shapes; throughout the rest of this paper, we will refer to these input data131

as “reference” shapes. Note that we depict these reference shapes as binary masks in Fig 2, but the132

α-shape sampler software can take shape data in any format as input. In the second step, the reference133

shapes are aligned, scaled (if applicable), and converted to triangular meshes which we treat as simplicial134

complexes. In the third step, the reference meshes are used in a generative algorithm which, in the fourth135

step, outputs newly generated shapes in the form of new α-complexes. In the fifth and final step, these136

newly generated α-complexes are converted back into binary masks (or any other data representation),137

to match the same format as the original input reference data.138

We assume that all reference shapes from a phenotypic class (e.g., healthy cells or molars from a given139

species of primate) have vertices sampled from the same underlying manifold and that the variation140

observed across shapes within the class stems from a finite sampling of points. With this in mind, the141

generative algorithm proportion of the α-shape sampler is comprised of four main steps (see Fig 2b).142
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First, the N collection reference meshes are input into the algorithm. We represent the i-th reference143

mesh as Ki = {Vi, Ei, Fi, Ti} which is collection of vertices Vi, edges Ei, faces Fi, and tetrahedra Ti (if144

applicable). In the second step, we estimate the reach τi for every i-th reference mesh by computing the145

distance to edge neighbors and the circumcenter distance to neighboring faces (and tetrahedra for 3D146

objects) for each boundary vertex in the complex p ∈ ∂Ki. After completing this for all N reference147

shapes, we have a vector of shape-specific reach estimates τ = (τ1, . . . , τN ). In the third step, we select148

2 ≤ J ≤ N reference shapes from the input dataset which we use as a basis to generate new shapes.149

Here, we combine the point clouds from the J shapes into a joint partial point and take the minimum150

between their corresponding values in τ to be the reach estimate τ̂J . Next, we sample candidate points151

for the newly generated shapes from balls of radius τ̂J/8 around vertices in the joint partial point cloud.152

A radius of τ̂J/8 is chosen to force newly sampled points to remain relatively close to the boundary of the153

reference point cloud. Each new candidate point is accepted or rejected according to a probability-based154

rule with parameter θ (see Materials and Methods). The θ parameter is the minimum number of points155

in the joint partial point cloud that need to neighbor the new candidate point in order to accept it. It156

effectively determines the level of confidence needed to believe that a randomly sampled point is from157

the same underlying manifold as the reference data. Once we have the newly sampled point cloud, in158

the fourth step of the algorithm, we set α = τ̂J − ε, where ε > 0 is arbitrarily small, and generate the159

α-complexes for new shapes. By default, the α-shape sampler software sets J = 2, θ = d (i.e., same160

dimensions as the input data), and ε = 0.001 (see URLs). Unless otherwise stated, these are the values161

that we also use to generate all of the results presented throughout the rest of the paper.162

There are two important components to the implementation of our pipeline. First, the α-shape163

sampler uses a function to compute the reach for each shape that is completely separate from the shape164

generation function (again see Fig 2b). This serves two purposes: (i) it increases computational speed by165

avoiding redundant calculations, and (ii) it provides an informal check for potential outlier shapes before166

using those shapes as reference inputs for the generative part of algorithm (e.g., this can be done by167

empirically assessing the tails of the distribution for τ ). Second, setting α to be just under τ̂J for some168

subset of reference shapes guarantees that we will preserve the original homology and most of the local169

geometry that is present in the reference dataset without losing any features or generating any atypical170

ones. Theoretical details of our implementation are fully detailed in the Materials and Methods and171

Supporting Information.172
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2D proof-of-concept study with simulated annuli173

To demonstrate the α-shape sampler, we begin with a two-dimensional (2D) toy example where we174

simulate N = 50 “real” (i.e., reference) annuli with inner radius r = 0.25, outer radius R = 0.75,175

and thickness equal to R − r = 0.5. Each reference annulus is constructed by sampling P = 500176

points uniformly from the annulus and then connecting them using true α = 0.15. The reach value for177

these reference annuli is given by the inner radius of the hole such that τ = 0.25. We consider these178

measurements to be the “ground truth” during evaluation.179

Using the real 2D annuli as input data, we generate anotherN∗ = 10 annuli using the α-shape sampler.180

Figs 3a and 3b show that the generated annuli preserve the homology of the original reference shapes (i.e.,181

each generated shape is singular connected component and has exactly one hole). To further evaluate182

how “realistic” the geometric characteristics were for the newly generated annuli, we first identified their183

α-extreme points and separated them into two categories: (i) radii less than 0.5 and (ii) radii greater184

than 0.5. The averages of both categories were used to numerically define each generated shape’s inner185

and outer radii, respectively. The thickness of each generated shape was then found by subtracting the186

inner radius from the outer radius. Table S1 gives the root mean square error (RMSE) for each of these187

characteristics when comparing the generated annuli to the real reference annuli. Overall, we see relatively188

low RMSEs (values below 0.01 for each category) which aligns with the aesthetic similarity between the189

shapes seen in Fig 3. It is important to note that the mean estimated reach for the generated annuli190

produced by the α-shape sampler was τ̂ = 0.1749 ± 0.009. While less than the true value of τ = 0.25,191

this is unexpected given that we are estimating the reach from the data directly (rather than estimating192

it using the true radius). Indeed, we would rather our estimate of the reach be smaller than the truth193

and, consequently, have to sample more points rather than our estimate of τ be too large and we lose194

geometric information about the shapes.195

3D proof-of-concept study with simulated tori196

Next, we extend our demonstration of the α-shape sampler to a three-dimensional (3D) toy example197

where we simulate N = 50 “real” (i.e., reference) tori with major radius R = 0.75 and minor radius198

r = 0.25. Each reference torus was constructed by sampling P = 5000 points uniformly using the199

alphashape3d R package50 with the Computational Geometry Algorithms Library (CGAL)51 where the200
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points were connected using a true α = 0.25. The reach value for these reference tori is τ = 0.5 which201

corresponds to the radius of the hole (or tube) of the tori. As with the previous proof-of-concept study202

using the 2D annuli, we again consider the geometric measurements for the real reference tori to be the203

“ground truth” during our assessment. Examples of the real reference tori can be found in Fig 3c.204

Using the real 3D tori as input data, we generate another N∗ = 10 tori using the α-shape sampler.205

An example of these generated shapes can be found in Fig 3d. Here, we see that the generated tori206

qualitatively preserve the homology of the original data where each have one connected component and207

one hole. To get estimates of the major and minor radii for the generated torus, we start by examining208

their boundary points. The following relates the major and minor radii for a torus centered at the origin209

r2 =
(√

x2 + y2 −R
)2

+ z2210

where (x, y, z) are the Cartesian coordinates of the boundary points for the torus. Rearranging the above211

equation then yields the following relationship212

(
x2 + y2 + z2

)
= 2R

√
x2 + y2 +

(
r2 −R2

)
.213

By treating Y = x2 + y2 + z2 to be a response variable, X = 2
√
x2 + y2 to be a covariate, β = R to be214

a coefficient, and ε = (r2 − R2) to be a residual, the above rewritten equation mirrors a linear model.215

As a result, we can use ordinary least squares to estimate the appropriate values for (β, ε). This then216

allows us to infer corresponding estimates for the major R and minor r radii for each generated torus,217

respectively.218

Table S2 compares the major and minor radii estimates for the tori generated by the α-shape sampler219

to same characteristics in the original reference shapes. We see that while the major radius R is well220

preserved (RMSE = 0.002), the minor radius r is slightly larger for the generated shapes (RMSE =221

0.02). This result translated to a slightly larger thickness for the generated tori (again see Fig 3d). While222

generally still close, it does demonstrate a potential shortcoming in our data-driven approach for shape223

generation where our random sampling algorithm can be prone to accept points outside of the reference224

boundary, particularly for shapes with smooth surfaces. While this issue may be corrected via some225

post-processing step to assure that the generated shapes are on a desired scale, we still caution that the226

probabilistic nature of the α-shape sampler is not perfect and may lead to a slight distortion of shape227
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geometry. It is still worth noting that, despite the slightly larger thickness, the mean reach estimate228

for the generated tori produced by our algorithm was τ̂ = 0.402 ± 0.006, lower than the true value of229

τ = 0.5. Again, the lower reach estimate helps us to preserve the majority of geometric and topological230

characteristics in the generated shapes even if the overall scale is slightly misrepresented.231

Comparison of real and generated shapes based on primary human neutrophils232

from healthy and septic patients233

Human cells display diverse and dynamic morphologies, driven by the rich interplay between the intracel-234

lular cytoskeleton and matrix adhesion during cell migration52,53. For example, neutrophils are versatile235

“first responders” of the innate immune system that are rapidly recruited to tissue sites of injury and236

infection54. Neutrophils become adherent and polarized after “activation” by proinflammatory media-237

tors55, exhibiting a leading edge with protrusive pseudopods as well as a trailing edge with a contractile238

uropod56. Indeed, such polarized morphologies appear to be correlated with faster neutrophil motility,239

but can be considerably more heterogeneous for slower moving cells57. Further, neutrophils exhibit pro-240

found defects in migration and antimicrobial function during sepsis, an aberrant host response to infection241

that can result in multi-organ failure and death58. An unresolved problem is to meaningfully classify242

neutrophils, since they plastically transition through distinct phenotypic states but also occur as distinct243

subsets defined by biomarkers and gene expression59.244

As a first case study, we applied the α-shape sampler to two-dimensional cell shapes acquired from245

phase microscopy images of primary human neutrophils. Briefly, neutrophils were isolated from consented246

healthy donors and septic patients at Rhode Island Hospital (with approval from the Institutional Re-247

view Board), then plated at compliant polyacylamide hydrogel substrates functionalized with fibronectin248

(see Materials and methods and Witt et al. 60 for more details). Representative cell morphologies were249

manually traced, converted to binary masks, and then turned into simplicial complexes (similar to what250

was shown in Fig 2a). The α-shape sampler was used to synthetically generate additional cells using the251

default parameters J = 2, θ = 2, and ε = 0.001. The training set consisted of approximately N = 20252

neutrophil shapes each from the healthy donors and septic patients, which were then used to generate253

N∗ = 25 new neutrophil shapes from each class. Qualitatively, real healthy neutrophils exhibited rela-254

tively rounded and compact morphologies (including a uropod56) with a typical diameter of ∼10 microns255

(µm), which were visually similar to the generated healthy neutrophils (Fig 4a). In comparison, real sep-256
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tic neutrophils exhibited greater ruffling and elongated protrusions relative to real healthy neutrophils,257

which was visually recapitulated in the generated septic neutrophils (again see Fig 4a). Further, septic258

neutrophils showed greater spread areas than healthy neutrophils, with diameters approaching 15-20 µm.259

These differences between healthy and septic neutrophil shapes were captured in the reach estimates pro-260

duced by the α-shape sampler, with the healthy neutrophils having mean τ̂ = 3.3689×10−3±1.0152×10−3
261

compared to the septic neutrophils having mean τ̂ = 5.3409 × 10−3 ± 4.6246 × 10−3. The larger mean262

τ can be explained by the larger variation along the border of the septic neutrophils, while the larger263

standard deviation reflects the greater single cell heterogeneity in shape.264

To further quantify the differences between the real healthy and septic neutrophils and the similarities265

between real and generated neutrophils, 33 shape characteristics were calculated including area, perimeter266

length, compactness, and number of protrusions (see Materials and methods and Bhaskar et al. 61 for more267

details). These vectors were then projected onto a two-dimensional space using a manifold regularized268

autoncoder (MRAE)62 as applied to Potential of Heat-diffusion for Affinity-based Transition Embedding269

(PHATE) coordinates (Fig 4b). In this lower dimensional representation, real healthy neutrophils are270

roughly grouped together for larger MRAE1, while real septic neutrophils are roughly grouped together271

for smaller MRAE1; although, there is not a large separation of these two groupings. Moreover, generated272

healthy neutrophils also group together with real healthy neutrophils for larger MRAE1, while generated273

septic neutrophils group together with real septic neutrophils for smaller MRAE1. These general trends274

were confirmed to be independent of the choice of dimension reduction method, including Uniform Man-275

ifold Approximation (UMAP)63, PHATE64, Principal Component Analysis (PCA), and a generalized276

autoencoder with an Adam optimizer and mean square error loss (Fig S3). For PCA, in particular,277

the top two principal components were most heavily weighted by area and perimeter in the loadings.278

Although MRAE is more difficult to interpret due to the nonlinear representation, the components were279

similarly weighted by area and perimeter but also solidity and circularity (based on inspection of cell280

shapes for varying MRAE1 and MRAE2).281

Additional examination of these shape metrics revealed statistically significant quantitative differ-282

ences between healthy and septic neutrophils (Fig 4c and Table S3). Notably, healthy real and generated283

neutrophils had comparable median area of ∼125 µm2 (P -value = 0.066). Moreover, septic real neu-284

trophils had a median area of 246 µm2, but septic generated neutrophils had a significantly larger median285

area of 332 µm2 (P -value = 1.71× 10−4). Similarly, healthy real and generated neutrophils had median286
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perimeters of ∼47 µm (P -value = 0.189), while septic real neutrophils had a median perimeter of 75 µm287

and septic generated neutrophils had a median perimeter of 89 µm (P -value = 0.0032). In comparison,288

circularity (expressed as a ratio between 0 and 1 describing similarity to a circle, with 1 denoting a perfect289

circle), solidity (the fraction of the area of the cell over the area of the convex hull), convexity (the ratio of290

the convex hull perimeter to the cell perimeter), and compactness (the ratio of the diameter of the circle291

with the same area of the cell to the major axis of rectangular fit) showed statistically significant differ-292

ences between the real healthy and septic neutrophils that were maintained by the generated healthy and293

septic neutrophils, but no statistically significant differences between the real and generated neutrophils.294

In order to elucidate this discrepancy between real and generated septic neutrophil shapes, we re-295

examined how the α-shape generator was sampling from the training set to define a “manifold” based296

on the union of point clouds from J = 2 reference shapes (see Material and methods). Without perfect297

alignment, in this setting, the corresponding combined manifold will retain the outermost protruding298

points associated with both reference shapes, which will bias the generated shape towards larger areas299

and perimeters. Since septic real neutrophils exhibit pronounced single cell heterogeneity, the inclusion of300

a few unusually large cells with this pairwise sampling skewed the shape distribution of septic generated301

neutrophils towards larger areas and perimeters. In comparison, healthy real and generated neutrophils302

exhibited no statistical difference in any of the measured shape features, likely since they were more303

homogeneous in shape. It should be noted that the septic neutrophils could include some subsets that304

are more dysregulated (perhaps prematurely released from the bone marrow) and others that are phe-305

notypically more similar to healthy neutrophils. If so, the presence of this latter subset could obfuscates306

the separation of healthy and septic neutrophils by morphology.307

Comparison of real and generated shapes based on primate mandibular molars308

As a final case study with three-dimensional shapes, we applied the α-shape sampler to a dataset consist-309

ing of N =15 computed tomography (CT) scans of mandibular molars from two suborders of primates:310

8 of these real teeth came from the genus Microcebus of the Strepshirine suborder and the remaining 7311

came from the Tarsius of the Haplorhini suborder2,65,66. The α-shape sampler was used to synthetically312

generate an additional N∗ = 10 teeth from each genus using the parameters J = 2, θ = 0, and ε = 0.001.313

In this analysis, we had to set θ = 0 because the CT scans for each molar came in the form of boundary314

meshes, which are technically a “hollowed” representation of fully dense 3D objects (see Materials and315
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methods). This effectively meant that each reference tooth had volumes equal to 0. As a result, we had316

to avoid setting θ > 0 to keep the acceptance probability of new candidate points from being nearly 0317

(i.e., we would reject nearly 100% of new candidate points).318

It is worth briefly noting that the original dataset started with N = 10 Microcebus teeth and N = 18319

Tarsius teeth, respectively. Some of these references were removed from the analysis after we estimated320

their reach values (see, again, the second step in Fig 2b) and observed some distinct outliers which would321

affect our ability to generate new and realistic shapes downstream. For theMicrocebus genus, the teeth we322

used in our analysis had estimated reach values in the range τ̂ ∈ [0.0242, 0.0793], while the unused teeth323

had values τ̂ = {0.253, 0.459, 1.597} (somewhere 10× to 100× larger than the rest of the data). Similarly,324

for the Tarsius genus, data for our analysis was restricted to teeth with estimated reach values which325

fell in the range of τ̂ ∈ [0.0241, 0.1124], while the omitted teeth had reaches between τ̂ ∈ [0.9358, 6.6698].326

When using all teeth, even with proper alignment and scaling, we generated unrealistic shapes (e.g.,327

synthetic teeth with six or eight roots, which do not occur in either species). A key feature of the α-328

shape sampler is that it allows users to use the estimated τ̂ to identify reference shapes that are outliers329

relative to the rest of input dataset. This can be used to proactively prune reference shapes or use the τ̂330

values post hoc to diagnose why the algorithm produced a shape that does not fit with the original set.331

A comparison of the quality controlled real teeth and the generated teeth from the α-shape sampler332

can be found in Fig 5a-5d. Overall, we chose this specific collection of molars for our analysis because333

of the phylogentic relationship between the Microcebus and the Tarsius (Fig 5e)67. Morphologists and334

evolutionary anthropologists have previously used this data to understand variations of the paraconid,335

the cusp of a primitive lower molar. The paraconids do not appear in other genera68,69 and are only336

retained by Tarsius which allows this genus of primate to eat a wider range of foods70. When using these337

teeth as reference data in our shape generation pipeline, we see that the α-shape sampler is indeed able338

to produce newly generated teeth that qualitatively preserve key features shared between both species339

(e.g., the four roots) as well as recapitulate species-specific variation that is driven by the presence of the340

paraconids in the Tarsius. More specifically, the generated Microcebus teeth are missing the distinguished341

paraconid that is captured in the generated Tarsius teeth (again see Fig 5a-5d), repeating the patterns342

we see in the real data.343

To further assess the quality of the shapes produced by the α-shape sampler, we follow Turner et al. 12344

and used Procrustes analysis71,72 to assign 400 landmarks onto each reference and newly generated345
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tooth (Materials and methods). The (400×3)-dimensional matrix of landmark points for each shape was346

reshaped to a scalar vector of length 1200. This was then projected onto a two-dimensional space using347

the manifold regularized autoencoder (MRAE) on PHATE coordinates (Fig 5f). As expected, we see348

the real Microcebus and the real Tarsius teeth form distinctly separate groups along both MRAE1 and349

MRAE2. We also see the generated Microcebus teeth group together with the real Microcebus teeth,350

while the generated Tarsius teeth group together with the real Tarsius teeth. These general trends were351

again confirmed to be independent of the choice of dimension reduction method (Fig S4). For a more352

quantitative analysis, we also computed the average pairwise Euclidean distance between each tooth353

group (e.g., Table S4). Here, we observe that the generated Microcebus and generated Tarsius teeth are354

nearly twice as close to their respective real groups than to any other group. We attribute the nonzero355

distance between the generated and real teeth to the fact that we end up accepting all randomly sampled356

points during our shape generation algorithm (see Materials and methods).357

Discussion358

In this paper, we introduced the α-shape sampler: a probability-based generative model for two-dimensional359

and three-dimensional shapes. The underlying theoretical innovation of connecting the mathematical con-360

cept “reach” with the α parameter in α-shapes allows us to implement a data-driven algorithm with the361

scalability to accommodate the growing sizes of emerging imaging and shape-based databases. We applied362

our generative pipeline to both 2D and 3D datasets and demonstrated its ability to successfully capture363

important geometric, morphometric, and topological characteristics of complex objects. In the main text,364

we focus on demonstrating our generative model when reference shapes are available. This is meant to365

approximate the reality that the underlying manifold for shapes observed in many biological applications366

is often unknown. In the Supporting Information, we derive theory and discuss how to generate new367

shapes when the true manifold is indeed known and available (Fig S5-S12). This includes detailing how368

one might sample new shapes directly from probability distributions (code for this “exact” approach is369

also included in our open-source R package; see URLs).370

The current implementation of the α-shape sampler framework offers many directions for future371

development. For example, there are a few considerations to be made when choosing the J number372

of reference shapes and the θ threshold for accepting new candidate points in the α-shape sampler373
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pipeline. Almost counter-intuitively, the smaller we select J to be, the more variation there will be374

in the generated shapes. This is because the joint point cloud starts to converge as the number of J375

shapes that are included grows. Additionally, the number of J reference shapes limits the number of376

new shapes that can be produced. Combinatorially, we can only generate
(
N
J

)
new shapes. While this377

may be seen as a limitation, it also prevents us from augmenting a study with generated shapes that378

are too far outside of what has been observed in real data. Similarly, when selecting θ, our suggestion379

is to choose θ = d (the dimension of the shape space) so that one avoids noisy points and edges around380

the boundary. The exception to this rule is when the reference shapes are in the form of boundary381

meshes which are technically a lower dimensional representation of the full shape data. For example,382

the primate teeth meshes analyzed in the main text are two-dimensional simplices in three dimensions.383

In this case, we recommend θ = 0 such that all points are accepted. While this removes the possibility384

for noise and variation between iterative runs of the α-shape sampler, even choosing θ = 1 will result in385

such a strict threshold of acceptance that the new shape will be a few isolated points scattered in space.386

We believe this happens because the volume of intersection of a two-dimensional surface mesh with a387

three-dimensional ball is 0 due to the mesh having Lebesgue measure 0. While the generated shapes may388

end up being thicker meshes, this can be fixed via post-processing of the data. To avoid this issue, it is389

best to use shapes that are “filled” in (such as the neutrophil example), but sometimes this is not feasible390

or practical for the given dataset.391

In its current form, the α-shape sampler performs considerably better when the reference shapes in392

the input dataset are well aligned. Indeed, alignment was performed with the simulated annuli and tori393

(Fig 3), as well as with the mandibular molars which included landmarks amenable to unsupervised394

learning methods (Fig 5). In comparison, neutrophil morphologies lacked such landmarks and so shapes395

were only centered on their centroids (Materials and methods). Nevertheless, real and generated shapes396

for healthy neutrophils were statistically similar, since the real morphologies exhibited comparable areas397

and were relatively compact (Fig 4). However, some generated shapes for septic neutrophils considerably398

exceeded the corresponding real shapes in area and perimeter, since the α-shape sampler generates399

manifolds that retains the outermost protruding points associated with both shapes (Table S3). To400

address this artifact, we attempted to rescale shapes after generation to match areas and perimeters,401

which distorted circularity and convexity. Alternatively, aligning neutrophils along their long axis tended402

to bias towards the generation of more elongated morphologies. It is conceivable that septic neutrophils403
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with very different morphologies belong to different subsets, and so the generated cell is a chimera404

based on different subsets without a plausible biological basis. These issues could be addressed in highly405

heterogeneous populations by sampling a larger number of single cells to limit the biasing effect of outliers,406

and to discard any generated cells that deviate excessively from the real shape distribution. Future work407

could also utilize additional information based on cell migration or tractions60,73,74, along with single-cell408

genomics75 to gain additional insight into septic cell phenotype. Finally, this approach could be effective409

for other cell types, such as analyzing the epithelial-mesenchymal transition, since the associated spindle-410

like morphology displays more consistent landmarks for shape alignment76–78.411

From a statistical perspective, the assumption that all points in the input data point clouds are412

uniformly distributed over the same underlying manifold may not be suitable for all applications. When413

points are not uniformly distributed, the calculation of reach becomes less precise because there is too414

much variance between boundary points. As a result, the τ estimate ends up too big in some parts415

of the point cloud and too small in others, leading to the loss of local geometric information and the416

possible addition of global topological information, both of which hinder the ability to generate new417

realistic shapes that properly fit in the same class as the input dataset. Where points are not uniformly418

distributed, it may be the case that α-shapes are the appropriate tool for modeling shapes, as was studied419

in Gerritsen 79 . This is particularly true when points have additional contextual meaning (e.g., molecular420

structures such as proteins or strands of DNA) or in cases where meshes are very detailed in some areas421

and less so in others. An immediate future avenue of work is to extend our pipeline to work for weighted422

α-shapes80, coupled α-shapes81, and β-shapes82 to fit a broader range of applications.423

URLs424

Code for the α-shape sampler and data simulations is available at https://www.github.com/lcrawlab/425

ashapesampler. Slicer auto3dgm paradigm is available at https://toothandclaw.github.io/. Binary426

masks of the healthy and septic neutrophils and 3D meshes of the primate mandibular molars are avail-427

able on the Harvard Dataverse at https://doi.org/10.7910/DVN/K9A0EG. Scripts to reproduce the428

results in this paper are also publicly available and can be found at https://github.com/lcrawlab/429

ashapesampler_paper_results.430
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Materials and methods431

Introduction on α-shapes432

In this work, we consider a shape to be the simplicial complex approximation of a compact Riemannian433

manifold embedded in Euclidean space. We use the same definitions for simplices and simplicial com-434

plexes as presented in Edelsbrunner and Harer 83 . We also assume that all shapes considered in a given435

phenotypic class (e.g., healthy septic cells or molars from a given species of primate) have vertices sam-436

pled from the same underlying manifold and that the variation observed across shapes within the class437

stems from a finite sampling of points. When we know the true underlying manifold, we can generate438

shapes using hierarchical probability distributions (see Supporting Information). The demonstration of439

the α-shape sampler in the main text (and what we detail throughout this section) demonstrates how we440

can generate new shapes when we have data instead of the underlying manifold. Given our applications441

in the main text, we will derive the details of our probabilistic generative framework while assuming that442

we are working with shapes that are d = 2 or 3 dimensions; however, also note that the theory we present443

is generally applicable to larger finite dimensions as well.444

We define α-shapes using Voronoi cells and the Deluanay triangulation. The main motivation behind445

this choice is that it mirrors how we compute α-shapes in practice and we believe that this construction446

provides a more intuitive framing for understanding the parameters in our sampling algorithm. For a447

more rigorous definition, we refer the reader to Edelsbrunner et al. 38 . To begin, we assume that all points448

are in general position. That is, in the d-th dimension84, we assume the following:449

• No d+ 1 points are colinear or coplanar;450

• No d+ 2 points are cocircular or cospherical;451

• No points form a smallest circle or cicumsphere of radius α;452

• No points lie on the smallest circumsphere of d+ 1 other points.453

In practice, this assumption is relatively strict and rarely occurs naturally; however, in the Supporting454

Information, we prove that this assumption holds true in our generative algorithm so long as points are455

sampled uniformly. In real data applications, users can either ignore the points during the estimation of456

reach τ (e.g., as we do with the primate mandibular molars) or perturb the points slightly to correct for457

this assumption (e.g., as we do with the segmented images of the neutrophils).458

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.09.574919doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574919
http://creativecommons.org/licenses/by-nc/4.0/


17

Let S denote a set of P points in R
d in general position. The Voronoi cell of a point p ∈ S is the set459

of points in R
d for which p is the closest. We denote the Voronoi cell as the following460

V(p) =
{
x ∈ R

d | ‖x− p‖ ≤ ‖x− p′‖ , ∀p′ ∈ S − p
}
. (1)461

The Voronoi diagram of S is then the union of all Voronoi cells and takes up the space of Rd. The462

Delaunay complex of S is isomorphic to the nerve of the Voronoi diagram. As long as the points of S are463

in general position, the Delauany complex of S is well-defined and forms the convex hull of the points S464

in R
d. This is often referred to as the Delaunay triangulation of S and is denoted by465

DT (S) =



S∗ ⊂ S |

⋂

p∈S∗

V(p) 6= ∅



 , (2)466

where S∗ is a subset of points in S and ∅ represents the empty set. The example in Fig 1 depicts the467

Delaunay triangulation and the convex hull for a point set. Instead of Voronoi cells which together take468

up the entire space, we can look at subsets of those cells. Let Bα(p) denote a ball of radius α centered at469

point p. Furthermore, let Rp(α) = Bα(p) ∩ V(p) denote the intersection of the Voronoi cell of p and the470

ball of radius α centered at p (e.g., see the gray shapes in Fig 1). The union of Rp(α) for all points p ∈ S471

form a cover of S, the nerve of which forms the α-complex which we will denote as Sα. The boundary of472

Sα defines the α-shape. Formally, the border is defined by α-extreme points, which are the points p∗ ∈ S473

such that there exists a ball of radius α with p∗ on the border where the complement of the disc contains474

all other points in S. In Fig 1a-c, we see that all points are α-extreme; while in Fig 1d, we see that475

α becomes large enough such that one point is not α-extreme and is therefore an interior point of the476

shape. Finally, in Fig 1e, there are three interior points and the rest are boundary or α-extreme points.477

Estimating the reach parameter τ478

Assume that we have a dataset with N shapes or images. We will refer to these samples as “reference479

shapes” from which we will generate new shapes. Let Ki = {Vi, Ei, Fi, Ti} denote the mesh for the i-th480

observation in the reference set comprised of a collection of vertices Vi, edges Ei, faces Fi, and tetrahedra481

Ti (if applicable). Recall that (i) we assume that all vertices for reference shapes in the same phenotypic482

class come from the same underlying manifold, and (ii) most real shape and imaging data do not readily483
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come in the form of α-shapes or α-complexes. In order to generate new shapes, we must derive an484

appropriate point set from the reference shapes (both in terms of location in space and in the total485

number of vertices) and we must find an appropriate value of α. To do so, we use the concept of reach486

(denoted by τ) as presented in Aamari et al. 39 , which can also be related to the inverse of the condition487

number as introduced in Niyogi et al. 85 (see Supporting Information for a formal definition). In practice,488

τ is the minimum distance from the boundary of a shape to its medial axis and can be approximated489

as either the minimum distance between connected components or the minimum radius of any holes (or490

voids) in a shape.491

At a high level, we estimate the reach τi for the i-th reference shape by using the boundary points of its492

simplicial complex p ∈ ∂Ki (i.e., the α-extreme points in an α-shape). We do this because the boundary493

information is all that is relevant to estimating reach. The collection of τ = (τ1, . . . , τN ) values from the494

N reference shapes are then used to estimate an appropriate value of α for the newly generated shapes.495

Other theoretical methods for estimating reach using an underlying manifold have been proposed39,86,87,496

but we use this approximate estimate to optimize computational speed. By connecting α to τ , we ensure497

the preservation of major topological and geometric characteristics for the simplicial complex derived498

from the α parameter over a point set. The reach estimates τ can also be used to sample a point set for499

the new shapes, both in point set size (i.e., how many vertices we need to sample from the underlying500

manifold) and in point density. We substitute the minimum number of points needed to preserve the501

homology of the underlying manifold with an α-dense cover using the main result in Niyogi et al. 85502

(Supporting Information). Once τ is derived from the input reference dataset, the appropriate α can be503

selected and a new point set can be sampled—the combination of which will allow use to generate new504

shapes.505

Algorithmically, the process of estimating the reach τi for the i-th reference shape is done using the506

following procedure.507

• Examining a boundary vertex p ∈ ∂Ki, we first learn its distance to neighboring sets of vertices508

q ∈ Ni(p) by studying the corresponding edges Ei that are present in the mesh. We save the largest509

of these distances using the Euclidean distance, dE = maxq∈Ni(p) ‖p− q‖.510

• Next, we define Cp to be the set of circumcenters of all faces in Fi and tetrahedra Ti containing p.511

These circumcenters are the points at which any three or four points would meet in the Voronoi512

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.09.574919doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574919
http://creativecommons.org/licenses/by-nc/4.0/


19

diagram and, hence, where faces and tetrahedra would form in the resulting α-complex. We also513

save the largest of these distances dC = 2maxc∈Cp
‖p − c‖. Here, we take twice the value of the514

circumcenter distance in an effort to preserve consistency across dimensions. Recall that for dE , we515

consider the entire lengths of edges, not just the midpoints. The circumcenter can be interpreted516

as a rough estimate of a “midpoint” for faces and tetrahedra; as a result, we multiply that value517

by 2 to capture the full “distance” dC .518

• Once we have these two distances corresponding to edges and circumcenters involving point p, we519

take the maximum which we denote as dp = max(dE , dC). Each value dp indicates how large α520

needs to be in order to recover the geometric properties in a localized region of the reference mesh.521

• In practice, we find the next furthest point outside of the minimum dp range because it establishes522

the largest that α can be without us losing any geometric information. To do so, we consider the523

set of vertices in Vi that do not share an edge with p but are more than dp distance away. Formally,524

this set is V ∗
p = {v ∈ Vi | ‖v − p‖ > dp}. The τ value for a given point is computed as525

τp = min
s∈V ∗

p

‖s− p‖. (3)526

In the event that V ∗
p is empty (e.g., when p shares an edge, face, or tetrahedra with all other vertices527

in Vi), we take τp = dp.528

• The reach for the i-th mesh shape is approximated by529

τi ≈
1

|∂Ki|

∑

p∈∂Ki

τp, (4)530

which is the mean τ value for all boundary points in the shape where |∂Ki| denotes the cardinality531

of the set.532

Note that other summary statistics could be used in the final step, such as taking the minimum τp across533

all points, but empirically we find that taking the mean gives robust estimates and keeps outliers from534

artificially deflating the value of τi. For example, in theory, the true reach estimate would take the535

minimum of τp over all boundary points; however, a small outlier τp value would lead to a small τi when536

we take the minimum and that would result in computational bottlenecks when we later generate shapes.537
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Therefore, we choose to trade the precise theoretical implementation for computational scale without538

compromising major shape information. Repeating this procedure for all N meshes in the dataset yields539

a collection of estimated reach parameters τ = (τ1, . . . , τN ) which we will use to generate new point540

clouds and shapes.541

Algorithm for generating new shapes542

When generating new shapes, the first task is to create a corresponding point cloud. This step requires543

developing a method for sampling points from some underlying manifold M. Ideally, one could fit a544

function to each reference shape from a given dataset, average the functions to approximate the true545

manifold, and then sample new points directly from that manifold via rejection sampling to simulate546

uniformity. This strategy is similar to what Diaconis et al. 21 illustrates on the torus; however, this547

same approach is computationally infeasible for modern datasets with tens to hundreds of shapes. One548

could use techniques from manifold learning to generate point clouds, but the available techniques involve549

black-box methods such as dual generators25 and autoencoders27. While these approaches have been550

shown to be useful for assessing predictive models, these do not provide enough interpretability to learn551

much about the underlying functional representation of the manifold. We could recover a function for552

each shape using Gaussian processes, as what is done in Albrecht et al. 13 , but to practically implement553

this strategy, we need to have access to landmarks for each shape. Once we have our point set, we need554

to find an α parameter for the shape to dictate how to reconstruct the shape. Most imaging and shape555

datasets will not be in the form of α-complexes as the points in many applications are not in general556

position. As a result, we need an algorithm that can give us both an accurate point cloud from the557

underlying sub-manifold and the correct parameter for constructing the α-shape.558

Sampling uniformly from balls with radius τ̂ /8 around points in a given reference point cloud allows559

us stay close to what we assume to be the true manifold without directly calculating the manifold itself.560

Additionally, while this procedure is not exactly the same as uniform sampling (i.e., points that are561

closer together will have balls with greater overlap), we conjecture that the overall sampling ends up562

matching the true density of the point set. Adding a rejection-like step to the sampling scheme then563

gives the algorithm robustness to outlying points or atypical features that are present in shapes from the564

reference dataset. We will work with the “approximate manifold” given by the union of balls around565

the corresponding reference point clouds of radius τ̂ /8; call this manifold M̂ ≈ M. In practice, we566
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avoid estimating or calculating the underlying manifold, but we stay true to the given reference data by567

implementing a “rejection sampling-like” algorithm via the following five step procedure:568

1. Choose 2 ≤ J ≤ N number of reference shapes from the input dataset to serve as references and569

combine their corresponding point clouds into a joint set denoted as Q.570

2. Determine the number of candidate points y to sample based on a ball of radius τ̂J/8 centered571

around reference points x ∈ Q. Here, τ̂J is the minimum value in τ corresponding to the subset572

of J selected reference shapes. Note that this τ̂J value will change depending on the subset of573

J reference shapes chosen for the generation of new shapes. The variation of τ̂J across different574

subsets of reference shapes contributes to the variation observed in newly generated shapes.575

3. Given a reference point x ∈ Q in the joint point cloud of the J reference shapes, sample random576

candidate points y from Bτ̂J/8(x)— that is, sample random points y from a small ball of radius577

τ̂J/8 centered at point x.578

4. Calculate the number of additional points in the joint point cloud z ∈ Q that lie within a ball579

centered at each candidate point y which we define as pQ(y) = #{z ∈ Q | z ∈ Bτ̂J/4(y)}. This580

number does not include the original reference point x from the previous step. Next, choose θ ≤581

pQ(y) to be the minimum number of points needed to accept each new candidate point y. This sets582

up the following accept-reject decision rules for the generation of new shapes where:583

• If pQ(y) ≥ Jθ, accept point y.584

• If pQ(y) < Jθ, accept point y with rate 1− exp{−2(pQ(y)− θ)/Jθ}.585

• If pQ(y) < θ, reject point y.586

We detail the logic behind this rejection rule below.587

5. Repeat these steps for all points in the combined point cloud x ∈ Q.588

There are a few key takeaways in the procedure specified above. First, we sample new points uniformly589

from one ball at a time rather than from the union of balls. This means that the new point cloud will590

reflect the density of the combined point cloud Q from the subset of J reference shapes. Second, to591

add some variance to the sampled point cloud and to ensure confidence in the newly sampled points, we592
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implement the following rejection-like rule:593

f(y) =





0 pQ(y) < θ

1− exp{−2(pQ(y)− θ)/Jθ} θ ≤ pQ(y) < Jθ

1 pQ(y) ≥ Jθ

(5)594

where, again, pQ(y) is the number of points in the joint point cloud Q that are within a τ̂J/4 radius of the595

candidate point y; θ is the minimum number of points we require from the reference point cloud Q−x to596

be within a τ̂J/4 radius of the candidate point y in order to accept y (as the reference point x is already597

within that radius by definition); and J is again the number of reference shapes. Note that in Eq (5),598

the choice of J will affect the rate of acceptance and will approach 1 as pQ(y) → Jθ. The three-part599

rule in Eq (5) is designed to accommodate three scenarios when we consider to accept a newly sampled600

point y. If pQ(y) < θ, then there are fewer neighboring reference points than desired and indicates that601

the candidate point y is likely to be far away from the boundary of the point cloud. We have little602

confidence that these points are from the manifold that we wish to approximate M̂ and so, consequently,603

we reject these points. In the scenario where pQ(y) ≥ Jθ, the candidate point y is near more than θ real604

points (on average) from the J reference shapes. In this case, we have high confidence that y is from the605

approximated manifold M̂ and automatically accept it as a newly sampled point.606

In the middle scenario, where θ ≤ pQ(y) < Jθ, we want a rule that allows for some uncertainty in607

y as a function of the number of nearby points pQ(y) from the J reference shapes. Here, we choose608

1 − exp{−2(pQ(y) − θ)/Jθ}, which is the cumulative distribution function (CDF) for an exponential609

random variable with rate Jθ/2 that is shifted to be 0 when pQ(y) = θ (i.e., the threshold for the610

minimum number of points needed to accept each new candidate point y). The exponential distribution611

is typically used to model the amount of time until some specific event occurs—where there are fewer612

large values and more small values. The main motivation behind this choice is to reward candidate points613

y that with higher values of pQ(y). When we have J = 2 reference shapes, the rate of the distribution will614

be θ; as we add more reference shapes to the algorithm, the rate at which we find more neighboring points615

for any candidate point y will increase. In practice, using our proposed rejection-like rule, the acceptance616

rate will be roughly 100% for randomly drawn candidate points that are near the interior of the point617

cloud (particularly in regions where the J reference shapes being used all overlap). Intuitively, the rate of618
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acceptance will decrease for new candidate points that are sampled near the boundaries of the J reference619

shapes. The range of the overall acceptance probability will depend on the intraclass heterogeneity of620

the reference dataset and the quality of alignment of the point clouds during preprocessing.621

Patient blood sample collection and primary neutrophil isolation622

Blood was drawn from healthy donors or septic patients with written informed consent at Rhode Island623

Hospital, in accordance with the guidelines and approval of the Institutional Review Board. Briefly,624

healthy donors had no known acute infection or chronic systemic disease within one month prior to the625

blood draw. We did not collect blood from minors, pregnant women, prisoners, mentally retarded or626

mentally disabled patients or volunteers. Septic patients from the surgical intensive care unit (ICU) and627

the trauma ICU displayed at least two systemic inflammatory response syndrome criteria with a source628

of infection, and enrolled within 48 hours of their diagnosis or admission. Patients also had to be at least629

18 years of age without a massive blood transfusion. Further details on study design are documented630

elsewhere60.631

For both healthy donors and septic patients, 10-30 milliliters (mL) of blood was collected in EDTA-632

containing Vacutainer tubes. Buffy coat was separated by centrfiguation with Histopaque-1077 with633

an additional sedimenation step for neutrophils using 3% Dextran (400-500 kDa). Any contaminating634

erthrocytes were eliminated by hypotonic lysis, and neutrophils were then resuspended in cation-free635

HBSS media.636

Polyacrylamide gel preparation and neutrophil imaging637

Briefly, polyacrylamide gel substrates were polymerized on a 25 millimeters (mm) glass coverslip, using638

3% acrylamide and 0.2% bisacrylamide for a Young’s modulus of E = 1.5 kPa, along with fluorescent639

red 0.5 µm carboxylate-modified polystyrene beads. Gel substrates were then coated with human fi-640

bronectin (Gibco 33016015) using the photoactivatable crosslinker sulfo-SANPAH (Sigma 803332) and641

rinsed extensively. Further experimental details are documented elsewhere in Oakes et al. 73 and Witt642

et al. 60 , respectively. The polyacrylamide gel and coverslip were mounted in a coverslip holder, then643

covered with 1 mL of Leibovitz L-15 media. About 50,000 neutrophils were plated and allowed to adhere644

for 15 minutes. Approximately 20-60 adherent cells were imaged in phase microscopy using a Nikon TI-2645

epifluorescent microscope using a 40X air objective with a 0.6 numerical aperture. An Okolab enclosure646
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around the TI-2 maintained the apparatus at 37◦ and 5% CO2 for the duration of the experiments. Only647

adherent cells were selected for imaging. The N represents the number of individual neutrophils imaged648

and analyzed, with an n > 3 for individual septic or healthy donors.649

Converting segmented neutrophil images to 2D simplicial complexes650

To convert tif files into two-dimensional simplicial complexes, we used a multi-step procedure. For the651

healthy neutrophils, each image was first cropped to include only the middle 50%. Septic neutrophil652

images were already cropped. Next, the centroid of each shape was found using the median row and653

column; cells were centered by placing this centroid at the center of the new matrix. The black-and-654

white cell images were converted into a binary matrix representing black-and-white pixels. This matrix655

was then searched to find all the black pixels, which were used as vertices for the complex. To add656

randomness to the pixel points, all vertices were also perturbed within their pixel areas. Next, edges657

were formed by finding pairs of vertices that were either orthogonally or diagonally adjacent according to658

the matrix. However, in order to avoid overlapping edges, the upper left and downward right diagonals659

of each vertex were removed except when upper right and downward left diagonals could not exist (such660

that the overlap would be impossible). Finally, every three edges that could form a triangle were listed661

as a face to construct a group of adjacent faces, which was plotted to generate a 2D simplicial complex662

for the image.663

Evaluation of generated neutrophils664

Representative cell morphologies were manually traced, converted to binary masks, and then turned665

into simplicial complexes (Fig 2a). The α-shape sampler was used to synthetically generate additional666

cells with parameters J = 2 and θ = 2. These newly generated neutrophils were then converted to bi-667

nary masks. We computed 33 geometric characteristics using the masks of the original and the generated668

shapes, respectively, including: area, perimeter length, number of protrusions, compactness, and others as669

described in Bhaskar et al. 61 . The vectors of these characteristics were projected onto a two-dimensional670

latent space using a manifold regularized autoencoder (MRAE)62 where the loss function is the com-671

bination of a mean square error loss on the autoencoder itself and the “Potential of Heat-diffusion for672

Affinity-based Transition Embedding” (PHATE) coordinates in latent space. This combined loss function673
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is formally defined as the following674

L(·) =
N∑

i=1

‖xi − x̂i‖
2 +

N∑

i=1

N∑

i′=1

| ‖zi − zi′‖ − ‖φ(xi)− φ(xi′)‖ |, (6)675

where L(·) denotes the loss function associated with the autoencoder; N is the number of shapes in the676

dataset; xi is the input data for the i-th shape; ‖ · ‖ is the L2-norm; x̂i is the reconstructed version677

of the i-th shape as determined by the decoder portion of the MRAE; zi is the two-dimensional latent678

embedding for the the data associated with the i-th shape; and φ(·) is the PHATE function mapping the679

shape data to R
2. The idea behind the loss function is to train an autoencoder to not only minimize the680

difference between the input and reconstructed data, but also force the latent space to behave as similarly681

as possible to the PHATE function φ. Since PHATE is a dimensionality reduction method designed to682

honor the original local and global structure of high-dimensional data64, adding the extra loss component683

based on the PHATE coordinates in the latent space forces the autoencoder to also honor the original684

structure of the data as well.685

In addition to the MRAE, we also assess the new shapes generated by the α-shape sampler using686

other dimensionality reduction approaches including: the uniform manifold approximation projection687

(UMAP)63, PHATE, principal component analysis (PCA), and a generic autoencoder. Each of these688

analyses were used to demonstrate that our conclusions about the shapes produced by the α-shape sampler689

are robust regardless of the unsupervised dimension reduction method that we choose. Briefly, UMAP690

was implemented with 5 nearest neighbors, 2 connected components, Euclidean distance, and a minimum691

distance set to 0.1. PHATE was implemented with 5 nearest neighbors, 2 connected components, a Von692

Neumann Entropy diffusion operator, log potential, Euclidean distance, and we used stochastic gradient693

descent for the multi-dimensional scaling method. Both the autoencoder and the MRAE were trained694

with 500 epochs.695

Evaluation of generated primate manibular molars696

To generate synthetic primate manibular molars, we used parameters J = 2 and θ = 0 in the α-shape697

sampler software, which meant an automatic 100% acceptance rate of sampled points. Since the reference698

teeth data were given as two-dimensional surface meshes in three-dimensional space, they had volumes699

equal to 0. In this case, setting θ > 0 would send the acceptance probability of new candidate points to700
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nearly 0 (i.e., we would reject nearly 100% of new candidate points). Our evaluation for the generated701

shapes with this dataset were similar to the landmarking and subsequent dimensionality reduction analy-702

ses used in Turner et al. 12 . First, the reference teeth were aligned using the sofware pacakge auto3dgm88.703

We then generated 10 new synthetic teeth each from the Microcebus and the Tarisus genera, respectively.704

We used Procrustes analysis71,72 to assign 400 landmarks to each newly generated tooth so that these705

could also be aligned and scaled. The (400×3)-dimensional matrices of landmark points for both the706

newly generated and real reference teeth were reshaped to scalar vectors of length 1200. These were707

then projected onto a two-dimensional space using the same manifold regularized autoencoder (MRAE)708

and other dimensionality reduction techniques (UMAP, PHATE, PCA, and an autoencoder) as was done709

the neutrophils. UMAP was implemented with 5 nearest neighbors, 2 connected components, Euclidean710

distance, and a minimum distance set to 0.1. PHATE was implemented with 5 nearest neighbors, 2711

connected components, a Von Neumann Entropy diffusion operator, log potential, Euclidean distance,712

and we used stochastic gradient descent for the multi-dimensional scaling method. Both the autoencoder713

and the MRAE were trained with 500 epochs. For quantitative results, we calculate Euclidean distances714

between the length 1200 scalar vectors representing each tooth and gather the pairwise distances to715

reaffirm that the generated teeth are appropriately spaced from the original reference datasets.716
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• Funding Acquisition: Emily T. Winn-Nuñez, Hadley Witt, Dhananjay Bhaskar, Jonathan S.734

Reichner, Ian Y. Wong, Lorin Crawford735

• Investigation: Emily T. Winn-Nuñez, Lorin Crawford736
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Figures and Tables748

(a) α = 0.05 (b) α = 0.10 (e) α = 0.35(d) α = 0.25(c) α = 0.15

Figure 1. An example of various α-shapes for the same set of points under different choices
for the numerical parameter α. Here, we consider different parameter values (a) α = 0.05, (b),
α = 0.10, (c) α = 0.15, (d) α = 0.2, and (e) α = 0.35. In each panel, the gray shapes are the
intersection of balls of radius α and the Voronoi cells at each point. The pink triangles are then faces
representing the collective interior, and the blue lines are edges of the α-complex. The bold blue edges are
known as the “boundary edges” and denote the α-shape for each panel. In (a) and (b), where α is smaller,
we have disconnected components. In (c), we see an instance where edges may form the boundary of a
face, but the face is not quite yet filled in since the three Voronoi cells have not collectively met. In (d),
the faces are filled in and one of the points becomes an interior point while the rest remain α-extreme
points. In (e), α is large enough such that the given α-complex is the Deluanay triangulation and convex
hull of the point set. When determining how to generate a new shape from an existing dataset, we use
information within the given simplicial complex to determine how many points are needed, where the
points should be sampled, and the appropriate α parameter to connect the points. For a more detailed
overview and theoretical discussion of concepts surrounding α-shapes, see Materials and Methods and
Supporting Information.
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Figure 2. Schematic overview of the α-shape sampler: a probabilistic framework for sim-
ulating realistic 2D and 3D images and shapes. (a) A general illustration of the pre- and post-
processing workflow in the α-shape sampler software. In step (i), the user inputs data of real shapes in
some format—in this case, binary masks for illustration. We refer to these data as “reference” shapes.
In step (ii), the reference masks are converted to triangular meshes which are treated as simplicial com-
plexes. In step (iii), the reference meshes are input into the shape generation pipeline which, in step
(iv), outputs newly generated shapes in the form of α-complexes. Finally, in step (v), these generated
α-complexes are converted back to match the same format as the original input data (again, here, binary
masks). (b) Details underlying the algorithm for generating new shapes via the α-shape sampler. (i) A
collection meshes from N reference shapes are given to the software. For simplicity, we assume that these
shapes are from the same phenotypic class and, thus, their points are from the same manifold. (ii) Next,
we estimate the reach τi for each reference shape by computing the distance to edge neighbors for each
point (i.e., vertex in the mesh) and the circumcenters to neighboring faces (note that we also evaluate
tetrahedra for 3D objects). The next closest vertex is the value τp for point p, and the smallest τp among
all points is the value of τi for the i-th reference shape. We then take the minimum τ = (τ1, . . . , τN )
to be the representative estimate of the reach τ̂ for all reference shapes. (iii) We create a partial point
cloud by combining points from J reference shapes in our input dataset, where 2 ≤ J ≤ N . Next, we
sample new points from a ball of radius τ̂ /8 around vertices in the partial point cloud. Each new point
is accepted or rejected according to a probability-based rule. (iv) Once we have the newly sampled point
cloud, we set α = τ̂ − ε, where ε > 0 is arbitrarily small, and generate the α-complexes for new shapes.
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Real Annuli Generated Annuli(a) (d) Generated Torus(c) Real Torus(b)

Figure 3. Qualitative comparisons of real and generated 2D annuli and 3D tori using the
α-shape sampler. Panels (a) and (b) show real (gray) and generated (orange) annuli. Similarly, in
panels (c) and (d), we show real (gray) and generated (orange) tori. Overall, we see that the α-shape
sampler generates slightly thicker shapes than the examples in the original dataset (see Tables S1 and S2
for a quantitative evaluation). Nonetheless, the generated shapes preserve the most important topological
property in that they all have exactly one connected component and exactly one hole.
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Real

Generated
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Figure 4. Application of the α-shape sampler to generate synthetic 2D images of healthy
and septic neutrophils. (a) Examples of real healthy (blue), generated healthy (light blue), real
septic (black), and generated septic (gray) neutrophils in gels with stiffness 1.5 kilopascals (kPa). Each
synthetic neutrophil in the second row was generated using the two shapes it sits in between in the row
above. Variation in the newly generate cells can be most seen along the boundary, which is a function
of the sampling process in the α-shape pipeline. When comparing the generated and real cells, perhaps
most noticeable are (i) the differences in area and (ii) the number of protrusions in the healthy versus
septic cells. (b) We use a manifold regularized autoencoder (MRAE) to show that the generated shapes
cluster and intermix with real cells in their respective categories. This provides evidence that the images
being generated by the α-shape sampler are realistic. (c) We compute the area, perimeter, circularity,
solidity, convexity, and compactness of each real and generated cell. Next, we compare the distribution
of these measurements for the healthy and septic groups, respectively. Here, if the α-shape is able to
preserve geometric and morphological characteristics while generating new data, then we would expect
the distributions of these measurements to line up within a group. Note that due to the high heterogeneity
and difficulty aligning shapes, the generated septic neutrophils are slightly larger in area and perimeter
than the real ones. However, the generated neutrophils with the α-shape sampler still capture other key
shape characteristics.
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(a) Real Microcebus Teeth (b) Generated Microcebus Teeth (c) Real Tarsius Teeth (d) Generated Tarsius Teeth

Saimiri

Platyrrh
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Stre
psir

rhini

Haplorhini

Tarsius

Mirza

Microcebus

(e) (f)

Figure 5. Application of the α-shape sampler to generate synthetic 3D primate mandibular
molars. Here, we qualitatively compare meshes of (a) real Microcebus, (b) generated Microcebus, (c) real
Tarsius, and (d) generated Tarsius teeth. Morphologically, we know that tarsier teeth have an additional
high cusp (highlighted in red) which allows this genus of primate to eat a wider range of foods70. Here,
we see that the generated Tarsius teeth from the α-shape sampler preserve the unique paraconids. In
panel (e), we show the phylogenetic relationship between the Microcebus and Tarsius genus. It has
been estimated that the divergence dates of the Microcebus and Mirza from Tarsius happened around
five million years before the branching of Tarsius from Saimiri 67. (f) We use a manifold regularized
autoencoder (MRAE) to show that the generated teeth cluster and intermix with the real Microcebus and
Tarsius teeth, respectively. Figure S4 shows that the same results hold regardless of the dimensionality
reduction technique that is used.
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