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Abstract

Background: Edwardsiella ictaluri is a Gram-negative facultative intracellular anaerobe and the etiologic agent of

enteric septicemia of channel catfish (ESC). To the catfish industry, ESC is a devastating disease due to production

losses and treatment costs. Identification of virulence mechanisms of E. ictaluri is critical to developing novel therapeutic

approaches for the disease. Here, we report construction of a transposon insertion library and identification of mutated

genes in growth-delayed E. ictaluri colonies. We also provide safety and efficacy of transposon insertion mutants in catfish.

Results: An E. ictaluri transposon insertion library with 45,000 transposants and saturating 30.92% of the TA locations

present in the E. ictaluri genome was constructed. Transposon end mapping of 250 growth-delayed E. ictaluri colonies

and bioinformatic analysis of sequences revealed 56 unique E. ictaluri genes interrupted by the MAR2xT7 transposon,

which are involved in metabolic and cellular processes and mostly localized in the cytoplasm or cytoplasmic membrane.

Of the 56 genes, 30 were associated with bacterial virulence. Safety and vaccine efficacy testing of 19 mutants showed

that mutants containing transposon insertions in hypothetical protein (Eis::004), and Fe-S cluster assembly protein (IscX,

Eis::039), sulfurtransferase (TusA, Eis::158), and universal stress protein A (UspA, Eis::194) were safe and provided significant

protection (p < 0.05) against wild-type E. ictaluri.

Conclusions: The results indicate that random transposon mutagenesis causing growth-delayed phenotype results in

identification bacterial virulence genes, and attenuated strains with transposon interrupted virulence genes could be used

as vaccine to activate fish immune system.
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Background

Enteric septicemia of catfish (ESC) is a devastating disease

that causes significant production loss and treatment cost

for the catfish aquaculture industry [1]. A few antimicro-

bials and a commercial live attenuated vaccine are available

for treatment of ESC. However, treatment of sick catfish by

medicated feed is not effective due to early onset of

anorexia. The extensive use of antimicrobials can induce

the appearance of resistant strains [2, 3]. The commercial

ESC vaccine Aquavac-ESC has been available for the catfish

industry for more than 15 years [4], but ESC is still one of

the major diseases in the US catfish industry.

Edwardsiella ictaluri is well-adapted to channel catfish

[5, 6] and some of the E. ictaluri virulence factors in-

clude lipopolysaccharide (LPS), flagella, outer membrane

proteins (OMPs), and extracellular proteins [7–10].

There have been several reports on development of

attenuated E. ictaluri strains by deleting genes involved

in iron acquisition, tricarboxylic acid cycle, one-carbon

metabolism, and amino acid biosynthesis [11–17]. How-

ever, virulence mechanisms of E. ictaluri are not under-

stood well, and there is a need for identification of novel

virulence-related genes to develop effective live attenu-

ated vaccines.

Random transposon insertion is a high-throughput

genetic manipulation tool that allows random mutation

of genes at the genome level. Mariner family transposon

Himar1 inserts itself randomly into “TA” nucleotide

sequences [18, 19]. Mariner family transposons have
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been widely used to generate random mutagenesis in

fish pathogen Mycobacterium marinum, and also human

pathogens such as Pseudomonas aeruginosa, Campylo-

bacter jejuni, Leptospira interrogans, and Rickettsia pro-

wazekii [20–24].

In this research, MAR2xT7 transposon, a Himar1

derivative [20], was used to identify genes required for E.

ictaluri growth on a solid complex medium. We expect

that colonies exhibiting attenuated growth on solid media

will have transposon insertions in important bacterial

genes, and these mutants may also show attenuated viru-

lence in the catfish host and potentiate catfish immune re-

sponses [14]. Therefore, attenuation and vaccine efficacy of

19 transposon mutants were evaluated in channel catfish.

Results

Transposon insertion library

By using MAR2xT7 transposon, an E. ictaluri transposon

insertion library containing 45,000 transposants was

constructed. Colonies with transposon insertion and

delayed growth were observed on the BHI agar media

after 48 h (Fig. 1). The initial overnight growth of these

small colonies in BHI broth was also very slow com-

pared to wild type, but this difference disappeared in

later broth cultures (data not shown).

The complete genome size of E. ictaluri strain 93–

146 is 3,812,301 bp, which contains 3597 total genes.

The number of TA locations in the entire E. ictaluri

genome is 145,515. Thus, 45,000 transposants would sat-

urate 30.92% of the potential MAR2xT7 transposon in-

sertion sites available. The number of TA locations in

the E. ictaluri open reading frames is 110,373, which

represent 75.85% of all available MAR2xT7 transposon

insertion sites. Thus, random insertion events would sat-

urate 23,45% of the potential MAR2xT7 transposon in-

sertion sites in the E. ictaluri open reading frames.

Gene identification

Transposon end amplification by single primer PCR

yielded 151 samples with PCR products, of which 94

were sequenced successfully. After analysis, 56 unique

genes containing transposon insertions were identified

(Table 1). These unique genes contained a total number

of 2235 MAR2xT7 transposon insertion sites, and the

exact number of MAR2xT7 transposon insertion site in

each gene was indicated in Table 1.

Functional annotation

Protein sequences of all 56 genes were annotated func-

tionally and assigned to biological process (localization,

cellular process, metabolic process, response to stimulus,

biological regulation, signaling, multi-organism process,

single-organism process, and biogenesis), cellular com-

ponent (cell, macromolecular complex, and extracellular

region), and molecular function (binding, transporter

activity, catalytic activity, and nucleic acid binding tran-

scription factor) (Fig. 2).

Subcellular localization

The locations of 15 proteins were unknown. Of the 41

proteins with known subcellular location, most were

localized to the cytoplasm (20 proteins) and cytoplasmic

membrane (16 proteins). Extracellular space, outer mem-

brane, and periplasm contained very few proteins (3, 1, 1

proteins, respectively).

Proteins involved in host-pathogen interactions

Out of 56 identified unique proteins, 30 proteins had

significant homology to Host-Pathogen Interaction Data-

base (HPIDB) (Table 2). The proteins mostly matched to

the Enterobacteriaceae (Yersinia pestis, Escherichia coli

K12, Shigella flexneri), Francisellaceae (Francisella tularen-

sis SCHU S4), and Bacillaceae families (Bacillus anthracis).

Proteins involved in bacterial virulence

Out of 56 unique proteins, 30 matched significantly to

known virulence-associated proteins from other Gram-

negative and Gram-positive pathogenic bacteria in

MVirDB (Table 3).

Safety and vaccine efficacy of mutants in catfish

Safety testing of transposon-derived mutants showed that

all mutant strains were attenuated significantly compared

to wild-type control (p < 0.05). Eis::004, Eis::039, Eis::041,

Eis::176, and Eis::194 caused less than 5% mortality, while

Fig. 1 BHI agar plate showing transposon insertion colonies with

delayed growth (red arrows) and normal size (white arrows) colonies

after 48 h of incubation at 30 °C
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Table 1 Unique E. ictaluri genes with transposon insertion

Mutant Locus Product E-valuea Frequencyb TA Frequency

Eis001 NT01EI_1281 NAD-dependent malic enzyme (NAD-ME) 2.00E-72 64

Eis002 NT01EI_1721 PTS system, mannose/fructose/sorbose family, IIB component 2.00E-106 32

Eis004 NT01EI_0182 Hypothetical protein 7.00E-57 26

Eis006 NT01EI_0085 ATP-dependent DNA helicase Rep 2.00E-114 46

Eis009 NT01EI_1236 Coproporphyrinogen III oxidase, aerobic 6.00E-32 24

Eis011 NT01EI_3690 ABC transporter, periplasmic amino acid binding protein 1.00E-74 50

Eis013 NT01EI_2795 Translocator protein, LysE family 2.00E-115 36

Eis018 NT01EI_0377 Aspartate ammonia-lyase 7.00E-145 59

Eis024 NT01EI_3505 Dihydrouridine synthase Dus 1.00E-129 59

Eis027 NT01EI_0408 tRNA delta(2)-isopentenylpyrophosphate transferase 5.00E-94 22

Eis028 NT01EI_0277 Transposase, IS4 family protein 1.00E-73 4 17

Eis029 NT01EI_2683 Membrane protein 2.00E-88 27

Eis033 pEI2_p2 Putative Rep protein 2.00E-123 5 31

Eis035 pEI1_p4 Putative RNA one modulator protein 9.00E-19 12

Eis037 NT01EI_2355 eseJ 3.00E-129 2 88

Eis038 NT01EI_1334 eseM 5.00E-67 2 91

Eis039 NT01EI_3177 FeS assembly protein IscX 3.00E-38 7

Eis041 NT01EI_0943 eseC 8.00E-116 53

Eis048 NT01EI_3148 Hypothetical protein 4.00E-80 20

Eis055 NT01EI_2314 Prophage lambda integrase 8.00E-128 56

Eis059 NT01EI_1941 Hypothetical protein 3.00E-70 8

Eis065 NT01EI_2281 Excinuclease ABC subunit C 3.00E-48 64

Eis068 NT01EI_0448 Polyprenyl synthetase 1.00E-115 37

Eis080 NT01EI_0981 Hypothetical protein 8.00E-129 9 58

Eis086 NT01EI_1237 N-acetylmuramoyl-L-alanine amidase AmiA 3.00E-67 25

Eis107 NT01EI_0475 DEAD box containing helicase 1.00E-112 51

Eis110 NT01EI_1332 eseL 4.00E-26 2 73

Eis131 NT01EI_2157 Hypothetical protein 4.00E-66 37

Eis152 NT01EI_0224 Transporter, major facilitator family 1.00E-16 4 47

Eis154 NT01EI_3522 Selenate reductase, FAD-binding subunit 2.00E-73 23

Eis155 NT01EI_0725 Transcriptional regulator FruR 3.00E-134 43

Eis156 NT01EI_2381 Ribonuclease, RNaseE/RNaseG family 2.00E-04 72

Eis157 NT01EI_0144 Twin-arginine translocation protein subunit TatB 8.00E-07 13

Eis158 NT01EI_0022 Sulfurtransferase, TusA 8.00E-46 10

Eis171 NT01EI_3723 Magnesium-translocating P-type ATPase 0 71

Eis172 NT01EI_3786 Hypothetical protein 1.00E-26 24

Eis173 NT01EI_3265 Acyltransferase/AMP-dependent synthetase and ligase family 0 2 54

Eis174 NT01EI_3721 Hypothetical protein 3.00E-25 7

Eis175 NT01EI_3774 IS1 transposase 7.00E-93 19

Eis176 NT01EI_0962 esaT 5.00E-129 27

Eis180 NT01EI_3103 UPF0126 domain protein 7.00E-12 16

Eis183 NT01EI_3105 Chloride transporter, chloride channel (ClC) family 6.00E-166 53

Eis184 NT01EI_0419 RNA methyltransferase, TrmH family, group 3 9.00E-27 21

Eis185 NT01EI_3386 TRAP transporter, DctM subunit 7.00E-85 47
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mutants, Eis::110, Eis::158, and Eis::195 caused less than

10% mortality (Fig. 3a). We noticed that mutants with

gene products assigned to cytoplasm caused lower mortal-

ities compared to those found in outer membrane or

extracellular regions. Interestingly, proteins with unknown

location (Eis::194 and Eis::039), did not show any mortal-

ities in channel catfish. Mutants Eis::002, Eis::011, Eis::029,

Eis::037, Eis::038, Eis::065, Eis::080, Eis::086, Eis::157,

Eis::173, and Eis::232 were attenuated but caused over

20% mortality.

Edwardsiella ictaluri wild-type challenge of catfish 21

days post vaccination indicated that all mutants except

Eis::041 and Eis::176 protected catfish significantly com-

pared to sham vaccinated group (p < 0.05). Eis::004 and

Eis::194 were the safest and most protective mutants,

while Eis::157 protective but not safe (Fig. 3b). Although

Eis::039, Eis::041, and Eis::176 were safe, they did not

provide good immunization in catfish against E. ictaluri

WT (Fig. 3).

Discussion

The bioinformatics analyses of 56 unique genes with

transposon insertions showed that more than half (54%)

were potential virulence factors in other pathogenic bac-

teria. Among the virulence factors, Type III secretion

system (T3SS), twin-arginine translocation pathway

(Tat), and ATP-binding cassette transporter (ABC) seem

to be important for E. ictaluri virulence and invasion of

the channel catfish [25–27].

The functional gene ontology analysis with Blast2GO

indicated that most of the proteins participate in cellular

and metabolic networks in the biological process while

their molecular functions frequently matched to binding

and catalytic activity. The proteins located in extracellu-

lar regions are part of the signaling process or response

to any stimulus sensing bacteria in the biological

process. Although several proteins showed transporter

activity, these proteins account for localization and are

in the cytoplasm.

The subcellular locations predicted by PSORTb re-

vealed that most of the identified proteins are found in

the cytoplasm and cytoplasmic membrane. Although

many well-known virulence proteins are located in the

outer membrane or periplasm in Gram-negative bac-

teria, only three proteins of T3SS are located in extracel-

lular space and outer membrane, and one of the ABC

transporter proteins was found in the periplasmic space.

The host-pathogen interaction examined by HPIDB

proved that many proteins have a high similarity to other

virulence-associated proteins in different pathogenic bac-

teria including Y. pestis, S. flexneri, and B. anthracis. The

pathogenic Gram-negative bacteria Y. pestis and S. flexneri

share the same evolutionary lineage with Edwardsiella sp.

in Enterobacteriaceae [28]. Thus, most of the

virulence-associated proteins may have a similar role in E.

ictaluri. Two T3SS effector proteins EseJ and EseM have a

predicted interaction with the channel catfish

ubiquitin-conjugating enzyme E2 (XP_017323313). These

two T3SS-related effector proteins known as E3 ubiquitin

ligase play an important role in manipulation of host ubi-

quitination pathways.

The interrupted genes eseJ (Eis::037), eseM (Eis::038),

esaC (Eis::041), eseL (Eis::110), and esaT (Eis::176) are

part of T3SS, which are involved in export of proteins inside

the host immune cells [29]. EsaC and EsaT are the structural

membrane associated proteins of T3SS. Eis::41, YscC

ring-shaped structure protein in the outer membrane, is re-

quired for a stable oligomeric complex to shape a T3SS in

the outer membrane [30]. YscT inner membrane-embedded

component is located in the cytoplasm, which has extended

Table 1 Unique E. ictaluri genes with transposon insertion (Continued)

Mutant Locus Product E-valuea Frequencyb TA Frequency

Eis192 NT01EI_3147 Hypothetical protein 0 2 103

Eis194 NT01EI_1981 Universal stress protein A uspA 9.00E-86 3 20

Eis195 NT01EI_0376 Anaerobic C4-dicarboxylate transporter DcuA 2.00E-159 11 47

Eis207 NT01EI_1817 Spermidine/putrescine transport system permease protein PotB 4.00E-132 22

Eis210 NT01EI_0800 Prolipoprotein diacylglyceryl transferase 5.00E-79 36

Eis220 NT01EI_2076 Hypothetical protein 6.00E-20 5

Eis222 NT01EI_0768 Hypoxanthine phosphoribosyltransferase 5.00E-127 24

Eis223 NT01EI_1086 Extracellular solute-binding protein, family 5 2.00E-142 48

Eis230 NT01EI_3769 Phosphoglycerate transporter family protein 0 49

Eis232 NT01EI_2010 Hypothetical protein 2.00E-136 3 58

Eis233 NT01EI_2530 Putative permease, membrane region 4.00E-81 65

Eis235 NT01EI_3289 Diaminopimelate decarboxylase 9.00E-36 38

aBlastx E-value
bpMAR2xT7 insertion frequency
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and helical regions that may form membrane-bound sub-

units. Insertions in the T3SS related genes, eseJ, eseM, and

eseL, have been recently identified to be T3SS dependent

effector proteins [31]. EseJ, EseL, and EseM proteins share

high similarities with Salmonella T3SS effector proteins

Ssph2 and SlrP. They are involved in ubiquitination of pro-

teins, an important process regulating inflammatory re-

sponse in eukaryotes. As a part of novel E3 ligases (NELs)

protein family, EseJ, E3 ubiquitin-protein ligase (SspH2),

and EseL, a new class of E3 ubiquitin ligase, have a role in

T3SS that provides a strategy to exploit host cell ubiquitin

pathway [32]. EseM, T3SS leucine rich repeat protein (SlrP),

is also required to form a complex ubiquitin ligase enzyme

[33]. T3SS effector protein mutants eseJ, eseM, and eseL,

and T3SS structural mutants esaC and esaT showed signifi-

cantly decreased virulence. However, in comparison of pro-

tection level of those two main groups, T3SS structural

proteins EsaC and EsaT have been caused less protection in

catfish. Mutation in T3SS effector proteins provides better

protection against pathogenic bacteria [34–36]. EseL has

provided significant protection among other T3SS related

effector proteins. T3SS effector proteins could contribute

the bacterial survival inside host immune cells [37, 38].

Transport processes in bacterial cells through outer

membrane and periplasmic space are linked to E. ictaluri

metabolism to survive in the host environment as well as

switching between various biochemical processes during

different stages of ESC. Eis::157, tatB, is located in the peri-

plasmic space and is involved in the translocation of pro-

teins including the components of respiratory complexes

using a proton gradient as an energy source [39]. tatB

mutant exhibited slow growth under low-iron conditions

and observed a 10-fold decrease in Legionella pneumophila

growth [40]. Eis::086, amiA, is a Tat pathway dependent

substrate encoding a cell wall amidase. Tat pathway mutant

causes mislocalization of AmiA protein, preventing trans-

location in the periplasm [41, 42]. Eis::011, ABC transporter

periplasmic amino acid binding protein, is an important

antigenic factor involved in adhesion and aspartate/glu-

tamate transport in the microaerobic environment in

Campylobacter jejuni [43]. Eis::207, potB, encodes a

protein associated with spermidine/putrescine transport

system. Polyamines are mostly involved in stabilization

of DNA for stress resistance, intracellular signaling pro-

cesses, and swarming motility [44, 45]. Polyamines are

also associated with the virulence in the intracellular

pathogen Salmonella enterica [46]. Eis::002, PTS system

IIB component, is a cytoplasmic component of the major

carbohydrate transport system highly conserved through

bacteria [47]. PTS system participates in a variety of viru-

lence mechanisms including biofilm formation, modulating

the virulence gene expression, and regulating carbohydrate

metabolism in pathogenic bacteria [48–50]. Eis::171,

magnesium-translocating P-type ATPase, is an indu-

cible magnesium transport system when bacteria grow

at the low concentration of magnesium. Although Mg2+

is not essential for virulence, it participates in many cel-

lular activities as a cofactor [51]. Magnesium is the part of

the regulatory network that regulates the virulence-associ-

ated mechanisms in S. enterica [52]. Eis::195, dcuA, is

encoded with aspartase in the same operon that is deter-

mined as an antiporter mechanism involved in the transport

of aspartate under the anaerobic conditions [53]. DcuA

function in the metabolic pathway under anaerobic

Fig. 2 Gene ontology (GO) analysis of E. ictaluri transposon inserted

genes. GO terms at level 2 according to biological process (a), GO

terms at level 2 according to cellular component (b), GO terms at

level 2 according to molecular function (c)
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conditions contributes the pathogenicity for the colonization

in the lower oxygen level [54].

Pathogenic bacteria adapted different carbohydrate

metabolism, which is activated by oxygen presence in

the host environment. Eis::018, aspartate ammonia-lyase,

is involved in the production of fumarate activated spe-

cifically under anaerobic conditions while there is no

available electron acceptor. Bacteria encodes aspartate

ammonia-lyase to utilize alternative carbon sources in

the host environment if there are no available carbon

sources [55, 56].

Bacterial stress related proteins induce the protective

mechanisms under a variety of stress conditions to protect

the bacterial cell inside or outside of the host [57]. Univer-

sal stress protein A (UspA) in Eis::194, is one of the stress

proteins found in intracellular pathogenic bacteria. uspA

expression reaches a high level when bacteria are exposed

to heat, starvation, antimicrobial, and oxidative agents [58,

59]. UspA is a conserved protein that presents in Eubac-

teria, Archaea, plants, and fungi and the expression of

UspA is triggered by exposure to oxidative agents in

growth arrested cells [60–62]. UspA plays a significant

role in the pathogenicity of bacteria, and uspA mutants

are less virulent and sensitive to changes in the host envir-

onment. Mutation of S. typhimurium C5 uspA resulted in

less virulence and more susceptibility to nutrient starva-

tion oxidative agents [59]. In Listeria monocytogenes, uspA

mutants were shown to have impaired activity in oxidative

agent’s exposure to low pH conditions [58]. Deletion of

uspA gene in Acinetobacter baumannii revealed that it has

a significant role in protecting the bacteria from H2O2 and

low pH [63].

Table 2 Genes involved in host-pathogen interactions

Mutant Accession Nu. Protein Organism E-value

Eis152 YP_019321.1 Oxalate:formate antiporter, putative Bacillus anthracis 2.00E-20

Eis155 YP_017710.1 Sugar-binding transcriptional regulator, LacI family Bacillus anthracis 2.00E-21

Eis207 YP_002347936.1 Inner membrane permease T of sulfate/thiosulfate ABC transporter Yersinia pestis 1.00E-12

Eis011 YP_017492.1 Amino acid ABC transporter, amino acid-binding protein Bacillus anthracis 1.00E-15

Eis013 NP_670988.1 Putative threonine efflux protein Yersinia pestis 5.00E-11

Eis171 YP_002345523.1 Putative cation transport protein Yersinia pestis 4.00E-88

Eis223 YP_002345598.1 HTH-type transcriptional regulator SgrR Yersinia pestis 2.00E-46

Eis176 NP_857736.1 Yop proteins translocation protein T Yersinia pestis 9.00E-31

Eis107 YP_022388.1 ATP-dependent RNA helicase, DEAD/DEAH box family Bacillus anthracis 1.00E-84

Eis024 NP_842644.2 tRNA-dihydrouridine synthase Bacillus anthracis 6.00E-62

Eis110 NP_858359.2 E3 ubiquitin-protein ligase ipaH9.8 Shigella flexneri 6.00E-90

Eis086 NP_667964.1 N-acetylmuramoyl-l-alanine amidase II Yersinia pestis 1.00E-39

Eis184 YP_016695.1 RNA methyltransferase, TrmH family, group 3 Bacillus anthracis 6.00E-43

Eis180 YP_002345138.1 Putative membrane protein Yersinia pestis 4.00E-20

Eis006 YP_170066.1 ATP-dependent DNA helicase Francisella tularensis 1.00E-171

Eis009 YP_170044.1 Coproporphyrinogen-III oxidase, aerobic Francisella tularensis 9.00E-52

Eis027 YP_169650.1 tRNA dimethylallyltransferase Francisella tularensis 8.00E-76

Eis041 YP_002345337.1 Possible type III secretion protein Yersinia pestis 4.00E-154

Eis173 NP_994169.1 Bifunctional protein aas Yersinia pestis 0

Eis235 YP_002345851.1 Diaminopimelate decarboxylase Yersinia pestis 7.00E-177

Eis156 NP_669066.1 RNase E Yersinia pestis 0

Eis183 NP_668136.1 H(+)/Cl(−) exchange transporter ClcA Yersinia pestis 0

Eis065 NP_669748.1 UvrABC system protein C Yersinia pestis 0

Eis002 YP_002346757.1 PTS enzyme IIAB, mannose-specific Yersinia pestis 3.00E-149

Eis222 YP_646612.1 Hypoxanthine phosphoribosyltransferase Yersinia pestis 6.00E-84

Eis068 YP_491372.1 Octaprenyl-diphosphate synthase Escherichia coli 2.00E-157

Eis001 YP_002346527.1 NAD-dependent malic enzyme Yersinia pestis 0

Eis230 YP_001608410.1 Putative regulatory protein Yersinia pestis 0

Eis018 NP_667943.1 Aspartate ammonia-lyase (Aspartase) Yersinia pestis 0

Eis233 YP_002346351.1 Putative transport protein YPO1326/y2857/YP_1266 Yersinia pestis 0
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IscX in Eis::S039, acts as a regulator for the Fe-S

(iron-sulfur) cluster, which encodes proteins essential for

cell activities [64]. FeS assembly protein IscX (YfhJ) is a

part of the iron-sulfur cluster (ISC) mediated FeS cluster,

which is a small acidic protein that binds IscC and Fe,

and acts as a Fe donor in FeS cluster [65, 66]. ISC medi-

ated FeS biogenesis is involved in survival of bacteria

that face with iron starvation and oxidative stress. In S.

flexneri, ISC mutants were less invasive and cannot form

plaques on Henle cells monolayers [67]. ISC transcrip-

tional regulator iscR mutant in Pseudomonas aeruginosa

caused more susceptibility to oxidative agents and a sig-

nificant decrease in virulence [68]. The importance of

ISC system in bacterial virulence has been emphasized

in different studies. However, limited information is

known about the role of IscX in bacterial virulence.

Hypothetical protein in Eis::004 is located in the cyto-

plasm. There is no available information about the func-

tion of this hypothetical protein in any virulence related

mechanisms. However, decreased virulence and signifi-

cant protection against ESC revealed that Eis::004 mu-

tant could be considered as a vaccine candidate for live

attenuated vaccine development.

Conclusions

In summary, these results showed that random trans-

poson mutagenesis in the E. ictaluri genome resulted in

colonies with delayed growth on complex solid media,

and many of the disrupted genes have important functions

Table 3 Genes involved in bacterial virulence

Mutant Locus Number of hits Lowest E-value Protein Location

Eis041 NT01EI_0943 250 0 esaC Outer Membrane

Eis110 NT01EI_1332 91 0 eseL Extracellular

Eis171 NT01EI_3723 22 0 Magnesium-translocating P-type ATPase Cytoplasmic Membrane

Eis192 NT01EI_3147 10 0 Hypothetical protein Unknown

Eis037 NT01EI_2355 192 9.13E-144 eseJ Extracellular

Eis038 NT01EI_1334 267 3.95E-121 eseM Extracellular

Eis001 NT01EI_1281 6 1.97E-95 NAD-dependent malic enzyme (NAD-ME) Cytoplasmic

Eis195 NT01EI_0376 5 8.13E-87 Anaerobic C4-dicarboxylate transporter DcuA Cytoplasmic Membrane

Eis173 NT01EI_3265 221 8.89E-61 Acyltransferase/AMP-dependent synthetase and
ligase protein family

Cytoplasmic Membrane

Eis185 NT01EI_3386 5 1.74E-56 TRAP transporter DctM subunit Cytoplasmic Membrane

Eis107 NT01EI_0475 11 2.34E-56 DEAD box containing helicase Cytoplasmic

Eis230 NT01EI_3769 250 1.16E-46 Phosphoglycerate transporter family protein Cytoplasmic Membrane

Eis028 NT01EI_0277 8 4.26E-43 Transposase, IS4 family protein Unknown

Eis175 NT01EI_3774 34 6.93E-41 IS1 transposase Unknown

Eis184 NT01EI_0419 8 2.71E-40 RNA methyltransferase TrmH family, group 3 Cytoplasmic

Eis176 NT01EI_0962 144 9.04E-38 esaT Cytoplasmic Membrane

Eis157 NT01EI_0144 250 4.66E-29 Twin-arginine translocation protein subunit TatB Cytoplasmic Membrane

Eis068 NT01EI_0448 2 4.13E-26 Polyprenyl synthetase Cytoplasmic

Eis155 NT01EI_0725 9 4.05E-12 Transcriptional regulator FruR Cytoplasmic

Eis086 NT01EI_1237 4 9.61E-12 N-acetylmuramoyl-L-alanine amidase AmiA Unknown

Eis006 NT01EI_0085 40 9.81E-12 ATP-dependent DNA helicase Rep Cytoplasmic

Eis235 NT01EI_3289 20 2.44E-10 Diaminopimelate decarboxylase Cytoplasmic

Eis055 NT01EI_2314 22 7.18E-08 Prophage lambda integrase Cytoplasmic

Eis207 NT01EI_1817 59 1.13E-07 Spermidine/putrescine transport system permease protein PotB Cytoplasmic Membrane

Eis080 NT01EI_0981 10 1.52E-06 Hypothetical protein Cytoplasmic

Eis222 NT01EI_0768 44 1.67E-06 Hypoxanthine phosphoribosyltransferase Cytoplasmic

Eis018 NT01EI_0377 4 1.96E-06 Aspartate ammonia-lyase Cytoplasmic

Eis011 NT01EI_3690 9 2.98E-04 ABC transporter, periplasmic amino acid binding protein Periplasmic

Eis131 NT01EI_2157 21 9.55E-03 Hypothetical protein Unknown

Eis223 NT01EI_1086 16 9.91E-03 Extracellular solute-binding protein, family 5 Unknown
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and potentially contribute to E. ictaluri virulence. Fish ex-

periments showed that Eis::004, Eis::039, Eis::041, Eis::110,

Eis::158, Eis::176, Eis::194, and Eis::195 mutants were sig-

nificantly attenuated, and Eis::004 and Eis::194 provided

good immunization in catfish.

Methods

Bacterial strains, plasmids, and growth conditions

Bacterial strains and plasmids used in this work are

listed in Table 4. Edwardsiella ictaluri 93–146 carrying

pAKgfplux1 [69] was grown at 30 °C using brain heart

infusion (BHI) broth and agar plates (Difco, Sparks,

MD). Escherichia coli SM10λpir donor strain carrying

pMAR2xT7 [20] was grown at 37 °C using Luria-Bertani

(LB) broth and agar plates (Difco). Antibiotics were

added to the culture medium at the following concentra-

tions: ampicillin (100 ¿g/ml), colistin (12.5 ¿g/ml), and

gentamicin (12.5 ¿g/ml).

Construction of transposon insertion library

Transposon insertion library was constructed by conjugation

using the donor E. coli SM10λpir carrying pMAR2xT7 and

the recipient E. ictaluri 93–146 wild type (WT) containing

pAKgfplux1 [69]. Transposon insertion mutants were se-

lected on selective BHI agar plates containing 100 ¿g/ml of

Fig. 3 Virulence and efficacy of the transposon insertion mutants in channel catfish fingerlings. Percent mortalities and mutant names are

indicated on the Y and X axis, respectively. Channel catfish fingerlings were infected with mutant strains to determine virulence and vaccinate

the fish (a). After 21-days of post vaccination, fish were infected with wild-type E. ictaluri 93–146 to determine the efficacy of vaccination (b)

Table 4 Bacterial strains and plasmids

Strain or plasmid Description Source

Escherichia coli

SM10λpir kmr; thi; thr; leu; tonA; lacY; supE; recA;
::RP4–2-Tc::Mu; λpir R6K

[75]

Edwardsiella ictaluri

93–146 wild-type; pEI1; pEI2; Colr [11]

Plasmids

pMAR2xT7 R6K replicon; Himar I; T7 promoters;
Ampr; Genr

[20]
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ampicillin, 12.5 ¿g/ml of gentamicin, and 25 ¿g/ml colistin.

Various sizes of gentamicin resistant transposon insertion

colonies were observed on the selective BHI plates, and 250

smallest colonies compared to normal colony size were cul-

tured in the BHI broth with colistin and gentamicin at 30 °C

for 2 days. Finally, bacterial stocks were prepared in 20% gly-

cerol and stored at − 80 °C freezer.

Transposon end mapping

Genomic DNA was isolated from the frozen E. ictaluri

transposon insertion mutants using the heat denatur-

ation method. Briefly, 100 ¿l frozen culture were added

in 1 ml ddH2O and mixed well. Bacteria were collected

by centrifugation and water was removed completely.

After dissolving the bacterial pellet in 100 ¿l ddH2O,

each sample was transferred to 200 ¿l PCR tubes and

tubes were incubated at 100 °C for 10 min by using an

Applied Biosystems 2720 Thermal Cycler (Life Technolo-

gies, Grand Island, NY). Samples were mixed well by vor-

texing, and bacterial cell debris was pelleted by centrifuging

at 14,000 rpm for 5min. The supernatant containing the

genomic DNA was used as template in subsequent PCR

reactions. Single primer PCR was performed by using a

transposon-specific R1 primer (5`-CCGTATGCCCAACT

TTGTATAGA-3`) to amplify the transposon end and

flanking bacterial DNA [70]. Before sequencing, the PCR

products were cleaned by using ExoSAP-IT for PCR Prod-

uct Cleanup (Affymetrix, Santa Clara, CA). Sequencing was

conducted at Eurofins MWG Operon LLC (Huntsville, AL)

using a transposon-specific nested R3 primer (5`- TCTC

GGCTTGAACGAATTGTT-3`).

Bioinformatics analyses

Transposon sequence removal and sequence trimming

based on sequence quality scores were done by using the

Sequencher DNA sequence analysis software v4.10.1

(Gene Codes Corp., Ann Arbor, MI). Trimmed sequences

were searched against the available E. ictaluri 93–146 gen-

ome [29] by using basic local alignment search tool (Blast)

at the National Center for Biotechnology Information

(NCBI) for gene identification. Using the GI numbers, a

FASTA file containing all protein sequences were down-

loaded from the Batch Entrez database of NCBI and used

for downstream analysis. Gene Ontology (GO) annotation,

visualization, and metabolic and cellular processes were

determined by using Blast2GO [71] at the cut-off level 2.

Subcellular localization of proteins was predicted by using

PSORTb version 3.0.2 [72]. E. ictaluri proteins involving

in host-pathogen interactions were identified by using the

Host-Pathogen Interaction Database (HPIDB) at the

cut-off level 0.0001. Bacterial proteins interacting with

channel catfish proteins were determined at the cut-off

level 0.00001, at identity filter 50% in bacterial proteins,

and 70% in channel catfish proteins. [73]. The potential E.

ictaluri virulence proteins were identified using the

Microbial Virulence Database (MVirDB) at the cut-off

level 0.5 [74]. TA sequence frequencies in the entire E.

ictaluri genome, open reading frames, and genes with

transposon insertion were calculated using CLC genomics

workbench 11.0.1 (Qiagen, Redwood City, CA).

Safety and vaccine efficacy testing of mutants in catfish

Specific pathogen free (SPF) channel catfish was obtained

from the fish hatchery of the College of Veterinary Medi-

cine at Mississippi State University. All fish experiments

were conducted under a protocol approved by the Institu-

tional Animal Care and Use Committee at Mississippi State

University (protocol number 12–042). In vivo experiments

were conducted using catfish infection model to test 19

mutants. Briefly, four-month-old pathogen free channel cat-

fish (11.58 ± 0.23 cm, 15.29 ± 0.95 g) were stocked at a rate

of 20 fish/tank into 40 L tanks and maintained at 26 ± 2 °C

throughout the experiment. Each transposon mutant, posi-

tive (E. ictaluri wild-type), and negative (BHI) controls were

assigned to three or four tanks randomly. Catfish were

challenged/vaccinated by immersion exposure using trans-

poson mutants or wild type (3.09 × 107CFU/ml of water)

using published procedures [15]. Catfish mortalities were

recorded for 21 days. After 21 days of the first vaccination,

both vaccinated, and sham-vaccinated catfish were infected

with E. ictaluri wild type by immersion exposure (3.27 ×

107CFU/ml of water). Catfish mortalities were recorded for

two weeks.

Statistical analysis

We used SPSS V25 (IBM Corp., Armonk, NY) to con-

duct statistical analysis. For each strain, mean percent

mortalities were calculated and arcsine-transformed.

The one-way analysis of variance at significance level

0.05 was conducted using the “Univariate” function, in

which strains were independent and arcsine-transformed

mortalities were dependent variables. Because our data

included different sample sizes, and variances were not

equal, Games-Howell post hoc test was selected to iden-

tify significant differences between mutants and wild

type or mutants and sham vaccinated group in virulence

and efficacy experiments, respectively.
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