

1 **Peptidyl-tRNA hydrolysis rate influences the efficiency of nonsense-mediated mRNA  
2 decay**

3

4 Divya Kolakada<sup>1,2</sup>, Rui Fu<sup>3#</sup>, Nikita Biziaev<sup>4</sup>, Alexey Shuvalov<sup>4</sup>, Mlana Lore<sup>2</sup>, Amy E. Campbell<sup>1</sup>,  
5 Michael A. Cortázar<sup>1</sup>, Marcin P. Sajek<sup>1</sup>, Jay R. Hesselberth<sup>1,3</sup>, Neelanjan Mukherjee<sup>1,3</sup>, Elena  
6 Alkaeva<sup>4</sup>, and Sujatha Jagannathan<sup>1,3,5\*</sup>

7

8 <sup>1</sup>Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical  
9 Campus, Aurora, CO 80045, USA.

10 <sup>2</sup>Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus,  
11 Aurora, CO 80045, USA.

12 <sup>3</sup>RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO  
13 80045, USA.

14 <sup>4</sup>Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow,  
15 Russia.

16 <sup>5</sup>Lead contact

17

18 \*Corresponding Author: sujatha.jagannathan@cuanschutz.edu

19 #Current Address: New York Genome Center, New York, NY

20 Keywords: NMD, PTC, translation, termination, splicing

21 **SUMMARY**

22 Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that prevents the  
23 accumulation of harmful truncated proteins by degrading transcripts with premature termination  
24 codons (PTCs). NMD efficiency varies across many contexts, but the factors that influence this  
25 variability remain poorly understood. Here, we find an enrichment of glycine (Gly) codons  
26 preceding a PTC in common nonsense variants in contrast with a depletion of Gly codons  
27 preceding a normal termination codon (NTC). Gly-PTC contexts have higher NMD activity  
28 compared to an alanine-PTC context, and this effect is stronger on NMD substrates with long  
29 3'UTRs. We used a massively parallel reporter assay to test all possible combinations of -2 and  
30 -1 codons, the PTC, and the +4 nucleotide to assess comprehensively how PTC sequence  
31 context affects NMD efficiency. A random forest classifier revealed that peptidyl-tRNA hydrolysis  
32 rate during translation termination was the most important feature in discriminating high and low  
33 NMD activity. We show with *in vitro* biochemical assays that Gly-TC contexts have the slowest  
34 termination rate compared to other codons. Furthermore, Gly-PTC enrichment is most  
35 pronounced in genes that tolerate loss-of-function variants, suggesting that enhanced NMD of  
36 Gly-PTC context has shaped the evolution of PTCs. Based on these findings, we propose that  
37 NMD efficiency is modulated by the "window of opportunity" offered by peptidyl tRNA hydrolysis  
38 rate and thus, translation termination kinetics.

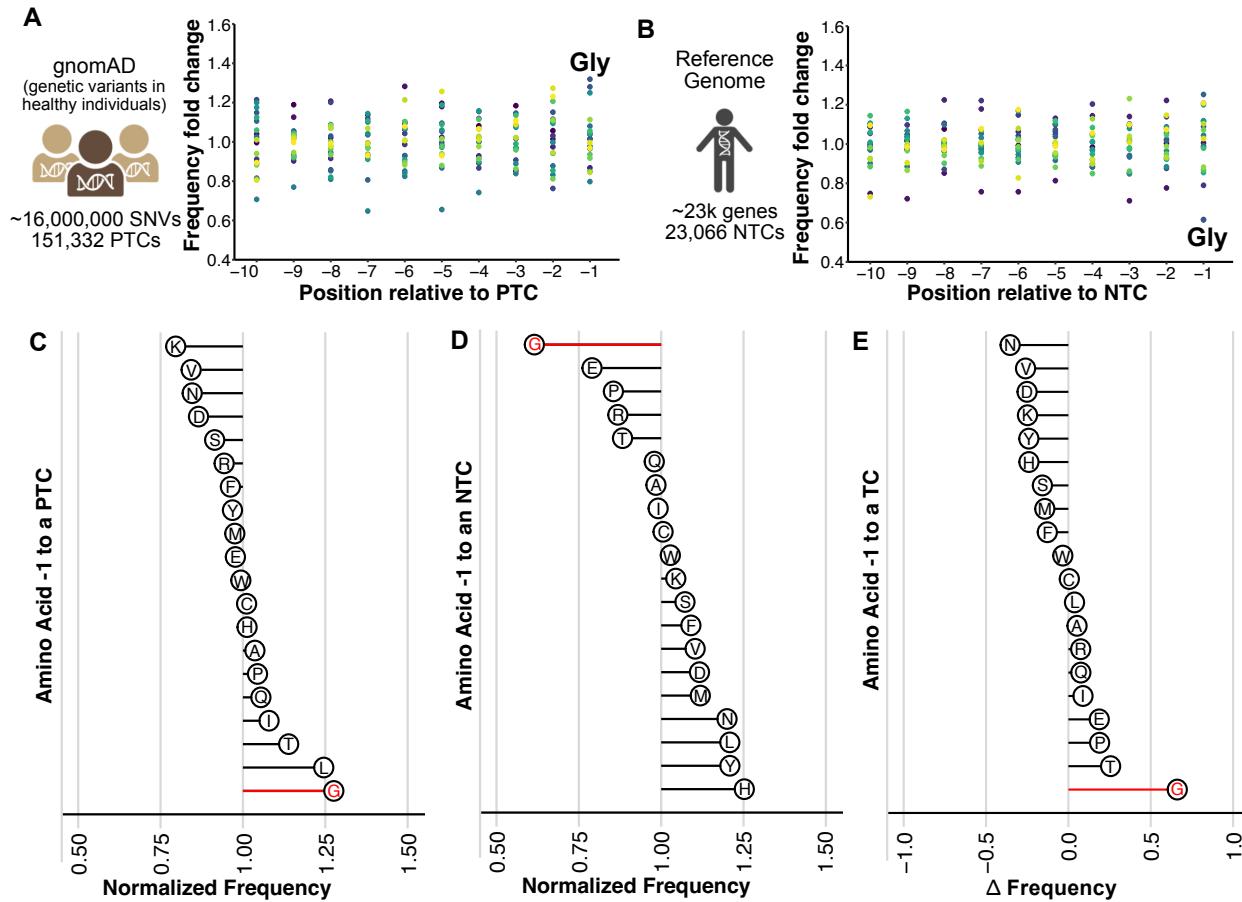
39

## 40 INTRODUCTION

41 Nonsense-mediated mRNA decay (NMD) eliminates transcripts that contain protein-truncating  
42 variants (PTVs), often causing loss of gene function. As a result, PTVs underlie Mendelian  
43 diseases, including cystic fibrosis, Duchenne muscular dystrophy, and  $\beta$ -thalassemia (1,2).  
44 Much of our understanding of NMD comes from studying disease-causing PTVs, including the  
45 “50-55 nt rule”, which posits that premature termination codons (PTCs) trigger NMD  $>50-55$   
46 nucleotides (nts) upstream of the 3'-most exon-exon junction (3). Here, the terminating  
47 ribosome fails to evict the exon-junction complex (EJC), which is a potent trigger for NMD (4,5).  
48 An alternative mode of NMD is triggered when a PTV creates a long 3' untranslated region  
49 (UTR) where, in the absence of EJCs, RNA binding proteins (RBPs) such as UPF1 help to  
50 recruit decay machinery (6,7). In both cases, the terminating ribosome, along with downstream  
51 RBPs in the 3' UTR, serves as the platform for the assembly of NMD factors. Thus, the  
52 terminating ribosome at the stop codon is essential to trigger NMD.

53 Studies over the years have shown that the “50-55 nt rule” does not encompass the breadth  
54 of NMD efficiencies observed across transcripts and even across different PTCs within the  
55 same transcript (8-10). For example, the 50-55 nt rule only predicted the fate of  $\sim$ 50% of PTVs  
56 in The Cancer Genome Atlas database; while additional factors such as exon length could  
57 account for another  $\sim$ 20% of NMD variability, that still leaves  $\sim$ 30% of NMD variability that could  
58 not be explained by any known rule (11). Another study that investigated nonsense variants that  
59 are highly frequent in the healthy human population found that  $\sim$ 50% escape NMD via  
60 mechanisms including alternative splicing, stop codon readthrough, and alternative translation  
61 initiation (12). In contrast, ultrarare nonsense variants tend to show high NMD efficiency (13).  
62 These disparate observations underscore the ascertainment bias, based on the substrates  
63 investigated and their phenotypic consequences, that has influenced our view of NMD.

64 If every premature termination event that satisfies the 50-55 nt rule does not lead to NMD,  
65 what other factors influence the probability and efficiency of NMD? One potential factor is  
66 translation termination efficiency, which varies and likely influences NMD. Translation  
67 termination efficiency can be conceptualized in two ways: (1) the fidelity of termination,  
68 reflecting the likelihood of stop codon readthrough, and (2) the kinetics of termination, reflecting  
69 the dwell time of the terminating ribosome at the stop codon. Both these aspects are influenced  
70 by cis-acting elements (14-18). For example, specific elements within the stop codon sequence  
71 context, as well as certain viral structures, can reduce termination fidelity (14-16,19-21).  
72 Additionally, the identity of the nucleotide immediately after the stop codon and the peptide-


73 tRNA hydrolysis rates of the amino acid preceding the stop codon impact the rate of peptide  
74 release (17,18). However, most of these studies focus on normal termination, which has been  
75 proposed to be distinct from premature termination (22-25), and thus, how these factors  
76 influence NMD is unknown.

77 In this study, we hypothesized that investigating sequence contexts of PTVs that occur in  
78 healthy individuals may offer novel insight into how these sequences influence NMD. Indeed,  
79 we found that Gly-PTC, a context highly enriched in healthy individuals, enhances NMD activity.  
80 To systematically assess the impact of PTC sequence context on NMD activity, we performed a  
81 massively parallel reporter assay and found a broad range of NMD efficiencies associated with  
82 different sequences. Finally, we show that translation termination kinetics could explain  
83 sequence-based differences in NMD efficiency. Taken together, our results provide a framework  
84 to understand how factors beyond the central NMD triggers can profoundly influence NMD  
85 efficiency. We propose PTC sequence can alter NMD efficiency by modulating the kinetic  
86 window of opportunity for NMD offered by the terminating ribosome.

87

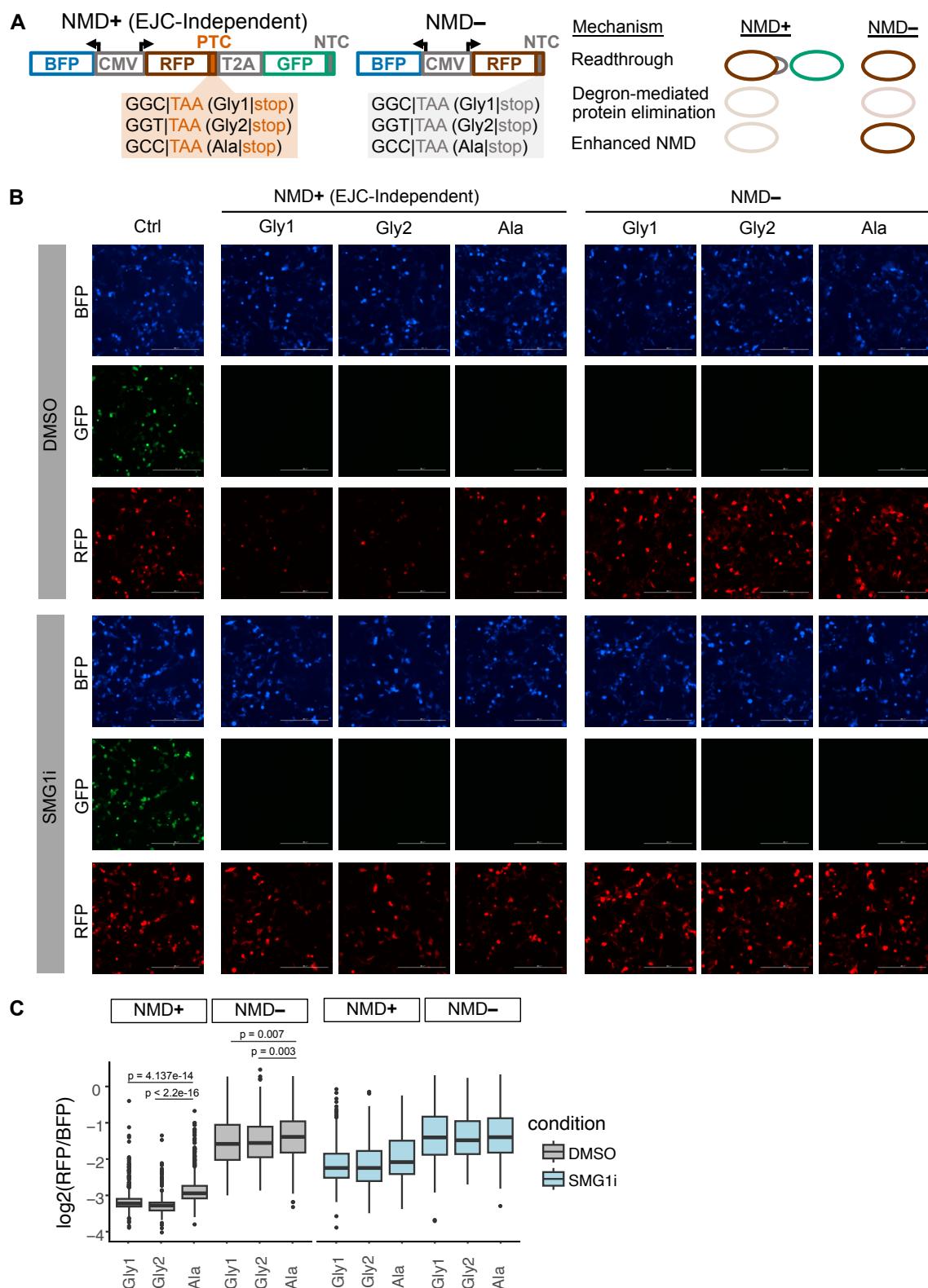
## 88 RESULTS

89 **Glycine codons are enriched preceding PTCs and depleted preceding NTCs.** Healthy  
90 individuals harbor ~100 putative loss of function genetic variants, most of which are protein-  
91 truncating (26). In previous work, we showed that highly frequent PTVs (minor allele frequency  
92 (MAF) > 5%) are enriched for NMD escape events (12). Here, we focused on rare variants with  
93 MAF  $\leq$  1% among healthy individuals that would be expected to undergo NMD but perhaps with  
94 varying efficiencies. We analyzed sequence enrichment in PTC contexts of these variants within  
95 10 amino acids preceding PTCs found in the gnomAD database (n=151,332, v2.1.1), which  
96 contains genetic variant data for >700,000 healthy humans (27) (**Fig. 1A**). We compared the  
97 enrichment of these amino acids to that of normal termination codon (NTC) contexts in the  
98 reference genome (n=23,066, **Fig. 1B**). Gly codons stood out as the most enriched at the -1  
99 position of PTCs (**Fig. 1A and C**) and least enriched before the NTC (**Fig. 1B and D**). Threonine  
100 (Thr) and proline (Pro) were the next most enriched in PTC compared to NTC (**Fig. 1E**). Other  
101 amino acids also show the opposite trend – most enriched before an NTC and least enriched  
102 before a PTC – including asparagine (Asn), valine (Val), and aspartic acid (Asp). Nevertheless,  
103 the strongest effect was seen for Gly-NTC versus Gly-PTC contexts (**Fig. 1E**). These data  
104 suggest that the enrichment of Gly immediately upstream of a PTC (Gly-PTC) has a functional  
105 impact that allowed it to rise to high frequency in healthy individuals.



106 **Figure 1. Gly is enriched preceding a PTC and depleted preceding an NTC. (A-B)** The  
107 enrichment of amino acids in the 10 positions before a PTC (A) or the NTC (B) (C-D) Amino  
108 acid enrichment -1 to a PTC (C) or an NTC (D). (E) The frequency delta (enrichment before a  
109 PTC-NTC) for each amino acid at the -1 position.

110


111

112 **Gly codons that precede a PTC enhance NMD efficiency.** A previous study showed that Gly  
113 acts as a C-terminal degron and is rarely found at the C-terminal end of the normal proteome,  
114 suggesting one possible biological basis for Gly-PTC enrichment (28,29). It is also possible that  
115 Gly-PTC stimulates PTC readthrough, leading to NMD escape and some functionality of the  
116 protein product (30), or that Gly-PTC enhances NMD and elimination of the mRNA transcript.  
117 Readthrough would confer a benefit to the organism as it would preserve gene function, while  
118 elimination of the truncated protein or encoding transcript might have a neutral effect if the gene  
119 is otherwise non-essential.

120 To distinguish between these hypotheses, we used a set of NMD reporters (31) that enabled  
121 the study of EJC-independent and EJC-enhanced forms of NMD, as well as NMD-associated  
122 mechanisms such as PTC readthrough and truncated protein degradation. The “NMD+” reporter  
123 consists of a bi-directional promoter that drives BFP as a transfection control, in addition to an  
124 RFP and GFP containing transcript (**Fig 2A**, left). A stop codon between RFP and GFP creates a  
125 long 3' UTR on GFP, making the transcript a target of the EJC-independent NMD. In another  
126 version of the reporter, an intron within the GFP sequence renders the transcript an ideal EJC-  
127 enhanced NMD substrate (**Supp. Fig 1A**). A T2A signal after the stop ensures independent  
128 expression of RFP and GFP proteins in the event of a readthrough of the stop codon. Using this  
129 reporter, we varied the codon at the -1 position of the PTC (TAA), testing two different glycine  
130 codons or an alanine codon. We also tested these sequences at the NTC of an “NMD-” reporter,  
131 which lacks the GFP 3' UTR and so behaves as a normal transcript, allowing us to test the effect  
132 of glycine as a C-end degron independent of NMD. (**Fig 2A**, middle).

133 If Gly-PTC promotes readthrough, we would expect to see production of GFP protein. If Gly-  
134 PTC promotes efficient protein degradation, then we would expect to see much less RFP protein  
135 accumulation in both NMD+ and NMD- contexts compared to the Ala-PTC context. If Gly-PTC  
136 promotes efficient NMD, we would expect to see less RFP protein levels compared to Ala-PTC  
137 for the NMD+ contexts but no difference for the NMD- contexts (**Fig 2A**, right). We transfected  
138 HEK293T cells with these reporters, treating them with either DMSO vehicle control or SMG1i, an  
139 inhibitor of the SMG1 kinase activity, and thus NMD. Transfected cells were imaged for BFP,  
140 RFP, and GFP. We also included a control construct that lacks the stop codon between the RFP  
141 and GFP, and therefore robustly expresses all three fluorescent proteins.

142 As shown in Fig 2B, all reporters yielded robust BFP expression. While the no PTC control  
143 construct produced GFP, there was no GFP protein detected with either the glycine or alanine  
144 PTC contexts (**Fig 2B**), ruling out the first hypothesis that a Gly-PTC context promotes  
145 readthrough. Notably, both EJC-independent NMD+ reporters with Gly-PTC resulted in less  
146 RFP protein compared to the Ala-PTC reporter, a difference which recovered upon treatment  
147 with SMG1i (quantified in **Fig 2C**). In comparison, only a modest reduction in RFP protein  
148 was observed for the Gly-PTC NMD- reporters compared to the Ala-PTC reporter (**Fig 2B**),  
149 suggesting that a C-end glycine degron was not sufficient for the protein depletion we observed  
150 in the NMD+ reporters. No RFP was detected from any of the EJC-enhanced NMD reporters,  
151 consistent with their high NMD activity (**Supp. Fig 1B-C**). These data suggest that Gly-PTC  
152 inherently influences NMD efficiency through a hitherto unknown mechanism.



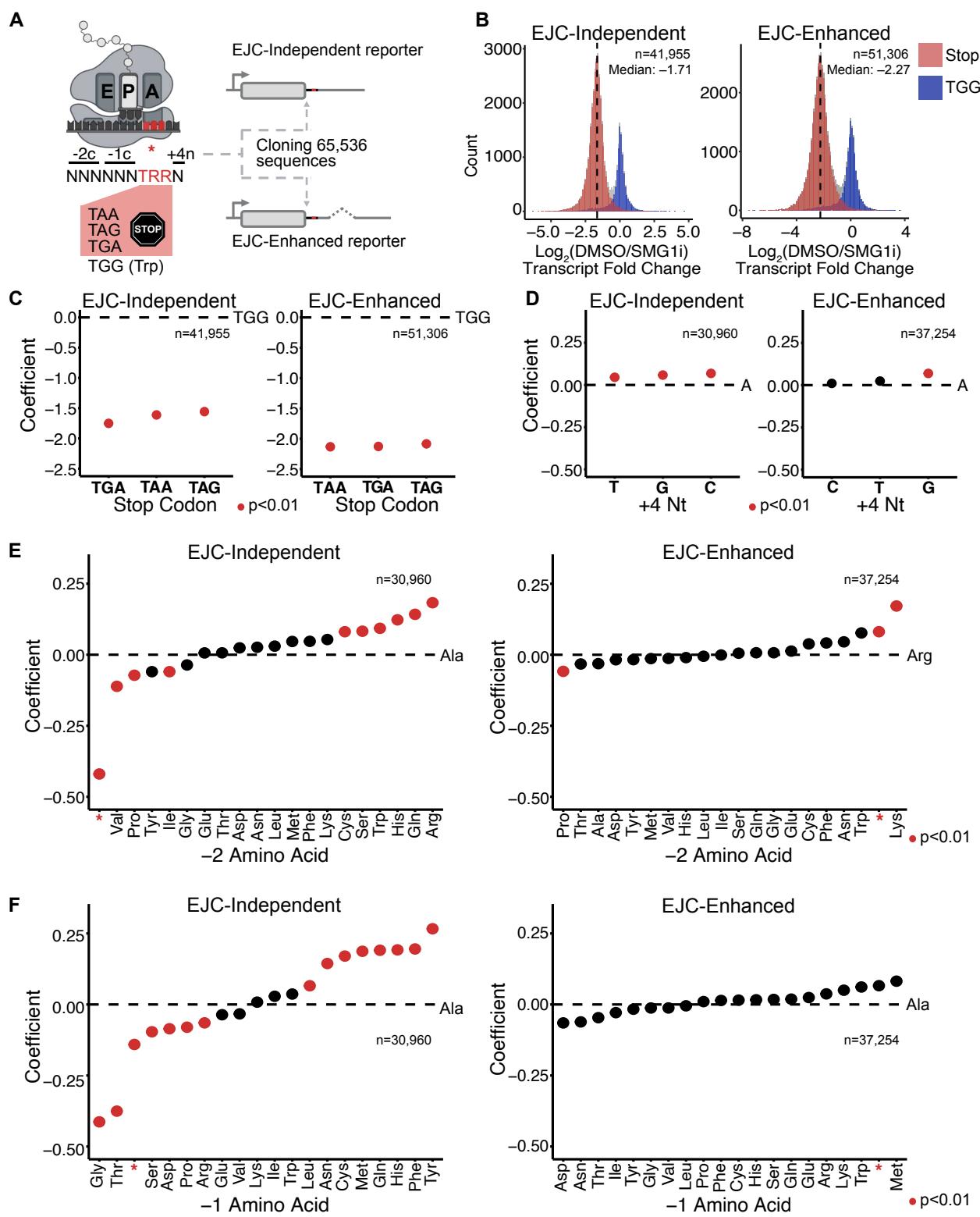
153

154 **Figure 2. Gly-PTC contexts enhance NMD.** (A) Schematic of NMD reporter system used. Left:  
155 EJC-independent NMD+ reporter, middle: NMD- reporter; right: expected outcomes. (B)

156 Fluorescence imaging of BFP, GFP, and RFP from cells transfected with NMD reporters  
157 containing Gly-PTC or Ala-PTC reporters, treated with a DMSO as a control or SMG1i. Ctrl refers  
158 to a construct that robustly expresses all three fluorescent proteins. Gly1 and Gly2 are the GGC  
159 and GGT codons for Gly. The codon used for Ala was GCC. (C) Quantification of fluorescence  
160 from panel (B).

161

162 **Massively parallel reporter assay (MPRA) captures widespread sequence-dependent**  
163 **variation in NMD efficiency.** Having established that Gly-PTC causes enhanced NMD, we  
164 systematically examined the relationship between NMD efficiency and the PTC sequence  
165 context. We used a massively parallel reporter assay wherein we varied the 6 nucleotides  
166 before the PTC, the PTC itself, and 1 nucleotide after the PTC in an unbiased fashion  
167 (N6TRRN; corresponding to 65,536 unique sequences; **Fig. 3A**) and asked how these  
168 sequences impacted NMD efficiency in both EJC-independent and EJC-enhanced reporters.  
169 Because we employed stop codons with “TRR” for array-based oligonucleotide synthesis, 25%  
170 of our sequence library consists of a tryptophan (Trp) codon (UGG) instead of a PTC and serve  
171 as control sequences that do not undergo NMD. All sequences were incorporated into both  
172 EJC-independent and EJC-enhanced fluorescent reporter backbones (**Supp. Fig. 2A-B**) and  
173 integrated into HEK293T cells via Cre-Lox mediated recombination (32). These cells were then  
174 treated with either DMSO or SMG1i, harvested for RNA, and subjected to targeted sequencing.  
175 Sequencing reads were analyzed by counting the occurrences of each reporter within a sample.  
176 The NMD activity of an individual reporter sequence was the log2-fold change in between  
177 DMSO-treated cells to SMG1i-treated cells calculated with DESeq2 (33) using the ~1/4<sup>th</sup> of  
178 control sequences containing the Trp codon rather than a stop codon for normalization. In this  
179 context, low transcript fold-change values indicate high NMD activity, and vice versa.


180 The NMD activity as measured by transcript fold changes for both the EJC-independent and  
181 EJC-enhanced reporters had a bimodal distribution, corresponding to the stop codon identity of  
182 the sequences in each population (**Fig. 3B**): sequences containing a stop codon were left-  
183 shifted compared to the sequences containing the Trp control, indicating that the former were  
184 targets of NMD. In the population of sequences undergoing NMD (i.e. those containing a stop  
185 codon) there was a wide range of NMD activity for both the EJC-independent and the EJC-  
186 enhanced reporters. EJC-enhanced reporter expression was reduced by 4.8 fold (log2FC: -  
187 2.27), which is greater than the 3.3 fold decrease (log2FC: -1.71) for EJC-independent reporters  
188 (**Fig. 3B**), consistent with EJC-enhanced targets undergoing more efficient NMD compared to

189 EJC-independent targets (34-36). These data indicate that NMD efficiency indeed varies based  
190 on PTC sequence context.

191 Next, we investigated if PTC sequence context could explain the wide range of observed  
192 NMD activity. Specifically, we were interested in the contribution of -2 and -1 amino acids, the -2  
193 and -1 codons, the stop codon, and the +4 nucleotide. For each of these biological variables, we  
194 constructed a linear model to determine the extent to which it explained the variation in NMD  
195 activity (i.e. transcript fold change) of the associated sequences. The model allowed us to  
196 evaluate the effect size (beta coefficient) and statistical significance (p-value) of individual  
197 features within a variable on NMD activity relative to a control feature. For example, in the case  
198 of stop codons, we evaluated the effect of TAA, TAG, or TGA on NMD activity relative to UGG  
199 (Trp). Negative beta coefficients indicated stronger NMD activity, while positive beta coefficients  
200 indicated weaker NMD activity.

201 As expected, our modeling showed that all stop codons caused significantly stronger NMD  
202 activity compared to the Trp control for both EJC-independent and EJC-enhanced reporters (**Fig.**  
203 **3C**). Notably, the TGA stop codon increased NMD efficiency by ~20% compared to the TAG stop  
204 codon for the EJC-independent reporters. However, this difference was not observed for the EJC-  
205 enhanced reporters where all stop codons elicit similar levels of NMD activity (**Fig. 3C**). For  
206 subsequent analyses, only transcripts expected to undergo NMD (i.e. transcripts with stop  
207 codons) were analyzed. When determining the effect of the +4 nt identity on NMD, we found that  
208 T, G, and C promoted weaker (~6% decrease) NMD activity compared to A for the EJC-  
209 independent reporters. A similar effect was present only for G compared to A for the EJC-  
210 enhanced reporters (**Fig. 3D**).

211 The linear modeling also showed that the identity of the -2 amino acid had a wide range of  
212 effects on NMD activity for the EJC-independent reporters, with any stop codon causing the  
213 strongest increase (~40%) in NMD activity compared to the control variable Ala (**Fig. 3E**). Codons  
214 for the remaining amino acids caused smaller changes in NMD activity, increasing NMD activity  
215 up to ~10% (Val) or reducing it up to 20% (Arg) compared to Ala. For the EJC-enhanced reporters,  
216 most -2 amino acids did not affect the efficiency of NMD. Interestingly, the presence of any stop  
217 codon -2 to a PTC weakened NMD by ~10% compared to the control variable Arg, opposite in  
218 trend to the EJC-independent reporters. Lys at the -2 position had the largest effect compared to  
219 Arg, weakening EJC-enhanced NMD by ~20% (**Fig. 3E**).



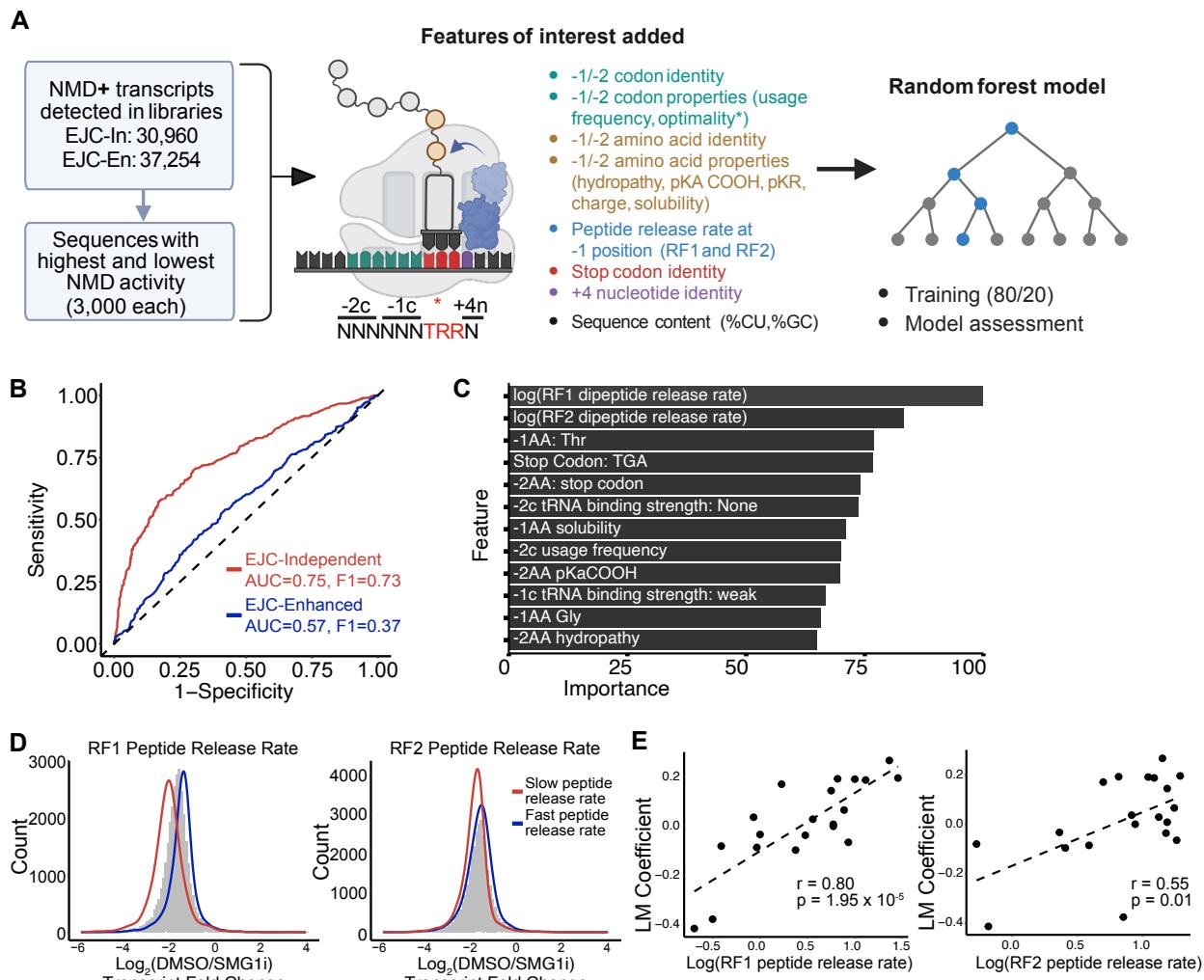
220

221 **Figure 1. MPRA shows a wide range of PTC context-dependent NMD efficiencies. (A)**  
 222 Design of the MPRA. (B) Histogram of transcript fold change EJC-independent and EJC-  
 223 enhanced NMD+ reporters comparing DMSO treated cells to SMG1i treated cells. (C-F) Dot

224 plots of the beta coefficient representing the effect of an individual variable on EJC-independent  
225 and EJC-enhanced NMD efficiency. The variables are the (C) stop codon identity, (D) the +4 nt  
226 identity, (E) the -2 amino acid, (F) and the -1 amino acid.

227

228 Remarkably, when examining the effect of the -1 amino acid on NMD efficiency, we found that  
229 Gly-PTC (the same context enriched in the gnomAD database; **Fig 1**) has the strongest effect on  
230 EJC-independent NMD activity, reducing it by 40% compared to Ala (**Fig. 3F**). Thr followed closely  
231 after and notably, both Gly-PTC and Thr-PTC cause stronger NMD than a stop codon in the -1  
232 position. In contrast, Tyr-PTC had the least efficient NMD, weakening NMD by ~25% compared  
233 to Ala-PTC. These effects were not observed for the EJC-enhanced reporters where the -1 amino  
234 acid identity did not cause any apparent effects (**Fig. 3F**).


235 Next, we asked if there is codon-level specificity to the effect of amino acids on EJC-  
236 independent NMD activity. We found that the effects of the codons in the -2 and -1 positions were  
237 largely grouped by amino acid identity, with only a few that were significantly different (**Supp. Fig.**  
238 **2C-D**, all codons compared to Lys-AAA). An exception to this trend was Leu at the -1 position  
239 whose codon TTA seems to have the opposite effect on NMD compared to the rest of the Leu  
240 codons. Reassuringly, all the effects at the amino acid level were replicated at the codon level  
241 with the stop codons having the strongest NMD activity at the -2 position and Arg the weakest  
242 (**Supp. Fig. 2C**), and Gly having the strongest NMD activity at the -1 position and Tyr the weakest  
243 (**Supp. Fig. 2D**). Taken together these data suggest that the -2 and primarily the -1 amino acid  
244 identity are key in determining the efficiency of EJC-independent NMD.

245

246 **Classifier identifies tRNA-peptidyl hydrolysis as the most important feature for EJC-**  
247 **independent NMD substrate activity.** To discover other sequence-dependent factors that  
248 could influence NMD activity, we expanded the set of biological variables and constructed a  
249 random forest classifier trained to discriminate between the high and low NMD activity (**Fig. 4A**).  
250 We selected the 3000 sequences with the highest (lowest LFC) and lowest (highest LFC) NMD  
251 activity for the EJC-independent and EJC-enhanced reporters.

252 We introduced additional variables such as the identities of the codons as well as their  
253 properties such as usage frequency (GenScript), tRNA binding strength, and optimality (37,38);  
254 the identities of the amino acids as well as their physical properties such as charge, solubility,  
255 dissociation constants, and hydropathy (ThermoFisher Scientific); the GC and pyrimidine

256 content of each of the sequences; the prokaryotic peptide release rates based on the identity of  
 257 the -1 amino acid (18).



258

259 **Figure 4. Peptide release rates are** (A) Data preparation and variables input into the Random  
 260 Forest model. (B) ROC curves, AUC values, and F1 scores for the EJC-independent and EJC-  
 261 enhanced classifiers. (C) Ranked feature importance for the EJC-independent model. (D)  
 262 Density curves for sequences with slow and fast peptide release rates overlaid on the NMD  
 263 activity distribution for the EJC-independent NMD+ sequences. Prokaryotic release rates used  
 264 (18), left: RF1 release rates, right: RF2 release rates. For RF1 slow release rates are defined as  
 265  $\log(\text{RF1 release rate}) \leq -0.5$ , fast release rates is defined as  $\log(\text{RF1 release rate}) > 1$ . For  
 266 RF2 slow release rates are defined as  $\log(\text{RF2 release rate}) \leq 0$ , fast release rates is defined  
 267 as  $\log(\text{RF2 release rate}) > 1.25$ . (E) Scatterplot of the beta coefficients for each -1 amino acid

268 obtained for the EJC-independent reporters against the RF1 (left) and RF2 (right) peptide  
269 release rates.

270

271 We trained two separate classifiers for the EJC-independent and EJC-enhanced reporters  
272 using the same variables. Classification performance for EJC-independent NMD activity was  
273 much better than for EJC-independent NMD activity (**Fig. 4B**), as indicated by the substantially  
274 higher area under receiver operating characteristic curve and F1 scores for the EJC-independent  
275 (0.75 and 0.73, respectively) compared to the EJC-enhanced (0.57 and 0.37, respectively)  
276 classifiers. We concluded that only the classifier for EJC-independent NMD activity was robust  
277 and suitable for further interpretation (refer to Tables 1-2 for the confusion matrices and other  
278 model metrics). The poor performance of the EJC-enhanced classifier suggests that there are  
279 hitherto unknown variables missing in the classifier that may better predict these reporters' NMD  
280 activity.

281 We focused on the features that were most important for the EJC-independent model.  
282 Prokaryotic release factor 1 (RF1) and release factor 2 (RF2) peptide release rates emerged as  
283 the most important predictor of NMD activity (**Fig 4C**). To examine the effect of peptide release  
284 rates on NMD activity, we compared the subpopulation of sequences with the fastest and slowest  
285 dipeptide release rates versus all NMD targets (**Fig. 4D**). The two populations were well-  
286 separated for RF1 peptide release rates and less robustly for the RF2 peptide release rates (**Fig.**  
287 **4D**). To examine this relationship more quantitatively we compared the beta coefficients of the  
288 effect on NMD activity of the -1 amino acid identity to the peptide release rates of RF1 and RF2  
289 (**Fig 4E**). We observed a strong correlation for the RF1 peptide release rates ( $r = 0.8$ ;  $p = 1.95 \times$   
290  $10^{-5}$ ) and a weaker but significant correlation for the RF2 peptide release rates ( $r = 0.55$ ;  $p = 0.01$ )  
291 (**Fig 4E**). Taken together these data suggest that peptide release rate may be a major effector of  
292 the -1 amino acid-dependent effect on NMD efficiency and present a model where the rate of  
293 peptide release could influence the window of opportunity that NMD factors have to detect, bind,  
294 and degrade an NMD target. The slower the peptide release rate, the wider the window of  
295 opportunity, the more efficient the NMD, and vice versa. Notably, Gly has the slowest peptide  
296 release rate and Tyr has the fastest (18), which might explain why Gly causes the most efficient  
297 NMD, and Tyr the least efficient.

298

299 **Luminescence-based NMD reporters recapitulate -1 amino acid-dependent variation in**  
300 **NMD activity in EJC-independent and EJC-enhanced contexts.** Results thus far suggest  
301 that peptide release rate is a major influencer of NMD, but only in the context of EJC-  
302 independent NMD and not EJC-enhanced NMD. This discrepancy could stem from two causes:  
303 the highly efficient EJC-enhanced NMD is insensitive to other modifying factors; or that it is a  
304 transcript-specific effect limited to the fluorescent reporters. To distinguish between these  
305 possibilities, we switched to an independent, luciferase-based reporter system (31). This system  
306 is identical to our fluorescent reporter system except that the transfection control is Renilla  
307 luciferase and the NMD readout is provided by Firefly luciferase (**Fig. 5A**).

308 To test whether the -1 amino acid effect was also present within this NMD reporter system  
309 we varied the amino acid in the -1 position of either the PTC or the NTC, choosing Gly, Val, Ala,  
310 and Tyr, which have a range of peptide release rates from slowest to fastest (**Fig. 5A**). As  
311 expected, luciferase activity was ~10-fold lower for the EJC-enhanced reporters compared to  
312 EJC-independent (**Fig. 5B**). Remarkably, the relative trend in -1 amino acid-dependent NMD  
313 variability was the same for both the EJC-independent and EJC-enhanced reporters. The NMD  
314 activity varied dependent on the -1 amino acid, with Gly having ~22% or ~29% more efficient  
315 NMD compared to Tyr for the EJC-independent and EJC-enhanced reporters, respectively (**Fig**  
316 **5B**). Compared to the EJC-independent and EJC-enhanced reporters, the NMD– reporters did  
317 not vary with the change in the -1 amino acid (**Fig 5B**). Taken together, these data demonstrate  
318 that the -1 amino acid effect can extend to both forms of NMD.

319

320 **Key NMD and translation factors do not influence the -1 amino acid dependent variation in**  
321 **NMD activity.** Next, we wanted to ask whether any trans factors played a role in the -1 amino  
322 acid-dependent effect on NMD efficiency. To this end, we utilized shRNAs to knock down various  
323 NMD- and translation-related factors and test the effect of the knockdown on reporter levels. We  
324 decided to use the EJC-independent reporters for the knockdown experiments.

325 First, we investigated the UPF proteins (UPF1, UPF2, and UPF3B), which are key effectors  
326 of NMD (39,40); SMG1, which phosphorylates UPF1 to trigger NMD; and SMG6, which is  
327 responsible for cleaving the transcript when NMD is initiated (40,41) (**Fig. 5C**). Reporter protein  
328 levels increased upon knockdown of all NMD factors except for UPF3B, likely because UPF3B is  
329 known to be redundant to UPF3A (42). However, the relative difference in expression of the  
330 reporters based on -1 amino acid identity largely remained the same (**Fig. 5C**; knockdown  
331 validation **Supp. Fig. 3A**).

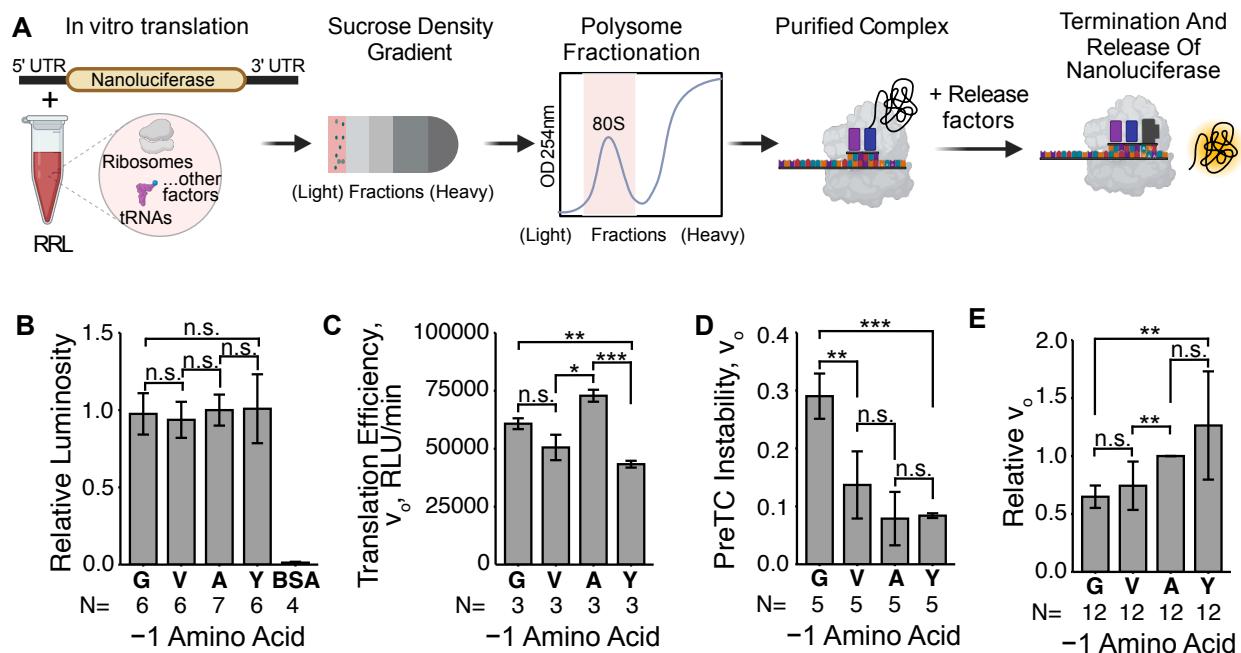
332



333

334 **Figure 5. The -1 amino acid effect on NMD is observed for both EJC-independent and EJC-  
335 enhanced contexts and is independent of trans factors.** (A) Schematic of fluorescence-based  
336 NMD reporters used (right) as well as the amino acids tested in the -1 position to the PTC/NTC  
337 (left). (B) Luciferase activity for each of the reporters in EJC-independent, EJC-enhanced, and  
338 NMD- contexts. (C) shRNA knockdown of key NMD factors and their effect on the EJC-  
339 independent reporters. (D) shRNA knockdown of key translation-related factors and their effect  
340 on the EJC-independent reporters.

341


342 Next, we investigated key translation and protein quality control related factors, ZNF598,  
343 EIF5A, EIF3J, CUL2, and ABCE1, using the same approach (Fig. 5D). ZNF598 recognizes the  
344 interface of collided disomes, thus playing a role in ribosome-associated quality control substrate  
345 recognition (43). It is possible that some sequences would promote ribosome collision at the end  
346 of a transcript, which would then influence NMD. EIF5A is an elongation factor that aids the  
347 ribosome in translating Gly/Pro sequences. EIF5A accumulates at the ribosome during translation  
348 termination and is hypothesized to bind at the E-site when the deacylated tRNA leaves (44-46).  
349 EIF5A binding to the termination complex may be influenced by the transcript sequence within  
350 the ribosome. EIF3J facilitates binding of the release factors to the ribosome, and thus stimulates  
351 peptide release (47). CUL2 forms a key part of the protein complex that recognizes C-terminal  
352 Gly degrons (28,29). Finally, ABCE1 is a ribosome recycling factor that acts during normal and  
353 premature termination (Fig. 5D) (48-50). Similar to the NMD factors, none of these conditions  
354 eliminated the differences in reporter level expression based on -1 amino acid identity (Fig. 5D;  
355 knockdown validation **Supp. Fig. 3B**). Together, these data point to peptide release rate as the  
356 main driver for the observed variability in NMD activity, and does not implicate any of the trans  
357 factors tested.

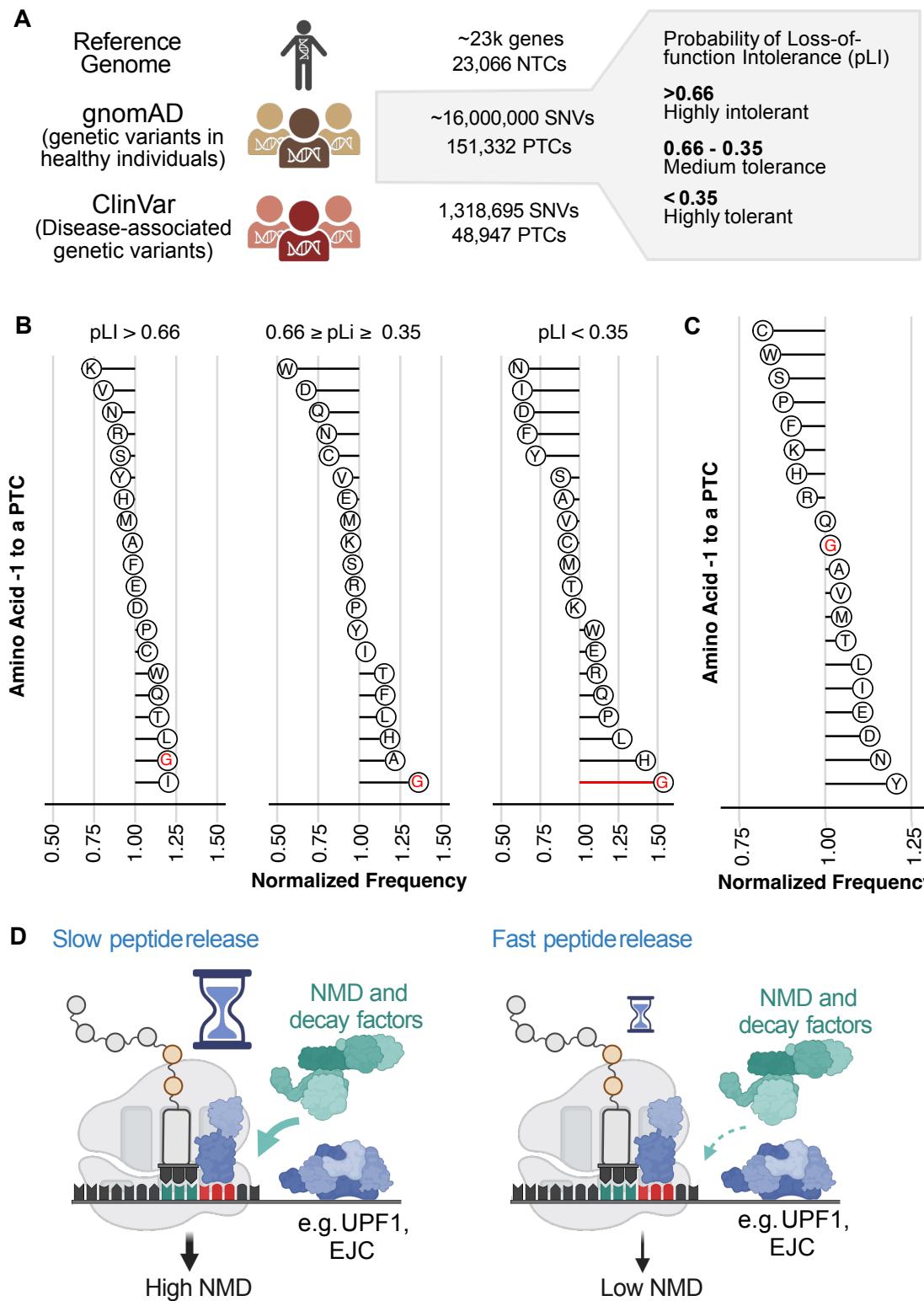
358

359 **Eukaryotic translation termination efficiency varies with -1 amino acid identity *in vitro*.**

360 The peptide release rate values used in the Random Forest classifier (Fig. 4) came from a  
361 prokaryotic system and may not reflect the peptidyl tRNA hydrolysis rate in mammalian cells  
362 (18). To determine if the rate of peptide release varied based on the identity of the -1 amino acid  
363 in a eukaryotic system, we used the *in vitro* Termi-Luc assay (Fig. 6A) in the excess of mutated  
364 eukaryotic release factor 1 (eRF1(AGQ)). This protein is able to recognize stop codons, but  
365 unable to induce peptidyl-tRNA hydrolysis (51). eRF1(AGQ) binding allows to freeze translation  
366 at the termination stage and obtain pretermination ribosomal complexes (preTCs). PreTCs are

367 then purified from eRF1(AGQ) by sucrose gradient centrifugation, followed by the addition of  
 368 release factors (working concentrations determined in **Supp. Fig. 4**). The real-time release  
 369 kinetics of the synthesized NLuc are then measured to determine the translation termination  
 370 rate of the transcript. We used this system to test the termination rates when Gly, Val, Ala, or  
 371 Tyr codons are present at the -1 position to the stop codon. If peptide release rate influences  
 372 the time of residence of the terminating ribosome, we would expect to see a difference in  
 373 termination rate when different amino acids are present upstream of the stop codon.




374  
 375 **Figure 6. Peptide release rate in an *in vitro* eukaryotic system is slowest when glycine is**  
 376 **upstream of the stop codon.** (A) Schematic of the Termi-Luc peptide release assay. This  
 377 assay was performed for nanoluciferase reporters with different amino acids -1 to the stop  
 378 codon. (B) Tested *in vitro* luminescence activity of recombinant NLuc variants. (C) Translation  
 379 efficiency of each reporter in the *in vitro* system. (D) Relative rate of peptide release when no  
 380 release factors are added to the termination reaction i.e., preTC stability. (E) Relative peptide  
 381 release rates for each reporter.

382  
 383 First, control experiments were performed to ensure that substitution of an amino acid residue  
 384 did not affect the activity, translation efficiency, or preTC stability of NLuc. To determine whether  
 385 NLuc activity was impacted by the -1 amino acid, we purified all tested peptide variants as  
 386 recombinant proteins and determined their maximum luminescence. All NLuc peptide variants

387 had the same activity (**Fig. 6B**). To determine whether translation efficiency was impacted by  
388 changing the -1 amino acid, we calculated the maximal derivative (slope) of the linear portion of  
389 the luminescence production curve. The -1 amino acid identity affected translation efficiency with  
390 Tyr having the lowest and Ala having the highest efficiency (**Fig. 6C**). To determine preTC  
391 instability, the rate of peptide release of each peptide variant was calculated without the addition  
392 of any release factors. These data showed that Gly had the most unstable preTC, while Tyr had  
393 the most stable preTC (**Fig. 6D**). Finally, we performed the Termi-Luc assay on each peptide  
394 variant starting with equal amounts of preTC complexes. We found that Gly had the slowest  
395 release rate, and Tyr had the fastest release rate, a difference which was statistically significant  
396 and correlated with high and low NMD efficiency, respectively (**Fig. 6E**). Further, the pattern of  
397 peptide release rate was opposite to the pattern of preTC instability and did not correlate with  
398 translation efficiency (**Fig. 6C-E**). Taken together, these data show that peptide release rates  
399 indeed vary based on -1 amino acid identity in a eukaryotic system, with glycine showing the  
400 slowest termination rate and tyrosine the fastest, among the amino acids tested.

401

402 **Gly-PTC variants are tolerant to loss of function.** If slow termination kinetics enhances NMD,  
403 we would expect Gly-PTC enrichment to be more pronounced in genes that are not essential,  
404 relative to essential genes. To test this hypothesis, we analyzed the relative frequency of PTVs in  
405 healthy individuals binned in terms of the LoF intolerance score of their host genes (**Fig. 7A-B**).  
406 The lower the LoF intolerance score, the more tolerant to loss of function a gene is and the less  
407 essential. We find that PTVs with Gly-PTC contexts increase in enrichment with decreasing LoF  
408 intolerance score, suggesting that these PTVs are more tolerant to loss of function (**Fig. 7B**).  
409 Further, if slow termination is a mechanism for LoF tolerance in healthy individuals, we would not  
410 expect Gly-PTC contexts to be enriched in disease-associated PTVs. To test this, we examined  
411 the amino acids enriched immediately upstream of a PTC in PTVs from the ClinVar database,  
412 which contains human genetic variants associated with disease (52). As expected, Gly showed  
413 no enrichment -1 to a PTC in disease associated PTVs (**Fig. 7C**). Taken together, our data  
414 supports a model where slower peptide release rate offers a longer kinetic window for NMD  
415 factors to assemble and degrade a transcript, thus causing highly efficient NMD. Thus, Gly-PTC  
416 context may have coevolved with NMD to efficiently eliminate transcripts encoding truncated  
417 proteins



418

419 **Figure 7. PTVs with Gly -1 to a PTC are tolerant to LoF and not enriched in genetic**  
 420 **diseases. (A)** Schematic for the analysis of LoF scores for rare PTVs in healthy individuals as  
 421 well as PTVs in disease contexts. (B) The -1 amino acid enrichment of PTVs binned into 3

422 categories of LoF scores. The lower the score the more tolerant the PTVs are to loss of  
423 function. (C) The -1 amino acid enrichment of PTVs in disease contexts. (D) Window of  
424 opportunity model for how NMD efficiency is influenced by peptide release rates. A slower  
425 peptide release rate gives NMD factors a larger window to bind an act on a target, and vice  
426 versa.

427 **DISCUSSION**

428 NMD is often considered a binary outcome that relies on the presence of triggering factors  
429 downstream of the PTC. It is increasingly clear that NMD is tunable, with multiple factors  
430 influencing the degree to which a target undergoes NMD. However, the factors influencing this  
431 variability are incompletely understood. While translation termination is pre-requisite for NMD, it  
432 is not thought to quantitatively influence NMD efficiency. Our data support a window of  
433 opportunity model where the time of residence of the terminating ribosome, which serves as the  
434 platform for the assembly of NMD machinery, determines the effectiveness of NMD (**Fig. 7D**).  
435 Consistent with this model, slower peptidyl-tRNA hydrolysis rate enhances NMD efficiency,  
436 while faster rate leads to less efficient NMD. Together with the RBP cues that trigger NMD,  
437 termination kinetics could be a key modifier of the probability with which a prematurely  
438 terminating ribosome leads to NMD.

439 Several lines of evidence point to the significance of the Gly-PTC context. Gly codon is most  
440 enriched before a PTC and least enriched before an NTC, causes the most efficient NMD, and  
441 has the slowest associated peptide release rate. Further, PTVs with Gly-PTC contexts are  
442 enriched among variants that are tolerant to loss of function in healthy individuals, while they are  
443 not enriched among disease-causing variants. Gly is also a C-terminal degron, which suggests  
444 that Gly-end proteins, truncated or otherwise, are more efficiently cleared (28,29). Thus, the  
445 preponderance of glycine codons at the ends of truncated proteins may be the result of co-  
446 evolution of PTVs alongside processes that efficiently eliminate Gly-end proteins at both the  
447 RNA and protein levels.

448 Other amino acids that have similar patterns to Gly are also consistent with our model. For  
449 example, Thr and Pro are also enriched before a PTC in healthy individuals and depleted before  
450 an NTC. They both cause efficient NMD (less efficient than Gly but more efficient than most  
451 other amino acids) and have slow peptide release rates. On the other end of the spectrum, Tyr  
452 which had the lowest NMD efficiency in our experiments, was enriched before an NTC but not a  
453 PTC. It also has the fastest peptide release rate. PTVs with Tyr at the -1 of a PTC are depleted  
454 among variants that are tolerant to loss of function and are enriched in disease contexts.

455 An interesting observation from the linear modeling of the MPRA data is that the stop codon  
456 TGA caused 20% more efficient EJC-independent NMD compared to TAG. This stop codon  
457 also emerged as an important predictor of EJC-independent NMD in the Random Forest  
458 classifier. This observation is counterintuitive since TGA is known to be the stop codon with the  
459 lowest fidelity i.e. it is most likely to be readthrough, which usually stabilizes an NMD target (53).

460 Our results suggest there are kinetic differences in termination at different stop codons.  
461 Additional factors, such as RBPs or other sequence elements, may influence whether the stop  
462 is readthrough or whether it causes efficient NMD.

463 EJC-independent NMD is weaker than EJC-enhanced NMD (31,34-36) and have different  
464 cues. For EJC-independent NMD, a long 3' UTR downstream of the PTC remains bound by  
465 RBPs like UPF1, which would ordinarily be dislodged by the ribosome during translation. Some  
466 models propose that the length of the 3' UTR and the number of RBPs bound to it influences the  
467 extent of NMD (6,7,54). For EJC-enhanced NMD, the presence of one EJC downstream of the  
468 prematurely terminating ribosome is sufficient to trigger efficient NMD (3,55). Thus, the window  
469 of opportunity during termination may matter more for a weaker, EJC-independent target, than a  
470 stronger EJC-enhanced target. Indeed, linear modeling and the Random Forest classifier of the  
471 MPRA data suggested that PTC-sequence context mattered more for EJC-independent NMD  
472 compared to EJC-enhanced NMD. In contrast, individual luciferase reporters demonstrated that  
473 the -1 amino acid effect applied to both EJC-independent and EJC-enhanced forms of NMD.  
474 We interpret these data to mean that the PTC context influences both modes of NMD.

475 In summary, the effect of various amino acids upstream of the PTC on NMD efficiency and  
476 their pattern of enrichment in healthy and diseased populations suggest that NMD has played a  
477 key role in shaping the evolution of protein-truncating variants. These findings can be used to  
478 better model the phenotypic outcomes of PTVs and thus, develop more effective strategies to  
479 counteract PTV-associated diseases.

480  
481

482 **ACKNOWLEDGEMENTS**

483 We thank Matthew Taliaferro for the gift of HEK293T cells with the loxP cassette. We thank  
484 Timothy Stasevich, Tatsuya Morisaki, and Laura White for exploratory studies on glycine's  
485 impact on NMD. We thank Srinivas Ramachandran, Olivia Rissland, and all members of the  
486 Jagannathan laboratory for insightful manuscript feedback. This work was supported by the  
487 RNA Bioscience Initiative (R. F.), AHA Award #831183 (D.K.), 5T32GM136444-03 (M.L.), Polish  
488 National Agency for Academic Exchange Bekker Program PPN/BEK/2019/1/00173 (M.P.S.),  
489 R35 GM119550 (J.H.), R35GM147025 (N.M.), University of Colorado School of Medicine  
490 Translational Research Scholars Program (S.J.), and the National Institutes of Health grant  
491 R35GM133433 (S.J.). The study of the effect of the stop codon 5' context on the efficiency of  
492 translation termination was supported by the Russian Science Foundation grant 22-14-00279  
493 (E.A.).

494

495 **AUTHOR CONTRIBUTIONS**

496 Conceptualization (D.K., R.F., S.J.); Data curation (D.K., R.F., A.E.C., S.J.); Formal analysis  
497 (D.K., R.F., S.J.); Funding acquisition (D.K., E.A., S.J.); Investigation (D.K., R.F., N.B., A.S.,  
498 M.L., A.E.C., S.J.); Project administration (S.J.); Software (D.K., R.F., M.P.S., M.A.C., N.M.,  
499 S.J.); Supervision (J.H., N.M., E.A., S.J.); Validation (D.K., A.E.C.); Visualization (D.K., R.F.,  
500 A.E.C., S.J.); Writing – original draft (D.K., S.J.); Writing – review and editing (D.K., R.F., A.E.C.,  
501 M.A.C., M.P.S., J.H., N.M., E.A., J S.J.).

502

503 **DECLARATION OF INTERESTS**

504 The authors declare no competing interests.

505

506 **STAR METHODS**

507

508 **RESOURCE AVAILABILITY**

509

510 **Lead contact**

511 Further information and requests for resources and reagents should be directed to and will be  
512 fulfilled by the lead contact, Sujatha Jagannathan (sujatha.jagannathan@cuanschutz.edu).

513

514 **Materials availability**

515 All unique reagents generated in this study are available from the lead contact with a completed  
516 Material Transfer Agreement.

517

518 **Data and code availability**

519

- 520 • All sequencing data have been deposited at GEO and are publicly available as of the date of publication. Accession numbers are listed in the Key Resources Table.
- 521 • All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the Key Resources Table.
- 523 • Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

525

526 **EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**

527

528 **Cell lines and culture conditions**

529 HEK293T cells (female) were obtained from ATCC (CRL-3216; RRID:CVCL\_0063). HEK293T  
530 Lox2272/LoxP cells were obtained from Taliaferro laboratory. All cell lines were determined to be free of mycoplasma by PCR screening. HEK293T and HEK293T cells with Lox2272/LoxP  
532 cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) (Thermo Fisher Scientific)  
533 supplemented with 10% EqualFETAL (Atlas Biologicals).

534 **METHOD DETAILS**

535 **gnomAD and ClinVar analysis**

536 Rare (frequency < 0.01) SNP variants from gnomAD v2.1.1 exome database that pass  
537 random forest classification quality filtering were analyzed, filtering for “Stop-gained”  
538 consequence via bcftools. Using “cDNA\_position” field pre-annotated by VEP, the sequence  
539 and codons surrounding variants from Gencode v19 transcript FASTA file was then extracted  
540 using bedtools getfasta. For other contexts such as normal stop codons, custom code (found in:  
541 [https://github.com/jagannathan-lab/2023-kolakada\\_et\\_al](https://github.com/jagannathan-lab/2023-kolakada_et_al)) was used to extract sequence and  
542 codon information using Biostrings and BSgenome in R. Codon enrichment is calculated as  
543 observed frequency of a particular codon/amino acid normalized against normal occurrence  
544 frequency of the codon/amino acid in the last 10 positions of all normal coding genes, similar to  
545 Koren et al (28). Gene-level loss of function scores were retrieved from gnomAD LoF constraint  
546 scores. Clinvar data from 2022/07/30 was processed similarly to gnomAD, but with sequence  
547 extraction done in R.

548 **Cloning**

549 The NMD reporter plasmids have been previously described (31). For individual  
550 fluorescent and luminescent reporters containing Gly, Val, Ala, and Tyr amino acids before the  
551 PTC, oligos containing these sequences (Integrated DNA Technologies) and matching the  
552 EcoRI (NEB, R3101S) and Xhol (NEB, R0146S) restriction sites were synthesized. These  
553 oligos were annealed and ligated using the Quick Ligation Kit (NEB, M2200L) into EJC-  
554 independent and EJC-enhanced fluorescent and luminescent backbones digested with EcoRI  
555 and Xhol. To make the NMD– reporters for each sequence, each EJC-independent reporter  
556 was digested with EcoRI and MfeI (NEB, R3589S), the sticky ends were filled in using Klenow  
557 Fragment (NEB, M0212S) and the blunt ends were ligated together using the Quick Ligation Kit  
558 (NEB), removing the GFP 3' UTR. The oligos synthesized for each sequence tested are as  
559 follows.

| Oligo     | Sequence (5' – 3')                                                  |
|-----------|---------------------------------------------------------------------|
| G1_Top    | AATT CAGA ACC ACC CAGA ACC ACC CTT AGCC CAGA ACC ACC CAGA ACC ACC C |
| G2_Top    | AATT CAGA ACC ACC CAGA ACC ACC CTT AAC CAGA ACC ACC CAGA ACC ACC C  |
| A_Top     | AATT CAGA ACC ACC CAGA ACC ACC CTT AGGC CAGA ACC ACC CAGA ACC ACC C |
| V_Top     | AATT CAGA ACC ACC CAGA ACC ACC CTT ACAC CAGA ACC ACC CAGA ACC ACC C |
| Y_Top     | AATT CAGA ACC ACC CAGA ACC ACC CTT AGTA AGA ACC ACC CAGA ACC ACC C  |
| G1_Bottom | TCGAGGGTGGTTCTGGTGGTTCTGGCTAAGGTGGTTCTGGTGGTTCTG                    |
| G2_Bottom | TCGAGGGTGGTTCTGGTGGTTCTGGTTAAGGTGGTTCTGGTGGTTCTG                    |

|          |                                              |
|----------|----------------------------------------------|
| A_Bottom | TCGAGGGTGGTCTGGTGGTCTGCCTAAGGTGGTCTGGTGGTCTG |
| V_Bottom | TCGAGGGTGGTCTGGTGGTCTGTGTAAGGTGGTCTGGTGGTCTG |
| Y_Bottom | TCGAGGGTGGTCTGGTGGTCTTAAGGTGGTCTGGTGGTCTG    |

560

561 **MPRA plasmid library**

562 An oligo library (Eurofins) of sequence CTA GCA AAC TGG GGC ACA GCC TCG AGG  
563 GTG GTT CTG GTG GTN NNN NNT RRN GTG GTT CTG GTG GTT CTG AAT TCG ACT ACA  
564 AGG ACC ACG ACG G was synthesized, where N refers to equal proportions of the A, C, G,  
565 and T nucleotides, and R refers to equal portions of the A and G nucleotides. This library was  
566 resuspended in water to 100  $\mu$ M. The oligo libraries were then filled in (1 amplification cycle)  
567 using the Q5 High-Fidelity DNA Polymerase (NEB, M0492S) according to manufacturer's  
568 instructions, using 100  $\mu$ mol of oligos, and 100  $\mu$ mol of reverse primer (sequence:  
569 CACCGTCGTGGTCCTTGTAGTC), in 2x PCR reactions of 25  $\mu$ L each. After amplification, the  
570 PCR reaction was digested with Exonuclease I, at 37°C for 3 h to digest any remaining single  
571 stranded DNA. The DNA was purified using AMPure XP beads (Beckman, A63882), as per  
572 manufacturer's instructions.

573 The EJC-independent and EJC-enhanced fluorescent reporter backbones were  
574 linearized using EcoRI (NEB) and Xhol (NEB) at room temperature overnight. Digested plasmid  
575 DNA was gel purified using the NucleoSpin Gel and PCR Clean-up kit (Takara Bio,  
576 740609.250). The oligo library was then cloned into the digested backbones using the Gibson  
577 Assembly Master Mix (NEB, E2611L) using an insert:vector molar ratio of 7:1 for the EJC-  
578 independent backbone and 3:1 for the EJC-enhanced backbone. The reactions were incubated  
579 at 50°C for 1 h. The reactions were then purified using AMPure XP beads to remove excess  
580 salts and a total of 200 ng of plasmid DNA was transformed into MegaX DH10B T1R  
581 Electrocompetent Cells (ThermoFisher, C640003), using a Biorad GenePulser electroporator.  
582 The transformed cells were recovered in the recovery medium provided with the  
583 electrocompetent cells at 37°C for 1 h, then plated on 33 pre-warmed 15 cm Luria broth (LB)  
584 agar-Carbenicillin (RPI, C46000-5.0) plates and incubated at 37°C overnight. The next day  
585 colonies were collected by scraping plates, spun-down, and then midi-prepped (NucleoBond  
586 Xtra Midi EF kit, 740420.50) to extract the plasmid DNA.

587

588 **Plasmid transfections**

589                    Transfections for fluorescent and luminescent reporters were performed differently since  
590                    fluorescent proteins have longer maturation rates than luciferase proteins (56). For the  
591                    fluorescent reporters, cells were split 24 h after transfection equally into two new 6-wells. Forty-  
592                    eight hours after transfection, one set of cells was harvested for RNA and the other set for flow  
593                    cytometry. For the luminescent reporters, transfections were performed in 24-well plates at a  
594                    40% confluence with 500 ng of plasmid DNA using Lipofectamine 2000 (ThermoFisher  
595                    Scientific, 11668027), as per manufacturer's instructions. All cells were harvested for luciferase  
596                    assays.

597                    **Fluorescence imaging**

598                    Fluorescent reporters were imaged before harvest for RFP, GFP, and BFP using the  
599                    Cytaion Multimode Imaging plate reader (Agilent, CYT5MFW-SN). Images were processed and  
600                    quantified using the Gen5 software (Agilent).

601                    **Generating NMD+ reporter cell lines for the MPRA**

602                    To create the EJC-independent and EJC-enhanced reporter cell lines HEK293T cells  
603                    containing a Lox2272 and LoxP enclosing a blasticidin cassette (courtesy Taliaferro Lab, CU  
604                    Anschutz), were co-transfected with 97.5% NMD reporter plasmid library and 2.5% Cre-plasmid  
605                    (Addgene plasmid #27493). These transfections were performed in 60-70% confluent 10 cm  
606                    plates using 11,800 ng of plasmid library and 295 ng of Cre plasmid per plate for 20 plates.  
607                    Twenty-four hours after transfection, each plate of cells was split equally into two new plates  
608                    and puromycin (2 µg/mL) was added to the media to begin selection. Puromycin selection lasted  
609                    between 1-2 weeks, during which the media was replaced with fresh media supplemented with  
610                    puromycin every 1-2 days and cells were consolidated into fewer plates when their confluence  
611                    got too low. Once selection was complete, cells were frozen down in medium containing 10%  
612                    DMSO. These cells were thawed at a later time for the MPRA.

613                    **Targeted sequencing of MPRA libraries**

614                    To obtain MPRA sequencing libraries, frozen EJC-independent and EJC-enhanced  
615                    reporter cell lines were thawed. These cells were split into 6, 15 cm plates, 3 of which were  
616                    treated with DMSO and the other 3 treated with 0.5 µM SMG1i (technical replicates). These  
617                    plates were harvested for RNA in TRIzol Reagent (ThermoFisher Scientific, 15596018) after 24  
618                    hrs. TRIzol extractions were performed for RNA as per manufacturer's instructions. A DNase  
619                    digest was performed on 10 µg of RNA from each sample using the Turbo DNA-free kit  
620                    (ThermoFisher Scientific, AM1907), including reaction inactivation. Following this, 2 µg of

621 digested RNA was used to make cDNA using Superscript II Reverse Transcriptase in duplicate  
622 20 µL reactions (ThermoFisher Scientific, 18064014).

623 For library preparation, each cDNA sample was split into 20 PCR reactions (2 µL  
624 cDNA/PCR) and amplified using reporter-specific forward and reverse primers with UMIs  
625 (forward primer:  
626 ACACCTTTCCCTACACGACGCTCTCCGATCTGCAGACTTCCTCTGCCCTC; reverse  
627 primer: AGACGTGTGCTCTCCGATCTNNNNNNNNtggggcacagcctgaa, where the Ns refer to  
628 the nucleotides for the UMIs). PCR reactions were performed using Kapa HotStart PCR Kit  
629 (Roche, KAPA KK2502) using an annealing temperature of 69°C and 32x cycles. The 20 PCR  
630 reactions were pooled and 100 µL of all reactions were purified using AMPure XP beads. A  
631 second PCR reaction was performed on 25 ng of the purified product with primers containing  
632 Illumina adaptors. Once again, the Kapa HotStart PCR Kit was used, this time with an annealing  
633 temperature of 65°C and 8x cycles. Reactions were purified using AMPure XP beads and  
634 samples were run on an agarose gel to verify the library size. Libraries were sequenced using  
635 the Illumina sequencing platform NovaSeq 6000 (paired-end 2x150 cycles). A total of 50 million  
636 and 30 million reads were requested for the EJC-independent and EJC-enhanced libraries,  
637 respectively.

### 638 **MPRA data analysis**

639 To process the MPRA sequencing libraries, the UMI-tools repository was used to add the  
640 UMIs to the name of each read in the FASTA files (57). Following this, Cutadapt was used to trim  
641 the 5' and 3'ends of the reads in a sequence dependent manner, up to the 10 nt context of interest  
642 (58); ~25% of reads were lost in this process. SeqPrep was used to merge sequencing reads 1  
643 and 2, only accepting reads that perfectly align (<https://github.com/jstjohn/SeqPrep>); ~5% of reads  
644 were lost in this process. Bowtie was used to map the reads to a reference file of all sequence  
645 contexts (59); 1% of reads were lost in this process. Samtools was used to create a BAM file of  
646 mapped reads, followed by deduplicating the BAM files based on UMIs and converting the BAM  
647 files to BED files (60). Around 10% of reads were lost upon deduplication of UMIs. A custom  
648 python script was used to remove reads on the negative strand and to get a bed file of reads in  
649 the correct orientation.

650 The NMD activity of an individual reporter transcript was the log2-fold change in between  
651 DMSO-treated cells to SMG1i-treated cells calculated with DESeq2 (33). The reporter  
652 transcripts that do not undergo NMD, i.e. Trp codon rather than a stop codon at the PTC  
653 position, were used similar to housekeeping normalization controls within DESeq2. Both linear

654 models and random forest classifiers were performed in R. The code and packages used for  
655 these analyses can be found in this repository: [https://github.com/jagannathan-lab/2023-kolakada\\_et\\_al](https://github.com/jagannathan-lab/2023-kolakada_et_al).

657 **Luciferase assays**

658 For cells harvested from 24-well transfections, the media was aspirated, 400  $\mu$ L of 1x  
659 PLB from the Dual Luciferase Reporter Assay System (Promega, E1980) was added to the  
660 cellular monolayer per well, and the plate was frozen for subsequent luciferase assays. The  
661 frozen cells were brought to room temperature, transferred to tubes, and lysed thoroughly via  
662 vortexing for 30 s per sample. 20 $\mu$ L of this dilution was pipetted into a 96-well plate, in triplicate,  
663 per sample. The LAR II and Stop & Glo reagents were prepared as per the manufacturer's  
664 instructions, using 50  $\mu$ L per sample, each. Luciferase assay was performed using the Glomax  
665 Navigator (Promega, GM2010) as per the Dual Luciferase Assay Protocol.

666 **Lentiviral transductions**

667 Knockdowns were conducted using shRNAs. Plasmids containing shRNAs were first  
668 packaged into lentivirus. To do this, HEK293T cells were transfected with 4  $\mu$ g of the relevant  
669 shRNA vector (Functional Genomics Core, CU Anschutz), 3  $\mu$ g of psPAX2 (Addgene plasmid  
670 #12260), and 1  $\mu$ g of pMD2.G (Addgene plasmid #12259), in 80% confluent 6 cm plates. The  
671 shRNAs used were for scrambled (SCH016), UPF1 (TRCN000022254), UPF2  
672 (TRCN0000151381), UPF3B (TRCN0000152769), SMG1 (TRCN0000194827), SMG6  
673 (TRCN000040014), ZNF598 (TRCN000073159), EIF5A (TRCN0000062552), EIF3J  
674 (TRCN000062013), CUL2 (TRCN000006523), and ABCE1 (TRCN0000158417). Twenty-four  
675 hours after transfection the media was replaced with 3 mL of fresh media. Forty-eight hours  
676 after transfection media containing lentivirus was harvested and spun down at 1200 rpm for 5  
677 minutes. Aliquots of the supernatant were frozen at -80°C for later use.

678 For the knockdown experiments with the luciferase reporters, cells were seeded at a  
679 40% confluence in 6-wells and infected with 50  $\mu$ L of virus. Twenty-four hours post transduction,  
680 the cells were split into 24-wells at a 20% confluence. Forty-eight hours post transduction, the  
681 luciferase reporters were transfected into cells as described above. Seventy-two hours post-  
682 transduction the cells were harvested for luciferase assays. For knockdown validation  
683 experiments, the same procedure was followed without the transfection of luciferase reporters.

684

685 **RNA extraction and RT-qPCR**

686 For RT-qPCR used to validate knockdowns of SMG1, ZNF598, and EIF3J, RNA was  
687 extracted from cells using TRIzol Reagent (ThermoFisher Scientific). DNase digestion was  
688 performed with DNaseI (ThermoFisher Scientific, 18068-015) on 1 µg of extracted RNA. This  
689 was followed by cDNA synthesis using the SuperScript III First-Strand Synthesis kit, using  
690 random hexamers. A no-RT sample was included as a control to make sure there was no  
691 genomic DNA contamination. The cDNA was then diluted 1:4 and 2 µL were used per 10 µL  
692 qPCR reaction. qPCR was performed using iTaq Universal SYBR Green Supermix and primers  
693 specific for SMG1, ZNF598, EIF3J, and the housekeeping gene RPL27, were used at a final  
694 concentration of 0.25 µM. The following primers were used for each gene:

| Oligo    | Sequence (5' – 3')      |
|----------|-------------------------|
| RPL27_F  | GCAAGAAGAAGATGCCAAG     |
| RPL27_R  | TCCAAGGGATATCCACAGA     |
| SMG1_F   | TGGGAAAGACCACCACTGCACA  |
| SMG1_R   | TGCATGTGTTGACTGGCCTGCT  |
| ZNF598_F | TCGTTGGTGGCGAAGACTAC    |
| ZNF598_R | TCGGTCCTCTTCTCCCTT      |
| EIF3J_F  | GCAGATAAACTGCGGCTAAAGA  |
| EIF3J_R  | TCTCTGAAGATGGGTTCATAGCA |

695 Reactions were set up in triplicate per sample and plated in 384-well plates. The plates  
696 were then run on the OPUS Bio-Rad qPCR machine (Bio-Rad, 12011319) using the 2-step  
697 Amplification and melting curve protocol. For the knockdown validations, the Livak method (61)  
698 was used to quantify differences in RNA levels: SMG1, ZNF598, EIF3J, were normalized to  
699 RPL27. Mean RNA levels of 3 different transfections or 3 technical replicates of transductions  
700 were plotted, respectively. Error was calculated using standard error of the mean  
701 (fluorescent/luminescent reporters) or standard deviation (knockdowns).

702

### 703 Protein isolation and western blotting

704 Cells were harvested in RIPA buffer supplemented with complete protease inhibitor  
705 (Roche, 11836170001). Protein was run on NuPAGE Bis-Tris precast polyacrylamide gels  
706 (Thermo Fisher Scientific, NP0323BOX) alongside PageRuler Plus Prestained Protein Ladder  
707 (Thermo Fisher Scientific, 26619) and transferred to Odyssey nitrocellulose membrane (LI-COR  
708 Biosciences, 926-31092). Membranes were blocked in Intercept (PBS) Blocking Buffer (LI-COR  
709 Biosciences, 927-70001) before overnight incubation at 4°C with primary antibodies diluted in  
710 Blocking Buffer containing 0.2% Tween 20. Membranes were incubated with IRDye-conjugated

711 secondary antibodies (LI-COR Biosciences) for 1 h and fluorescent signal visualized using a  
712 Sapphire Biomolecular Imager (Azure Biosystems) and Sapphire Capture software (Azure  
713 Biosystems). When appropriate, membranes were stripped with Restore Western Blot Stripping  
714 Buffer (ThermoFisher Scientific) before being re-probed. Primary antibodies include anti-UPF1  
715 (Abcam, ab109363), anti-UPF2 (Cell Signaling, 11875S), anti-UPF3B (Abcam, ab134566), anti-  
716 SMG6 (ABclonal, A10141), anti-CUL2 (Bethyl Laboratories, A302-476A), anti-ABCE1 (Abcam,  
717 ab185548), anti-EIF5A (Abcam, ab32407), and anti-GAPDH (Abcam, ab9484). Secondary  
718 antibodies used include IRDye 650 Goat anti-Mouse IgG Secondary Antibody (LI-COR  
719 Biosciences, 926-65010) and IRDye 800CW Goat anti-Rabbit IgG Secondary Antibody (LI-COR  
720 Biosciences, 926-32211).

## 721 **Luminescent reporters for *in vitro* assays**

722 A pNL-globine vector derived from pNL1.1 vector (Promega), with a  $\beta$ -globin 5'UTR  
723 addition before nanoluciferase (NLuc) coding sequence was used (Shuvalov et al., 2021).  
724 Additional constructs were created based on pNL-globin, encoding NLuc with various  
725 substitutions of the codon before the stop codon using the QuikChange Site-Directed  
726 Mutagenesis Kit (Agilent Technologies, cat. 200518-5) was used. Primers were selected in the  
727 manufacturer's recommended web-based QuikChange Primer Design Program  
728 ([www.agilent.com/genomics/qcpd](http://www.agilent.com/genomics/qcpd)). For obtaining mRNA, the fragment of the plasmid were  
729 amplified using RV3L (CTAGCAAAATAGGCTGTCCCCAG) and FLA50  
730 (TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAACTTGTTATTGCAGC  
731 TTATAATGG) primers, as described in Shuvalov et al., 2021 (Shuvalov et al., 2021). Templates  
732 were run-off transcribed with the T7 RiboMAX <sup>TM</sup> Large Scale RNA Production System  
733 (Promega, P1320) kit according to the manufacturer's protocol. The mRNA was then purified  
734 sequentially by isolation in acidic phenol, precipitation with 3 M LiCl followed by 80% ethanol  
735 wash.

## 736 **Expression and purification of eRF1 and eRF3**

737 Recombinant eRF1 was expressed from the plasmid pET-SUMO-eRF1. To obtain pET-  
738 SUMO-eRF1, the eRF1 coding sequence was amplified from the plasmid pET23b-eRF1 (62)  
739 using primers petSUMO\_eRF1\_F (GAGAACAGATTGGTGGTATGGCGGACGACCCAG) and  
740 petSUMO\_eRF1\_R  
741 (CCGAATAAACCTAACGCTCTAGTAGTCATCAAGGTCAAAAAATTACCGTCTCCTCC).  
742 eRF1 was expressed in *E. coli* BL21(DE3) cells. The lysate was prepared by ultrasonification of  
743 the pelleted cells in a buffer composed of 20 mM Tris-HCl pH 7.5, 500 mM KCl, 10% glycerol,

744 0.1% Triton X-100, 0.5 mM PMSF, and 1 mM DTT. Following this, His-SUMO tag was cleaved  
745 by His-tagged Ulp1 protease. Untagged eRF1 was further purified by anion-exchange  
746 chromatography (HiTrap Q HP, Cytiva). Fractions enriched with eRF1 were collected, dialyzed  
747 in storage buffer, frizzed in liquid nitrogen, and stored at -70 °C. Recombinant eRF3A cloned  
748 into baculovirus vector EMBacY from a MultiBac expression system was expressed in the insect  
749 cell line Sf21. Following this, recombinant proteins were purified using Ni-NTA agarose and ion-  
750 exchange chromatography, as described previously (25).

751 **Expression, purification, and determination of luminescence or recombinant**  
752 **nanoluciferase**

753 To obtain recombinant NLuc with varying amino acids in the position -1 to the stop  
754 codon, corresponding constructs of pNL-globine were created using the petSUMO vector  
755 (Invitrogen, cat. K30001). Each vector was assembled via Gibson Assembly (NEB, cat. E2611L)  
756 using PCR products of the petSUMO backbone (forward primer:  
757 AGCTTAGGTATTATTGGCGCAAAGTG; reverse primer:  
758 ACCACCAATCTGTTCTCTGTGAGC) and pNL-globine inserts (forward primer:  
759 GAGAACAGATTGGTGGTATGGTCTTCACACTCGAAGATTGCGTTGG; reverse primer:  
760 CCGAATAAAATACCTAACGTTACGCCAGAACATGCGTCGCA) amplified using Q5 High-Fidelity  
761 DNA Polymerase (NEB, cat. M0491L). The resulting plasmids were expressed in *E. coli*  
762 BL21(DE3) and His-SUMO-Nluc was purified using Ni-affinity chromatography. Recombinant  
763 6xHis-ULP1 protease was added to purify 6xHisSUMO-Nluc and incubated for 2 hours. The  
764 6xHisSUMO fragment and 6xHis-ULP1 were then removed with Ni-NTA agarose to obtain  
765 purified Nluc without tags. 0.1 femtomole of recombinant Nluc was incubated in storage buffer,  
766 with the addition of BSA up to 500 µg/mL and 0.5 % NanoGlo (Promega). Luminescence was  
767 measured at 30°C using a Tecan Infinite 200 Pro (Tecan, Männedorf, Switzerland) in a 40 min  
768 time period. The luminescence of NLuc was calculated as a maximum of relative luminescence  
769 units (RLU<sub>max</sub>).

770 **Purification of the preTC-NLuc and Termi-Luc Assay**

771 For the Termi-Luc assay, preTCs translating NLuc (preTC-NLuc) were purified using  
772 previously published methods (63,64). 100% RRL lysate was preincubated in a mixture  
773 containing 1 mM CaCl<sub>2</sub> and 3 U/µL Micrococcal nuclease (Fermentas) at 30°C for 10 min,  
774 followed by the addition of EGTA to a final concentration of 4 mM. The lysate was then diluted  
775 to 70% (v/v) and supplemented with 20 mM HEPES-KOH (pH 7.5), 80 mM KOAc, 0.5 mM  
776 Mg(OAc)<sub>2</sub>, 0.3 mM ATP, 0.2 GTP, 0.04 mM of each of 20 amino acids (Promega), 0.5 mM

777 spermidine, 0.45  $\mu$ M aminoacylated total rabbit tRNA, 10 mM creatine phosphate, 0.003 U/ $\mu$ L  
778 creatine kinase (Sigma), 2 mM DTT, and 0.2 U/ $\mu$ L Ribolock (ThermoFisher) (70% RRL mix).

779 For preTC-NLuc assembly, 220  $\mu$ L of 70% RRL mix was preincubated in the presence  
780 of 1.7  $\mu$ M ERF1 G183A mutant (65) at 30° C for 10 min, followed by the addition of 10.5 pmol of  
781 NLuc mRNA. The mixture was incubated at 30°C for 40 min. The KOAc concentration was then  
782 adjusted to 300 mM and the mixture was layered on 5 ml of a 10–35% linear sucrose gradient in  
783 a buffer containing 50 mM HEPES-KOH, pH 7.5, 7.5 mM Mg(OAc)<sub>2</sub>, 300 mM KOAc, 2 mM DTT.  
784 The gradient was centrifuged in a SW55-Ti (Beckman Coulter) rotor at 55 000 rpm (367 598  
785 g<sub>max</sub>) for 1 h. The gradient was fractionated in 15 fractions of 150  $\mu$ L from bottom to top and the  
786 remaining sucrose was collected separately. Fractions of the first peak, enriched with the  
787 preTC-Nluc were analyzed by the Termi-Luc assay, merged, flash-frozen in liquid nitrogen, and  
788 stored at -70°C.

789 A peptide release assay with the preTC-NLuc (Termi-Luc) was performed as previously  
790 described with some modifications (63). Peptide release was performed in a solution containing  
791 1.5 pM preTC-Nluc, 45 mM HEPES-KOH pH 7.5, 1.4 mM Mg<sub>2</sub>OAc, 56 mM KOAc pH 7.0, 1 mM  
792 DTT, 177  $\mu$ M spermidine, 1.5 % (w/w) sucrose, 0.8 mM MgCl<sub>2</sub>, 0.2 mM GTP supplemented with  
793 equimolar MgCl<sub>2</sub>, and 0.5 % NanoGlo (Promega), in the absence or the presence of release  
794 factors eRF1 and eRF3a at various concentrations. Luminescence was measured at 30°C  
795 using a Tecan Infinite 200 Pro (Tecan, Männedorf, Switzerland) for 12 min. The translation  
796 efficiency was calculated as the maximal derivative of the growing linear section of the  
797 luminescence curve ( $v_0$ , RLU/min). For comparison of different preTCs, a single working  
798 concentration of 3 nM of eRF1-eRF3A was chosen in the linear section. The instability of the  
799 preTC-Nluc was evaluated in Termi-Luc assay in the absence of release factors.

800 The amount of preTC-Nluc was calculated as a maximum of relative luminescence  
801 (RLU<sub>max</sub>). To determine concentration of preTC-Nluc, 1.25  $\mu$ L of preTC sample were incubated  
802 in the presence of excess of eRF1 and eRF3a (100 nM). Luminescence was measured at 30°C  
803 using a Tecan Infinite 200 Pro (Tecan, Männedorf, Switzerland) for 40 min. PreTC concentration  
804 was considered in the translation termination rate experiments.

#### 805 **Translation of NLuc in RRL lysates**

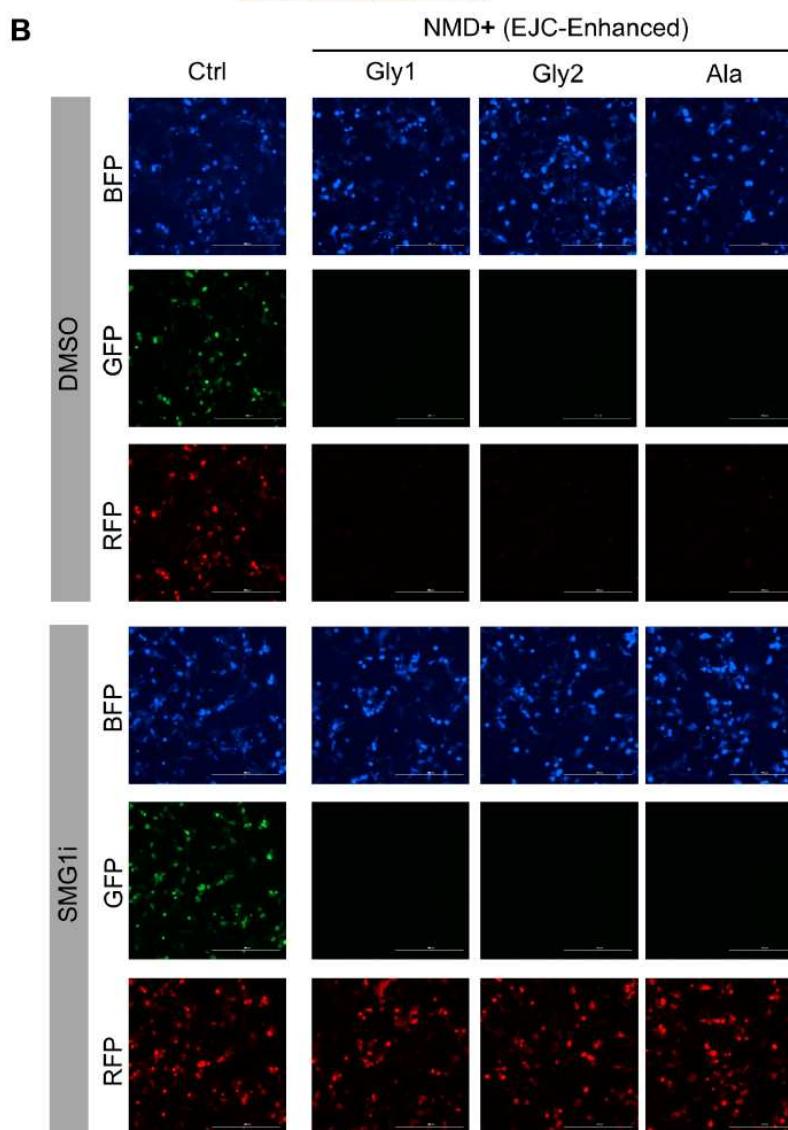
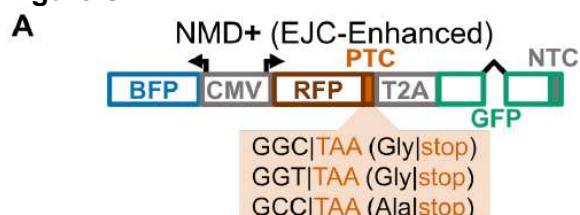
806 For translation of NLuc, 19  $\mu$ L of 70% RRL lysate prepared as described in Termi-Luc  
807 section, was mixed with 0.19  $\mu$ L of NanoGlo and 0.25 pmol of NLuc mRNA. Luminescence was  
808 measured at 30°C using a Tecan Infinite 200 Pro (Tecan, Männedorf, Switzerland) for 60 min.

809 The translation efficiency was calculated as a maximal derivative of the growing linear section of  
810 the luminescence curve ( $v_0$ , RLU/min).

## 811 **QUANTIFICATION AND STATISTICAL ANALYSIS**

### 812 **Data analysis, statistical tests, and visualization**

813 All experiments were performed with a sample size of at least n=3. For transient  
814 transfections, each replicate represents an independent transfection. For stably integrated cells,  
815 the same cell line was plated in 3 different wells, from which RNA and protein were harvested.  
816 Statistical significance between various populations was calculated using a student's t-test in R  
817 and p-values were two-sided (\* $p<0.05$ , \*\* $p<0.005$ , \*\*\* $p<0.0005$ ). Statistical details of specific  
818 experiments can be found in the Results, Methods, and/or Figure Legends. Plots were  
819 generated using R plotting functions and/or the ggplot2 package. The exact code and packages  
820 used for these analyses can be found in this repository: [https://github.com/jagannathan-lab/2023-kolakada\\_et\\_al](https://github.com/jagannathan-lab/2023-kolakada_et_al).

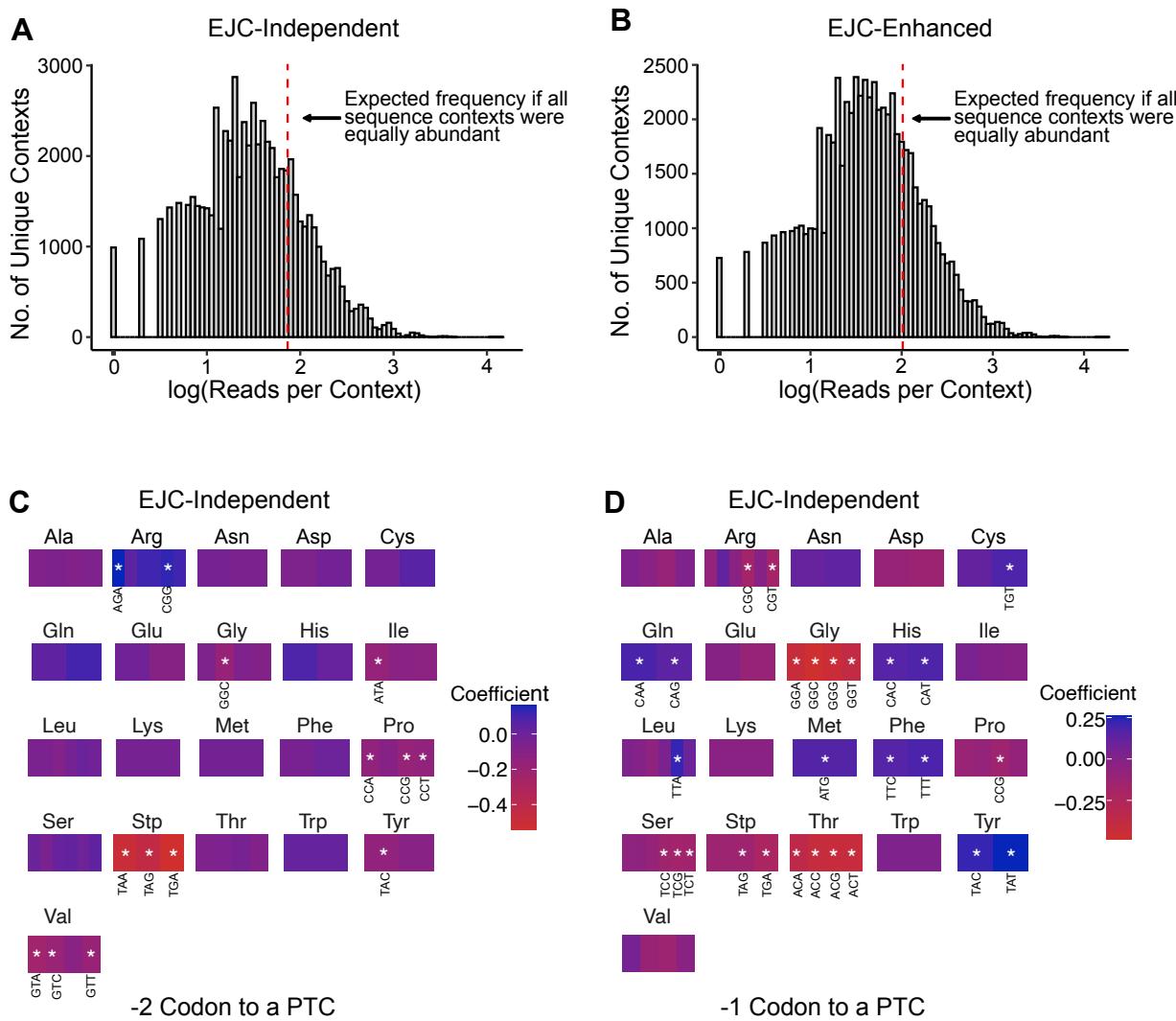


822

823 **SUPPLEMENTAL INFORMATION**

824

825 **SUPPLEMENTARY FIGURES**

826 **Figure S1**



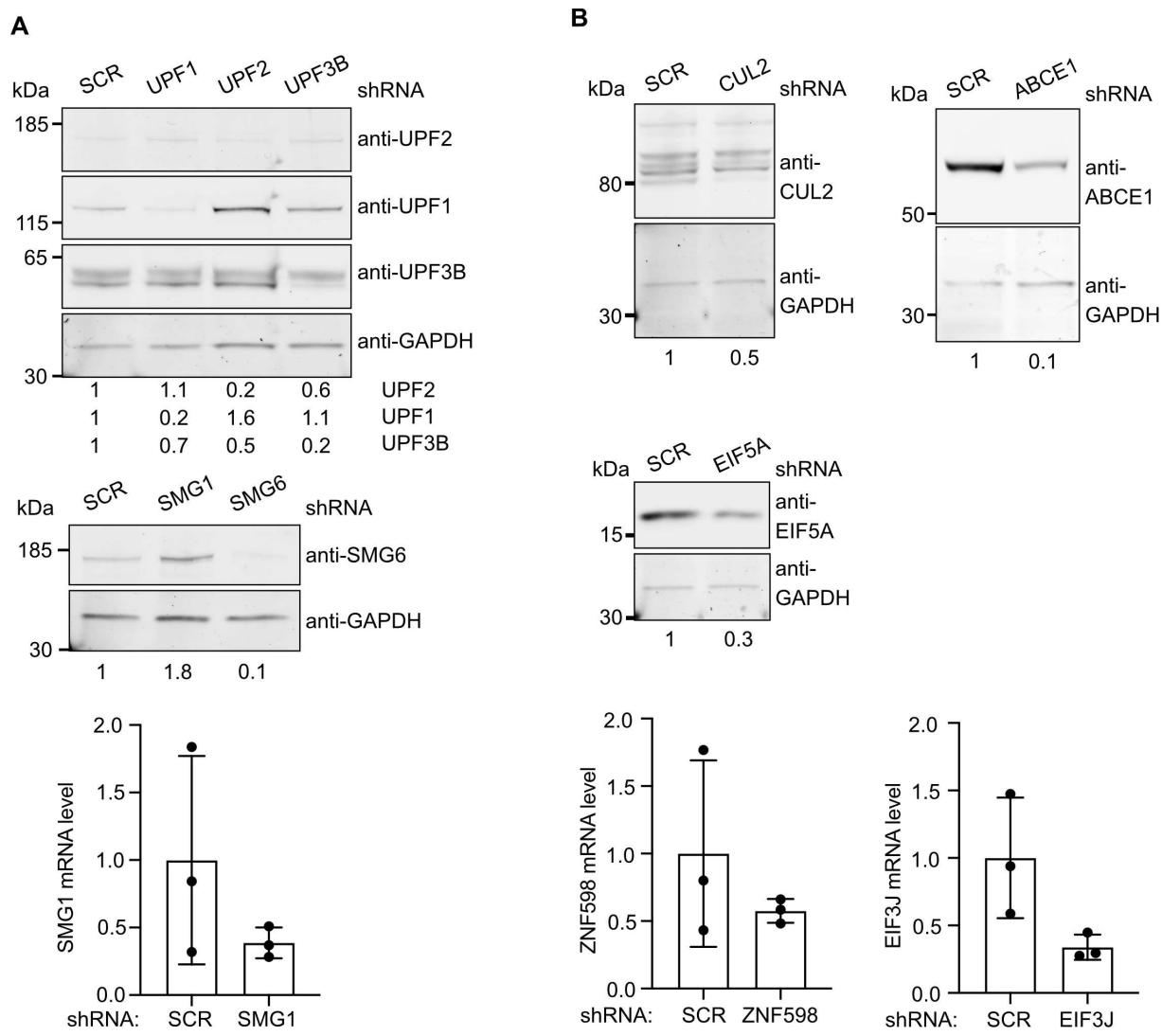

827

828 **Figure S1. EJC-enhanced reporters do not express RFP in any context.** (A) Schematic of  
829 EJC-enhanced NMD reporter system used. (B) Fluorescence imaging of BFP, GFP, and RFP

830 from cells transfected with EJC-enhanced NMD reporters containing Gly-PTC or Ala-PTC  
831 reporters, treated with a DMSO as a control or SMG1i. Ctrl refers to a construct that robustly  
832 expresses all three fluorescent proteins. Gly1 and Gly2 are the GGC and GGT codons for Gly.  
833 The codon used for Ala was GCC.

834 **Figure S2.**




835

836 **Figure S2.** MPRA library representation and codon linear modeling. **(A)** Plasmid library  
 837 representation for the EJC-independent NMD+ reporter library. **(B)** The same as (A) but for the  
 838 EJC-enhanced NMD+ reporter library. **(C)** Heat map depicting the linear modeling coefficients for  
 839 the EJC-independent library for each codon -2 to a PTC. **(D)** Same as C but for the -1 codon.

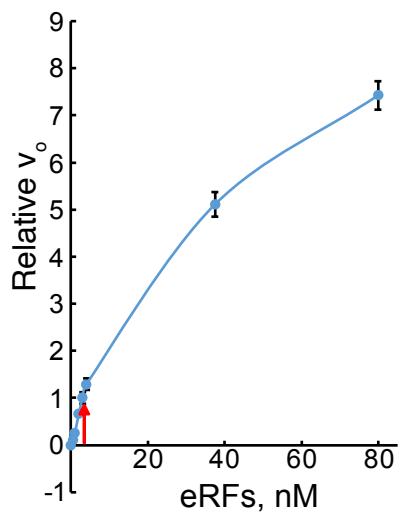
840

841

842 **Figure S3.**



843


844 **Figure S3.** Knockdown validations for all shRNAs used. **(A)** Top: western blot validating UPF1,  
 845 UPF2, and UPF3B knockdowns; middle: western blot validating SMG6 knockdown; bottom:  
 846 qPCR validation of SMG1 knockdown. **(B)** Top left: western blot for CUL2 knockdown validation;  
 847 top right: western blot for ABCE1 knockdown validation; middle left: western blot for EIF5A  
 848 knockdown validation; bottom left: qPCR validation of ZNF598 knockdown; bottom right: qPCR  
 849 validation for EIF3J knockdown. GAPDH was the loading control for all western blots. RPL27  
 850 was the housekeeping gene for all qPCRs. qPCRs were performed in triplicate.

851

852

853 **Figure S4.**

854



855

856 **Figure S4.** Determining the optimum concentration of release factors to use for the Termi-Luc  
857 assay.

858

859

860 **Table 1:** Confusion matrices for the EJC-independent and EJC-enhanced classifier

| Prediction      | Reference  | n   |
|-----------------|------------|-----|
| EJC-Independent |            |     |
| NMD Escape      | NMD Escape | 504 |
| Strong NMD      | NMD Escape | 96  |
| NMD Escape      | Strong NMD | 271 |
| Strong NMD      | Strong NMD | 329 |
| EJC-Enhanced    |            |     |
| NMD Escape      | NMD Escape | 166 |
| Strong NMD      | NMD Escape | 434 |
| NMD Escape      | Strong NMD | 131 |
| Strong NMD      | Strong NMD | 469 |

861

862 **Table 2:** Model metrics for the EJC-independent and EJC-enhanced classifier

| EJC-Independent      |      |
|----------------------|------|
| Sensitivity          | 0.84 |
| Specificity          | 0.55 |
| Pos Pred Value       | 0.65 |
| Neg Pred Value       | 0.77 |
| Precision            | 0.65 |
| Recall               | 0.84 |
| F1                   | 0.73 |
| Prevalence           | 0.50 |
| Detection Rate       | 0.42 |
| Detection Prevalence | 0.65 |
| Balanced Accuracy    | 0.69 |
| EJC-Enhanced         |      |
| Sensitivity          | 0.28 |
| Specificity          | 0.78 |
| Pos Pred Value       | 0.56 |
| Neg Pred Value       | 0.52 |
| Precision            | 0.56 |
| Recall               | 0.28 |
| F1                   | 0.37 |
| Prevalence           | 0.50 |
| Detection Rate       | 0.14 |
| Detection Prevalence | 0.25 |
| Balanced Accuracy    | 0.53 |

863 **SUPPLEMENTARY DATA**

864

865 **Supplementary Table 1.** DEseq2 results for the EJC-independent library of sequences  
866 representing the fold change of DMSO over SMG1i treatment of cells.

867

868 **Supplementary Table 2.** DEseq2 results for the EJC-enhanced library of sequences  
869 representing the fold change of DMSO over SMG1i treatment of cells.

870 **REFERENCES**

871

872 1. Miller, J.N. and Pearce, D.A. (2014) Nonsense-mediated decay in genetic disease:  
873 friend or foe? *Mutat Res Rev Mutat Res*, **762**, 52-64.

874 2. Mort, M., Ivanov, D., Cooper, D.N. and Chuzhanova, N.A. (2008) A meta-analysis of  
875 nonsense mutations causing human genetic disease. *Human mutation*, **29**.

876 3. Nagy, E. and Maquat, L.E. (1998) A rule for termination-codon position within intron-  
877 containing genes: when nonsense affects RNA abundance. *Trends Biochem Sci*, **23**,  
878 198-199.

879 4. Gerbracht, J.V., Boehm, V., Britto-Borges, T., Kallabis, S., Wiederstein, J.L., Ciriello, S.,  
880 Aschemeier, D.U., Kruger, M., Frese, C.K., Altmuller, J. *et al.* (2020) CASC3 promotes  
881 transcriptome-wide activation of nonsense-mediated decay by the exon junction  
882 complex. *Nucleic Acids Res*, **48**, 8626-8644.

883 5. Lykke-Andersen, J., Shu, M.D. and Steitz, J.A. (2001) Communication of the position of  
884 exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1.  
885 *Science*, **293**, 1836-1839.

886 6. Hogg, J.R. and Goff, S.P. (2010) Upf1 senses 3'UTR length to potentiate mRNA decay.  
887 *Cell*, **143**, 379-389.

888 7. Kurosaki, T. and Maquat, L.E. (2013) Rules that govern UPF1 binding to mRNA 3'  
889 UTRs. *Proc Natl Acad Sci U S A*, **110**, 3357-3362.

890 8. Sato, H. and Singer, R.H. (2021) Cellular variability of nonsense-mediated mRNA decay.  
891 *Nat Commun*, **12**, 7203.

892 9. Neu-Yilik, G., Amthor, B., Gehring, N.H., Bahri, S., Paidassi, H., Hentze, M.W. and  
893 Kulozik, A.E. (2011) Mechanism of escape from nonsense-mediated mRNA decay of  
894 human beta-globin transcripts with nonsense mutations in the first exon. *RNA*, **17**, 843-  
895 854.

896 10. Zhang, J. and Maquat, L.E. (1997) Evidence that translation reinitiation abrogates  
897 nonsense-mediated mRNA decay in mammalian cells. *EMBO J*, **16**, 826-833.

898 11. Lindeboom, R.G.H., Vermeulen, M., Lehner, B. and Supek, F. (2019) The impact of  
899 nonsense-mediated mRNA decay on genetic disease, gene editing and cancer  
900 immunotherapy. *Nat Genet*, **51**, 1645-1651.

901 12. Jagannathan, S. and Bradley, R.K. (2016) Translational plasticity facilitates the  
902 accumulation of nonsense genetic variants in the human population. *Genome Res*, **26**,  
903 1639-1650.

904 13. Teran, N.A., Nachun, D.C., Eulalio, T., Ferraro, N.M., Smail, C., Rivas, M.A. and  
905 Montgomery, S.B. (2021) Nonsense-mediated decay is highly stable across individuals  
906 and tissues. *Am J Hum Genet*, **108**, 1401-1408.

907 14. Loughran, G., Chou, M.Y., Ivanov, I.P., Jungreis, I., Kellis, M., Kiran, A.M., Baranov, P.V.  
908 and Atkins, J.F. (2014) Evidence of efficient stop codon readthrough in four mammalian  
909 genes. *Nucleic Acids Res*, **42**, 8928-8938.

910 15. Tork, S., Hatin, I., Rousset, J.P. and Fabret, C. (2004) The major 5' determinant in stop  
911 codon read-through involves two adjacent adenines. *Nucleic Acids Res*, **32**, 415-421.

912 16. Baker, S.L. and Hogg, J.R. (2017) A system for coordinated analysis of translational  
913 readthrough and nonsense-mediated mRNA decay | PLOS ONE. *PLoS ONE*, **12**(3):  
914 **e0173980**.

915 17. McCaughan, K.K., Brown, C.M., Dolphin, M.E., Berry, M.J. and Tate, W.P. (1995)  
916 Translational termination efficiency in mammals is influenced by the base following the  
917 stop codon. *Proc Natl Acad Sci U S A*, **92**, 5431-5435.

918 18. Pierson, W.E., Hoffer, E.D., Keedy, H.E., Simms, C.L., Dunham, C.M. and Zaher, H.S.  
919 (2016) Uniformity of Peptide Release Is Maintained by Methylation of Release Factors.  
920 *Cell Rep*, **17**, 11-18.

921 19. Mangalaphiban, K., He, F., Ganesan, R., Wu, C., Baker, R. and Jacobson, A. (2021)  
922 Transcriptome-wide investigation of stop codon readthrough in *Saccharomyces*  
923 *cerevisiae*. *PLoS Genet*, **17**, e1009538.

924 20. Bonetti, B., Fu, L., Moon, J. and Bedwell, D.M. (1995) The efficiency of translation  
925 termination is determined by a synergistic interplay between upstream and downstream  
926 sequences in *Saccharomyces cerevisiae*. *J Mol Biol*, **251**, 334-345.

927 21. Cridge, A.G., Crowe-McAuliffe, C., Mathew, S.F. and Tate, W.P. (2018) Eukaryotic  
928 translational termination efficiency is influenced by the 3' nucleotides within the  
929 ribosomal mRNA channel. *Nucleic Acids Res*, **46**, 1927-1944.

930 22. Amrani, N., Ganesan, R., Kervestin, S., Mangus, D.A., Ghosh, S. and Jacobson, A.  
931 (2004) A faux 3'-UTR promotes aberrant termination and triggers nonsense-mediated  
932 mRNA decay. *Nature*, **432**, 112-118.

933 23. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. and Izaurralde, E. (2007) A  
934 conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-  
935 mediated mRNA decay. *EMBO J*, **26**, 1591-1601.

936 24. Ivanov, P.V., Gehring, N.H., Kunz, J.B., Hentze, M.W. and Kulozik, A.E. (2008)  
937 Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an  
938 integrated model for mammalian NMD pathways. *EMBO J*, **27**, 736-747.

939 25. Ivanov, A., Mikhailova, T., Eliseev, B., Yeramala, L., Sokolova, E., Susorov, D.,  
940 Shuvalov, A., Schaffitzel, C. and Alkalaeva, E. (2016) PABP enhances release factor  
941 recruitment and stop codon recognition during translation termination. *Nucleic Acids*  
942 *Res*, **44**, 7766-7776.

943 26. MacArthur, D.G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K.,  
944 Jostins, L., Habegger, L., Pickrell, J.K., Montgomery, S.B. *et al.* (2012) A systematic  
945 survey of loss-of-function variants in human protein-coding genes. *Science*, **335**, 823-  
946 828.

947 27. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins,  
948 R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P. *et al.* (2020) The mutational constraint  
949 spectrum quantified from variation in 141,456 humans. *Nature*, **581**, 434-443.

950 28. Koren, I., Timms, R.T., Kula, T., Xu, Q., Li, M.Z. and Elledge, S.J. (2018) The Eukaryotic  
951 Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. *Cell*, **173**,  
952 1622-1635 e1614.

953 29. Lin, H.C., Yeh, C.W., Chen, Y.F., Lee, T.T., Hsieh, P.Y., Rusnac, D.V., Lin, S.Y.,  
954 Elledge, S.J., Zheng, N. and Yen, H.S. (2018) C-Terminal End-Directed Protein  
955 Elimination by CRL2 Ubiquitin Ligases. *Mol Cell*, **70**, 602-613 e603.

956 30. Loughran, G., Li, X., O'Loughlin, S., Atkins, J.F. and Baranov, P.V. (2023) Monitoring  
957 translation in all reading frames downstream of weak stop codons provides mechanistic  
958 insights into the impact of nucleotide and cellular contexts. *Nucleic Acids Res*, **51**, 304-  
959 314.

960 31. Kolakada, D., Campbell, A.E., Galvis, L.B., Li, Z., Lore, M. and Jagannathan, S. (2023) A  
961 system of reporters for comparative investigation of EJC-independent and EJC-  
962 enhanced nonsense-mediated mRNA decay. *bioRxiv*, 2023.2011.2014.567061.

963 32. Khandelia, P., Yap, K. and Makeyev, E.V. (2011) Streamlined platform for short hairpin  
964 RNA interference and transgenesis in cultured mammalian cells. *Proc Natl Acad Sci U S*  
965 **A**, **108**, 12799-12804.

966 33. Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and  
967 dispersion for RNA-seq data with DESeq2. *Genome Biol*, **15**, 550.

968 34. Buhler, M., Steiner, S., Mohn, F., Paillusson, A. and Muhlemann, O. (2006) EJC-  
969 independent degradation of nonsense immunoglobulin-mu mRNA depends on 3' UTR  
970 length. *Nat Struct Mol Biol*, **13**, 462-464.

971 35. Chu, V., Feng, Q., Lim, Y. and Shao, S. (2021) Selective destabilization of polypeptides  
972 synthesized from NMD-targeted transcripts. *Mol Biol Cell*, **32**, ar38.

973 36. Singh, G., Rebbapragada, I. and Lykke-Andersen, J. (2008) A competition between  
974 stimulators and antagonists of Upf complex recruitment governs human nonsense-  
975 mediated mRNA decay. *PLoS Biol*, **6**, e111.

976 37. Grosjean, H. and Westhof, E. (2016) An integrated, structure- and energy-based view of  
977 the genetic code. *Nucleic Acids Res*, **44**, 8020-8040.

978 38. Bazzini, A.A., Del Viso, F., Moreno-Mateos, M.A., Johnstone, T.G., Vejnar, C.E., Qin, Y.,  
979 Yao, J., Khokha, M.K. and Giraldez, A.J. (2016) Codon identity regulates mRNA stability  
980 and translation efficiency during the maternal-to-zygotic transition. *EMBO J*, **35**, 2087-  
981 2103.

982 39. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M.,  
983 Dreyfuss, G. and Ohno, S. (2006) Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex  
984 (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-  
985 mediated mRNA decay. *Genes Dev*, **20**, 355-367.

986 40. Yamashita, A., Izumi, N., Kashima, I., Ohnishi, T., Saari, B., Katsuhata, Y., Muramatsu,  
987 R., Morita, T., Iwamatsu, A., Hachiya, T. *et al.* (2009) SMG-8 and SMG-9, two novel  
988 subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex  
989 during nonsense-mediated mRNA decay. *Genes Dev*, **23**, 1091-1105.

990 41. Arias-Palomo, E., Yamashita, A., Fernandez, I.S., Nunez-Ramirez, R., Bamba, Y., Izumi,  
991 N., Ohno, S. and Llorca, O. (2011) The nonsense-mediated mRNA decay SMG-1 kinase  
992 is regulated by large-scale conformational changes controlled by SMG-8. *Genes Dev*,  
993 **25**, 153-164.

994 42. Wallmeroth, D., Lackmann, J.W., Kueckelmann, S., Altmuller, J., Dieterich, C., Boehm,  
995 V. and Gehring, N.H. (2022) Human UPF3A and UPF3B enable fault-tolerant activation  
996 of nonsense-mediated mRNA decay. *EMBO J*, **41**, e109191.

997 43. Juszkiewicz, S., Chandrasekaran, V., Lin, Z., Kraatz, S., Ramakrishnan, V. and Hegde,  
998 R.S. (2018) ZNF598 Is a Quality Control Sensor of Collided Ribosomes. *Mol Cell*, **72**,  
999 469-481 e467.

1000 44. Schrader, R., Young, C., Kozian, D., Hoffmann, R. and Lottspeich, F. (2006)  
1001 Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-  
1002 mediated decay pathway. *J Biol Chem*, **281**, 35336-35346.

1003 45. Pelechano, V. and Alepuz, P. (2017) eIF5A facilitates translation termination globally  
1004 and promotes the elongation of many non polyproline-specific tripeptide sequences.  
1005 *Nucleic Acids Res*, **45**, 7326-7338.

1006 46. Schuller, A.P., Wu, C.C., Dever, T.E., Buskirk, A.R. and Green, R. (2017) eIF5A  
1007 Functions Globally in Translation Elongation and Termination. *Mol Cell*, **66**, 194-205  
1008 e195.

1009 47. Egorova, T., Biziaev, N., Shuvalov, A., Sokolova, E., Mukba, S., Evmenov, K., Zotova,  
1010 M., Kushchenko, A., Shuvalova, E. and Alkalaeva, E. (2021) eIF3j facilitates loading of  
1011 release factors into the ribosome. *Nucleic Acids Res*, **49**, 11181-11196.

1012 48. Jackson, R.J., Hellen, C.U. and Pestova, T.V. (2012) Termination and post-termination  
1013 events in eukaryotic translation. *Adv Protein Chem Struct Biol*, **86**, 45-93.

1014 49. Hellen, C.U.T. (2018) Translation Termination and Ribosome Recycling in Eukaryotes.  
1015 *Cold Spring Harb Perspect Biol*, **10**.

1016 50. Zhu, X., Zhang, H. and Mendell, J.T. (2020) Ribosome Recycling by ABCE1 Links  
1017 Lysosomal Function and Iron Homeostasis to 3' UTR-Directed Regulation and  
1018 Nonsense-Mediated Decay. *Cell Rep*, **32**, 107895.

1019 51. Frolova, L.Y., Tsivkovskii, R.Y., Sivolobova, G.F., Oparina, N.Y., Serpinsky, O.I., Blinov,  
1020 V.M., Tatkov, S.I. and Kisilev, L.L. (1999) Mutations in the highly conserved GGQ motif  
1021 of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-  
1022 tRNA hydrolysis. *RNA*, **5**, 1014-1020.

1023 52. Landrum, M.J., Lee, J.M., Benson, M., Brown, G.R., Chao, C., Chitipiralla, S., Gu, B.,  
1024 Hart, J., Hoffman, D., Jang, W. *et al.* (2018) ClinVar: improving access to variant  
1025 interpretations and supporting evidence. *Nucleic Acids Res*, **46**, D1062-D1067.

1026 53. Tate, W.P. and Mannerling, S.A. (1996) Three, four or more: the translational stop signal  
1027 at length. *Mol Microbiol*, **21**, 213-219.

1028 54. Imamachi, N., Salam, K.A., Suzuki, Y. and Akimitsu, N. (2017) A GC-rich sequence  
1029 feature in the 3' UTR directs UPF1-dependent mRNA decay in mammalian cells.  
1030 *Genome Res*, **27**, 407-418.

1031 55. Lejeune, F. and Maquat, L.E. (2005) Mechanistic links between nonsense-mediated  
1032 mRNA decay and pre-mRNA splicing in mammalian cells. *Curr Opin Cell Biol*, **17**, 309-  
1033 315.

1034 56. Mazo-Vargas, A., Park, H., Aydin, M. and Buchler, N.E. (2014) Measuring fast gene  
1035 dynamics in single cells with time-lapse luminescence microscopy. *Mol Biol Cell*, **25**,  
1036 3699-3708.

1037 57. Smith, T., Heger, A. and Sudbery, I. (2017) UMI-tools: modeling sequencing errors in  
1038 Unique Molecular Identifiers to improve quantification accuracy. *Genome Res*, **27**, 491-  
1039 499.

1040 58. Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput  
1041 sequencing reads. *2011*, **17**, 3.

1042 59. Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. *Nat  
1043 Methods*, **9**, 357-359.

1044 60. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,  
1045 Abecasis, G., Durbin, R. and Genome Project Data Processing, S. (2009) The Sequence  
1046 Alignment/Map format and SAMtools. *Bioinformatics*, **25**, 2078-2079.

1047 61. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using  
1048 real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*, **25**, 402-408.

1049 62. Frolova, L., Seit-Nebi, A. and Kisseelev, L. (2002) Highly conserved NIKS tetrapeptide is  
1050 functionally essential in eukaryotic translation termination factor eRF1. *RNA*, **8**, 129-136.

1051 63. Susorov, D., Egri, S. and Korostelev, A.A. (2020) Termi-Luc: a versatile assay to monitor  
1052 full-protein release from ribosomes. *RNA*, **26**, 2044-2050.

1053 64. Shuvalov, A., Shuvalova, E., Biziaev, N., Sokolova, E., Evmenov, K., Pustogarov, N.,  
1054 Arnautova, A., Matrosova, V., Egorova, T. and Alkalaeva, E. (2021) Nsp1 of SARS-CoV-  
1055 2 stimulates host translation termination. *RNA Biol*, **18**, 804-817.

1056 65. Alkalaeva, E.Z., Pisarev, A.V., Frolova, L.Y., Kisseelev, L.L. and Pestova, T.V. (2006) In  
1057 vitro reconstitution of eukaryotic translation reveals cooperativity between release factors  
1058 eRF1 and eRF3. *Cell*, **125**, 1125-1136.

1059