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Mechanosensitive genomic enhancers potentiate the cellular response to matrix stiffness
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Epigenetic control of cellular transcription and phenotype is influenced by changes in the cellular
microenvironment, yet how mechanical cues from these microenvironments precisely influence
epigenetic state to regulate transcription remains largely unmapped. Here, we combine genome-
wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA-seq CRISPR
screening to identify a new class of genomic enhancers that responds to the mechanical
microenvironment. These ‘mechanoenhancers’ could be active on either soft or stiff extracellular
matrix contexts, and regulated transcription to influence critical cell functions including apoptosis,
mechanotransduction, proliferation, and migration. Epigenetic editing of mechanoenhancers on
rigid materials tuned gene expression to levels observed on softer materials, thereby
reprogramming the cellular response to the mechanical microenvironment. These editing
approaches may enable the precise alteration of mechanically-driven disease states.
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The cellular microenvironment is a potent regulator of cellular behavior (Z, 2). Stimuli
from the microenvironment are often classified as chemical or mechanical in nature. Chemical
stimuli regulate nearly every fundamental cell process by activating signaling pathways that
ultimately converge in the nucleus to alter the epigenetic state of the cell and govern transcriptional
networks. Recent studies have applied newly developed CRISPR screening approaches and
epigenetic profiling to determine how many aspects of the cellular microenvironment alter the
epigenetic landscape, including the investigation of chemical stimuli such as hormones and
cytokines (3—6). Mechanical stimuli from the microenvironment, such as stiffness of the
extracellular matrix (ECM) or applied mechanical forces, are also potent regulators of many
fundamental cell processes, including growth, death, differentiation, and migration (7—10).
However the mechanisms through which mechanical stimuli are converted into precise patterns of
gene expression are not as well-characterized or understood at the genomic level.

The most well-described mechanosensitive mechanisms of gene regulation are associated
with either nucleocytoplasmic shuttling of transcription factors and co-activators or epigenetic
changes that alter chromatin accessibility to promote downstream transcription (/7). For instance,
mechanical stimuli can inhibit the Hippo signaling pathway to prevent the phosphorylation of the
transcriptional co-activator YAP, facilitating its transport to the nucleus where it interacts with
TEAD transcription factors to alter gene expression (/2—/4). Similarly, mechanosensitive
signaling pathways that promote F-actin polymerization release the transcriptional co-activator
MRTF from sequestration by G-actin, thereby facilitating its transport to the nucleus where it
interacts with SRF transcription factors to regulate genes (/5—/7). These mechanical signals can
also regulate nuclear transport by stretching the nuclear pore complex (NPC) in a process
facilitated by Ran GTPases (/8) that also leads to translocation of transcriptional activators
including YAP (/9). Mechanical cues can drive epigenetic changes in the nucleus through both
indirect and direct regulation. For example, indirect epigenetic signaling occurs via mechanical
stretching of cells that leads to epigenetic reinforcement by regulating methyltransferases and/or
acetyltransferases and subsequent H3K27me3 deposition that modulates transcription (20-23).
Additionally, exogenous mechanical force may directly influence DNA accessibility, whereby
applied force to the cell leads to chromatin deformation that correlates with bursts of transcription
(24, 25).

Traditionally, the binding of transcription factors and co-activators at promoter regions has
been the classical mechanism through which proteins in the genome are thought to influence
transcription of target genes. However, genome annotation efforts over the last two decades have
shown that gene regulatory regions occur predominantly outside promoters and are frequently
located within non-coding genomic regions (26). For instance, the mechanosensitive co-activators
YAP/TAZ preferentially bound to distal non-coding genomic regions in cells cultured on rigid
tissue culture plastic (27, 28). One particularly well-studied class of distal genomic regulatory
elements are enhancers, which act across variable genomic distances to regulate transcription and
are often marked by a combination of chromatin accessibility (e.g., DNase-seq, ATAC-seq),
presence of active histone marks (e.g., H3K27ac), depletion of repressive histone marks (e.g.,
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H3K9me3), TF binding, and chromatin looping to distal target genes (29). The complex logic of
gene regulation by these distal elements has been notoriously difficult to dissect, but advances in
high-throughput CRISPR screening and single-cell genomics have transformed the capability to
classify how and where these cis-regulatory elements modulate transcription across the genome
(4,5, 30, 31).

Despite these recent developments, we still do not fully understand how and where
mechanical stimuli affect the non-coding genome to regulate transcriptional responses that
ultimately determine key cell phenotypes. Here, we utilized genome-wide profiling of chromatin
accessibility along with epigenetic editing, high-throughput CRISPR screening, and single-cell
sequencing tools to characterize how ECM stiffness cues activate cis-regulatory elements to
regulate gene expression. Through this work we identify and validate a novel set of cis-regulatory
elements that are responsive to changes in the mechanical microenvironment. For simplicity, we
term these regions as ‘mechanoenhancers’, and show they behave as key drivers for downstream
mechanically-driven behaviors in human cells.

Results

Widespread changes in chromatin accessibility result from short-term exposure to physiologically
soft or stiff substrates

We first characterized the response of gene expression and chromatin structure to changes
in ECM stiffness cues by culturing primary human neonatal foreskin fibroblasts (HFF cells) on
substrate stiffness conditions that represent a wide range of pericellular niches across various
tissues in health and disease. Fibroblasts were chosen for these analyses because they have a wide
range of available functional genomics data, play a key role in ECM synthesis, and can contribute
to disease states in tissue fibrosis (32). HFF cells were cultured for 20 hours on either soft (Elastic
modulus, E = 1 kPa, mimicking the softest connective tissues) or stiff (E= 50 kPa, mimicking
organized musculoskeletal tissues or fibrotic lesions) polyacrylamide hydrogels (9, 33, 34) as well
as on tissue culture plastic (TCP, E= ~1 GPa). The 20-hour time point minimizes transcriptional
feedback that could further complicate understanding the direct influence of ECM stiffness on
epigenetic state. Following 20 hours of culture on the soft or stiff hydrogels, HFF cells were
harvested to examine both transcriptional changes (RNA-seq) and chromatin accessibility changes
(ATAC-seq) in response to these ECM stiffness cues (Fig. 1A). We performed all sequencing
experiments in at least duplicate per condition, and all RNA-seq and ATAC-seq data were highly
reproducible and passed quality control metrics established by the ENCODE Consortium (Fig. S1,
Table S1). Transcriptomic analysis identified 1,535 significant differentially-expressed genes
(Fig. 1B-C, Table S2). We found significantly increased expression of genes related to changes
in ECM remodeling, apoptotic factors, anti-fibrotic programs, and cell lineage establishing factors
on soft hydrogels, while canonical genes associated with YAP/TAZ translocation and pro-fibrotic
programs were significantly upregulated on stiffer materials (Fig. 1C), similar to previous studies

(35, 36).
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We next compared changes in chromatin accessibility between the soft and stiff hydrogel
conditions by ATAC-seq. Following 20 hours of culture on these materials, we observed
widespread changes in chromatin accessibility, with ~21% of total identified accessible chromatin
peaks having significantly differential accessibility between conditions, with an even balance of
peaks that were more accessible on soft or stiff materials (Fig. 1D-E, Table S3). Sites that were
more accessible on the stiff hydrogel had a fivefold increase in the frequency of peaks located in
promoter regions as compared to the peaks that were more accessible on soft hydrogels (Fig. 1E),
in accordance with previous observations of increased mechanoresponsive TF shuttling into the
nucleus (79). To further understand which TF signaling modules might be mediating these changes
in accessibility, we performed de novo TF motif analysis in the entire set of differentially-
accessible peaks for both material conditions. The peaks with increased accessibility on soft
hydrogels were enriched with AP-1 motifs compared to genomic background. Peaks more
accessible on stiff hydrogels were enriched with TEAD, AP-1, SP1, and CaRG motifs (Fig. 1F),
as has been previously observed for mechanoresponsive pathways (27, 37-39). Interestingly, the
de novo motifs identified for AP-1 were markedly different between soft and stiff materials (Fig.
S2). Different motif usage can be associated with specific AP-1 complexes across different AP-1
family members (40). Our findings of different de novo AP-1 motif enrichment in the soft and stiff
materials suggest that AP-1 sub-unit formation might differ across these contexts. We found that
stiffness-dependent accessibility changes often mapped near canonical mechanosensitive genes (9,
27,41, 42), including increased accessibility on 1 kPa hydrogels near MMP14 and PPARG (Fig.
1G), and increased accessibility on 50 kPa hydrogels near the YAP targets ANKRDI and RADI8
(Fig. 1H). For all of these examples, increased accessibility correlated with increased expression
across the stiffness conditions (Fig. 1G-H).

We next explored the short-term reversibility of changes in accessibility following changes
in intracellular acto-myosin contractility. Rho-associated protein kinases (ROCKs) are regulators
of both acto-myosin contractility and actin organization in the cell, and are a key driver of the
cellular sensing of matrix stiffness cues (9) that are relevant to cellular growth, migration, and
apoptosis. We cultured HFF cells on stiff (50 kPa) hydrogels overnight, and then treated the cells
with either DMSO or 10 uM of the ROCK inhibitor Y-27632 (ROCK:i) for 1 hour prior to harvest
for ATAC-seq directly on the culture substrates. This allowed for the reduction of cell contractility
while avoiding other changes associated with cell trypsinization. We observed 2,052 peaks with
differential accessibility relative to DMSO-treated cells cultured on the same surface,
demonstrating that cell contractility is required for the maintenance of the stiffness-induced
changes and that downstream remodeling of chromatin accessibility could happen within an hour
of contractile changes (Fig. S3, Table S4). This is also consistent with the previous observation
that external mechanical stimuli and increases in intracellular contractility drive similar
mechanosensitive processes (43).
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An intronic mechanoenhancer increases MYH9 expression on stiff materials.

As cell contractility was required for the maintenance of changes in chromatin accessibility
observed in stiff hydrogels, we next investigated cis-regulation of the non-muscle myosin genes
MYHY, MYHI0, and MYHI4. These genes encode for non-muscle myosin IIA IIB, and IIC
respectively, which are the primary drivers of cellular contractility in non-muscle cells (44). In
primary HFF cells, MYH9 is the predominantly expressed non-muscle myosin and the only non-
muscle myosin that showed ECM stiffness-dependent changes in expression (Fig. 2A). Our
ATAC-seq analysis identified 14 regions that were differentially-accessible between soft and stiff
substrates that mapped within 100kb of the MYH9 transcriptional start site (TSS). We sought to
test if any of these 14 stiffness-dependent peaks near MYHY functioned as stiffness-induced
modulators of MYHY expression. To perturb the epigenetic state at any specific genomic locus we
utilized CRISPR interference (CRISPRi) with the dCas9¥RAB epigenome editor. dCas9KRAB
catalyzes the addition of repressive histone marks at the target site (e.g., H3K9me3) along with the
removal of active histone marks (e.g., H3K4me3/H3K27ac) to decrease chromatin accessibility
and induce epigenetic silencing (45, 46). We first performed a CRISPRi screen using dCas9XRAB
combined with a gRNA library tiling all ATAC-seq peaks in HFF cells (regardless of if they were
mechanically-sensitive) within +/- 440 kb of the MYH9 TSS (114 regions, 5,192 gRNAs) (Fig.
2B). To identify regions regulating MYH9 expression, cells were fixed and stained for MYH9
(NMIIA), sorted into MYH9-high and MYH9-low expression bins, and compared for their
distributions of gRNAs (Supplementary Text 1, Fig. S4, Tables S5-6, Methods). Across these
gRNAs, we identified five putative regulatory elements (pREs) as strong regulators of MYHO9
protein expression including two pREs in the MYHY promoter/TSS region and three pREs within
a ~5 kb section of intron 3 of MYHY (Fig. 2C-D). Of the three pREs in intron 3, only the first pRE
was differentially accessible between the soft and stiff hydrogel culture conditions (Fig. 2E).
Further examination of H3K27ac signatures across diverse ENCODE biosamples around the sub-
region of differential accessibility showed low signal in suspension or weakly adherent cell lines
(e.g., K562 cells), but greater signal across increasingly adherent and contractile cell lines (e.g.,
HUVEC/HSMM, Fig. 2F). Thus, as the stiffness of the culture environment increases, canonical
indicators of enhancer activity also increase, suggesting that the activity of the MYH9 pRE#I is
responsive to mechanical cues across cell types.

To validate the screen results, we first delivered single gRNAs targeting the three MYH9
intron 3 pREs (pREs #1/2/3, two gRNA per pRE) along with dCas9¥®4B via lentivirus and
analyzed MYH9 mRNA expression by qPCR, revealing all three of the MYH9 pREs regulated
MYH9 mRNA expression (Fig. S5). For follow-up experiments we used the most effective gRNA
targeting the stiffness-sensitive pRE#1. At nine days post-transduction, targeting the MYH9 intron
3 pRE#1 led to ~54% repression of MYHY transcript levels compared to HFF cells that received a
non-targeting gRNA and dCas9¥R4B (Fig. 2G). This degree of change of MYH9 mRNA levels
following epigenetic repression of the MYH9 intron 3 pRE#1 is consistent with the decreases
observed in MYH9 mRNA expression between cells cultured on TCP and soft 1kPa hydrogels by
RNA-seq (Fig. 2A, levels marked on Fig. 2G graph). When delivering a MYHY promoter-targeting
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gRNA along with dCas9¥RAB we saw ~87% repression of MYHY transcript levels (Fig. 2G).
Following immunostaining of MYH9 and FACS, we also identified similar fold-changes in MYH9
protein levels 15 days after transduction of the gRNA along with dCas9*®AB (Fig. S6). Thus, the
MYH9 intron 3 pRE#1 functions as a mechanoenhancer and dictates MYH9 expression in response
to ECM stiffness cues.

To further identify the influence of the MYH9 mechanoenhancer on cellular contractility,
we assessed changes in cell morphology and in key mechanosensitive machinery 9 days after
epigenetic repression of the MYH9 promoter or mechanoenhancer on rigid tissue culture plastic.
Vinculin-containing focal adhesions (FAs) are a key mechanoresponsive subcellular structures,
and their size and shape are strongly dependent on myosin activity (44, 47). Epigenetic repression
of the promoter led to substantial changes in cell size and a near complete loss of vinculin-
containing focal adhesions (Fig. S7). Epigenetic repression of the MYH9 intronic
mechanoenhancer (MYH9 intron 3 pRE#1) did not cause large changes in cell morphology, but
altered acto-myosin organization (Fig. 2H, Fig. S7). Immunostaining with vinculin and FA
quantification revealed no significant changes in total cell area (Fig. 2J) or total number of FAs
per cell (Fig. 2I). However, we did observe significantly lower area per FA (Fig. 2K), suggesting
a lower contractile state of these cells compared to cells that received the non-targeting control
gRNA. Collectively, this work identifies an ECM stiffness responsive MYH9 enhancer in intron 3
that behaves as a mechanoenhancer.

Nuclease-active Cas9 and densely tiled saturating gRNA libraries have been used to
determine key motifs involved in enhancer function by introducing a variety of disruptive small
insertions and deletions through non-homologous end joining (NHEJ)-based DNA repair (48).
Sequence changes in cells with a loss of enhancer function are then used to identify key motfis.
We adapted this Cas9 screening approach to identify motifs in the MYH9 intron 3
mechanoenhancer that control MYH9 expression. We used a stable HFF-Cas9 cell line and
introduced all 64 potential gRNAs tiling across the MYH9 intron 3 mechanoenhancer, and sorted
cells based on MYHY protein expression as the screen endpoint (Fig. 2L, Table S7). We identified
three gRNAs that substantially decreased MYH9 expression on TCP relative to the other gRNAs
across the mechanoenhancer (Fig. 2M). We observed that gRNA #24 and gRNA #43 had cut sites
directly overlapping an SRF/CaRG motif and an HLTF (helicase like transcription factor) motif,
respectively (Fig. 2N-O). Upon delivery of these individual gRNAs, MYH9 mRNA expression
was significantly decreased, with a maximum of ~30% repression by gRNA #24 (Fig. 2P).
Cytosolic G-actin ratios regulate the mechanically responsive nuclear shuttling of MRTF-A, which
then interacts with DNA-bound SRF to further regulate transcription (49). HLTF is a key member
of the SWI/SNF complex, which has been implicated in actin-based YAP/TAZ release and
subsequent DNA binding (50). Together, these results suggest that actin-associated
mechanosensitive processes drive MYH9 mechanoenhancer activity.
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An intronic mechanoenhancer of BMF is more active on soft materials and is a key driver of the
ECM stiffhess-driven apoptotic response

Low material substrate stiffness, low adhesion states, and restriction of cell spreading have
been shown to increase apoptosis or adipogenesis (7, 8, 51, 52). Increased apoptosis due to lack of
ECM engagement is termed anoikis (53, 54). A key step in cancer progression is developing
anoikis-resistance (55). From our RNA-seq data we noted that BMF, a key transcriptional effector
of anoikis, was strongly upregulated on soft substrates (Fig. 3A). We also identified a cluster of
three ATAC-seq peaks that were significantly more accessible on soft hydrogels located near BMF
(Fig. 3B). We first used a luciferase reporter of enhancer activity to determine whether these
differentially-accessible peaks near BMF functioned as putative regulatory elements governing
BMF transcription. Genomic DNA from all three regions was cloned into the luciferase reporter
plasmid, reporter plasmids were transfected into HFF cells cultured on TCP, and luciferase activity
was measured 24 hours later. Since BMF transcription was increased in the low contractility
context of soft materials, we hypothesized that the addition of ROCKi Y-27632 should increase
luciferase reporter activity. Only BMF pRE#1 in intron 4 demonstrated any basal enhancer reporter
activity on TCP. Following treatment with 10 uM Y-27632, pRE#1 enhancer reporter activity was
significantly greater than the activity in DMSO-treated cells, while other regions remained at basal
levels. This indicates that pRE#1 enhancer activity is increased in lower contractility
environments, further supporting the function of this region in increasing BMF expression
preferentially on soft substrates (Fig. 3C).

We next tested the ability of BMF pRE#1 to regulate BMF transcription and anoikis. To
study this behavior, we utilized a canonical model system for anoikis wherein Latrunculin-A
(LatA) treatment is used to depolymerize the actin cytoskeleton to induce loss of FAs and integrin
engagement to mimic loss of adhesion to the ECM (56). We first transduced HFF cells with
dCas9¥RAB and either a non-targeting gRNA or a gRNA targeting either BMF pRE#1 or the BMF
promoter. After eight days of culture we evaluated BMF mRNA levels. Treatment with LatA
increased BMF expression ~60-fold compared to DMSO-treated cells (Fig. 3D). Repression of
BMF pRE #1 and the BMF promoter reduced the LatA-dependent increase in BMF expression by
~60% and ~85%, respectively (Fig. 3D). We then assessed changes in apoptosis by measuring
Caspase-3/7 activity using a luciferase reporter system at day 14 post-transduction (8 days +LatA).
Repression of BMF pRE #1 reduced LatA-induced cell apoptosis by ~50% while BMF promoter
repression completely prevented LatA-induced apoptosis relative to the DMSO-treated control
condition (Fig. 3E). Collectively, these data show that pRE#1 acts as a mechanoenhancer of BMF
that is more active on softer ECMs and functions to promote anoikis.

High-throughput CRISPR screening identifies key mechanoenhancers that modulate cellular
growth and migration

To wunderstand which cis-regulatory elements contribute most strongly towards
mechanosensitive cellular behaviors, we performed high-throughput CRISPRi screening with
cellular growth and migration as the phenotypic readouts. We first generated a library of 21,458
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gRNAs targeting the top 1000 non-promoter ATAC-seq peaks ranked by increased accessibility
on stiff hydrogels (Tables S3, 8). We also included gRNAs targeting the promoters of 53 genes
that had previously been shown to modulate migration (57) as positive controls, and 1000 negative
control non-targeting gRNAs. HFF cells were transduced at an MOI of 10.8 to maximize library
coverage across a smaller subset of cells and then were assessed for changes in growth or migration
(Fig. 4A). For the growth screen, genomic DNA was collected on day 8 and day 29/30 (14
population doublings), sequenced, and gRNA enrichment was compared across groups. For the
migration screen, at eight days post-transduction we performed a transwell migration assay that
allowed cells to migrate overnight. These populations were then separated and used in an
additional migration assay the next day. Cell populations that either successfully migrated through
the transwell assay twice and those that never migrated through the transwell were collected,
genomic DNA was harvested, and gRNA enrichment across populations was determined from
sequencing (Methods).

We observed strong effects from promoter-targeting of the positive control genes. In the
growth screen, we found that perturbation of both DepMap essential genes (GPKOW, EIF3E,
ACTGI, CSNKI1A1, PCYTIA, PTPN23)(58, 59) and genes related to cell growth (ABL1, ITGBS,
G3BP2, OTUDG6B) led to decreases in cell proliferation (60, 61). In the migration screen, we found
that the promoter-targeted repression of key genes known to influence cell adhesion and force
generation, including ITGAV, ACTG1, CDC42, and TPM3(57), decreased cell migration (Fig. S8).
We observed that perturbations to mechanically-sensitive test regions led to similar degrees of
enrichment as perturbations of positive control genes (Fig. S8). When analyzing the distribution
of effect sizes for gRNAs across a given peak, we noted strong Z-score enrichment of only a
fraction of the gRNAs across both screens (Fig. 4B-C), which is consistent with previous reports
of epigenetic editing of regulatory elements (37).

In total, we identified 58 and 50 pREs that regulated either migration or proliferation,
respectively, and 7 regions regulating both phenotypes (Fig. 4D, Tables S8-9, Methods).
Although ECM stiffness is known to influence both cell growth and migration (62, 63), we found
no correlation between phenotype scores across pREs regulating either or both phenotypes (Fig.
S9A). Furthermore, perturbations of pREs that regulated only migration or both phenotypes, had
greater effects on migration compared to pREs that regulated only growth. There was no difference
between the same groups for the growth phenotype (Fig. S9B). We examined the genomic contexts
of two strong hit pREs: 1) an intronic pRE located within the gene SKP2 that was identified in the
growth screen (pRE #32) (Fig. 4C,E), and 2) an intergenic pRE located near the gene CYR6/ that
was identified in the migration screen (pRE #62) (Fig. 4B,E). Both SKP2 and CYR61 were more
highly expressed on 50kPa versus 1kPa surfaces (Fig. 1B-C). Upregulation of SKP2 has been
linked to metastasis and inhibition of SKP2 can suppress cancer cell proliferation (64) and previous
work identified the region near pRE #62 as a CYR61 enhancer that is activated in colorectal cancer
development (65). Our work further links the mechanical microenvironment as a potential factor
in disease progression.
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We next asked whether any of the pREs from the growth and migration screens were likely
to be functional in other cell and tissue types. We quantified the overlap of the pREs with
accessible chromatin regions in 95 of the ENCODE biosamples (Table S10, Supplementary Text
2). We found these pREs generally clustered across cell types into three main groups: 1) pREs that
overlap accessible regions in all or most biosamples (“ubiquitous”), 2) pREs that overlap
accessible regions in a majority of biosamples (“prevalent”), and 3) pREs that overlap accessible
regions only in biosamples of similar cell or tissue types (“lineage-specific”) (Fig. S10). pREs had
the greatest overlap with accessible chromatin regions for highly adherent cell types (e.g.,
endothelial and fibroblast lineages) and the least overlap with suspension cell types (e.g., T-cells
and K562 cells), in accordance with our observation that the H3K27ac signal of the MYH9
mechanoenhancer increased as the adherence of the cell type increased (Fig. 2F).

Single cell CRISPRIi screening identifies gene targets regulated by mechanoenhancers that drive
cellular growth and migration

To identify the gene targets that were regulated by the pREs identified in the proliferation
and migration screens, we made a sub-library of gRNAs targeting 87 of the pREs (10 gRNAs/pRE)
with the largest effect sizes in either or both of the previous screens (Methods). This library also
included positive controls of promoter-targeting and known enhancer-targeting gRNAs, and 100
non-targeting negative control gRNAs, for a total of 1,005 gRNAs in the sub-library (Table S11).
We transduced HFF cells expressing dCas9%RAB cultured on TCP with this gRNA library at 0.33
MOV, and eight days post-transduction we profiled 103,440 quality single cell transcriptomes (Fig.
5A). We recovered a median of 1 gRNA per cell and identified an average of 159 cells containing
each gRNA (Fig. S11A-B). To identify significant gene linkages to each pRE, we tested cells that
had each gRNA versus all cells that did not receive that gRNA, and compared expression for all
genes within +/- IMb from the targeted pRE (Fig. 5B, Table S12, Methods), as previous studies
suggest that most cis-regulatory interactions occur within this distance (30, 66—68).

In total, we identified 201 significant pRE-gene connections and connected 65 pREs to at
least one gene (74.7%, 65/87), linking a median of 2 genes to every significant pRE and 1 pRE to
each gene with at least one connection (Fig. S11C-E, Methods). We recovered one pRE with >10
gene linkages that was accessible across multiple ENCODE biosamples (“ubiquitous” cluster, Fig.
S12, Supplementary Text 3). For the positive controls, we recovered 92% of expected promoter-
targeting and 100% of enhancer-targeting gRNA-gene connections (Fig. S13A) that resulted in
significant decreases in target gene expression (Fig. S13B-E). Notably, perturbation to the MYH9
intron 3 enhancer (Fig. 2) led to reduced MYH9 expression and also increases in expression of two
additional genes, APOL?2 (~90kb downstream) and RAC2 (~900kb upstream). Across the identified
pRE-gene linkages, the magnitude of gene expression change correlated positively with the basal
gene expression level, showing that more highly expressed genes are more robustly repressed (Fig.
S14A), and change in gene expression diminished as the distance between pRE and target gene
increased (Fig. S14B-D), consistent with previous work (30).
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Prediction methods for linking noncoding regulatory elements to the affected gene(s) often
rely on genomic proximity (e.g., nearest gene) or chromatin conformation data. We first computed
the number of genes located between the pRE and the target gene. In contrast to predictions that
nominate the nearest gene as the target of a cis-regulatory element, we found a median of 3 and a
mean of 6.5 genes were “skipped” by the pRE to regulate target gene expression (Methods).
Moreover, 37.1% of pRE-gene links have at least one other gene in between the pRE and the
regulated gene, with 21.8% of links skipping at least five genes (Fig. S1SA-B). This result is
consistent with previous work in which 33% of identified enhancer-gene pairs in K562 cells
skipped at least one gene (4, 5, 30, 31). We next assessed the overlap of the pRE-gene links with
high-resolution Micro-C chromatin contact data (69) (Methods). We observed all targeted pREs
and all genes within the tested window have at least one chromatin contact. Only 13.8% of pRE-
gene links identified in this study have annotated Micro-C chromatin looping between the pRE
and the promoter region of the paired gene. CRISPRi perturbation of the pairs with evidence of
looping led to a significantly greater decrease in gene expression than those without looping and
those pairs were also located closer in genomic space than those without looping (Fig. S15C-D).
We observed the same trend at a relaxed pRE-gene link FDR threshold of 0.05 (Fig. S1SE-F).
These results demonstrate that enhancers often may not regulate the nearest gene and also provide
functional evidence for potential sub-analysis threshold looping and/or looping-independent cis-
regulatory interactions.

Genes linked to mechanically regulated pREs play key roles in diverse cellular functions

Next we examined the downstream target genes for many of the pREs that showed strong
functional significance in driving growth or migration during screening. We first assessed the
positive control MYH9 promoter and mechanoenhancer perturbations, and observed that targeting
the mechanoenhancer led to ~50% of the repression as targeting the MYH9 promoter (Fig. SC), in
agreement with the previous singleton gRNA experiments (Fig. 2G). We next compared the effect
size of the top eight pRE-gene linkages from the growth and migration screens (ranked by
phenotype Z-score) to the impact on target gene expression in the single cell screen, with the top
two pRE-gene linkages that influenced single cell gene expression for comparison (Fig. SD).
pRE#62, which had the strongest combination of effects on gene expression and migration,
connected to CYRG6/. Similarly, pRE #740 perturbation had strong effects on both CTGF gene
expression as well as cellular growth (Fig. SE). Both CYR61 and CTGF are canonical YAP/TAZ
target genes. CYR61 has been strongly linked to migratory phenotypes across many cell-types (70),
and CTGF is known to play key roles in cellular growth (71, 72).

pREs that we identified as being strong drivers of cell migration were found to change the
expression of genes known to function in mechanoresponsive and cell migration-related pathways
(Fig. 5C). These include CYR61 (CCNI, Fig. S16), DUSP4 (Fig. S17A-B), FAM98B and
RASGRPI (Fig. S18), and RANGAPI (Fig. S19) (Supplementary Text 4). Targeting growth pREs
led to changes in expression of genes with known functions in cell proliferation, including CTGF
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(CCN2, Fig. 5E), NF?2 (Fig. S16C,D), and SKP2 (Fig. S20) as well as a novel regulator of cell
proliferation, RFLNB (Fig. S17C-D) (Supplementary Text 5).

To validate the pRE-gene linkages identified in the scRNA-seq CRISPRi screen, we
selected 13 pRE-gene connections for singleton gRNA validations and validated 30 gRNAs across
these connections. During validation, we delivered individual gRNAs to the same HFF CRISPRi
cell line cultured on TCP and assayed for changes in gene expression via RT-qPCR at eight days
post-transduction. Through these validations we confirmed 10/13 pRE-gene connections and
identified mechanoenhancers of CTGF, RFLNB, SKP2, NF?2 from the growth screen and CYR61,
DUSP4, FAM98B, RASGRP1, RANGAPI, and ZC3H7B from the migration screen (Fig. 5C-D,
Fig. S16-20, Table S13). The changes in mRNA expression in the validations were significantly
correlated with the gene expression changes in the single cell screen (Fig. S21). Culturing HFF
cells on increasingly stiffer substrates led to increases in expression of the pRE-linked genes,
CTGF, SKP2, and RANGAPI, and treatment of HFF cells with the ROCKi Y-27632, for only one
hour, led to changes in chromatin accessibility of the CTGF, SKP2, and RANGAPI
mechanoenhancers demonstrating their plasticity and responsiveness to changes in intracellular
actomyosin contractility (Fig. SE-H, Fig. S19D-E, Fig. S20B-C). Collectively, these data
demonstrate that many of the pREs identified in the screen are bona fide mechanoenhancers that
regulate the expression of key genes and ultimately alter cell growth and migration in response to
ECM stiffness cues.

Mechanoenhancers regulate genes that play key roles in fibrosis

Since cellular responses to increased tissue stiffness can lead to both tumor growth and
fibrosis (73), we explored whether the pRE-connected genes functioned in related disease
processes. Using the union set of all genes connected to at least one pRE in the single cell screen,
we performed gene set over-representation analysis and observed significant overlap with cancer-
and fibrosis-related molecular signatures, biological pathways, and TF binding at promoter regions
(Fig. S22A-B, Table S14). In idiopathic pulmonary fibrosis (IPF), fibroblast populations are
characterized by uncontrolled proliferation and survival, and can remodel the ECM to a stiffer pro-
fibrotic environment (74, 75). Therefore, we sought to determine if the stiffness-activated pREs
may contribute to tissue responses or transformations in IPF. We compared the accessibility of the
pREs in diseased IPF versus healthy lung tissue (76). We found that accessible chromatin regions
that overlapped hit pREs identified in the bulk phenotype screens and pREs connected to a gene
in the single cell CRISPRIi screen were significantly more accessible in IPF lung tissue versus lung
tissue from unaffected controls (Fig. S23A-B). Given this difference in chromatin accessibility,
we hypothesized that the genes regulated by the pREs would be upregulated in disease-associated
cells. We compared the expression profiles of pRE-connected genes in lung tissue from individuals
with IPF using a previously published single cell gene expression dataset (77) (Methods).
Compared to random permutations, we observed that the pRE-connected genes were more highly
expressed in the pathogenic fibroblast population (‘HAS1 High”) compared to all other cell types
(Fig. 5I). These results further support a role for mechanoresponsive pREs regulating gene
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expression in pathogenic cell types in the context of a disease with a dysregulated mechanical
microenvironment.

Conclusions

Using complementary genome-wide epigenetic profiling, epigenetic editing, phenotypic
screening, and single cell CRISPRi screening methods, we identified a class of cis-regulatory
elements that are responsive to changes in material stiffness, and refer to these elements as
‘mechanoenhancers’ for simplicity. Mechanoenhancers could be more active on either soft or stiff
substrates. Detection of stiff material cues by cells requires intracellular contractility, and
accordingly we found that blocking cell contractility via ROCKi was sufficient to substantially
reduce chromatin accessibility of ECM stiffness-sensitive peaks. Functional screening revealed
that some pREs could act as key transcriptional drivers influencing a number of fundamental cell
processes, including ECM mechanosensing, apoptosis, cellular growth, and migration.

Using single cell CRISPRIi screening, we linked downstream target genes for 75% of the
pREs identified as hits in the functional growth and migration screens. These mechanoenhancer-
gene connections revealed that, unlike promoter-based regulation, mechanoenhancers often
regulated multiple downstream gene targets (with a median of 2 recovered linkages per pRE) and
regulated transcription across large genomic distances. Epigenetic repression of stiffness-activated
mechanoenhancers resulted in marked reductions in target gene expression (with a range of ~15-
90% repression and a median of ~50% repression), even in the continued presence of strong
mechanical stimuli such as rigid tissue culture plastic. This suggests that epigenome editing of
mechanoenhancers can be an effective means of decoupling mechanically-driven behaviors from
the mechanical stimuli.

On stifft ECM conditions, we found that the activities of multiple canonical
mechanosensitive signaling pathways likely combine to play a large role in driving
mechanoenhancer activity. In peaks with increased chromatin accessibility on stiff materials, we
found enrichment in motifs for many previously identified mechanosensitive transcription factors
(including TEAD, AP-1, SP-1, and SRF/CaRG) in addition to motifs for signaling pathways that
have not previously been associated with mechanosensing pathways (BORIS, E2F3, MED1)(27,
36)(37, 78). Through unbiased functional screening, we further identified key mechanoenhancers
driving downstream gene targets of these mechanosensitive pathways, including
mechanoenhancers for the canonical YAP/TAZ target genes CTGF (growth screen) and CYR61
(migration screen)(79). A key question for future work will be determining how these
mechanosensitive pathways work in concert to regulate changes in gene expression. To this end,
we noted that the nuclease-active Cas9 editing screen of the MYH9 mechanoenhancer revealed
that both a SRF/CaRG motif as well as a HLTF motif contributed strongly to enhancer function,
suggesting that mechanoenhancers may be key integrators of mechanosensitive signaling
pathways.
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Previous studies examining chromatin accessibility in soft hydrogel conditions with
ATAC-seq did not find peaks with increased accessibility on soft materials(37, 39). However,
through the use of on-plate ATAC-seq processing that did not require de-adhesion of cells prior to
collection, we identified a subset of peaks that were more accessible on soft ECM. Peaks with
significantly increased chromatin accessibility in soft ECM environments were ~5-fold depleted
in promoter regions as compared to the peaks found to be increasingly accessible on stiff ECM.
De novo motif analysis of these peaks reveal that AP-1 family motifs were by far the most enriched
motif (present in over 50% of the peaks), with lower-level enrichment for RUNX1, FOXF1, and
CEBPE motifs. AP-1 motifs were also recovered in peaks more open on stiff ECM, though the
motifs were markedly different with the stiff ECM AP-1 motif having higher levels of GC content.
The lower GC content present in the soft ECM AP-1 motif as compared to the stiff ECM AP-1
motif supports stronger enhancer binding by AP-1 in the soft ECM accessible peaks. Partial
assembly of transcription factors or co-activators at non-coding loci can function as an enhancer
selector or priming for potential enhancer functionality (80). Further, this enhancer selection was
driven by AP-1 binding. We note that peaks more accessible on soft ECM do not become further
activated with increasing stiffness, suggesting that they could be primed to interact with other
microenvironmental stimuli. Chemical and mechanical stimuli have previously been shown to
interact in a combinatorial fashion to drive downstream behaviors including differentiation and
transformation (7, 52), and we postulate that this AP-1 priming in response to mechanical stimuli
may play a key role in this functionality.

In contrast to the well-described mechanosignaling pathways that increase transcription on
stiff ECM, there is less known about mechanosensitive signaling pathways that drive increased
transcription on soft ECM and/or inhibit transcription on stiff ECM (/7). Recent work has begun
to describe mechanisms of mechanically-induced epigenetic repression. Dynamic mechanical
stretch leads to deposition of H3K27me3 resulting in transcriptional repression (2/-23).
Furthermore, resistance to apoptosis induced by EGFRi/MEKIi drug treatments in NSCLC cells is
driven by YAP complexing with the SLUG (SNAI2) transcriptional repressor at genomic loci to
drive epigenetic repression of BMF(81). Specifically in NSCLC cells on tissue culture plastic,
YAP and SLUG proteins were both complexed with DNA across intergenic and intronic peaks
near BMF including the stiffness-repressed BMF intron 4 mechanoenhancer identified in our work.
A key topic for future investigation will be to better understand which mechanosensitive signaling
pathways may combine to promote epigenetic repression of mechanoenhancers on stiff ECM. We
posit that one common mechanism of the enhanced activity of mechanoenhancers on soft ECMs
could be the lack of stiffness-induced epigenetic repression.

One common characteristic of mechanically-induced disease states, including cancer,
atherosclerosis, and fibrosis, is the feed-forward mechanical signaling driving these disease
conditions (8§2—84). During feed-forward signaling in these disease contexts, small changes in
ECM stiffness activate the expression of genes that serve to further reinforce these signaling
changes (83, 86). We identified mechanoenhancers that drive the activation of multiple genes that
likely contribute feed-forward signaling due to their functionality, including CTGF, CYR61,
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MYH9, RFLNB, RANGAPI, RASGRPI, and NF2. One clear example of a single feed-forward loop
is through the activity of the mechanoenhancer for RANGAPI, a key factor in cytoplasmic-nuclear
shuttling that promotes increased import into the nucleus (/8, 87). In this feedforward pathway,
mechanical force activates the mechanoenhancer resulting in increased RANGAPI expression,
which potentially promotes nuclear import and further increases the sensitivity of that cell to
subsequent mechanical signals. This is consistent with a proposed biophysical mechanism of
mechanical force biasing nuclear transport, and extends that model to suggest that this process may
be tuned by transcriptional feedback of key nuclear transport machinery like RANGAPI (88).
Similarly, the MYH9 mechanoenhancer drives increased expression of MYH9 in response to ECM
stiffness, thereby initiating a possible feed-forward mechanical loop (89) wherein enhanced
contractility potentially further activates the mechanoenhancer and subsequent changes in gene
transcription then serve to reinforce functional states.

We additionally identified evidence that these mechanoenhancers may be active in the
idiopathic pulmonary fibrosis disease state. Specifically, we found that hit pREs from the
functional screens were significantly more accessible in bulk IPF lung tissue compared to healthy
tissue (76). We also found that target genes of stiffness-activated mechanoenhancers were
significantly and specifically upregulated in the pathogenic ‘Has1’ fibroblast sub-population that
contributes to increased collagen deposition in IPF (75). This further supports a mechanism by
which mechanical cues from the diseased cellular microenvironment may activate
mechanoenhancers that further potentiate both intracellular and extracellular feed-forward
signaling that contributes to disease progression.

In this work we show that mechanoenhancers act as key downstream mediators of
mechanosensitive signaling pathways and can function as strong drivers of cellular behavior.
Epigenetic repression of these mechanoenhancers with CRISPRi allowed for the decoupling of
these ECM-driven cellular behaviors from their mechanical stimuli. Therapeutic modulation of
known gene targets implicated in mechanical disease states like cancer, atherosclerosis, and
fibrosis has historically proven to be challenging, as the repression of these genes usually
additionally removes the key homeostatic function of these genes. We find that mechanoenhancers
regulate several genes known to be central players in these feedforward loops. Since epigenome
editing of key mechanoenhancers can function to break the feed-forward signaling loops that
dictate mechanical disease states while leaving homeostatic function intact, they may provide
novel therapeutic targets in mechanosensitive diseases. Moving forward, epigenome editing of
mechanoenhancers will be a powerful tool towards the precise engineering of the cellular response
to the mechanical microenvironment, and could have widespread applications in both cell
engineering and gene therapy.
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Fig. 1. Short-term culture on physiologically-soft materials results in broad changes in gene expression and
chromatin structure. (A) To examine the influence of physiologically-soft mechanical microenvironments on the
cellular epigenetic state, primary human neonatal fibroblasts (HFF cells) were cultured on soft (Elastic modulus,
E=1kPa) or stiff (E= 50kPa) fibronectin-coated polyacrylamide hydrogels for 20 hours. (B) RNA-seq revealed
differentially-expressed genes (FDR < 0.01, abs(Log2 Fold-Change)>1), with clusters of differentially-expressed
genes highlighted in (C). (D) ATAC-seq revealed differentially-accessible chromatin regions (FDR < 0.01, abs(Log2
Fold-Change)>1) from HFF cells cultured on either soft or stiff hydrogels. (E) Overview and annotations of
differentially-accessible chromatin regions across HFF cells cultured on either 1 kPa and 50 kPa hydrogels from the
Top 5000 most significantly changing peaks over UTR/TTS, promoter-TSS, exon, intergenic, intronic, or non-coding
RNA annotations. (F) Significantly enriched de novo motifs from differentially-accessible regions on 1 kPa or 50 kPa
substrates. (G-H) ATAC-seq tracks showing representative regions with significantly lower (MMP14, PPARG) or
higher (ANKRD1, RAD18) chromatin accessibility on stiff hydrogels.
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Fig. 2. CRISPRIi screening reveals a MYH9 intron 3 mechanoenhancer that regulates MYH9 expression and
cell contractility. (A) Expression of MYH9 on soft 1 kPa hydrogels, 50 kPa hydrogels, and TCP from RNA-seq (N=2
reps/group) (B) Schematic of CRISPRi screening procedure for finding genomic regulators of MYH9 protein
expression. (C) Individual gRNA enrichment in Low/High MYH9 expression bins following the MYH9 locus screen
averaged across two replicates. (D) CRISPRi screening results across the MYH9 locus as shown by MYH9 Repression
Phenotype Scores (t-score) and average effect size (z-score) as calculated across each DHS in the screen. Blue points
indicate DHS was differentially-accessible in ATAC-seq data between soft/stiff hydrogel conditions across both
screen replicates. (E) ATAC-seq signal across the MYHY intron 3 enhancer region, with the yellow highlight denoting
the force-sensitive pRE#1 subregion. (F) Normalized ENCODE H3K37ac signal around differentially-accessible
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pRE#1 peak from MYHY intron 3 region compared for 9 available ENCODE tier 1 cell lines. (G) Relative MYH9
RNA expression 10d following lentiviral transduction with dCas9*RAB along with either a non-targeting gRNA,
MYH9 intron 3 enhancer-targeting gRNA, or an MYH9 promoter-targeting gRNA. CTL group represents no
transduction. (H) Representative F-actin and vinculin focal adhesion immunostaining images and corresponding
quantifications (I-K) of focal adhesion morphologic parameters in HFF cells transduced with either a non-targeting
or a MYH9 intron 3 enhancer-targeting gRNA (N=39-45 FA/group, ** = p <0.01, **** = p<0.0001 by Student’s t-
test). Red line indicates group means. (L) Schematic of Cas9 nuclease saturation indel screening procedure performed
in HFF cells across the MYH9 int3 enhancer region. (M) Plot showing the results of this Cas9 screening, with the
ratio of gRNA enrichment in low MYH9 expression bins as compared to high MYH9 expression bins across the
MYHO9 intron 3 enhancer as well as across non-targeting gRNAs and ENCODE safe-targeting gRNAs. Dots shown
are averages across all three replicates. (N-O) gRNA positioning of hit gRNAs relative to the positions of the core
SRF CaRG motif (gRNA#24) and HLTF motif (gRNA#43). (P) Relative MYH9 expression during singleton
validation of the top three gRNA hits from the screen, six days post-transduction (N=3 reps/group).
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Fig. 3. BMF intron #4 mechanoenhancer has increased activity with reduced contractility and is a mediator of
anoikis. (A) BMF RNA expression from RNA-seq across different stiffness conditions in HFF cells (N=2 reps per
stiffness condition). (B) ENCODE Tierl H3K27ac signal and ATAC-seq data between HFF cells cultured on soft and
stiff PA hydrogels with regions of differential chromatin accessibility highlighted, with grey highlights indicating
regions of differential-accessibility across stiffness contexts. (C) Luciferase enhancer reporter readouts from three of
the BMF regions with and without 24hr of 10 pM Y-27632 treatment, showing relative firefly luciferase activity
controlled by these enhancers normalized to a control co-transfected renilla luciferase reporter. Box and whisker plots
show median, plus indicates the group mean, and bars indicate the top/bottom 10% expression range (N=4 reps/group).
(D) Relative RNA expression (N=3) and (E) normalized Caspase-3/7 activity (N=4 reps/group) of HFF cells either
untreated, or transduced with various gRNAs, following 0.5 uM LatrunculinA for 24 hours. All data presented as
mean +/- SEM and are representative of at least two independent experiments,**** indicates p<0.0001, * indicates p
<0.05 by Student’s t-test. Caspase 3-7 activity and luciferase assay stats are shown compared to the DMSO control
group, while RNA expression comparisons are shown by overlay bars. “nt gRNA” abbreviates “non-targeting” gRNA.
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(A) Experimental schema for the paired migration and cellular growth screens in HFF cells transduced with a CRISPRi
library of 21,498 gRNA corresponding to the top 1000 differentially-accessible ATAC-seq peaks on stiff substrates.
(B-C) Migration (B) and growth (C) phenotype Z-scores for the promoter positive controls, the five pREs with the
greatest phenotype Z-scores, and the three representative pREs within the top 5 highest Z-scores for the other
phenotype. Each dot represents one gRNA targeting a given pRE. Red dashed line indicates a Z-score threshold of
two. (D) Venn diagram comparing the pREs that regulated both or only one of the measured phenotypes. (E) Intergenic
PRE located near CYR61 that regulated migration (left) and pRE located within an intron of SKP2 that regulated
growth (right). H3K4mel, H3K4me3, and H3K27ac signal tracks and peak calls in HFF cells are shown. ATAC-seq
from HFF cells cultured on soft (1kPa) and stiff (50kPa) are shown below in blue and red, respectively. Note the
scaling of H3K4mel, H3K4me3, and H3K27ac, is different from scaling of ATAC-seq.
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Fig. 5. Single cell CRISPRIi screen identifies genes regulated by mechanosensitive regulatory elements. (A)
Overview of single cell CRISPRi screen workflow. Briefly, a gRNA library targeting pREs identified in the migration
and growth bulk screens was delivered to CRISPRi HFF cells and single cell transcriptomes were profiled eight days
later. (B) Volcano plot comparing the change in mRNA expression (avg logFC) versus the significance (-
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loglO(FDR)) of each gRNA-gene connection. Significant gRNA-gene connections for gRNAs targeting pREs
(‘pRE’), positive control gRNAs targeting previously identified enhancers (‘Enhancer’), positive control gRNAs
targeting promoter regions (‘Promoter’), and non-targeting gRNAs (‘NT’) are colored as red, purple, green, and black,
respectively (FDR < 0.01). Nonsignificant (‘NS’) gRNA-gene connections are colored in light grey. (C) Average
logFC of gene expression for MYH9 promoter-targeting positive control gRNAs and intron 3 enhancer-targeting
positive control gRNA (grey), the ten migration (yellow) and growth (purple) pREs with greatest effects on gene
expression following perturbation. Points shown are individual gRNA-gene linkages corresponding to each pRE, and
all regions shown display significant reduction of the target gene (FDR < 0.01). (D) Z-scores of hit gRNA for each
pRE from functional screening versus the average logFC of significant gRNA from the same pRE. Points shown for
the top 10 pREs by Z-score from functional screening, along with the greatest absolute fold-change of pRE-gene
linkages from scRNA-seq screen. (E) Browser track showing pRE-gene connections for a pRE proximal to CTGF,
with red and green indicating decrease and increase in gene expression, respectively. Purple shading indicates pRE
#740 and green shading indicates promoters of differentially expressed genes. ATAC-seq signal tracks and peaks in
HFF cells are shown. (F) CTGF mRNA expression measured via RT-qPCR for individual gRNA validations (non-
targeting (‘NT’), N=6; N=3 for all other gRNAs (‘g4’, ‘g8’, ‘29’)). (G) CPM values for CTGF mRNA expression
from bulk RNA-sequencing of HFF cells cultured on 1kPa (N=2), 50kPa (N=2), or TCP (N=2) surfaces. (H) CPM
values for chromatin accessibility of CCN2 enhancer in HFF cells cultured on 10ka (N=3), 12kPa (N=3), or 50kPa
(N=2), surfaces or cultured on 50kPa surface and treated with ROCKi (Y27) (N=3). (F-H) Individual points represent
biological replicates. Error bars represent mean +/- 1 SEM. **** indicates p-value < 0.0001, *** indicates p-value <
0.001, ** indicates p-value < 0.01. (I) Distribution of the difference in effect size for pRE-connected genes versus
permuted samples comparing ‘HAS1 High’ Fibroblasts versus all other cell types (‘All’) within IPF lung tissue. One-
tailed p-value for permuted samples comparing the mean effect size is shown in the plot. Red dashed line indicates
the observed difference between the effect size of the pRE-connected genes and all other genes.
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