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 37 

Abstract 38 

 39 

Organic carbon fixed in chloroplasts through the Calvin Cycle can be diverted 40 

towards different metabolic fates, including cytoplasmic and mitochondrial 41 

respiration; gluconeogenesis; and synthesis of diverse plastid metabolites via 42 

the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic 43 

glycolysis, although a plastid-targeted lower-half glycolytic pathway is known 44 

in non-photosynthetic tissue. Here, we characterize a lower-half plastid 45 

glycolytic-gluconeogenesis pathway in diatoms, ecologically important marine 46 

algae distantly related to plants. We show that two reversible enzymes required 47 

to complete plastid glycolysis-gluconeogenesis, Enolase and PGAM (bis-48 

phospho-glycerate mutase), originated through duplications of mitochondria-49 

targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 50 

‘omic analyses, and measured kinetics of expressed enzymes in the diatom 51 

Phaeodactylum tricornutum, we present evidence that this pathway diverts 52 

plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also 53 

function in the gluconeogenic direction. Considering experimental and 54 

environmental data, we show that this pathway has different roles in relation to 55 

long days and low temperatures as are found in sub-polar oceans, where 56 

diatoms dominate primary production. Our data provide a further explanation 57 

for the success of diatoms in the contemporary ocean, and functional insights 58 

into a poorly understood yet evolutionarily recurrent plastid metabolic 59 

pathway. 60 

 61 

Keywords: chloroplast; Tara Oceans; meta-genomics informed phenotyping; post-62 

endosymbiotic evolution; plastid-mitochondria crosstalk; RNAseq; GC and LC-MS; 63 

photophysiology 64 

 65 

Introduction 66 

Each year, over 250 gigatonnes of atmospheric carbon dioxide is assimilated through 67 

photosynthesis, with effectively equal contributions from terrestrial plants and aquatic 68 
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algae (Friedlingstein, Jones et al. 2022). This activity is essential for maintaining 69 

planetary climate homeostasis and supporting the entire Earth ecosystem. Carbon 70 

assimilated through photosynthesis via the Calvin cycle is diverted into multiple 71 

metabolic fates (Raines 2003). In plants, these include gluconeogenesis directly in 72 

plastids (or chloroplasts), used in leaf tissue for starch storage (Scialdone, Mugford 73 

et al. 2013). Many additional metabolites including fatty acids and lipids, amino acids, 74 

and chlorophyll and carotenoid pigments are synthesised directly in the plastid 75 

(Tanaka and Tanaka 2007, Bromke 2013, Maréchal and Lupette 2020, Bai, Cao et 76 

al. 2022) (Fig. 1A). Many of these plastid metabolic reactions utilize pyruvate, or its 77 

adjacent metabolic precursor phospho-enol-pyruvate (or PEP), and are referred to 78 

collectively as the pyruvate hub (Shtaida, Khozin-Goldberg et al. 2015). In addition, 79 

plant photosynthate is exported from the plastids to the cytosol for subsequent 80 

glycolysis and respiration in the mitochondria (Moog, Rensing et al. 2015), or for 81 

transport to non-photosynthetic tissue (Carrera, George et al. 2021) (Fig. 1A). 82 

 83 

Plants are classically thought to generate PEP and pyruvate through glycolysis in the 84 

cytoplasm, then reimport these metabolites into the plastids (Fig. 1A) (Moog, 85 

Nozawa et al. 2020). Alongside this, certain plants may synthesize pyruvate hub 86 

substrates directly from the Calvin cycle inside the plastid. This conversion is 87 

performed by two enzymes, a plastid-targeted enolase and phospho-glycerate 88 

mutase (henceforth referred to as cpEnolase and cpPGAM), which allow the 89 

conversion of 1,3-bis-phosphoglycerate from the Calvin cycle to PEP (Fig. 1A) 90 

(Raines 2003, Andriotis, Kruger et al. 2010). Both Enolase and PGAM have been 91 

shown experimentally to be fully reversible enzymes, with bidirectional functions that 92 

we henceforth refer to as glycolysis-gluconeogenesis, contrasting with glycolysis and 93 

gluconeogenesis to signify enzymatic activities in one direction only (Sutherland, 94 

Posternak et al. 1949). Documented plant cpEnolase and cpPGAM enzymes are 95 

associated with non-photosynthetic tissues such as seeds and roots (Prabhakar, 96 

Löttgert et al. 2009, Fukayama, Masumoto et al. 2015, Troncoso-Ponce, Rivoal et al. 97 

2018). Arabidopsis thaliana cpEnolase and cpPGAM knockout lines have limited 98 

phenotypes under replete growth conditions (Prabhakar, Löttgert et al. 2009, 99 

Andriotis, Kruger et al. 2010, Anoman, Flores-Tornero et al. 2016), raising questions 100 

of their overall function.  101 

 102 
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Diatoms are a eukaryotic algal group that is only distantly related to plants, with over 103 

one billion years of evolutionary separation (Nonoyama, Kazamia et al. 2019, 104 

Strassert, Irisarri et al. 2021). In contrast to the primary plastids of plants, surrounded 105 

by two membranes and of bacterial origin, diatoms possess complex plastids 106 

surrounded by four membranes and derived from a eukaryotic red alga, which is 107 

likewise ancient (Nonoyama, Kazamia et al. 2019, Liu, Storti et al. 2022). Diatoms 108 

are extraordinarily successful in the modern ocean, comprising nearly half of total 109 

algal abundance e.g., in environmental sequence data from the Tara Oceans 110 

expedition (Malviya, Scalco et al. 2016, Behrenfeld, Halsey et al. 2021). Diatoms are 111 

particularly successful in high-latitude and temperate oceans (i.e., the North Atlantic, 112 

North Pacific and Southern Oceans) that are characterised by high primary 113 

production despite photo-physiological stresses including low temperatures and 114 

elongated photoperiods (long days in the summer, and long nights in the winter) 115 

(Gilbertson, Langan et al. 2022, Joli, Concia et al. 2023). Previous studies, 116 

particularly of the transformable species Phaeodactylum tricornutum, have identified 117 

multiple strategies that allow diatoms to tolerate photo-stress, including complex 118 

inter-organelle metabolite trafficking (Bailleul, Berne et al. 2015, Broddrick, Du et al. 119 

2019, Smith, Dupont et al. 2019) and extensive photoprotective capabilities 120 

(reviewed in (Lepetit, Campbell et al. 2022). These data are further supported by 121 

extensive environmental (meta-genomic) sequence data such as those of the Tara 122 

Oceans mission, allowing us to study the performance of individual diatom 123 

chloroplast proteins in the wild (Kazamia, Sutak et al. 2018, Liu, Storti et al. 2022). 124 

 125 

Diatom carbon metabolism is highly different to that of plants (Kroth, Chiovitti et al. 126 

2008). Differences include the storage of sugars in cytoplasmic vacuoles (as 127 

chrysolaminarin) as opposed to in plastidial starch, and the synthesis of most lipid 128 

groups (e.g., galactolipids and part of triacylglycerol pathway) directly in the plastid 129 

(Zhu, Shi et al. 2016, Huang, Pan et al. 2023). Diatom plastids furthermore possess 130 

no known plastid hexose phosphate transporters, which in plants are implicated in 131 

plastidial sugar import in storage tissue, and are inferred to exchange sugars with the 132 

cytoplasm via triose phosphates only (Moog, Nozawa et al. 2020, Liu, Storti et al. 133 

2022) (Fig. 1A). Strikingly, the lower half of respiratory glycolysis-gluconeogenesis in 134 

diatoms occurs in the mitochondria, as opposed to the cytoplasm (Kroth, Chiovitti et 135 
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al. 2008, Río Bártulos, Rogers et al. 2018); and a complete plastid lower half 136 

glycolysis-gluconeogenesis, including cpEnolase and cpPGAM proteins, has been 137 

inferred from sequenced diatom genomes (Kroth, Chiovitti et al. 2008, Smith, 138 

Abbriano et al. 2012) (Fig. 1A). As diatoms are unicellular and colonial species, 139 

plastid glycolysis presumably occurs in the same organelle as photosynthesis, 140 

contrasting with its predominantly non-photosynthetic distribution in plants (Fig. 1A).  141 

 142 

Here, we use combined profiling of sequence datasets from cultivated and 143 

environmental diatoms, characterization of P. tricornutum CRISPR-CAS9 knockout 144 

mutants and measured kinetic activities of expressed enzymes, to reveal the 145 

probable functions of diatom cpEnolase and cpPGAM enzymes. We demonstrate 146 

that the genes encoding these enzymes arose from diatom mitochondria-targeted 147 

and respiratory isoforms, and are most highly expressed at high latitudes in 148 

environmental sequence data from Tara Oceans. On the basis of knockout line 149 

phenotypes, we present evidence that this pathway has augmented importance in 150 

cells grown under continuous illumination as opposed to light-dark cycling. 151 

Considering both mutant phenotypes and measured kinetic activities, we propose 152 

that the principal functions of diatom cpEnolase and cpPGAM are in the glycolytic 153 

direction from glyceraldehyde-3-phosphate into the pyruvate hub, albeit with some 154 

potential flux in the reverse gluconeogenic direction which may be influenced both by 155 

day-length and temperature. Overall, our data position lower half glycolysis-156 

gluconeogenesis as an adaptive modulator of diatom plastid metabolic poise, 157 

providing insights into its physiological roles for photosynthetic organisms beyond 158 

plants. 159 

  160 

Results 161 

 162 

Phylogeny and localization of Enolase and PGAM enzymes suggest recent 163 

recruitments of mitochondrial glycolytic enzymes to the diatom plastid 164 

 165 

To evaluate the occurrence of plastid-targeted glycolysis across the algal tree of life, 166 

we searched for plastid-targeted homologues of Phaeodactylum tricornutum and 167 

Arabidopsis thaliana enolase and PGAM enzymes in 1,673 plant and algal species, 168 

considering genomes from JGI PhycoCosm, and transcriptomes from the MMETSP 169 
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(Marine Microbial Eukaryotic Transcriptome Sequencing Project) and OneKp (One  170 

Thousand Plant Transcriptomes) initiatives (Keeling, Burki et al. 2014, Initiative 2019, 171 

Grigoriev, Hayes et al. 2021). Plastid-targeting sequences were inferred using both 172 

PFAM domain presence and the combined in silico predictions of HECTAR, 173 

ASAFind, TargetP and PredAlgo (Emanuelsson, Brunak et al. 2007, Gschloessl, 174 

Guermeur et al. 2008, Tardif, Atteia et al. 2012) (Table S1, sheet 1). Plastid lower 175 

glycolysis-gluconeogenesis was frequently inferred in diatoms, with 60/101 (59%) 176 

libraries with identified enolase and PGAM sequences possessing plastid-targeted 177 

versions of each. A lower occurrence (22/69 libraries, 32%) was found amongst close 178 

relatives in the stramenopiles (e.g., pelagophytes, dictyochophytes) and other algae 179 

with secondary red plastids (cryptomonads, haptophytes; 25/94 libraries, 27%) (Fig. 180 

S1A). Within primary plastid-harbouring lineages, only angiosperms were inferred to 181 

frequently possess plastid-targeted copies of both enzymes (47/537 libraries, 9%). 182 

Notably, only 4/127 (3%) occurrences were inferred in primary green algae and none 183 

in primary red algae, suggesting that diatom plastid glycolysis does not derive from 184 

the secondary red chloroplast ancestor (Fig. S1A). Considering collection sites, 185 

diatom species with either plastid glycolysis enzyme typically derive from higher 186 

latitudes (mean unsigned latitude 45.6°, standard deviation 13.5°, n = 81) than ones 187 

that possess neither (mean unsigned latitude 38.9°, standard deviation 24.3°, n = 10; 188 

one-way ANOVA P = 0.19; Fig. S1B). This difference was deemed to be significant 189 

for certain diatom groups (e.g., araphid pennate diatoms, Dataset S1, sheet 1; one-190 

way ANOVA P = 0.012) but was less visible in other algal groups (e.g., green algae), 191 

where lower-half plastid glycolysis was more frequently detected in species collected 192 

from low latitude habitats (Fig. S1B). 193 

 194 

Next, we explored the specific origins of P. tricornutum plastid Enolase and PGAM 195 

sequences from diatoms by building phylogenies of the closest orthologs obtained 196 

from other diatoms, the broader taxonomic group to which they belong, the 197 

stramenopiles, and two other algal groups, the cryptomonads and haptophytes. 198 

These lineages all possess plastids of secondary red endosymbiotic origin, 199 

surrounded by four membranes, which are likely to be closely related to one another 200 

(Strassert, Irisarri et al. 2021), but also contain non-photosynthetic members (e.g., 201 

oomycetes in stramenopiles) which only possess respiratory (i.e., mitochondria-202 

targeted) lower half glycolytic enzymes (Río Bártulos, Rogers et al. 2018). Single-203 
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gene trees were made for the conserved domains of all organelle-targeted Enolase 204 

and PGAM sequences from 289 cryptomonad, haptophyte and stramenopile 205 

genomes and transcriptomes, plus all orthologs from 85 further genomes selected 206 

from across the tree of life, based on a previously defined pipeline (Supporting 207 

Dataset 1, sheet 2-9). Figs. 1B and 1C show consensus MrBayes trees realised with 208 

GTR, Jones and WAG substitution matrices for species with both identifiable plastid- 209 

and mitochondria- targeted orthologs of each protein. 210 

 211 

The obtained topologies revealed multiple evolutionary origins for plastid Enolase 212 

and PGAM sequences from mitochondria-targeted (respiratory) enzymes, with 213 

diatom plastid isoforms typically having recent and/or diatom-specific evolutionary 214 

origins. Diatom cpEnolase sequences resolve in a well-supported clade with plastid-215 

targeted enzymes from bolidophytes, dictyochophytes and pelagophytes, which are 216 

sisters to diatoms in the stramenopile tree (Río Bártulos, Rogers et al. 2018, 217 

Nonoyama, Kazamia et al. 2019), followed by mitochondria-targeted proteins from 218 

these groups (MrBayes PP = 1.0 under all studied matrices, Fig. 1B), other 219 

photosynthetic (chrysophytes) and non-photosynthetic stramenopiles (oomycetes; 220 

MrBayes PP = > 0.95 under GTR and Jones matrices, Fig. 1B). This indicates a 221 

duplication and recruitment of the host-derived mitochondria-targeted protein to the 222 

plastid within a common ancestor of the diatoms, pelagophytes and dictyochophytes. 223 

A broader evaluation of cpEnolase distribution suggests further duplications and 224 

plastid retargeting of mitochondria-targeted enolase proteins in both the 225 

chrysophytes and cryptomonads (Fig. S2). 226 

 227 

The PGAM phylogeny revealed at least two closely-related families of plastid-228 

targeted diatom enzymes, both likely derived from host mitochondrial isoforms. The 229 

cpPGAM1A clade (typified by the P. tricornutum protein Phatr3_J17086) was closely 230 

related to mitochondrial-targeted proteins found across the stramenopiles (MrBayes 231 

PP = 1.0 under all studied matrices, Fig. 1C), followed by plastid-targeted proteins 232 

from chrysophytes and mitochondria-targeted oomycete proteins. Similarly, the 233 

cpPGAM1B (Phatr3_J50414) clade included mitochondrial-targeted proteins from 234 

pelagophytes and dictyochophytes (MrBayes > = 0.85 under all studied matrices, 235 

Fig. 1C), and plastid- and mitochondria-targeted enzymes from the chrysophytes 236 
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(Fig. S3). Further duplications and plastid recruitments of mitochondria-targeted 237 

PGAM proteins were again visible in the haptophytes and cryptomonads (Fig. S3). 238 

 239 

A final plastid-targeted protein annotated as PGAM in the version 3 P. tricornutum 240 

genome (Rastogi, Maheswari et al. 2018), hereafter termed PGAM2, was identified 241 

exclusively in diatoms, pelagophytes, and haptophytes (Fig. S4), with limited 242 

homology to PGAM1 enzymes (BLASTp e-value > 1.0 in pairwise protein-protein 243 

searches). Only PGAM1 enzymes contain an annotated phospho-glyceromutase 244 

active site (IPR005952) inferred using InterProScan, while both PGAM1 and PGAM2 245 

belong to the same PFAM superfamily (histidine phosphatase, PF03000) per 246 

PFAMscan (Jones, Binns et al. 2014, Mistry, Chuguransky et al. 2020). PGAM2 247 

enzymes were predominantly mitochondria-targeted, with plastid- or dual-targeted 248 

isoforms only identified in P. tricornutum (Phatr3_J37201) and a small number of 249 

other diatoms and haptophyte species (Fig. S4). 250 

 251 

To confirm plastid localization of P. tricornutum cpEnolase and cpPGAM, eGFP-252 

tagged copies of three proteins (Phatr3_J41515, cpEnolase; Phatr3_J17086, 253 

cpPGAM1A; Phatr3_J37201, cpPGAM2) were expressed in P. tricornutum Pt1.86 254 

cells via biolistic transformation. The observed GFP fluorescence patterns were 255 

coincident with chlorophyll autofluorescence, confirming plastid localization (Figs. 256 

1D, S5). 257 

 258 

Physiological roles of diatom cpEnolase and cpPGAM inferred from environmental 259 

sequence expression data  260 

 261 

Next, we considered general patterns of transcriptional co-regulation of diatom 262 

cpEnolase and cpPGAM sequences in environmental sequence data from Tara 263 

Oceans. First, we used a previously benchmarked pipeline, based on combined 264 

hmmer, reciprocal BLAST and phylogenetic filtration (ti et al. 2022) to identify Tara 265 

Oceans meta-genes that reconcile exclusively with plastid-targeted proteins from 266 

cultured diatom species, to the exclusion of non-diatom and non-plastid homologs 267 

(Fig. S6A). Amongst the retained meta-genes likely to be N-terminally complete 268 

(BLAST homology within the first 40 residues of a P. tricornutum sequence), a 269 

majority have consensus plastid-targeting sequences (enolase: 38/ 78- 49%, PGAM: 270 
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58/ 97- 60%). Only a very small number (one enolase, 10 PGAM) possess 271 

mitochondrial or endomembrane localizations, suggesting that they principally 272 

correspond to plastid-targeted environmental homologs of each protein (Fig. S6B, 273 

Supplemental Dataset 3, sheet 11).  274 

 275 

Within Tara Oceans data, the greatest relative abundances of diatom cpEnolase and 276 

cpPGAM1 sequences were observed in meta-transcriptome (metaT) data in stations 277 

from both high northern and southern latitudes, in both surface (Fig. 2) and deep 278 

chlorophyll maximum (DCM) samples, and across all size fractions (Fig. S7). These 279 

levels were notably greater than equivalent levels in meta-genome (metaG) data 280 

(Figs. 2, S7). Normalization of metaT abundances calculated for each gene in the 281 

0.8-2000 μm size fraction against all diatom metaT sequences showed positive 282 

correlations to latitude both in surface (cpEnolase R2 = 0.18, P < 10-05, cpPGAM1A 283 

R2 = 0.23, P < 10-05) and DCM depths (cpEnolase R2 = 0.53, P < 10-05, cpPGAM1A 284 

R2 = 0.59, P < 10-05) (Supplemental Dataset 3, sheet 10). Considering specific 285 

variables, relative abundance levels showed clearest positive correlations to 286 

daylength and negative correlations to temperature. No other parameters (e.g., 287 

nutrient concentrations) showed as clear correlations to chloroplast glycolysis metaT 288 

relative abundances (Supplemental Dataset 3, sheet 10). 289 

 290 

Similar positive correlations were observed when normalising the metaT abundances 291 

obtained for diatom chloroplast glycolysis genes against the relative abundances 292 

calculated for the meta-genomic (metaG) sequences of the same genes. This was 293 

true in surface depths for cpEnolase (R2 = 0.10, one-tailed F-test, P < 0.05) and DCM 294 

for both genes (cpEnolase R2 = 0.28, one-tailed F-test P < 0.05, cpPGAM1 R2 = 0.29, 295 

one-tailed F-test P< 0.05 (Supplemental Dataset 3, sheet 10). Further significant 296 

positive correlations to latitude, both considering absolute (Pearson) and ranked 297 

(Spearman) correlation values, were detected in multiple individual size fractions 298 

(0.8-5, 3/5-20, 20-180, 180-2000 μm) at each depth, including for cpPGAM1 metaT 299 

normalised against metaG in surface 3/5-20 (one-tailed F-test, P < 10-05), 20-180 300 

(one-tailed F-test; P < 10-05) and 180-2000 (one-tailed F-test, P < 0.05) μm fractions 301 

(Supplemental Dataset 3, sheet 10).  302 

 303 
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The transcriptional preference of diatom cpEnolase and cpPGAM1 for high latitudes 304 

contrasted strongly with PGAM2, which showed equivalent relative abundance in 305 

some stations from the temperate South Pacific and Atlantic as stations from the 306 

Arctic and Southern Oceans (Fig. S8; Supplemental Dataset 3, sheet 10). Although 307 

a positive correlation between relative PGAM2 accumulation and latitude was 308 

observed in metaT data normalised against total diatom metaT abundances and 0.8-309 

2000 μm size fractions (surface R2 = 0.20, DCM R2 = 0.37, one-tailed F-test P< 0.05), 310 

no such correlation was observed for metaT data normalised against PGAM2 metaG 311 

relative abundances (surface R2 = 0.00062, DCM R2 = 0.027, one-tailed F-test P> 312 

0.05) suggesting that latitude does not directly influence PGAM2 expression (Fig. 313 

S8B). In certain size fraction and depth combinations (e.g., DCM 0.8-3, and 3/5-20 314 

μm fractions, normalised against metaG abundances; and surface and DCM 180-315 

2000 μm fractions normalised against all diatom metaT abundances) PGAM2 metaT 316 

abundances even demonstrated significant negative correlations to latitude 317 

(Supplemental Dataset 3, sheet 10).  318 

 319 

Growth phenotypes of cpEnolase and cpPGAM1A knockout and complementation 320 

lines reveal modular roles in response to daylength  321 

 322 

We generated homozygous CRISPR knockout lines for both cpEnolase and 323 

cpPGAM1A in the model diatom P. tricornutum. cpPGAM1A was selected over other 324 

PGAM isoforms because of its clear transcriptional co-regulation to cpEnolase 325 

(Supplemental Dataset 2, in contrast to cpPGAM1B) and latitudinal expression 326 

correlation in Tara Oceans (Figs. 2, S8, in contrast to cpPGAM2). Multiple CRISPR 327 

knockout lines were generated from two regions with unique sequences in the P. 328 

tricornutum genome for each gene (cpEnolase CRISPR region 1 n= 4, CRISPR 329 

region 2 n= 3; cpPGAM1A CRISPR region 1 n= 2, CRISPR region 2 n= 3) (Fig. 330 

S9A). Each CRISPR line was verified by sequencing to be homozygous and to 331 

contain a frame-shift mutation sufficient to impede successful translation of the 332 

encoded protein (Fig. S9A). Commercial antibodies against enolase and PGAM were 333 

found not to specifically label cpEnolase and cpPGAM1A in Western Blots, and so 334 

we inferred protein relative expression level by qRT-PCR using recognised P. 335 

tricornutum housekeeping genes (Sachse, Sturm et al. 2013, Zhang, Sampathkumar 336 

et al. 2020). The measured knockout mRNA abundance in each line was significantly 337 
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lower (1.8-39 %) than that identified in empty vector control mRNA (n = 4, one-way 338 

ANOVA, P < 0.05) under 19 °C and 12h light: 12h dark (« 19C LD ») conditions, Fig. 339 

S9B), consistent with effective knockdown of mutated genes (e.g., via non-sense 340 

mediated decay, (Chang, Imam et al. 2007)).  341 

 342 

Next, we performed growth curves of cpEnolase and cpPGAM1A knockout lines 343 

compared to empty vector controls (Fig. 3; Supplemental Dataset 4, sheets 3-6). 344 

We chose to target changes in light and temperature, given that both show clear 345 

associations observed with cpPGAM1A and cpEnolase in Tara Oceans data 346 

(Supplemental Dataset 3, sheet 10). The tested conditions were: 19 °C and 12 h: 12 347 

h light: dark cycling (19C LD), reflecting other P. tricornutum physiology studies (Cruz 348 

de Carvalho, Sun et al. 2016, McCarthy, Smith et al. 2017); 19 °C and 24 h 349 

continuous light (19C CL) to test the effects of photoperiod; and 8 °C and 24 h 350 

continuous light (8C CL) to test the effects of temperature.  351 

 352 

Under 19C LD growth conditions, plastid glycolysis-gluconeogenesis knockout lines 353 

showed an approximately 10-15% reduction in relative growth rate compared to 354 

empty vector controls (cpEnolase growth rate 0.83± 0.06 cells day-1; cpPGAM1A 355 

growth rate 0.85± 0.07 cells day-1; empty vector growth rate 0.94 ± 0.05 cells day-1; 356 

Fig. 3, S10; Supplemental Dataset 4, sheet 3; cpEnolase growth rate 87.7% control 357 

and cpPGAM1A growth rate 90.1% control, one-way ANOVA, two-tailed P < 0.05). 358 

Under 19C CL, knockout lines showed a 25-30% reduction in relative growth rate 359 

compared to controls (cpEnolase growth rate 0.99± 0.16 cells day-1; cpPGAM1A 360 

growth rate 1.08± 0.04 cells day-1; empty vector growth rate 1.39 ± 0.09 cells day-1; 361 

Fig. 3, S10; Supplemental Dataset 4, sheet 4; cpEnolase growth rate 70.7% control 362 

and cpPGAM1A growth rate 77.5% control, one-way ANOVA, two-tailed P < 0.01). 363 

By contrast, under 8C CL we observed overlapping growth rates for knockout and 364 

empty vector control lines, albeit with a possible reduction in cpEnolase knockout 365 

growth rate (cpEnolase relative growth rate 0.49± 0.10 cells day-1, cpPGAM1A 366 

growth rate 0.64± 0.02 cells day-1, empty vector growth rate 0.62± 0.07 cells day-1; 367 

Fig. 3, S10; Supplemental Dataset 4, sheet 5; cpEnolase growth rate 78.1% control 368 

and cpPGAM1A growth rate 102.9% control; one-way ANOVA, two-tailed P non-369 

significant).  370 

 371 
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To test the possibility of off-target effects of the CRISPR constructs, we 372 

complemented mutant lines with blasticidin resistance genes linked to either 373 

cpEnolase-GFP or cpPGAM1A-GFP modified to remove all CRISPR target 374 

sequences (Supplemental Dataset 4, sheet 2) (McCarthy, Smith et al. 2017, Buck, 375 

Río Bártulos et al. 2018). Despite an overall lower growth rate in all blasticidin-376 

resistant lines compared to primary transformants, and within-line variation, 377 

comparative growth curves of 47 complemented versus placebo transformed mutant 378 

lines revealed increased growth rates in complemented cpEnolase and cpPGAM1A 379 

versus blank transformed knockout lines under 19C CL and 19C LD (Supplemental 380 

Dataset 4, sheet 7; one-way one-way ANOVA, two-tailed P, < 0.05). By contrast, 381 

complemented knockout line growth rates overlapped with empty vector controls 382 

either transformed with cpEnolase or blank complementing vectors, indicating 383 

effective recovery of mutant phenotypes (Supplemental Dataset 4, sheet 7). 384 

 385 

Finally, we performed comparative photophysiological measurements of knockout 386 

lines in the two conditions (19C LD and 19C CL) where they presented a growth 387 

phenotype (see Methods). Our data indicate that the presence/ absence of these 388 

enzymes does not significantly impact photosynthetic performance. The light 389 

dependencies of either electron transfer rate through photosystem II (PSII) (rETR(II)) 390 

or photoprotection (non-photochemical quenching, NPQ) were very similar between 391 

control and knock-out lines (Fig. S11A; Supplemental Dataset 4, sheets 8-11). A 392 

slight but significant increase in the functional absorption cross-section of 393 

photosystem II (σPSII) was found under 19C CL in both cpEnolase (319.3± 22.5) and 394 

cpPGAM1A knockouts (306.6± 11.6) compared to controls (292.3± 8.2; one-way 395 

ANOVA, P < 0.05) (Gorbunov, Shirsin et al. 2020). This elevation was suppressed in 396 

both complemented lines (Fig. S11B; Supplemental Dataset 4, sheet 11). 397 

 398 

Primary metabolic functions of cpEnolase and cpPGAM1A inferred from comparative 399 

gene expression analysis of P. tricornutum knockout lines 400 

 401 

Next, we investigated the impacts of disruption of plastid glycolysis on diatom 402 

metabolism beyond photosynthesis. First, we performed quantitative RNA-seq 403 

analysis using 63 RNA samples drawn from multiple knockout and empty vector lines 404 

under all three physiological conditions (19C LD, 19C CL, and 8C CL; Supplemental 405 
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Dataset 5, sheet 1; Materials and Methods). Complete results are provided in 406 

Supplemental Dataset 5, sheets 5-11. Both cpEnolase and cpPGAM1A mRNA were 407 

found to significantly under-accumulate in the corresponding knockout lines, 408 

consistent with qRT-PCR analysis (Fig. S9B) and suggesting maintenance of the 409 

mutant genotypes throughout RNA sequencing. 410 

 411 

Genome-scale enrichment analyses of the in silico localizations of proteins encoded 412 

by differentially expressed genes revealed distinctive changes in glycolysis knockout 413 

organelle metabolism. These effects were most evident in 19C CL, in which 90/239 414 

(38%) of the genes differentially upregulated (mean fold-change >2, P-value < 0.05) 415 

in both cpEnolase and cpPGAM1A knockout lines compared to controls were 416 

predicted to possess chloroplast targeting peptides based on ASAFind (Gruber, 417 

Rocap et al. 2015) or HECTAR (Gschloessl, Guermeur et al. 2008). This was 418 

significantly greater than the proportion of genes (1,585/11,514, 14%) across the 419 

entire genome predicted to encoding chloroplast-targeted proteins that were detected 420 

in RNAseq data (one-tailed chi-squared P < 10-05; Fig. 4A; Supplemental Dataset 5, 421 

sheet 10). These results were supported by domain enrichment analyses, indicating 422 

significant (one-tailed chi-squared P < 0.05) enrichments in light-harvesting complex 423 

(GO:0030076), photosynthesis (GO:0009765) and protein-chromophore linkage 424 

(GO:0018298) GO terms. A more detailed resolution of gene expression patterns 425 

underpinning core organelle metabolism pathways (Ait-Mohamed, Novák Vanclová et 426 

al. 2020) suggested concerted upregulation of genes encoding light-harvesting 427 

complexes and photosynthesis machinery and plastid fatty acid synthesis machinery, 428 

alongside a probable upregulation of mitochondrial respiratory complex I and ATP 429 

synthase (Supplemental Dataset S5, sheets 10-11). Less dramatic changes were 430 

evident in 19C LD and 8C CL, although 13 of the 51 genes (25%) inferred to be 431 

downregulated in both cpEnolase and cpPGAM1A knockout lines under 8C CL were 432 

inferred to encode chloroplast-targeted proteins by either ASAFind or HECTAR, 433 

representing likewise an enrichment compared to all genes identified within the 434 

RNAseq data (one-tailed chi-squared P < 0.05; Fig. 4A). 435 

 436 

To gain a more precise insight into the effects of plastid glycolysis-gluconeogenesis 437 

on P. tricornutum metabolism, we additionally validated the differential expression of 438 

eleven exemplar genes encoding chloroplast- and mitochondria-targeted proteins by 439 
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qPCR in knockout and empty vector control lines across all three conditions (Fig. 4B; 440 

Supplemental Dataset 5, sheet 12). These genes showed relatively limited 441 

differences under 19C LD, limited to a slight depression in the accumulation of Lhcf1 442 

(Phatr3_J18049) and chorismate mutase (Phatr3_J43277) mRNA in both cpEnolase 443 

and cpPGAM1A knockouts compared to control lines (~50% downregulation, two-444 

tailed t-test P < 0.05; Fig. 4B). Both knockout lines over-accumulated (>600%; two-445 

tailed t-test P < 10-05) mRNAs encoding mitochondrial phospho-glycerate mutase 446 

(Phatr3_J33839) under 19C LD compared to control lines (Fig. 4B).  447 

 448 

Under 19C CL, we observed more substantial changes in plastid metabolism, 449 

including the significant (two-tailed t-test P < 0.05) over-accumulation of mRNAs 450 

encoding Lhcf1 (~150%), a plastid-targeted petB-type protein presumably involved in 451 

cytochrome b6f metabolism (Phatr3_J13558, ~90%), and a particularly strong over-452 

accumulation of plastid lysophosphatidyl acyltransferase, involved in plastid lipid 453 

synthesis (Phatr3_J20640, ~100%, two-tailed t-test P < 10-05) in both knockout lines 454 

(Fig. 4B). Significant over-accumulations were also observed of mRNAs encoding 455 

plastid signal processing peptidase (Phatr3_J10319, 60-120%), alanine 456 

transaminase (Phatr3_J34010) and coporphyrinogen oxygenase (Phatr3_J12186), in 457 

either cpEnolase or cpPGAM1A knockout lines (Fig. 4B). Concerning mitochondrial 458 

metabolism, a strong increase (>250%, two-tailed t-test P < 10-05) was observed in 459 

mRNA for NDH dehydrogenase subunit 1 (Phatr3_J43944), involved in oxidative 460 

phosphorylation, but a corresponding decrease (>40%, two-tailed t-test P < 10-05) in 461 

mRNA for citrate synthase within the TCA cycle (Phatr3_J30145).  462 

 463 

Finally, under 8C CL, contrasting and complementary changes were observed: up-464 

regulation (>60%; two-tailed t-test P < 10-05) of genes encoding both the plastid 465 

signal processing peptidase and petB-related protein, and mitochondrial PGAM and 466 

citrate synthases in both knockout lines compared to controls (Fig. 4B). Both 467 

knockout lines were found to under-accumulate Lhcf1 mRNA (>90%; two-tailed t-test 468 

P < 10-05), while Lhcx4 (Phatr3_J38720), encoding a dark-expressed gene of 469 

unknown direct function but homologous to the Lhcx1 protein implicated in 470 

photoprotection (Buck, Sherman et al. 2019), was found to substantially over-471 

accumulate in both cpEnolase and cpPGAM1A knockout lines (Fig. 4B). 472 

 473 
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Metabolite profiling indicates potential systemic outputs of disrupted plastid 474 

glycolysis-gluconeogenesis 475 

 476 

Next, we considered the compound effects of cpEnolase and cpPGAM1A knockout 477 

on global metabolite accumulation under each environmental condition via GC-MS 478 

profiling of 32 sugars and amino acids (Fig. 5; Fig. S13), across 139 samples drawn 479 

from multiple knockout and control lines under 19C LD, 19C CL and 8C CL. These 480 

samples were obtained from cell pellets collected from mid-exponential phase 481 

cultures, and thus correspond to the long-term impacts on metabolite accumulation in 482 

plastid glycolysis knockout lines. Complete outputs are tabulated in Supplemental 483 

Dataset 6, sheets 1-2.  484 

 485 

We were unable to directly measure the accumulation of any of the products or 486 

substrates of either cpPGAM1A or cpEnolase (3-phosphoglycerate, 2-487 

phosphoglycerate, PEP), although we detected significantly diminished (one-way 488 

ANOVA two-tailed P-value < 10-05) pyruvate accumulation in cpPGAM1A knockouts 489 

under all three conditions, and in cpEnolase knockouts under 8C CL (Fig. 5, S13). In 490 

all three conditions, significant reductions (one-way ANOVA two-tailed P-value < 0.01 491 

in both cpEnolase and cpPGAM1A knockout lines) were observed in cytoplasmic 492 

sugars and sugar derivatives (glucose, sucrose, histidine, myo-inositol) in cpEnolase 493 

and cpPGAM1A knockouts compared to control lines (Fig. 5). cpEnolase and 494 

cpPGAM1A knockout lines further under-accumulated citric acid in all three 495 

conditions, and malic acid in 8C CL (Fig. 5).  496 

 497 

A probable over-accumulation of phosphoric acid was observed in all knockout lines 498 

except cpPGAM1A under 19C CL (Fig. 5; S13). Significant (one-way ANOVA two-499 

tailed P-value < 10-05) over-accumulations were identified for valine in cpEnolase and 500 

cpPGAM1A knockouts under 19C CL and 8C CL; for methionine and ornithine in 19C 501 

CL only; and an under-accumulation for arginine under 19C CL only (Fig. 5). 502 

 503 

Finally, specific differences were observed in the metabolite accumulation patterns 504 

observed in cpEnolase and cpPGAM1A knockout lines (Fig. 5; S13). These include a 505 

significant (one-way ANOVA two-tailed P-value < 10-05) over-accumulation of three 506 

amino acids (aspartate, leucine and phenylalanine) and one sugar phosphate 507 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.09.574873doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574873
http://creativecommons.org/licenses/by-nc/4.0/


 

 16 

(glycerol-3-phosphate) specifically in cpEnolase knockout lines under all three 508 

conditions, and in serine under 19C CL and 8C CL only. These differences contrast 509 

to cpPGAM1A knockouts in which no significant changes were observed, or (in the 510 

case of glycerol-3-phosphate and serine) these metabolites significantly under-511 

accumulate under all three conditions compared to controls (Fig. 5; S13).  512 

 513 

Temperature-specific impacts of plastid glycolysis-gluconeogenesis on lipids 514 

 515 

Next, we performed GC-MS (55 samples) and LC-MS (49 samples) of lipid profiles in 516 

multiple knockout and control lines under 19C LD, 19C CL and 8C CL. Outputs are 517 

tabulated in Supplemental Dataset 6, sheets 1, 3-5. While the GC-MS data project 518 

significant (one-way ANOVA two-tailed P-value < 0.05) impacts of growth condition 519 

on fatty acid profiles (e.g., a decrease of C20:5 side chain lipids balanced by an 520 

increase of C16:1 side chain lipids in 19C CL, and an over-accumulation of C16:3 521 

side chain lipids under 19C LD, and of C18:0 side chain lipids under 8C CL), no 522 

substantial differences were observed between cpEnolase, cpPGAM1A and control 523 

lines under any conditions studied (Supplemental Dataset 6, sheet 3).  524 

 525 

In contrast to the relatively limited effects on total fatty acid profiles, LC-MS analyses 526 

of lipid class distributions revealed substantial changes in lipid class distribution in 527 

plastid glycolysis-gluconeogenesis knockout lines (Fig. 6; Supplemental Dataset 6, 528 

sheet 4). Even accounting for within-line variation, both cpEnolase and cpPGAM1A 529 

knockouts were found to significantly under-accumulate triacylglycerols (TAG) 530 

(cpEnolase 3.98 ± 1.94%, cpPGAM1A 3.60 ± 1.72%, control 12.18 ± 7.26%; one-way 531 

ANOVA, two-tailed P separation of means between knockout and control lines < 532 

0.05) and over-accumulate monogalactosyldiacylglycerols (MGDG; cpEnolase 63.83 533 

± 4.33%, cpPGAM1A 60.89 ± 5.64%, control 49.68 ± 8.88%; one-way ANOVA, two-534 

tailed P< 0.05) under 19C LD (Fig. 6A). Further significant (P < 0.05) under-535 

accumulations were detected in knockout lines for diacylglycerols (DAG) and 536 

sulfoquinovosyl-diacylcerols (SQDG) under 19C LD. Similar tradeoffs were observed 537 

under 19C CL, albeit with an over-accumulation, rather than under-accumulation of 538 

DAG, and an additional under-accumulation of digalactosyldiacylglycerols (DGDG), 539 

in glycolysis knockouts compared to control lines (Fig; 6B).  540 

 541 
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Detailed analyses of the individual fatty-acid side-chains associated with different 542 

lipid classes in glycolysis knockout lines under 19C indicated increased relative 543 

contributions of C16:1 fatty acids to plastid membrane lipid sn-1 positions 544 

(Supplemental Dataset 6, sheet 5). These included conserved (P < 0.01) over-545 

accumulations of DGDG-16-1_16-2 under 19C LD (Fig. S14); and SQDG 16-1_16-0, 546 

MGDG-16-1_16-2, MGDG-16-1_16-3 and DGDG-16-1_16-1, in both cpEnolase and 547 

cpPGAM1A knockout lines under 19C CL (Fig. S15). A significant over-accumulation 548 

of 16-1_16-1 side chains and under-accumulation 20-5_18-4 was also observed for 549 

diacylglyceryl hydroxymethyltrimethyl-β-alanine (DGTA), a betaine lipid known to act 550 

as a platform for the biosynthesis of 20:5 fatty acids, in both cpEnolase and 551 

cpPGAM1A knockout lines under 19C LD (Fig. S14) (Dolch and Maréchal 2015, 552 

Popko, Herrfurth et al. 2016). 553 

 554 

Under 8C CL, quite different trends were observed in fatty acid accumulation in 555 

cpEnolase knockouts compared to cpPGAM1A knockouts and controls. These 556 

correlated principally with an over-accumulation of TAG (cpEnolase 20.88 ± 12.21%, 557 

cpPGAM1A 9.62 ± 6.31%, control 8.15 ± 3.95%; one-way ANOVA, two-tailed P < 558 

0.05) in lieu of MGDG (cpEnolase 34.20 ± 6.74%, cpPGAM1A 42.94 ± 6.01%, control 559 

46.61.3 ± 6.25%; one-way ANOVA, two-tailed P < 0.5; Fig. 6A). An over-560 

accumulation of SQDG was observed in both cpEnolase and cpPGAM1A knockouts 561 

compared to controls, albeit with greater severity in cpEnolase knockouts (Fig. 6B). 562 

Considering side-chain distributions of individual lipid classes, a significant (one-way 563 

ANOVA two-tailed P-value < 0.01) over-accumulation of short-chain (C14:0, C16:1) 564 

and sn-1 and sn-2 fatty acids was observed in cpEnolase knockouts (Fig. S16A). A 565 

probable exchange of very long-chain sn-2 fatty acids in SQDG pools was further 566 

observed in cpEnolase knockouts, with significant (one-way ANOVA two-tailed P-567 

value < 0.01) increases in SQDG 14-0_16-0 and SQDG-14_0-16-1 in lieu of SQDG-568 

16-2_24-0 in cpEnolase knockouts compared to cpPGAM1A and control lines (Fig. 569 

S16B; Supplemental Dataset 6, sheet 5). 570 

 571 

Lower half diatom plastid glycolysis-gluconeogenesis enzymes are reversible, but 572 

with greater activity in the glycolytic direction 573 

 574 
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Finally, we assessed the kinetics of cpPGAM and cpEnolase in both glycolytic and 575 

gluconeogenic directions using a previously defined assay (Sutherland, Posternak et 576 

al. 1949, Zhang, Sampathkumar et al. 2020) with modified versions of each protein 577 

(codon-optimised, and lacking signal peptides) expressed in E. coli, alongside 578 

measured NADH consumption coupled to either lactate dehydrogenase (glycolysis) 579 

or glyceraldehyde-3-phosphate dehydrogenase (Fig. S16). Both enzymes were 580 

inferred to possess reversible reaction kinetics, metabolizing NADH when supplied 581 

both with 3-PGA (in the glycolytic direction) and PEP (in the gluconeogenic direction; 582 

Fig. 7A, Fig. S16). Nonetheless, the measured reaction rates were almost 1.5 times 583 

greater in the glycolytic than gluconeogenic direction (e.g., 34.4 versus 23.4 units of 584 

relative NADH consumption when supplied with 9 mM 3PGA or 9 mM PEP; Fig. 7A) 585 

suggesting an innate preference for glycolytic activity. 586 

 587 

Discussion 588 

 589 

We characterise a lower half glycolytic-gluconeogenic pathway associated with 590 

diatom plastids, relating specifically to two plastid-targeted proteins, cpEnolase and 591 

cpPGAM1A, and focusing on the model species P. tricornutum. Our data position 592 

plastid glycolysis-gluconeogenesis as arising in a recent ancestor of diatoms and 593 

their closest relatives (e.g., pelagophytes, dictyochophytes) and potential 594 

endosymbiotic derivatives (haptophytes) (Nonoyama, Kazamia et al. 2019). We 595 

further show that lower half plastidial glycolysis-gluconeogensis has a limited 596 

distribution across the algal tree of life, with no detectable examples in primary red or 597 

green algae (Fig. S5), although it is possible that the occurrence of organelle-598 

targeted isoforms of these enzymes is underestimated, e.g., due to lower sensitivity 599 

of diatom and plant-trained targeting predictors on other algal groups (Fuss, 600 

Liegmann et al. 2013, Gruber, Rocap et al. 2015). We propose that diatom plastid 601 

glycolysis most likely originated through the duplication and retargeting of 602 

mitochondrial respiratory enzymes (Fig. 1).  603 

 604 

Using meta-genomic data from Tara Oceans we demonstrate that diatom plastid 605 

glycolysis is likely highly expressed at high latitudes (Figs. 2, S6-S8), which are 606 

subject to extreme photoperiods and low temperature. These data are further 607 

supported by collection sites of cultured species, with no occurrences of species 608 
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lacking plastid-targeted PGAM enzymes beyond 50°N (Fig. S1B). These 609 

enrichments appear to be specific to diatoms, with polar circle haptophytes, 610 

cryptomonads and other ochrophytes lacking apparent plastidial glycolysis found 611 

further than 60°N and 70°S, and a restriction of plastid glycolysis to low latitude green 612 

algae. These results will be better substantiated by considering meta-genome 613 

assembled genomes from uncultivated diatoms with known spatial distributions, or by 614 

competition assays of closely related diatom species possessing and lacking plastid 615 

glycolysis enzymes under light and temperature stress (Siegel, Baker et al. 2020, 616 

Delmont, Gaia et al. 2022). 617 

 618 

From growth analysis of P. tricornutum knockout lines, we infer that photoperiod is 619 

the principal driver of diatom plastid glycolytic activity, with more intense growth 620 

defects observed under continuous illumination than in light:dark cycles (Figs. 3, S9). 621 

It has been proposed that the effective management of primary carbon metabolism 622 

may enable diatoms to outcompete other phytoplankton groups under nutrient-rich 623 

and light-saturated conditions (Behrenfeld, Halsey et al. 2021, Lampe, Hernandez et 624 

al. 2021). Under low temperatures, no difference was observed in the growth rate of 625 

glycolysis knockouts showed to control lines (Fig. 3). This may reflect previous 626 

studies that have projected low rates of diatom photo-assimilation of carbon dioxide 627 

in low temperature habitats at high latitudes (Lacour, Larivière et al. 2017). The 628 

relevance of plastidial glycolysis to diatoms in other environmental conditions where 629 

they predominate (e.g., coastal and upwelling cycles) remains to be determined 630 

(Lampe, Hernandez et al. 2021). 631 

 632 

Considering the observed phenotypes of knockout and control lines (Figs. 3-6; S10-633 

S15) and the reversible kinetics of expressed enzymes, we reconstruct potential 634 

functions contributed by the lower half of plastid glycolysis-gluconeogenesis in 635 

diatoms under 19C LD, 19C CL and 8C CL (Fig. 7B). Overall, these data seem 636 

predominantly in favour of metabolic flux in the glycolytic direction, perhaps reflecting 637 

the greater relative abundance of triose phosphate than pyruvate in the plastid under 638 

illuminated and photosynthetically active conditions, alongside the greater kinetic 639 

activity observed in the glycolytic than gluconeogenic activity of expressed enzymes 640 

(Fig. 7A, Fig. S16). These results are inferential based on the long-term 641 

accumulation patterns of stable metabolites and the expression of implicated 642 
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metabolic genes, and would be more effectively validated via direct flux 643 

measurements, e.g., comparative 13C-glycerol or -glucose labelling of glycolysis 644 

knockout and control lines (Zheng, Quinn et al. 2013, Huang, Liu et al. 2015). 645 

 646 

Under 19C LD, we observe limited gene expression changes in cpPGAM1A and 647 

cpEnolase knockout lines, except (as inferred from qPCR) a downregulation in 648 

plastid chorismate mutase and upregulation of mitochondrial PGAM (Fig. 4B). 649 

Chorismate mutase forms part of the plastid shikimate pathway, which typically 650 

consumes PEP (Bromke 2013) and may form a primary acceptor of glycolytic 651 

products, whereas upregulation of mitochondrial glycolysis-gluconeogenesis may 652 

reflect an enhanced export of plastid glyceraldehyde-3-phosphate to the 653 

mitochondrion in the absence of plastid metabolism. We also note diminished levels 654 

of cytoplasmic sugars and TCA cycle intermediates (i.e., citric acid) in cpEnolase and 655 

cpPGAM1A knockout lines (Fig. 5) (Smith, Dupont et al. 2019), which might suggest 656 

a diversion of cellular carbon away from gluconeogenesis and/or respiration.  657 

 658 

We also note some evidence for lipid remodelling in glycolysis mutant lines, e.g., a 659 

relative over-accumulation of galactolipids in lieu of TAGs, and short-chain fatty acids 660 

in lieu of longer equivalents (Figs. 6, S14). Previous studies have noted the 661 

importance of lipid metabolism in diatom stress responses (Zulu, Zienkiewicz et al. 662 

2018), and that most or all diatom lipid synthesis occurs directly in the plastid 663 

(Huang, Pan et al. 2023). Many of the metabolic reactions required for lipid synthesis, 664 

including acyl-coA synthesis from pyruvate (Maréchal and Lupette 2020), glycerol-3-665 

phosphate from glyceraldehyde-3-phosphate (Kroth, Chiovitti et al. 2008), and 666 

glucosyl-1-phosphate from cytoplasmic glucosyl-1-phosphate (Zhu, Shi et al. 2016), 667 

are likely to be Impacted by plastid carbon metabolism. We note that there is no 668 

evidence for transcriptional modifications to fatty acid synthesis in glycolysis mutant 669 

lines, suggesting that these changes are driven by substrate limitation. As our 670 

metabolomics data project under-accumulations of both pyruvate and hexose sugars 671 

in knockout lines (Fig. 5), we propose that the diminished abundances of TAGs and 672 

shorter chain fatty acids are due to a diminished supply of plastid pyruvate for acyl-673 

coA synthesis, rather than greater gluconeogenesis of galactosyl-phosphates from 674 

exported plastid glyceraldehyde-3-phosphate (Demé, Cataye et al. 2014). 675 

 676 
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Under 19C CL, we observed much more dramatic remodelling of cellular transcription 677 

in knockout lines compared to controls (Fig. 4A). These include greater overall 678 

photosynthesis gene expression, e.g., Lhcf1 (Fig. 4B), which was corroborated in 679 

photo-physiological analyses by larger PSII antenna size, i.e., a larger functional 680 

cross-section (σPSII) (Fig. S11). It should be noted that the increase in PSII antenna 681 

size does not necessarily change the quantum yield of individual PSII reaction 682 

centres, and therefore the increased σPSII is independent of the Fv/ Fm measured, 683 

which remains equivalent between knockout and control lines (Fig. S11). We did not 684 

observe consistent differences in the expression of nitrogen or phosphorus stress 685 

metabolism, or in the expression of the P. tricornutum biophysical carbon 686 

concentration mechanisms of knockout lines, suggesting that these differences were 687 

not caused by N, P or CO2 limitation in the control lines (Supplemental Dataset 5, 688 

sheets 4-5) (McCarthy, Smith et al. 2017, Nawaly, Matsui et al. 2023). We further did 689 

not measure differences in photosynthetic performance (electron transport), or an 690 

upregulation of genes encoding proteins involved in photoprotection, e.g., LhcX 691 

family or xanthophyll cycle enzymes in knockout lines under 19C CL (Fig. 4B; Fig. 692 

S11; Supplemental Dataset 4, sheet 12) (Buck, Sherman et al. 2019, Bai, Cao et al. 693 

2022), suggesting that the differential expression of photosynthesis genes in the 694 

knockout lines does not directly influence photosynthesis. In contrast, we observed 695 

an upregulation of mitochondrial NDH dehydrogenase and downregulation of TCA 696 

cycle enzymes in glycolysis knockout lines (Fig. 4B). Previous studies have noted 697 

the important role of diatom mitochondria in dissipating excess plastid reducing 698 

potential (Bailleul, Berne et al. 2015, Broddrick, Du et al. 2019), and it remains to be 699 

determined if the formal export of plastid NADPH to the mitochondria in knockout 700 

lines is impeded under continuous light.  701 

 702 

It remains to be determined what routes enable the supply of pyruvate hub 703 

intermediates to the P. tricornutum plastid in the absence of plastid glycolytic activity. 704 

Previous studies have noted that diatom plastid triose phosphate transporters may 705 

be able to transport PEP directly from the cytoplasm, and one of these 706 

(Phatr3_J54017) is indeed upregulated in both cpEnolase and cpPGAM1A knockout 707 

lines under 19C CL (Supplemental Dataset 5, sheet 3) (Moog, Nozawa et al. 2020, 708 

Liu, Storti et al. 2022). Elsewhere our data suggest that amino acids may also 709 

contribute to resupplying the P. tricornutum plastid with PEP and/or pyruvate. The 710 
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overexpression of plastid alanine transaminase in cpPGAM1A knockouts (Fig. 4B) 711 

might allow alanine imported into the plastid to be deaminated to supply pyruvate 712 

(Smith, Dupont et al. 2019). The overaccumulation of small amino acids synthesised 713 

either from pyruvate (valine), PEP (aspartate via PEP carboxylase) and its 714 

derivatives (methionine from aspartate via the homocysteine pathway) in knockout 715 

lines may relate to this (Fig. 5) (Bromke 2013, Yu, Nakajima et al. 2022). Strikingly, 716 

the knockout lines over-accumulate ornithine and glutamate, implicated in diatom 717 

plastid amino acid recycling via the ornithine cycle (Levering, Broddrick et al. 2016, 718 

Smith, Dupont et al. 2019), but under-accumulate arginine and citrate produced via 719 

mitochondrial ornithine catabolism in the urea cycle (Allen, Dupont et al. 2011, Dolch, 720 

Lupette et al. 2017). These data broadly suggest dysregulation in plastid-to-721 

mitochondria amino acid shuttling in glycolysis knockout lines under 19C CL (Fig. 5).  722 

 723 

Under 8C CL, we identify an over-accumulation of mRNAs encoding plastid 724 

biogenesis and mitochondrial glycolytic proteins, an over-accumulation of short-chain 725 

amino acids (valine) and an under-accumulation of cytoplasmic sugars and amino 726 

acids (glucose, histidine) in cpEnolase and cpPGAM1A knockouts relative to controls 727 

(Figs. 4B, 5). We further note under-accumulations of pyruvate in both knockout 728 

lines (Fig. 5). These reflect the phenotypes identified at 19C, and the absence of a 729 

specific growth defect under 8C conditions is therefore perhaps surprising (Fig. 3). 730 

Knockout lines under 8C conditions, however, have additional phenotypes not 731 

observed at 19C. These include an overall enrichment in down-regulated genes 732 

encoding plastid-targeted proteins (Fig. 4A); a specific over-accumulation of TCA 733 

cycle (citrate synthase) and a possible non-photochemical quenching-associated 734 

mRNA (LhcX4) (Fig. 4B) (Bailleul, Berne et al. 2015, Murik, Tirichine et al. 2019). It is 735 

possible that these additional phenotypes have compensatory effects on knockout 736 

line growth rates. 737 

 738 

One possible explanation for the more complex phenotypes observed under 8C CL 739 

would be a gluconeogenic activity of plastidial lower-half glycolysis-gluconeogenesis. 740 

The reversibility of the cpPGAM1A and cpEnolase reaction is confirmed by 741 

enzymatic data (Fig. 7A), and in particular is suggested by the cpEnolase knockout 742 

phenotypes, which could relate to the accumulation of PEP on the acceptor side of 743 

the gluconeogenic reaction. These include an overaccumulation of TAGs and 744 
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SGDQs over glucosyl-lipids, which might relate to a greater accumulation of acyl-coA 745 

synthesised from plastidial pyruvate in cpEnolase knockouts (Fig. 6). These also 746 

include the over-accumulation of aspartate and phenylalanine, synthesised from 747 

PEP, which is further visible in cpEnolase knockouts at 19C conditions (Figs. 5, 748 

S13). The differences in cpEnolase and cpPGAM1A phenotypes may relate to the 749 

fact cpEnolase is the only plastid-targeted enolase protein encoded in the P. 750 

tricornutum genome, whereas alternative phospho-glycerate mutases exist that may 751 

compensate for cpPGAM1A (e.g., cpPGAM1B, cpPGAM2; Figs. S4, S7). 752 

Establishing the relative fluxes that occur in each direction of cpEnolase and 753 

cpPGAM enzymes will depend on the construction of multigene knockouts for 754 

different P. tricornutum Enolase and PGAM isoforms (Yin and Hu 2023).  755 

 756 

The complex phenotypes for diatom plastid glycolysis inferred from environmental 757 

data and experimentally visualised in P. tricornutum knockout lines contrast with 758 

those for plant plastid glycolysis, with (for example) A. thaliana cpEnolase and 759 

cpPGAM mutants presenting relatively limited phenotypes (Prabhakar, Löttgert et al. 760 

2009, Andriotis, Kruger et al. 2010). These contrast with cytoplasmic and respiratory 761 

plant Enolase and PGAM1 isoforms which, alongside having predominant impacts on 762 

plant carbon flux, may have important moonlighting roles in plant development, 763 

immune responses and even in the structural coordination of plastids and 764 

mitochondria (Zhao and Assmann 2011, Zhang, Sampathkumar et al. 2020, Yang, 765 

Wang et al. 2022). We similarly anticipate that further surprises will be identified for 766 

the functions of diatom plastid glycolysis, and for this still poorly understood pathway 767 

in the photosynthetic tree of life. 768 

 769 

Materials and Methods 770 

 771 

Culture conditions 772 

 773 

Phaeodactylum tricornutum strain Pt1.86 was grown in enhanced seawater (ESAW) 774 

medium supplemented with vitamins, but without silicon or added antibiotics, in 50 μE 775 

m-2 s-1 white light. Light profiles were measured with a SpectraPen photofluorometer 776 

(Photon Systems Instruments, Czech Republic); and are provided in Supplemental 777 

Dataset 4, sheet 13. Cultures were grown under one of four light, temperature and 778 
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shaking regimes. For general molecular work and transformation, cultures were 779 

grown under 19 °C with 12h light: 12 dark cycling, shaken at 100 rpm (for general 780 

molecular work and transformation), following the established methodology of 781 

Falciatore et al. (Falciatore, Casotti et al. 1999). For comparative physiology work, 782 

we were unable to replicate shaking conditions at low temperatures, and therefore 783 

chose to use conditions without shaking: 19 °C with 12 h light: 12 h dark cycling 784 

(« LD » growth conditions and physiological analysis); 19 °C with 24 h continuous 785 

light and without shaking (« CL » growth conditions and physiological analysis); or 786 

8°C with 24h continuous light and without shaking (« 8C » growth conditions and 787 

physiological analysis). All cultures achieved measured mid exponential Fv/Fm 788 

values of > 0.6, suggesting that the absence of shaking did not impact on 789 

photosynthetic efficiency (Supplemental Dataset 5, sheet 8). 790 

 791 

Batch culturing of P. tricornutum for genetic manipulation was performed under 792 

fluorescent lamps. Physiological experiments were principally performed at 19°C in 793 

an AlgaeTron AG230 (Photon Systems Instruments) with cool white LED (WIR) 794 

illumination, and technical specifications described in https://growth-795 

chambers.com/data/algaetron-ag-230/download/AlgaeTron_AG_230_Manual2021-796 

finalweb.pdf . Growth experiments were performed at 8°C using a low-temperature 797 

adapted cool white LED (WIR, ECCLIM). Details of all three spectra used, as 798 

measured with a SpectraPen (PSI), are provided in Table S4, sheet 13. 799 

 800 

Mutant P. tricornutum lines were maintained on ½ ESAW 1% agarose plates, 801 

supplemented by 100 μg ml-1 each ampicillin and streptomycin, and 30 μg ml-1 802 

chloramphenicol, and either 100 μg ml-1 zeocin (single transformants), or 100 μg ml-1 803 

zeocin and 4 μg ml-1 blasticidin (complementation lines), as previously described 804 

(Falciatore, Casotti et al. 1999, Buck, Río Bártulos et al. 2018). All functional 805 

analyses of transformant lines were performed on transformant lines grown in the 806 

absence of antibiotic selection, to avoid secondary effects on growth or physiology. 807 

 808 

Phylogenetic identification of plastid lower half glycolysis-gluconeogenesis enzymes  809 

 810 

Plastid-targeted glycolysis lower half enzymes were searched across 1,673 plant and 811 

algal genomes and transcriptomes (Dataset S1, sheet 1). Briefly, this involved all 812 
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annotated P. tricornutum PGAM (Phatr3_J17086, Phatr3_J51404, Phatr3_J5605, 813 

Phatr3_J5629, Phatr3_J8982, Phatr3_J37201, Phatr3_J47096) and enolase 814 

(Phatr3_draftJ1192, Phatr3_draftJ1572, Phatr3_J41515) peptide sequences with 815 

BLASTp and a threshold e-value of 10-05, and a reciprocal BLASTp with criteria -816 

max_target_seqs 1 to retrieve the best homologues against the entire P. tricornutum 817 

genome. For PGAM, where P. tricornutum queries failed to retrieve homologues in 818 

>50% searched libraries, a second BLASTp was performed with query peptide 819 

sequences from A. thaliana (AT2G17280, AT1G09780, AT3G05170, AT3G08590, 820 

AT3G50520, AT5G04120, AT5G64460), and a reciprocal BLASTp was performed 821 

with the P. tricornutum genome supplemented with these sequences. 822 

 823 

The domain content of each potential homologue was identified using hmmscan and 824 

the version 33.1 Pfam database (Mistry, Chuguransky et al. 2020). Only Enolase 825 

sequences that contained >90% predicted domain coverage to both Enolase_N and 826 

Enolase_C domains; and PGAM sequences that contained >50% domain coverage 827 

to the His_Phos domain (based on the corresponding coverage observed in P. 828 

tricornutum sequences) were viewed as being complete. Sequences for which the N-829 

terminus of the region homologous to the PFAM domain was located within the first 830 

20 aa of the predicted sequence (i.e., less than the length of a typical plastid-831 

targeting sequence) (Emanuelsson, Brunak et al. 2007) were viewed as lacking 832 

credible targeting sequences. All remaining proteins were scanned, considering both 833 

complete proteins and sequences trimmed to the first encoded N-terminal 834 

methionine, using targetp (using a plant scoring matrix) (Emanuelsson, Brunak et al. 835 

2007), PredAlgo (Tardif, Atteia et al. 2012), HECTAR (Gschloessl, Guermeur et al. 836 

2008) and ASAFind (with SignalP 5.0) (Gruber, Rocap et al. 2015, Almagro 837 

Armenteros, Tsirigos et al. 2019). Sequences from primary plastid-containing 838 

organisms (plants, green and red algae, glaucophytes) that were inferred to possess 839 

a plastid-targeting sequence either with TargetP or PredAlgo, and sequences from 840 

secondary plastid-containing organisms that were inferred to possess a plastid-841 

targeting sequence with either HECTAR or ASAFind, considering both complete and 842 

N-trimmed sequence models, were annotated as putatively plastid-targeted. 843 

 844 

A more detailed phylogenetic analysis was performed using Enolase and PGAM 845 

homologues obtained from a subset of 289 complete cryptomonad, haptophyte and 846 
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stramenopile genomes and transcriptomes in the above library, alongside 847 

homologues identified from a further 85 prokaryotic and eukaryotic genomes 848 

sampled with taxonomic balance from across the remainder of the tree of life (Liu, 849 

Storti et al. 2022). Sequences were also screened for mitochondrial presequences 850 

using HECTAR (Gschloessl, Guermeur et al. 2008), and MitoFates, run with 851 

threshold value 0.35 (Fukasawa, Tsuji et al. 2015).  852 

 853 

The pooled set of sequences were aligned first with MAFFT v 7.0 under the --auto 854 

setting, followed by the in-built alignment programme in GeneIOUS v 10.0.9, under 855 

default settings (Kearse, Moir et al. 2012, Katoh, Rozewicki et al. 2017). Incomplete 856 

and poorly aligned sequences, alongside taxonomically uninformative N- and C-857 

terminal regions were removed from the alignment manually, followed by trimal with 858 

setting –gt 0.5 (Capella-Gutiérrez, Silla-Martínez et al. 2009). Phylogenetic analyses 859 

were performed with MrBayes v 3.2 and rAxML v 8, integrated into the CIPRES 860 

webserver (Stamatakis 2014, Miller, Schwartz et al. 2015). MrBayes trees were run 861 

for 10,000,000 generations with the GTR, Jones and WAG substitution matrices, 4 862 

starting chains and sumt and sump burnin fractions set to -0.5; all cold chains were 863 

confirmed to have reached a pvalue plateau below 0.1 prior to the start of the 864 

consensus building. rAxML trees were run with GTR, JTT and WAG substitution 865 

matrices, 350-400 ML generations, and automatic bootstopping. Phylogenies were 866 

either rooted between bacterial and eukaryotic sequences (Enolase); or on the mid-867 

point (PGAM1, PGAM2) due to the absence of a single monophyletic bacterial 868 

outgroup. A summary of these analyses is provided in Supplemental Dataset 1. 869 

 870 

Tara Oceans Analysis 871 

 872 

The complete Tara Oceans and Tara Oceans Polar Circle libraries of meta-genome 873 

and meta-transcriptome diversity (Carradec, Pelletier et al. 2018, Royo-Llonch, 874 

Sánchez et al. 2020) were searched for orthologues of diatom cpEnolase, 875 

cpPGAM1A and PGAM2 sequences via a phylogenetic reconciliation approach 876 

benchmarked in previous studies (Kazamia, Sutak et al. 2018, Liu, Storti et al. 2022). 877 

This approach uses the combined outputs of hmmer, BLAST best-hit, and single-878 

gene tree topologies to only retain Tara Oceans meta-genes that reconcile as 879 
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monophyletic with a defined query set, in these case plastid-targeted diatom isoforms 880 

of each enzyme. Exemplar tree topologies are shown in Fig. S6. 881 

 882 

First, a HMM (hidden Markov model) was constructed for all diatom plastid-targeted 883 

sequences in the untrimmed alignments for each phylogeny, as detailed above, and 884 

searched into the complete Tara Oceans catalog by hmmer (http://hmmer.org) with 885 

evalue 10-10 to identify putative meta-gene homologues of each protein. Matching 886 

sequences were extracted, and searched by BLASTp against the complete copy of 887 

the P. tricornutum genome (Rastogi, Maheswari et al. 2018). Only sequences that 888 

retrieved a best hit against an Enolase or PGAM sequence (and therefore likely 889 

correspond to homologues of each protein) were retained. Next, the retained 890 

sequences were similarly searched by BLASTp against the complete untrimmed 891 

alignment of cultured Enolase and PGAM sequences. Only sequences that retrieved 892 

a diatom plastid-targeted isoform were retained, allowing the elimination of non-893 

diatom and homologues of diatom non-plastid sequences. Finally, sequences were 894 

combined with the untrimmed alignment of cultured sequences from each gene and 895 

realigned using the same MAFFT, GeneIOUS and trimal pipeline as defined above. 896 

Curated alignments were screened by rAxML tree with the JTT substitution matrix, as 897 

above. Only Tara Oceans sequences that resolved within a monophyletic clade with 898 

diatom plastid-targeted proteins, defined as all sequences that position closer on a 899 

midpoint rooting of the tree to diatom plastid-targeted proteins than to any non-900 

diatom or non-plastid targeted sequences, was extracted for further analyses.  901 

 902 

Relative abundances were calculated for the total occurrence of all phylogenetically 903 

verified diatom plastid-targeted proteins in both meta-transcriptome and meta-904 

genome data. Relative expression levels of each gene were estimated by reconciling 905 

the calculated meta-transcriptome abundances either to total diatom meta-906 

transcriptome sequences using the formula 10^6(ΣmetaT/ ΣDiatomT), i.e., expressed per 907 

million reconciled diatom reads, or to calculated meta-genome abundances, using 908 

the formula and log10 (1+ ΣmetaT) - log10 (1+ ΣmetaG), to allow inclusion of null values. 909 

Pearson and Spearman correlations were calculated between relative abundances 910 

and all quantitative measured environmental variables associated with Tara Oceans 911 

samples as stored within the PANGAEA repository (Pesant, Not et al. 2015). All 912 

calculations were repeated independently for each depth (surface, or deep 913 
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chlorophyll maximum/ DCM) and size fraction (0.8- 2000 μm, 0.8- 5 μm, 3/5- 20 μm, 914 

20- 180 μm, and 180- 2000 μm), with 3 and 5 μm filters viewed as equivalent to allow 915 

reconciliation of Arctic and non-Arctic data, respectively. All Tara Oceans meta-gene 916 

assignations, alongside individual and total abundance calculations are provided in 917 

Supplemental Dataset 3. 918 

 919 

Nucleic acid isolation 920 

 921 

For DNA isolation, 150 ml early stationary phase P. tricornutum culture, grown under 922 

19°C with 12h light: 12h dark cycling, and shaken at 100 rpm as described above, 923 

was centrifuged at 4000 rpm for 10 minutes. The resulting cell pellet was washed in 924 

sterile growth medium three times, and incubated for four hours in 5 ml TEN buffer 925 

(0.1 M NaCl, 0.01 M Tris pH8, 0.001 M EDTA) supplemented with 2% volume: 926 

volume SDS, and 1U μl-1 proteinase K (Fisher Scientific). Lysed cell fractions were 927 

used for phenol: chloroform precipitation of cellular DNA, as previously described 928 

(Nash, Barbrook et al. 2007), prior to dissolution in 50 μl nuclease-free water, and 929 

quantification with a nanodrop photospectrometer. 930 

 931 

For RNA isolations, 105 stationary phase P. tricornutum cells, as calculated with cell 932 

densities counted from a Malassez haemocytometer were inoculated in a 250 ml 933 

conical Erlenmeyer containing 80 ml ESAW without antibiotics. Cell cultures were 934 

harvested in mid-exponential phase, at counted densities of between 1 and 2 x 106 935 

cells ml-1. 19C CL cultures were typically harvested eight days post-inoculation, 19C 936 

LD cultures nine days post-inoculation, and 8C CL cultures seventeen days post-937 

inoculation, in agreement with growth curve dynamics. Cells were harvested at the 938 

mid-point of the light-induction phase of the LD growth condition (15:00 CET), per 939 

previous gene expression studies in P. tricornutum (Cruz de Carvalho, Sun et al. 940 

2016).  941 

 942 

RNA was isolated from 108 cells from each culture, pelleted and washed as before, 943 

and snap-frozen in liquid nitrogen. Frozen cell suspensions were re-equilibrated with 944 

1 ml Trizol reagent (Invivogen) and 200 μl chloroform (Honeywell), prior to phenol: 945 

chloroform extraction. An additional separation step was performed in 500 μl pure 946 

chloroform to remove any residual phenol traces from the aqueous phase, and 947 
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purified nucleic acids were precipitated overnight in 500 μl isopropanol at -20°C. RNA 948 

was collected by centrifugation at 10,000 rpm for 30 minutes, washed with 900 μl 949 

100% ethanol, and resupended in 50 μl RNAse-free water (Qiagen). 950 

 951 

2 μg RNA, as quantified with a nanodrop photospectrometer, was subsequently 952 

treated with 2U RNAse-free DNAse (Promega) for 30 minutes at 37 °C, with the 953 

reaction arrested with 1 μl 0.5 M EDTA. The digested RNA sample was 954 

reprecipitated in isopropanol for one hour at -20 °C, washed in ethanol, and 955 

resuspended in 20 μl RNAse-free water. Purified RNA sample concentrations were 956 

quantified with a nanodrop spectrometer, and a 3 μl aliquot was migrated on an 957 

RNAse-free 1% agarose gel stained with 0.2 μg ml-1 ethidium bromide to confirm 958 

RNA integrity prior to all downstream applications. 959 

 960 

GFP localization 961 

 962 

Full length mRNA sequences of cpEnolase, cpPGAM1A and cpPGAM2 were 963 

amplified from P. tricornutum RNA libraries grown under 19 °C, light: dark cycling and 964 

replete nutrient conditions as described above, by reverse transcription with RT 965 

Maxima First Strand synthesis kit (Thermo Fisher) from 200 ng template RNA, 966 

following the manufacturer9s instructions; and gene-specific primers as shown in 967 

Supplemental Dataset 2, sheet 4. PCRs were performed using Pfu high-fidelity DNA 968 

polymerase, in 50 μl total reaction volume, including 1 μl cDNA template and 2 μl 969 

each specific primer, following the manufacturer9s protocol. Typical PCR conditions 970 

were: 10 minutes at 95 °C; followed by 35 cycles of 45 seconds at 95 °C, 45 seconds 971 

at 55 °C, and 2 minutes at 72 °C; followed by a terminal elongation phase of 5 972 

minutes at 72 °C. Amplified products were migrated on a 1% agarose gel stained 973 

with ethidium bromide, cut out, and purified using a MinElute PCR purification kit 974 

(Qiagen). 975 

 976 

Purified products were cloned into linearised versions of pPhat vectors containing 977 

eGFP and a zeocin resistance gene (SHBLE). These products were amplified using 978 

an analogous PCR protocol as above, with 1 ng purified plasmid DNA, and outward-979 

directed PCR primers extending from the start of the fluorescence protein gene 980 

sequence to the end of the FcpA promoter region (Supplemental Dataset 2, sheet 981 
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4); cut, purified, and treated with 1U FastDigest DpnI (Thermo Fisher) to remove any 982 

residual plasmid DNA. The gene-specific primers for each cpEnolase and cpPGAM 983 

construct were modified with 15 59 nucleotides complementary to the terminal regions 984 

of the FcpA and GFP sequences, allowing cloning of complete vector sequences 985 

using a HiFi DNA assembly kit (NEB), following the manufacturer9s instructions. 986 

Assembled vectors were transformed into chemically competent Top10 E. coli, and 987 

positive clones (as identified by Sanger sequencing of positive colony PCR products) 988 

were used to generate purified plasmid DNA with a Plasmid Midi Kit (Qiagen). 989 

 990 

Subcellular localization constructs were transformed into wild type P. tricornutum 991 

Pt186 by biolistic transformation, as previously described (Falciatore, Casotti et al. 992 

1999). 5 x 107 mid-exponential phase cells were plated on a ½ ESAW- 1% agarose 993 

plate, and left to recover for two days, prior to bombardment with 10 mg 1 μm 994 

tungsten beads treated with 5 μg purified plasmid DNA in a Helios gene gun 995 

(BioRad) at 1,550 PSI. Cells were left to recover for two days, prior to replating on ½ 996 

ESAW- 1% agarose plates supplemented with 100 μg ml-1 ampicillin, 100 μg ml-1 997 

streptomycin, 30 μg ml-1 chloramphenicol and 100 μg ml-1 zeocin. Plates post-998 

bombardment and for the first two days post-selection were maintained in a low light 999 

environment (10 μE m-2 s-1) prior to return to standard growth conditions. 1000 

 1001 

Positive transformant colonies, as verified by Western Blot with a mouse anti-GFP 1002 

antibody (Thermo Fisher), were visualised using a SP8 inverted spinning disc 1003 

confocal microscopy (Leica) under 400 x magnification, with excitation wavelength 1004 

485 nm and emission wavelength filters 500-550 nm. GFP-negative colonies were 1005 

used to confirm detection specificity, and empty-vector GFP (with cytoplasmic 1006 

localizations) were used as fluorescence positive controls. A minimum of 12 GFP 1007 

expressing clones were visualised for each construct with consistent localization. 1008 

 1009 

CRISPR mutagenesis  1010 

 1011 

CRISPR target sequences for cpEnolase and cpPGAM1A genes were identified 1012 

using PhytoCRISP-Ex (Rastogi, Murik et al. 2016), privileging positions in the N-1013 

terminal region of the conserved domain to minimize the probability of enzyme 1014 

functionality in knockout lines, and uniqueness across the entire P. tricornutum 1015 
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genome within the final 11 bp of the target sequence to minimize off-target effects. 1016 

Primers were designed for each target sequence, and introduced into a pu6:SG1 1017 

CRISPR target sequence plasmid by PCR, as previously described (Nymark, 1018 

Sharma et al. 2016). 2 μg insertion-positive pu6:SG1 plasmids, as confirmed by 1019 

Sanger sequencing were co-introduced into wild type P. tricornutum Pt186 cells by 1020 

bombardment along with 2 μg HA-tagged Cas9 and pPhat vectors, as described 1021 

above. Mutant colonies were genotyped using a DNA lysis buffer containing 0.14 M 1022 

NaCl, 5 mM KCl, 10 mM Tris-HCl pH 7.5, 1% v/v NP40 to generate crude DNA 1023 

extracts, followed by PCR amplification across the CRISPR target sequences with 1024 

DreamTaq PCR reagent (Promega) and Sanger sequencing (Eurofins genomics). 1025 

Mixed mutant: wild-type colonies were segregated via repeated dilution on ESAW: 1026 

zeocin plates until only homozygous mutant genotypes were detected (Nymark, 1027 

Sharma et al. 2016, McCarthy, Smith et al. 2017). Empty vector control lines were 1028 

generated using the same protocol, except with only HA-Cas9 and pPhat plasmids, 1029 

cotransformed without a CRISPR target sequence.  1030 

 1031 

Tabulated cleaned knockout mutants, their associated genotypes and the expression 1032 

levels of mutated gene copies are shown in Supplemental Dataset 4, sheets 1-2. 1033 

Mutant colony genotypes were periodically confirmed (approx. once per month) by 1034 

PCR and Sanger sequencing throughout the duration of all subsequent experiments, 1035 

and the CRISPR-induced gene modifications were found to remain stable. P. 1036 

tricornutum Enolase proteins were determined by Western blot to be crossreactive to 1037 

an anti-Arabidopsis thaliana Enolase-2 antibody (Agrisera), and thus knockout line 1038 

protein expression was confirmed by qRT-PCR, as described below.  1039 

 1040 

Complementation of knockout lines 1041 

 1042 

Knockout lines were complemented with pPhat:GFP vectors carrying overexpressing 1043 

copies (under an FcpA promoter) of cpEnolase and cpPGAM1A synthetic constructs, 1044 

with all CRISPR target sequences replaced with silent mutations (Eurofins). Genes 1045 

were fused to C-terminal GFP, allowing the verification of protein expression and 1046 

localization. Vectors were identical to those previously used for localization, but with 1047 

a blasticidin S-deaminase gene in lieu of SHBLE (Buck, Río Bártulos et al. 2018) 1048 

introduced by NEB Hi-Fi kit as before. Complementation constructs were transformed 1049 
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via bombardment, and cotransformed colonies were selected on ½ ESAW- 1% 1050 

agarose plates supplemented with 100 μg ml-1 ampicillin, 100 μg ml-1 streptomycin, 1051 

30 μg ml-1 chloramphenicol, 100 μg ml-1 zeocin, 4 μg ml-1 blasticidin.  1052 

 1053 

For each complementation, three cpEnolase and cpPGAM1A knockout lines 1054 

(including at least one for each CRISPR target sequence) were complemented both 1055 

with the conjugate complementation construct, and an empty blasticidin resistance 1056 

vector as a placebo; and two empty vector lines were further complemented with 1057 

both cpEnolase and cpPGAM1A overexpressor constructs, plus an empty blasticidin 1058 

resistance vector, to exclude possible effects from ectopic overexpression of each 1059 

gene on cell physiology. A total of 47 colonies, with a minimum of 6 colonies for each 1060 

knockout: complementation combination, including lines complemented from at least 1061 

two distinct primary knockout mutant genotypes, were selected for subsequent study 1062 

(Supplemental Dataset 4, sheet 7). The retention of the primary knockout mutant 1063 

genotype in each complemented line was verified by colony PCR and sequencing as 1064 

above, and the overexpression and correct localization of the complementing protein 1065 

sequence (i.e., to the chloroplast for cpEnolase:GFP and cpPGAM1:GFP, or the 1066 

cytoplasm for ectopic GFP) was verified by western blot with an anti-GFP antibody 1067 

(Thermo Fisher) (Erdene-Ochir, Shin et al. 2019) and confocal microscopy.  1068 

 1069 

Growth rate measurements 1070 

 1071 

A starting density of 104 ml-1 stationary phase P. tricornutum cells of a given culture 1072 

line, as verified with a Malassez haemocytometer, were inoculated into a 15 ml 1073 

volume antibiotic-free ESAW within a sterile, ventilated cap plastic culture flask 1074 

(Celltreat) and grown under LD, CL, or 8C culture conditions as described. Cell 1075 

densities were recorded: very day from one day post-inoculation (CL); every day from 1076 

two days post-inoculation (LD); or every two days from five days post-inoculation 1077 

(8C) at the mid-point of the LD light induction phase using a counting CyFlow Cube 8 1078 

cytometer (ParTec).  1079 

 1080 

Typically, 15 μl cell culture, passed at 0.5 μl s-1, were used for each measurement, 1081 

with three technical replicates performed for each culture of which the first (enriched 1082 

in non-cellular particles) was excluded from downstream calculations. Cytometer 1083 
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particle counts were correlated to actual cell densities using a calibration curve 1084 

realised from haemocytometer counted densities of wild-type cell culture, and 1085 

cultures with observed densities > 2 x 106 cells ml-1 were diluted ten-fold in blank 1086 

growth media to avoid saturation of the cytometer.  1087 

 1088 

Cell densities were measured daily from one day post-inoculation (19C conditions) 1089 

and every second day from five days post-inoculation (8C CL only), until cell lines 1090 

were confirmed to have exited log phase (i.e., reached a stationary phase plateau). 1091 

Primary knockout mutant growth curves were repeated a minimum of six times (three 1092 

biological replicates per-inoculation, with two independent repetitions) for each 1093 

mutant line. Growth curves were tested for seven cpEnolase knockout, five 1094 

cpPGAM1A knockout and four empty vector control lines, providing a minimum of 24 1095 

measurements (i.e., four distinct mutant lines) per each genotype studied (cpEnolase 1096 

knockout, cpPGAM1A knockout and empty vector control lines).  1097 

 1098 

To avoid artifacts based on the proximity of the seed cell culture to exponential phase 1099 

at the time of inoculation (which may impact on lag phase length) or the relative 1100 

diameter of each cell in culture (which may impact on carrying capacity), cell growth 1101 

rates were measured exclusively from the log-phase relative division rate. This was 1102 

calculated via considering Δlog2 (cell density) / Δlog2 (time) for a time period 1103 

corresponding to 5 x 104 to 4 x 106 cells/ ml, covering in most cases six successive 1104 

measurements of each individual growth curve. To confirm that the cells were 1105 

measured in exponential phase, and were neither influenced by particular 1106 

contamination of the cytometer or cell exhaustion of the growth medium, the linear 1107 

correlation was calculated between the log value, with most calculated correlations 1108 

(129/ 132) showing linearity (r> 0.95). Three exemplar growth curve outputs are 1109 

provided in Supplemental Dataset 4, sheets 3-5; and an overview of relative growth 1110 

rates expressed as a function of mean empty vector control growth rates are 1111 

provided in Supplemental Dataset 4, sheet 6.  1112 

 1113 

Complementation growth curves were repeated with at least two independent 1114 

repetitions for each cell line, with five timepoints taken to project growth rates, and 1115 

therefore a minimum of sixty independent measurements for each mutant: 1116 

complementation genotype under each growth condition, with the average of the two 1117 
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fastest growth rates of each culture calculated as estimates for the growth rate. A 1118 

heatmap of all estimated complementation line growth rates is provided in 1119 

Supplemental Dataset 4, sheet 7.  1120 

 1121 

Photophysiology 1122 

 1123 

Cultures for photophysiological analysis were grown in 10ml ventilated plastic flasks, 1124 

without shaking, under 19C CL and 19C LD as described above. Cultures were 1125 

grown from a starting inoculum of 105 cells ml-1 as measured with a Malassez 1126 

haemocytometer. Cell cultures that had reached a measured density of 106 cells ml-1 1127 

were then refreshed into fresh media at the initial starting concentration of 105 cells 1128 

ml-1 to allow a prolonged adaptation to each photophysiological condition under a 1129 

continuous exponential phase. Cells from refreshed culture lines were harvested in 1130 

exponential phase (between 1 and 3 × 106 cells ml-1, and good physiology was 1131 

verified by Fv/Fm measurements > 0.6 across all measured lines (Supplemental 1132 

Dataset 4, sheet 8).  1133 

 1134 

Steady-state light curves (SSLC) were conducted with a fluorescence CCD camera 1135 

recorder (SpeedZen, jBeamBio, France) in a selected set of control lines (n=2), 1136 

cpPGAM (n=3) and cpEnolase knockouts (n=6), as well in complemented cpEnolase 1137 

(n=2) and cpPGAM1A (n=3) knockout lines in which we observed a suppression of 1138 

the knockout growth defect compared to complemented control lines. Measurements 1139 

were repeated a minimum of two and in most cases four times per line and treatment 1140 

condition, with a minimum of six unique measurements performed for each genotype 1141 

and treatment. Curves were measured on cell cultures concentrated to between 2 1142 

and 5 × 107 cells ml-1. Samples were exposed to an initial 5 min illumination of 35 1143 

µmol photons m-2 s-1 green actinic light (532 nm), followed by a 6 steps of 3 min each 1144 

of increasing intensity to 750 µmol photons m-2 s-1.  1145 

 1146 

Minimum (F0) and maximum (FM) fluorescence were measured in dark-adapted (at 1147 

least 1 min) samples, before and at the end of a 250 ms saturating (multiple turnover) 1148 

pulse of light (532 nm, 5000 µmol photons m-2 s-1) and the maximum quantum yield 1149 

of PSII in the dark was calculated as FV/FM = (FM -F0)/FM. Every minute of light 1150 

exposure, steady-state fluorescence (FS) and maximum fluorescence under Light 1151 
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(FM
’) were measured. PSII quantum yield (φPSII) and nonphotochemical quenching 1152 

(NPQ) were calculated on the last time point of each light step as φPSII = (FM9-Fs)/FM9 1153 

and NPQ = FM/FM’-1, and rETR at PSII as rETR = φPSII.E.  1154 

 1155 

The whole rETR vs E curve was fitted as rETR = rETRM.(1-exp(-α.E/rETRM)) where 1156 

rETRM is the maximum rETR and α is the light-limited slope of rETR vs E (Jassby and 1157 

Platt 1976). Only rETR values from 0 to 450 µmol photons m-2 were used for the fit 1158 

because values from 600 and 750 µmol photons m-2 were too noisy. The light 1159 

saturation parameter EK was calculated as rETRM/α and the fitted values of the 1160 

parameters were used to estimate φPSII under the growth light intensity of 50 µmol 1161 

photons m-2 s-1 as φPSII50µE= (rETRM.(1-exp(-α.50/rETRM)))/ 50. The NPQ vs E curve 1162 

was fitted as NPQ = NPQM× En/ (E50NPQn+En), where NPQM is the maximal NPQ, 1163 

E50NPQ is the half- saturation intensity for NPQ and n is the sigmoidicity coefficient 1164 

(Serôdio and Lavaud 2011).  1165 

 1166 

The PSII functional absorption cross-section, σPSII, was calculated from the 1167 

fluorescence induction upon a single turnover flash of blue light (100 µs, 455 nm, 60 1168 

nm bandwidth) on non-concentrated cell culture. The induction curve was measured 1169 

on 20 min dark-acclimated samples before centrifugation (average of 2-4 1170 

independent replicates) with a Fluorescence Induction and Relaxation (miniFIRe) 1171 

fluorometer (Gorbunov, Shirsin et al. 2020), which also measures single turnover 1172 

FV/FM and PSII connectivity. Parameters measured with the miniFIRe fluorometer (as 1173 

defined below) were also quantified for cultures grown under 8C CL, as the 1174 

measurements were sufficiently rapid to allow the culture to be maintained at growth 1175 

temperatures (Gorbunov, Shirsin et al. 2020). Measured photophysiological values 1176 

are tabulated in Supplemental Dataset 4, sheet 8. Violin plots of photophysiological 1177 

parameters were generated with BoxPlotR (Spitzer, Wildenhain et al. 2014). 1178 

 1179 

Gene expression analysis 1180 

 1181 

Libraries were prepared from 200 ng DNAse-treated RNA for each mutant line and 1182 

treatment condition, with at least three replicates per sample. Sequencing was 1183 

performed by Fasteris (Plan-les-Ouates, Switzerland). After initial quality control 1184 

checks, stranded Illumina mRNA libraries were prepared with a Novaseq V1.5 kit and 1185 
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sequenced with an SP-flow cell with 2x 100 bp over 200 cycles, yielding circa 130-1186 

160 Gb sequence data per sample with ≥85% of bases higher than Q30. 1187 

 1188 

FastQ files were mapped using Nextflow9s RNA sequencing assembly pipeline 1189 

https://nf-co.re/rnaseq/usage, to gff3 annotations of the P. tricornutum version 3 1190 

genome (Rastogi, Maheswari et al. 2018, Lataretu and Hölzer 2020). Total mapped 1191 

read counts were then compared between all biological and technical replicates for (i) 1192 

each mutant line sequenced, (ii) each genotype (cpEnolase knockout, cpPGAM1A 1193 

knockout, control), and (iii) each treatment condition performed (LD, CL, 8C) by 1194 

principal component analysis (PCA) using the R package factoextra, with highly 1195 

variant libraries removed (Kassambara and Mundt 2017). The final dataset included 1196 

63 RNAseq libraries, including five cpEnolase and five cpPGAM1A knockout lines 1197 

and four empty vector controls, and a minimum of four RNA libraries prepared from 1198 

at least two genetically distinct mutant constructs for each genotype (cpEnolase, 1199 

cpPGAM1A and control) considered (Supplemental Dataset 5, sheets 1-2)., 1200 

Differentially expressed genes (DEGs) were then calculated between each genotype 1201 

for each treatment condition using DESeq2 with cutoff fold-change 2 and P-value 1202 

0.05 (Liu, Wang et al. 2021) (Supplemental Dataset 5, sheets 2-3).  1203 

 1204 

The mean transcript abundances of DEGs in knockout compared to control lines 1205 

were first assessed in RNAseq data of N and P-limited P. tricornutum cell lines under 1206 

two and nine time-points respectively (Supplemental Dataset 5, sheet 4) (Cruz de 1207 

Carvalho, Sun et al. 2016, McCarthy, Smith et al. 2017). No significant differences 1208 

were found between DEGs and other genes in the P. tricornutum genome (one-way 1209 

ANOVA, P > 0.05; Supplemental Dataset 5, sheet 5), confirming that the RNAseq 1210 

samples were not generated from N- or P-limited cultures. Next, functional 1211 

enrichments in DEGs from previously tabulated values for the entire P. tricornutum 1212 

genome (Supplemental Dataset 5, sheets 6-10) (Rastogi, Maheswari et al. 2018, 1213 

Ait-Mohamed, Novák Vanclová et al. 2020). Functional enrichments were tested by 1214 

two-tailed chi-square (P < 0.05) of a differentially expressed gene occurring in either 1215 

one (cpEnolase v control; cpPGAM1A v control) knockout-versus-control line tests, or 1216 

in both tests realised under each physiological condition. Finally, the distribution of 1217 

DEGs across P. tricornutum core plastid and mitochondrial metabolism pathways 1218 

were mapped onto a previously defined proteomic model of each organelle (Ait-1219 
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Mohamed, Novák Vanclová et al. 2020); with the strongest DEG enrichment taken in 1220 

the case of enzymes with multiple homologues (Supplemental Dataset 5, sheet 11). 1221 

 1222 

Quantitative RT-PCR (qRT-PCR) validations were performed using cDNA 1223 

synthesised from 5 ng dNase-treated RNA (per qRT-PCR reaction) and a RT 1224 

Maxima First Strand synthesis kit (Thermo Fisher), following the manufacturer9s 1225 

instruction; using a 384-well Lightcycler (Roche) and Takyon™ No ROX SYBR 2X 1226 

MasterMix (Eurogentec), following the manufacturers9 protocols. Typical amplification 1227 

conditions were: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1228 

30 seconds at 55°C, and 30 seconds at 72°C. Primer pairs for qRT-PCR 1229 

amplifications were designed using NCBI Primer-BLAST (Ye, Coulouris et al. 2012), 1230 

privileging unique amplification targets within the genomic sequence, an amplicon 1231 

size of 100 to 150 base pairs, primer positions at different regions of the gene 1232 

studied, and a 39 terminal G or C on each primer. Primer efficiencies were tested by 1233 

qPCR with serial dilutions of P. tricornutum gDNA, with only primer pairs that yielded 1234 

a Cp increment of between 0.9 and 1.1 per half dilution of DNA retained for qRT-PCR 1235 

analysis. qRT-PCRs were at least three times for each amplicon: sample pair. RT- 1236 

equivalents were performed to subtract residual genomic DNA from each Cp value 1237 

obtained, and two housekeeping genes (Ribosomal protein S1, RPS; and TATA 1238 

binding protein, TBP) previously shown to have conditionally invariant expression 1239 

patterns in P. tricornutum were used as quantification references (Sachse, Sturm et 1240 

al. 2013). Tabulated qRT-PCR outputs are shown in Supplemental Dataset 5, sheet 1241 

13; and sample information and reaction conditions per MIQE guidelines (Bustin, 1242 

Benes et al. 2009) are tabulated in Supplemental Dataset 5, sheet 14. 1243 

 1244 

Metabolite analysis 1245 

 1246 

Cell pellets were taken from exponential-phase P. tricornutum culture (counted 1247 

density 1-2 x 106 cells ml-1, 1.5 x 108 cells per sample) for metabolite and lipid 1248 

analysis. Cell pellets were collected without washing to minimise impacts on 1249 

metabolite turnover, then transferred to a pre-weighed, double-pierced and double-1250 

autoclaved 1.5 ml Eppendorf tube for lyophilization. Cell pellet masses were 1251 

recorded, and samples were immediately snap-frozen in liquid nitrogen and stored at 1252 

-80 °C for subsequent analysis. 1253 
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 1254 

Metabolite profiling was carried out by gas chromatography–mass spectrometry 1255 

(ChromaTOF software, Pegasus driver 1.61; LECO) as described previously (Lisec, 1256 

Schauer et al. 2006). The chromatograms and mass spectra were evaluated using 1257 

TagFinder software (Luedemann, von Malotky et al. 2012). Metabolite identification 1258 

was manually checked by the mass spectral and retention index collection of the 1259 

Golm Metabolome Database (Kopka, Schauer et al. 2005). Peak heights of the mass 1260 

fragments were normalized successively on the basis of the fresh weight of the 1261 

sample, the added amount of an internal standard (ribitol) and values obtained for 1262 

loading column controls obtained from the same experiment.  1263 

 1264 

Glycerolipid analysis 1265 

 1266 

Glycerolipids were extracted by suspending cell pellets in 4 mL of boiling ethanol for 1267 

5 minutes to prevent lipid degradation. Lipids were extracted by addition of 2 mL 1268 

methanol and 8 mL chloroform at room temperature (Folch, Lees et al. 1957). The 1269 

mixture was then saturated with argon and stirred for 1 hour at room temperature. 1270 

After filtration through glass wool, cell remains were rinsed with 3 mL 1271 

chloroform/methanol 2:1, v/v and 5 mL of NaCl 1% was added to the filtrate to initiate 1272 

biphase formation. The chloroform phase was dried under argon and stored at -20 1273 

°C. The lipid extract was resuspended in pure chloroform when needed. 1274 

 1275 

Total glycerolipids were quantified from their fatty acids: in an aliquot fraction, 5 µg of 1276 

15:0 was added and the fatty acids present were converted to methyl esters (FAME) 1277 

by a 1-hour incubation in 3 mL 2.5% H2SO4 in pure methanol at 100 °C (Jouhet, 1278 

Maréchal et al. 2003). The reaction was stopped by addition of 3 mL water and 3 mL 1279 

hexane. The hexane phase was analyzed by a gas chromatography-flame ionization 1280 

detector (GC-FID) (Perkin Elmer) on a BPX70 (SGE) column. FAMEs were identified 1281 

by comparison of their retention times with those of standards (Sigma) and quantified 1282 

using 15:0 for calibration.  1283 

 1284 

Glycerolipids were further analyzed by high pressure liquid chromatography-tandem 1285 

mass spectrometry (HPLC-MS/MS), based on a previously described procedure 1286 

(Rainteau, Humbert et al. 2012). The lipid extracts corresponding to 25 nmol of total 1287 
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fatty acids were dissolved in 100 µL of chloroform/methanol [2/1, (v/v)] containing 1288 

125 pmol of each internal standard. Internal standards used were 1289 

phosphatidylethanolamine (PE) 18:0-18:0 and diacylglycerol (DAG) 18:0-22:6 from 1290 

Avanti Polar Lipid, and sulfoquinovosyldiacylglycerol (SQDG) 16:0-18:0 extracted 1291 

from spinach thylakoids (Demé, Cataye et al. 2014) and hydrogenated (Buseman, 1292 

Tamura et al. 2006). Lipid classes were separated using an Agilent 1200 HPLC 1293 

system using a 150 mm × 3 mm (length × internal diameter) 5 µm diol column 1294 

(Macherey-Nagel), at 40 °C. The mobile phases consisted of hexane/ isopropanol/ 1295 

water/ 1 M ammonium acetate, pH 5.3 [625/350/24/1, (v/v/v/v)] (A) and isopropanol/ 1296 

water/ 1 M ammonium acetate, pH 5.3 [850/149/1, (v/v/v)] (B). The injection volume 1297 

was 20 µL. After 5 min, the percentage of B was increased linearly from 0% to 100% 1298 

in 30 min and kept at 100% for 15 min. This elution sequence was followed by a 1299 

return to 100% A in 5 min and an equilibration for 20 min with 100% A before the 1300 

next injection, leading to a total runtime of 70 min. The flow rate of the mobile phase 1301 

was 200 µL min-1. The distinct glycerophospholipid classes were eluted successively 1302 

as a function of the polar head group. Mass spectrometric analysis was performed on 1303 

a 6460 triple quadrupole mass spectrometer (Agilent) equipped with a Jet stream 1304 

electrospray ion source under following settings: drying gas heater at 260 °C, drying 1305 

gas flow at 13 L·min-1, sheath gas heater at 300 °C, sheath gas flow at 11 L·min-1, 1306 

nebulizer pressure at 25 psi, capillary voltage at ± 5000 V and nozzle voltage at ± 1307 

1,000 V. Nitrogen was used as the collision gas. The quadrupoles Q1 and Q3 were 1308 

operated at widest and unit resolution, respectively.  1309 

 1310 

Phosphatidylcholine (PC) and diacylglyceryl hydroxymethyltrimethyl-β-alanine 1311 

(DGTA) analyses were carried out in positive ion modes by scanning for precursors 1312 

of m/z 184 and 236 respectively at a collision energy (CE) of 34 and 52 eV. SQDG 1313 

analysis was carried out in negative ion mode by scanning for precursors of m/z -225 1314 

at a CE of -56eV. PE, phosphatidylinositol (PI), phosphatidylglycerol (PG), 1315 

monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) 1316 

measurements were performed in positive ion modes by scanning for neutral losses 1317 

of 141 Da, 277 Da, 189 Da, 179 Da and 341 Da at cEs of 20 eV, 12 eV, 16 eV, 8 eV 1318 

and 8 eV, respectively. DAG and triacylglycerol (TAG) species were identified and 1319 

quantified by multiple reaction monitoring (MRM) as singly charged ions [M+NH4]+ at 1320 

a CE of 16 and 22 eV respectively. Quantification was done for each lipid species by 1321 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.09.574873doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574873
http://creativecommons.org/licenses/by-nc/4.0/


 

 40 

MRM with 50 ms dwell time with the various transitions previously recorded (Abida, 1322 

Dolch et al. 2015). Mass spectra were processed using the MassHunter Workstation 1323 

software (Agilent) for lipid identification and quantification. Lipid amounts (pmol) were 1324 

corrected for response differences between internal standards and endogenous lipids 1325 

as described previously (Jouhet, Lupette et al. 2017).  1326 

 1327 

Normalised metabolite and lipid abundances were screened by PCA, as per the 1328 

RNAseq analysis above, and outliers and biologically non-representative samples 1329 

were removed. The final datasets consist of 139 libraries (metabolite GC-MS), 55 1330 

libraries (lipid GC-MS) and 49 libraries (lipid LC-MS), with a minimum of three 1331 

libraries prepared from at least two genetically distinct mutant constructs for each 1332 

genotype considered (Supplemental Dataset 6, sheet 1). Violin plots of differentially 1333 

accumulated lipids were generated with BoxPlotR (Spitzer, Wildenhain et al. 2014). 1334 

 1335 

Expressed enzyme reaction kinetics 1336 

 1337 

Measurements of cpEnolase and cpPGAM1A reaction rates were performed 1338 

following a previously defined protocol (Zhang, Sampathkumar et al. 2020) (Fig. 1339 

S16). First, codon-optimised constructs for E. coli expression were synthesized from 1340 

cpEnolase and cpPGAM1A mRNA sequences (Eurofins). Constructs were cloned 1341 

into a Gateway pDest-CTDHis vector via a pDONR intermediate and BP /LR clonase 1342 

(all reagents Thermo Fisher) following the manufacturer9s instructions (Hartley, 1343 

Temple et al. 2000). To enable optimal expression in E. coli, multiple N-terminal 1344 

length variants were synthesized from each gene, with those corresponding to the full 1345 

gene length minus the predicted N-terminal signal peptide domain as inferred with 1346 

SignalP (Almagro Armenteros, Tsirigos et al. 2019). Complete constructs and 1347 

primers tested are provided in Dataset S6, sheet 7. 1348 

 1349 

cpEnolase and cpPGAM1A –CTDHis vectors were cloned into Rosetta (DE3) strain 1350 

E. coli (Novagen) and coselected on ampicillin (100 µg /ml) and chloramphenicol (34 1351 

µg /ml). Proteins were induced in overnight cultures at 28°C, purified on a His-Trap 1352 

column (GE Healthcare) following the manufacturers9 instructions, and eluted in a 1353 

buffer consisting of 125 mM NaCl, 250 mM Imidiazol (Sigma) and protease inhibitors. 1354 

Eluted proteins were desalted using a Q10/ PD10 column (GE Healthcare) and 1355 
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quantified using a Bradford. Protein integrity and quantity were assessed routinely 1356 

throughout the purification using SDS-PAGE. 1357 

 1358 

Reaction rates were measured on purified 100 µg cpPGAM1A and 100 µg 1359 

cpEnolase, as quantified with a nanodrop spectrometer. Rates were measured 1360 

separately for glycolytic and gluconeogenic activity. Briefly, to measure glycolytic 1361 

reaction rates, both enzymes were combined with 10 units pyruvate kinase and 10 1362 

units lactate dehydrogenase (both Sigma-Aldrich) at 25°C, alongside varying 1363 

concentrations 9 mM D(-)3-Phosphoglyceric Acid, 25 mM Adenosine 9'-Diphosphate, 1364 

and 25 mM reduced ß-Nicotinamide Adenine Dinucleotide (NADH). Enzymatic 1365 

activity was measured by considering 340 nm colorimetry as a proxy for NADH 1366 

consumption following a previously defined protocol (Sigma protocols EC 5.4.2.1) 1367 

(Sutherland, Posternak et al. 1949). To measure gluconeogenic reaction rates, a 1368 

similar reaction was performed with both enzymes combined with 10 units 1369 

phosphoglycerate kinase and 10 units glyceraldehyde-3-phosphate dehydrogenase 1370 

(both Sigma-Aldrich), alongside 9 mM phospho-enol-pyruvate, 25 mM Adenosine 5'-1371 

Diphosphate, and 25 mM reduced  ß-Nicotinamide Adenine Dinucleotide (NADH). 1372 

Enzymatic activity was similarly measured by 340 nm colorimetry. A schematic of the 1373 

measured reactions is provided in Fig. S16. Complete measured reaction rates over 1374 

all technical replicates are provided in Dataset S6, sheet 8.   1375 

 1376 

Accession Numbers 1377 

 1378 

RNAseq data associated with this project is deposited with NCBI BioProject with 1379 

project number PRJNA788211.  1380 

 1381 

Materials Distribution Statement 1382 

 1383 

The author(s) responsible for distribution of materials integral to the findings 1384 

presented in this article in accordance with the policy described in the Instructions for 1385 

Authors (https://academic.oup.com/plcell/pages/General-Instructions) are: Richard G. 1386 

Dorrell (richard.dorrell.algae@gmail.com) and Chris Bowler 1387 

(cbowler@bio.ens.psl.eu). 1388 

 1389 
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Figures 1824 

 1825 

Fig. 1. Metabolic context and evolution of the lower half of diatom plastid 1826 

glycolysis-gluconeogenesis. A: schematic comparison of diatom and plant core 1827 

carbon metabolism, highlighting the localization and functions of two enzymes in the 1828 

lower half of glycolysis-gluconeogenesis (phospho-glycerate mutase, and enolase) 1829 

whose localization to the chloroplast can connect endogenous enzymes in the Calvin 1830 

cycle and pyruvate hub to create a complete glycolytic-gluconeogenic-gluconeogenic 1831 

pathway. Abbreviations: GA3P- glyceraldehyde-3-phosphate; 1,3-PGA and 2,3-PGA- 1832 

1,3 and 2,3 bis-phosphoglycerate; Glu-6-P- glucose-6-phosphate; PEP- phospho-1833 

enol-pyruvate; RuBP- ribulose bis-phosphate; PGAM- phospho-glycerate mutase; 1834 

cER- chloroplast: ndoplasmic reticulum. B, C: consensus MrBayes topologies 1835 
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realised with three substitution matrices (GTR, Jones, WAG) of a 163 taxa x 413 aa 1836 

alignment of organelle-targeted enolase and 105 taxa x 220 aa alignment of selected 1837 

organelle-targeted PGAM1 enzymes from diatoms and their closest relatives, 1838 

identifying recent duplications and recruitments of respiratory glycolytic-1839 

gluconeogenic enzymes from the mitochondria to plastid in diatoms and their closest 1840 

relatives. D: overlay images of GFP-tagged full-length cpEnolase (top) and 1841 

cpPGAM1A (bottom) constructs (green), chlorophyll (red) and bright-field images of 1842 

transformant Phaeodactylum tricornutum lines. Scale bar: 10 μm. 1843 

 1844 

Fig. 2. Environmental distributions of diatom plastid lower half glycolysis-1845 

gluconeogenesis meta-genes. Total transcriptome (top) and genome (bottom) 1846 

relative abundances for Tara Oceans meta-genes phylogenetically resolved to 1847 

diatom cpEnolase and cpPGAM1, sampled from all size fractions and surface layer 1848 

stations, demonstrating higher meta-transcript abundance without commensurate 1849 

increases in meta-gene abundance at high northern and southern latitudes.  1850 

 1851 

Fig. 3. Growth phenotypes of cpEnolase and cpPGAM1A CRISPR-Cas9 1852 

knockout mutant and zeocin-resistant empty vector control P. tricornutum 1853 

lines. A: xemplar growth curves from single experiments realised for P. tricornutum 1854 

lines in 50 μE m-2 s-1 illumination, non-shaken cultures and replete ESAW media, 1855 

under three conditions- (i) 19°C and 12h light: 12h dark Circadian cycles (« 19C 1856 

LD »); (ii) 19°C and 24h continuous light (« 19C CL »); and (iii) 8°C and 24h 1857 

continuous light (« 8C CL »). Hashed black lines show the approximative 1858 

concentrations (between 5 x104 and 4 x 106 cells ml-1) over which growth rates were 1859 

calculated). B: mean relative log phase growth rates of each genotype under each 1860 

condition, measured through a minimum of three biological replicates and two 1861 

technical repetitions (six measurements per line, minimum 24 measurements per 1862 

genotype), over five time-points with linear (r2 > 0.95 relationship between log cell 1863 

density and time). Asterisks indicate significant differences as inferred by one-way 1864 

ANOVA. An alternative version of this figure showing absolute growth rates of 1865 

individual cell lines is provided in Fig. S10. 1866 

 1867 

Fig. 4. Changes in plastid and mitochondrial metabolic architecture inferred 1868 

from gene expression analyses. A: predicted consensus localizations (either: 1869 
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chloroplast, or non-chloroplast) from ASAFind (Gruber, Rocap et al. 2015) and 1870 

HECTAR (Gschloessl, Guermeur et al. 2008) of all genes inferred (P < 0.05, fold-1871 

change expression >2) to be up- or down-regulated in both cpEnolase and 1872 

cpPGAM1A knockout compared to control lines under 19C LD, 19C CL and 8C CL. 1873 

Significantly enriched localizations (two-tailed chi-squared test) are asterisked. B: 1874 

relative mRNA abundances of eleven genes encoding exemplar chloroplast- and 1875 

mitochondria-targeted proteins, verified by qRT-PCR. Genes differentially expressed 1876 

(t-test, P < 0.05) in each condition are asterisked. 1877 

 1878 

Fig. 5. Volcano plots of differentially accumulated metabolites assessed by GC-1879 

MS. Scatterplots of the log2 accumulation ratios and –log10 P-values of difference in 1880 

the mass, ribitol and quality-control-normalised abundances of 39 sugars and amino 1881 

acid metabolites in cpEnolase and cpPGAM1A knockout compared to empty vector 1882 

control lines, measured by GC-MS in all three experimental conditions tested. 1883 

Metabolites that show a differential accumulation in each plot (P < 10-05) are labelled, 1884 

with metabolites that show a differential accumulation in both knockout lines in each 1885 

condition shown in black text, and five metabolites that are uniquely over-1886 

accumulated in cpEnolase knockout lines under all three conditions shown in dark 1887 

red text.  1888 

 1889 

Fig. 6. LC-MS lipid distributions in glycolysis-gluconeogenesis mutant lines. A: 1890 

scatterplots of relative proportions of MGDG and TAG in total lipid LC-MS samples in 1891 

cpEnolase and cpPGAM1A knockout lines and empty vector controls under each 1892 

growth condition, showing increased MGDG: TAG in glycolysis knockout lines under 1893 

19C, and the inverse relationship in cpEnolase knockout lines only under 8C. B: 1894 

violin plots of relative abundances of three further lipid categories inferred to 1895 

differentially accumulate in glycolysis knockout lines under different growth 1896 

conditions. Significant differences between knockout and control lines (one-way 1897 

ANOVA) are asterisked.  1898 

 1899 

Fig. 7. Inferred kinetic activities of P. tricornutum plastid lower-half glycolysis-1900 

gluconeogenesis. A:  Measured reaction rates of purified cpEnolase and cPGAM1A 1901 

supplemented with 3-PGA (glycolytic direction) or PEP (gluconeogenic direction). B: 1902 
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schematic diagram showing the inferred fluxes through lower half diatom plastid 1903 

glycolysis-gluconeogenesis in each environmental condition tested. 1904 

 1905 

Fig. S1. Distribution of lower-half plastid glycolysis-glucneogenesis across 1906 

photosynthetic eukaryotes. A: Occurrence of plastid-targeted enolase and PGAM 1907 

enzymes across 1,673 plant and algal genomes and transcriptomes, inferred using 1908 

reciprocal BLAST best hit of P. tricornutum query enzymes as per Fig. 1B and 1C, 1909 

PFAM domain annotations, and in silico targeting predictions with TargetP and 1910 

PredAlgo (primary chloroplast bearing lineages) and HECTAR and ASAFind 1911 

(secondary lineages). B: scatterplots of collection site latitude for (i) diatoms, (ii) 1912 

other stramenopiles, (iii) cryptomonads and haptophytes and (iv) green algae with 1913 

detectable enolase and PGAM enzymes, divided by presence of inferred plastid-1914 

targeted isoforms. Notably, diatoms lacking both plastid-targeted glycolysis enzymes 1915 

do not occur outside of low and intermediate latitudes (50°N in the northern and 60°S 1916 

in the southern hemisphere) compared to other groups, which either show no 1917 

significant association between plastid glycolysis and latitude (cryptomonads, 1918 

haptophytes, other stramenopiles) or even an association with low latitudes (green 1919 

algae). The data in this figure were subselected for the phylogenies shown in Fig. 1 1920 

and support the latitudinal correlations revealed by Tara analysis of Fig. 2. 1921 

Fig. S2. Consensus topology of a 380 taxa x 413 aa alignment of Enolase 1922 

sequences. Sequences represent a sample of all organelle-targeted isoforms from 1923 

cryptomonads, haptophytes and stramenopiles and representatives from a densely-1924 

sampled dataset of 151 taxonomic groups across the tree of life (Dorrell et al., 2021). 1925 

The tree topology shown is the consensus of the best-scoring rAxML trees identified 1926 

using three substitution matrices: GTR, JTT, and WAG. Branch thickness 1927 

corresponds to frequency of consensus tree topology recovery in individual trees; 1928 

branches are coloured by taxonomic affiliation; and tips (cryptomonads, haptophytes 1929 

and stramenopiles only) by predicted in silico localization. Individual clades 1930 

(considering both taxonomic origins and inferred localization) of organelle-targeted 1931 

enolase isoform are labelled with coloured brackets. This figure extends on the 1932 

topology shown in Fig. 1B. 1933 

Fig. S3. Consensus topology of a 220 aa x 560 taxa alignment of PGAM isoform 1934 

1 sequences. Data are shown as per Fig. S1, extending on the topology of Fig. 1C. 1935 
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 1936 

Fig. S4. Consensus phylogeny of a 235 aa x 66 taxa alignment of PGAM 1937 

isoform 2 sequences. Data are shown as per Fig. S1, forming a complement to the 1938 

PGAM1 topologies shown in Fig. 1C and S3. 1939 

 1940 

Fig. S5. Individual fluorescence channel and control confocal microscopy 1941 

images for P. tricornutum plastid glycolysis proteins. Images complement the 1942 

overlays shown in Fig. 1D. 1943 

 1944 

Fig. S6. Identification of Tara Oceans homologs of diatom plastid-targeted 1945 

enolase and PGAM enzymes. A: Consensus rAxML JTT topologies of the 1946 

phylogenetically verified Tara Oceans homologs of diatom plastidial enolase and 1947 

PGAM enzymes and cultured species sequences, demonstrating reconciliation of 1948 

retained homologs within monophyletic clades containing exclusively diatom 1949 

plastidial isoforms amongst cultured species. B: in silico targeting predictions of all 1950 

retrieved homologs inferred by BLAST alignment to be probably N-terminally 1951 

complete, showing a strong enrichment in homologs with predicted plastid-targeting 1952 

sequences. Sequences shown in this figure are analysed globally in Fig. 2. 1953 

 1954 

Fig. S7. Relative abundances of Tara Oceans diatom plastid glycolysis meta-1955 

genes. Plots show relative abundances of meta-genes that group with (i, iii) 1956 

cpEnolase and (ii, iv) cpPGAM1 sequences over individual size fractions of (i, ii) 1957 

surface and (iii, iv) DCM meta-transcriptome (left) and -genome (right) data, 1958 

supporting data from all (unfiltered) size fractions and surface layers shown in Fig. 2. 1959 

 1960 

Fig. S8. Total relative abundances of meta-genes phylogenetically reconciled 1961 

to diatom PGAM2 in unfiltered surface samples. Plots showing (A) meta-1962 

transcriptome and (B) meta-genome data, showing effective congruence between 1963 

both, in contrast to the high latitudinal abundance specific to meta-transcriptome data 1964 

for diatom cpEnolase and cpPGAM1 as per Fig. 2. 1965 

 1966 

Fig. S9. Genotypes of P. tricornutum glycolysis knockout lines. A: alignments of 1967 

the two CRISPR regions targeted for mutagenesis of cpEnolase (Phatr3_J41515) 1968 

and cpPGAM1A (Phatr3_J17086), and the genotypes obtained from Sanger 1969 
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sequences of homozygous CRISPR knockouts obtained for each gene. B: average 1970 

relative expression level of each mutated gene, assessed by quantitative RT-PCR 1971 

with two primer combinations and normalised against two housekeeping genes (RNA 1972 

polymerase II and TATA binding protein), expressed as a % of the relative 1973 

expression levels calculated in two empty vector expression controls. One-way t-test 1974 

significance levels of the knockdown of gene expression in each knockout line 1975 

compared to the empty vector controls are provided. Knockout lines shown in this 1976 

figure were used for growth and integrative 8omic analyses as per Figs. 3-6. 1977 

 1978 

Fig. S10. Absolute and individual growth phenotypes of cpEnolase and 1979 

cpPGAM1A CRISPR-Cas9 knockout mutant lines. A: growth curves of knockout 1980 

lines, shown as per Fig. 3, but with absolute as opposed to logarithmic cell 1981 

concentrations B: scatterplot showing the average and standard deviation relative 1982 

growth rates for each cell line studied under 19C CL (vertical) and 19C LD (horizontal 1983 

axis). Each point corresponds to an individual line, with genotype indicated by point 1984 

colours, and standard deviations of growth rates by error bars. Despite individual 1985 

variances in growth rate between lines, knockout lines show consistently slower 1986 

growth than empty vector controls under both conditions, particularly 19C CL. 1987 

 1988 

Fig. S11. Measured photo-physiology of glycolysis knockout lines A: Curves for 1989 

(i-ii) relative electron transport (rETR) of photosystem II fitted as a function of light 1990 

intensity) and (iii-iv) photoprotective non-photochemical quenching (NPQ) fitted as a 1991 

function of E. Separate values are shown for cultures in CL (i, iii) and LD (ii, iv) 1992 

growth conditions. Data points are the mean between the average values (n=2-4) 1993 

measured in each strain within each genotype (Control = 2, cpEnolase 1994 

complemented = 2, cpPGAM1A complemented = 3, cpEnolase knockout = 6, 1995 

cpPGAM1A knockout = 3). B: Violin plots of PSII functional absorption cross-section 1996 

(σPSII), measured with a MINIFIRe spectrometer for glycolysis mutant versus control 1997 

lines under each growth conditions. Significantly different values observed for 1998 

knockout and complementation mutants relative to control lines (one-way ANOVA, P 1999 

< 0.05) are asterisked, with asterisk colour corresponding to the line considered. 2000 

Each boxplot includes all measured/ fitted values for each strain within a mutant line. 2001 

The absence of clear photosynthetic defects contrasts with the diminished growth of 2002 

knockout lines, as per Fig. 3. 2003 
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 2004 

Fig. S12: Bar plots of the mean and standard deviation of the ratios of 39 2005 

metabolites assessed by GC-MS in plastid glycolysis mutant lines under the 2006 

three tested experimental conditions. Data support the Volcano Plots shown in 2007 

Fig. 5. Metabolites are sorted in ranked decreasing accumulation in mutant lines over 2008 

all three conditions. Metabolites inferred to be differentially accumulated (one-way 2009 

ANOVA) in each mutant line and condition are asterisked.  2010 

 2011 

Fig. S13. Lipid accumulation profiles under 19C LD conditions. A: Volcano Plots 2012 

showing (horizontal axis) log2 accumulation ratios and (vertical axis) –log10 one-way 2013 

ANOVA, two-tailed Pvalues for separation of mean proportions of specific fatty acids, 2014 

across all fatty acids observed in a specific lipid class in glycolysis mutants versus 2015 

control lines, supporting the global scatter- and violin plots shown in Fig. 6. Specific 2016 

lipids that show extreme (P < 0.01) differences in accumulation between both mutant 2017 

genotypes and control lines are labelled, and coloured by lipid class. B: Bar plots 2018 

showing total DGTA lipid class distributions in all three lines under these conditions. 2019 

These data suggest limited changes in glycolysis mutant lipid architecture, barring a 2020 

probable over-accumulation of sn-1 C16 in gycolysis mutant lipid pools, and 2021 

corresponding under-accumulation of sn-1 C20 in mutant DGTA pools. 2022 

 2023 

Fig. S14. Lipid accumulation profiles under 19C CL conditions. A: Volcano plots 2024 

showing (horizontal axis) log2 accumulation ratios and (vertical axis) –log10 one-way 2025 

ANOVA, two-tailed Pvalues for separation of mean proportions of specific fatty acids, 2026 

across all fatty acids observed in a specific lipid class in glycolysis mutants versus 2027 

control lines, and B: bar plots of SQDG and DGTA accumulation in lines harvested 2028 

under 19C CL. Data are shown as per Fig. S13 and support global scatter- and violin 2029 

plots shown in Fig. 6. These data suggest similar changes in glycolysis mutant lipid 2030 

architecture to 19C LD, including probable over-accumulations of sn-1 C16 in lieu of 2031 

C20 and C14 in cpEnolase and cpPGAM1A mutant SQDG and MGDG pools. 2032 

 2033 

Fig. S15. Lipid accumulaiton profiles under 8C CL conditions. Volcano plots 2034 

showing (horizontal axis) log2 accumulation ratios and (vertical axis) –log10 ANOVA 2035 

Pvalues for separation of mean proportions of specific fatty acids, across all fatty 2036 

acids observed in a specific lipid class in cpEnolase mutants versus control lines, and 2037 
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cpEnolase mutants versus cpPGAM1A mutants harvested under 8C CL conditions. 2038 

Data are shown as per Fig. S13 and support global scatter- and violin plots shown in 2039 

Fig. 6. No sigificantly differentially accumulated (P < 10-05) lipids were observed in 2040 

corresponding comparisons of cpPGAM1A mutants and control lines. These data 2041 

suggest specific overaccumulations in short-chain sn-1 MGDG, and sn-2 SQDG, and 2042 

C20 sn-1 DGTA in cpEnolase mutants compared to other lines. 2043 

 2044 

Fig. S16. Schematic diagram of the reaction kinetics measured for P. 2045 

tricornutum cpEnolase and cPGAM1A enzymes. The measured activities of this 2046 

assay are shown in Fig. 7A. Common enzymes are shown in green, enzymes unique 2047 

to the glycolytic assay in blue, and enzymes unique to the gluconeogenic assay in 2048 

red. Reaction intermediates and reversible substrates are shown in yellow and gray 2049 

respectively 2050 

 2051 

  2052 
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Fig. 1. Metabolic context and evolution of the lower half of diatom plastidial 
glycolysis-gluconeogenesis. A: schematic comparison of diatom and plant core 
carbon metabolism, highlighting the localization and functions of two enzymes in 

the lower half of glycolysis-gluconeogenesis (phospho-glycerate mutase, and 
enolase) whose localization to the chloroplast can connect endogenous enzymes 

in the Calvin cycle and pyruvate hub to create a complete glycolytic-
gluconeogenic-gluconeogenic pathway. Abbreviations: GA3P- glyceraldehyde-3-
phosphate; 1,3-PGA and 2,3-PGA- 1,3 and 2,3 bis-phosphoglycerate; Glu-6-P-

glucose-6-phosphate; PEP- phospho-enol-pyruvate; RuBP- ribulose bis-
phosphate; PGAM- phospho-glycerate mutase; cER- chloroplast: endoplasmic 

reticulum. B, C: consensus MrBayes topologies realised with three substitution 
matrices (GTR, Jones, WAG) of a 163 taxa x 413 aa alignment of organelle-
targeted enolase and 105 taxa x 220 aa alignment of selected organelle-targeted 

PGAM1 enzymes from diatoms and their closest relatives, identifying recent 
duplications and recruitments of respiratory glycolytic-gluconeogenic enzymes 

from the mitochondria to plastid in diatoms and their closest relatives. D: overlay 
images of GFP-tagged full-length cpEnolase (top) and cpPGAM1A (bottom) 
constructs (green), chlorophyll (red) and bright-field images of transformant 

Phaeodactylum tricornutum lines. Scale bar: 10 ¿m.
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Fig. 2. Environmental distributions of diatom plastidial lower half glycolysis-

gluconeogenesis meta-genes. Total transcriptome (top) and genome (bottom) 
relative abundances for Tara Oceans meta-genes phylogenetically resolved to 

diatom cpEnolase and cpPGAM1, sampled from all size fractions and surface layer 

stations, demonstrating higher meta-transcript abundance without commensurate 

increases in meta-gene abundance at high northern and southern latitudes.
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Fig. 3. Growth phenotypes of cpEnolase and cpPGAM1A 

CRISPR-Cas9 knockout mutant and zeocin-resistant 
empty vector control P. tricornutum lines. A: exemplar 

growth curves from single experiments realised for P. 

tricornutum lines in 50 ¿E m-2 s-1 illumination, non-shaken 

cultures and replete ESAW media, under three conditions- (i)

19°C and 12h light: 12h dark Circadian cycles (« 19C LD »); 
(ii) 19°C and 24h continuous light (« 19C CL »); and (iii) 8°C 

and 24h continuous light (« 8C CL »). Hashed black lines
show the approximative concentrations (between 5 x104 and 

4 x 106 cells ml-1) over which growth rates were calculated). 

B: mean relative log phase growth rates of each genotype 
under each condition, measured through a minimum of three 

biological replicates and two technical repetitions (six 
measurements per line, minimum 24 measurements per 

genotype), over five time-points with linear (r2 > 0.95 

relationship between log cell density and time). Asterisks 
indicate significant differences as inferred by one-way 

ANOVA. An alternative version of this figure showing absolute 
growth rates of individual cell lines is provided in Fig. S10.
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Fig. 4. Changes in plastid and mitochondrial metabolic architecture inferred 
from gene expression analyses. A: predicted consensus localizations (either: 
chloroplast, or non-chloroplast) from ASAFind (Gruber, Rocap et al. 2015) and 

HECTAR (Gschloessl, Guermeur et al. 2008) of all genes inferred (P < 0.05, fold-
change expression >2) to be up- or down-regulated in both cpEnolase and 

cpPGAM1A knockout compared to control lines under 19C LD, 19C CL and 8C CL 
conditions. Significantly enriched localisations (two-tailed chi-squared test) are 
asterisked. B: relative mRNA abundances of eleven genes encoding exemplar 

chloroplast- and mitochondria-targeted proteins, verified by qRT-PCR. Genes 
differentially expressed (t-test, P < 0.05) in each condition are asterisked.
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Fig. 5. Volcano plots of differentially accumulated metabolites assessed by 
GC-MS. Scatterplots of the log2 accumulation ratios and 3log10 P-values of 

difference in the mass, ribitol and quality-control-normalised abundances of 39 

sugar and amino acid metabolites in cpEnolase and cpPGAM1A knockout 

compared to empty vector control lines, measured by GC-MS in all three 

experimental conditions tested. Metabolites that show a differential accumulation in 
each plot (P < 10-05) are labelled, with metabolites that show a differential 

accumulation in both knockout lines in each condition shown in black text, and five 

metabolites that are uniquely over-accumulated in cpEnolase knockout lines under 

all three conditions shown in dark red text. 
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