

1 **Environmentally-informed functional characterization of a plastid diatom**
2 **metabolic bridge of mitochondrial origin**
3

4 **Short Title: Probing Diatom Chloroplast Lower-Half Glycolysis**
5

6 Richard G. Dorrell^{1,2,3}, Youjun Zhang^{4,5}, Yue Liang^{6,7}, Nolwenn Gueguen⁸, Tomomi
7 Nonoyama^{1,9}, Dany Croteau¹⁰, Mathias Penot^{1,2,3}, Sandrine Adiba¹, Benjamin
8 Bailleul¹⁰, Valérie Gros⁸, Juan José Pierella Karlusich^{1,2,11}, Nathanaël Zweig^{1,2},
9 Alisdair R. Fernie^{5,6}, Juliette Jouhet⁸, Eric Maréchal⁸ and Chris Bowler^{1,2}
10

11 ¹Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale
12 Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France

13 ²CNRS Research Federation for the study of Global Ocean Systems Ecology and
14 Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France

15 ³Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie
16 Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, 75005 Paris, France

17 ⁴Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria

18 ⁵Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476,
19 Potsdam-Golm, Germany

20 ⁶Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-
21 Science, Chinese Academy of Sciences, Qingdao 266071, China

22 ⁷Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine
23 Science and Technology, Qingdao 266237, China

24 ⁸Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes,
25 CEA, INRAE, IRIG, 17 rue des Martyrs, 38000 Grenoble, France

26 ⁹Division of Biotechnology and Life Science, Institute of Engineering, Tokyo
27 University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-
28 8588, Japan

29 ¹⁰Institut de Biologie Physico-Chimique (IBPC), Université PSL, 75005 Paris, France

30 ¹¹Present address: FAS Division of Science, Harvard University, Cambridge, MA,
31 USA
32

33 The authors responsible for distribution of materials integral to the findings presented
34 in this article in accordance with the policy described in the Instructions for Authors

35 (https://academic.oup.com/plcell/pages/General-Instructions) are: Richard G. Dorrell
36 (richard.dorrell.algae@gmail.com) and Chris Bowler (cbowler@bio.ens.psl.eu)

37

38 **Abstract**

39

40 **Organic carbon fixed in chloroplasts through the Calvin Cycle can be diverted**
41 **towards different metabolic fates, including cytoplasmic and mitochondrial**
42 **respiration; gluconeogenesis; and synthesis of diverse plastid metabolites via**
43 **the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic**
44 **glycolysis, although a plastid-targeted lower-half glycolytic pathway is known**
45 **in non-photosynthetic tissue. Here, we characterize a lower-half plastid**
46 **glycolytic-gluconeogenesis pathway in diatoms, ecologically important marine**
47 **algae distantly related to plants. We show that two reversible enzymes required**
48 **to complete plastid glycolysis-gluconeogenesis, Enolase and PGAM (*bis-***
49 **phospho-glycerate mutase), originated through duplications of mitochondria-**
50 **targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative**
51 **'omic analyses, and measured kinetics of expressed enzymes in the diatom**
52 ***Phaeodactylum tricornutum*, we present evidence that this pathway diverts**
53 **plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also**
54 **function in the gluconeogenic direction. Considering experimental and**
55 **environmental data, we show that this pathway has different roles in relation to**
56 **long days and low temperatures as are found in sub-polar oceans, where**
57 **diatoms dominate primary production. Our data provide a further explanation**
58 **for the success of diatoms in the contemporary ocean, and functional insights**
59 **into a poorly understood yet evolutionarily recurrent plastid metabolic**
60 **pathway.**

61

62 **Keywords:** chloroplast; *Tara Oceans*; meta-genomics informed phenotyping; post-
63 endosymbiotic evolution; plastid-mitochondria crosstalk; RNAseq; GC and LC-MS;
64 photophysiology

65

66 **Introduction**

67 Each year, over 250 gigatonnes of atmospheric carbon dioxide is assimilated through
68 photosynthesis, with effectively equal contributions from terrestrial plants and aquatic

69 algae (Friedlingstein, Jones et al. 2022). This activity is essential for maintaining
70 planetary climate homeostasis and supporting the entire Earth ecosystem. Carbon
71 assimilated through photosynthesis via the Calvin cycle is diverted into multiple
72 metabolic fates (Raines 2003). In plants, these include gluconeogenesis directly in
73 plastids (or chloroplasts), used in leaf tissue for starch storage (Scialdone, Mugford
74 et al. 2013). Many additional metabolites including fatty acids and lipids, amino acids,
75 and chlorophyll and carotenoid pigments are synthesised directly in the plastid
76 (Tanaka and Tanaka 2007, Bromke 2013, Maréchal and Lupette 2020, Bai, Cao et
77 al. 2022) (**Fig. 1A**). Many of these plastid metabolic reactions utilize pyruvate, or its
78 adjacent metabolic precursor phospho-enol-pyruvate (or PEP), and are referred to
79 collectively as the pyruvate hub (Shtaida, Khozin-Goldberg et al. 2015). In addition,
80 plant photosynthate is exported from the plastids to the cytosol for subsequent
81 glycolysis and respiration in the mitochondria (Moog, Rensing et al. 2015), or for
82 transport to non-photosynthetic tissue (Carrera, George et al. 2021) (**Fig. 1A**).
83

84 Plants are classically thought to generate PEP and pyruvate through glycolysis in the
85 cytoplasm, then reimport these metabolites into the plastids (**Fig. 1A**) (Moog,
86 Nozawa et al. 2020). Alongside this, certain plants may synthesize pyruvate hub
87 substrates directly from the Calvin cycle inside the plastid. This conversion is
88 performed by two enzymes, a plastid-targeted enolase and phospho-glycerate
89 mutase (henceforth referred to as cpEnolase and cpPGAM), which allow the
90 conversion of 1,3-bis-phosphoglycerate from the Calvin cycle to PEP (**Fig. 1A**)
91 (Raines 2003, Andriotis, Kruger et al. 2010). Both Enolase and PGAM have been
92 shown experimentally to be fully reversible enzymes, with bidirectional functions that
93 we henceforth refer to as glycolysis-gluconeogenesis, contrasting with glycolysis and
94 gluconeogenesis to signify enzymatic activities in one direction only (Sutherland,
95 Posternak et al. 1949). Documented plant cpEnolase and cpPGAM enzymes are
96 associated with non-photosynthetic tissues such as seeds and roots (Prabhakar,
97 Löttgert et al. 2009, Fukayama, Masumoto et al. 2015, Troncoso-Ponce, Rivoal et al.
98 2018). *Arabidopsis thaliana* cpEnolase and cpPGAM knockout lines have limited
99 phenotypes under replete growth conditions (Prabhakar, Löttgert et al. 2009,
100 Andriotis, Kruger et al. 2010, Anoman, Flores-Tornero et al. 2016), raising questions
101 of their overall function.
102

103 Diatoms are a eukaryotic algal group that is only distantly related to plants, with over
104 one billion years of evolutionary separation (Nonoyama, Kazamia et al. 2019,
105 Strassert, Irisarri et al. 2021). In contrast to the primary plastids of plants, surrounded
106 by two membranes and of bacterial origin, diatoms possess complex plastids
107 surrounded by four membranes and derived from a eukaryotic red alga, which is
108 likewise ancient (Nonoyama, Kazamia et al. 2019, Liu, Storti et al. 2022). Diatoms
109 are extraordinarily successful in the modern ocean, comprising nearly half of total
110 algal abundance e.g., in environmental sequence data from the *Tara Oceans*
111 expedition (Malviya, Scalco et al. 2016, Behrenfeld, Halsey et al. 2021). Diatoms are
112 particularly successful in high-latitude and temperate oceans (i.e., the North Atlantic,
113 North Pacific and Southern Oceans) that are characterised by high primary
114 production despite photo-physiological stresses including low temperatures and
115 elongated photoperiods (long days in the summer, and long nights in the winter)
116 (Gilbertson, Langan et al. 2022, Joli, Concia et al. 2023). Previous studies,
117 particularly of the transformable species *Phaeodactylum tricornutum*, have identified
118 multiple strategies that allow diatoms to tolerate photo-stress, including complex
119 inter-organelle metabolite trafficking (Bailleul, Berne et al. 2015, Brodrick, Du et al.
120 2019, Smith, Dupont et al. 2019) and extensive photoprotective capabilities
121 (reviewed in (Lepetit, Campbell et al. 2022)). These data are further supported by
122 extensive environmental (meta-genomic) sequence data such as those of the *Tara*
123 Oceans mission, allowing us to study the performance of individual diatom
124 chloroplast proteins in the wild (Kazamia, Sutak et al. 2018, Liu, Storti et al. 2022).
125

126 Diatom carbon metabolism is highly different to that of plants (Kroth, Chiovitti et al.
127 2008). Differences include the storage of sugars in cytoplasmic vacuoles (as
128 chrysolaminarin) as opposed to in plastidial starch, and the synthesis of most lipid
129 groups (e.g., galactolipids and part of triacylglycerol pathway) directly in the plastid
130 (Zhu, Shi et al. 2016, Huang, Pan et al. 2023). Diatom plastids furthermore possess
131 no known plastid hexose phosphate transporters, which in plants are implicated in
132 plastidial sugar import in storage tissue, and are inferred to exchange sugars with the
133 cytoplasm via triose phosphates only (Moog, Nozawa et al. 2020, Liu, Storti et al.
134 2022) (**Fig. 1A**). Strikingly, the lower half of respiratory glycolysis-gluconeogenesis in
135 diatoms occurs in the mitochondria, as opposed to the cytoplasm (Kroth, Chiovitti et

136 al. 2008, Río Bártulos, Rogers et al. 2018); and a complete plastid lower half
137 glycolysis-gluconeogenesis, including cpEnolase and cpPGAM proteins, has been
138 inferred from sequenced diatom genomes (Kroth, Chiovitti et al. 2008, Smith,
139 Abbriano et al. 2012) (**Fig. 1A**). As diatoms are unicellular and colonial species,
140 plastid glycolysis presumably occurs in the same organelle as photosynthesis,
141 contrasting with its predominantly non-photosynthetic distribution in plants (**Fig. 1A**).
142

143 Here, we use combined profiling of sequence datasets from cultivated and
144 environmental diatoms, characterization of *P. tricornutum* CRISPR-CAS9 knockout
145 mutants and measured kinetic activities of expressed enzymes, to reveal the
146 probable functions of diatom cpEnolase and cpPGAM enzymes. We demonstrate
147 that the genes encoding these enzymes arose from diatom mitochondria-targeted
148 and respiratory isoforms, and are most highly expressed at high latitudes in
149 environmental sequence data from *Tara Oceans*. On the basis of knockout line
150 phenotypes, we present evidence that this pathway has augmented importance in
151 cells grown under continuous illumination as opposed to light-dark cycling.
152 Considering both mutant phenotypes and measured kinetic activities, we propose
153 that the principal functions of diatom cpEnolase and cpPGAM are in the glycolytic
154 direction from glyceraldehyde-3-phosphate into the pyruvate hub, albeit with some
155 potential flux in the reverse gluconeogenic direction which may be influenced both by
156 day-length and temperature. Overall, our data position lower half glycolysis-
157 gluconeogenesis as an adaptive modulator of diatom plastid metabolic poise,
158 providing insights into its physiological roles for photosynthetic organisms beyond
159 plants.
160

161 **Results**

162
163 *Phylogeny and localization of Enolase and PGAM enzymes suggest recent*
164 *recruitments of mitochondrial glycolytic enzymes to the diatom plastid*
165

166 To evaluate the occurrence of plastid-targeted glycolysis across the algal tree of life,
167 we searched for plastid-targeted homologues of *Phaeodactylum tricornutum* and
168 *Arabidopsis thaliana* enolase and PGAM enzymes in 1,673 plant and algal species,
169 considering genomes from JGI PhycoCosm, and transcriptomes from the MMETSP

170 (Marine Microbial Eukaryotic Transcriptome Sequencing Project) and OneKp (One
171 Thousand Plant Transcriptomes) initiatives (Keeling, Burki et al. 2014, Initiative 2019,
172 Grigoriev, Hayes et al. 2021). Plastid-targeting sequences were inferred using both
173 PFAM domain presence and the combined *in silico* predictions of HECTAR,
174 ASAFind, TargetP and PredAlgo (Emanuelsson, Brunak et al. 2007, Gschloessl,
175 Guermeur et al. 2008, Tardif, Atteia et al. 2012) (**Table S1**, sheet 1). Plastid lower
176 glycolysis-gluconeogenesis was frequently inferred in diatoms, with 60/101 (59%)
177 libraries with identified enolase and PGAM sequences possessing plastid-targeted
178 versions of each. A lower occurrence (22/69 libraries, 32%) was found amongst close
179 relatives in the stramenopiles (e.g., pelagophytes, dictyochophytes) and other algae
180 with secondary red plastids (cryptomonads, haptophytes; 25/94 libraries, 27%) (**Fig.**
181 **S1A**). Within primary plastid-harbouring lineages, only angiosperms were inferred to
182 frequently possess plastid-targeted copies of both enzymes (47/537 libraries, 9%).
183 Notably, only 4/127 (3%) occurrences were inferred in primary green algae and none
184 in primary red algae, suggesting that diatom plastid glycolysis does not derive from
185 the secondary red chloroplast ancestor (**Fig. S1A**). Considering collection sites,
186 diatom species with either plastid glycolysis enzyme typically derive from higher
187 latitudes (mean unsigned latitude 45.6°, standard deviation 13.5°, n = 81) than ones
188 that possess neither (mean unsigned latitude 38.9°, standard deviation 24.3°, n = 10;
189 one-way ANOVA P = 0.19; **Fig. S1B**). This difference was deemed to be significant
190 for certain diatom groups (e.g., araphid pennate diatoms, **Dataset S1**, sheet 1; one-
191 way ANOVA P = 0.012) but was less visible in other algal groups (e.g., green algae),
192 where lower-half plastid glycolysis was more frequently detected in species collected
193 from low latitude habitats (**Fig. S1B**).

194
195 Next, we explored the specific origins of *P. tricornutum* plastid Enolase and PGAM
196 sequences from diatoms by building phylogenies of the closest orthologs obtained
197 from other diatoms, the broader taxonomic group to which they belong, the
198 stramenopiles, and two other algal groups, the cryptomonads and haptophytes.
199 These lineages all possess plastids of secondary red endosymbiotic origin,
200 surrounded by four membranes, which are likely to be closely related to one another
201 (Strassert, Irisarri et al. 2021), but also contain non-photosynthetic members (e.g.,
202 oomycetes in stramenopiles) which only possess respiratory (i.e., mitochondria-
203 targeted) lower half glycolytic enzymes (Río Bártulos, Rogers et al. 2018). Single-

204 gene trees were made for the conserved domains of all organelle-targeted Enolase
205 and PGAM sequences from 289 cryptomonad, haptophyte and stramenopile
206 genomes and transcriptomes, plus all orthologs from 85 further genomes selected
207 from across the tree of life, based on a previously defined pipeline (**Supporting**
208 **Dataset 1**, sheet 2-9). **Figs. 1B** and **1C** show consensus MrBayes trees realised with
209 GTR, Jones and WAG substitution matrices for species with both identifiable plastid-
210 and mitochondria- targeted orthologs of each protein.

211

212 The obtained topologies revealed multiple evolutionary origins for plastid Enolase
213 and PGAM sequences from mitochondria-targeted (respiratory) enzymes, with
214 diatom plastid isoforms typically having recent and/or diatom-specific evolutionary
215 origins. Diatom cpEnolase sequences resolve in a well-supported clade with plastid-
216 targeted enzymes from bolidophytes, dictyochophytes and pelagophytes, which are
217 sisters to diatoms in the stramenopile tree (Río Bártulos, Rogers et al. 2018,
218 Nonoyama, Kazamia et al. 2019), followed by mitochondria-targeted proteins from
219 these groups (MrBayes PP = 1.0 under all studied matrices, **Fig. 1B**), other
220 photosynthetic (chrysophytes) and non-photosynthetic stramenopiles (oomycetes;
221 MrBayes PP = > 0.95 under GTR and Jones matrices, **Fig. 1B**). This indicates a
222 duplication and recruitment of the host-derived mitochondria-targeted protein to the
223 plastid within a common ancestor of the diatoms, pelagophytes and dictyochophytes.
224 A broader evaluation of cpEnolase distribution suggests further duplications and
225 plastid retargeting of mitochondria-targeted enolase proteins in both the
226 chrysophytes and cryptomonads (**Fig. S2**).

227

228 The PGAM phylogeny revealed at least two closely-related families of plastid-
229 targeted diatom enzymes, both likely derived from host mitochondrial isoforms. The
230 cpPGAM1A clade (typified by the *P. tricornutum* protein Phatr3_J17086) was closely
231 related to mitochondrial-targeted proteins found across the stramenopiles (MrBayes
232 PP = 1.0 under all studied matrices, **Fig. 1C**), followed by plastid-targeted proteins
233 from chrysophytes and mitochondria-targeted oomycete proteins. Similarly, the
234 cpPGAM1B (Phatr3_J50414) clade included mitochondrial-targeted proteins from
235 pelagophytes and dictyochophytes (MrBayes > = 0.85 under all studied matrices,
236 **Fig. 1C**), and plastid- and mitochondria-targeted enzymes from the chrysophytes

237 (Fig. S3). Further duplications and plastid recruitments of mitochondria-targeted
238 PGAM proteins were again visible in the haptophytes and cryptomonads (Fig. S3).
239

240 A final plastid-targeted protein annotated as PGAM in the version 3 *P. tricornutum*
241 genome (Rastogi, Maheswari et al. 2018), hereafter termed PGAM2, was identified
242 exclusively in diatoms, pelagophytes, and haptophytes (Fig. S4), with limited
243 homology to PGAM1 enzymes (BLASTp e-value > 1.0 in pairwise protein-protein
244 searches). Only PGAM1 enzymes contain an annotated phospho-glyceromutase
245 active site (IPR005952) inferred using InterProScan, while both PGAM1 and PGAM2
246 belong to the same PFAM superfamily (histidine phosphatase, PF03000) per
247 PFAMscan (Jones, Binns et al. 2014, Mistry, Chuguransky et al. 2020). PGAM2
248 enzymes were predominantly mitochondria-targeted, with plastid- or dual-targeted
249 isoforms only identified in *P. tricornutum* (Phatr3_J37201) and a small number of
250 other diatoms and haptophyte species (Fig. S4).

251
252 To confirm plastid localization of *P. tricornutum* cpEnolase and cpPGAM, eGFP-
253 tagged copies of three proteins (Phatr3_J41515, cpEnolase; Phatr3_J17086,
254 cpPGAM1A; Phatr3_J37201, cpPGAM2) were expressed in *P. tricornutum* Pt1.86
255 cells via biolistic transformation. The observed GFP fluorescence patterns were
256 coincident with chlorophyll autofluorescence, confirming plastid localization (Figs.
257 **1D, S5**).

258
259 *Physiological roles of diatom cpEnolase and cpPGAM inferred from environmental*
260 *sequence expression data*

261
262 Next, we considered general patterns of transcriptional co-regulation of diatom
263 cpEnolase and cpPGAM sequences in environmental sequence data from *Tara*
264 Oceans. First, we used a previously benchmarked pipeline, based on combined
265 hmmer, reciprocal BLAST and phylogenetic filtration (ti et al. 2022) to identify *Tara*
266 Oceans meta-genes that reconcile exclusively with plastid-targeted proteins from
267 cultured diatom species, to the exclusion of non-diatom and non-plastid homologs
268 (Fig. S6A). Amongst the retained meta-genes likely to be N-terminally complete
269 (BLAST homology within the first 40 residues of a *P. tricornutum* sequence), a
270 majority have consensus plastid-targeting sequences (enolase: 38/ 78- 49%, PGAM:

271 58/ 97- 60%). Only a very small number (one enolase, 10 PGAM) possess
272 mitochondrial or endomembrane localizations, suggesting that they principally
273 correspond to plastid-targeted environmental homologs of each protein (**Fig. S6B**,
274 **Supplemental Dataset 3**, sheet 11).

275

276 Within *Tara Oceans* data, the greatest relative abundances of diatom cpEnolase and
277 cpPGAM1 sequences were observed in meta-transcriptome (metaT) data in stations
278 from both high northern and southern latitudes, in both surface (**Fig. 2**) and deep
279 chlorophyll maximum (DCM) samples, and across all size fractions (**Fig. S7**). These
280 levels were notably greater than equivalent levels in meta-genome (metaG) data
281 (**Figs. 2, S7**). Normalization of metaT abundances calculated for each gene in the
282 0.8-2000 μ m size fraction against all diatom metaT sequences showed positive
283 correlations to latitude both in surface (cpEnolase $R^2 = 0.18$, $P < 10^{-5}$, cpPGAM1A
284 $R^2 = 0.23$, $P < 10^{-5}$) and DCM depths (cpEnolase $R^2 = 0.53$, $P < 10^{-5}$, cpPGAM1A
285 $R^2 = 0.59$, $P < 10^{-5}$) (**Supplemental Dataset 3**, sheet 10). Considering specific
286 variables, relative abundance levels showed clearest positive correlations to
287 daylength and negative correlations to temperature. No other parameters (e.g.,
288 nutrient concentrations) showed as clear correlations to chloroplast glycolysis metaT
289 relative abundances (**Supplemental Dataset 3**, sheet 10).

290

291 Similar positive correlations were observed when normalising the metaT abundances
292 obtained for diatom chloroplast glycolysis genes against the relative abundances
293 calculated for the meta-genomic (metaG) sequences of the same genes. This was
294 true in surface depths for cpEnolase ($R^2 = 0.10$, one-tailed *F*-test, $P < 0.05$) and DCM
295 for both genes (cpEnolase $R^2 = 0.28$, one-tailed *F*-test $P < 0.05$, cpPGAM1 $R^2 = 0.29$,
296 one-tailed *F*-test $P < 0.05$) (**Supplemental Dataset 3**, sheet 10). Further significant
297 positive correlations to latitude, both considering absolute (Pearson) and ranked
298 (Spearman) correlation values, were detected in multiple individual size fractions
299 (0.8-5, 3/5-20, 20-180, 180-2000 μ m) at each depth, including for cpPGAM1 metaT
300 normalised against metaG in surface 3/5-20 (one-tailed *F*-test, $P < 10^{-5}$), 20-180
301 (one-tailed *F*-test; $P < 10^{-5}$) and 180-2000 (one-tailed *F*-test, $P < 0.05$) μ m fractions
302 (**Supplemental Dataset 3**, sheet 10).

303

304 The transcriptional preference of diatom cpEnolase and cpPGAM1 for high latitudes
305 contrasted strongly with PGAM2, which showed equivalent relative abundance in
306 some stations from the temperate South Pacific and Atlantic as stations from the
307 Arctic and Southern Oceans (**Fig. S8; Supplemental Dataset 3**, sheet 10). Although
308 a positive correlation between relative PGAM2 accumulation and latitude was
309 observed in metaT data normalised against total diatom metaT abundances and 0.8-
310 2000 μm size fractions (surface $R^2 = 0.20$, DCM $R^2 = 0.37$, one-tailed F -test $P < 0.05$),
311 no such correlation was observed for metaT data normalised against PGAM2 metaG
312 relative abundances (surface $R^2 = 0.00062$, DCM $R^2 = 0.027$, one-tailed F -test $P >$
313 0.05) suggesting that latitude does not directly influence PGAM2 expression (**Fig.**
314 **S8B**). In certain size fraction and depth combinations (e.g., DCM 0.8-3, and 3/5-20
315 μm fractions, normalised against metaG abundances; and surface and DCM 180-
316 2000 μm fractions normalised against all diatom metaT abundances) PGAM2 metaT
317 abundances even demonstrated significant negative correlations to latitude
318 (**Supplemental Dataset 3**, sheet 10).

319
320 *Growth phenotypes of cpEnolase and cpPGAM1A knockout and complementation*
321 *lines reveal modular roles in response to daylength*
322

323 We generated homozygous CRISPR knockout lines for both cpEnolase and
324 cpPGAM1A in the model diatom *P. tricornutum*. cpPGAM1A was selected over other
325 PGAM isoforms because of its clear transcriptional co-regulation to cpEnolase
326 (**Supplemental Dataset 2**, in contrast to cpPGAM1B) and latitudinal expression
327 correlation in *Tara* Oceans (**Figs. 2, S8**, in contrast to cpPGAM2). Multiple CRISPR
328 knockout lines were generated from two regions with unique sequences in the *P.*
329 *tricornutum* genome for each gene (cpEnolase CRISPR region 1 $n = 4$, CRISPR
330 region 2 $n = 3$; cpPGAM1A CRISPR region 1 $n = 2$, CRISPR region 2 $n = 3$) (**Fig.**
331 **S9A**). Each CRISPR line was verified by sequencing to be homozygous and to
332 contain a frame-shift mutation sufficient to impede successful translation of the
333 encoded protein (**Fig. S9A**). Commercial antibodies against enolase and PGAM were
334 found not to specifically label cpEnolase and cpPGAM1A in Western Blots, and so
335 we inferred protein relative expression level by qRT-PCR using recognised *P.*
336 *tricornutum* housekeeping genes (Sachse, Sturm et al. 2013, Zhang, Sampathkumar
337 et al. 2020). The measured knockout mRNA abundance in each line was significantly

338 lower (1.8-39 %) than that identified in empty vector control mRNA ($n = 4$, one-way
339 ANOVA, $P < 0.05$) under 19 °C and 12h light: 12h dark (‘‘19C LD’’) conditions, **Fig.**
340 **S9B**), consistent with effective knockdown of mutated genes (e.g., via non-sense
341 mediated decay, (Chang, Imam et al. 2007)).

342

343 Next, we performed growth curves of cpEnolase and cpPGAM1A knockout lines
344 compared to empty vector controls (**Fig. 3; Supplemental Dataset 4**, sheets 3-6).
345 We chose to target changes in light and temperature, given that both show clear
346 associations observed with cpPGAM1A and cpEnolase in *Tara Oceans* data
347 (**Supplemental Dataset 3**, sheet 10). The tested conditions were: 19 °C and 12 h: 12
348 h light: dark cycling (19C LD), reflecting other *P. tricornutum* physiology studies (Cruz
349 de Carvalho, Sun et al. 2016, McCarthy, Smith et al. 2017); 19 °C and 24 h
350 continuous light (19C CL) to test the effects of photoperiod; and 8 °C and 24 h
351 continuous light (8C CL) to test the effects of temperature.

352

353 Under 19C LD growth conditions, plastid glycolysis-gluconeogenesis knockout lines
354 showed an approximately 10-15% reduction in relative growth rate compared to
355 empty vector controls (cpEnolase growth rate 0.83 ± 0.06 cells day $^{-1}$; cpPGAM1A
356 growth rate 0.85 ± 0.07 cells day $^{-1}$; empty vector growth rate 0.94 ± 0.05 cells day $^{-1}$;
357 **Fig. 3, S10; Supplemental Dataset 4**, sheet 3; cpEnolase growth rate 87.7% control
358 and cpPGAM1A growth rate 90.1% control, one-way ANOVA, two-tailed $P < 0.05$).
359 Under 19C CL, knockout lines showed a 25-30% reduction in relative growth rate
360 compared to controls (cpEnolase growth rate 0.99 ± 0.16 cells day $^{-1}$; cpPGAM1A
361 growth rate 1.08 ± 0.04 cells day $^{-1}$; empty vector growth rate 1.39 ± 0.09 cells day $^{-1}$;
362 **Fig. 3, S10; Supplemental Dataset 4**, sheet 4; cpEnolase growth rate 70.7% control
363 and cpPGAM1A growth rate 77.5% control, one-way ANOVA, two-tailed $P < 0.01$).
364 By contrast, under 8C CL we observed overlapping growth rates for knockout and
365 empty vector control lines, albeit with a possible reduction in cpEnolase knockout
366 growth rate (cpEnolase relative growth rate 0.49 ± 0.10 cells day $^{-1}$, cpPGAM1A
367 growth rate 0.64 ± 0.02 cells day $^{-1}$, empty vector growth rate 0.62 ± 0.07 cells day $^{-1}$;
368 **Fig. 3, S10; Supplemental Dataset 4**, sheet 5; cpEnolase growth rate 78.1% control
369 and cpPGAM1A growth rate 102.9% control; one-way ANOVA, two-tailed P non-
370 significant).

371

372 To test the possibility of off-target effects of the CRISPR constructs, we
373 complemented mutant lines with blasticidin resistance genes linked to either
374 cpEnolase-GFP or cpPGAM1A-GFP modified to remove all CRISPR target
375 sequences (**Supplemental Dataset 4**, sheet 2) (McCarthy, Smith et al. 2017, Buck,
376 Río Bártulos et al. 2018). Despite an overall lower growth rate in all blasticidin-
377 resistant lines compared to primary transformants, and within-line variation,
378 comparative growth curves of 47 complemented versus placebo transformed mutant
379 lines revealed increased growth rates in complemented cpEnolase and cpPGAM1A
380 versus blank transformed knockout lines under 19C CL and 19C LD (**Supplemental**
381 **Dataset 4**, sheet 7; one-way one-way ANOVA, two-tailed P, < 0.05). By contrast,
382 complemented knockout line growth rates overlapped with empty vector controls
383 either transformed with cpEnolase or blank complementing vectors, indicating
384 effective recovery of mutant phenotypes (**Supplemental Dataset 4**, sheet 7).

385
386 Finally, we performed comparative photophysiological measurements of knockout
387 lines in the two conditions (19C LD and 19C CL) where they presented a growth
388 phenotype (see Methods). Our data indicate that the presence/ absence of these
389 enzymes does not significantly impact photosynthetic performance. The light
390 dependencies of either electron transfer rate through photosystem II (PSII) (rETR(II))
391 or photoprotection (non-photochemical quenching, NPQ) were very similar between
392 control and knock-out lines (**Fig. S11A; Supplemental Dataset 4**, sheets 8-11). A
393 slight but significant increase in the functional absorption cross-section of
394 photosystem II (σ PSII) was found under 19C CL in both cpEnolase (319.3 ± 22.5) and
395 cpPGAM1A knockouts (306.6 ± 11.6) compared to controls (292.3 ± 8.2 ; one-way
396 ANOVA, P < 0.05) (Gorbunov, Shirsin et al. 2020). This elevation was suppressed in
397 both complemented lines (**Fig. S11B; Supplemental Dataset 4**, sheet 11).

398
399 *Primary metabolic functions of cpEnolase and cpPGAM1A inferred from comparative*
400 *gene expression analysis of P. tricornutum knockout lines*

401
402 Next, we investigated the impacts of disruption of plastid glycolysis on diatom
403 metabolism beyond photosynthesis. First, we performed quantitative RNA-seq
404 analysis using 63 RNA samples drawn from multiple knockout and empty vector lines
405 under all three physiological conditions (19C LD, 19C CL, and 8C CL; **Supplemental**

406 **Dataset 5**, sheet 1; Materials and Methods). Complete results are provided in
407 **Supplemental Dataset 5**, sheets 5-11. Both cpEnolase and cpPGAM1A mRNA were
408 found to significantly under-accumulate in the corresponding knockout lines,
409 consistent with qRT-PCR analysis (**Fig. S9B**) and suggesting maintenance of the
410 mutant genotypes throughout RNA sequencing.

411
412 Genome-scale enrichment analyses of the *in silico* localizations of proteins encoded
413 by differentially expressed genes revealed distinctive changes in glycolysis knockout
414 organelle metabolism. These effects were most evident in 19C CL, in which 90/239
415 (38%) of the genes differentially upregulated (mean fold-change >2, P-value < 0.05)
416 in both cpEnolase and cpPGAM1A knockout lines compared to controls were
417 predicted to possess chloroplast targeting peptides based on ASAFind (Gruber,
418 Rocap et al. 2015) or HECTAR (Gschloessl, Guermeur et al. 2008). This was
419 significantly greater than the proportion of genes (1,585/11,514, 14%) across the
420 entire genome predicted to encode chloroplast-targeted proteins that were detected
421 in RNAseq data (one-tailed chi-squared P < 10⁻⁰⁵; **Fig. 4A**; **Supplemental Dataset 5**,
422 sheet 10). These results were supported by domain enrichment analyses, indicating
423 significant (one-tailed chi-squared P < 0.05) enrichments in light-harvesting complex
424 (GO:0030076), photosynthesis (GO:0009765) and protein-chromophore linkage
425 (GO:0018298) GO terms. A more detailed resolution of gene expression patterns
426 underpinning core organelle metabolism pathways (Ait-Mohamed, Novák Vanclová et
427 al. 2020) suggested concerted upregulation of genes encoding light-harvesting
428 complexes and photosynthesis machinery and plastid fatty acid synthesis machinery,
429 alongside a probable upregulation of mitochondrial respiratory complex I and ATP
430 synthase (**Supplemental Dataset S5**, sheets 10-11). Less dramatic changes were
431 evident in 19C LD and 8C CL, although 13 of the 51 genes (25%) inferred to be
432 downregulated in both cpEnolase and cpPGAM1A knockout lines under 8C CL were
433 inferred to encode chloroplast-targeted proteins by either ASAFind or HECTAR,
434 representing likewise an enrichment compared to all genes identified within the
435 RNAseq data (one-tailed chi-squared P < 0.05; **Fig. 4A**).

436
437 To gain a more precise insight into the effects of plastid glycolysis-gluconeogenesis
438 on *P. tricornutum* metabolism, we additionally validated the differential expression of
439 eleven exemplar genes encoding chloroplast- and mitochondria-targeted proteins by

440 qPCR in knockout and empty vector control lines across all three conditions (**Fig. 4B**;
441 **Supplemental Dataset 5**, sheet 12). These genes showed relatively limited
442 differences under 19C LD, limited to a slight depression in the accumulation of *Lhcf1*
443 (Phatr3_J18049) and chorismate mutase (Phatr3_J43277) mRNA in both cpEnolase
444 and cpPGAM1A knockouts compared to control lines (~50% downregulation, two-
445 tailed *t*-test $P < 0.05$; **Fig. 4B**). Both knockout lines over-accumulated (>600%; two-
446 tailed *t*-test $P < 10^{-5}$) mRNAs encoding mitochondrial phospho-glycerate mutase
447 (Phatr3_J33839) under 19C LD compared to control lines (**Fig. 4B**).

448

449 Under 19C CL, we observed more substantial changes in plastid metabolism,
450 including the significant (two-tailed *t*-test $P < 0.05$) over-accumulation of mRNAs
451 encoding *Lhcf1* (~150%), a plastid-targeted petB-type protein presumably involved in
452 cytochrome b₆f metabolism (Phatr3_J13558, ~90%), and a particularly strong over-
453 accumulation of plastid lysophosphatidyl acyltransferase, involved in plastid lipid
454 synthesis (Phatr3_J20640, ~100%, two-tailed *t*-test $P < 10^{-5}$) in both knockout lines
455 (**Fig. 4B**). Significant over-accumulations were also observed of mRNAs encoding
456 plastid signal processing peptidase (Phatr3_J10319, 60-120%), alanine
457 transaminase (Phatr3_J34010) and coporphyrinogen oxygenase (Phatr3_J12186), in
458 either cpEnolase or cpPGAM1A knockout lines (**Fig. 4B**). Concerning mitochondrial
459 metabolism, a strong increase (>250%, two-tailed *t*-test $P < 10^{-5}$) was observed in
460 mRNA for NDH dehydrogenase subunit 1 (Phatr3_J43944), involved in oxidative
461 phosphorylation, but a corresponding decrease (>40%, two-tailed *t*-test $P < 10^{-5}$) in
462 mRNA for citrate synthase within the TCA cycle (Phatr3_J30145).

463

464 Finally, under 8C CL, contrasting and complementary changes were observed: up-
465 regulation (>60%; two-tailed *t*-test $P < 10^{-5}$) of genes encoding both the plastid
466 signal processing peptidase and petB-related protein, and mitochondrial PGAM and
467 citrate synthases in both knockout lines compared to controls (**Fig. 4B**). Both
468 knockout lines were found to under-accumulate *Lhcf1* mRNA (>90%; two-tailed *t*-test
469 $P < 10^{-5}$), while *Lhcx4* (Phatr3_J38720), encoding a dark-expressed gene of
470 unknown direct function but homologous to the Lhcx1 protein implicated in
471 photoprotection (Buck, Sherman et al. 2019), was found to substantially over-
472 accumulate in both cpEnolase and cpPGAM1A knockout lines (**Fig. 4B**).

473

474 *Metabolite profiling indicates potential systemic outputs of disrupted plastid*
475 *glycolysis-gluconeogenesis*

476

477 Next, we considered the compound effects of cpEnolase and cpPGAM1A knockout
478 on global metabolite accumulation under each environmental condition via GC-MS
479 profiling of 32 sugars and amino acids (**Fig. 5; Fig. S13**), across 139 samples drawn
480 from multiple knockout and control lines under 19C LD, 19C CL and 8C CL. These
481 samples were obtained from cell pellets collected from mid-exponential phase
482 cultures, and thus correspond to the long-term impacts on metabolite accumulation in
483 plastid glycolysis knockout lines. Complete outputs are tabulated in **Supplemental**
484 **Dataset 6**, sheets 1-2.

485

486 We were unable to directly measure the accumulation of any of the products or
487 substrates of either cpPGAM1A or cpEnolase (3-phosphoglycerate, 2-
488 phosphoglycerate, PEP), although we detected significantly diminished (one-way
489 ANOVA two-tailed P-value $< 10^{-5}$) pyruvate accumulation in cpPGAM1A knockouts
490 under all three conditions, and in cpEnolase knockouts under 8C CL (**Fig. 5, S13**). In
491 all three conditions, significant reductions (one-way ANOVA two-tailed P-value < 0.01
492 in both cpEnolase and cpPGAM1A knockout lines) were observed in cytoplasmic
493 sugars and sugar derivatives (glucose, sucrose, histidine, *myo*-inositol) in cpEnolase
494 and cpPGAM1A knockouts compared to control lines (**Fig. 5**). cpEnolase and
495 cpPGAM1A knockout lines further under-accumulated citric acid in all three
496 conditions, and malic acid in 8C CL (**Fig. 5**).

497

498 A probable over-accumulation of phosphoric acid was observed in all knockout lines
499 except cpPGAM1A under 19C CL (**Fig. 5; S13**). Significant (one-way ANOVA two-
500 tailed P-value $< 10^{-5}$) over-accumulations were identified for valine in cpEnolase and
501 cpPGAM1A knockouts under 19C CL and 8C CL; for methionine and ornithine in 19C
502 CL only; and an under-accumulation for arginine under 19C CL only (**Fig. 5**).

503

504 Finally, specific differences were observed in the metabolite accumulation patterns
505 observed in cpEnolase and cpPGAM1A knockout lines (**Fig. 5; S13**). These include a
506 significant (one-way ANOVA two-tailed P-value $< 10^{-5}$) over-accumulation of three
507 amino acids (aspartate, leucine and phenylalanine) and one sugar phosphate

508 (glycerol-3-phosphate) specifically in cpEnolase knockout lines under all three
509 conditions, and in serine under 19C CL and 8C CL only. These differences contrast
510 to cpPGAM1A knockouts in which no significant changes were observed, or (in the
511 case of glycerol-3-phosphate and serine) these metabolites significantly under-
512 accumulate under all three conditions compared to controls (**Fig. 5; S13**).
513

514 *Temperature-specific impacts of plastid glycolysis-gluconeogenesis on lipids*
515

516 Next, we performed GC-MS (55 samples) and LC-MS (49 samples) of lipid profiles in
517 multiple knockout and control lines under 19C LD, 19C CL and 8C CL. Outputs are
518 tabulated in **Supplemental Dataset 6**, sheets 1, 3-5. While the GC-MS data project
519 significant (one-way ANOVA two-tailed P-value < 0.05) impacts of growth condition
520 on fatty acid profiles (e.g., a decrease of C20:5 side chain lipids balanced by an
521 increase of C16:1 side chain lipids in 19C CL, and an over-accumulation of C16:3
522 side chain lipids under 19C LD, and of C18:0 side chain lipids under 8C CL), no
523 substantial differences were observed between cpEnolase, cpPGAM1A and control
524 lines under any conditions studied (**Supplemental Dataset 6**, sheet 3).
525

526 In contrast to the relatively limited effects on total fatty acid profiles, LC-MS analyses
527 of lipid class distributions revealed substantial changes in lipid class distribution in
528 plastid glycolysis-gluconeogenesis knockout lines (**Fig. 6; Supplemental Dataset 6**,
529 sheet 4). Even accounting for within-line variation, both cpEnolase and cpPGAM1A
530 knockouts were found to significantly under-accumulate triacylglycerols (TAG)
531 (cpEnolase $3.98 \pm 1.94\%$, cpPGAM1A $3.60 \pm 1.72\%$, control $12.18 \pm 7.26\%$; one-way
532 ANOVA, two-tailed P separation of means between knockout and control lines <
533 0.05) and over-accumulate monogalactosyldiacylglycerols (MGDG; cpEnolase 63.83
534 $\pm 4.33\%$, cpPGAM1A $60.89 \pm 5.64\%$, control $49.68 \pm 8.88\%$; one-way ANOVA, two-
535 tailed P< 0.05) under 19C LD (**Fig. 6A**). Further significant (P < 0.05) under-
536 accumulations were detected in knockout lines for diacylglycerols (DAG) and
537 sulfoquinovosyl-diacylglycerols (SQDG) under 19C LD. Similar tradeoffs were observed
538 under 19C CL, albeit with an over-accumulation, rather than under-accumulation of
539 DAG, and an additional under-accumulation of digalactosyldiacylglycerols (DGDG),
540 in glycolysis knockouts compared to control lines (**Fig. 6B**).
541

542 Detailed analyses of the individual fatty-acid side-chains associated with different
543 lipid classes in glycolysis knockout lines under 19C indicated increased relative
544 contributions of C16:1 fatty acids to plastid membrane lipid *sn*-1 positions
545 (**Supplemental Dataset 6**, sheet 5). These included conserved ($P < 0.01$) over-
546 accumulations of DGDG-16-1_16-2 under 19C LD (**Fig. S14**); and SQDG 16-1_16-0,
547 MGDG-16-1_16-2, MGDG-16-1_16-3 and DGDG-16-1_16-1, in both cpEnolase and
548 cpPGAM1A knockout lines under 19C CL (**Fig. S15**). A significant over-accumulation
549 of 16-1_16-1 side chains and under-accumulation 20-5_18-4 was also observed for
550 diacylglycerol hydroxymethyltrimethyl- β -alanine (DGTA), a betaine lipid known to act
551 as a platform for the biosynthesis of 20:5 fatty acids, in both cpEnolase and
552 cpPGAM1A knockout lines under 19C LD (**Fig. S14**) (Dolch and Maréchal 2015,
553 Popko, Herrfurth et al. 2016).

554

555 Under 8C CL, quite different trends were observed in fatty acid accumulation in
556 cpEnolase knockouts compared to cpPGAM1A knockouts and controls. These
557 correlated principally with an over-accumulation of TAG (cpEnolase $20.88 \pm 12.21\%$,
558 cpPGAM1A $9.62 \pm 6.31\%$, control $8.15 \pm 3.95\%$; one-way ANOVA, two-tailed $P <$
559 0.05) in lieu of MGDG (cpEnolase $34.20 \pm 6.74\%$, cpPGAM1A $42.94 \pm 6.01\%$, control
560 $46.61.3 \pm 6.25\%$; one-way ANOVA, two-tailed $P < 0.5$; **Fig. 6A**). An over-
561 accumulation of SQDG was observed in both cpEnolase and cpPGAM1A knockouts
562 compared to controls, albeit with greater severity in cpEnolase knockouts (**Fig. 6B**).
563 Considering side-chain distributions of individual lipid classes, a significant (one-way
564 ANOVA two-tailed P -value < 0.01) over-accumulation of short-chain (C14:0, C16:1)
565 and *sn*-1 and *sn*-2 fatty acids was observed in cpEnolase knockouts (**Fig. S16A**). A
566 probable exchange of very long-chain *sn*-2 fatty acids in SQDG pools was further
567 observed in cpEnolase knockouts, with significant (one-way ANOVA two-tailed P -
568 value < 0.01) increases in SQDG 14-0_16-0 and SQDG-14_0-16-1 in lieu of SQDG-
569 16-2_24-0 in cpEnolase knockouts compared to cpPGAM1A and control lines (**Fig.**
570 **S16B; Supplemental Dataset 6**, sheet 5).

571

572 *Lower half diatom plastid glycolysis-gluconeogenesis enzymes are reversible, but*
573 *with greater activity in the glycolytic direction*

574

575 Finally, we assessed the kinetics of cpPGAM and cpEnolase in both glycolytic and
576 gluconeogenic directions using a previously defined assay (Sutherland, Posternak et
577 al. 1949, Zhang, Sampathkumar et al. 2020) with modified versions of each protein
578 (codon-optimised, and lacking signal peptides) expressed in *E. coli*, alongside
579 measured NADH consumption coupled to either lactate dehydrogenase (glycolysis)
580 or glyceraldehyde-3-phosphate dehydrogenase (**Fig. S16**). Both enzymes were
581 inferred to possess reversible reaction kinetics, metabolizing NADH when supplied
582 both with 3-PGA (in the glycolytic direction) and PEP (in the gluconeogenic direction;
583 **Fig. 7A, Fig. S16**). Nonetheless, the measured reaction rates were almost 1.5 times
584 greater in the glycolytic than gluconeogenic direction (e.g., 34.4 versus 23.4 units of
585 relative NADH consumption when supplied with 9 mM 3PGA or 9 mM PEP; **Fig. 7A**)
586 suggesting an innate preference for glycolytic activity.

587

588 **Discussion**

589

590 We characterise a lower half glycolytic-gluconeogenic pathway associated with
591 diatom plastids, relating specifically to two plastid-targeted proteins, cpEnolase and
592 cpPGAM1A, and focusing on the model species *P. tricornutum*. Our data position
593 plastid glycolysis-gluconeogenesis as arising in a recent ancestor of diatoms and
594 their closest relatives (e.g., pelagophytes, dictyochophytes) and potential
595 endosymbiotic derivatives (haptophytes) (Nonoyama, Kazamia et al. 2019). We
596 further show that lower half plastidial glycolysis-gluconeogenesis has a limited
597 distribution across the algal tree of life, with no detectable examples in primary red or
598 green algae (**Fig. S5**), although it is possible that the occurrence of organelle-
599 targeted isoforms of these enzymes is underestimated, e.g., due to lower sensitivity
600 of diatom and plant-trained targeting predictors on other algal groups (Fuss,
601 Liegmann et al. 2013, Gruber, Rocap et al. 2015). We propose that diatom plastid
602 glycolysis most likely originated through the duplication and retargeting of
603 mitochondrial respiratory enzymes (**Fig. 1**).

604

605 Using meta-genomic data from *Tara Oceans* we demonstrate that diatom plastid
606 glycolysis is likely highly expressed at high latitudes (**Figs. 2, S6-S8**), which are
607 subject to extreme photoperiods and low temperature. These data are further
608 supported by collection sites of cultured species, with no occurrences of species

609 lacking plastid-targeted PGAM enzymes beyond 50°N (**Fig. S1B**). These
610 enrichments appear to be specific to diatoms, with polar circle haptophytes,
611 cryptomonads and other ochrophytes lacking apparent plastidial glycolysis found
612 further than 60°N and 70°S, and a restriction of plastid glycolysis to low latitude green
613 algae. These results will be better substantiated by considering meta-genome
614 assembled genomes from uncultivated diatoms with known spatial distributions, or by
615 competition assays of closely related diatom species possessing and lacking plastid
616 glycolysis enzymes under light and temperature stress (Siegel, Baker et al. 2020,
617 Delmont, Gaia et al. 2022).

618

619 From growth analysis of *P. tricornutum* knockout lines, we infer that photoperiod is
620 the principal driver of diatom plastid glycolytic activity, with more intense growth
621 defects observed under continuous illumination than in light:dark cycles (**Figs. 3, S9**).
622 It has been proposed that the effective management of primary carbon metabolism
623 may enable diatoms to outcompete other phytoplankton groups under nutrient-rich
624 and light-saturated conditions (Behrenfeld, Halsey et al. 2021, Lampe, Hernandez et
625 al. 2021). Under low temperatures, no difference was observed in the growth rate of
626 glycolysis knockouts showed to control lines (**Fig. 3**). This may reflect previous
627 studies that have projected low rates of diatom photo-assimilation of carbon dioxide
628 in low temperature habitats at high latitudes (Lacour, Larivière et al. 2017). The
629 relevance of plastidial glycolysis to diatoms in other environmental conditions where
630 they predominate (e.g., coastal and upwelling cycles) remains to be determined
631 (Lampe, Hernandez et al. 2021).

632

633 Considering the observed phenotypes of knockout and control lines (**Figs. 3-6; S10-**
634 **S15**) and the reversible kinetics of expressed enzymes, we reconstruct potential
635 functions contributed by the lower half of plastid glycolysis-gluconeogenesis in
636 diatoms under 19C LD, 19C CL and 8C CL (**Fig. 7B**). Overall, these data seem
637 predominantly in favour of metabolic flux in the glycolytic direction, perhaps reflecting
638 the greater relative abundance of triose phosphate than pyruvate in the plastid under
639 illuminated and photosynthetically active conditions, alongside the greater kinetic
640 activity observed in the glycolytic than gluconeogenic activity of expressed enzymes
641 (**Fig. 7A, Fig. S16**). These results are inferential based on the long-term
642 accumulation patterns of stable metabolites and the expression of implicated

643 metabolic genes, and would be more effectively validated via direct flux
644 measurements, e.g., comparative ^{13}C -glycerol or -glucose labelling of glycolysis
645 knockout and control lines (Zheng, Quinn et al. 2013, Huang, Liu et al. 2015).
646
647 Under 19C LD, we observe limited gene expression changes in cpPGAM1A and
648 cpEnolase knockout lines, except (as inferred from qPCR) a downregulation in
649 plastid chorismate mutase and upregulation of mitochondrial PGAM (**Fig. 4B**).
650 Chorismate mutase forms part of the plastid shikimate pathway, which typically
651 consumes PEP (Bromke 2013) and may form a primary acceptor of glycolytic
652 products, whereas upregulation of mitochondrial glycolysis-gluconeogenesis may
653 reflect an enhanced export of plastid glyceraldehyde-3-phosphate to the
654 mitochondrion in the absence of plastid metabolism. We also note diminished levels
655 of cytoplasmic sugars and TCA cycle intermediates (i.e., citric acid) in cpEnolase and
656 cpPGAM1A knockout lines (**Fig. 5**) (Smith, Dupont et al. 2019), which might suggest
657 a diversion of cellular carbon away from gluconeogenesis and/or respiration.
658
659 We also note some evidence for lipid remodelling in glycolysis mutant lines, e.g., a
660 relative over-accumulation of galactolipids in lieu of TAGs, and short-chain fatty acids
661 in lieu of longer equivalents (**Figs. 6, S14**). Previous studies have noted the
662 importance of lipid metabolism in diatom stress responses (Zulu, Zienkiewicz et al.
663 2018), and that most or all diatom lipid synthesis occurs directly in the plastid
664 (Huang, Pan et al. 2023). Many of the metabolic reactions required for lipid synthesis,
665 including acyl-coA synthesis from pyruvate (Maréchal and Lupette 2020), glycerol-3-
666 phosphate from glyceraldehyde-3-phosphate (Kroth, Chiovitti et al. 2008), and
667 glucosyl-1-phosphate from cytoplasmic glucosyl-1-phosphate (Zhu, Shi et al. 2016),
668 are likely to be impacted by plastid carbon metabolism. We note that there is no
669 evidence for transcriptional modifications to fatty acid synthesis in glycolysis mutant
670 lines, suggesting that these changes are driven by substrate limitation. As our
671 metabolomics data project under-accumulations of both pyruvate and hexose sugars
672 in knockout lines (**Fig. 5**), we propose that the diminished abundances of TAGs and
673 shorter chain fatty acids are due to a diminished supply of plastid pyruvate for acyl-
674 coA synthesis, rather than greater gluconeogenesis of galactosyl-phosphates from
675 exported plastid glyceraldehyde-3-phosphate (Demé, Cataye et al. 2014).
676

677 Under 19C CL, we observed much more dramatic remodelling of cellular transcription
678 in knockout lines compared to controls (**Fig. 4A**). These include greater overall
679 photosynthesis gene expression, e.g., *Lhcf1* (**Fig. 4B**), which was corroborated in
680 photo-physiological analyses by larger PSII antenna size, i.e., a larger functional
681 cross-section (σ PSII) (**Fig. S11**). It should be noted that the increase in PSII antenna
682 size does not necessarily change the quantum yield of individual PSII reaction
683 centres, and therefore the increased σ PSII is independent of the Fv/ Fm measured,
684 which remains equivalent between knockout and control lines (**Fig. S11**). We did not
685 observe consistent differences in the expression of nitrogen or phosphorus stress
686 metabolism, or in the expression of the *P. tricornutum* biophysical carbon
687 concentration mechanisms of knockout lines, suggesting that these differences were
688 not caused by N, P or CO₂ limitation in the control lines (**Supplemental Dataset 5**,
689 sheets 4-5) (McCarthy, Smith et al. 2017, Nawaly, Matsui et al. 2023). We further did
690 not measure differences in photosynthetic performance (electron transport), or an
691 upregulation of genes encoding proteins involved in photoprotection, e.g., LhcX
692 family or xanthophyll cycle enzymes in knockout lines under 19C CL (**Fig. 4B**; **Fig.**
693 **S11**; **Supplemental Dataset 4**, sheet 12) (Buck, Sherman et al. 2019, Bai, Cao et al.
694 2022), suggesting that the differential expression of photosynthesis genes in the
695 knockout lines does not directly influence photosynthesis. In contrast, we observed
696 an upregulation of mitochondrial NDH dehydrogenase and downregulation of TCA
697 cycle enzymes in glycolysis knockout lines (**Fig. 4B**). Previous studies have noted
698 the important role of diatom mitochondria in dissipating excess plastid reducing
699 potential (Bailleul, Berne et al. 2015, Brodrick, Du et al. 2019), and it remains to be
700 determined if the formal export of plastid NADPH to the mitochondria in knockout
701 lines is impeded under continuous light.

702

703 It remains to be determined what routes enable the supply of pyruvate hub
704 intermediates to the *P. tricornutum* plastid in the absence of plastid glycolytic activity.
705 Previous studies have noted that diatom plastid triose phosphate transporters may
706 be able to transport PEP directly from the cytoplasm, and one of these
707 (Phatr3_J54017) is indeed upregulated in both cpEnolase and cpPGAM1A knockout
708 lines under 19C CL (**Supplemental Dataset 5**, sheet 3) (Moog, Nozawa et al. 2020,
709 Liu, Storti et al. 2022). Elsewhere our data suggest that amino acids may also
710 contribute to resupplying the *P. tricornutum* plastid with PEP and/or pyruvate. The

711 overexpression of plastid alanine transaminase in cpPGAM1A knockouts (**Fig. 4B**)
712 might allow alanine imported into the plastid to be deaminated to supply pyruvate
713 (Smith, Dupont et al. 2019). The overaccumulation of small amino acids synthesised
714 either from pyruvate (valine), PEP (aspartate via PEP carboxylase) and its
715 derivatives (methionine from aspartate via the homocysteine pathway) in knockout
716 lines may relate to this (**Fig. 5**) (Bromke 2013, Yu, Nakajima et al. 2022). Strikingly,
717 the knockout lines over-accumulate ornithine and glutamate, implicated in diatom
718 plastid amino acid recycling via the ornithine cycle (Levering, Broddrick et al. 2016,
719 Smith, Dupont et al. 2019), but under-accumulate arginine and citrate produced via
720 mitochondrial ornithine catabolism in the urea cycle (Allen, Dupont et al. 2011, Dolch,
721 Lupette et al. 2017). These data broadly suggest dysregulation in plastid-to-
722 mitochondria amino acid shuttling in glycolysis knockout lines under 19C CL (**Fig. 5**).
723

724 Under 8C CL, we identify an over-accumulation of mRNAs encoding plastid
725 biogenesis and mitochondrial glycolytic proteins, an over-accumulation of short-chain
726 amino acids (valine) and an under-accumulation of cytoplasmic sugars and amino
727 acids (glucose, histidine) in cpEnolase and cpPGAM1A knockouts relative to controls
728 (**Figs. 4B, 5**). We further note under-accumulations of pyruvate in both knockout
729 lines (**Fig. 5**). These reflect the phenotypes identified at 19C, and the absence of a
730 specific growth defect under 8C conditions is therefore perhaps surprising (**Fig. 3**).
731 Knockout lines under 8C conditions, however, have additional phenotypes not
732 observed at 19C. These include an overall enrichment in down-regulated genes
733 encoding plastid-targeted proteins (**Fig. 4A**); a specific over-accumulation of TCA
734 cycle (citrate synthase) and a possible non-photochemical quenching-associated
735 mRNA (*LhcX4*) (**Fig. 4B**) (Bailleul, Berne et al. 2015, Murik, Tirichine et al. 2019). It is
736 possible that these additional phenotypes have compensatory effects on knockout
737 line growth rates.
738

739 One possible explanation for the more complex phenotypes observed under 8C CL
740 would be a gluconeogenic activity of plastidial lower-half glycolysis-gluconeogenesis.
741 The reversibility of the cpPGAM1A and cpEnolase reaction is confirmed by
742 enzymatic data (**Fig. 7A**), and in particular is suggested by the cpEnolase knockout
743 phenotypes, which could relate to the accumulation of PEP on the acceptor side of
744 the gluconeogenic reaction. These include an overaccumulation of TAGs and

745 SGDQs over glucosyl-lipids, which might relate to a greater accumulation of acyl-coA
746 synthesised from plastidial pyruvate in cpEnolase knockouts (**Fig. 6**). These also
747 include the over-accumulation of aspartate and phenylalanine, synthesised from
748 PEP, which is further visible in cpEnolase knockouts at 19C conditions (**Figs. 5,**
749 **S13**). The differences in cpEnolase and cpPGAM1A phenotypes may relate to the
750 fact cpEnolase is the only plastid-targeted enolase protein encoded in the *P.*
751 *tricornutum* genome, whereas alternative phospho-glycerate mutases exist that may
752 compensate for cpPGAM1A (e.g., cpPGAM1B, cpPGAM2; **Figs. S4, S7**).
753 Establishing the relative fluxes that occur in each direction of cpEnolase and
754 cpPGAM enzymes will depend on the construction of multigene knockouts for
755 different *P. tricornutum* Enolase and PGAM isoforms (Yin and Hu 2023).

756

757 The complex phenotypes for diatom plastid glycolysis inferred from environmental
758 data and experimentally visualised in *P. tricornutum* knockout lines contrast with
759 those for plant plastid glycolysis, with (for example) *A. thaliana* cpEnolase and
760 cpPGAM mutants presenting relatively limited phenotypes (Prabhakar, Löttgert et al.
761 2009, Andriotis, Kruger et al. 2010). These contrast with cytoplasmic and respiratory
762 plant Enolase and PGAM1 isoforms which, alongside having predominant impacts on
763 plant carbon flux, may have important moonlighting roles in plant development,
764 immune responses and even in the structural coordination of plastids and
765 mitochondria (Zhao and Assmann 2011, Zhang, Sampathkumar et al. 2020, Yang,
766 Wang et al. 2022). We similarly anticipate that further surprises will be identified for
767 the functions of diatom plastid glycolysis, and for this still poorly understood pathway
768 in the photosynthetic tree of life.

769

770 **Materials and Methods**

771

772 *Culture conditions*

773

774 *Phaeodactylum tricornutum* strain Pt1.86 was grown in enhanced seawater (ESAW)
775 medium supplemented with vitamins, but without silicon or added antibiotics, in 50 μ E
776 $\text{m}^{-2} \text{s}^{-1}$ white light. Light profiles were measured with a SpectraPen photofluorometer
777 (Photon Systems Instruments, Czech Republic); and are provided in **Supplemental**
778 **Dataset 4**, sheet 13. Cultures were grown under one of four light, temperature and

779 shaking regimes. For general molecular work and transformation, cultures were
780 grown under 19 °C with 12h light: 12 dark cycling, shaken at 100 rpm (for general
781 molecular work and transformation), following the established methodology of
782 Falciatore et al. (Falciatore, Casotti et al. 1999). For comparative physiology work,
783 we were unable to replicate shaking conditions at low temperatures, and therefore
784 chose to use conditions without shaking: 19 °C with 12 h light: 12 h dark cycling
785 (« LD » growth conditions and physiological analysis); 19 °C with 24 h continuous
786 light and without shaking (« CL » growth conditions and physiological analysis); or
787 8°C with 24h continuous light and without shaking (« 8C » growth conditions and
788 physiological analysis). All cultures achieved measured mid exponential Fv/Fm
789 values of > 0.6, suggesting that the absence of shaking did not impact on
790 photosynthetic efficiency (**Supplemental Dataset 5**, sheet 8).

791
792 Batch culturing of *P. tricornutum* for genetic manipulation was performed under
793 fluorescent lamps. Physiological experiments were principally performed at 19°C in
794 an AlgaeTron AG230 (Photon Systems Instruments) with cool white LED (WIR)
795 illumination, and technical specifications described in [https://growth-
796 chambers.com/data/algaetron-ag-230/download/AlgaeTron AG 230 Manual2021-
797 finalweb.pdf](https://growth-chambers.com/data/algaetron-ag-230/download/AlgaeTron_AG_230_Manual2021-finalweb.pdf). Growth experiments were performed at 8°C using a low-temperature
798 adapted cool white LED (WIR, ECCLIM). Details of all three spectra used, as
799 measured with a SpectraPen (PSI), are provided in **Table S4**, sheet 13.

800
801 Mutant *P. tricornutum* lines were maintained on ½ ESAW 1% agarose plates,
802 supplemented by 100 µg ml⁻¹ each ampicillin and streptomycin, and 30 µg ml⁻¹
803 chloramphenicol, and either 100 µg ml⁻¹ zeocin (single transformants), or 100 µg ml⁻¹
804 zeocin and 4 µg ml⁻¹ blasticidin (complementation lines), as previously described
805 (Falciatore, Casotti et al. 1999, Buck, Río Bártulos et al. 2018). All functional
806 analyses of transformant lines were performed on transformant lines grown in the
807 absence of antibiotic selection, to avoid secondary effects on growth or physiology.

808
809 *Phylogenetic identification of plastid lower half glycolysis-gluconeogenesis enzymes*

810
811 Plastid-targeted glycolysis lower half enzymes were searched across 1,673 plant and
812 algal genomes and transcriptomes (**Dataset S1**, sheet 1). Briefly, this involved all

813 annotated *P. tricornutum* PGAM (Phatr3_J17086, Phatr3_J51404, Phatr3_J5605,
814 Phatr3_J5629, Phatr3_J8982, Phatr3_J37201, Phatr3_J47096) and enolase
815 (Phatr3_draftJ1192, Phatr3_draftJ1572, Phatr3_J41515) peptide sequences with
816 BLASTp and a threshold e-value of 10^{-5} , and a reciprocal BLASTp with criteria -
817 max_target_seqs 1 to retrieve the best homologues against the entire *P. tricornutum*
818 genome. For PGAM, where *P. tricornutum* queries failed to retrieve homologues in
819 >50% searched libraries, a second BLASTp was performed with query peptide
820 sequences from *A. thaliana* (AT2G17280, AT1G09780, AT3G05170, AT3G08590,
821 AT3G50520, AT5G04120, AT5G64460), and a reciprocal BLASTp was performed
822 with the *P. tricornutum* genome supplemented with these sequences.

823

824 The domain content of each potential homologue was identified using hmmscan and
825 the version 33.1 Pfam database (Mistry, Chuguransky et al. 2020). Only Enolase
826 sequences that contained >90% predicted domain coverage to both Enolase_N and
827 Enolase_C domains; and PGAM sequences that contained >50% domain coverage
828 to the His_Phospho domain (based on the corresponding coverage observed in *P.*
829 *tricornutum* sequences) were viewed as being complete. Sequences for which the N-
830 terminus of the region homologous to the PFAM domain was located within the first
831 20 aa of the predicted sequence (i.e., less than the length of a typical plastid-
832 targeting sequence) (Emanuelsson, Brunak et al. 2007) were viewed as lacking
833 credible targeting sequences. All remaining proteins were scanned, considering both
834 complete proteins and sequences trimmed to the first encoded N-terminal
835 methionine, using targetp (using a plant scoring matrix) (Emanuelsson, Brunak et al.
836 2007), PredAlgo (Tardif, Atteia et al. 2012), HECTAR (Gschloessl, Guermeur et al.
837 2008) and ASAFind (with SignalP 5.0) (Gruber, Rocap et al. 2015, Almagro
838 Armenteros, Tsirigos et al. 2019). Sequences from primary plastid-containing
839 organisms (plants, green and red algae, glaucophytes) that were inferred to possess
840 a plastid-targeting sequence either with TargetP or PredAlgo, and sequences from
841 secondary plastid-containing organisms that were inferred to possess a plastid-
842 targeting sequence with either HECTAR or ASAFind, considering both complete and
843 N-trimmed sequence models, were annotated as putatively plastid-targeted.

844

845 A more detailed phylogenetic analysis was performed using Enolase and PGAM
846 homologues obtained from a subset of 289 complete cryptomonad, haptophyte and

847 stramenopile genomes and transcriptomes in the above library, alongside
848 homologues identified from a further 85 prokaryotic and eukaryotic genomes
849 sampled with taxonomic balance from across the remainder of the tree of life (Liu,
850 Storti et al. 2022). Sequences were also screened for mitochondrial presequences
851 using HECTAR (Gschloessl, Guermeur et al. 2008), and MitoFates, run with
852 threshold value 0.35 (Fukasawa, Tsuji et al. 2015).

853

854 The pooled set of sequences were aligned first with MAFFT v 7.0 under the --auto
855 setting, followed by the in-built alignment programme in GeneIOUS v 10.0.9, under
856 default settings (Kearse, Moir et al. 2012, Katoh, Rozewicki et al. 2017). Incomplete
857 and poorly aligned sequences, alongside taxonomically uninformative N- and C-
858 terminal regions were removed from the alignment manually, followed by trimal with
859 setting –gt 0.5 (Capella-Gutiérrez, Silla-Martínez et al. 2009). Phylogenetic analyses
860 were performed with MrBayes v 3.2 and rAxML v 8, integrated into the CIPRES
861 webserver (Stamatakis 2014, Miller, Schwartz et al. 2015). MrBayes trees were run
862 for 10,000,000 generations with the GTR, Jones and WAG substitution matrices, 4
863 starting chains and sumt and sump burnin fractions set to -0.5; all cold chains were
864 confirmed to have reached a pvalue plateau below 0.1 prior to the start of the
865 consensus building. rAxML trees were run with GTR, JTT and WAG substitution
866 matrices, 350-400 ML generations, and automatic bootstrapping. Phylogenies were
867 either rooted between bacterial and eukaryotic sequences (Enolase); or on the mid-
868 point (PGAM1, PGAM2) due to the absence of a single monophyletic bacterial
869 outgroup. A summary of these analyses is provided in **Supplemental Dataset 1**.

870

871 *Tara Oceans Analysis*

872

873 The complete *Tara Oceans* and *Tara Oceans* Polar Circle libraries of meta-genome
874 and meta-transcriptome diversity (Carradec, Pelletier et al. 2018, Royo-Llonch,
875 Sánchez et al. 2020) were searched for orthologues of diatom cpEnolase,
876 cpPGAM1A and PGAM2 sequences via a phylogenetic reconciliation approach
877 benchmarked in previous studies (Kazamia, Sutak et al. 2018, Liu, Storti et al. 2022).
878 This approach uses the combined outputs of hmmer, BLAST best-hit, and single-
879 gene tree topologies to only retain *Tara Oceans* meta-genes that reconcile as

880 monophyletic with a defined query set, in these case plastid-targeted diatom isoforms
881 of each enzyme. Exemplar tree topologies are shown in **Fig. S6**.

882

883 First, a HMM (hidden Markov model) was constructed for all diatom plastid-targeted
884 sequences in the untrimmed alignments for each phylogeny, as detailed above, and
885 searched into the complete *Tara Oceans* catalog by hmmer (<http://hmmer.org>) with
886 evalue 10^{-10} to identify putative meta-gene homologues of each protein. Matching
887 sequences were extracted, and searched by BLASTp against the complete copy of
888 the *P. tricornutum* genome (Rastogi, Maheswari et al. 2018). Only sequences that
889 retrieved a best hit against an Enolase or PGAM sequence (and therefore likely
890 correspond to homologues of each protein) were retained. Next, the retained
891 sequences were similarly searched by BLASTp against the complete untrimmed
892 alignment of cultured Enolase and PGAM sequences. Only sequences that retrieved
893 a diatom plastid-targeted isoform were retained, allowing the elimination of non-
894 diatom and homologues of diatom non-plastid sequences. Finally, sequences were
895 combined with the untrimmed alignment of cultured sequences from each gene and
896 realigned using the same MAFFT, GenelOUS and trimal pipeline as defined above.
897 Curated alignments were screened by rAxML tree with the JTT substitution matrix, as
898 above. Only *Tara Oceans* sequences that resolved within a monophyletic clade with
899 diatom plastid-targeted proteins, defined as all sequences that position closer on a
900 midpoint rooting of the tree to diatom plastid-targeted proteins than to any non-
901 diatom or non-plastid targeted sequences, was extracted for further analyses.

902

903 Relative abundances were calculated for the total occurrence of all phylogenetically
904 verified diatom plastid-targeted proteins in both meta-transcriptome and meta-
905 genome data. Relative expression levels of each gene were estimated by reconciling
906 the calculated meta-transcriptome abundances either to total diatom meta-
907 transcriptome sequences using the formula $10^{-6}(\Sigma_{metaT}/\Sigma_{DiatomT})$, i.e., expressed per
908 million reconciled diatom reads, or to calculated meta-genome abundances, using
909 the formula and $\log_{10}(1 + \Sigma_{metaT}) - \log_{10}(1 + \Sigma_{metaG})$, to allow inclusion of null values.
910 Pearson and Spearman correlations were calculated between relative abundances
911 and all quantitative measured environmental variables associated with *Tara Oceans*
912 samples as stored within the PANGAEA repository (Pesant, Not et al. 2015). All
913 calculations were repeated independently for each depth (surface, or deep

914 chlorophyll maximum/ DCM) and size fraction (0.8- 2000 μ m, 0.8- 5 μ m, 3/5- 20 μ m,
915 20- 180 μ m, and 180- 2000 μ m), with 3 and 5 μ m filters viewed as equivalent to allow
916 reconciliation of Arctic and non-Arctic data, respectively. All *Tara Oceans* meta-gene
917 assignations, alongside individual and total abundance calculations are provided in
918 **Supplemental Dataset 3.**

919

920 *Nucleic acid isolation*

921

922 For DNA isolation, 150 ml early stationary phase *P. tricornutum* culture, grown under
923 19°C with 12h light: 12h dark cycling, and shaken at 100 rpm as described above,
924 was centrifuged at 4000 rpm for 10 minutes. The resulting cell pellet was washed in
925 sterile growth medium three times, and incubated for four hours in 5 ml TEN buffer
926 (0.1 M NaCl, 0.01 M Tris pH8, 0.001 M EDTA) supplemented with 2% volume:
927 volume SDS, and 1U μ l⁻¹ proteinase K (Fisher Scientific). Lysed cell fractions were
928 used for phenol: chloroform precipitation of cellular DNA, as previously described
929 (Nash, Barbrook et al. 2007), prior to dissolution in 50 μ l nuclease-free water, and
930 quantification with a nanodrop photospectrometer.

931

932 For RNA isolations, 10⁵ stationary phase *P. tricornutum* cells, as calculated with cell
933 densities counted from a Malassez haemocytometer were inoculated in a 250 ml
934 conical Erlenmeyer containing 80 ml ESAW without antibiotics. Cell cultures were
935 harvested in mid-exponential phase, at counted densities of between 1 and 2 x 10⁶
936 cells ml⁻¹. 19C CL cultures were typically harvested eight days post-inoculation, 19C
937 LD cultures nine days post-inoculation, and 8C CL cultures seventeen days post-
938 inoculation, in agreement with growth curve dynamics. Cells were harvested at the
939 mid-point of the light-induction phase of the LD growth condition (15:00 CET), per
940 previous gene expression studies in *P. tricornutum* (Cruz de Carvalho, Sun et al.
941 2016).

942

943 RNA was isolated from 10⁸ cells from each culture, pelleted and washed as before,
944 and snap-frozen in liquid nitrogen. Frozen cell suspensions were re-equilibrated with
945 1 ml Trizol reagent (Invivogen) and 200 μ l chloroform (Honeywell), prior to phenol:
946 chloroform extraction. An additional separation step was performed in 500 μ l pure
947 chloroform to remove any residual phenol traces from the aqueous phase, and

948 purified nucleic acids were precipitated overnight in 500 μ l isopropanol at -20°C. RNA
949 was collected by centrifugation at 10,000 rpm for 30 minutes, washed with 900 μ l
950 100% ethanol, and resuspended in 50 μ l RNase-free water (Qiagen).

951

952 2 μ g RNA, as quantified with a nanodrop photospectrometer, was subsequently
953 treated with 2U RNase-free DNase (Promega) for 30 minutes at 37 °C, with the
954 reaction arrested with 1 μ l 0.5 M EDTA. The digested RNA sample was
955 reprecipitated in isopropanol for one hour at -20 °C, washed in ethanol, and
956 resuspended in 20 μ l RNase-free water. Purified RNA sample concentrations were
957 quantified with a nanodrop spectrometer, and a 3 μ l aliquot was migrated on an
958 RNase-free 1% agarose gel stained with 0.2 μ g ml⁻¹ ethidium bromide to confirm
959 RNA integrity prior to all downstream applications.

960

961 *GFP localization*

962

963 Full length mRNA sequences of cpEnolase, cpPGAM1A and cpPGAM2 were
964 amplified from *P. tricornutum* RNA libraries grown under 19 °C, light: dark cycling and
965 replete nutrient conditions as described above, by reverse transcription with RT
966 Maxima First Strand synthesis kit (Thermo Fisher) from 200 ng template RNA,
967 following the manufacturer's instructions; and gene-specific primers as shown in
968 **Supplemental Dataset 2**, sheet 4. PCRs were performed using Pfu high-fidelity DNA
969 polymerase, in 50 μ l total reaction volume, including 1 μ l cDNA template and 2 μ l
970 each specific primer, following the manufacturer's protocol. Typical PCR conditions
971 were: 10 minutes at 95 °C; followed by 35 cycles of 45 seconds at 95 °C, 45 seconds
972 at 55 °C, and 2 minutes at 72 °C; followed by a terminal elongation phase of 5
973 minutes at 72 °C. Amplified products were migrated on a 1% agarose gel stained
974 with ethidium bromide, cut out, and purified using a MinElute PCR purification kit
975 (Qiagen).

976

977 Purified products were cloned into linearised versions of pPhat vectors containing
978 eGFP and a zeocin resistance gene (SHBLE). These products were amplified using
979 an analogous PCR protocol as above, with 1 ng purified plasmid DNA, and outward-
980 directed PCR primers extending from the start of the fluorescence protein gene
981 sequence to the end of the FcpA promoter region (**Supplemental Dataset 2**, sheet

982 4); cut, purified, and treated with 1U FastDigest DpnI (Thermo Fisher) to remove any
983 residual plasmid DNA. The gene-specific primers for each cpEnolase and cpPGAM
984 construct were modified with 15 5' nucleotides complementary to the terminal regions
985 of the FcpA and GFP sequences, allowing cloning of complete vector sequences
986 using a HiFi DNA assembly kit (NEB), following the manufacturer's instructions.
987 Assembled vectors were transformed into chemically competent Top10 *E. coli*, and
988 positive clones (as identified by Sanger sequencing of positive colony PCR products)
989 were used to generate purified plasmid DNA with a Plasmid Midi Kit (Qiagen).

990

991 Subcellular localization constructs were transformed into wild type *P. tricornutum*
992 Pt186 by biolistic transformation, as previously described (Falciatore, Casotti et al.
993 1999). 5×10^7 mid-exponential phase cells were plated on a 1/2 ESAW- 1% agarose
994 plate, and left to recover for two days, prior to bombardment with 10 mg 1 μ m
995 tungsten beads treated with 5 μ g purified plasmid DNA in a Helios gene gun
996 (BioRad) at 1,550 PSI. Cells were left to recover for two days, prior to replating on 1/2
997 ESAW- 1% agarose plates supplemented with 100 μ g ml $^{-1}$ ampicillin, 100 μ g ml $^{-1}$
998 streptomycin, 30 μ g ml $^{-1}$ chloramphenicol and 100 μ g ml $^{-1}$ zeocin. Plates post-
999 bombardment and for the first two days post-selection were maintained in a low light
1000 environment (10 μ E m $^{-2}$ s $^{-1}$) prior to return to standard growth conditions.

1001

1002 Positive transformant colonies, as verified by Western Blot with a mouse anti-GFP
1003 antibody (Thermo Fisher), were visualised using a SP8 inverted spinning disc
1004 confocal microscopy (Leica) under 400 x magnification, with excitation wavelength
1005 485 nm and emission wavelength filters 500-550 nm. GFP-negative colonies were
1006 used to confirm detection specificity, and empty-vector GFP (with cytoplasmic
1007 localizations) were used as fluorescence positive controls. A minimum of 12 GFP
1008 expressing clones were visualised for each construct with consistent localization.

1009

1010 *CRISPR mutagenesis*

1011

1012 CRISPR target sequences for cpEnolase and cpPGAM1A genes were identified
1013 using PhytoCRISP-Ex (Rastogi, Murik et al. 2016), privileging positions in the N-
1014 terminal region of the conserved domain to minimize the probability of enzyme
1015 functionality in knockout lines, and uniqueness across the entire *P. tricornutum*

1016 genome within the final 11 bp of the target sequence to minimize off-target effects.
1017 Primers were designed for each target sequence, and introduced into a pu6:SG1
1018 CRISPR target sequence plasmid by PCR, as previously described (Nymark,
1019 Sharma et al. 2016). 2 µg insertion-positive pu6:SG1 plasmids, as confirmed by
1020 Sanger sequencing were co-introduced into wild type *P. tricornutum* Pt186 cells by
1021 bombardment along with 2 µg HA-tagged Cas9 and pPhat vectors, as described
1022 above. Mutant colonies were genotyped using a DNA lysis buffer containing 0.14 M
1023 NaCl, 5 mM KCl, 10 mM Tris-HCl pH 7.5, 1% v/v NP40 to generate crude DNA
1024 extracts, followed by PCR amplification across the CRISPR target sequences with
1025 DreamTaq PCR reagent (Promega) and Sanger sequencing (Eurofins genomics).
1026 Mixed mutant: wild-type colonies were segregated via repeated dilution on ESAW:
1027 zeocin plates until only homozygous mutant genotypes were detected (Nymark,
1028 Sharma et al. 2016, McCarthy, Smith et al. 2017). Empty vector control lines were
1029 generated using the same protocol, except with only HA-Cas9 and pPhat plasmids,
1030 cotransformed without a CRISPR target sequence.

1031
1032 Tabulated cleaned knockout mutants, their associated genotypes and the expression
1033 levels of mutated gene copies are shown in **Supplemental Dataset 4**, sheets 1-2.
1034 Mutant colony genotypes were periodically confirmed (approx. once per month) by
1035 PCR and Sanger sequencing throughout the duration of all subsequent experiments,
1036 and the CRISPR-induced gene modifications were found to remain stable. *P.*
1037 *tricornutum* Enolase proteins were determined by Western blot to be crossreactive to
1038 an anti-*Arabidopsis thaliana* Enolase-2 antibody (Agrisera), and thus knockout line
1039 protein expression was confirmed by qRT-PCR, as described below.

1040
1041 *Complementation of knockout lines*
1042
1043 Knockout lines were complemented with pPhat:GFP vectors carrying overexpressing
1044 copies (under an FcpA promoter) of cpEnolase and cpPGAM1A synthetic constructs,
1045 with all CRISPR target sequences replaced with silent mutations (Eurofins). Genes
1046 were fused to C-terminal GFP, allowing the verification of protein expression and
1047 localization. Vectors were identical to those previously used for localization, but with
1048 a blasticidin S-deaminase gene in lieu of SHBLE (Buck, Río Bártulos et al. 2018)
1049 introduced by NEB Hi-Fi kit as before. Complementation constructs were transformed

1050 via bombardment, and cotransformed colonies were selected on ½ ESAW- 1%
1051 agarose plates supplemented with 100 µg ml⁻¹ ampicillin, 100 µg ml⁻¹ streptomycin,
1052 30 µg ml⁻¹ chloramphenicol, 100 µg ml⁻¹ zeocin, 4 µg ml⁻¹ blasticidin.
1053
1054 For each complementation, three cpEnolase and cpPGAM1A knockout lines
1055 (including at least one for each CRISPR target sequence) were complemented both
1056 with the conjugate complementation construct, and an empty blasticidin resistance
1057 vector as a placebo; and two empty vector lines were further complemented with
1058 both cpEnolase and cpPGAM1A overexpressor constructs, plus an empty blasticidin
1059 resistance vector, to exclude possible effects from ectopic overexpression of each
1060 gene on cell physiology. A total of 47 colonies, with a minimum of 6 colonies for each
1061 knockout: complementation combination, including lines complemented from at least
1062 two distinct primary knockout mutant genotypes, were selected for subsequent study
1063 (**Supplemental Dataset 4**, sheet 7). The retention of the primary knockout mutant
1064 genotype in each complemented line was verified by colony PCR and sequencing as
1065 above, and the overexpression and correct localization of the complementing protein
1066 sequence (i.e., to the chloroplast for cpEnolase:GFP and cpPGAM1:GFP, or the
1067 cytoplasm for ectopic GFP) was verified by western blot with an anti-GFP antibody
1068 (Thermo Fisher) (Erdene-Ochir, Shin et al. 2019) and confocal microscopy.

1069

1070 *Growth rate measurements*

1071

1072 A starting density of 10⁴ ml⁻¹ stationary phase *P. tricornutum* cells of a given culture
1073 line, as verified with a Malassez haemocytometer, were inoculated into a 15 ml
1074 volume antibiotic-free ESAW within a sterile, ventilated cap plastic culture flask
1075 (Celltreat) and grown under LD, CL, or 8C culture conditions as described. Cell
1076 densities were recorded: very day from one day post-inoculation (CL); every day from
1077 two days post-inoculation (LD); or every two days from five days post-inoculation
1078 (8C) at the mid-point of the LD light induction phase using a counting CyFlow Cube 8
1079 cytometer (ParTec).

1080

1081 Typically, 15 µl cell culture, passed at 0.5 µl s⁻¹, were used for each measurement,
1082 with three technical replicates performed for each culture of which the first (enriched
1083 in non-cellular particles) was excluded from downstream calculations. Cytometer

1084 particle counts were correlated to actual cell densities using a calibration curve
1085 realised from haemocytometer counted densities of wild-type cell culture, and
1086 cultures with observed densities $> 2 \times 10^6$ cells ml^{-1} were diluted ten-fold in blank
1087 growth media to avoid saturation of the cytometer.

1088

1089 Cell densities were measured daily from one day post-inoculation (19C conditions)
1090 and every second day from five days post-inoculation (8C CL only), until cell lines
1091 were confirmed to have exited log phase (i.e., reached a stationary phase plateau).
1092 Primary knockout mutant growth curves were repeated a minimum of six times (three
1093 biological replicates per-inoculation, with two independent repetitions) for each
1094 mutant line. Growth curves were tested for seven cpEnolase knockout, five
1095 cpPGAM1A knockout and four empty vector control lines, providing a minimum of 24
1096 measurements (i.e., four distinct mutant lines) per each genotype studied (cpEnolase
1097 knockout, cpPGAM1A knockout and empty vector control lines).

1098

1099 To avoid artifacts based on the proximity of the seed cell culture to exponential phase
1100 at the time of inoculation (which may impact on lag phase length) or the relative
1101 diameter of each cell in culture (which may impact on carrying capacity), cell growth
1102 rates were measured exclusively from the log-phase relative division rate. This was
1103 calculated via considering $\Delta \log_2(\text{cell density}) / \Delta \log_2(\text{time})$ for a time period
1104 corresponding to 5×10^4 to 4×10^6 cells/ ml , covering in most cases six successive
1105 measurements of each individual growth curve. To confirm that the cells were
1106 measured in exponential phase, and were neither influenced by particular
1107 contamination of the cytometer or cell exhaustion of the growth medium, the linear
1108 correlation was calculated between the log value, with most calculated correlations
1109 (129/ 132) showing linearity ($r > 0.95$). Three exemplar growth curve outputs are
1110 provided in **Supplemental Dataset 4**, sheets 3-5; and an overview of relative growth
1111 rates expressed as a function of mean empty vector control growth rates are
1112 provided in **Supplemental Dataset 4**, sheet 6.

1113

1114 Complementation growth curves were repeated with at least two independent
1115 repetitions for each cell line, with five timepoints taken to project growth rates, and
1116 therefore a minimum of sixty independent measurements for each mutant:
1117 complementation genotype under each growth condition, with the average of the two

1118 fastest growth rates of each culture calculated as estimates for the growth rate. A
1119 heatmap of all estimated complementation line growth rates is provided in
1120 **Supplemental Dataset 4**, sheet 7.

1121

1122 *Photophysiology*

1123

1124 Cultures for photophysiological analysis were grown in 10ml ventilated plastic flasks,
1125 without shaking, under 19C CL and 19C LD as described above. Cultures were
1126 grown from a starting inoculum of 10^5 cells ml^{-1} as measured with a Malassez
1127 haemocytometer. Cell cultures that had reached a measured density of 10^6 cells ml^{-1}
1128 were then refreshed into fresh media at the initial starting concentration of 10^5 cells
1129 ml^{-1} to allow a prolonged adaptation to each photophysiological condition under a
1130 continuous exponential phase. Cells from refreshed culture lines were harvested in
1131 exponential phase (between 1 and 3×10^6 cells ml^{-1} , and good physiology was
1132 verified by Fv/Fm measurements > 0.6 across all measured lines (**Supplemental**
1133 **Dataset 4**, sheet 8).

1134

1135 Steady-state light curves (SSLC) were conducted with a fluorescence CCD camera
1136 recorder (SpeedZen, jBeamBio, France) in a selected set of control lines ($n=2$),
1137 cpPGAM ($n=3$) and cpEnolase knockouts ($n=6$), as well in complemented cpEnolase
1138 ($n=2$) and cpPGAM1A ($n=3$) knockout lines in which we observed a suppression of
1139 the knockout growth defect compared to complemented control lines. Measurements
1140 were repeated a minimum of two and in most cases four times per line and treatment
1141 condition, with a minimum of six unique measurements performed for each genotype
1142 and treatment. Curves were measured on cell cultures concentrated to between 2
1143 and 5×10^7 cells ml^{-1} . Samples were exposed to an initial 5 min illumination of 35
1144 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ green actinic light (532 nm), followed by a 6 steps of 3 min each
1145 of increasing intensity to 750 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$.

1146

1147 Minimum (F_0) and maximum (F_M) fluorescence were measured in dark-adapted (at
1148 least 1 min) samples, before and at the end of a 250 ms saturating (multiple turnover)
1149 pulse of light (532 nm, 5000 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$) and the maximum quantum yield
1150 of PSII in the dark was calculated as $F_v/F_M = (F_M - F_0)/F_M$. Every minute of light
1151 exposure, steady-state fluorescence (F_S) and maximum fluorescence under Light

1152 (F_M') were measured. PSII quantum yield (φ_{PSII}) and nonphotochemical quenching
1153 (NPQ) were calculated on the last time point of each light step as $\varphi_{PSII} = (F_M' - F_s)/F_M'$
1154 and $NPQ = F_M/F_M' - 1$, and rETR at PSII as $rETR = \varphi_{PSII} \cdot E$.

1155

1156 The whole rETR vs E curve was fitted as $rETR = rETR_M \cdot (1 - \exp(-\alpha \cdot E/rETR_M))$ where
1157 $rETR_M$ is the maximum rETR and α is the light-limited slope of rETR vs E (Jassby and
1158 Platt 1976). Only rETR values from 0 to 450 $\mu\text{mol photons m}^{-2}$ were used for the fit
1159 because values from 600 and 750 $\mu\text{mol photons m}^{-2}$ were too noisy. The light
1160 saturation parameter E_K was calculated as $rETR_M/\alpha$ and the fitted values of the
1161 parameters were used to estimate φ_{PSII} under the growth light intensity of 50 μmol
1162 photons $\text{m}^{-2} \text{s}^{-1}$ as $\varphi_{PSII}_{50\mu\text{E}} = (rETR_M \cdot (1 - \exp(-\alpha \cdot 50/rETR_M))) / 50$. The NPQ vs E curve
1163 was fitted as $NPQ = NPQ_M \times E^n / (E_{50}NPQ^n + E^n)$, where NPQ_M is the maximal NPQ,
1164 $E_{50}NPQ$ is the half-saturation intensity for NPQ and n is the sigmoidicity coefficient
1165 (Serôdio and Lavaud 2011).

1166

1167 The PSII functional absorption cross-section, σ_{PSII} , was calculated from the
1168 fluorescence induction upon a single turnover flash of blue light (100 μs , 455 nm, 60
1169 nm bandwidth) on non-concentrated cell culture. The induction curve was measured
1170 on 20 min dark-acclimated samples before centrifugation (average of 2-4
1171 independent replicates) with a Fluorescence Induction and Relaxation (miniFIRe)
1172 fluorometer (Gorbunov, Shirsin et al. 2020), which also measures single turnover
1173 F_v/F_M and PSII connectivity. Parameters measured with the miniFIRe fluorometer (as
1174 defined below) were also quantified for cultures grown under 8C CL, as the
1175 measurements were sufficiently rapid to allow the culture to be maintained at growth
1176 temperatures (Gorbunov, Shirsin et al. 2020). Measured photophysiological values
1177 are tabulated in **Supplemental Dataset 4**, sheet 8. Violin plots of photophysiological
1178 parameters were generated with BoxPlotR (Spitzer, Wildenhain et al. 2014).

1179

1180 *Gene expression analysis*

1181

1182 Libraries were prepared from 200 ng DNase-treated RNA for each mutant line and
1183 treatment condition, with at least three replicates per sample. Sequencing was
1184 performed by Fasteris (Plan-les-Ouates, Switzerland). After initial quality control
1185 checks, stranded Illumina mRNA libraries were prepared with a Novaseq V1.5 kit and

1186 sequenced with an SP-flow cell with 2x 100 bp over 200 cycles, yielding circa 130-
1187 160 Gb sequence data per sample with ≥85% of bases higher than Q30.
1188
1189 FastQ files were mapped using Nextflow's RNA sequencing assembly pipeline
1190 <https://nf-co.re/rnaseq/usage>, to gff3 annotations of the *P. tricornutum* version 3
1191 genome (Rastogi, Maheswari et al. 2018, Lataretu and Hölzer 2020). Total mapped
1192 read counts were then compared between all biological and technical replicates for (i)
1193 each mutant line sequenced, (ii) each genotype (cpEnolase knockout, cpPGAM1A
1194 knockout, control), and (iii) each treatment condition performed (LD, CL, 8C) by
1195 principal component analysis (PCA) using the R package factoextra, with highly
1196 variant libraries removed (Kassambara and Mundt 2017). The final dataset included
1197 63 RNAseq libraries, including five cpEnolase and five cpPGAM1A knockout lines
1198 and four empty vector controls, and a minimum of four RNA libraries prepared from
1199 at least two genetically distinct mutant constructs for each genotype (cpEnolase,
1200 cpPGAM1A and control) considered (**Supplemental Dataset 5**, sheets 1-2).,.
1201 Differentially expressed genes (DEGs) were then calculated between each genotype
1202 for each treatment condition using DESeq2 with cutoff fold-change 2 and P-value
1203 0.05 (Liu, Wang et al. 2021) (**Supplemental Dataset 5**, sheets 2-3).
1204
1205 The mean transcript abundances of DEGs in knockout compared to control lines
1206 were first assessed in RNAseq data of N and P-limited *P. tricornutum* cell lines under
1207 two and nine time-points respectively (**Supplemental Dataset 5**, sheet 4) (Cruz de
1208 Carvalho, Sun et al. 2016, McCarthy, Smith et al. 2017). No significant differences
1209 were found between DEGs and other genes in the *P. tricornutum* genome (one-way
1210 ANOVA, $P > 0.05$; **Supplemental Dataset 5**, sheet 5), confirming that the RNAseq
1211 samples were not generated from N- or P-limited cultures. Next, functional
1212 enrichments in DEGs from previously tabulated values for the entire *P. tricornutum*
1213 genome (**Supplemental Dataset 5**, sheets 6-10) (Rastogi, Maheswari et al. 2018,
1214 Ait-Mohamed, Novák Vanclová et al. 2020). Functional enrichments were tested by
1215 two-tailed chi-square ($P < 0.05$) of a differentially expressed gene occurring in either
1216 one (cpEnolase v control; cpPGAM1A v control) knockout-versus-control line tests, or
1217 in both tests realised under each physiological condition. Finally, the distribution of
1218 DEGs across *P. tricornutum* core plastid and mitochondrial metabolism pathways
1219 were mapped onto a previously defined proteomic model of each organelle (Ait-

1220 Mohamed, Novák Vanclová et al. 2020); with the strongest DEG enrichment taken in
1221 the case of enzymes with multiple homologues (**Supplemental Dataset 5**, sheet 11).
1222

1223 Quantitative RT-PCR (qRT-PCR) validations were performed using cDNA
1224 synthesised from 5 ng dNase-treated RNA (per qRT-PCR reaction) and a RT
1225 Maxima First Strand synthesis kit (Thermo Fisher), following the manufacturer's
1226 instruction; using a 384-well Lightcycler (Roche) and Takiyon™ No ROX SYBR 2X
1227 MasterMix (Eurogentec), following the manufacturers' protocols. Typical amplification
1228 conditions were: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C,
1229 30 seconds at 55°C, and 30 seconds at 72°C. Primer pairs for qRT-PCR
1230 amplifications were designed using NCBI Primer-BLAST (Ye, Coulouris et al. 2012),
1231 privileging unique amplification targets within the genomic sequence, an amplicon
1232 size of 100 to 150 base pairs, primer positions at different regions of the gene
1233 studied, and a 3' terminal G or C on each primer. Primer efficiencies were tested by
1234 qPCR with serial dilutions of *P. tricornutum* gDNA, with only primer pairs that yielded
1235 a Cp increment of between 0.9 and 1.1 per half dilution of DNA retained for qRT-PCR
1236 analysis. qRT-PCRs were at least three times for each amplicon: sample pair. RT-
1237 equivalents were performed to subtract residual genomic DNA from each Cp value
1238 obtained, and two housekeeping genes (Ribosomal protein S1, RPS; and TATA
1239 binding protein, TBP) previously shown to have conditionally invariant expression
1240 patterns in *P. tricornutum* were used as quantification references (Sachse, Sturm et
1241 al. 2013). Tabulated qRT-PCR outputs are shown in **Supplemental Dataset 5**, sheet
1242 13; and sample information and reaction conditions per MIQE guidelines (Bustin,
1243 Benes et al. 2009) are tabulated in **Supplemental Dataset 5**, sheet 14.
1244

1245 *Metabolite analysis*

1246
1247 Cell pellets were taken from exponential-phase *P. tricornutum* culture (counted
1248 density $1\text{--}2 \times 10^6$ cells ml^{-1} , 1.5×10^8 cells per sample) for metabolite and lipid
1249 analysis. Cell pellets were collected without washing to minimise impacts on
1250 metabolite turnover, then transferred to a pre-weighed, double-pierced and double-
1251 autoclaved 1.5 ml Eppendorf tube for lyophilization. Cell pellet masses were
1252 recorded, and samples were immediately snap-frozen in liquid nitrogen and stored at
1253 -80 °C for subsequent analysis.

1254

1255 Metabolite profiling was carried out by gas chromatography–mass spectrometry
1256 (ChromaTOF software, Pegasus driver 1.61; LECO) as described previously (Lisec,
1257 Schauer et al. 2006). The chromatograms and mass spectra were evaluated using
1258 TagFinder software (Luedemann, von Malotky et al. 2012). Metabolite identification
1259 was manually checked by the mass spectral and retention index collection of the
1260 Golm Metabolome Database (Kopka, Schauer et al. 2005). Peak heights of the mass
1261 fragments were normalized successively on the basis of the fresh weight of the
1262 sample, the added amount of an internal standard (ribitol) and values obtained for
1263 loading column controls obtained from the same experiment.

1264

1265 *Glycerolipid analysis*

1266

1267 Glycerolipids were extracted by suspending cell pellets in 4 mL of boiling ethanol for
1268 5 minutes to prevent lipid degradation. Lipids were extracted by addition of 2 mL
1269 methanol and 8 mL chloroform at room temperature (Folch, Lees et al. 1957). The
1270 mixture was then saturated with argon and stirred for 1 hour at room temperature.
1271 After filtration through glass wool, cell remains were rinsed with 3 mL
1272 chloroform/methanol 2:1, v/v and 5 mL of NaCl 1% was added to the filtrate to initiate
1273 biphasic formation. The chloroform phase was dried under argon and stored at -20
1274 °C. The lipid extract was resuspended in pure chloroform when needed.

1275

1276 Total glycerolipids were quantified from their fatty acids: in an aliquot fraction, 5 µg of
1277 15:0 was added and the fatty acids present were converted to methyl esters (FAME)
1278 by a 1-hour incubation in 3 mL 2.5% H₂SO₄ in pure methanol at 100 °C (Jouhet,
1279 Maréchal et al. 2003). The reaction was stopped by addition of 3 mL water and 3 mL
1280 hexane. The hexane phase was analyzed by a gas chromatography-flame ionization
1281 detector (GC-FID) (Perkin Elmer) on a BPX70 (SGE) column. FAMEs were identified
1282 by comparison of their retention times with those of standards (Sigma) and quantified
1283 using 15:0 for calibration.

1284

1285 Glycerolipids were further analyzed by high pressure liquid chromatography-tandem
1286 mass spectrometry (HPLC-MS/MS), based on a previously described procedure
1287 (Rainteau, Humbert et al. 2012). The lipid extracts corresponding to 25 nmol of total

1288 fatty acids were dissolved in 100 μ L of chloroform/methanol [2/1, (v/v)] containing
1289 125 pmol of each internal standard. Internal standards used were
1290 phosphatidylethanolamine (PE) 18:0-18:0 and diacylglycerol (DAG) 18:0-22:6 from
1291 Avanti Polar Lipid, and sulfoquinovosyldiacylglycerol (SQDG) 16:0-18:0 extracted
1292 from spinach thylakoids (Demé, Cataye et al. 2014) and hydrogenated (Buseman,
1293 Tamura et al. 2006). Lipid classes were separated using an Agilent 1200 HPLC
1294 system using a 150 mm \times 3 mm (length \times internal diameter) 5 μ m diol column
1295 (Macherey-Nagel), at 40 °C. The mobile phases consisted of hexane/ isopropanol/
1296 water/ 1 M ammonium acetate, pH 5.3 [625/350/24/1, (v/v/v/v)] (A) and isopropanol/
1297 water/ 1 M ammonium acetate, pH 5.3 [850/149/1, (v/v/v/v)] (B). The injection volume
1298 was 20 μ L. After 5 min, the percentage of B was increased linearly from 0% to 100%
1299 in 30 min and kept at 100% for 15 min. This elution sequence was followed by a
1300 return to 100% A in 5 min and an equilibration for 20 min with 100% A before the
1301 next injection, leading to a total runtime of 70 min. The flow rate of the mobile phase
1302 was 200 μ L min $^{-1}$. The distinct glycerophospholipid classes were eluted successively
1303 as a function of the polar head group. Mass spectrometric analysis was performed on
1304 a 6460 triple quadrupole mass spectrometer (Agilent) equipped with a Jet stream
1305 electrospray ion source under following settings: drying gas heater at 260 °C, drying
1306 gas flow at 13 L·min $^{-1}$, sheath gas heater at 300 °C, sheath gas flow at 11 L·min $^{-1}$,
1307 nebulizer pressure at 25 psi, capillary voltage at \pm 5000 V and nozzle voltage at \pm
1308 1,000 V. Nitrogen was used as the collision gas. The quadrupoles Q1 and Q3 were
1309 operated at widest and unit resolution, respectively.

1310
1311 Phosphatidylcholine (PC) and diacylglycerol hydroxymethyltrimethyl- β -alanine
1312 (DGTA) analyses were carried out in positive ion modes by scanning for precursors
1313 of m/z 184 and 236 respectively at a collision energy (CE) of 34 and 52 eV. SQDG
1314 analysis was carried out in negative ion mode by scanning for precursors of m/z -225
1315 at a CE of -56eV. PE, phosphatidylinositol (PI), phosphatidylglycerol (PG),
1316 monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)
1317 measurements were performed in positive ion modes by scanning for neutral losses
1318 of 141 Da, 277 Da, 189 Da, 179 Da and 341 Da at cEs of 20 eV, 12 eV, 16 eV, 8 eV
1319 and 8 eV, respectively. DAG and triacylglycerol (TAG) species were identified and
1320 quantified by multiple reaction monitoring (MRM) as singly charged ions [M+NH4] $^{+}$ at
1321 a CE of 16 and 22 eV respectively. Quantification was done for each lipid species by

1322 MRM with 50 ms dwell time with the various transitions previously recorded (Abida,
1323 Dolch et al. 2015). Mass spectra were processed using the MassHunter Workstation
1324 software (Agilent) for lipid identification and quantification. Lipid amounts (pmol) were
1325 corrected for response differences between internal standards and endogenous lipids
1326 as described previously (Jouhet, Lupette et al. 2017).

1327

1328 Normalised metabolite and lipid abundances were screened by PCA, as per the
1329 RNAseq analysis above, and outliers and biologically non-representative samples
1330 were removed. The final datasets consist of 139 libraries (metabolite GC-MS), 55
1331 libraries (lipid GC-MS) and 49 libraries (lipid LC-MS), with a minimum of three
1332 libraries prepared from at least two genetically distinct mutant constructs for each
1333 genotype considered (**Supplemental Dataset 6**, sheet 1). Violin plots of differentially
1334 accumulated lipids were generated with BoxPlotR (Spitzer, Wildenhain et al. 2014).

1335

1336 *Expressed enzyme reaction kinetics*

1337

1338 Measurements of cpEnolase and cpPGAM1A reaction rates were performed
1339 following a previously defined protocol (Zhang, Sampathkumar et al. 2020) (**Fig.**
1340 **S16**). First, codon-optimised constructs for *E. coli* expression were synthesized from
1341 cpEnolase and cpPGAM1A mRNA sequences (Eurofins). Constructs were cloned
1342 into a Gateway pDest-CTDHis vector via a pDONR intermediate and BP /LR clonase
1343 (all reagents Thermo Fisher) following the manufacturer's instructions (Hartley,
1344 Temple et al. 2000). To enable optimal expression in *E. coli*, multiple N-terminal
1345 length variants were synthesized from each gene, with those corresponding to the full
1346 gene length minus the predicted N-terminal signal peptide domain as inferred with
1347 SignalP (Almagro Armenteros, Tsirigos et al. 2019). Complete constructs and
1348 primers tested are provided in **Dataset S6**, sheet 7.

1349

1350 cpEnolase and cpPGAM1A –CTDHis vectors were cloned into Rosetta (DE3) strain
1351 *E. coli* (Novagen) and coselected on ampicillin (100 µg /ml) and chloramphenicol (34
1352 µg /ml). Proteins were induced in overnight cultures at 28°C, purified on a His-Trap
1353 column (GE Healthcare) following the manufacturers' instructions, and eluted in a
1354 buffer consisting of 125 mM NaCl, 250 mM Imidiazol (Sigma) and protease inhibitors.
1355 Eluted proteins were desalted using a Q10/ PD10 column (GE Healthcare) and

1356 quantified using a Bradford. Protein integrity and quantity were assessed routinely
1357 throughout the purification using SDS-PAGE.

1358

1359 Reaction rates were measured on purified 100 µg cpPGAM1A and 100 µg
1360 cpEnolase, as quantified with a nanodrop spectrometer. Rates were measured
1361 separately for glycolytic and gluconeogenic activity. Briefly, to measure glycolytic
1362 reaction rates, both enzymes were combined with 10 units pyruvate kinase and 10
1363 units lactate dehydrogenase (both Sigma-Aldrich) at 25°C, alongside varying
1364 concentrations 9 mM D(-)-3-Phosphoglyceric Acid, 25 mM Adenosine 5'-Diphosphate,
1365 and 25 mM reduced β-Nicotinamide Adenine Dinucleotide (NADH). Enzymatic
1366 activity was measured by considering 340 nm colorimetry as a proxy for NADH
1367 consumption following a previously defined protocol (Sigma protocols EC 5.4.2.1)
1368 (Sutherland, Posternak et al. 1949). To measure gluconeogenic reaction rates, a
1369 similar reaction was performed with both enzymes combined with 10 units
1370 phosphoglycerate kinase and 10 units glyceraldehyde-3-phosphate dehydrogenase
1371 (both Sigma-Aldrich), alongside 9 mM phospho-enol-pyruvate, 25 mM Adenosine 5'-
1372 Diphosphate, and 25 mM reduced β-Nicotinamide Adenine Dinucleotide (NADH).
1373 Enzymatic activity was similarly measured by 340 nm colorimetry. A schematic of the
1374 measured reactions is provided in **Fig. S16**. Complete measured reaction rates over
1375 all technical replicates are provided in **Dataset S6**, sheet 8.

1376

1377 **Accession Numbers**

1378

1379 RNAseq data associated with this project is deposited with NCBI BioProject with
1380 project number PRJNA788211.

1381

1382 **Materials Distribution Statement**

1383

1384 The author(s) responsible for distribution of materials integral to the findings
1385 presented in this article in accordance with the policy described in the Instructions for
1386 Authors (<https://academic.oup.com/plcell/pages/General-Instructions>) are: Richard G.
1387 Dorrell (richard.dorrell.algae@gmail.com) and Chris Bowler
1388 (cbowler@bio.ens.psl.eu).

1389

1390 **List of Supporting Files**

1391

1392 **Supplemental Dataset S1. Phylogenetic diversity of Enolase and PGAM**
1393 **sequences from across the tree of life.**

1394

1395 **Supplemental Dataset S2. Transcriptional and localization patterns of cpPGAM**
1396 **and cpEnolase genes in *Phaeodactylum tricornutum*.**

1397

1398 **Supplemental Dataset S3. Tara Oceans analysis of diatom plastid glycolysis.**

1399

1400 **Supplemental Dataset S4. Genotyping, growth dynamics and photophysiology**
1401 **in *P. tricornutum* plastid glycolysis mutant lines.**

1402

1403 **Supplemental Dataset S5. Differentially and conditionally expressed genes in**
1404 ***P. tricornutum* plastid glycolysis mutants.**

1405

1406 **Supplemental Dataset S6. Lipid and metabolite profiles of *P. tricornutum***
1407 **plastid glycolysis mutant lines revealed by GC- and LC-mass spectrometry,**
1408 **and measured reaction kinetics of expressed enzymes.**

1409

1410 All remaining supporting data not provided directly in paper supporting tables are
1411 provided in the linked Open Science Foundation Supporting database
1412 <https://osf.io/89vm3/> (Dorrell, Novak Vanclova et al. 2022). Project contents are
1413 ordered hierarchically by theme, with an overview of all contents provided on the site
1414 wiki page. A dedicated README file in each project folder explains the data
1415 presented and provides detailed methodology for each analysis.

1416

1417 **Author Contributions**

1418

1419 RGD designed the research, with critical input from YZ, YZ, DC, BB, ARF, JJ, EM
1420 and CB. RGD, YZ, NG, TN, DC, MP, and VG performed the research. RGD, YZ, YL,
1421 DC and MP analysed the data. SA provided new analytical tools for cell growth
1422 measurements, and JJPK and NZ provided new computational tools for meta-
1423 genomic and RNA-seq analysis. RGD wrote the paper, with critical input from YL,

1424 TN, MP, SA, BB, JJP, JJ, EM and CB. All coauthors read and approved the
1425 manuscript draft prior to final submission.

1426

1427 **Acknowledgments**

1428

1429 RGD acknowledges a CNRS Momentum Fellowship, awarded from 2019-2021, an
1430 ANR JCJC Grant (« PanArctica » ANR-21-CE02-0014-01) awarded 2021-2022 and
1431 an ERC Starting Grant Grant (ChloroMosaic, 101039760), awarded from 2023-2027.

1432 CB acknowledges support from FFEM - French Facility for Global Environment,
1433 French Government 'Investissements d'Avenir' programs OCEANOMICS (ANR-11-
1434 BTBR-0008), FRANCE GENOMIQUE (ANR-10-INBS-09-08), MEMO LIFE (ANR-10-
1435 LABX-54), and PSL Research University (ANR-11-IDEX-0001-02), the European
1436 Research Council (ERC) under the European Union's Horizon 2020 research and
1437 innovation program (Diatomic; grant agreement No. 835067), and from the ANR
1438 'BrownCut' project (ANR-19-CE20-0020). CB, EM and JJ were supported by ANR
1439 'DIM' (ANR-21-CE02-0021) and PEPR AlgAdvance (22-PEBB-0002). The lipid
1440 analyses were performed at the LIPANG (Lipid analysis in Grenoble) platform hosted
1441 by the LPCV (UMR 5168 CNRS-CEA-INRAE-UGA) and supported by the Rhône-
1442 Alpes Region, the European Regional Development Fund (ERDF), Institut Carnot
1443 3BCAR and Labex GRAL (10-LABX-0049), financed within the University Grenoble
1444 Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-
1445 17-EURE-0003). YZ and ARF acknowledge funding from the European Union's
1446 Horizon 2020 research and innovation program, project PlantaSYST (SGA-CSA No.
1447 739582 under FPA No. 66462; and the BG05M2OP001-1.003-001-C01 project,
1448 financed by the European Regional Development Fund through the Bulgarian
1449 'Science and Education for Smart Growth' Operational Programme. D.C and B.B
1450 acknowledge the support of the European Research Council (ERC) under the
1451 European Union's Horizon 2020 research and innovation program (PhotoPHYTOMIX
1452 project, grant agreement No. 715579). The authors acknowledge Giselle McCallum,
1453 Elena Kazamia and Xia Gao (IBENS) for assistance with the optimization of cell
1454 cytometry protocols; Amandine Baylet (Lycée ENCPB-Pierre Gilles de Gennes),
1455 Quentin Caris (Lycée de la Vallée de Chevreuse) and Yonna Lauruol (Ecole
1456 Sup'BioTech) for assistance with growth measurements, Frédy Barneche and Clara
1457 Richet-Bourbousse (IBENS) for the use of culture facilities; Nathalie Joli (IBENS) for

1458 aid with RNAseq library production; Catherine Cantrel and Priscillia Pierre-Elies
1459 (IBENS), Pauline Clément (Lycée ENCPB-Pierre Gilles de Gennes) and Shun-Min
1460 Yang (University of South Bohemia) for the preparation of media substrates and aid
1461 with biolistic transformations; Max Gorbunov (Rutgers University, NJ, USA) for the
1462 provision of the miniFIRE fluorometer used for photophysiological assays; and Mattia
1463 Storti (CEA Grenoble) for cell outlines used in the production of **Fig. 1A**. This paper
1464 is contribution XXX of *Tara Oceans*.

1465

1466 References

1467

1468 Abida, H., L. J. Dolch, C. Meï, V. Villanova, M. Conte, M. A. Block, G. Finazzi, O. Bastien, L.
1469 Tirichine, C. Bowler, F. Rébeillé, D. Petroutsos, J. Jouhet and E. Maréchal (2015).
1470 Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in
1471 *Phaeodactylum tricornutum*. *Plant Physiol* 167(1): 118-136.
1472 Ait-Mohamed, O., A. M. G. Novák Vanclová, N. Joli, Y. Liang, X. Zhao, A. Genovesio, L.
1473 Tirichine, C. Bowler and R. G. Dorrell (2020). PhaeoNet: a holistic RNAseq-based portrait
1474 of transcriptional coordination in the model diatom *Phaeodactylum tricornutum*.
1475 *Frontiers Plant Sci* 11: 590949.
1476 Allen, A. E., C. L. Dupont, M. Obornik, A. Horak, A. Nunes-Nesi, J. P. McCrow, H. Zheng, D.
1477 A. Johnson, H. Hu, A. R. Fernie and C. Bowler (2011). Evolution and metabolic
1478 significance of the urea cycle in photosynthetic diatoms. *Nature* 473(7346): 203-207.
1479 Almagro Armenteros, J. J., K. D. Tsirigos, C. K. Sønderby, T. N. Petersen, O. Winther, S.
1480 Brunak, G. von Heijne and H. Nielsen (2019). SignalP 5.0 improves signal peptide
1481 predictions using deep neural networks. *Nature Biotechnol* 37(4): 420-423.
1482 Andriotis, V. M., N. J. Kruger, M. J. Pike and A. M. Smith (2010). Plastidial glycolysis in
1483 developing *Arabidopsis* embryos. *New Phytol* 185(3): 649-662.
1484 Anoman, A. D., M. Flores-Tornero, S. Rosa-Telléz, J. Muñoz-Bertomeu, J. Segura and R.
1485 Ros (2016). The specific role of plastidial glycolysis in photosynthetic and heterotrophic
1486 cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase.
1487 *Plant Signal Behav* 11(3): 1128614.
1488 Bai, Y., T. Cao, O. Dautermann, P. Buschbeck, M. B. Cantrell, Y. Chen, C. D. Lein, X. Shi, M. A.
1489 Ware, F. Yang, H. Zhang, L. Zhang, G. Peers, X. Li and M. Lohr (2022). Green diatom
1490 mutants reveal an intricate biosynthetic pathway of fucoxanthin. *Proc Natl Acad Sci USA*
1491 119(38): 2203708119.
1492 Bailleul, B., N. Berne, O. Murik, D. Petroutsos, J. Prihoda, A. Tanaka, V. Villanova, R.
1493 Bligny, S. Flori, D. Falconet, A. Krieger-Liszakay, S. Santabarbara, F. Rappaport, P. Joliot, L.
1494 Tirichine, P. G. Falkowski, P. Cardol, C. Bowler and G. Finazzi (2015). Energetic coupling
1495 between plastids and mitochondria drives CO₂ assimilation in diatoms. *Nature*
1496 524(7565): 366-U267.
1497 Behrenfeld, M. J., K. H. Halsey, E. Boss, L. Karp-Boss, A. J. Milligan and G. Peers (2021).
1498 Thoughts on the evolution and ecological niche of diatoms. *Ecol Monographs* 91(3):
1499 01457.
1500 Broddrick, J. T., N. Du, S. R. Smith, Y. Tsuji, D. Jallet, M. A. Ware, G. Peers, Y. Matsuda, C. L.
1501 Dupont, B. G. Mitchell, B. O. Palsson and A. E. Allen (2019). Cross-compartment

1502 metabolic coupling enables flexible photoprotective mechanisms in the diatom
1503 *Phaeodactylum tricornutum*. *New Phytol* 222: 1364-1379.

1504 Bromke, M. A. (2013). Amino Acid biosynthesis pathways in diatoms. *Metabolites* 3(2):
1505 294-311.

1506 Buck, J. M., C. Río Bártulos, A. Gruber and P. G. Kroth (2018). Blasticidin-S deaminase, a
1507 new selection marker for genetic transformation of the diatom. *PeerJ* 6: 5884.

1508 Buck, J. M., J. Sherman, C. R. Bártulos, M. Serif, M. Halder, J. Henkel, A. Falciatore, J.
1509 Lavaud, M. Y. Gorbunov, P. G. Kroth, P. G. Falkowski and B. Lepetit (2019). Lhcx proteins
1510 provide photoprotection via thermal dissipation of absorbed light in the diatom
1511 *Phaeodactylum tricornutum*. *Nat Commun* 10(1): 4167.

1512 Buseman, C. M., P. Tamura, A. A. Sparks, E. J. Baughman, S. Maatta, J. Zhao, M. R. Roth, S.
1513 W. Esch, J. Shah, T. D. Williams and R. Welti (2006). Wounding stimulates the
1514 accumulation of glycerolipids containing Oxophytodienoic Acid and Dinor-
1515 Oxophytodienoic Acid in *Arabidopsis* leaves. *Plant Physiol* 142(1): 28-39.

1516 Bustin, S. A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T.
1517 Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele and C. T. Wittwer (2009). The MIQE
1518 Guidelines: Minimum Information for publication of Quantitative real-time PCR
1519 Experiments. *Clinical Chemistry* 55(4): 611-622.

1520 Capella-Gutiérrez, S., J. M. Silla-Martínez and T. Gabaldón (2009). trimAl: a tool for
1521 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*
1522 25(15): 1972-1973.

1523 Carradec, Q., E. Pelletier, C. Da Silva, A. Alberti, Y. Seeleuthner, R. Blanc-Mathieu, G. Lima-
1524 Mendez, F. Rocha, L. Tirichine, K. Labadie, A. Kirilovsky, A. Bertrand, S. Engelen, M. A.
1525 Madoui, R. Méheust, J. Poulain, S. Romac, D. J. Richter, G. Yoshikawa, C. Dimier, S.
1526 Kandels-Lewis, M. Picheral, S. Searson, O. Jaillon, J. M. Aury, E. Karsenti, M. B. Sullivan, S.
1527 Sunagawa, P. Bork, F. Not, P. Hingamp, J. Raes, L. Guidi, H. Ogata, C. de Vargas, D.
1528 Iudicone, C. Bowler, P. Wincker and T. O. Coordinators (2018). A global ocean atlas of
1529 eukaryotic genes. *Nat Commun* 9(1): 373.

1530 Carrera, D., G. M. George, M. Fischer-Stettler, F. Galbier, S. Eicke, E. Truernit, S. Streb and
1531 S. C. Zeeman (2021). Distinct plastid fructose bisphosphate aldolases function in
1532 photosynthetic and non-photosynthetic metabolism in *Arabidopsis*. *J Exp Bot* 72(10):
1533 3739-3755.

1534 Chang, Y. F., J. S. Imam and M. F. Wilkinson (2007). The nonsense-mediated decay RNA
1535 surveillance pathway. *Annu Rev Biochem* 76: 51-74.

1536 Cruz de Carvalho, M. H., H. X. Sun, C. Bowler and N. H. Chua (2016). Noncoding and
1537 coding transcriptome responses of a marine diatom to phosphate fluctuations. *New
1538 Phytol* 210(2): 497-510.

1539 Delmont, T. O., M. Gaia, D. D. Hinsinger, P. Frémont, C. Vanni, A. Fernandez-Guerra, A. M.
1540 Eren, A. Kourlaiev, L. d'Agata, Q. Clayssen, E. Villar, K. Labadie, C. Cruaud, J. Poulain, C. Da
1541 Silva, M. Wessner, B. Noel, J.-M. Aury, S. Sunagawa, S. G. Acinas, P. Bork, E. Karsenti, C.
1542 Bowler, C. Sardet, L. Stemmann, C. de Vargas, P. Wincker, M. Lescot, M. Babin, G. Gorsky,
1543 N. Grimsley, L. Guidi, P. Hingamp, O. Jaillon, S. Kandels, D. Iudicone, H. Ogata, S. Pesant,
1544 M. B. Sullivan, F. Not, K.-B. Lee, E. Boss, G. Cochrane, M. Follows, N. Poulton, J. Raes, M.
1545 Sieracki, S. Speich and E. Pelletier (2022). Functional repertoire convergence of distantly
1546 related eukaryotic plankton lineages abundant in the sunlit ocean. *Cell Genom* 2(5):
1547 100123.

1548 Demé, B., C. Cataye, M. A. Block, E. Maréchal and J. Jouhet (2014). Contribution of
1549 galactoglycerolipids to the 3-dimensional architecture of thylakoids. *FASEB J* 28(8):
1550 3373-3383.

1551 Dolch, L. J., J. Lupette, G. Tourcier, M. Bedhomme, S. Collin, L. Magneschi, M. Conte, K.
1552 Seddiki, C. Richard, E. Corre, L. Fourage, F. Laeuffer, R. Richards, M. Reith, F. Rébeillé, J.
1553 Jouhet, P. McGinn and E. Maréchal (2017). Nitric oxide mediates nitrite-sensing and
1554 acclimation and triggers a remodeling of lipids. *Plant Physiol* 175(3): 1407-1423.
1555 Dolch, L. J. and E. Maréchal (2015). Inventory of fatty acid desaturases in the pennate
1556 diatom *Phaeodactylum tricornutum*. *Mar Drugs* 13(3): 1317-1339.
1557 Dorrell, R. G., A. M. G. Novak Vanclava, M. Penot, J. J. Pierella Karlusich, C. Bowler, S. Liu,
1558 E. Maréchal, J. Jouhet, B. Bailleul and D. Croteau (2022). Functional physiology of novel
1559 diatom chloroplast proteins. Open Science Foundation. <https://osf.io/89vm3/>.
1560 Emanuelsson, O., S. Brunak, G. von Heijne and H. Nielsen (2007). Locating proteins in the
1561 cell using TargetP, SignalP and related tools. *Nature Protocol* 2(4): 953-971.
1562 Erdene-Ochir, E., B. K. Shin, B. Kwon, C. Jung and C. H. Pan (2019). Identification and
1563 characterisation of the novel endogenous promoter HASP1 and its signal peptide from
1564 *Phaeodactylum tricornutum*. *Sci Rep* 9(1): 9941.
1565 Falciatore, A., R. Casotti, C. Leblanc, C. Abrescia and C. Bowler (1999). Transformation of
1566 Nonselectable Reporter Genes in Marine Diatoms. *Mar Biotechnol* 1(3): 239-251.
1567 Folch, J., M. Lees and G. H. S. Stanley (1957). A simple method for the isolation and
1568 purification of total lipids from animal tissues. *J Biol Chem* 226(1): 497-509.
1569 Friedlingstein, P., M. W. Jones, M. O'Sullivan, R. M. Andrew, D. C. Bakker, J. Hauck, C. Le
1570 Quéré, G. P. Peters, W. Peters and J. Pongratz (2022). Global carbon budget 2021. *Earth*
1571 *System Science Data* 14(4): 1917-2005.
1572 Fukasawa, Y., J. Tsuji, S. C. Fu, K. Tomii, P. Horton and K. Imai (2015). MitoFates:
1573 improved prediction of mitochondrial targeting sequences and their cleavage sites. *Mol*
1574 *Cell Proteom* 14(4): 1113-1126.
1575 Fukayama, H., C. Masumoto, Y. Taniguchi, A. Baba-Kasai, Y. Katoh, H. Ohkawa and M.
1576 Miyao (2015). Characterization and expression analyses of two plastidic enolase genes
1577 in rice. *Biosci Biotechnol Biochem* 79(3): 402-409.
1578 Fuss, J., O. Liegmann, K. Krause and S. A. Rensing (2013). Green Targeting Predictor and
1579 Ambiguous Targeting Predictor 2: the pitfalls of plant protein targeting prediction and of
1580 transient protein expression in heterologous systems. *New Phytol* 200: 222-233.
1581 Gilbertson, R., E. Langan and T. Mock (2022). Diatoms and their microbiomes in complex
1582 and changing polar oceans. *Front Microbiol* 13: 786764.
1583 Gorbunov, M. Y., E. Shirsin, E. Nikonova, V. V. Fadeev and P. G. Falkowski (2020). A multi-
1584 spectral fluorescence induction and relaxation (FIRe) technique for physiological and
1585 taxonomic analysis of phytoplankton communities. *Mar Ecol Progress Series* 644: 1-13.
1586 Grigoriev, I. V., R. D. Hayes, S. Calhoun, B. Kamel, A. Wang, S. Ahrendt, S. Dusheyko, R.
1587 Nikitin, S. J. Mondo, A. Salamov, I. Shabalov and A. Kuo (2021). PhycoCosm, a
1588 comparative algal genomics resource. *Nucl Acids Res* 49(D1): D1004-D1011.
1589 Gruber, A., G. Rocap, P. G. Kroth, E. V. Armbrust and T. Mock (2015). Plastid proteome
1590 prediction for diatoms and other algae with secondary plastids of the red lineage. *Plant J*
1591 81(3): 519-528.
1592 Gschloessl, B., Y. Guermeur and J. M. Cock (2008). HECTAR: a method to predict
1593 subcellular targeting in heterokonts. *BMC Bioinformatics* 9: 393.
1594 Hartley, J. L., G. F. Temple and M. A. Brasch (2000). DNA cloning using in vitro site-
1595 specific recombination. *Genome Res* 10(11): 1788-1795.
1596 Huang, A., L. Liu, C. Yang and G. Wang (2015). *Phaeodactylum tricornutum*
1597 photorespiration takes part in glycerol metabolism and is important for nitrogen-limited
1598 response. *Biotechnol Biofuels* 8(1): 1-16.

1599 Huang, T., Y. Pan, E. Maréchal and H. Hu (2023). Proteomes reveal the lipid metabolic
1600 network in the complex plastid of *Phaeodactylum tricornutum*. Plant J in press:
1601 10.1111/tpj.16477.

1602 Initiative, O. T. P. T. (2019). One thousand plant transcriptomes and the phylogenomics
1603 of green plants. Nature 574(7780): 679-685.

1604 Jassby, A. D. and T. Platt (1976). Mathematical formulation of the relationship between
1605 photosynthesis and light for phytoplankton. Limnol Oceanography 21(4): 540-547.

1606 Joli, N., L. Concia, K. Mocaer, J. Guterman, J. Laude, S. Guerin, T. Sciandra, F. Bruyant, O.
1607 Ait-Mohamed, M. Beguin, M.-H. Forget, C. Bourbousse, T. Lacour, B. Bailleul, C. Nef, M.
1608 Savoie, J.-E. Tremblay, D. A. Campbell, J. Lavaud, Y. Schwab, M. Babin and C. Bowler
1609 (2023). Hypometabolism to survive the long polar night and subsequent successful
1610 return to light in the diatom *Fragilariaopsis cylindrus*. New Phytol in press:
1611 10.1111/nph.19387.

1612 Jones, P., D. Binns, H. Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A.
1613 Mitchell, G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S. Y.
1614 Yong, R. Lopez and S. Hunter (2014). InterProScan 5: genome-scale protein function
1615 classification. Bioinformatics 30(9): 1236-1240.

1616 Jouhet, J., J. Lupette, O. Clerc, L. Magneschi, M. Bedhomme, S. Collin, S. Roy, E. Maréchal
1617 and F. Rébeillé (2017). LC-MS/MS versus TLC plus GC methods: Consistency of
1618 glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a
1619 nitrogen starvation. PLoS One 12(8): 0182423.

1620 Jouhet, J., E. Maréchal, R. Bligny, J. Joyard and M. A. Block (2003). Transient increase of
1621 phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett
1622 544(1): 63-68.

1623 Kassambara, A. and F. Mundt (2017). Package 'factoextra'. Extract and visualize the
1624 results of multivariate data analyses 76(2).

1625 Katoh, K., J. Rozewicki and K. D. Yamada (2017). MAFFT online service: multiple
1626 sequence alignment, interactive sequence choice and visualization. Brief Bioinform.

1627 Kazamia, E., R. Sutak, J. Paz-Yepes, R. G. Dorrell, F. R. J. Vieira, J. Mach, J. Morrissey, S.
1628 Leon, F. Lam, E. Pelletier, J. M. Camadro, C. Bowler and E. Lesuisse (2018). Endocytosis-
1629 mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci Adv 4(5):
1630 4536.

1631 Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A.
1632 Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes and A. Drummond
1633 (2012). Geneious Basic: An integrated and extendable desktop software platform for the
1634 organization and analysis of sequence data. Bioinformatics 28(12): 1647-1649.

1635 Keeling, P. J., F. Burki, H. M. Wilcox, B. Allam, E. E. Allen, L. A. Amaral-Zettler, E. V.
1636 Armbrust, J. M. Archibald, A. K. Bharti, C. J. Bell, B. Beszteri, K. D. Bidle, C. T. Cameron, L.
1637 Campbell, D. A. Caron, R. A. Cattolico, J. L. Collier, K. Coyne, S. K. Davy, P. Deschamps, S. T.
1638 Dyhrman, B. Edvardsen, R. D. Gates, C. J. Gobler, S. J. Greenwood, S. M. Guida, J. L. Jacobi,
1639 K. S. Jakobsen, E. R. James, B. Jenkins, U. John, M. D. Johnson, A. R. Juhl, A. Kamp, L. A.
1640 Katz, R. Kiene, A. Kudryavtsev, B. S. Leander, S. Lin, C. Lovejoy, D. Lynn, A. Marchetti, G.
1641 McManus, A. M. Nedelcu, S. Menden-Deuer, C. Miceli, T. Mock, M. Montresor, M. A. Moran,
1642 S. Murray, G. Nadathur, S. Nagai, P. B. Ngam, B. Palenik, J. Pawlowski, G. Petroni, G.
1643 Piganeau, M. C. Posewitz, K. Rengefors, G. Romano, M. E. Rumpho, T. Rynearson, K. B.
1644 Schilling, D. C. Schroeder, A. G. Simpson, C. H. Slamovits, D. R. Smith, G. J. Smith, S. R.
1645 Smith, H. M. Sosik, P. Stief, E. Theriot, S. N. Twary, P. E. Umale, D. Vaulot, B. Wawrik, G. L.
1646 Wheeler, W. H. Wilson, Y. Xu, A. Zingone and A. Z. Worden (2014). The Marine Microbial
1647 Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional

1648 diversity of eukaryotic life in the oceans through transcriptome sequencing. *PLoS Biol*
1649 12(6): 1001889.

1650 Kopka, J., N. Schauer, S. Krueger, C. Birkemeyer, B. Usadel, E. Bergmüller, P. Dörmann, W.
1651 Weckwerth, Y. Gibon, M. Stitt, L. Willmitzer, A. R. Fernie and D. Steinhauser (2005).
1652 GMD@CSB.DB: the Golm Metabolome Database. *Bioinformatics* 21(8): 1635-1638.

1653 Kroth, P. G., A. Chiovitti, A. Gruber, V. Martin-Jezequel, T. Mock, M. S. Parker, M. S.
1654 Stanley, A. Kaplan, L. Caron, T. Weber, U. Maheswari, E. V. Armbrust and C. Bowler
1655 (2008). A model for carbohydrate metabolism in the diatom *Phaeodactylum tricornutum*
1656 deduced from comparative whole genome analysis. *PLoS One* 3(1): 1426.

1657 Lacour, T., J. Larivière and M. Babin (2017). Growth, Chl a content, photosynthesis, and
1658 elemental composition in polar and temperate microalgae. *Limnol Oceanogr* 62(1): 43-
1659 58.

1660 Lampe, R. H., G. Hernandez, Y. Y. Lin and A. Marchetti (2021). Representative diatom and
1661 coccolithophore species exhibit divergent responses throughout simulated upwelling
1662 cycles. *mSystems* 6(2): 10.1128/msystems.00188-21.

1663 Lataretu, M. and M. Hölzer (2020). RNAflow: an effective and simple RNA-Seq
1664 differential gene expression pipeline using Nextflow. *Genes (Basel)* 11(12).

1665 Lepetit, B., D. A. Campbell, J. Lavaud, C. Büchel, R. Goss and B. Bailleul (2022).
1666 Photosynthetic Light Reactions in diatoms. II. The dynamic regulation of the various
1667 light reactions. *The Molecular Life of Diatoms*. A. Falciatore and T. Mock. Cham, Springer
1668 International Publishing: 423-464.

1669 Levering, J., J. Broddrick, C. L. Dupont, G. Peers, K. Beeri, J. Mayers, A. A. Gallina, A. E.
1670 Allen, B. O. Palsson and K. Zengler (2016). Genome-scale model reveals metabolic basis
1671 of biomass partitioning in a model diatom. *PLoS One* 11(5): 0155038.

1672 Lisec, J., N. Schauer, J. Kopka, L. Willmitzer and A. R. Fernie (2006). Gas chromatography
1673 mass spectrometry-based metabolite profiling in plants. *Nature Protocols* 1(1): 387-
1674 396.

1675 Liu, S., M. Storti, C. Bowler, G. Finazzi and R. G. Dorrell (2022). An integrative
1676 environmental atlas of diatom chloroplast transporters. *Front Plant Sci* 13: 950467.

1677 Liu, S., Z. Wang, R. Zhu, F. Wang, Y. Cheng and Y. Liu (2021). Three differential
1678 expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2. *J Vis Exp*(175).

1679 Luedemann, A., L. von Malotky, A. Erban and J. Kopka (2012). TagFinder: preprocessing
1680 software for the fingerprinting and the profiling of gas chromatography-mass
1681 spectrometry based metabolome analyses. *Methods Mol Biol* 860: 255-286.

1682 Malviya, S., E. Scalco, S. Audic, F. Vincent, A. Veluchamy, J. Poulain, P. Wincker, D.
1683 Iudicone, C. de Vargas, L. Bittner, A. Zingone and C. Bowler (2016). Insights into global
1684 diatom distribution and diversity in the world's ocean. *Proc Natl Acad Sci USA* 113(11):
1685 1516-1525.

1686 Maréchal, E. and J. Lupette (2020). Relationship between acyl-lipid and sterol
1687 metabolisms in diatoms. *Biochimie* 169: 3-11.

1688 McCarthy, J. K., S. R. Smith, J. P. McCrow, M. Tan, H. Zheng, K. Beeri, R. Roth, C. Lichtle, U.
1689 Goodenough, C. P. Bowler, C. L. Dupont and A. E. Allen (2017). Nitrate Reductase
1690 knockout uncouples nitrate transport from nitrate assimilation and drives
1691 repartitioning of carbon flux in a model pennate diatom. *Plant Cell* 29(8): 2047-2070.

1692 Miller, M. A., T. Schwartz, B. E. Pickett, S. He, E. B. Klem, R. H. Scheuermann, M. Passarotti,
1693 S. Kaufman and M. A. O'Leary (2015). A RESTful API for access to phylogenetic tools via
1694 the CIPRES Science Gateway. *Evol Bioinform Online* 11: 43-48.

1695 Mistry, J., S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L. Sonnhammer, S. C.
1696 E. Tosatto, L. Paladin, S. Raj, L. J. Richardson, R. D. Finn and A. Bateman (2020). Pfam:
1697 The protein families database in 2021. *Nucleic Acids Res* 49: D412-D419.
1698 Moog, D., A. Nozawa, Y. Tozawa and R. Kamikawa (2020). Substrate specificity of plastid
1699 phosphate transporters in a non-photosynthetic diatom and its implication in evolution
1700 of red alga-derived complex plastids. *Sci Rep* 10(1): 1167.
1701 Moog, D., S. A. Rensing, J. M. Archibald, U. G. Maier and K. K. Ullrich (2015). Localization
1702 and evolution of putative triose phosphate translocators in the diatom *Phaeodactylum*
1703 *tricornutum*. *Genom Biol Evol* 7(11): 2955-2969.
1704 Murik, O., L. Tirichine, J. Prihoda, Y. Thomas, W. L. Araújo, A. E. Allen, A. R. Fernie and C.
1705 Bowler (2019). Downregulation of mitochondrial alternative oxidase affects chloroplast
1706 function, redox status and stress response in a marine diatom. *New Phytol* 221(3):
1707 1303-1316.
1708 Nash, E. A., A. C. Barbrook, R. K. Edwards-Stuart, K. Bernhardt, C. J. Howe and R. E. R.
1709 Nisbet (2007). Organization of the mitochondrial genome in the dinoflagellate
1710 *Amphidinium carterae*. *Mol Biol Evol* 24(7): 1528-1536.
1711 Nawaly, H., H. Matsui, Y. Tsuji, K. Iwayama, H. Ohashi, K. Nakajima and Y. Matsuda
1712 (2023). Multiple plasma membrane SLC4s contribute to external HCO₃⁻ acquisition
1713 during CO₂ starvation in the marine diatom *Phaeodactylum tricornutum*. *J Exp Bot*
1714 74(1): 296-307.
1715 Nonoyama, T., E. Kazamia, H. Nawaly, X. Gao, Y. Tsuji, Y. Matsuda, C. Bowler, T. Tanaka
1716 and R. G. Dorrell (2019). Metabolic innovations underpinning the origin and
1717 diversification of the diatom chloroplast. *Biomolecules* 9(8): 464.
1718 Nymark, M., A. K. Sharma, T. Sparstad, A. M. Bones and P. Winge (2016). A CRISPR/Cas9
1719 system adapted for gene editing in marine algae. *Sci Rep* 6: 24951.
1720 Pesant, S., F. Not, M. Picheral, S. Kandels-Lewis, N. Le Bescot, G. Gorsky, D. Iudicone, E.
1721 Karsenti, S. Speich, R. Trouble, C. Dimier, S. Searson and *Tara Oceans* Coordinators
1722 (2015). Open science resources for the discovery and analysis of *Tara Oceans* data.
1723 *Scientific Data* 2.
1724 Popko, J., C. Herrfurth, K. Feussner, T. Ischebeck, T. Iven, R. Haslam, M. Hamilton, O.
1725 Sayanova, J. Napier, I. Khozin-Goldberg and I. Feussner (2016). Metabolome analysis
1726 reveals betaine lipids as major source for triglyceride formation, and the accumulation
1727 of sedoheptulose during nitrogen-starvation of *Phaeodactylum tricornutum*. *PLoS One*
1728 11(10): 0164673.
1729 Prabhakar, V., T. Löttgert, T. Gigolashvili, K. Bell, U. I. Flügge and R. E. Häusler (2009).
1730 Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate
1731 enolase (ENO1) from *Arabidopsis thaliana*. *FEBS Lett* 583(6): 983-991.
1732 Raines, C. A. (2003). The Calvin Cycle revisited. *Photosynth Res* 75(1): 1-10.
1733 Rainteau, D., L. Humbert, E. Delage, C. Vergnolle, C. Cantrel, M.-A. Maubert, S. Lanfranchi,
1734 R. Maldiney, S. Collin, C. Wolf, A. Zachowski and E. Ruelland (2012). Acyl chains of
1735 phospholipase D transphosphatidylation products in *Arabidopsis* cells: a study using
1736 multiple reaction monitoring mass spectrometry. *PLoS One* 7(7): 41985.
1737 Rastogi, A., U. Maheswari, R. G. Dorrell, F. R. J. Vieira, F. Maumus, A. Kustka, J. McCarthy,
1738 A. E. Allen, P. Kersey, C. Bowler and L. Tirichine (2018). Integrative analysis of large
1739 scale transcriptome data draws a comprehensive landscape of *Phaeodactylum*
1740 *tricornutum* genome and evolutionary origin of diatoms. *Sci Rep* 8(1): 4834.
1741 Rastogi, A., O. Murik, C. Bowler and L. Tirichine (2016). PhytoCRISP-Ex: a web-based and
1742 stand-alone application to find specific target sequences for CRISPR/CAS editing. *BMC*
1743 *Bioinformatics* 17(1): 261.

1744 Royo-Llonch, M., P. Sánchez, C. Ruiz-González, G. Salazar, C. Pedrós-Alió, K. Labadie, L.
1745 Paoli, *Tara* Oceans Coordinators, S. Chaffron, D. Eveillard, E. Karsenti, S. Sunagawa, P.
1746 Wincker, L. Karp-Boss, C. Bowler and S. G. Acinas (2021). Compendium of 530
1747 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean.
1748 *Nat Microbiol* 6: 1561-1574.
1749 Río Bártulos, C., M. B. Rogers, T. A. Williams, E. Gentekaki, H. Brinkmann, R. Cerff, M. F.
1750 Liaud, A. B. Hehl, N. R. Yarlett, A. Gruber, P. G. Kroth and M. van der Giezen (2018).
1751 Mitochondrial glycolysis in a major lineage of eukaryotes. *Genom Biol Evol* 10(9): 2310-
1752 2325.
1753 Sachse, M., S. Sturm, A. Gruber and P. Kroth (2013). Identification and evaluation of
1754 endogenous reference genes for steady state transcript quantification by qPCR in the
1755 diatom *Phaeodactylum tricornutum* with constitutive expression independent from time
1756 and light. *Endocytobiosis Cell Res* 24: 7.
1757 Scialdone, A., S. T. Mugford, D. Feike, A. Skeffington, P. Borrill, A. Graf, A. M. Smith and M.
1758 Howard (2013). *Arabidopsis* plants perform arithmetic division to prevent starvation at
1759 night. *Elife* 2: 00669.
1760 Serôdio, J. and J. Lavaud (2011). A model for describing the light response of the
1761 nonphotochemical quenching of chlorophyll fluorescence. *Photosynth Res* 108(1): 61-
1762 76.
1763 Shtaida, N., I. Khozin-Goldberg and S. Boussiba (2015). The role of pyruvate hub
1764 enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic
1765 microalgae. *Photosynth Res* 125(3): 407-422.
1766 Siegel, P., K. G. Baker, E. Low-Décarie and R. J. Geider (2020). High predictability of direct
1767 competition between marine diatoms under different temperatures and nutrient states.
1768 *Ecol Evol* 10(14): 7276-7290.
1769 Smith, S. R., R. M. Abbriano and M. Hildebrand (2012). Comparative analysis of diatom
1770 genomes reveals substantial differences in the organization of carbon partitioning
1771 pathways. *Algal Res Biomass Biofuels Bioproducts* 1(1): 2-16.
1772 Smith, S. R., C. L. Dupont, J. K. McCarthy, J. T. Broddrick, M. Oborník, A. Horák, Z. Füssy, J.
1773 Cihlář, S. Kleessen, H. Zheng, J. P. McCrow, K. K. Hixson, W. L. Araújo, A. Nunes-Nesi, A.
1774 Fernie, Z. Nikoloski, B. O. Palsson and A. E. Allen (2019). Evolution and regulation of
1775 nitrogen flux through compartmentalized metabolic networks in a marine diatom. *Nat
1776 Commun* 10(1): 4552.
1777 Spitzer, M., J. Wildenhain, J. Rappaport and M. Tyers (2014). BoxPlotR: a web tool for
1778 generation of box plots. *Nature Methods* 11(2): 121-122.
1779 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-
1780 analysis of large phylogenies. *Bioinformatics* 30(9): 1312-1313.
1781 Strassert, J. F. H., I. Irisarri, T. A. Williams and F. Burki (2021). A molecular timescale for
1782 eukaryote evolution with implications for the origin of red algal-derived plastids. *Nat
1783 Commun* 12(1): 1879.
1784 Sutherland, E. W., T. Posternak and C. F. Cori (1949). Mechanism of the phosphoglyceric
1785 mutase reaction. *J Biol Chem* 181(1): 153-159.
1786 Tanaka, R. and A. Tanaka (2007). Tetrapyrrole biosynthesis in higher plants. *Ann Rev
1787 Plant Biol* 58: 321-346.
1788 Tardif, M., A. Atteia, M. Specht, G. Cogne, N. Rolland, S. Brugiére, M. Hippler, M. Ferro, C.
1789 Bruley, G. Peltier, O. Vallon and L. Cournac (2012). PredAlgo: a new subcellular
1790 localization prediction tool dedicated to green algae. *Mol Biol Evol* 29(12): 3625-3639.
1791 Troncoso-Ponce, M. A., J. Rivoal, S. Dorion, R. Sánchez, M. Venegas-Calerón, A. J. Moreno-
1792 Pérez, S. Baud, R. Garcés and E. Martínez-Force (2018). Molecular and biochemical

1793 characterization of the sunflower (*Helianthus annuus* L.) cytosolic and plastidial
1794 enolases in relation to seed development. *Plant Sci* 272: 117-130.
1795 Yang, L., Z. Wang, A. Zhang, R. Bhawal, C. Li, S. Zhang, L. Cheng and J. Hua (2022).
1796 Reduction of the canonical function of a glycolytic enzyme enolase triggers immune
1797 responses that further affect metabolism and growth in *Arabidopsis*. *Plant Cell* 34(5):
1798 1745-1767.
1799 Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen and T. L. Madden (2012).
1800 Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.
1801 *BMC Bioinformatics* 13: 134.
1802 Yin, W. and H. Hu (2023). CRISPR/Cas9-mediated genome editing via homologous
1803 recombination in a centric diatom *Chaetoceros muelleri*. *ACS Synth Biol* 12(4): 1287-
1804 1296.
1805 Yu, G., K. Nakajima, A. Gruber, C. Rio Bartulos, A. F. Schober, B. Lepetit, E. Yohannes, Y.
1806 Matsuda and P. G. Kroth (2022). Mitochondrial phosphoenolpyruvate carboxylase
1807 contributes to carbon fixation in the diatom *Phaeodactylum tricornutum* at low inorganic
1808 carbon concentrations. *New Phytol* 235: 1379-1393.
1809 Zhang, Y., A. Sampathkumar, S. M.-L. Kerber, C. Swart, C. Hille, K. Seerangan, A. Graf, L.
1810 Sweetlove and A. R. Fernie (2020). A moonlighting role for enzymes of glycolysis in the
1811 co-localization of mitochondria and chloroplasts. *Nature Commun* 11(1): 4509.
1812 Zhao, Z. and S. M. Assmann (2011). The glycolytic enzyme, phosphoglycerate mutase,
1813 has critical roles in stomatal movement, vegetative growth, and pollen production in
1814 *Arabidopsis thaliana*. *J Exp Bot* 62(14): 5179-5189.
1815 Zheng, Y. T., A. H. Quinn and G. Sriram (2013). Experimental evidence and isotopomer
1816 analysis of mixotrophic glucose metabolism in the marine diatom *Phaeodactylum*
1817 *tricornutum*. *Microbial Cell Factories* 12: 16.
1818 Zhu, B.-H., H.-P. Shi, G.-P. Yang, N.-N. Lv, M. Yang and K.-H. Pan (2016). Silencing UDP-
1819 glucose pyrophosphorylase gene in *Phaeodactylum tricornutum* affects carbon
1820 allocation. *New Biotechnol* 33(1): 237-244.
1821 Zulu, N. N., K. Zienkiewicz, K. Vollheyde and I. Feussner (2018). Current trends to
1822 comprehend lipid metabolism in diatoms. *Progress Lipid Res* 70: 1-16.
1823

1824 **Figures**

1825
1826 **Fig. 1. Metabolic context and evolution of the lower half of diatom plastid**
1827 **glycolysis-gluconeogenesis. A:** schematic comparison of diatom and plant core
1828 carbon metabolism, highlighting the localization and functions of two enzymes in the
1829 lower half of glycolysis-gluconeogenesis (phospho-glycerate mutase, and enolase)
1830 whose localization to the chloroplast can connect endogenous enzymes in the Calvin
1831 cycle and pyruvate hub to create a complete glycolytic-gluconeogenic-gluconeogenic
1832 pathway. Abbreviations: GA3P- glyceraldehyde-3-phosphate; 1,3-PGA and 2,3-PGA-
1833 1,3 and 2,3 bis-phosphoglycerate; Glu-6-P- glucose-6-phosphate; PEP- phospho-
1834 enol-pyruvate; RuBP- ribulose *bis*-phosphate; PGAM- phospho-glycerate mutase;
1835 cER- chloroplast: noplasmic reticulum. **B, C:** consensus MrBayes topologies

1836 realised with three substitution matrices (GTR, Jones, WAG) of a 163 taxa x 413 aa
1837 alignment of organelle-targeted enolase and 105 taxa x 220 aa alignment of selected
1838 organelle-targeted PGAM1 enzymes from diatoms and their closest relatives,
1839 identifying recent duplications and recruitments of respiratory glycolytic-
1840 gluconeogenic enzymes from the mitochondria to plastid in diatoms and their closest
1841 relatives. **D**: overlay images of GFP-tagged full-length cpEnolase (top) and
1842 cpPGAM1A (bottom) constructs (green), chlorophyll (red) and bright-field images of
1843 transformant *Phaeodactylum tricornutum* lines. Scale bar: 10 μ m.
1844

1845 **Fig. 2. Environmental distributions of diatom plastid lower half glycolysis-**
1846 **gluconeogenesis meta-genes.** Total transcriptome (**top**) and genome (**bottom**)
1847 relative abundances for *Tara Oceans* meta-genes phylogenetically resolved to
1848 diatom cpEnolase and cpPGAM1, sampled from all size fractions and surface layer
1849 stations, demonstrating higher meta-transcript abundance without commensurate
1850 increases in meta-gene abundance at high northern and southern latitudes.
1851

1852 **Fig. 3. Growth phenotypes of cpEnolase and cpPGAM1A CRISPR-Cas9**
1853 **knockout mutant and zeocin-resistant empty vector control *P. tricornutum***
1854 **lines. A:** exemplar growth curves from single experiments realised for *P. tricornutum*
1855 lines in 50 μ E $m^{-2} s^{-1}$ illumination, non-shaken cultures and replete ESAW media,
1856 under three conditions- (i) 19°C and 12h light: 12h dark Circadian cycles (« 19C
1857 LD »); (ii) 19°C and 24h continuous light (« 19C CL »); and (iii) 8°C and 24h
1858 continuous light (« 8C CL »). Hashed black lines show the approximative
1859 concentrations (between 5 $\times 10^4$ and 4 $\times 10^6$ cells ml^{-1}) over which growth rates were
1860 calculated. **B:** mean relative log phase growth rates of each genotype under each
1861 condition, measured through a minimum of three biological replicates and two
1862 technical repetitions (six measurements per line, minimum 24 measurements per
1863 genotype), over five time-points with linear ($r^2 > 0.95$ relationship between log cell
1864 density and time). Asterisks indicate significant differences as inferred by one-way
1865 ANOVA. An alternative version of this figure showing absolute growth rates of
1866 individual cell lines is provided in **Fig. S10**.
1867

1868 **Fig. 4. Changes in plastid and mitochondrial metabolic architecture inferred**
1869 **from gene expression analyses. A:** predicted consensus localizations (either:

1870 chloroplast, or non-chloroplast) from ASAFind (Gruber, Rocap et al. 2015) and
1871 HECTAR (Gschloessl, Guermeur et al. 2008) of all genes inferred ($P < 0.05$, fold-
1872 change expression >2) to be up- or down-regulated in both cpEnolase and
1873 cpPGAM1A knockout compared to control lines under 19C LD, 19C CL and 8C CL.
1874 Significantly enriched localizations (two-tailed chi-squared test) are asterisked. **B:**
1875 relative mRNA abundances of eleven genes encoding exemplar chloroplast- and
1876 mitochondria-targeted proteins, verified by qRT-PCR. Genes differentially expressed
1877 (t -test, $P < 0.05$) in each condition are asterisked.

1878

1879 **Fig. 5. Volcano plots of differentially accumulated metabolites assessed by GC-**
1880 **MS.** Scatterplots of the \log_2 accumulation ratios and $-\log_{10} P$ -values of difference in
1881 the mass, ribitol and quality-control-normalised abundances of 39 sugars and amino
1882 acid metabolites in cpEnolase and cpPGAM1A knockout compared to empty vector
1883 control lines, measured by GC-MS in all three experimental conditions tested.
1884 Metabolites that show a differential accumulation in each plot ($P < 10^{-5}$) are labelled,
1885 with metabolites that show a differential accumulation in both knockout lines in each
1886 condition shown in black text, and five metabolites that are uniquely over-
1887 accumulated in cpEnolase knockout lines under all three conditions shown in dark
1888 red text.

1889

1890 **Fig. 6. LC-MS lipid distributions in glycolysis-gluconeogenesis mutant lines. A:**
1891 scatterplots of relative proportions of MGDG and TAG in total lipid LC-MS samples in
1892 cpEnolase and cpPGAM1A knockout lines and empty vector controls under each
1893 growth condition, showing increased MGDG: TAG in glycolysis knockout lines under
1894 19C, and the inverse relationship in cpEnolase knockout lines only under 8C. **B:**
1895 violin plots of relative abundances of three further lipid categories inferred to
1896 differentially accumulate in glycolysis knockout lines under different growth
1897 conditions. Significant differences between knockout and control lines (one-way
1898 ANOVA) are asterisked.

1899

1900 **Fig. 7. Inferred kinetic activities of *P. tricornutum* plastid lower-half glycolysis-**
1901 **gluconeogenesis. A:** Measured reaction rates of purified cpEnolase and cPGAM1A
1902 supplemented with 3-PGA (glycolytic direction) or PEP (gluconeogenic direction). **B:**

1903 schematic diagram showing the inferred fluxes through lower half diatom plastid
1904 glycolysis-gluconeogenesis in each environmental condition tested.

1905

1906 **Fig. S1. Distribution of lower-half plastid glycolysis-glucneogenesis across**
1907 **photosynthetic eukaryotes. A:** Occurrence of plastid-targeted enolase and PGAM
1908 enzymes across 1,673 plant and algal genomes and transcriptomes, inferred using
1909 reciprocal BLAST best hit of *P. tricornutum* query enzymes as per **Fig. 1B** and **1C**,
1910 PFAM domain annotations, and in silico targeting predictions with TargetP and
1911 PredAlgo (primary chloroplast bearing lineages) and HECTAR and ASAFind
1912 (secondary lineages). **B:** scatterplots of collection site latitude for (i) diatoms, (ii)
1913 other stramenopiles, (iii) cryptomonads and haptophytes and (iv) green algae with
1914 detectable enolase and PGAM enzymes, divided by presence of inferred plastid-
1915 targeted isoforms. Notably, diatoms lacking both plastid-targeted glycolysis enzymes
1916 do not occur outside of low and intermediate latitudes (50°N in the northern and 60°S
1917 in the southern hemisphere) compared to other groups, which either show no
1918 significant association between plastid glycolysis and latitude (cryptomonads,
1919 haptophytes, other stramenopiles) or even an association with low latitudes (green
1920 algae). The data in this figure were subselected for the phylogenies shown in **Fig. 1**
1921 and support the latitudinal correlations revealed by Tara analysis of **Fig. 2**.

1922 **Fig. S2. Consensus topology of a 380 taxa x 413 aa alignment of Enolase**
1923 **sequences.** Sequences represent a sample of all organelle-targeted isoforms from
1924 cryptomonads, haptophytes and stramenopiles and representatives from a densely-
1925 sampled dataset of 151 taxonomic groups across the tree of life (Dorrell et al., 2021).
1926 The tree topology shown is the consensus of the best-scoring rAxML trees identified
1927 using three substitution matrices: GTR, JTT, and WAG. Branch thickness
1928 corresponds to frequency of consensus tree topology recovery in individual trees;
1929 branches are coloured by taxonomic affiliation; and tips (cryptomonads, haptophytes
1930 and stramenopiles only) by predicted *in silico* localization. Individual clades
1931 (considering both taxonomic origins and inferred localization) of organelle-targeted
1932 enolase isoform are labelled with coloured brackets. This figure extends on the
1933 topology shown in **Fig. 1B**.

1934 **Fig. S3. Consensus topology of a 220 aa x 560 taxa alignment of PGAM isoform**
1935 **1 sequences.** Data are shown as per **Fig. S1**, extending on the topology of **Fig. 1C**.

1936

1937 **Fig. S4. Consensus phylogeny of a 235 aa x 66 taxa alignment of PGAM**
1938 **isoform 2 sequences.** Data are shown as per **Fig. S1**, forming a complement to the
1939 PGAM1 topologies shown in **Fig. 1C** and **S3**.

1940

1941 **Fig. S5. Individual fluorescence channel and control confocal microscopy**
1942 **images for *P. tricornutum* plastid glycolysis proteins.** Images complement the
1943 overlays shown in **Fig. 1D**.

1944

1945 **Fig. S6. Identification of *Tara Oceans* homologs of diatom plastid-targeted**
1946 **enolase and PGAM enzymes. A:** Consensus rAxML JTT topologies of the
1947 phylogenetically verified *Tara Oceans* homologs of diatom plastidial enolase and
1948 PGAM enzymes and cultured species sequences, demonstrating reconciliation of
1949 retained homologs within monophyletic clades containing exclusively diatom
1950 plastidial isoforms amongst cultured species. **B:** in silico targeting predictions of all
1951 retrieved homologs inferred by BLAST alignment to be probably N-terminally
1952 complete, showing a strong enrichment in homologs with predicted plastid-targeting
1953 sequences. Sequences shown in this figure are analysed globally in **Fig. 2**.

1954

1955 **Fig. S7. Relative abundances of *Tara Oceans* diatom plastid glycolysis meta-**
1956 **genes.** Plots show relative abundances of meta-genes that group with **(i, iii)**
1957 cpEnolase and **(ii, iv)** cpPGAM1 sequences over individual size fractions of **(i, ii)**
1958 surface and **(iii, iv)** DCM meta-transcriptome (left) and -genome (right) data,
1959 supporting data from all (unfiltered) size fractions and surface layers shown in **Fig. 2**.

1960

1961 **Fig. S8. Total relative abundances of meta-genes phylogenetically reconciled**
1962 **to diatom PGAM2 in unfiltered surface samples.** Plots showing **(A)** meta-
1963 transcriptome and **(B)** meta-genome data, showing effective congruence between
1964 both, in contrast to the high latitudinal abundance specific to meta-transcriptome data
1965 for diatom cpEnolase and cpPGAM1 as per **Fig. 2**.

1966

1967 **Fig. S9. Genotypes of *P. tricornutum* glycolysis knockout lines. A:** alignments of
1968 the two CRISPR regions targeted for mutagenesis of cpEnolase (Phatr3_J41515)
1969 and cpPGAM1A (Phatr3_J17086), and the genotypes obtained from Sanger

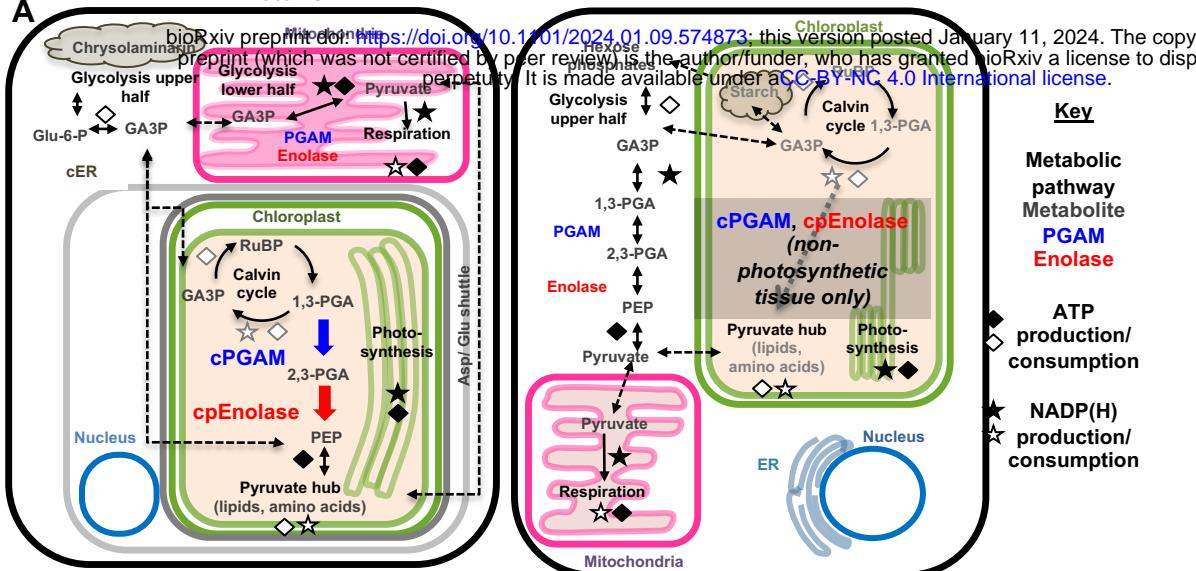
1970 sequences of homozygous CRISPR knockouts obtained for each gene. **B:** average
1971 relative expression level of each mutated gene, assessed by quantitative RT-PCR
1972 with two primer combinations and normalised against two housekeeping genes (RNA
1973 polymerase II and TATA binding protein), expressed as a % of the relative
1974 expression levels calculated in two empty vector expression controls. One-way *t*-test
1975 significance levels of the knockdown of gene expression in each knockout line
1976 compared to the empty vector controls are provided. Knockout lines shown in this
1977 figure were used for growth and integrative 'omic analyses as per **Figs. 3-6**.
1978

1979 **Fig. S10. Absolute and individual growth phenotypes of cpEnolase and**
1980 **cpPGAM1A CRISPR-Cas9 knockout mutant lines. A:** growth curves of knockout
1981 lines, shown as per **Fig. 3**, but with absolute as opposed to logarithmic cell
1982 concentrations B: scatterplot showing the average and standard deviation relative
1983 growth rates for each cell line studied under 19C CL (vertical) and 19C LD (horizontal
1984 axis). Each point corresponds to an individual line, with genotype indicated by point
1985 colours, and standard deviations of growth rates by error bars. Despite individual
1986 variances in growth rate between lines, knockout lines show consistently slower
1987 growth than empty vector controls under both conditions, particularly 19C CL.
1988

1989 **Fig. S11. Measured photo-physiology of glycolysis knockout lines** **A:** Curves for
1990 (**i-ii**) relative electron transport (rETR) of photosystem II fitted as a function of light
1991 intensity) and (**iii-iv**) photoprotective non-photochemical quenching (NPQ) fitted as a
1992 function of E. Separate values are shown for cultures in CL (**i, iii**) and LD (**ii, iv**)
1993 growth conditions. Data points are the mean between the average values ($n=2-4$)
1994 measured in each strain within each genotype (Control = 2, cpEnolase
1995 complemented = 2, cpPGAM1A complemented = 3, cpEnolase knockout = 6,
1996 cpPGAM1A knockout = 3). **B:** Violin plots of PSII functional absorption cross-section
1997 (σ_{PSII}), measured with a MINIFIRe spectrometer for glycolysis mutant versus control
1998 lines under each growth conditions. Significantly different values observed for
1999 knockout and complementation mutants relative to control lines (one-way ANOVA, P
2000 < 0.05) are asterisked, with asterisk colour corresponding to the line considered.
2001 Each boxplot includes all measured/ fitted values for each strain within a mutant line.
2002 The absence of clear photosynthetic defects contrasts with the diminished growth of
2003 knockout lines, as per **Fig. 3**.

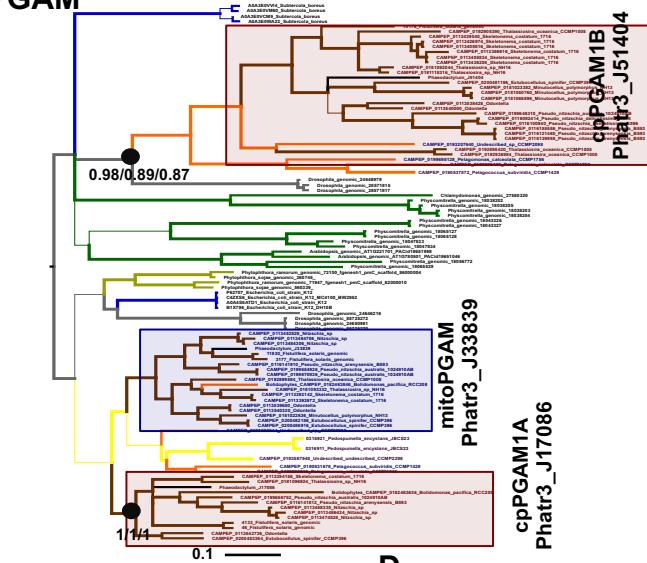
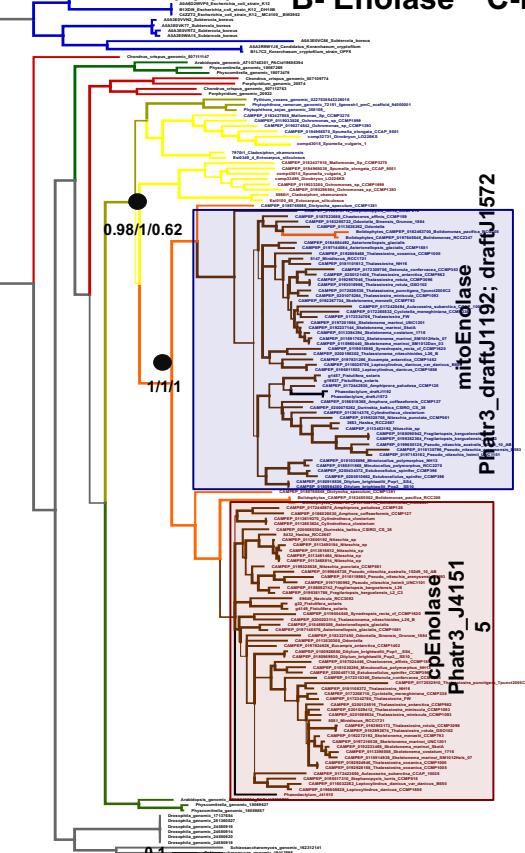
2004
2005 **Fig. S12: Bar plots of the mean and standard deviation of the ratios of 39**
2006 **metabolites assessed by GC-MS in plastid glycolysis mutant lines under the**
2007 **three tested experimental conditions.** Data support the Volcano Plots shown in
2008 **Fig. 5.** Metabolites are sorted in ranked decreasing accumulation in mutant lines over
2009 all three conditions. Metabolites inferred to be differentially accumulated (one-way
2010 ANOVA) in each mutant line and condition are asterisked.
2011
2012 **Fig. S13. Lipid accumulation profiles under 19C LD conditions. A:** Volcano Plots
2013 showing (horizontal axis) \log_2 accumulation ratios and (vertical axis) $-\log_{10}$ one-way
2014 ANOVA, two-tailed Pvalues for separation of mean proportions of specific fatty acids,
2015 across all fatty acids observed in a specific lipid class in glycolysis mutants versus
2016 control lines, supporting the global scatter- and violin plots shown in **Fig. 6.** Specific
2017 lipids that show extreme ($P < 0.01$) differences in accumulation between both mutant
2018 genotypes and control lines are labelled, and coloured by lipid class. **B:** Bar plots
2019 showing total DGTA lipid class distributions in all three lines under these conditions.
2020 These data suggest limited changes in glycolysis mutant lipid architecture, barring a
2021 probable over-accumulation of *sn-1* C16 in glycolysis mutant lipid pools, and
2022 corresponding under-accumulation of *sn-1* C20 in mutant DGTA pools.
2023
2024 **Fig. S14. Lipid accumulation profiles under 19C CL conditions. A:** Volcano plots
2025 showing (horizontal axis) \log_2 accumulation ratios and (vertical axis) $-\log_{10}$ one-way
2026 ANOVA, two-tailed Pvalues for separation of mean proportions of specific fatty acids,
2027 across all fatty acids observed in a specific lipid class in glycolysis mutants versus
2028 control lines, and **B: bar plots** of SQDG and DGTA accumulation in lines harvested
2029 under **19C CL.** Data are shown as per **Fig. S13** and support global scatter- and violin
2030 plots shown in **Fig. 6.** These data suggest similar changes in glycolysis mutant lipid
2031 architecture to **19C LD**, including probable over-accumulations of *sn-1* C16 in lieu of
2032 C20 and C14 in cpEnolase and cpPGAM1A mutant SQDG and MGDG pools.
2033
2034 **Fig. S15. Lipid accumulation profiles under 8C CL conditions.** Volcano plots
2035 showing (horizontal axis) \log_2 accumulation ratios and (vertical axis) $-\log_{10}$ ANOVA
2036 Pvalues for separation of mean proportions of specific fatty acids, across all fatty
2037 acids observed in a specific lipid class in cpEnolase mutants versus control lines, and

2038 cpEnolase mutants versus cpPGAM1A mutants harvested under 8C CL conditions.
2039 Data are shown as per **Fig. S13** and support global scatter- and violin plots shown in
2040 **Fig. 6**. No significantly differentially accumulated ($P < 10^{-5}$) lipids were observed in
2041 corresponding comparisons of cpPGAM1A mutants and control lines. These data
2042 suggest specific overaccumulations in short-chain *sn*-1 MGDG, and *sn*-2 SQDG, and
2043 C20 *sn*-1 DGTA in cpEnolase mutants compared to other lines.

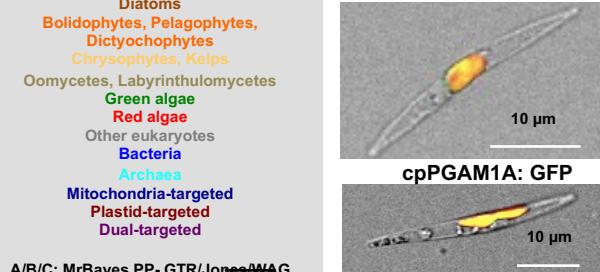

2044

2045 **Fig. S16. Schematic diagram of the reaction kinetics measured for *P. tricornutum* cpEnolase and cPGAM1A enzymes.** The measured activities of this
2046 assay are shown in **Fig. 7A**. Common enzymes are shown in green, enzymes unique
2047 to the glycolytic assay in blue, and enzymes unique to the gluconeogenic assay in
2048 red. Reaction intermediates and reversible substrates are shown in yellow and gray
2049 respectively

2050

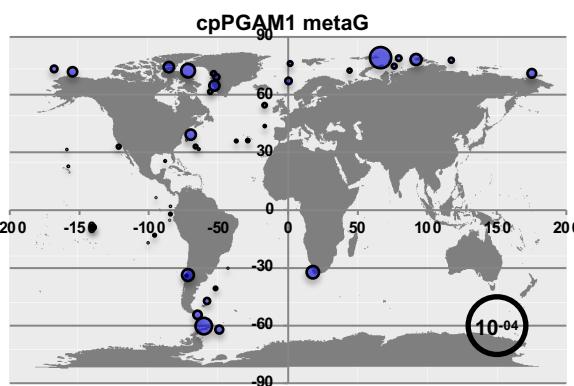
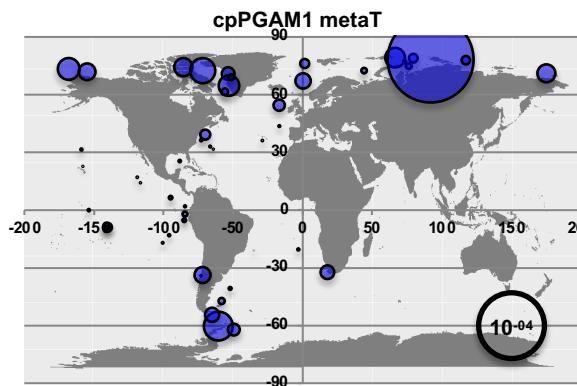
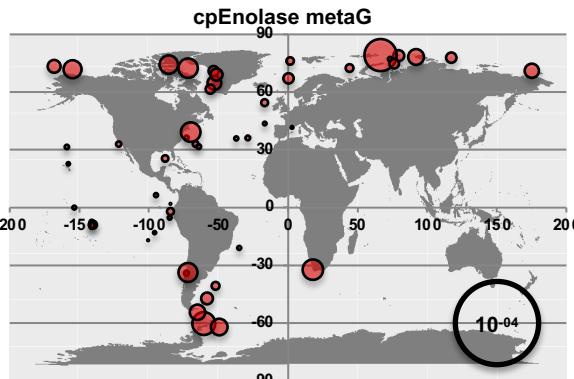


2051

2052

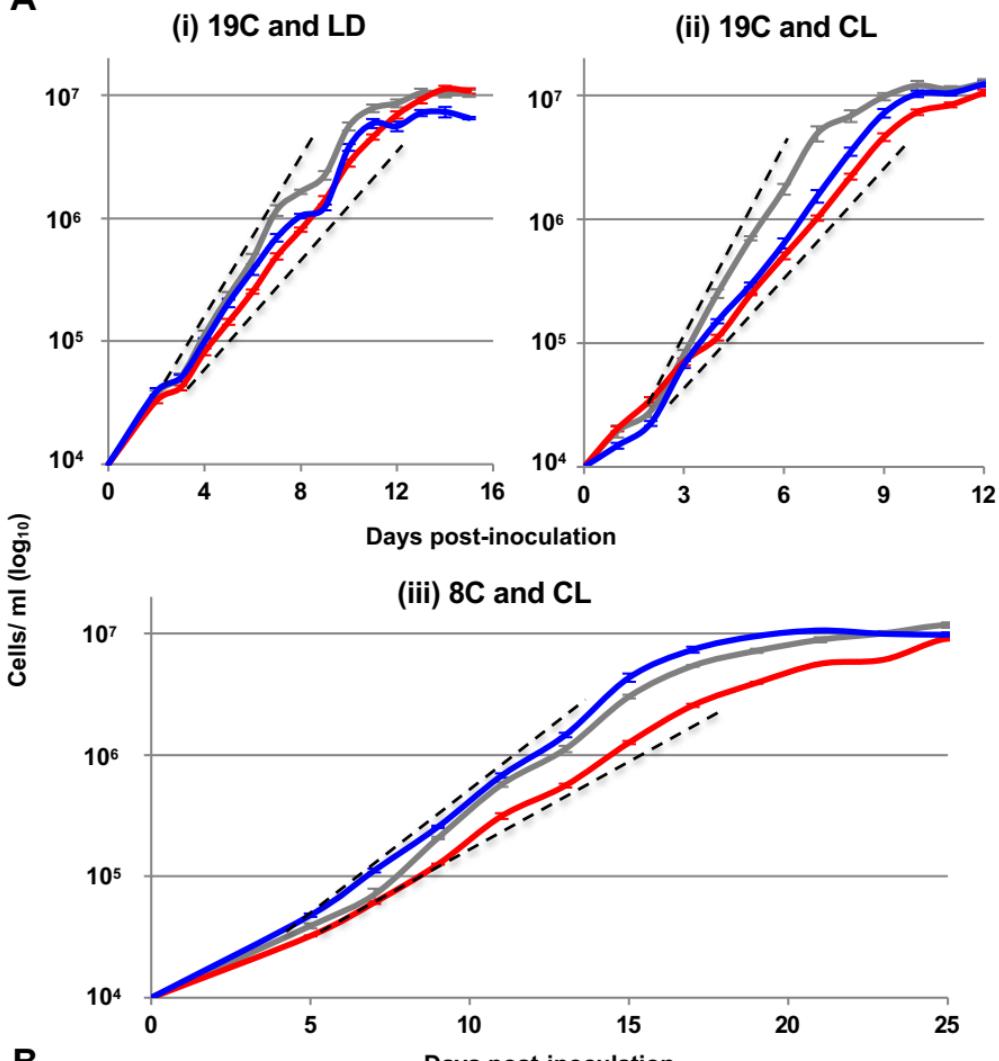
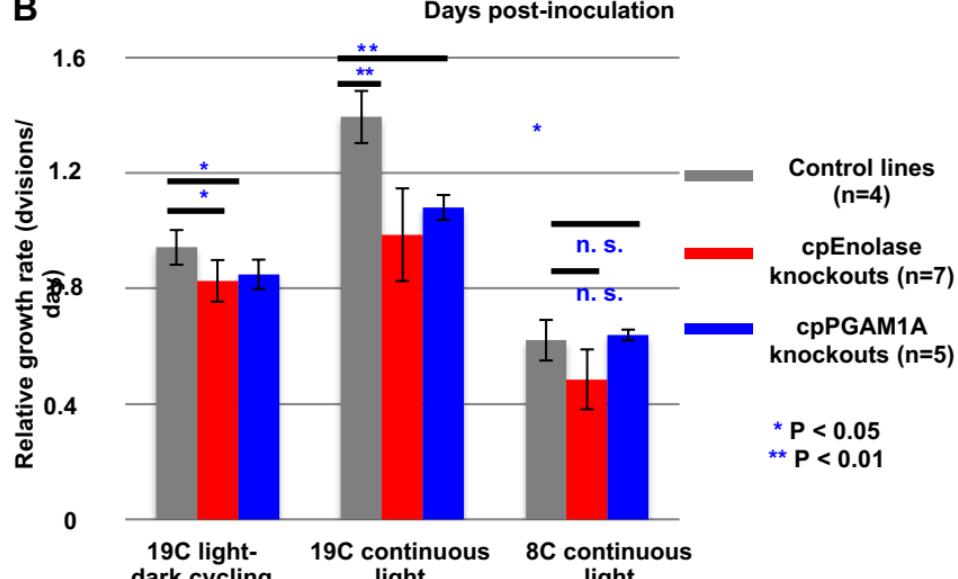


B- Enolase

C-PGAM

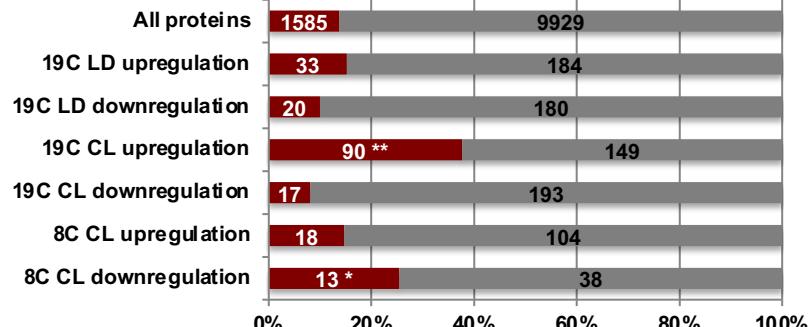




D cpEnolase: GFP



Fig. 1. Metabolic context and evolution of the lower half of diatom plastidial glycolysis-gluconeogenesis. **A:** schematic comparison of diatom and plant core carbon metabolism, highlighting the localization and functions of two enzymes in the lower half of glycolysis-gluconeogenesis (phospho-glycerate mutase, and enolase) whose localization to the chloroplast can connect endogenous enzymes in the Calvin cycle and pyruvate hub to create a complete glycolytic-gluconeogenic-gluconeogenic pathway. Abbreviations: GA3P- glyceraldehyde-3-phosphate; 1,3-PGA and 2,3-PGA- 1,3 and 2,3 bis-phosphoglycerate; Glu-6-P- glucose-6-phosphate; PEP- phospho-enol-pyruvate; RuBP- ribulose bis-phosphate; PGAM- phospho-glycerate mutase; cER- chloroplast: endoplasmic reticulum. **B, C:** consensus MrBayes topologies realised with three substitution matrices (GTR, Jones, WAG) of a 163 taxa x 413 aa alignment of organelle-targeted enolase and 105 taxa x 220 aa alignment of selected organelle-targeted PGAM1 enzymes from diatoms and their closest relatives, identifying recent duplications and recruitments of respiratory glycolytic-gluconeogenic enzymes from the mitochondria to plastid in diatoms and their closest relatives. **D:** overlay images of GFP-tagged full-length cpEnolase (top) and cpPGAM1A (bottom) constructs (green), chlorophyll (red) and bright-field images of transformant *Phaeodactylum tricornutum* lines. Scale bar: 10 μ m.

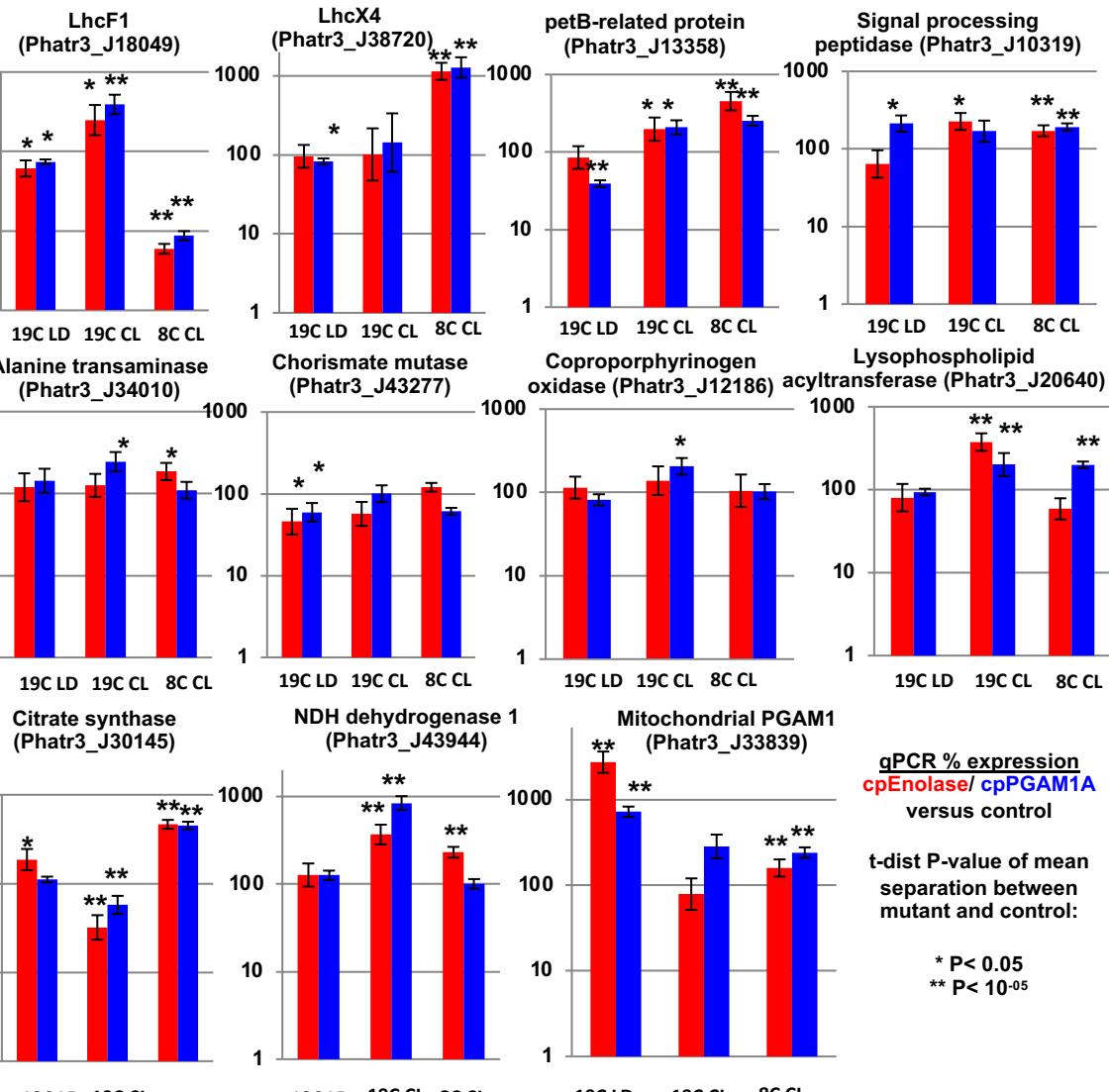
A/B/C: MrBayes PP- GTR/Jones/WAG
Substitutions/ site

Diatoms
Bolidophytes, Pelagophytes,
Dictyochophytes
Chrysophytes, Kelps
Oomycetes, Labyrinthulomycetes
Green algae
Red algae
Other eukaryotes
Bacteria
Archaea
Mitochondria-targeted
Plastid-targeted
Dual-targeted

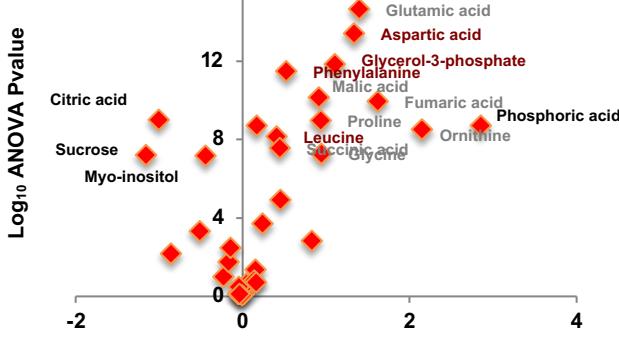

Fig. 2. Environmental distributions of diatom plastidial lower half glycolysis-gluconeogenesis meta-genes. Total transcriptome (top) and genome (bottom) relative abundances for *Tara Oceans* meta-genes phylogenetically resolved to diatom cpEnolase and cpPGAM1, sampled from all size fractions and surface layer stations, demonstrating higher meta-transcript abundance without commensurate increases in meta-gene abundance at high northern and southern latitudes.

A**B**

Fig. 3. Growth phenotypes of cpEnolase and cpPGAM1A CRISPR-Cas9 knockout mutant and zeocin-resistant empty vector control *P. tricornutum* lines. A: exemplar growth curves from single experiments realised for *P. tricornutum* lines in $50 \mu\text{E m}^{-2} \text{s}^{-1}$ illumination, non-shaken cultures and replete ESAW media, under three conditions- (i) 19°C and 12h light: 12h dark Circadian cycles (« 19C LD »); (ii) 19°C and 24h continuous light (« 19C CL »); and (iii) 8°C and 24h continuous light (« 8C CL »). Hashed black lines show the approximative concentrations (between 5×10^4 and 4×10^6 cells ml^{-1}) over which growth rates were calculated). **B:** mean relative log phase growth rates of each genotype under each condition, measured through a minimum of three biological replicates and two technical repetitions (six measurements per line, minimum 24 measurements per genotype), over five time-points with linear ($r^2 > 0.95$ relationship between log cell density and time). Asterisks indicate significant differences as inferred by one-way ANOVA. An alternative version of this figure showing absolute growth rates of individual cell lines is provided in **Fig. S10**.


A

Consensus plastid-targeting prediction (ASAFind/ HECTAR)


Plastid

Non-Plastid

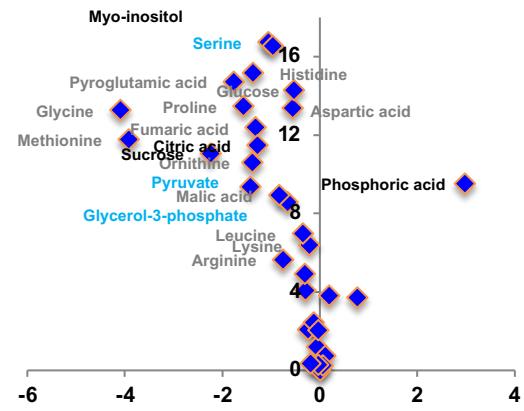
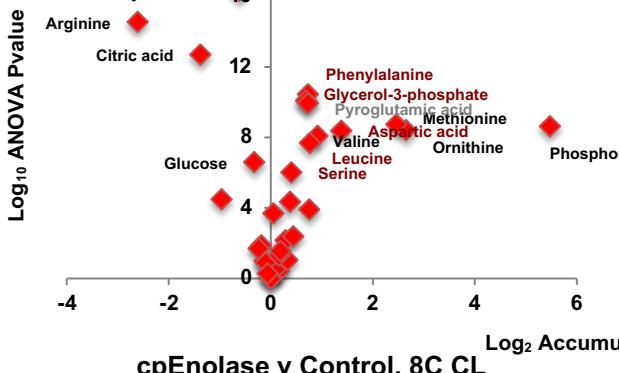
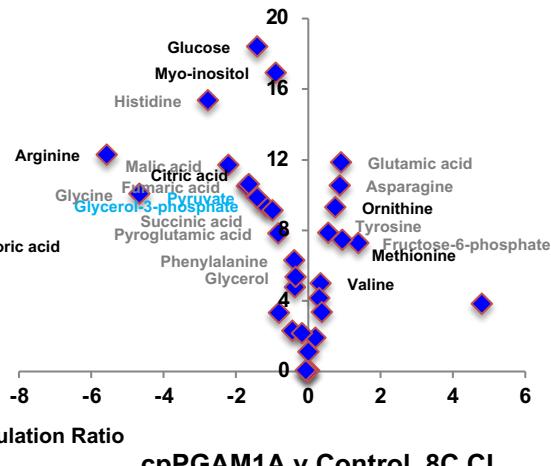
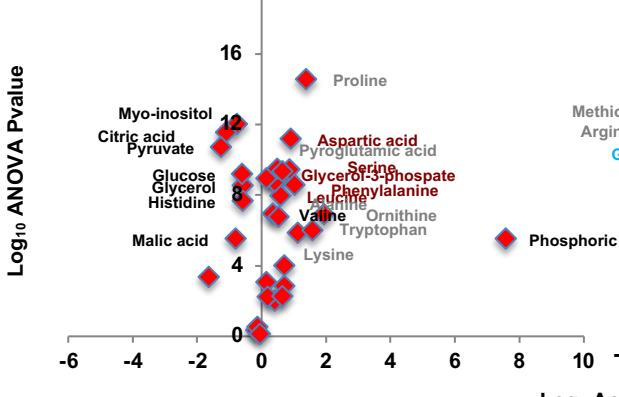
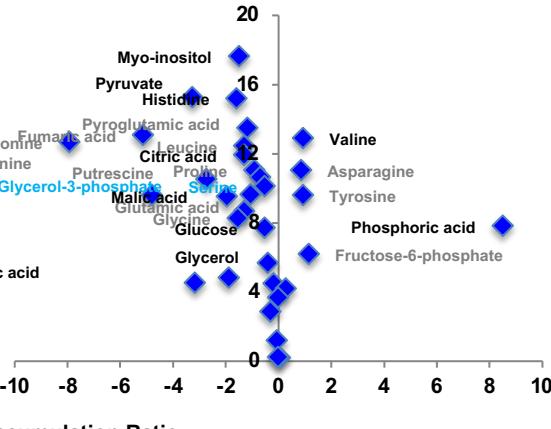

* chi-squared enrichment
P-value < 0.05** chi-squared enrichment
P-value < 10⁻⁵**B**

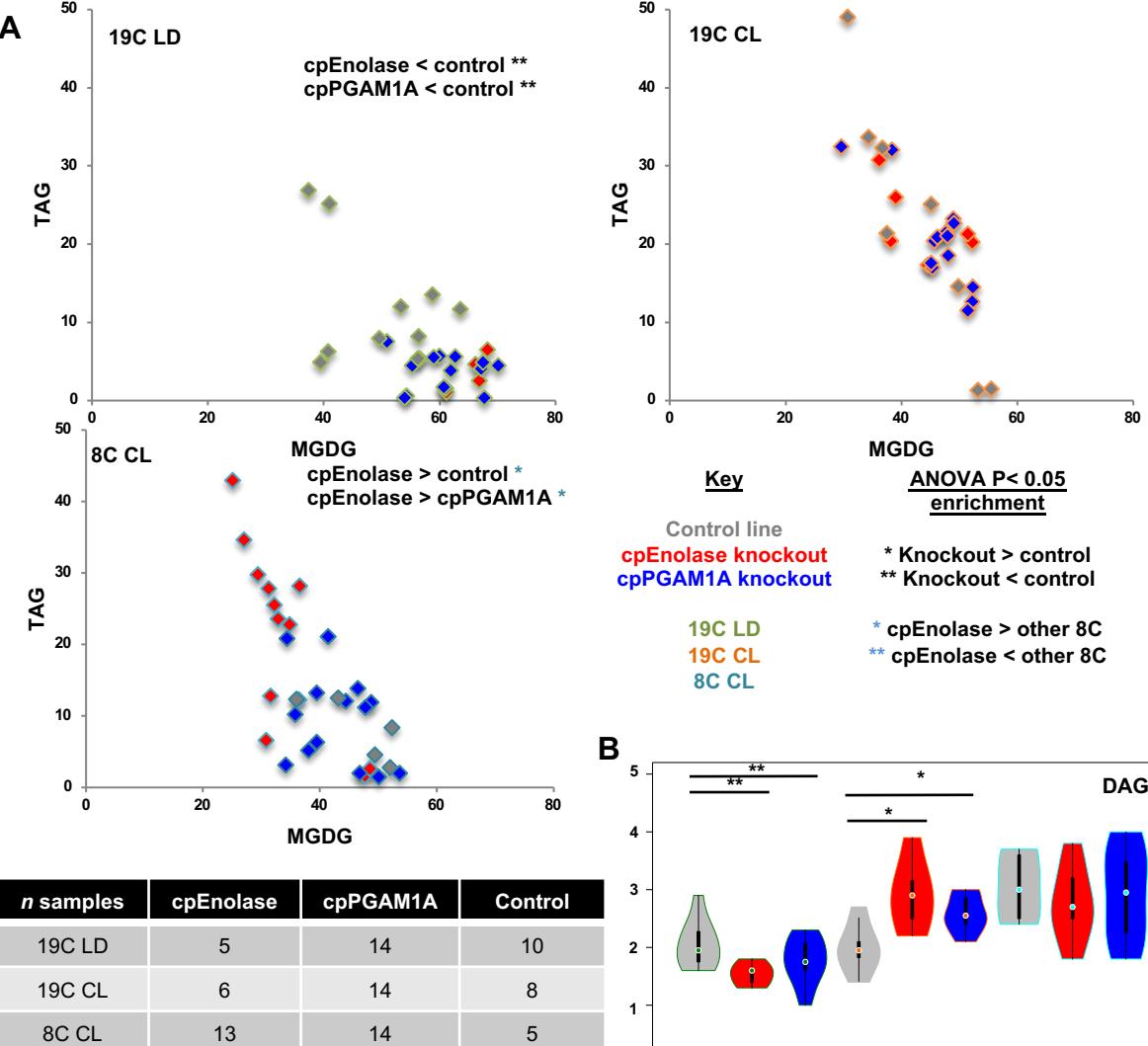
Fig. 4. Changes in plastid and mitochondrial metabolic architecture inferred from gene expression analyses. **A:** predicted consensus localizations (either: chloroplast, or non-chloroplast) from ASAFind (Gruber, Rocap et al. 2015) and HECTAR (Gschloessl, Guermeur et al. 2008) of all genes inferred (P < 0.05, fold-change expression >2) to be up- or down-regulated in both cpEnolase and cpPGAM1A knockout compared to control lines under 19C LD, 19C CL and 8C CL conditions. Significantly enriched localisations (two-tailed chi-squared test) are asterisked. **B:** relative mRNA abundances of eleven genes encoding exemplar chloroplast- and mitochondria-targeted proteins, verified by qRT-PCR. Genes differentially expressed (t-test, P < 0.05) in each condition are asterisked.


(i) cpEnolase v Control, 19C LD


(ii) cpPGAM1A v Control, 19C LD


(iii) cpEnolase v Control, 19C CL


(iv) cpPGAM1A v Control, 19C CL


cpEnolase v Control, 8C CL

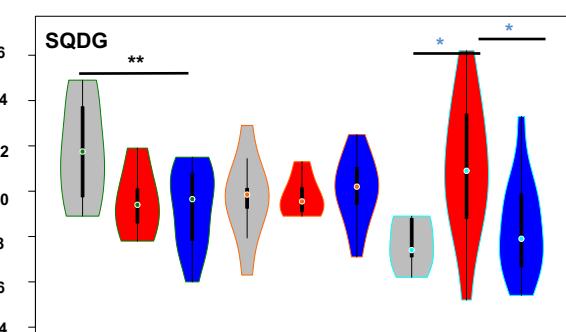
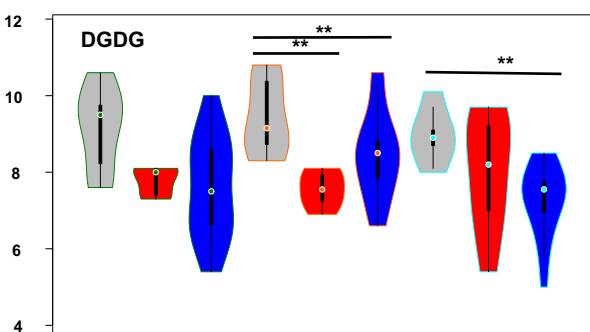
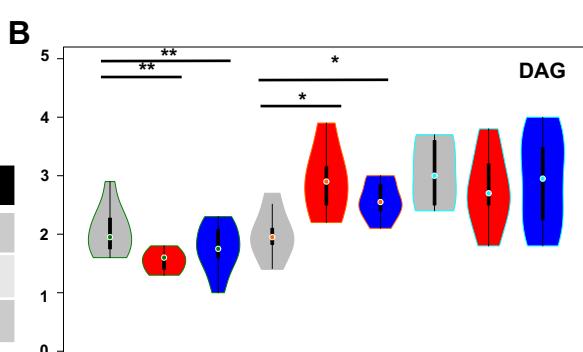
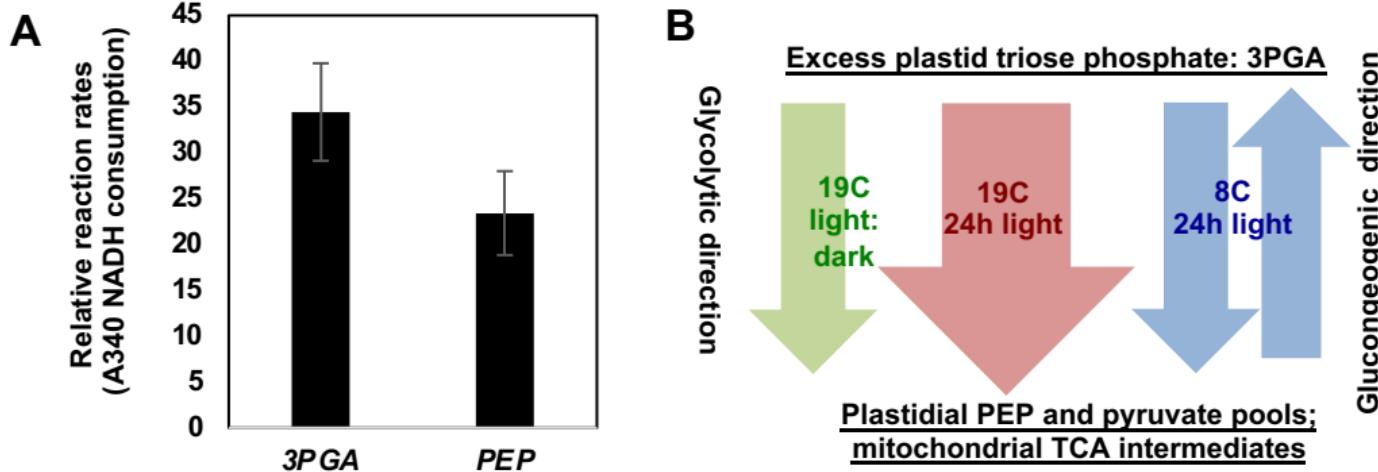



cpPGAM1A v Control, 8C CL

Fig. 5. Volcano plots of differentially accumulated metabolites assessed by GC-MS. Scatterplots of the log₂ accumulation ratios and $-\log_{10}$ P-values of difference in the mass, ribitol and quality-control-normalised abundances of 39 sugar and amino acid metabolites in cpEnolase and cpPGAM1A knockout compared to empty vector control lines, measured by GC-MS in all three experimental conditions tested. Metabolites that show a differential accumulation in each plot ($P < 10^{-5}$) are labelled, with metabolites that show a differential accumulation in both knockout lines in each condition shown in black text, and five metabolites that are uniquely over-accumulated in cpEnolase knockout lines under all three conditions shown in dark red text.



n samples	cpEnolase	cpPGAM1A	Control
19C LD	5	14	10
19C CL	6	14	8
8C CL	13	14	5

Fig. 6. LC-MS lipid distributions in glycolysis-gluconeogenesis mutant lines.

A: scatterplots of relative proportions of MGDG and TAG in total lipid LC-MS samples in cpEnolase and cpPGAM1A knockout lines and empty vector controls under each growth condition, showing increased MGDG: TAG in glycolysis knockout lines under 19C, and the inverse relationship in cpEnolase knockout lines only under 8C. **B:** violin plots of relative abundances of three further lipid categories inferred to differentially accumulate in glycolysis knockout lines under different growth conditions. Significant differences between knockout and control lines (one-way ANOVA) are asterisked.

Fig. 7. Inferred kinetic activities of *P. tricornutum* plastid lower-half glycolysis-gluconeogenesis. A : Measured reaction rates of purified cpEnolase and cPGAM1A supplemented with 3-PGA (glycolytic direction) or PEP (gluconeogenic direction). **B :** schematic diagram showing the inferred fluxes through lower half diatom plastid glycolysis-gluconeogenesis in each environmental condition tested.

Parsed Citations

Abida, H., L. J. Dolch, C. Meï, V. Villanova, M. Conte, M. A. Block, G. Finazzi, O. Bastien, L. Tirichine, C. Bowler, F. Rébeillé, D. Petroutsos, J. Jouhet and E. Maréchal (2015). Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in *Phaeodactylum tricornutum*. *Plant Physiol* 167(1): 118-136.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ait-Mohamed, O., A. M. G. Novák Vanclová, N. Joli, Y. Liang, X. Zhao, A. Genovesio, L. Tirichine, C. Bowler and R. G. Dorrell (2020). PhaeoNet: a holistic RNAseq-based portrait of transcriptional coordination in the model diatom *Phaeodactylum tricornutum*. *Frontiers Plant Sci* 11: 590949.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Allen, A. E., C. L. Dupont, M. Obornik, A. Horak, A. Nunes-Nesi, J. P. McCrow, H. Zheng, D. A. Johnson, H. Hu, A. R. Fernie and C. Bowler (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. *Nature* 473(7346): 203-207.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Almagro Armenteros, J. J., K. D. Tsirigos, C. K. Sønderby, T. N. Petersen, O. Winther, S. Brunak, G. von Heijne and H. Nielsen (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. *Nature Biotechnol* 37(4): 420-423.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Andriotis, V. M., N. J. Kruger, M. J. Pike and A. M. Smith (2010). Plastidial glycolysis in developing *Arabidopsis* embryos. *New Phytol* 185(3): 649-662.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Anoman, A. D., M. Flores-Tornero, S. Rosa-Telléz, J. Muñoz-Bertomeu, J. Segura and R. Ros (2016). The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase. *Plant Signal Behav* 11(3): 1128614.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bai, Y., T. Cao, O. Dautermann, P. Buschbeck, M. B. Cantrell, Y. Chen, C. D. Lein, X. Shi, M. A. Ware, F. Yang, H. Zhang, L. Zhang, G. Peers, X. Li and M. Lohr (2022). Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. *Proc Natl Acad Sci USA* 119(38): 2203708119.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bailleul, B., N. Berne, O. Murik, D. Petroutsos, J. Prihoda, A. Tanaka, V. Villanova, R. Bligny, S. Flori, D. Falconet, A. Krieger-Liszka, S. Santabarbara, F. Rappaport, P. Joliot, L. Tirichine, P. G. Falkowski, P. Cardol, C. Bowler and G. Finazzi (2015). Energetic coupling between plastids and mitochondria drives CO₂ assimilation in diatoms. *Nature* 524(7565): 366-U267.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Behrenfeld, M. J., K. H. Halsey, E. Boss, L. Karp-Boss, A. J. Milligan and G. Peers (2021). Thoughts on the evolution and ecological niche of diatoms. *Ecol Monographs* 91(3): 01457.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Broddrick, J. T., N. Du, S. R. Smith, Y. Tsuji, D. Jallet, M. A. Ware, G. Peers, Y. Matsuda, C. L. Dupont, B. G. Mitchell, B. O. Palsson and A. E. Allen (2019). Cross-compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom *Phaeodactylum tricornutum*. *New Phytol* 222: 1364-1379.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bromke, M. A. (2013). Amino Acid biosynthesis pathways in diatoms. *Metabolites* 3(2): 294-311.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Buck, J. M., C. Río Bártulos, A. Gruber and P. G. Kroth (2018). Blasticidin-S deaminase, a new selection marker for genetic transformation of the diatom. *PeerJ* 6: 5884.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Buck, J. M., J. Sherman, C. R. Bártulos, M. Serif, M. Halder, J. Henkel, A. Falciatore, J. Lavaud, M. Y. Gorbunov, P. G. Kroth, P. G. Falkowski and B. Lepetit (2019). Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom *Phaeodactylum tricornutum*. *Nat Commun* 10(1): 4167.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Buseman, C. M., P. Tamura, A. A. Sparks, E. J. Baughman, S. Maatta, J. Zhao, M. R. Roth, S. W. Esch, J. Shah, T. D. Williams and R. Welti (2006). Wounding stimulates the accumulation of glycerolipids containing Oxophytodienoic Acid and Dinor-Oxophytodienoic Acid in *Arabidopsis* leaves. *Plant Physiol* 142(1): 28-39.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bustin, S. A., V. Benes, J. A. Garson, J. Hellmann, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele and C. T. Wittwer (2009). The MIQE Guidelines: Minimum Information for publication of Quantitative real-time PCR Experiments. *Clinical Chemistry* 55(4): 611-622.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Capella-Gutiérrez, S., J. M. Silla-Martínez and T. Gabaldón (2009). trimAI: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25(15): 1972-1973.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Carradec, Q., E. Pelletier, C. Da Silva, A. Alberti, Y. Seeleuthner, R. Blanc-Mathieu, G. Lima-Mendez, F. Rocha, L. Tirichine, K. Labadie, A. Kirilovsky, A. Bertrand, S. Engelen, M. A. Madoui, R. Méheust, J. Poulain, S. Romac, D. J. Richter, G. Yoshikawa, C. Dimier, S. Kandels-Lewis, M. Picheral, S. Searson, O. Jaillon, J. M. Aury, E. Karsenti, M. B. Sullivan, S. Sunagawa, P. Bork, F. Not, P. Hingamp, J. Raes, L. Guidi, H. Ogata, C. de Vargas, D. Iudicone, C. Bowler, P. Wincker and T. O. Coordinators (2018). A global ocean atlas of eukaryotic genes. *Nat Commun* 9(1): 373.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Carrera, D., G. M. George, M. Fischer-Stettler, F. Galbier, S. Eicke, E. Truernit, S. Streb and S. C. Zeeman (2021). Distinct plastid fructose bisphosphate aldolases function in photosynthetic and non-photosynthetic metabolism in *Arabidopsis*. *J Exp Bot* 72(10): 3739-3755.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chang, Y. F., J. S. Imam and M. F. Wilkinson (2007). The nonsense-mediated decay RNA surveillance pathway. *Annu Rev Biochem* 76: 51-74.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cruz de Carvalho, M. H., H. X. Sun, C. Bowler and N. H. Chua (2016). Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. *New Phytol* 210(2): 497-510.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Delmont, T. O., M. Gaia, D. D. Hinsinger, P. Frémont, C. Vanni, A. Fernandez-Guerra, A. M. Eren, A. Kourlaiev, L. d'Agata, Q. Clayssen, E. Villar, K. Labadie, C. Cruaud, J. Poulain, C. Da Silva, M. Wessner, B. Noel, J.-M. Aury, S. Sunagawa, S. G. Acinas, P. Bork, E. Karsenti, C. Bowler, C. Sardet, L. Stemmann, C. de Vargas, P. Wincker, M. Lescot, M. Babin, G. Gorsky, N. Grimsley, L. Guidi, P. Hingamp, O. Jaillon, S. Kandels, D. Iudicone, H. Ogata, S. Pesant, M. B. Sullivan, F. Not, K.-B. Lee, E. Boss, G. Cochrane, M. Follows, N. Poulton, J. Raes, M. Sieracki, S. Speich and E. Pelletier (2022). Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. *Cell Genom* 2(5): 100123.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Demé, B., C. Cataye, M. A. Block, E. Maréchal and J. Jouhet (2014). Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. *FASEB J* 28(8): 3373-3383.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dolch, L. J., J. Lupette, G. Tourcier, M. Bedhomme, S. Collin, L. Magneschi, M. Conte, K. Seddiki, C. Richard, E. Corre, L. Fourage, F. Laeuffer, R. Richards, M. Reith, F. Rébeillé, J. Jouhet, P. McGinn and E. Maréchal (2017). Nitric oxide mediates nitrite-sensing and acclimation and triggers a remodeling of lipids. *Plant Physiol* 175(3): 1407-1423.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dolch, L. J. and E. Maréchal (2015). Inventory of fatty acid desaturases in the pennate diatom *Phaeodactylum tricornutum*. *Mar Drugs* 13(3): 1317-1339.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dorrell, R. G., A. M. G. Novak Vanclova, M. Penot, J. J. Pierella Karlusich, C. Bowler, S. Liu, E. Maréchal, J. Jouhet, B. Bailleul and D. Croteau (2022). Functional physiology of novel diatom chloroplast proteins. Open Science Foundation. <https://osf.io/89vm3/>.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Emanuelsson, O., S. Brunak, G. von Heijne and H. Nielsen (2007). Locating proteins in the cell using TargetP, SignalP and related tools. *Nature Protocol* 2(4): 953-971.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Erdene-Ochir, E., B. K. Shin, B. Kwon, C. Jung and C. H. Pan (2019). Identification and characterisation of the novel endogenous promoter HASP1 and its signal peptide from *Phaeodactylum tricornutum*. *Sci Rep* 9(1): 9941.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Falciatore, A., R. Casotti, C. Leblanc, C. Abrescia and C. Bowler (1999). Transformation of Nonselectable Reporter Genes in Marine Diatoms. *Mar Biotechnol* 1(3): 239-251.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Folch, J., M. Lees and G. H. S. Stanley (1957). A simple method for the isolation and purification of total lipids from animal tissues. *J Biol Chem* 226(1): 497-509.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Friedlingstein, P., M. W. Jones, M. O'Sullivan, R. M. Andrew, D. C. Bakker, J. Hauck, C. Le Quéré, G. P. Peters, W. Peters and J. Pongratz (2022). Global carbon budget 2021. *Earth System Science Data* 14(4): 1917-2005.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fukasawa, Y., J. Tsuji, S. C. Fu, K. Tomii, P. Horton and K. Imai (2015). MitoFates: improved prediction of mitochondrial targeting

sequences and their cleavage sites. *Mol Cell Proteom* 14(4): 1113-1126.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fukayama, H., C. Masumoto, Y. Taniguchi, A. Baba-Kasai, Y. Katoh, H. Ohkawa and M. Miyao (2015). Characterization and expression analyses of two plastidic enolase genes in rice. *Biosci Biotechnol Biochem* 79(3): 402-409.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fuss, J., O. Liegmann, K. Krause and S. A Rensing (2013). Green Targeting Predictor and Ambiguous Targeting Predictor 2: the pitfalls of plant protein targeting prediction and of transient protein expression in heterologous systems. *New Phytol* 200: 222-233.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gilbertson, R., E. Langan and T. Mock (2022). Diatoms and their microbiomes in complex and changing polar oceans. *Front Microbiol* 13: 786764.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gorbunov, M. Y., E. Shirsin, E. Nikonova, V. V. Fadeev and P. G. Falkowski (2020). A multi-spectral fluorescence induction and relaxation (FIR) technique for physiological and taxonomic analysis of phytoplankton communities. *Mar Ecol Progress Series* 644: 1-13.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grigoriev, I. V., R. D. Hayes, S. Calhoun, B. Kamel, A. Wang, S. Ahrendt, S. Dusheyko, R. Nikitin, S. J. Mondo, A. Salamov, I. Shabalov and A. Kuo (2021). PhycoCosm, a comparative algal genomics resource. *Nucl Acids Res* 49(D1): D1004-D1011.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gruber, A., G. Rocap, P. G. Kroth, E. V. Armbrust and T. Mock (2015). Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. *Plant J* 81(3): 519-528.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gschloessl, B., Y. Guermeur and J. M. Cock (2008). HECTAR: a method to predict subcellular targeting in heterokonts. *BMC Bioinformatics* 9: 393.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hartley, J. L., G. F. Temple and M. A. Brasch (2000). DNA cloning using in vitro site-specific recombination. *Genome Res* 10(11): 1788-1795.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huang, A., L. Liu, C. Yang and G. Wang (2015). *Phaeodactylum tricornutum* photorespiration takes part in glycerol metabolism and is important for nitrogen-limited response. *Biotechnol Biofuels* 8(1): 1-16.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huang, T., Y. Pan, E. Maréchal and H. Hu (2023). Proteomes reveal the lipid metabolic network in the complex plastid of *Phaeodactylum tricornutum*. *Plant J* in press: 10.1111/tpj.16477.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Initiative, O. T. P. T. (2019). One thousand plant transcriptomes and the phylogenomics of green plants. *Nature* 574(7780): 679-685.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jassby, A. D. and T. Platt (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. *Limnol Oceanography* 21(4): 540-547.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Joli, N., L. Concia, K. Mocaer, J. Guterman, J. Laude, S. Guerin, T. Sciandra, F. Bruyant, O. Ait-Mohamed, M. Beguin, M.-H. Forget, C. Bourbousse, T. Lacour, B. Bailleul, C. Nef, M. Savoie, J.-E. Tremblay, D. A. Campbell, J. Lavaud, Y. Schwab, M. Babin and C. Bowler (2023). Hypometabolism to survive the long polar night and subsequent successful return to light in the diatom *Fragilariaopsis cylindrus*. *New Phytol* in press: 10.1111/nph.19387.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jones, P., D. Binns, H. Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S. Y. Yong, R. Lopez and S. Hunter (2014). InterProScan 5: genome-scale protein function classification. *Bioinformatics* 30(9): 1236-1240.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jouhet, J., J. Lupette, O. Clerc, L. Magneschi, M. Bedhomme, S. Collin, S. Roy, E. Maréchal and F. Rébeillé (2017). LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. *PLoS One* 12(8): 0182423.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jouhet, J., E. Maréchal, R. Bligny, J. Joyard and M. A. Block (2003). Transient increase of phosphatidylcholine in plant cells in

response to phosphate deprivation. *FEBS Lett* 544(1): 63-68.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kassambara, A. and F. Mundt (2017). Package 'factoextra'. Extract and visualize the results of multivariate data analyses 76(2).

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Katoh, K., J. Rozewicki and K. D. Yamada (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief Bioinform*.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kazamia, E., R. Sutak, J. Paz-Yepes, R. G. Dorrell, F. R. J. Vieira, J. Mach, J. Morrissey, S. Leon, F. Lam, E. Pelletier, J. M. Camadro, C. Bowler and E. Lesuisse (2018). Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. *Sci Adv* 4(5): 4536.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes and A. Drummond (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28(12): 1647-1649.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Keeling, P. J., F. Burki, H. M. Wilcox, B. Allam, E. E. Allen, L. A. Amaral-Zettler, E. V. Armbrust, J. M. Archibald, A. K. Bharti, C. J. Bell, B. Beszteri, K. D. Bidle, C. T. Cameron, L. Campbell, D. A. Caron, R. A. Cattolico, J. L. Collier, K. Coyne, S. K. Davy, P. Deschamps, S. T. Dyhrman, B. Edvardsen, R. D. Gates, C. J. Gobler, S. J. Greenwood, S. M. Guida, J. L. Jacobi, K. S. Jakobsen, E. R. James, B. Jenkins, U. John, M. D. Johnson, A. R. Juhl, A. Kamp, L. A. Katz, R. Kiene, A. Kudryavtsev, B. S. Leander, S. Lin, C. Lovejoy, D. Lynn, A. Marchetti, G. McManus, A. M. Nedelcu, S. Menden-Deuer, C. Miceli, T. Mock, M. Montresor, M. A. Moran, S. Murray, G. Nadathur, S. Nagai, P. B. Ngam, B. Palenik, J. Pawlowski, G. Petroni, G. Piganeau, M. C. Posewitz, K. Rengefors, G. Romano, M. E. Rumpho, T. Rynearson, K. B. Schilling, D. C. Schroeder, A. G. Simpson, C. H. Slamovits, D. R. Smith, G. J. Smith, S. R. Smith, H. M. Sosik, P. Stief, E. Theriot, S. N. Twary, P. E. Umale, D. Vaulot, B. Wawrik, G. L. Wheeler, W. H. Wilson, Y. Xu, A. Zingone and A. Z. Worden (2014). The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. *PLoS Biol* 12(6): 1001889.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kopka, J., N. Schauer, S. Krueger, C. Birkemeyer, B. Usadel, E. Bergmüller, P. Dörmann, W. Weckwerth, Y. Gibon, M. Stitt, L. Willmitzer, A. R. Fernie and D. Steinhauser (2005). GMD@CSB.DB: the Golm Metabolome Database. *Bioinformatics* 21(8): 1635-1638.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kroth, P. G., A. Chiovitti, A. Gruber, V. Martin-Jezequel, T. Mock, M. S. Parker, M. S. Stanley, A. Kaplan, L. Caron, T. Weber, U. Maheswari, E. V. Armbrust and C. Bowler (2008). A model for carbohydrate metabolism in the diatom *Phaeodactylum tricornutum* deduced from comparative whole genome analysis. *PLoS One* 3(1): 1426.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lacour, T., J. Larivière and M. Babin (2017). Growth, Chl a content, photosynthesis, and elemental composition in polar and temperate microalgae. *Limnol Oceanogr* 62(1): 43-58.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lampe, R. H., G. Hernandez, Y. Y. Lin and A. Marchetti (2021). Representative diatom and coccolithophore species exhibit divergent responses throughout simulated upwelling cycles. *mSystems* 6(2): 10.1128/mSystems.00188-21.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lataretu, M. and M. Hölzer (2020). RNAflow: an effective and simple RNA-Seq differential gene expression pipeline using Nextflow. *Genes (Basel)* 11(12).

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lepetit, B., D. A. Campbell, J. Lavaud, C. Büchel, R. Goss and B. Bailleul (2022). Photosynthetic Light Reactions in diatoms. II. The dynamic regulation of the various light reactions. *The Molecular Life of Diatoms*. A. Falciatore and T. Mock. Cham, Springer International Publishing: 423-464.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Levering, J., J. Brodrick, C. L. Dupont, G. Peers, K. Beeri, J. Mayers, A. A. Gallina, A. E. Allen, B. O. Palsson and K. Zengler (2016). Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. *PLoS One* 11(5): 0155038.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lisec, J., N. Schauer, J. Kopka, L. Willmitzer and A. R. Fernie (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. *Nature Protocols* 1(1): 387-396.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, S., M. Storti, C. Bowler, G. Finazzi and R. G. Dorrell (2022). An integrative environmental atlas of diatom chloroplast transporters. *Front Plant Sci* 13: 950467.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, S., Z Wang, R. Zhu, F. Wang, Y. Cheng and Y. Liu (2021). Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2. *J Vis Exp*(175).

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Luedemann, A., L. von Malotky, A. Erban and J. Kopka (2012). TagFinder: preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. *Methods Mol Biol* 860: 255-286.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Malviya, S., E. Scalco, S. Audic, F. Vincent, A. Veluchamy, J. Poulaïn, P. Wincker, D. Iudicone, C. de Vargas, L. Bittner, A. Zingone and C. Bowler (2016). Insights into global diatom distribution and diversity in the world's ocean. *Proc Natl Acad Sci USA* 113(11): 1516-1525.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maréchal, E. and J. Lupette (2020). Relationship between acyl-lipid and sterol metabolisms in diatoms. *Biochimie* 169: 3-11.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McCarthy, J. K., S. R. Smith, J. P. McCrow, M. Tan, H. Zheng, K. Beeri, R. Roth, C. Lichtle, U. Goodenough, C. P. Bowler, C. L. Dupont and A. E. Allen (2017). Nitrate Reductase knockout uncouples nitrate transport from nitrate assimilation and drives repartitioning of carbon flux in a model pennate diatom. *Plant Cell* 29(8): 2047-2070.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miller, M. A., T. Schwartz, B. E. Pickett, S. He, E. B. Klem, R. H. Scheuermann, M. Passarotti, S. Kaufman and M. A. O'Leary (2015). ARESTful API for access to phylogenetic tools via the CIPRES Science Gateway. *Evol Bioinform Online* 11: 43-48.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mistry, J., S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L. Sonnhammer, S. C. E. Tosatto, L. Paladin, S. Raj, L. J. Richardson, R. D. Finn and A. Bateman (2020). Pfam: The protein families database in 2021. *Nucleic Acids Res* 49: D412-D419.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moog, D., A. Nozawa, Y. Tozawa and R. Kamikawa (2020). Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. *Sci Rep* 10(1): 1167.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moog, D., S. A. Rensing, J. M. Archibald, U. G. Maier and K. K. Ullrich (2015). Localization and evolution of putative triose phosphate translocators in the diatom *Phaeodactylum tricornutum*. *Genom Biol Evol* 7(11): 2955-2969.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murik, O., L. Tirichine, J. Prihoda, Y. Thomas, W. L. Araújo, A. E. Allen, A. R. Fernie and C. Bowler (2019). Downregulation of mitochondrial alternative oxidase affects chloroplast function, redox status and stress response in a marine diatom. *New Phytol* 221(3): 1303-1316.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nash, E. A., A. C. Barbrook, R. K. Edwards-Stuart, K. Bernhardt, C. J. Howe and R. E. R. Nisbet (2007). Organization of the mitochondrial genome in the dinoflagellate *Amphidinium carterae*. *Mol Biol Evol* 24(7): 1528-1536.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nawaly, H., H. Matsui, Y. Tsuji, K. Iwayama, H. Ohashi, K. Nakajima and Y. Matsuda (2023). Multiple plasma membrane SLC4s contribute to external HCO₃⁻ acquisition during CO₂ starvation in the marine diatom *Phaeodactylum tricornutum*. *J Exp Bot* 74(1): 296-307.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nonoyama, T., E. Kazamia, H. Nawaly, X. Gao, Y. Tsuji, Y. Matsuda, C. Bowler, T. Tanaka and R. G. Dorrell (2019). Metabolic innovations underpinning the origin and diversification of the diatom chloroplast. *Biomolecules* 9(8): 464.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nymark, M., A. K. Sharma, T. Sparstad, A. M. Bones and P. Winge (2016). ACRISPR/Cas9 system adapted for gene editing in marine algae. *Sci Rep* 6: 24951.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pesant, S., F. Not, M. Picheral, S. Kandels-Lewis, N. Le Bescot, G. Gorsky, D. Iudicone, E. Karsenti, S. Speich, R. Trouble, C. Dimier, S. Searson and Tara Oceans Coordinators (2015). Open science resources for the discovery and analysis of Tara Oceans data. *Scientific Data* 2.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Popko, J., C. Herrfurth, K. Feussner, T. Ischebeck, T. Iven, R. Haslam, M. Hamilton, O. Sayanova, J. Napier, I. Khozin-Goldberg and I. Feussner (2016). Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of *Phaeodactylum tricornutum*. *PLoS One* 11(10): 0164673.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Prabhakar, V., T. Löttgert, T. Gigolashvili, K. Bell, U. I. Flügge and R. E. Häusler (2009). Molecular and functional characterization

of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from *Arabidopsis thaliana*. *FEBS Lett* 583(6): 983-991.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Raines, C. A (2003). The Calvin Cycle revisited. *Photosynth Res* 75(1): 1-10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rainteau, D., L. Humbert, E. Delage, C. Vergnolle, C. Cantrel, M.-A. Maubert, S. Lanfranchi, R. Maldiney, S. Collin, C. Wolf, A. Zachowski and E. Ruellan (2012). Acyl chains of phospholipase D transphosphatidylation products in *Arabidopsis* cells: a study using multiple reaction monitoring mass spectrometry. *PLoS One* 7(7): 41985.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rastogi, A., U. Maheswari, R. G. Dorrell, F. R. J. Vieira, F. Maumus, A. Kustka, J. McCarthy, A. E. Allen, P. Kersey, C. Bowler and L. Tirichine (2018). Integrative analysis of large scale transcriptome data draws a comprehensive landscape of *Phaeodactylum tricornutum* genome and evolutionary origin of diatoms. *Sci Rep* 8(1): 4834.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rastogi, A., O. Murik, C. Bowler and L. Tirichine (2016). PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing. *BMC Bioinformatics* 17(1): 261.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Royo-Llonch, M., P. Sánchez, C. Ruiz-González, G. Salazar, C. Pedrós-Alió, K. Labadie, L. Paoli, Tara Oceans Coordinators, S. Chaffron, D. Eveillard, E. Karsenti, S. Sunagawa, P. Wincker, L. Karp-Boss, C. Bowler and S. G. Acinas (2021). Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. *Nat Microbiol* 6: 1561-1574.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Río Bártulos, C., M. B. Rogers, T. A. Williams, E. Gentekaki, H. Brinkmann, R. Cerff, M. F. Liaud, A. B. Hehl, N. R. Yarlett, A. Gruber, P. G. Kroth and M. van der Giezen (2018). Mitochondrial glycolysis in a major lineage of eukaryotes. *Genom Biol Evol* 10(9): 2310-2325.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sachse, M., S. Sturm, A. Gruber and P. Kroth (2013). Identification and evaluation of endogenous reference genes for steady state transcript quantification by qPCR in the diatom *Phaeodactylum tricornutum* with constitutive expression independent from time and light. *Endocytobiosis Cell Res* 24: 7.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Scialdone, A., S. T. Mugford, D. Feike, A. Skeffington, P. Borrill, A. Graf, A. M. Smith and M. Howard (2013). *Arabidopsis* plants perform arithmetic division to prevent starvation at night. *Elife* 2: 00669.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Serôdio, J. and J. Lavaud (2011). A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. *Photosynth Res* 108(1): 61-76.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shtaida, N., I. Khozin-Goldberg and S. Boussiba (2015). The role of pyruvate hub enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic microalgae. *Photosynth Res* 125(3): 407-422.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Siegel, P., K. G. Baker, E. Low-Décarie and R. J. Geider (2020). High predictability of direct competition between marine diatoms under different temperatures and nutrient states. *Ecol Evol* 10(14): 7276-7290.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith, S. R., R. M. Abbriano and M. Hildebrand (2012). Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways. *Algal Res Biomass Biofuels Bioproducts* 1(1): 2-16.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith, S. R., C. L. Dupont, J. K. McCarthy, J. T. Brodrick, M. Oborník, A. Horák, Z. Füssy, J. Cihlář, S. Kleessen, H. Zheng, J. P. McCrow, K. K. Hixson, W. L. Araújo, A. Nunes-Nesi, A. Fernie, Z. Nikoloski, B. O. Palsson and A. E. Allen (2019). Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. *Nat Commun* 10(1): 4552.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Spitzer, M., J. Wildenhain, J. Rappaport and M. Tyers (2014). BoxPlotR: a web tool for generation of box plots. *Nature Methods* 11(2): 121-122.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30(9): 1312-1313.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Strassert, J. F. H., I. Irisarri, T. A. Williams and F. Burki (2021). A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. *Nat Commun* 12(1): 1879.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sutherland, E. W., T. Posternak and C. F. Cori (1949). Mechanism of the phosphoglyceric mutase reaction. J Biol Chem 181(1): 153-159.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tanaka, R. and A. Tanaka (2007). Tetrapyrrole biosynthesis in higher plants. Ann Rev Plant Biol 58: 321-346.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tardif, M., A. Atteia, M. Specht, G. Cogne, N. Rolland, S. Brugiére, M. Hippler, M. Ferro, C. Bruley, G. Peltier, O. Vallon and L. Cournac (2012). PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29(12): 3625-3639.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Troncoso-Ponce, M. A., J. Rivoal, S. Dorion, R. Sánchez, M. Venegas-Calerón, A. J. Moreno-Pérez, S. Baud, R. Garcés and E. Martínez-Force (2018). Molecular and biochemical characterization of the sunflower (*Helianthus annuus* L.) cytosolic and plastidial enolases in relation to seed development. Plant Sci 272: 117-130.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang, L., Z. Wang, A. Zhang, R. Bhawal, C. Li, S. Zhang, L. Cheng and J. Hua (2022). Reduction of the canonical function of a glycolytic enzyme enolase triggers immune responses that further affect metabolism and growth in *Arabidopsis*. Plant Cell 34(5): 1745-1767.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen and T. L. Madden (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yin, W. and H. Hu (2023). CRISPR/Cas9-mediated genome editing via homologous recombination in a centric diatom *Chaetoceros muelleri*. ACS Synth Biol 12(4): 1287-1296.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yu, G., K. Nakajima, A. Gruber, C. Rio Bartulos, A. F. Schober, B. Lepetit, E. Yohannes, Y. Matsuda and P. G. Kroth (2022). Mitochondrial phosphoenolpyruvate carboxylase contributes to carbon fixation in the diatom *Phaeodactylum tricornutum* at low inorganic carbon concentrations. New Phytol 235: 1379-1393.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, Y., A. Sampathkumar, S. M.-L. Kerber, C. Swart, C. Hille, K. Seerangan, A. Graf, L. Sweetlove and A. R. Fernie (2020). A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nature Commun 11(1): 4509.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao, Z. and S. M. Assmann (2011). The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in *Arabidopsis thaliana*. J Exp Bot 62(14): 5179-5189.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zheng, Y. T., A. H. Quinn and G. Sriram (2013). Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom *Phaeodactylum tricornutum*. Microbial Cell Factories 12: 16.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu, B.-H., H.-P. Shi, G.-P. Yang, N.-N. Lv, M. Yang and K.-H. Pan (2016). Silencing UDP-glucose pyrophosphorylase gene in *Phaeodactylum tricornutum* affects carbon allocation. New Biotechnol 33(1): 237-244.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zulu, N. N., K. Zienkiewicz, K. Vollheyde and I. Feussner (2018). Current trends to comprehend lipid metabolism in diatoms. Progress Lipid Res 70: 1-16.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)