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Abstract

Ageing is a complex and multifactorial process. For two decades, the Human Ageing Genomic Resources (HAGR) have aided researchers in
the study of various aspects of ageing and its manipulation. Here, we present the key features and recent enhancements of these resources,
focusing on its six main databases. One database, GenAge, focuses on genes related to ageing, featuring 307 genes linked to human ageing
and 2205 genes associated with longevity and ageing in model organisms. AnAge focuses on ageing, longevity, and life-history across animal
species, containing data on 4645 species. DrugAge includes information about 1097 longevity drugs and compounds in model organisms such
as mice, rats, flies, worms and yeast. GenDR provides a list of 214 genes associated with the life-extending benefits of dietary restriction in
model organisms. CellAge contains a catalogue of 866 genes associated with cellular senescence. The LongevityMap serves as a repository
for genetic variants associated with human longevity, encompassing 3144 variants pertaining to 884 genes. Additionally, HAGR provides various
tools as well as gene expression signatures of ageing, dietary restriction, and replicative senescence based on meta-analyses. Our databases
are integrated, regularly updated, and manually curated by experts. HAGR is freely available online (https://genomics.senescence.info/).
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Introduction be elucidated (1,2). Furthermore, because ageing is a major
Ageing is one of the most complex biological processes whose  risk factor for mortality and several diseases, researchers from
underlying mechanisms, despite extensive studies, remain to various fields are studying this process (3). The Human Ageing
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Genomic Resources (HAGR) is an intuitive and powerful col-
lection of online tools and databases that have greatly assisted
scientists in addressing this complex problem.

HAGR first became publicly available online in 2004 and
has been growing dynamically since, in parallel with the ma-
jor growth and development of ageing-related research (4).
Our resources include six main databases related to different
aspects of ageing research (Figure 1), alongside other supple-
mentary projects and general information on ageing biology.
Given the impact of genetics on ageing, HAGR places a strong
emphasis on genetics and genomics.

In this paper, we provide an overview of the current ver-
sion of HAGR, summarizing each of its databases and tools,
and highlighting updates made since its previous release (3).
Our goal is to provide an up-to-date guide to one of the lead-
ing and most frequently accessed online platforms used in
biogerontology. HAGR is freely available at https:/genomics.
senescence.info/, with no registration required.

Online resources and databases

GenAge: The database of ageing-related genes

GenAge (https://genomics.senescence.info/genes/) is our
benchmark database focused on genes associated with the
ageing process, the so-called ‘gerontome’. It is in turn di-
vided into two core databases: (i) GenAge—Human; and
(i) GenAge—Model Organisms. Both databases have been
manually curated from the scientific literature. Detailed
information about GenAge is available in earlier publications
(6,7), what follows is a brief description.

GenAge—Human—is a curated list of 307 genes associated
with human ageing, or at least genes that may significantly im-
pact the human ageing phenotype and processes. It is impor-
tant to note that our focus within HAGR is on biological age-
ing, not just age-related diseases. Because lifespan is influenced
by multiple factors beyond ageing, such as accidents and non-
age-related pathologies, we focus on genes that potentially
regulate the ageing process as a whole—or that at least in-
fluence various aspects of the ageing phenotype—rather than
solely those affecting lifespan (refer to the LongevityMap
below for longevity-related genes). Each human gene entry
was thus selected following a careful review of the litera-
ture with genes associated with human progeroid syndromes,
such as Werner syndrome, and human homologs of genes
modulating ageing in mammalian models—typically mice—
as a starting point (4,6). Considering that genes can be as-
sociated with ageing based on different types of studies and
evidence, further relevant studies for gene selection include
human genetic association studies for longevity, genetic ma-
nipulations in lower model organisms, and iz vitro studies.
Consequently, genes are classified into nine categories corre-
sponding to their level of ageing-associated evidence (ranging
from ‘indirect/inconclusive evidence linking the gene product
to ageing’ to ‘evidence directly linking the gene product to
ageing in humans’), as previously detailed (7).

Genes commonly differentially expressed during mam-
malian ageing are also available to researchers in GenAge.
A recent meta-analysis by our lab revealed global and tissue-
specific gene expression changes during human ageing, with
significant overlaps with both GenAge Human and with the
LongevityMap (8). More specifically, we identified 449 up-
regulated and 162 downregulated genes with age across all
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Table 1.  Species in the GenAge database

Database Species Number of genes
Human genes Homo sapiens 307
Model organism Mus musculus 136
genes
Caenorhabditis elegans 889
Drosophila 202
melanogaster
Saccharomyces 911
cerevisiae
Caenorhabditis briggsae 1
Danio rerio 1
Mesocricetus auratus 1
Podospora anserina 3
Schizosaccharomyces 61
pombe
Total for model 2205
organisms

tissues. This is a substantially larger mammalian ageing sig-
nature than previously, which in 2009 consisted of 56 upreg-
ulated and 17 downregulated genes (9), possibly due to the
larger number of studies now available.

GenAge—Model Organisms—comprises 2205 genes asso-
ciated with longevity or ageing in model organisms based on
genetic manipulation experiments curated from the literature.
Only genes that, when genetically manipulated, have a sig-
nificant impact on ageing and/or longevity are included. As
our focus is on the ageing process, genes reducing lifespan by
causing specific diseases without evidence of premature or ac-
celerated ageing phenotypes are typically excluded (7). Genes
are then classified into two broad categories: ‘pro-longevity’
(n = 545) and ‘anti-longevity’ (7 = 1101). In addition, yeast
genes that reduce lifespan in large-scale screens or without a
significant link to ageing processes are more ambiguously clas-
sified as ‘necessary for fitness’ (n = 497). In addition, genes
with conflicting results are classified as ‘unclear’ (7 = 27) and,
lastly, genes with insufficient data are categorized as ‘unan-
notated’ (n = 35), as previously described (7). Information
from model organisms is also leveraged to infer possible genes
associated with human ageing in the aforementioned human
dataset. The species distribution in GenAge is presented in Ta-
ble 1 and includes the major traditional biomedical models
such as mice, flies, worms, and yeast.

While the number of human ageing-related genes has only
modestly changed over the years (5), existing entries are fur-
ther curated, resulting in the addition of dozens of new bib-
liographic references. Observations concerning many genes
are also regularly updated to reflect new findings. Regard-
ing model organisms, in addition to including almost 100
new genes since the last update, we also added five additional
species, most notably S. pombe, an essential unicellular organ-
ism in ageing research—now featuring 61 entries (10,11).

AnAge: the database of animal ageing and
longevity

AnAge (https://genomics.senescence.info/species/) is a curated
database of ageing, longevity, and life-history traits. Its pri-
mary aim is to support studies involving comparative ageing
biology while also being of value to fields such as evolutionary
biology, ecology and conservation.
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Figure 1. Overview of the main databases in the Human Ageing Genomic Resources (HAGR).
For a comprehensive description of AnAge, please re- Table 2.  Taxonomy distribution of the species in the AnAge database
fer to an earlier publication (12). In brief, this database . .
. . . . . Kingdom Animalia
presents entries with a multitude of data, including data on Average
maximum lifespan, metabolism, taxonomy, and additional Number of longevity
life-history data, alongside relevant ageing phenotypes and Phylum species (vears)
observations. AnAge incorporates over 1400 articles and
also highlights a list of nine species exhibiting negligible  Annelida 3 283.3
senescence. Arthropoda 16 11.6
Although primarily focused on animal biology, AnAge also Chordata 4357 9
. . : Cnidaria 2 NA
includes entries about plants (7 = 5) and fungi (7 = 4). Re- 2 125
garding animals, nine phyla are represented, with approx-  gepinodermata
imately 98% of the entries in Chordata, divided into 14 Mollusca 49 36
classes. The most well-represented classes are Aves, Mam- Nematoda 2 0.6
malia, Teleostei and Reptilia, respectively (Table 2). AnAge is A 3 2.3
of great value for ageing research as it offers information on Platyhelminthes
. . . e . Porifera 2 8275
the wide range of lifespans across taxa (Figure 2), facilitating
a variety of comparative studies in biogerontology. Phylum Chordata
AnAge is one of the oldest and most frequently used HAGR ~ Class Number of Average
resources and is arguably the benchmark animal longevity species longevity
database worldwide due to its constant updating and manual (years)
: ) - : "~ Amphibia 181 14.9
curation. The current version comprises 4671 entries, encom ; .
. . Actinopterygii 4 27.4
passing 4645 species and 26 taxa. Ascidiacea 1 5
Aves 1513 17.8
. L 16 7.1
DrugAge: the database of anti-ageing drugs Cephalaspidomorphi
Among HAGR’s recent additions, DrugAge (https://genomics. 117 25.5
senescence.info/drugs/), consists of a manually curated com- Chondrichthyes
pilation of drugs and compounds that extend longevity in gf‘;’%dt”?s“'” }4 ;1‘2
model organisms (13). Some compounds are listed multiple C;el;saf:zthi 1 48
times because they have been tested across various speciesand  pj;,0, 3 371
doses, enabling more comprehensive assessments of their im- Holostei 4 26
pact on longevity, as shown previously using DrugAge data ~ Mammalia 1349 19.8
(14). Given our focus on ageing, compounds from studies in- ~ Reptilia 547 22
Teleostei 806 16.9

volving disease-prone animals or harmful conditions are not
included.
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Figure 2. Distribution of maximum lifespan across selected orders using data

Maximum lifespan (years) (log scale)

from the AnAge database. Six mammalian orders, two bird, two reptile,

two amphibian, and one fish order (each with over 40 species in the AnAge database) are included. Kernel density estimation was used for the
distribution with default parameters. In the maximum lifespan distribution graph, the x-axis represents the maximum lifespan in years (log scale) while
the y-axis indicates the number of species at each lifespan. Silhouettes from phylopic.org by T. Michael Keesey (Cetacea and Psittaciformes),
thefunkmonk (Primates), Kai Caspar (Passeriformes), Scott Hartman (Testudines) and others in the public domain.

Presently, DrugAge features 1097 drugs or compounds
evaluated in over 3200 experiments across 37 species, sup-
ported by a total of 656 references. Figure 3 illustrates
the growth trajectory of HAGR databases over the years,
where we can see a major improvement over the previ-
ous versions that is more marked for DrugAge. Indeed,
longevity pharmacology has been exploding, and the growth
in longevity drugs has outpaced the growth of longevity genes
(15).

The recent surge of interest in anti-ageing drugs within
health research and the pharmaceutical/biotechnology sectors
underscores the significance of a scientifically reliable resource
like DrugAge (15,16). Despite its relatively recent develop-
ment, our DrugAge database has established itself as a lead-
ing information source in geroscience and is, after GenAge
and AnAge, the most widely accessed database within HAGR
(Figure 4A).

GenDR: the database of dietary restriction genes
Dietary restriction (DR) is a widely studied anti-ageing inter-
vention, yet its underlying mechanisms remain poorly under-
stood (17-19). Recognizing the genetic component of ageing,
our GenDR database (https:/genomics.senescence.info/diet/)
compiles genes associated with DR to aid research and ad-
vance our understanding of the genetic and molecular mech-
anisms of DR-induced life-extension.

Further details about GenDR are available in a previ-
ous publication (20), but briefly this database includes two
datasets: (i) genes inferred from genetic manipulation exper-
iments in model organisms that regulate the life-extending
benefits of DR; and (ii) mammalian genes whose expression
is robustly altered due to DR derived from a meta-analysis
(21). In total, GenDR comprises 5 model organisms and en-
tails 214 genes inferred from genetic manipulations, along-
side 172 genes derived from gene expression changes. To our
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Figure 3. Time-series growth of the Human Ageing Genomic Resources (HAGR) databases. The figure illustrates the number of entries across different

HAGR databases over the years. Gene expression signatures are not included.

knowledge, it remains the only database of genetic alterations
associated with DR.

CellAge: the database of cell senescence genes

Cellular senescence is triggered by various stressors like telom-
ere attrition during replication, the dysregulation of onco- and
tumour-suppressor genes, and cellular or DNA damage from
sources such as hydrogen peroxide and irradiation (22,23).
Senescent cells undergo proliferative arrest and secrete a
mix of proinflammatory factors known as the senescence-
associated secretory phenotype (SASP) (24,25). As senescent
cells continually produce proinflammatory factors they may
contribute to inflammageing and hinder tissue repair and re-
newal (26). Cellular senescence has been linked to various
ageing-related diseases including cancer, Alzheimer’s disease,
osteoarthritis and diabetes (27-30).

CellAge was compiled from a systematic search of the lit-
erature, and genes were included based on specific criteria,
as described (31). Briefly, the CellAge database consists of
genes inferred from genetic manipulations iz vitro that induce
(m = 370, 42.7%) or inhibit (n = 475, 54.8%) replicative
(n = 153), stress-induced (7 = 185), and oncogene-induced
(n = 238) cellular senescence (https://genomics.senescence.
info/cells/). Some genes are involved in multiple classes of
senescence. There are 21 genes that have an unclear effect on
cellular senescence, inducing or inhibiting this process depend-
ing on experimental context. Additionally, there are 360 genes
in CellAge where the mechanism by which they influence the
senescence program is unclear.

The current version of the CellAge database contains 866
genes (32), a considerable increase from the 279 genes in the

first build (31). Furthermore, we previously used ‘replicative
senescence’ as the default annotation for CellAge genes when
the literature did not specify how the gene was influencing
the senescence phenotype. We have now added a fourth an-
notation, ‘unclear,’” alongside the ‘replicative, ‘stress-induced,
and ‘oncogene-induced’ tags, in order to better represent our
knowledge of how these genes contribute to cellular senes-
cence. Previous entries have been updated to reflect this new
annotation where applicable.

Furthermore, CellAge includes a list of 1259 genes differ-
entially expressed during replicative senescence (525 and 734
over- and underexpressed, respectively) derived from a meta-
analysis of senescent cells compared to proliferating counter-
parts (33).

LongevityMap: The database of genetic association
studies of longevity

While human longevity derives from a complex interplay
of factors, the heritability of human longevity has been
estimated to be ~25% (34). The LongevityMap (https://
genomics.senescence.info/longevity/) was developed to assist
in cataloguing the increasing volume of data arising from
genetic-variant studies of human longevity (35).

Succinctly, all entries within the LongevityMap were cu-
rated from the literature, excluding studies in cohorts of un-
healthy individuals at baseline. Details on study design are
provided for each entry, including population details, sam-
ple sizes, and indications of statistical significance, alongside
negative results. In total, our database encompasses over 500
entries, comprising 884 genes and 3144 variants. The list is
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Figure 4. Human Ageing Genomic Resources (HAGR) usage, visitors, citations, and database statistics. (A) Usage by percentage of the different HAGR
databases in 2022. (B) HAGR unique visitors per month (red) and citations per year (blue). (C) Word Cloud based on words in the abstracts of papers

citing HAGR.

derived from 270 individual studies and presents 275 statisti-
cally significant results.

Additional datasets, tools, and features

In addition to our core databases, HAGR also integrates other
relevant resources on ageing. Of note, the Digital Ageing Atlas
(https://ageing-map.org/) serves as a platform for age-related
changes that includes age-related molecular, physiological,
psychological, and pathological data to deliver an interac-
tive database that centralizes human ageing-related changes
(36). Despite its status as an external database to HAGR, we
link to this portal to provide additional ageing-related con-
text to genes in HAGR. Likewise, our genomics resources in-
clude genome and transcriptome sequencing of the naked-
mole rat (the longest-lived rodent) and the bowhead whale
(the longest-lived mammal) (37,38). Moreover, HAGR encom-
passes projects on the relationship between ageing, cancer,
and evolution. Beyond genes related to age-related diseases
and transcriptional signatures of ageing, these projects host
datasets that can be explored and downloaded. In addition,
two bioinformatics tools for ageing research are featured in
HAGR: Ageing Research Computational Tools (ARCT), a Perl

toolkit (4) and an SPSS script to determine the demographic
rate of aging for a given population, as described previously
(39).

Furthermore, HAGR provides information and news about
ageing biology. Our website includes links to social me-
dia (Twitter: https:/twitter.com/AgingBiology and Facebook:
https://www.facebook.com/BiologyAgingNews) with the lat-
est news in the biology and genetics of ageing and in-
cludes an educational resource on ageing (https://www.
senescence.info/). Lastly, we maintain WhosAge (https://
whoswho.senescence.info/), a compilation featuring 340 in-
dividuals and 65 companies contributing to biogerontology.

Usage examples in ageing and longevity

With over 1000 citations (Figure 4B), HAGR has been invalu-
able to multiple studies in various and diverse research topics
in the biology of ageing (Figure 4C). Of note in recent years,
AnAge was used in a study to identify species with remarkable
longevity with evolutionary implications for lifespan (40). An-
Age has also facilitated data gathering on species’ maximum
lifespan and relative age comparisons (41,42), body size values
in a study exploring evolutionary pathways to SARS-CoV-2
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resistance (43), and age at female sexual maturity in a major
research endeavour on somatic mutation rates across mam-
mals (44). HAGR’s data contributed to accurate predictions
of basal metabolic rate and organ weights (45).

To highlight other recent examples of the use of HAGR,
Townes et al. used GenAge in their work to identify new po-
tential genes associated with longevity in C. elegans and S.
cerevisiae (46). Moreover, GenAge and DrugAge facilitated
the annotation and curation of ageing-related genes/proteins
which led to the identification of potential drug targets (47).
In collaboration with other scientists, our research group has
used GenDR to aid in the application of machine learning
methods to identify DR-associated features (48). A recent
study used DrugAge as the primary source of information to
identify lifespan-extending compounds in diverse model or-
ganisms, providing novel insights on lifespan extension (49).
A co-regulated network of senescence genes in human tis-
sues was created using CellAge’s features (50). The CellAge
database was also utilized in a study on microglial senes-
cence, where human senescence signatures and senescence-
associated genes were retrieved (51), and in another research
endeavour where it assisted in identifying genes differentially
expressed in aged stem cells (52). Further, the association of
host genes with ageing across various eukaryotic hosts was in-
vestigated using the CellAge and GenAge databases (53). Pod-
der et al. used, among other databases, the Digital Ageing At-
las to discover longevity genes associated with nutrient sensing
(54). A new variant in HLA-DQB1 gene was associated with
longevity and lipid homeostasis in a Chinese population study
that employed the LongevityMap in variant selection (55). Fi-
nally, Cardoso et al. used several HAGR databases to gener-
ate biomarker panels for human frailty (56). These instances
underscore the diverse ways in which HAGR databases can
support ageing research.

Discussion

Ageing is a complex process that arises from the interplay of
various molecular pathways and the environment; therefore,
the catalogue and study of its multiple components is piv-
otal for understanding ageing and developing interventions.
HAGR was conceived to facilitate such comprehensive analy-
ses by offering comprehensive, consistent, and accurate data.
Since its start, HAGR has been publicly available online for
everyone to use, with all HAGR databases available for down-
load.

Compared to previous versions of HAGR, our resources
have seen significant updates and growth (Figure 3). Further-
more, as illustrated in Figure 4B, since its inception in 2004,
HAGR has consistently expanded in terms of users and cita-
tions, emphasizing its importance within the scientific com-
munity. Among our primary resources, AnAge and GenAge
continue to attract the most visitors, with the more recent Dru-
gAge also now a popular resource (Figure 4A). As we look to
the future of HAGR, we will leverage insights from database
usage as well as user feedback to guide future developments
and prioritize our curation efforts. We will also continue to
align HAGR with developments in the ageing field and with
new technologies, such as advances in single-cell sequencing
as well as recent discoveries regarding the role of epigenetics
in ageing (57).

In addition to HAGR, other websites and databases also
provide valuable resources for studying ageing. One notewor-
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thy example is the Ageing Atlas, an online resource that em-
ploys diverse data to explore the ageing process in a multi-
dimensional way (58). Another database, AgeFactDB, com-
piles ageing-related factors, incorporating our databases in its
analyses (59). Nonetheless, HAGR stands out as a leading re-
source in biogerontology due to its integrated features, offer-
ing comprehensive tools, datasets, and insights into ageing and
longevity. We anticipate that HAGR, together with other tools,
will continue to advance the study of ageing biology and con-
tribute to our overarching goal: developing a paradigm that
explains ageing and improves human health and longevity.

Data availability

All databases in HAGR are freely available online (https://
genomics.senescence.info). Moreover, users can export, down-
load, and reuse the data for their own analyses, under a Cre-
ative Commons Attribution license.
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