

Substrate recognition mechanism of the endoplasmic reticulum-associated ubiquitin ligase Doa10

3

4 Kevin Wu^{1,2,†}, Samuel Itskanov^{3,†}, Diane L. Lynch⁴, Yuanyuan Chen^{1,2}, Aasha Turner¹, James C.
5 Gumbart⁴, and Eunyong Park^{1,2,*}

⁶ ¹Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

⁷ ²California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.

⁸ ³Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA.

⁹ ⁴School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology,

10 Atlanta, GA 30332, USA.

†These authors contributed equally to this work

12 These authors contributed equally to this work.

15

14 Abstract

15 Doa10 (MARCH6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the
16 endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins.
17 Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its
18 substrates. Here, we defined the substrate recognition mechanism of Doa10 by structural and
19 functional analyses on *Saccharomyces cerevisiae* Doa10 and its well-defined degron Deg1. Cryo-EM
20 analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its
21 conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our
22 biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's
23 degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal
24 membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those
25 proteins that can access the central cavity and lateral tunnel.

26

27 Introduction

28 Selective degradation of misfolded and mistargeted proteins constitutes key pathways underpinning
29 cellular protein homeostasis. In eukaryotic cells, the aberrant proteins are marked with polyubiquitin
30 chains by E3 ubiquitin (Ub) ligases and subsequently degraded by the proteasome. The endoplasmic
31 reticulum (ER) serves as a primary site for protein biosynthesis and maturation. Over one third of
32 proteins translocate into the ER lumen or integrate into or associate with the ER membrane, including
33 many proteins that are destined for other organelles ¹⁻⁵. To enable quality control of these proteins,
34 the ER is equipped with a set of membrane-embedded E3 ligases that play central roles in the
35 process known as ER-associated protein degradation (ERAD) ⁶⁻¹¹. The primary function of these E3
36 ligases is to recognize and polyubiquitinate aberrant proteins in the ER to enable their selective
37 clearance. Moreover, through coordination with a AAA+ ATPase motor (Cdc48 in yeast and p97 in
38 mammals), ERAD-specific E3 ligases facilitate the removal of proteins from the ER lumen or
39 membrane into the cytosol for proteasomal targeting, a process called retrotranslocation ¹²⁻¹⁶. As the
40 ER forms the most abundant membrane structure as well as a key biosynthetic hub, ERAD
41 constitutes a vital component of protein quality control and regulated proteolysis in eukaryotic cells.
42 Impairment of the ERAD machinery causes ER stress and dysfunction and is implicated in several
43 human diseases ^{17,18}. However, the molecular mechanisms by which ERAD-specific E3 ligases
44 mediate the protein quality control processes are incompletely understood.

45 Conceptually, ERAD can be classified into three categories depending on the topological location of
46 substrate recognition with respect to the ER membrane: (1) the ER lumen, (2) the ER membrane, and
47 (3) the cytosol. Respectively, these distinct ERAD pathways are often referred to as ERAD-L, ERAD-
48 M, and ERAD-C ¹⁹⁻²¹. ERAD-L substrates include misfolded luminal proteins and membrane proteins
49 with a misfolded luminal domain, whereas ERAD-M substrates include those with misfolding in the
50 intramembrane regions, and ERAD-C substrates are typically proteins with a misfolded cytosolic
51 domain. In addition to misfolding, certain polypeptide segments and posttranslational modification
52 features of substrates also serve as degradation signals (degrons) for ERAD ²²⁻²⁴. Generally, the
53 different classes of substrates are recognized by distinct ERAD-specific E3 ligases. In fungal species,
54 most ERAD-L/-M and ERAD-C substrates are handled by Hrd1 and Doa10, respectively, both of
55 which belong to RING-type E3 ligases ²⁵⁻²⁷. In addition to ERAD-C substrates, Doa10 also recognizes
56 certain ERAD-M substrates ²⁸. Hrd1 and Doa10 are the two most conserved ERAD-specific E3
57 ligases across eukaryotic species including humans.

58 Doa10 (MARCH6/TEB4 in metazoans and SUD1 in plants) is a large multi-spanning membrane
59 protein residing in the ER and inner nuclear membranes ²⁹ (Fig. 1a). Its first ~100 amino acids contain
60 a RING-CH domain that enables its Ub ligase activity through an interaction with E2 Ub-conjugating
61 enzymes. The RING-CH domain is followed by a transmembrane domain (TMD) containing 14
62 transmembrane segments (TMs), the structure and function of which are poorly characterized.
63 Substrate polyubiquitination by fungal Doa10 requires two E2 proteins Ubc6 and Ubc7 (ref. ²⁷). Ubc6
64 is a tail-anchored (TA) membrane protein in the ER membrane. Ubc7 is a soluble enzyme but
65 localizes to the ER membrane through interaction with the single-spanning ER membrane protein
66 Cue1 (ref. ³⁰). Ubc6 is involved in attachment of the first couple of Ub molecules to the substrate,
67 Ubc7 is used for further elongation of the poly-Ub chain ³¹. Doa10 is also shown to interact with Ubx2,
68 a membrane protein that recruits Cdc48 to the ER, facilitating the extraction of substrate polypeptides
69 from the ER membrane into the cytosol in the cases of membrane-associated substrates ³². In

70 addition to ER proteins, Doa10 can also polyubiquitinate soluble cytosolic proteins as its substrate
71 recognition mainly occurs on the cytosolic side³³.

72 Currently, the mechanism by which Doa10 recognizes its substrates and coordinates with its E2s for
73 polyubiquitination is unclear. Although a short peptide called Deg1, which was derived from the yeast
74 mating-type protein α 2, has been identified as a Doa10-specific degron (Doa10 stands for
75 Degradation of Alpha2 10) and often used as a model substrate in the studies of Doa10 (ref. 27,33-35), it
76 remains unknown how Doa10 recognizes Deg1. Interestingly, certain point mutations in the TMD of
77 Doa10 have been found to alter the turnover rates of Deg1-fused protein substrates, suggesting a role
78 of the TMD of Doa10 in polyubiquitination³⁶. Moreover, it has been suggested that Doa10 itself can
79 also dislocate certain transmembrane substrates from the membrane independently of substrate
80 ubiquitination and Cdc48 (ref. 37). Thus, the TMD of Doa10 may possess multiple functions including
81 substrate recognition and retrotranslocation, but the mechanisms underlying these functions remain
82 yet to be understood.

83 In this study, we present the results of our cryo-electron microscopy (cryo-EM), molecular dynamics
84 (MD), AlphaFold2 modeling, and biochemical analyses of Doa10 from *Saccharomyces cerevisiae*.
85 Our study reveals the highly unusual architecture of Doa10, where its TMD is arranged as a
86 horseshoe-like architecture with its central cavity filled with lipids. The conserved middle domain of
87 Doa10 forms a lateral tunnel-like cavity, the entrance of which faces the central cavity and is open to
88 the cytosol. Mutations in the tunnel impair degradation of Deg1 substrates, and MD simulations
89 suggest that these mutations induce a collapse of the tunnel. Furthermore, we used photocrosslinking
90 to show that the lateral tunnel directly interacts with Deg1 substrates. Using membrane-anchored
91 Deg1 substrates, we further show that a distance of at least 20-30Å between Deg1 and the membrane
92 anchor is required for Deg1 recognition by Doa10. This is likely because fence-like features of the N-
93 and C-terminal portions of TMD restrict membrane proteins from accessing the central cavity and
94 lateral tunnel. Our findings provide important insight into the mechanism by which Doa10 recognizes
95 its substrates. Given the high degree of structural conservation, human MARCH6 is also likely to use
96 the same mechanism to recognize substrates.

97

98 **Results**

99 **Cryo-EM analysis of *S. cerevisiae* Doa10**

100 To gain structural insights into the mechanism of Doa10, we first determined a cryo-EM structure of *S.*
101 *cerevisiae* Doa10. To purify Doa10, we inserted a cleavable green fluorescent protein (GFP) tag at
102 the C-terminus of the chromosomal copy of Doa10 in yeast. We first tested purification of endogenous
103 Doa10 by GFP affinity purification after solubilizing membranes with the lauryl maltose neopentyl
104 glycol (LMNG) detergent. However, the yield and quality of samples were insufficient for structural
105 analysis (Supplementary Fig. 1a, b). We therefore overexpressed Doa10 by replacing its endogenous
106 promoter with a strong galactose-inducible *GAL1* promoter. The purified Doa10 protein in this
107 approach yielded a largely monodisperse peak in size-exclusion chromatography and showed mainly
108 as the full-length band on a SDS gel (Supplementary Fig. 1c, d). Cryo-EM images of the purified
109 Doa10 sample displayed evenly dispersed particles, which produced well defined two-dimensional
110 (2D) class averages (Supplementary Fig. 2a, b).

111 Single particle cryo-EM analysis of purified Doa10 yielded only one major class, which could be
112 refined to a three-dimensional (3D) reconstruction at 3.2-Å overall resolution (Fig. 1b-d, and
113 Supplementary Figs. 2c and 3 and Table 1). Most of the TMD were well defined, allowing us to build a
114 reliable atomic model (Fig. 1e,f). However, we could not fully register distal parts of the last four TMs
115 (i.e., TMs 11-14) due to their lower local resolution caused by the bending motions of the domain
116 (Supplementary Figs. 3c and 4). We also note that the N-terminal RING-CH domain (residues 1-113)
117 and the loop between TMs 2 and 3 (L2/3; residues 242-463) are only visible at low resolution due to
118 high conformational heterogeneity (Fig. 1d). While we were conducting follow-up biochemical studies,
119 AlphaFold2 was published³⁸. An AlphaFold2 predicted model of yeast Doa10 agrees well with our
120 experimental structure with a root mean square deviation (RMSD) of 2.7 Å over 835 aligned C_α atoms
121 (Supplementary Fig. 5a,b). Since our cryo-EM structure cannot model the RING-CH domain and
122 several loops, we also built a hybrid model combining our experimental model and high-confidence
123 regions of the AlphaFold2 model.

124

125 Overall architecture and structural features of Doa10

126 Doa10 exhibits highly unusual architecture. Overall, the TMD of Doa10 can be divided into the three
127 subregions: the N-terminal domain (NTD), the middle domain, and the C-terminal domain (CTD),
128 which are formed by TMs 1-4, 5-10, and 11-14, respectively (Fig. 1a-c). Viewed from the cytosol,
129 they are arranged in a horseshoe-like fashion (Fig. 1b). Consequently, Doa10 possesses a large
130 enclosed “central” cavity within its TMD. In our cryo-EM map, this cavity is filled with detergent and
131 lipid molecules, suggesting that it would be occupied with lipids in the native membrane. Based on the
132 low-resolution features, the RING-CH domain is placed directly above where TM1 and TM14 join at
133 the tips of the horseshoe-like structure (Fig. 1d).

134 The TMD of Doa10 is also atypical in that many of its TMs are unusually long and highly tilted (Fig. 1).
135 For example, TM3 is ~60 amino acids long and tilted by ~65° from the membrane normal. TMs 1, 5,
136 and 9 are also ~50 amino acids long and tilted by more than 45°. A few other TMs (TMs 2, 6, and 11)
137 are ~30-40 amino acids long, substantially longer than lengths of 20-30 amino acids for typical TMs.
138 There are also multiple amphipathic domains. The segment between TMs 3 and 4 includes two
139 amphipathic α -helices lying flat on the luminal leaflet of the ER membrane. Part of the segment
140 between TMs 8 and 9 (referred to as L8/9b and to be discussed later) forms a globular domain that is
141 partially embedded on the cytosolic leaflet of the ER membrane.

142 Another atypical feature of Doa10 is a relatively loose packing between its TMs. As a result, the TMD
143 itself contains two sizable intra-TMD cavities each surrounded by TMs 1-5 (cavity 1) and by TMs 5-
144 10 (cavity 2), respectively, and both are partly continuous from the central cavity (Fig. 2a,b;
145 Supplementary Fig. 3e). Our cryo-EM structure shows that both cavities are occupied by lipids.
146 Interestingly, cavity 2 is occupied with a triglyceride in addition to a phospholipid. The arrangement of
147 TMs 5-10 suggests that these two lipids are unlikely to freely exchange with the bulk lipids, and
148 therefore are likely trapped into the cavity during the folding of Doa10.

149 Among the poorly resolved regions in our cryo-EM are the N-terminal RING-CH domain and the C-
150 terminal extension (CTE) following the TM14, which are expected to be in proximity to each other
151 based on our cryo-EM structure (Fig. 1f). AlphaFold2 predicts that the CTE and part of the RING-CH

152 domain co-fold into a two-stranded antiparallel β -sheet (Fig. 2c). Previous biochemical studies found
153 that a truncation of CTE almost completely abolishes the degradation of Deg1 substrates³⁵. This can
154 be explained by a possible loss of proper functioning of the RING-CH domain without the CTE.

155 To test whether flexibility of the RING-CH domain observed in the cryo-EM structure could be an
156 intrinsic property of Doa10, we ran 1- μ s all-atom MD simulations on the hybrid model. Indeed, the
157 results showed markedly larger mobility for the RING-CH domain compared to the TMD (Fig. 2d;
158 Supplementary Fig. 4a–c and Movie 1). Throughout the course of the MD simulations, the CTE
159 remained stably bound to the N-terminal RING-CH domain with the two β -strands forming 4 or 5
160 hydrogen bonds on average (Supplementary Fig. 4d,e). Thus, this observation suggests that a
161 separation between TMs 1 and 14 is unlikely. Nevertheless, the cryo-EM structure indicates that CTD
162 is relatively more mobile than the rest of the TMD (Supplementary Fig. 3c). Particle classification
163 showed that the CTD wobbles by ~5° (Supplementary Fig. 4f–h), probably in part due to limited
164 contacts between TMs 1 and 14. This flexibility would allow diffusion of lipid molecules between the
165 bulk membrane and the central cavity of Doa10. On the other hand, integral (even single-spanning)
166 membrane proteins would not easily enter the central cavity laterally through the seam between TMs
167 1 and 14 as the RING-CH:CTE contact would act as a barrier.

168

169 **Structural and sequence conservation of middle domain**

170 Despite the highly interesting architecture of Doa10, the structure itself did not provide clear insights
171 into the functions of the TMD. To better define functionally important features in Doa10, we mapped
172 the amino acid conservation across Doa10 homologs onto the structure (Fig. 3a,b). This shows that
173 the middle domain constitutes the most conserved region, whereas both NTD and CTD are
174 substantially variable. Specifically, within the middle domain, conserved TMs 5, 6, and 7, which
175 together were previously referred to as the 'TEB4-Doa10 (TD)' domain, create a 'tunnel'-like cavity
176 between a wedge formed by the TMs and the roof-like feature formed by the L6/7 loop, together with
177 other parts of the middle domain (Fig. 3b). AlphaFold2 predicts that human homolog MARCH6 also
178 displays a highly similar structure in this region (Supplementary Fig. 5c–e). Among the most
179 conserved residues in Doa10 are those amino acids lining the tunnel.

180 This lateral tunnel, which connects the central cavity and the back of Doa10, is largely level with the
181 cytosolic leaflet of the ER membrane. However, the tunnel interior seems water-filled as the cavity is
182 lined by a mixture of polar, charged, and hydrophobic amino acids. In fact, in our cryo-EM map, the
183 tunnel entrance is exposed to the cytosol with the detergent/lipid density in the central cavity tapering
184 down around the entrance (Fig. 3c). On the other hand, the back of the tunnel seems at least partially
185 blocked by a phospholipid in our cryo-EM structure (PC4 in Fig. 2a,b). Interestingly, one of the acyl
186 chains of this lipid occupies part of the tunnel interior, contributing to hydrophobic surfaces in the
187 tunnel.

188 Previous biochemical studies have shown that single point mutations of conserved E633 in the tunnel
189 affect the rates of substrate degradation to varying degrees depending on the amino acids it is
190 mutated to (Asp or Gln) and the substrate³⁶. This together with the high sequence conservation and
191 interesting structural features in this region prompted us to further investigate a possible role of the
192 lateral tunnel in substrate recognition.

193

194 **Functional importance of the lateral tunnel in the middle domain**

195 To test the effects of mutations in the tunnel on the function of Doa10, we first used the well-
196 established uracil-dependent yeast growth assay³³. In this assay, the Ura3 protein is expressed as a
197 Deg1 degron fusion protein in an uracil-auxotrophic (*ura3Δ*) Doa10-null (*doa10Δ*) yeast strain together
198 with an exogenous Doa10 variant. If the expressed Doa10 variant is functional, the growth of yeast in
199 a medium lacking uracil (–Ura) becomes strongly inhibited due to efficient Deg1-Ura3 degradation
200 (Fig. 4a). By contrast, a functionally defective Doa10 variant would allow a growth of the yeast as the
201 Ura3 enzyme remains stable in the cytosol. To increase the dynamic range of the readout, we
202 expressed Doa10 using two promoters with different strengths: *RET2* and *DOA10* promoters. While
203 the *RET2* promoter expresses our exogenous Doa10 constructs at a level comparable to endogenous
204 Doa10 in the WT strain, the expression level from the plasmid-borne *DOA10* promoter was
205 substantially lower than this (Supplementary Fig. 6a), possibly due to the *DOA10* promoter used being
206 partial or because exogenous Doa10 contained many synonymous codon replacements to facilitate
207 molecular cloning of Doa10 (see Methods). We also noticed that a C-terminal GFP-tag somewhat
208 reduces the expression level of Doa10 compared to a shorter peptide tag (ALFA-tag). Using different
209 Doa10 expression levels in this way, we widened the dynamic range of phenotypic readouts of the
210 assay.

211 When we tested for an E633Q mutant, we observed only a moderate growth rescue as observed
212 previously³⁶ (Fig. 4b–d and Supplementary Fig. 6b), indicating a minor defect in Deg1-Ura3
213 degradation. The hydrophobic amino acid valine in the same position strengthened this defective
214 phenotype. Mutations on some other, but not all, amino acids lining the tunnel (such as S738V and
215 Y742L) also exhibited similar defects. The double mutant E633V/S738V produced a stronger effect
216 than E633V alone (Fig. 4e), suggesting that increasing the hydrophobicity in the tunnel interior can
217 impair Deg1-Ura3 degradation.

218 Next, we tested whether altering the roof-like L6/7 feature affects Deg1-Ura3 degradation. A single
219 point mutant on R710 or a larger replacement mutant (replacing Δ710–718 with a glycine-serine
220 linker; Δ710–718::GS) caused no or relatively moderate impairment in Deg1-Ura3 degradation. A
221 partial defect phenotype of the latter loop replacement mutant suggests that the native structure of
222 L6/7 is not strictly required for substrate degradation (Fig. 4e and Supplementary Fig. 6c). Strikingly,
223 addition of a few hydrophobic amino acids (Δ710–718::GS+3Val and E713V/D714V) in L6/7 caused a
224 stronger growth rescue. Consistent with this, cycloheximide chase experiments showed substantial
225 stabilization of Deg1-Ura3 with Δ710–718::GS+3Val and E713V/D714V Doa10 (Fig. 4f and
226 Supplementary Fig. 6d–f).

227 To understand the mechanism underlying the defects caused by the above mutations, we performed
228 1-μs MD simulations on mutant Doa10 containing E633V/S738V, Δ710–718::GS, Δ710–
229 718::GS+3Val, or E713V/D714V (Fig. 4g–i; Supplementary Fig. 7 and Movie 2). In all mutants, we
230 observed a collapse of L6/7 onto the wedge-shaped surface of the lateral tunnel formed by TMs 5–7
231 (Fig. 4j–l). Except for the Δ710–718::GS mutant, this collapse seems to be in part due to increased
232 hydrophobic interactions between the L6/7 and the wedge-shaped surface of the tunnel.
233 Consequently, these mutants exhibited a less solvent-accessible space in the tunnel compared to
234 wild-type Doa10. We note that while the Δ710–718::GS mutation also collapsed L6/7, the interaction

235 pattern was somewhat different from the other mutants tested: the replaced Gly/Ser loop of the Δ710–
236 718::GS mutant mainly interacted with a polar surface formed by TMs 5 and 7 (Supplementary Fig. 7
237 and Movie 2), but in other mutants, the loop also interacted with a solvent-exposed hydrophobic
238 surface formed around the bottom tip of the wedge (F637, M686, F689, A690, and Y742) (Fig. 4j–l). If
239 the lateral tunnel is to directly interact with the Deg1 peptide, such a prolonged interaction between
240 the L6/7 and the tunnel’s hydrophobic surface in the mutants would competitively inhibit binding of
241 Deg1, which forms amphipathic helices. On the other hand, the somewhat weaker Deg1-Ura3
242 degradation defect of the Δ710–718::GS mutant might be explained by the observation that the
243 hydrophobic surface is less stably occupied by its Gly/Ser loop.

244

245 **Probing substrate interaction with Doa10 by photocrosslinking**

246 Our structural and mutational analyses suggest the lateral tunnel in the middle domain potentially
247 serves as a substrate-binding site. To probe a direct interaction between Doa10 and the Deg1 degron,
248 we tested UV photocrosslinking between Doa10 and the Deg1 substrate in intact yeast cells. We first
249 incorporated the non-natural photocrosslinkable amino acid p-benzoyl-L-phenylalanine (Bpa) into
250 specific positions within the Deg1 sequence by amber stop codon suppression (Fig. 5a). Three out of
251 four positions in Deg1 yielded crosslink adducts with Doa10 in a UV-dependent manner, suggesting a
252 physical interaction between Deg1 and Doa10 (Fig. 5b).

253 Next, to examine an interaction between the middle-domain tunnel of Doa10 and Deg1, we
254 incorporated Bpa into the tunnel interior and performed crosslinking with Deg1-Ura3 (Fig. 5c). Multiple
255 positions in the tunnel interior showed crosslinking to the substrate (Fig. 5c). Positions 734 and 931
256 formed strong crosslinking, whereas some other positions (positions 738 and 906) showed weak
257 crosslinking. In contrast, we did not observe crosslinking when we introduced Bpa into the nearby
258 cytosolically exposed surface (positions 916 and 926), demonstrating that the observed crosslinking is
259 not due to random collisions between Doa10 and the substrate. Importantly, the fact that multiple
260 positions in the tunnel interior crosslink with Deg1-Ura3 (Fig. 5d,e) suggests that a part of the
261 substrate polypeptide, most likely the Deg1 peptide, inserts into the lateral tunnel. Considering the
262 confined dimensions of the tunnel, we tested this idea by fusing Trx1, a ~100-amino-acid-long
263 globular protein, to the N-terminus of the Deg1-Ura3 substrate and performing the crosslinking
264 experiment (Fig. 5f). Indeed, no crosslinking was detected between position 734 of Doa10 and the
265 Trx1-fused substrate, suggesting an inability of Trx1-fused Deg1 to enter the tunnel. Additionally, we
266 examined the effects of mutations in the tunnel and the L6/7 on the Bpa crosslinking. Consistent with
267 the defects observed in growth assays (Fig. 4 e,f), all tested mutations substantially decreased or
268 abolished crosslinking between the tunnel and substrate (Fig. 5g). Collectively, these data show that
269 Doa10’s tunnel interior plays a vital role in facilitating Deg1 recognition through direct interaction.

270

271 **Positions of E2**

272 During the substrate polyubiquitination, the RING-CH domain of Doa10 is expected to interact with E2
273 proteins Ubc6 and Ubc7 to position the C-terminus of the Ub close to the substrate for ligation to
274 occur. Because neither Ubc6 nor the Ubc7–Cue1 complex was included in our cryo-EM analysis, we

275 generated AlphaFold2 models for Doa10 in complex with Ub and Ubc6 or Ubc7–Cue1 (Fig. 6a-b,
276 Supplementary Fig. 8 a and b). These models indeed predicted expected interactions among the
277 RING-CH domain, E2 domain, and Ub. In addition, the models predicted that both Ubc6 and Ubc7–
278 Cue1 associate with Doa10 through interaction with L8/9b of Doa10. Interestingly, Ubc6 and Cue1 are
279 predicted to bind to opposite sides of L8/9b (Fig. 6f), making it possible for both Ubc6 and Ubc7–Cue1
280 to be simultaneously tethered to Doa10, while the E2 domains of Ubc6 and Ubc7 would engage with
281 the RING-CH domain one at a time.

282 To biochemically probe the AlphaFold2-predicted interactions between L8/9b and Ubc6 or Cue1, we
283 first truncated L8/9b from Doa10 (Δ L8/9b) and performed co-immunoprecipitation (co-IP) experiments.
284 Although L8/9b is not a universally conserved feature among the Doa10/MARCH6 proteins (for
285 human MARCH6, see Supplementary Fig. 5), the yeast growth assay indicated that a deletion of
286 L8/9b largely abolishes Deg1 substrate degradation (Supplementary Fig. 8 c and d), as expected for a
287 loss of proper E2 interactions. Consistent with this, the co-IP experiment showed that Δ L8/9b
288 substantially decreased co-purification of Cue1 (Fig. 6g). On the other hand, Δ L8/9b did not affect the
289 amount of co-purified Ubc6, suggesting a possibility that copurified Ubc6 remained bound to Doa10
290 through an additional interaction site(s).

291 To further probe Cue1 and Ubc6 interaction with Doa10, we performed in-vivo UV-photocrosslinking
292 experiments by incorporating Bpa into positions in Doa10 based on the AlphaFold2 models (Fig. 6h).
293 Strong crosslink adducts could be observed with multiple positions expected to be close proximity to
294 Ubc6 or Cue1 (positions 928 and 949 for Ubc6, and positions 857 and 949 for Cue1), further providing
295 the evidence for the Doa10-E2 interactions predicted by the AlphaFold2 modeling. However, the
296 observations that position 857 of Doa10 crosslinked to Ubc6 and that no crosslinking was observed
297 between position 863 and Cue1 are somewhat inconsistent with the models.

298 While further structural investigations would be necessary to fully validate the AlphaFold2 models, an
299 important implication of them is that, in the E2 and Ub-containing complexes, the C-terminal double-
300 Gly tail would be positioned immediately (\sim 10–15 Å) above the central cavity of Doa10 and in a close
301 (\sim 25 Å) distance from the tunnel entrance. Thus, the binding of a substrate polypeptide to the lateral
302 tunnel would optimally position the substrate for ubiquitination while flexibility of the RING-CH and E2
303 domains would allow elongation of a poly-Ub chain. A similar feature of Ub positioning with respect to
304 human MARCH6 could also be found from AlphaFold2 modeling with UBE2J2, a cognate E2 of
305 MARCH6 (Supplementary Fig. 8 f and g)

306

307 Substrate access to the middle-domain tunnel

308 The well-characterized Deg1 degron provided us with an opportunity to examine requirements in
309 recognition of membrane protein substrates by Doa10. Previously, it has been shown that an insertion
310 of two-spanning membrane protein Vma12 between Deg1 and Ura3 of the Deg1-Ura3 substrate
311 renders much more efficient degradation of the substrate protein³⁵ (Fig. 7a, left panel). The Vma12
312 portion localizes the protein directly into the ER membrane, and this would increase the frequency of
313 the encounter between Deg1 and Doa10. In our growth assay using Doa10 mutants, we could
314 recapitulate this enhanced degradation of the substrate protein (and thus lesser extents of a growth
315 rescue by mutations) upon Vma12 insertion (Supplementary Fig. 9a).

316 Our model proposing recognition of the Deg1 degron by the lateral tunnel in the middle domain
317 predicts that the Deg1 portion of Deg1-Vma12-Ura3 would also need to access the tunnel interior for
318 efficient polyubiquitination. Because the two TMs of Vma12 must remain in the bulk membrane
319 outside Doa10 while the Deg1 degron interacts with the tunnel, we hypothesized that a certain
320 distance (~20–30 Å) between Deg1 and the first TM of Vma12 is required for Deg1 recognition. In
321 fact, in the original Deg1-Vma12-Ura3 fusion protein³⁵, there is an ~130-amino-acid-long segment
322 that can potentially span ~100 Å between the C-terminus of Deg1 and the first TM of Vma12 (Fig. 7a).
323 To test our hypothesis, we truncated different lengths in the C-terminal region of Deg1 and the N-
324 terminal portion of Vma12 (Fig. 7a,b). In the yeast growth assay, longer truncations in Deg1 and
325 Vma12 resulted in gradually stronger rescue of Doa10-dependent growth inhibition, suggesting that
326 they became less efficient substrates to Doa10. With the complete deletion of the segment of Vma12
327 preceding the first TM (Δ132) and a minimal Deg1 sequence (residues 1–35), Doa10-dependent
328 degradation of Deg1-Vma12-Ura3 could be almost completely blocked (Fig. 7c,d; Supplementary Fig.
329 9a). When we reintroduced a flexible Gly/Ser-linker into the truncated region, the degradation was
330 restored both at the steady-state and kinetic levels. Thus, these findings support our model that in the
331 case of membrane-embedded protein substrates, the degron signal needs to be extended out from
332 the membrane domain to reach the lateral tunnel from the periphery of Doa10.

333

334 **Discussion**

335 Based on the data presented here, we propose the following model for how Doa10 binds and
336 polyubiquitinates its substrates with a cytosolic degron (Fig. 7e). Our crosslinking experiments
337 showed that Doa10 recognizes degrons, at least Deg1, through a direct interaction within its lateral
338 tunnel formed in the conserved middle domain. This interaction positions the substrates right above
339 the central cavity, which is necessary for efficient polyubiquitination. Many Doa10 degrons
340 characterized so far, including Deg1, contain an amphipathic or hydrophobic motif, and these
341 structural features have been shown to be critical for the Doa10 recognition^{24,28,39–44}. Thus, it is likely
342 that substrate recognition is mediated by hydrophobic interactions between the lateral tunnel and
343 hydrophobic features of the degrons. In addition, prior to insertion into the lateral tunnel, these
344 hydrophobic degrons presumably peripherally associate first with lipids in the central cavity. Such
345 lipid-mediated recruitment of substrates would increase the efficiency of substrate binding to the
346 lateral tunnel as the tunnel is rather concealed near the cytosol-membrane interface. Once the
347 substrate is stably bound, the flexible RING-CH domain and tethered E2s would transfer Ub
348 molecules onto the substrate polypeptide above the central cavity. The horseshoe-like topology of the
349 TMD of Doa10 implies that for targeting membrane-embedded substrates to Doa10, their degrons
350 would need to be extended from their membrane domains. This mechanism might be important for
351 preventing properly folded membrane proteins from non-selectively accessing the lateral tunnel and
352 polyubiquitination site (i.e., central cavity).

353 Although more substrates of Doa10 remain to be discovered, a current list of substrates suggests that
354 the lateral tunnel can possibly be used for a broad range of substrates besides Deg1. Recently, it has
355 been found that mistargeted TA proteins become substrates of Doa10 after extraction from the
356 mitochondrial outer membrane by Msp1 or from the ER membrane by Spf1 (ref. ^{45–47}). Once extracted
357 by these ATPases, these TA transmembrane helices might first peripherally associate with the ER
358 membrane and then be recruited to the central cavity and ultimately to the lateral tunnel of Doa10. It

359 has also been shown that certain unimported mitochondrial matrix proteins are targeted for
360 degradation by Doa10 in addition to two other E3 ligases San1 and Ubr1 in a manner dependent on
361 the presence of an N-terminal mitochondrial-targeting sequence (MTS)⁴⁸. Given the notion that MTSs
362 typically form an amphipathic α -helix, akin to Deg1, it is tempting to speculate that recognition of these
363 proteins by Doa10 might also be mediated by an interaction between their MTS and the lateral tunnel
364 of Doa10.

365 Although our data suggest that the lateral tunnel potentially serves as a major recognition site for the
366 ERAD-C-type substrates, it remains to be elucidated whether Doa10 also uses alternative
367 mechanisms for substrate recognition. Beside ERAD-C substrates, Doa10 also can act on certain
368 membrane proteins, such as Sbh2 (a paralog of the Sec61 β subunit in yeast)²⁸, which is a TA protein.
369 Doa10-dependent degradation of Sbh2 requires the intact transmembrane helix and the following
370 short ER-luminal C-terminal tail. Thus, Doa10 might first ubiquitinates Sbh2 in a membrane-
371 embedded state, and then Cdc48 might extract polyubiquitinated Sbh2 from the ER membrane. In this
372 scenario, the lateral tunnel, which is oriented toward the cytosol and physically separated from the ER
373 membrane, would be less likely to be used for the recognition of Sbh2.

374 Another example of ERAD-M-type substrates is Ubc6, which is also a TA protein. Besides functioning
375 as an E2 enzyme for Doa10, it has been shown that Ubc6 can act as a substrate of Doa10 (ref.²⁷).
376 Like Sbh2, it is unclear how Ubc6 is recognized by Doa10 as an ERAD substrate, but it has been
377 shown that a mutation of E633, one of lateral tunnel residues, to aspartic acid greatly reduces the
378 turnover rate of Ubc6 without significantly affecting turnover rates of Deg1 substrates³⁶. A more
379 recent study showed that Doa10 also performs an retrotranslocase activity to extract Ubc6 from the
380 membrane independently of Cdc48 (ref.³⁷). These observations suggest that Doa10 might also use
381 its central cavity and lateral tunnel but potentially in a somewhat different manner for ERAD-M
382 substrates.

383 In addition to the above-mentioned examples, peripheral membrane proteins, such as the squalene
384 monooxygenase Erg1 and lipid-droplet phospholipase Pgc1, are also on the list of Doa10 substrates
385^{39,49}. The AlphaFold2 models of Erg1 and Pgc1 suggest that they would peripherally associate with
386 the cytosolic leaflet of the membrane through their C-terminal hydrophobic helices. Since their
387 structures are overall well-folded without an extended tail like Deg1, their degradation is less likely to
388 be dependent on Doa10's lateral tunnel. Instead, it is possible that Erg1 and Pgc1 may simply enter
389 the area on Doa10's central cavity from the bulk membrane and become polyubiquitinated. We note
390 that from our cryo-EM structure, the cytosolic leaflet is continuous between the bulk membrane and
391 the central cavity through a space above TMs 1 and 3. Future investigations would be necessary to
392 understand how such peripheral membrane protein substrates are recognized by Doa10 and how the
393 central cavity and lateral tunnel are involved in the process.

394 Lastly, one highly intriguing feature of Doa10 is the horseshoe-like circular topology, where the N-
395 terminal RING-CH domain co-folds with the CTE at the joint. The topology creates a closed, lipid-filled
396 central cavity. AlphaFold2 models of metazoan MARCH6 and plant SUD1 show that this feature is
397 universal in the Doa10 homologs. Previously, it has been shown that the CTE is critical for Doa10-
398 mediated turnover of most substrates^{35,50}. Why did the RING-CH domain of Doa10 evolve to require
399 partnering with the CTE for its function? One potential function of the CTE might be to restrict the
400 position of the RING-CH domain toward the central cavity. Without additional anchoring through
401 TM14, the RING-CH domain might be too flexible for efficient substrate ubiquitination. Another

402 possibility is to tie the closed circular topology with the RING-CH domain's activity to prevent other ER
403 integral membrane proteins from accidentally entering the central cavity and being polyubiquitinated.
404 We attempted to create circularly permuted versions of Doa10 that maintain the polyubiquitination
405 function to further test the latter hypothesis, but so far, this effort has been unsuccessful. While our
406 data indirectly suggest that the closed circular topology of Doa10 can act as a barrier for integral
407 membrane proteins, a full understanding of the physiological roles of the circular topology warrants
408 further biochemical studies.

409

410 **Methods**

411 **Yeast strains and plasmids**

412 Yeast strains and plasmids used in this study are listed in Supplementary Tables 2 and 3.

413 To enable purification of Doa10 from yeast, we modified the yeast strain BY4741 by inserting a
414 sequence encoding a cleavable GFP-tag between the last amino acid and stop codons of the
415 chromosomal copy of Doa10. The final expressed protein from the resulting strain ySI-118 has an
416 amino acid sequence of (N-terminus)...ENLPDES (Doa10)- AGGATTASGTG (linker)- ENLYFQG (a
417 tobacco etch virus [TEV] protease site)- TASGGGS (linker) KGEELF...(GFP)-(C-terminus). A
418 sequence containing the TEV-GFP-tag and a nourseothricin resistance marker module was amplified
419 from pSK-B399-GFP-NAT (a gift from the Klinge lab) with primers containing homologous arms to the
420 chromosomal insertion site (forward primer:

421 acgagggttacactaaggtagagcttagaaaatttaccagatgaaagtGCTGGAGGGGCTACCACG; reverse primer:
422 aacatataacttaatgttagatatatatgtaaatatgctagcattcattGCCGCATAGGCCACTAG. Lowercase for a
423 homologous sequence to the Doa10 sequence, and uppercase for binding to the plasmid pSK-B399-
424 GFP-NAT). The amplicon was transformed to the BY4741 strain using standard lithium acetate
425 protocol and plated on a YPD agar plate (1% yeast extract, 2% peptone, 2% glucose, and 2% bacto-
426 agar) supplemented with 100 μ g ml⁻¹ nourseothricin. Single colonies were grown with a YPD medium
427 under nourseothricin selection, and correct insertion was verified using PCR of genomic DNA and by
428 Sanger sequencing.

429 To overexpress the GFP-tagged Doa10, the endogenous promoter was replaced with a *LEU2*:: P_{GAL1}
430 cassette that was assembled using overlap extension PCR. The *LEU2* expression cassette was
431 amplified from pYTK075 (forward primer: gctaagataatggggTCGAGGAGAACCTCTAGTATATCTAC,
432 lowercase for a homologous sequence to GAL1, uppercase for binding to 5' end of the LEU1 gene.
433 Reverse Primer: gattcaaaaactgttttttagccaagagtaccactaattgaatcaaagCTGCCTATTAAACGCCAAC,
434 lowercase for a homologous sequence to the chromosomal sequence flanking Doa10's promoter and
435 uppercase for binding to LEU2 gene). P_{GAL1} was amplified from pYTK030 (Forward primer
436 agaagtctcctcgaCCCCATTATCTTAGCCTAAAAAAC, lowercase for a homologous sequence to
437 LEU2, uppercase binds to 5' end of the *GAL1* gene. Reverse primer:
438 tgcaggttcatcttaaacctggagacatcaaacttcattATAGTTTTCTCCTGACGTTAAAGTATAG,
439 lowercase for a homologous sequence to the chromosomal sequence flanking Doa10's promoter and
440 uppercase for binding to *GAL1* gene). pYTK plasmids are part of MoClo Yeast Tool Kit⁵¹. The two
441 PCR products were purified and amplified as overlapping PCR with the terminal primers. The final
442 amplicon was transformed into yeast strain ySI-118, and selected on SC(-Leu) agar medium

443 containing 2% glucose. Single colonies were selected, and proper integration was verified using PCR
444 of genomic DNA. The resulting strain is designated ySI-154.

445 To generate Doa10-expressing plasmids for mutational and crosslinking studies, we adapted a
446 Golden Gate cloning strategy⁵². Full-length Doa10 nucleotide sequence is known to be toxic to *E. coli*
447 cells, preventing propagation of plasmids containing the coding sequence (CDS) of Doa10 (ref.⁵³). To
448 overcome this issue, we splitted the CDS of Doa10 into two plasmids, which did not exhibit growth
449 inhibition in *E. coli* cells. The first plasmid contains a promoter for Doa10 expression (either the
450 endogenous *DOA10* promoter, a *GAL1* promoter, a *RET2* promoter or a *TDH3* promoter), the first
451 1824 bp of the CDS of Doa10, two Bsal endonuclease restriction sites, and a CEN6-ARS4 module, in
452 this order. The second plasmid contains a Bsal site, 1822th to 3957th bp of the CDS of Doa10 and a
453 C-terminal tag (either GFP or ALFA-tag), an *ENO1* terminator sequence, and *LEU2* marker cassette,
454 and a second Bsal site. The full-length Doa10-encoding plasmid was formed by joining the two
455 plasmids using Bsal Golden Gate cloning prior to transformation into yeast cells. Transformation of
456 yeast with each split plasmid alone does not form colonies on a Leu drop-out agar medium because
457 of separation of the *LEU2* marker and CEN6-ARS4. Only the full plasmid joined by a Bsal Golden
458 Gate reaction, which encodes a full length Doa10 CDS, can be stably maintained in yeast cells.
459 Proper expression of Doa10 proteins were confirmed by immunoblotting analysis of whole cell lysates
460 of transformants. We note that the DNA sequence for the first 322 amino acid residues of Doa10 in
461 the first plasmid originated from gene synthesis of a reverse translated sequence and thus contains
462 many silent mutations.

463 For the yeast growth (spot) assays using Deg1-Ura3 as a substrate, yeast strain MHY4086
464 (*doa10Δ::hphMX4*, *lys2-801::LYS2::Deg1-Ura3*) was used⁵⁴. Plasmids with various Doa10 mutants
465 were generated by the Golden Gate cloning approach as described above and transformed into
466 MHY4086. Doa10 was expressed either from an endogenous promoter (P_{DOA10}) or *RET2* promoter
467 (P_{RET2}). Colonies were selected on a -Leu drop-out synthetic complete medium (SC[-Leu]) containing
468 2% glucose.

469 For the spot assays using Deg1-Vma12-Ura3 as a substrate, yeast strain MHY10818
470 (*doa10Δ::hphMX*; ref.⁵⁰). The strain was first transformed with plasmid p414-Deg1-Vma12-Ura3 (ref.
471³³), which constitutively expresses Deg1-Vma12-Ura3 under a *MET25* promoter and uses a Trp
472 auxotroph marker for selection. The resulting strain was transformed with a plasmid expressing a
473 Doa10 variant as described above. Colonies were selected on SC(-Trp/-Leu) agar medium
474 containing 2% glucose. All the truncated and GS linker versions of Deg1-Vma12-Ura3 were generated
475 by PCR using the plasmid p414-Deg1-Vma12-Ura3 as a template. The original plasmid p414-Deg1-
476 Vma12-Ura3 contains a FLAG-tag between Deg1 and Vma12, which was removed in the truncated
477 versions. To detect the substrate, we attached a FLAG-tag to the C-terminus of Ura3. All these
478 plasmids were then transformed into either JY103 (wild-type *DOA10*) or MHY10818 (*doa10Δ*).

479 For the cycloheximide chase experiment using Deg1-Ura3 as a substrate, the yeast strain yKW-283
480 (*doa10Δ::natMX*; *leu2::P_{PGK1}-Deg1-Ura3-2xstrep::hphMX4*) was used. This strain was made from ySI-
481 167 (*doa10Δ::natMX*) by integrating P_{PGK1} -Deg1-Ura3-Strep into the *leu2* locus. Strain ySI-167 was
482 made by deleting chromosomal *DOA10* gene (*doa10Δ::natMX*) in BY4741 via transformation of a
483 PCR product, which was amplified from pSK-B399-GFP-natMX (forward primer:
484 gattcaaaaaactgttttttagccaagagtaccactaattgaatcaaagCTGTTAGCTGCCTCGTCC; Reverse primer:
485 aacatataacttaatgttagatatatatgtaaatatgctagcattcattGGCCGCATAGGCCACTAG. Lowercase for a

486 homologous sequence to the *DOA10* gene and uppercase for binding to the natMX marker; pSK-
487 B399 is a gift from the Klinge lab). The amplicon was transformed into BY4741, and selected on YPD
488 agar plate supplemented with 100 μ g ml⁻¹ nourseothricin. Chromosomal deletion was verified using
489 PCR of genomic DNA. To generate yKW-283, we first generated an integration plasmid (pKW155),
490 expressing Deg1-Ura3-2xstrep under the *PGK1* promoter, using the MoClo Yeast Tool Kit (YTK). The
491 sequence of Deg1 and Ura3 was amplified and cloned individually into a pYTK001 entry plasmid,
492 resulting pKW043 (pYTK001-Deg1), pKW050 (pYTK001-Ura3). Subsequently, all the part plasmids,
493 including pYTK-011 (P_{PGK1}), pKW043 (Deg1), pKW050 (Ura3 CDS), pYTK-e205 (twin Strep-tag) and
494 pYTK-061 (*ENO1* transcription terminator), were assembled into pYTK-e102 (an integration plasmid
495 targeting to the *LEU2* locus with a hygromycin marker) by *Bsal* Golden Gate assembly, resulting
496 pKW155. pKW155 was linearized with *NotI* and was transformed into ySI-167. Colonies were selected
497 on YPD agar medium supplemented with 400 μ g ml⁻¹ hygromycin B. Plasmids with various Doa10
498 mutants were generated by *Bsal* Golden Gate cloning approach as described above, and transformed
499 into yKW-283. Colonies were selected on SC(-Leu) agar medium containing 2% glucose.

500 For the site-specific photo-crosslinking experiments, yeast strain ySI-266 (*doa10Δ::hphMX4*
501 *cue1Δ::natMX*) was first made by deleting chromosomal *CUE1* (*cue1Δ::natMX*) in MHY10818 via
502 transformation of a PCR product, which was amplified from pYTK078 (*natMX* marker) (forward primer:
503 cgccataaaggcattacaatctacgatcgccaaactttttctttggccCTGTTTAGCTGCCTCGTCC; Reverse primer:
504 ttatgcgcattatgggcacacttgcgtgtcccgtaaggacttaaggcgtGGCCGCATAGGCCACTAG. Lowercase for a
505 homologous sequence to the Cue1 gene and uppercase for binding to the natMX marker).
506 Chromosomal deletion was confirmed using PCR of genomic DNA. Subsequently, ySI-266 was
507 transformed with SNRrRNA-pBpaRS(*TRP*) (ref. ⁵⁵). Colonies were selected on SC(-Trp) agar medium
508 containing 2% glucose. The resulting strain was then transformed with a plasmid expressing Deg1-
509 Ura3, which was generated by assembling pYTK-009 (*TDH3* promoter), pKW043 (Deg1), pKW050
510 (Ura3), pYTK-205 (twin Strep-tag) and pYTK061 (*ENO1* terminator) into pYTK-e11 (a CEN/ARS
511 plasmid with a Ura3 marker). Colonies were then selected on SC(-Trp/-Ura) agar medium containing
512 2% glucose. Subsequently, plasmids expressing P_{TDH3}-Doa10-ALFA with an amber codon mutation at
513 various sites were generated by site-directed mutagenesis and then *Bsal* Golden Gate cloning.
514 Colonies were selected on SC(-Trp/-Ura/-Leu) agar medium containing 2% glucose.

515 For co-immunoprecipitation of E2 enzymes with Doa10, a plasmid (pYC-302) expressing Cue1, Ubc7
516 and Ubc6 was made. The chromosomal *CUE1*, *UBC6* and *UBC7* were first amplified and cloned into
517 pYTK-001 entry plasmids individually. The resulting plasmids were then assembled using YTK parts
518 to add a *GAL1* promoter, an epitope-tag, and an *ENO1* terminator by Golden Gate cloning and to form
519 the multigene-expression plasmid pYC-302 (P_{GAL1}-Cue1-2xFLAG | P_{GAL1}-Ubc7-2xSPOT | P_{GAL1}-
520 3xFLAG-6xHis-Ubc6; a CEN/ARS plasmid with a Ura3 selection marker).

521 For photo-crosslinking experiments with Cue1 and Ubc6, plasmids pYC-300 and pYC-301 were
522 generated to express Cue1 and Ubc7 and Ubc6 respectively. The pYTK-001 plasmids coding *CUE1*,
523 *UBC6* and *UBC7* were assembled by Golden Gate cloning to form pYC-300 (P_{GAL1}-Cue1-2xFLAG |
524 P_{GAL1}-Ubc7-2xStrep; a CEN/ARS plasmid with a Ura3 selection marker) and pYC-301 (e111-P_{GAL1}-
525 3xFLAG-6xHis-Ubc6; a CEN/ARS plasmid with a Ura3 selection marker) as described above. Yeast
526 strain ySI-266 (*doa10Δ::hphMX4 cue1Δ::natMX*) was used for Cue1 crosslinking, while yYC-307
527 (*doa10Δ::hphMX4 ubc6Δ::natMX*) was made using a similar strategy to delete chromosomal *UBC6*
528 (*ubc6Δ::natMX*) (forward primer:
529 gactttaaatattaactaaaaccgcattcgc当地CTGTGGATAACCGTAGTCG;

530 Reverse primer:
531 tcaaaatttatctaaagtttagttcatttaatggcttcattcataaaaaggccaaccaaGGCGTTTTATTGGTC. Lowercase
532 for a homologous sequence to the *CUE1* gene and uppercase for binding to the natMX marker
533 sequence in the YTK plasmid pYTK078.)

534 **Purification of Doa10 protein**

535 Yeast strain ySI-154 was inoculated into a YP-raffinose medium (1% yeast extract, 2% peptone, and
536 2% raffinose) to an optical density at 600 nm (OD₆₀₀) of 0.2 and grown in shaker flasks at 30°C until
537 OD₆₀₀ reached 0.5. Doa10 expression was then induced by adding 2% galactose to the culture, and
538 cells were grown until OD₆₀₀ reached ~2. Cells were then pelleted, flash frozen in liquid nitrogen, and
539 stored in -75°C until purification.

540 Cell lysis was performed by cryo-milling (SPEX SamplePrep) cycling 15 times with 1 min on time and
541 2 min off time. Broken cells were resuspended in a buffer containing 50 mM Tris-HCl pH 7.5, 200 mM
542 NaCl, 1 mM EDTA, 10% glycerol, 2 mM DTT, supplemented with protease inhibitors (5 µg/ml
543 aprotinin, 5 µg/ml leupeptin, 1 µg/ml pepstatin A, and 1.2 mM PMSF). Membranes were further
544 solubilized by the addition of 1% lauryl maltose neopentyl glycol (LMNG; Anatrace) and 0.2%
545 cholesteryl hemisuccinate (CHS; Anatrace), and stirring for 1.5 h at 4°C. The cell lysate was clarified
546 by ultracentrifugation using Beckman Type 45 Ti rotor at 40,000 RPM for 1 hr. The clarified lysate was
547 supplemented with 25 µg/mL Benzonase nuclease and incubated with home-made agarose beads
548 conjugated with anti-GFP nanobody at 4°C for 2.5 hr by gentle rotating. The sample was transferred
549 to a gravity column, washed with a buffer (WB) containing 50 mM Tris-HCl pH 7.5, 200mM NaCl, 1.0
550 mM EDTA, 2 mM DTT, 0.02% glycol-diosgenin (GDN; Anatrace), and 10% glycerol. Bound Doa10
551 was eluted by incubating the beads with ~10 µg/mL TEV protease overnight. The eluate was then
552 injected to a Superose 6 10/300 GL Increase column (GE Lifesciences) equilibrated with 20 mM Tris-
553 HCl pH 7.5, 100 mM NaCl, 1mM EDTA, 2 mM DTT, and 0.02% GDN. Peak fractions were
554 concentrated to ~5.5 mg/mL using Amicon Ultra (100-kDa cutoff; GE Lifesciences) and used
555 immediately for cryo-EM grid preparation.

556 **Cryo-EM analysis**

557 The Doa10 sample was supplemented with 3 mM FFC8 (Anatrace) before freezing cryo-EM grids. 3
558 µL of the sample was applied on each gold Quantifoil R 1.2/1.3 holey carbon grid that was glow
559 discharged for 35 s using a PELCO easiGlow glow discharge cleaner. The grids were blotted for 3-4 s
560 using Whatman No. 1 filter paper at 4 °C and 95-100% relative humidity, and plunge-frozen into liquid
561 ethane using a Vitrobot Mark IV (FEI company). Data was collected on a Krios G2 microscope (FEI
562 company) equipped with a Gatan Quantum Image Filter (with 20 eV slit width) and a Gatan K3 direct
563 electron detector (Gatan). The microscope was operated at an acceleration voltage of 300 kV. The
564 magnification was set to 64,000× under the super-resolution mode with a physical pixel size of 0.91 Å.
565 The total exposure was set to 50 electrons/Å² divided into 50 frames, and the defocus range was set
566 between -0.8 and -2.0 µm. All the data was acquired using SerialEM software.

567 For detailed illustration of the data analysis, refer to Supplementary Fig. 2c. In short, two datasets,
568 1,760 movies (Dataset 1) and 2,679 movies (Dataset 2), were pre-processed first with Warp (version
569 1.0.9; ref. ⁵⁶) to produce an initial model that was used for cryoSPARC template picking, and again in
570 CryoSPARC (version 2.15.0; ref. ⁵⁷) to produce the final set of particles for 3D reconstruction. In

571 Warp, the movies were corrected for motion, and contrast transfer function (CTF) estimated on
572 micrographs divided into 7×5 tiles, and particles were picked by Warp's BoxNet algorithm yielding
573 299,741 and 241,653 autopicked particles for Dataset 1 and Dataset 2, respectively. The particles in
574 each dataset were imported to CryoSPARC for 2D classification and ab-initio reconstruction,
575 generating three initial models. Only one of the 3 maps presented proteinaceous features and was
576 selected as a template for CryoSPARC template particle picking. The raw movies were re-processed
577 using CryoSPARC (tile-based motion correction, CTF estimation, and manual movie curation) and a
578 new particle data set containing 455,702 and 613,378 particles was obtained with the template picker.
579 The datasets were subjected to a 2D classification, and good classes were selected after visual
580 inspection. For Dataset 1, we used the previously obtained ab-initio models to generate three
581 heterogeneous refinement models, which were subsequently used as reference for the
582 heterogeneous refinement of Dataset 2. A single 3D class from each data set was selected and their
583 corresponding particles were subjected to a second round of heterogeneous refinement with the same
584 3D reference models. The particles corresponding to the best class in each data set were combined,
585 and after a CTF refinement, particle curation yielded 324,019 particles. A non-uniform refinement job
586 (CryoSPARC version 3.0.0) on these particles resulted in the final map of Doa10 at 3.2-Å overall
587 resolution. The enhanced map shown in Fig. 1 d–e was generated using DeepEMhancer (ref. ⁵⁸). The
588 local resolution distribution is calculated in CryoSPARC.

589 **Atomic model building**

590 An initial atomic model was generated de novo using Coot (version 0.9) and cryo-EM maps that were
591 sharpened by various B-factors. The model was then refined using the real-space refinement program
592 of the Phenix package (version 1.16; ref) and a cryo-EM map sharpened at a sharpening B-factor of
593 -85 \AA^{-2} . During the course of this study, AlphaFold2 was published ³⁸. The AlphaFold2 model
594 (<https://alphafold.ebi.ac.uk/entry/P40318>) enabled us to build additional amino acids in CTD (TMs 11-
595 14) and L8/9b, which were difficult to confidently register de novo due to their lower local resolution in
596 our cryo-EM map. The final model was refined again with real-space refinement of Phenix (version
597 1.19.2). Molprobity in the Phenix package was used for the validation. Structural models for Doa10
598 with E2s and Ub were predicted with AlphaFold2 (version 2.1.1) using full-length amino acid
599 sequences of the proteins. Figures of cryo-EM maps and atomic models were generated using UCSF
600 Chimera (ref. ⁵⁹), ChimeraX (ref. ⁶⁰), and PyMOL (Schrödinger)

601 **Sequence conservation analysis**

602 Amino acid sequences of Doa10 from various species were obtained from UniRef90
603 (<https://www.uniprot.org>). Out of 100 sequences available, 14 sequences that were shorter than 800
604 amino acids were removed, and the remaining 86 sequences were subjected to multiple sequence
605 alignment using MAFFT (<https://www.ebi.ac.uk/Tools/msa/mafft/>) with default parameters. Aligned
606 sequences were opened in UCSF Chimera to map amino acid conservation onto the Doa10 structure.

607 **Molecular dynamics (MD) simulations**

608 The Doa10 MD simulations were based on the hybrid atomic model described above. In addition to
609 protein, densities were observed that can be fit with 4 phosphatidylcholine molecules, a triglyceride, an
610 ergosterol, and a cholesterol-like detergent. These were modeled with 4 POPC molecules, a triglyceride
611 (16:0:16:1:18:0), an ergosterol, and the detergent was replaced with ergosterol. Zinc ions were added

612 to the RING-CH domain, with coordinating cysteine residues deprotonated and no further constraints
613 applied⁶¹. Otherwise, residue protonation states were assigned with H++ (ref. ⁶²). The N terminus,
614 starting at residue 30, and C terminus, residue 1318, were capped with neutral acetyl and amide groups,
615 respectively. The termini for the missing loop residues were also neutral capped. This WT model was
616 placed in a realistic yeast ER membrane consisting of 48% POPC, 20% POPE, 10% PLPI, 8% POPS,
617 3% POPA, 10% ERG, and 1% DYGL (ref. ⁶³⁻⁶⁵) using CHARMM-GUI (version 3.7 accessed May 2023;
618 ref. ⁶⁶). Double mutants (E633V/S738V, E713V/D714V) were generated by mutating the sidechains of
619 the respective residues. Loop substitution mutants were generated by replacing 710-718 with the
620 following sequences: GGSGGSGGS (Δ 710-718::GS) or GGSVVVGGS (Δ 710-718::GS+3Val). The wild
621 type and mutant systems were similarly placed in the yeast ER membrane model, hydrated using a
622 TIP3P (ref. ⁶⁷) water box, and neutralized with 0.15 M KCl. The all-atom systems were ~408,000 atoms.
623 The CHARMM36m protein⁶⁸ and CHARMM36 (ref. ⁶⁹) force fields were employed in all simulations.

624 Each system was equilibrated in stages using the following protocol; 1) an initial minimization was
625 performed followed by 2) relaxation of the lipid acyl chains for 1 ns with position restraints applied to all
626 other atoms, 3) 10 ns with the protein and bound lipids restrained to their starting positions, and 4)
627 100ns with only the protein backbone restrained to allow for lipid relaxation about the protein. Finally,
628 an additional minimization (2000 steps) prior to unrestrained NPT dynamics was performed. For
629 equilibration, NAMD 2.14 was used, while production runs were performed in duplicate for 1 μ s per
630 replica with GPU-accelerated NAMD3 (ref. ⁷⁰). All simulations were performed at a constant temperature
631 of 310 K using Langevin dynamics (damping coefficient 1/ps), a constant pressure of 1 atm using a
632 Langevin piston barostat, and periodic boundary conditions. Following initial equilibration, hydrogen
633 mass repartitioning was invoked, allowing for a 4-fs time step⁷¹. Short range non-bonded interactions
634 were cut off at 12 \AA , with a force-based switching function starting at 10 \AA . Long range non-bonded
635 interactions were calculated using particle-mesh Ewald method with grid spacing of at least 1/ \AA^3 (ref.
636 ⁷²). Analysis was carried out and images were rendered with VMD (version 1.9.4a51; ref. ⁷³).

637 Yeast growth assay

638 Overnight cultures were diluted in a five-fold serial dilution from an OD₆₀₀ of 0.1, and 5 μ l each were
639 spotted onto an indicated agar medium. Plates were incubated at 30°C for 2-3 days before imaging.

640 Cycloheximide chase assay

641 For the experiment in Fig. 4f, the yeast strain yKW-283 (*doa10 Δ leu2::P_{PGK1}-Deg1-Ura3-strep*) was
642 transformed with an empty vector (pYTK-e112) or plasmids encoding various Doa10 mutants under a
643 *DOA10* promoter. Cells were grown in a synthetic medium SC(-Leu). For the experiment in Fig. 7d,
644 the yeast strains were identical with the ones used in the yeast growth assays in Fig. 7c and grown in
645 a synthetic medium SC(-Trp).

646 Overnight cultures were diluted to an OD₆₀₀ of 0.2 and grown at 30°C until the cells reached mid-log
647 growth phase. 5 OD₆₀₀ units of cells were collected. The pellets were resuspended in 4 ml of fresh
648 medium. 0.25 mg/ml cycloheximide was added to the yeast suspension. Transferred 950 μ l of the
649 yeast suspension to a tube containing 20x stop mix (200 mM sodium azide and 5 mg/ml BSA).
650 Pelleted the cells by centrifugation at 6000 g for 1 min. The pellets were resuspended with 200 μ l of
651 0.1 M NaOH and incubated at room temperature for 5 min. Subsequently, cells were spun down by

652 centrifugation at 12000 *g* for 1 min and resuspended in 50 ml of reduced SDS sample buffer. Samples
653 were heated at 95°C for 5 min before analysis by SDS-PAGE and immunoblotting.

654 Site-specific photo-crosslinking assay

655 In all the substrate crosslinking experiments, the yeast strain ySI-266 was transformed with the
656 plasmid SNRtRNA-pBpaRS(*TRP*), the plasmid expressing Deg1-Ura3-Strep under the *TDH3*
657 promoter, and the plasmid expressing ALFA-tagged Doa10 under the *TDH3* promoter. An amber
658 codon was introduced at a specific site using site-directed mutagenesis.

659 Overnight culture was diluted to an OD₆₀₀=0.02 in 50 ml of fresh minimal medium SC(-Trp/-Leu/-Ura)
660 containing 2% glucose and 2 mM Bpa (Amatek, cat# A-0067). The cells were grown at 30°C overnight
661 until the cells reached an OD₆₀₀ of 1.0 to 1.2. Cells were harvested, washed with deionized water and
662 aliquoted into two tubes. One was kept on ice as a control experiment, while the other sample was
663 transferred to a 24-well plate and UV irradiated for 1 h on ice-cold water in the cold room. Cells were
664 pelleted and resuspended in 0.5 ml of lysis buffer (buffer LB, 50 mM Tris-HCl pH7.5, 200 mM NaCl,
665 10% glycerol, 2mM DTT, 1mM EDTA) supplemented protease inhibitors (5 µg ml⁻¹ aprotinin, 5 µg ml⁻¹
666 leupeptin, 1 µg ml⁻¹ pepstatin A, and 1 mM PMSF). Cells were then lysed by beating with 0.5-mm
667 glass beads. Cell lysate was supplemented with 1% LMNG and 0.2% CHS and incubated at 4°C for 1
668 h to solubilize membranes. Subsequently, the lysate was clarified by centrifugation at 17,000 *g* for 30
669 min. The supernatant was incubated with Sepharose beads conjugated with anti-ALFA nanobody at
670 4°C for 1 h. The beads were washed three times with 1 ml of wash buffer (buffer WB, 100mM NaCl,
671 20mM Tris-HCl pH 7.5, 1mM EDTA, 2 mM DTT and 0.02% DDM/CHS). Samples were eluted by
672 addition of reduced SDS sample buffer and mildly heated at 37°C for 30 min before analysis by SDS-
673 PAGE and immunoblotting.

674 For crosslinking between Doa10 and E2 enzymes, yeast strain ySI-266 (for Cue1) or yYC-307 (for
675 Ubc6) was subsequently transformed with SNRtRNA-pBpaRS, the E2-expression plasmid (pYC-300
676 for Cue1, pYC-301 for Ubc6), and the plasmid encoding a Doa10 amber codon mutant under the
677 *TDH3* promoter. The cells were grown and treated with the same procedure as described above.

678 For urea wash controls of photocrosslinking adducts, after washing beads once with buffer WB, two
679 additional washes were performed with buffer WB containing 6 M urea and 0.5% Triton X-100 (buffer
680 WD). This was followed by another wash with buffer WB without urea and elution with SDS sample
681 buffer.

682 Co-immunoprecipitation

683 For co-immunoprecipitation of E2 with Doa10 (Fig. 6g), yeast strain ySI-167 was first transformed with
684 pYC-302, and subsequently with an empty vector (pYTK-e112) or a plasmid expressing Doa10 (either
685 wild-type or Δ843-883 [“ΔL8/9b”]) under a *GAL1* promoter.

686 Overnight culture was diluted to an OD₆₀₀ of 0.2 in 10 ml of fresh minimal medium SC(-Leu/-Ura)
687 containing 2% raffinose, grown at 30°C until OD₆₀₀ reached 0.5, and induced with 2% galactose for 4
688 h. Cells were harvested, washed with deionized water, and resuspended in 200 µL buffer LB with
689 protease inhibitors. Cells were then lysed by bead-beating. After removing the glass beads, the cell
690 lysate was supplemented with 1% LMNG and 0.2% CHS and incubated at 4°C for 1 h. The lysate was
691 then clarified by centrifugation and incubated with Sepharose resins conjugated with GFP nanobody

692 for 3 h. The resins were washed three times with buffer WB and proteins bound to the resins were
693 eluted by SDS sample buffer.

694 **SDS-PAGE and antibodies (KW)**

695 To measure the expression level of Doa10, 2.0 OD₆₀₀ units of cells were collected, resuspended in
696 230 µl of 0.26 M NaOH and 0.13 M β-mercaptoethanol. Cell suspensions were incubated at room
697 temperature for 5 min, then spun down by centrifugation at 6000 g for 3 min. Pellets were
698 resuspended with 50 µl of reduced SDS sample buffer. Cell lysates were incubated at 37°C for 30 min
699 and clarified by centrifugation at 21,000 g for 10 min before analysis by SDS-PAGE. SDS-PAGE was
700 performed using Tris-glycine gels, except for Fig.5b,c where 4-12% Bis-Tris SDS-PAGE gels (Thermo
701 Fisher) were used.

702 Immunoblotting experiments were performed with anti-Doa10 antiserum (a gift from M. Hochstrasser;
703 1:1,000 dilution), anti-GFP antibody (Thermo Fisher #MA5-15256 ; 1:3,000 dilution), anti-ALFA-tag
704 nanobodies fused with a rabbit Fc domain (home-made), anti-Strep-tag antibody (Genscript
705 #A01732, ; 1:2,000 dilution), anti-FLAG-tag antibody (Sigma #F1804; 1,1000 dilution), anti-Pgk1
706 antiserum (a gift from J. Thorner; 1:1,000 dilution). Secondary antibodies used in this study were goat
707 anti-rabbit (Thermo Fisher #31460; 1:10,000 dilution), goat anti-mouse (Thermo Fisher #31430;
708 1:10,000 dilution).

709
710 **Acknowledgements**

711 We are indebted to M. Hochstrasser for yeast strains, plasmids, the Doa10 antiserum, and helpful
712 discussions. We thank J. Thorner for the Pgk1 antiserum. This work was supported by the Vallee
713 Scholars Program (E.P.), Pew Biomedical Scholars Program (E.P.), Hellman Fellowship (E.P.), Jane
714 Coffin Childs postdoc fellowship (K.W.). J.C.G. acknowledges support from NIH (R01 GM123169).
715 Computational resources were provided through XSEDE (TG-MCB130173), which is supported by
716 NSF (ACI-1548562). This work also used the Hive cluster, which is supported by the NSF (1828187)
717 and is managed by PACE at Georgia Tech.

718

719 **Authors contributions**

720 K.W., performed biochemical experiments, except for experiments in Fig. 6 and Supplementary Fig.
721 8e, which were performed by Y.C. S.I. purified samples for cryo-EM analysis and performed initial
722 biochemical studies. E.P. and S.I. collected and analyzed cryo-EM data, and built atomic models. E.P.
723 performed AlphaFold2 modeling. D.L. and J.C.G. performed MD simulations and analyses. A.T.
724 assisted K.W. on biochemical experiments. E.P. supervised the project and wrote the manuscript with
725 input from all authors. All authors contributed to data interpretations and manuscript editing.

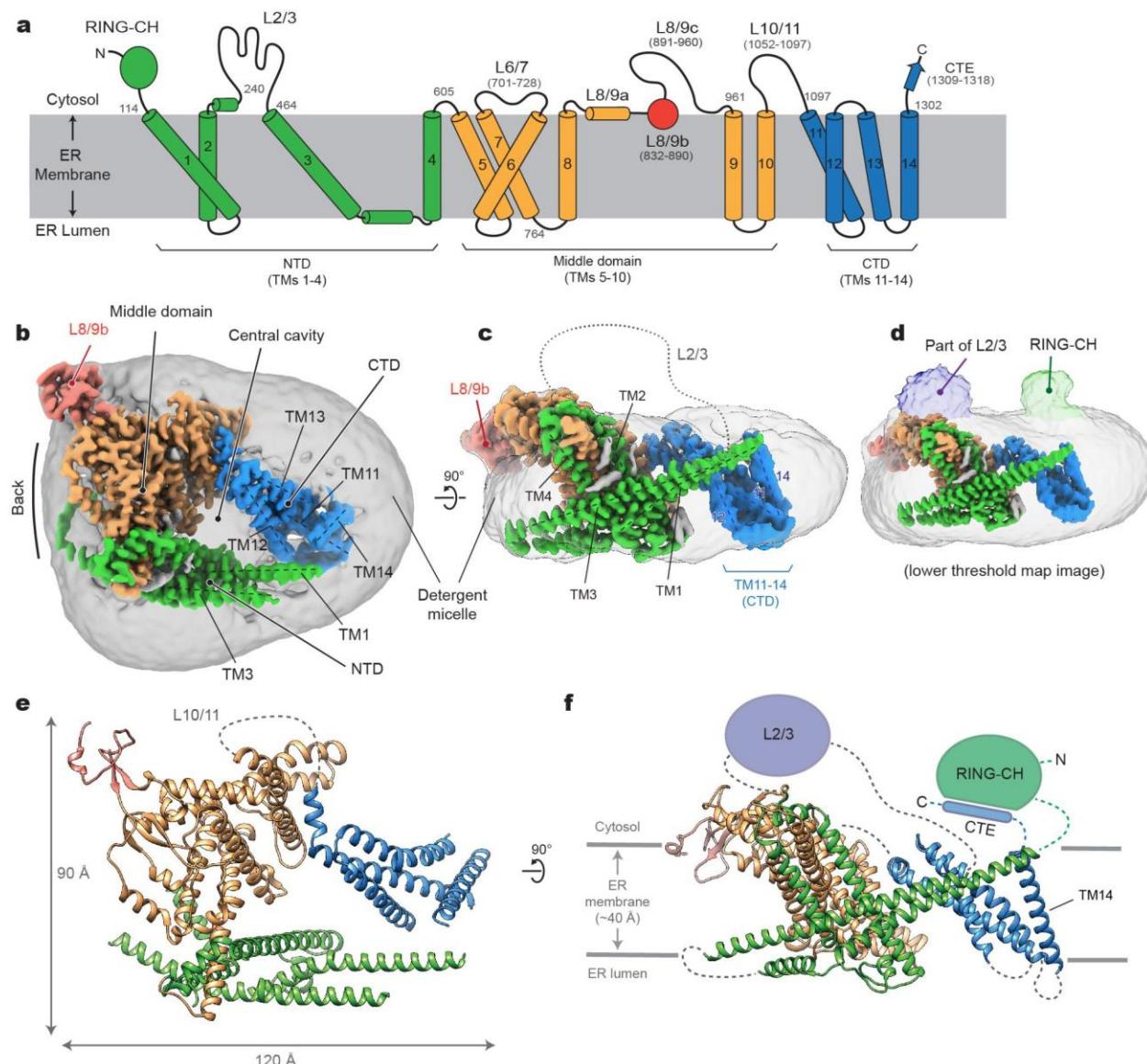
726 **Competing interests**

727 Authors declare no competing interests.

728 **Supplementary information**

729 Supplementary Information is available for this paper.

730 **Corresponding authors**

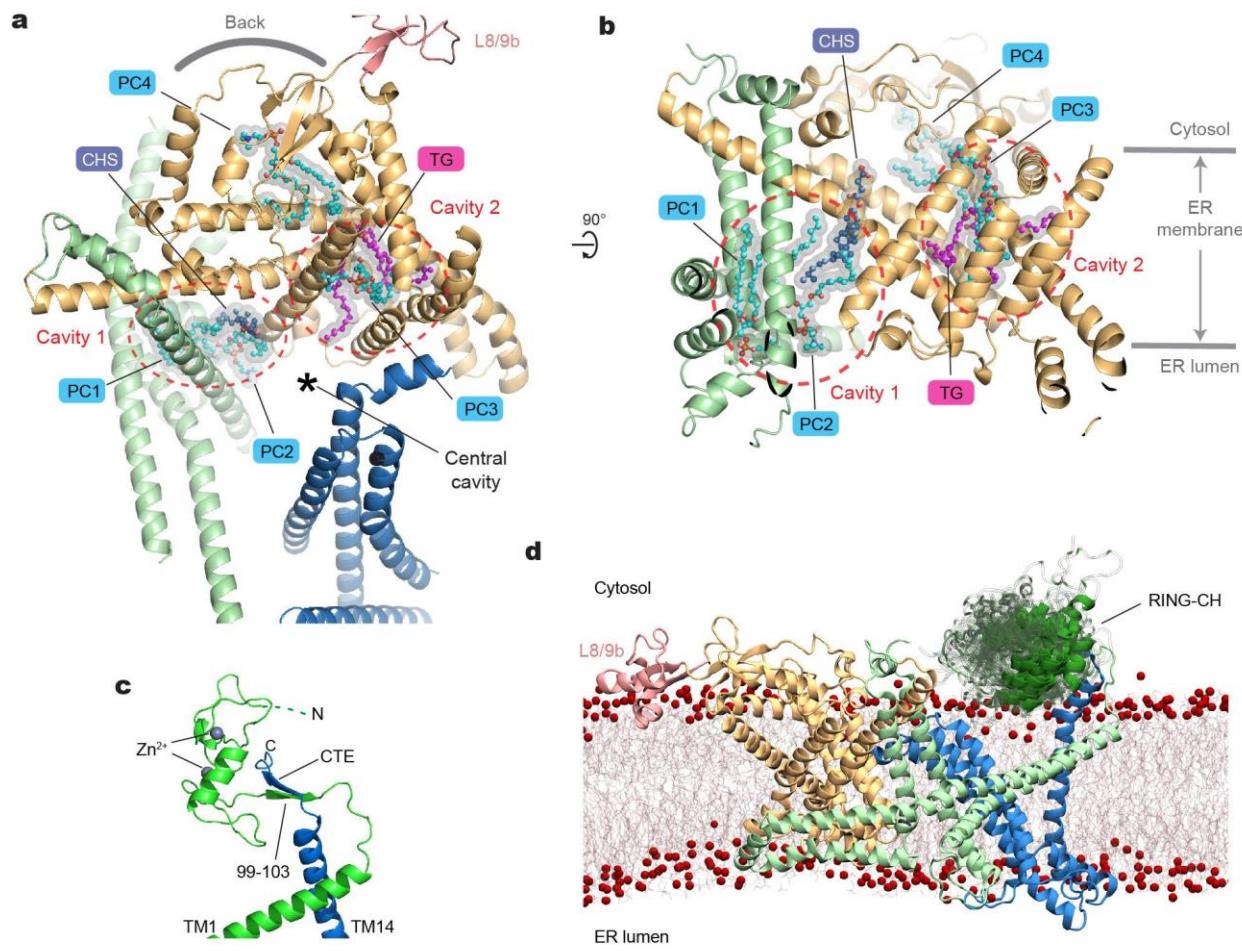

731 Correspondence and requests for materials should be addressed to Eunyong Park
732 (eunyong_park@berkeley.edu)

733 **Data availability**

734 The cryo-EM map and model are available through EM Data Bank (EMDB) and Protein Data Bank
735 (PDB) under the following accession codes, respectively: EMD-41508 and PDB ID 8TQM.

736

737


738

739 **Figure 1. Cryo-EM structure of *S. cerevisiae* Doa10 in detergent micelle.**

740 **a**, Schematic diagram of the domain structure of *S. cerevisiae* Doa10. Helices are represented as
741 cylinders (TMs 1-14 are numbered). Numbers in gray indicate amino acid residue number. **b**, Cryo-
742 EM density map of Doa10 viewed from the cytosol. Shown is a high-resolution protein density map
743 overlaid with a lowpass-filtered detergent micelle density (gray). The color scheme is the same as in
744 **a**. **c**, As in **b**, but showing a side view along the membrane plane. **d**, As in **c**, but overlaid a density
745 map with a lower surface threshold to show RING-CH and L2/3 features. **e** and **f**, Atomic model of
746 Doa10 based on the cryo-EM map. Views in **e** and **f** are equivalent to **b** and **c**, respectively. Parts that
747 are unresolved in cryo-EM were schematized.

748

749

750

751

752

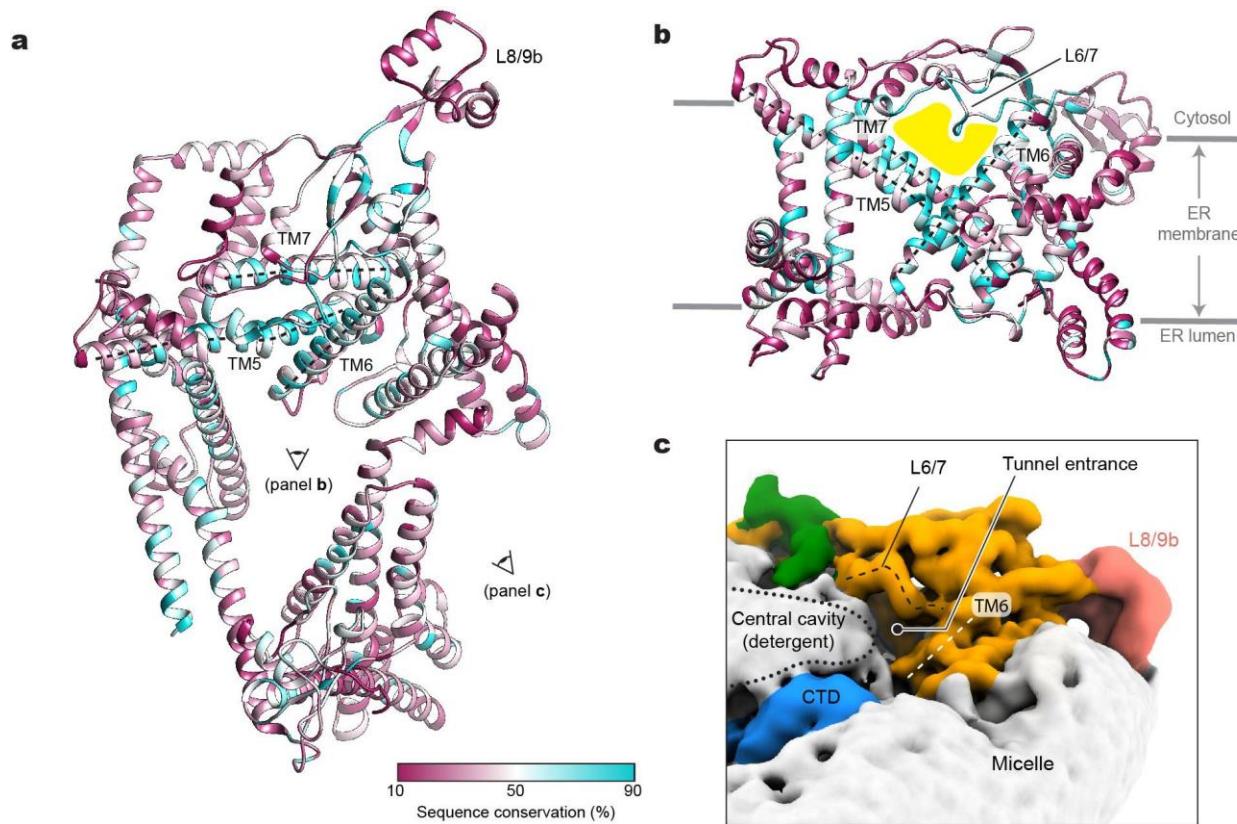
Figure 2. Lipid molecules within the middle domain of Doa10 and the flexibility of the RING-CH domain.

753

754

755

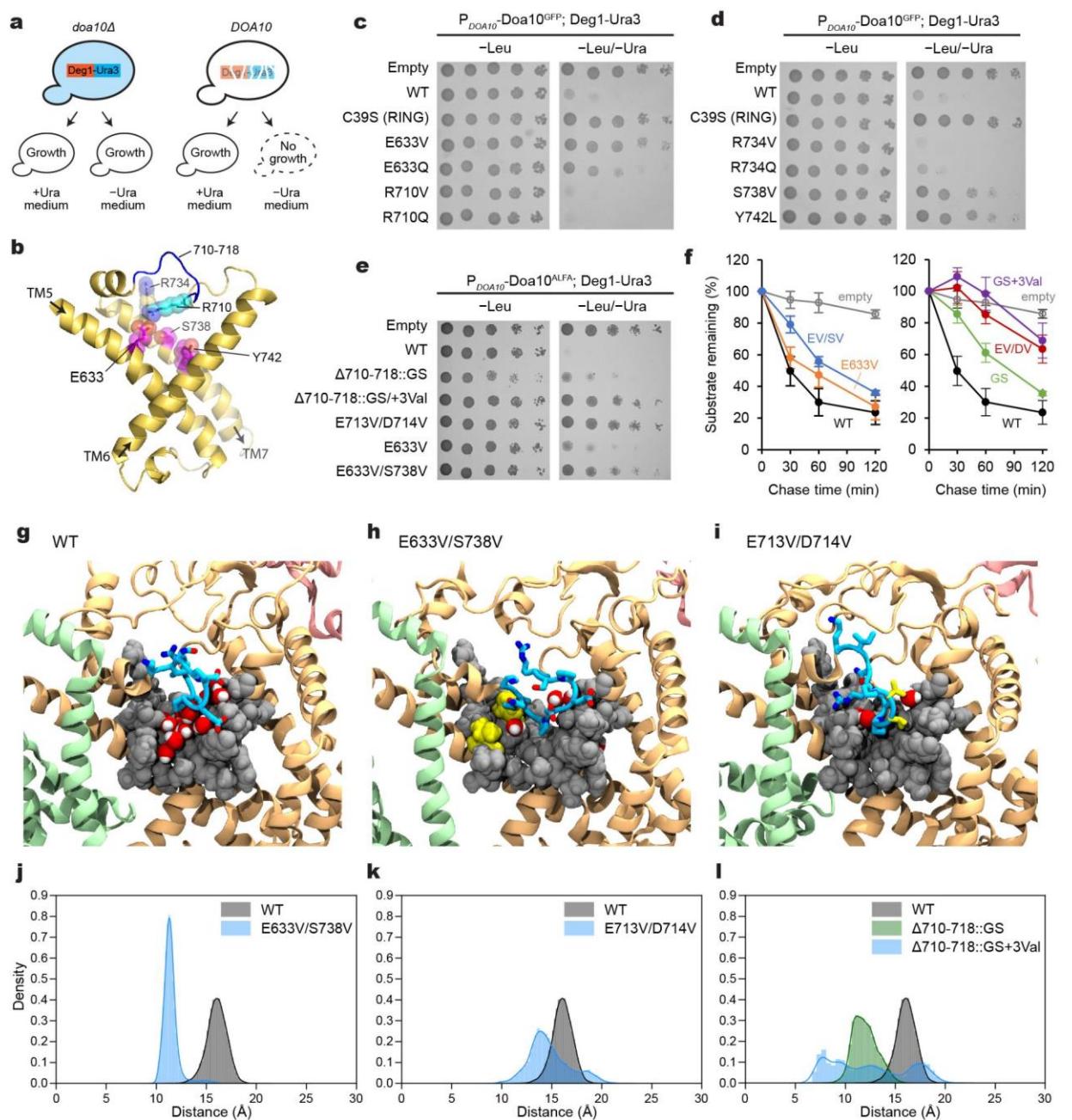
756


757

a, Lipid molecules entrapped in the interior of the TMD. The orientation of the Doa10 model (viewed from the cytosol) is rotated by ~90° clockwise from Fig. 1b. b, As in a, but a lateral view from the central cavity to the middle domain. c, An AlphaFold2 model of the RING-CH and CTE domains. Shown is a side view, equivalent to view in d and Fig. 1f. d, A result of an MD simulation on WT Doa10 (side view). Positional flexibility of RING-CH is represented with multiple overlaid structures.

758

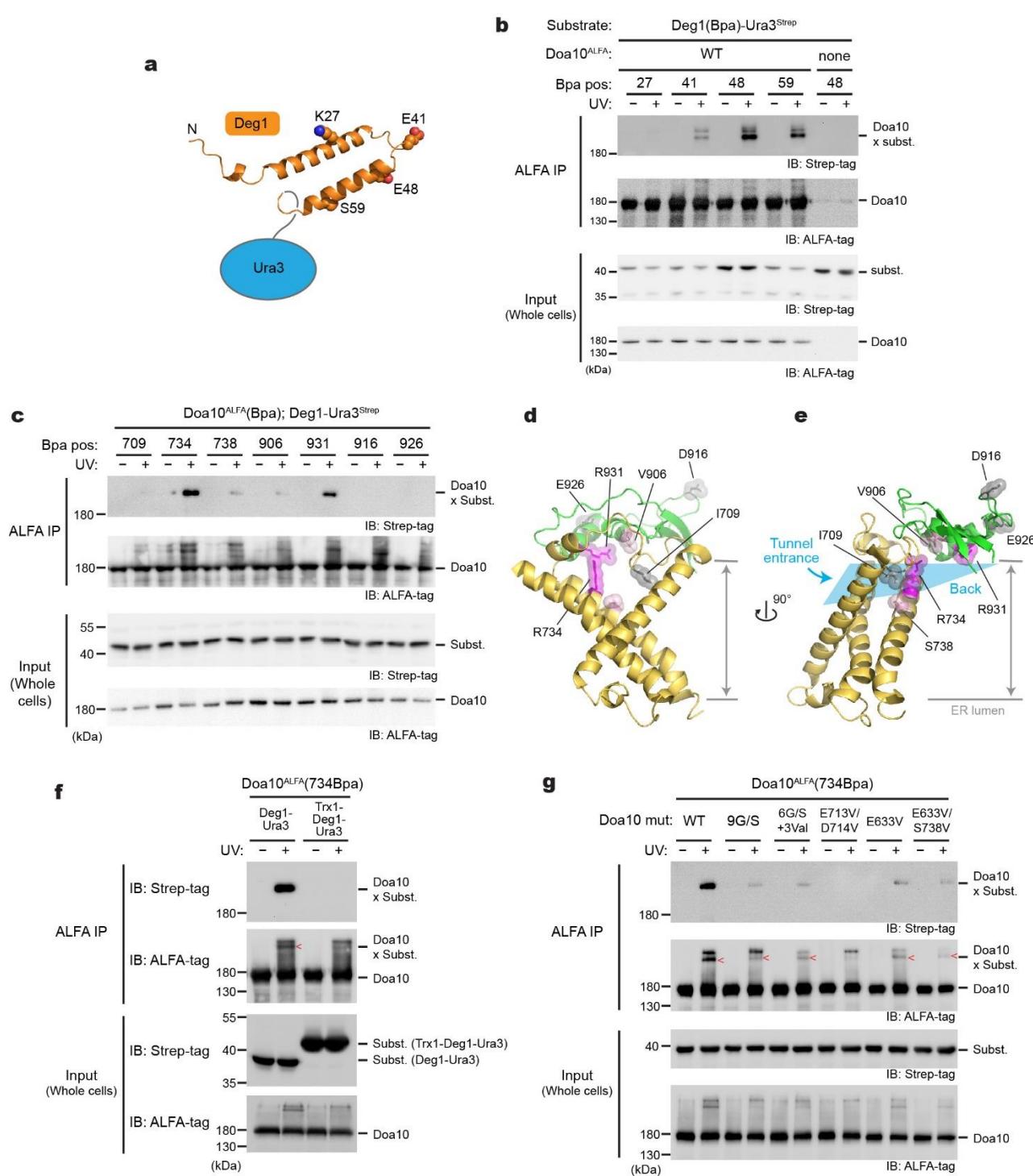
759


760

761
762
763
764
765
766
767
768
769
770

Figure 3. Sequence conservation, lipid-filled central cavity, and water-filled lateral tunnel.

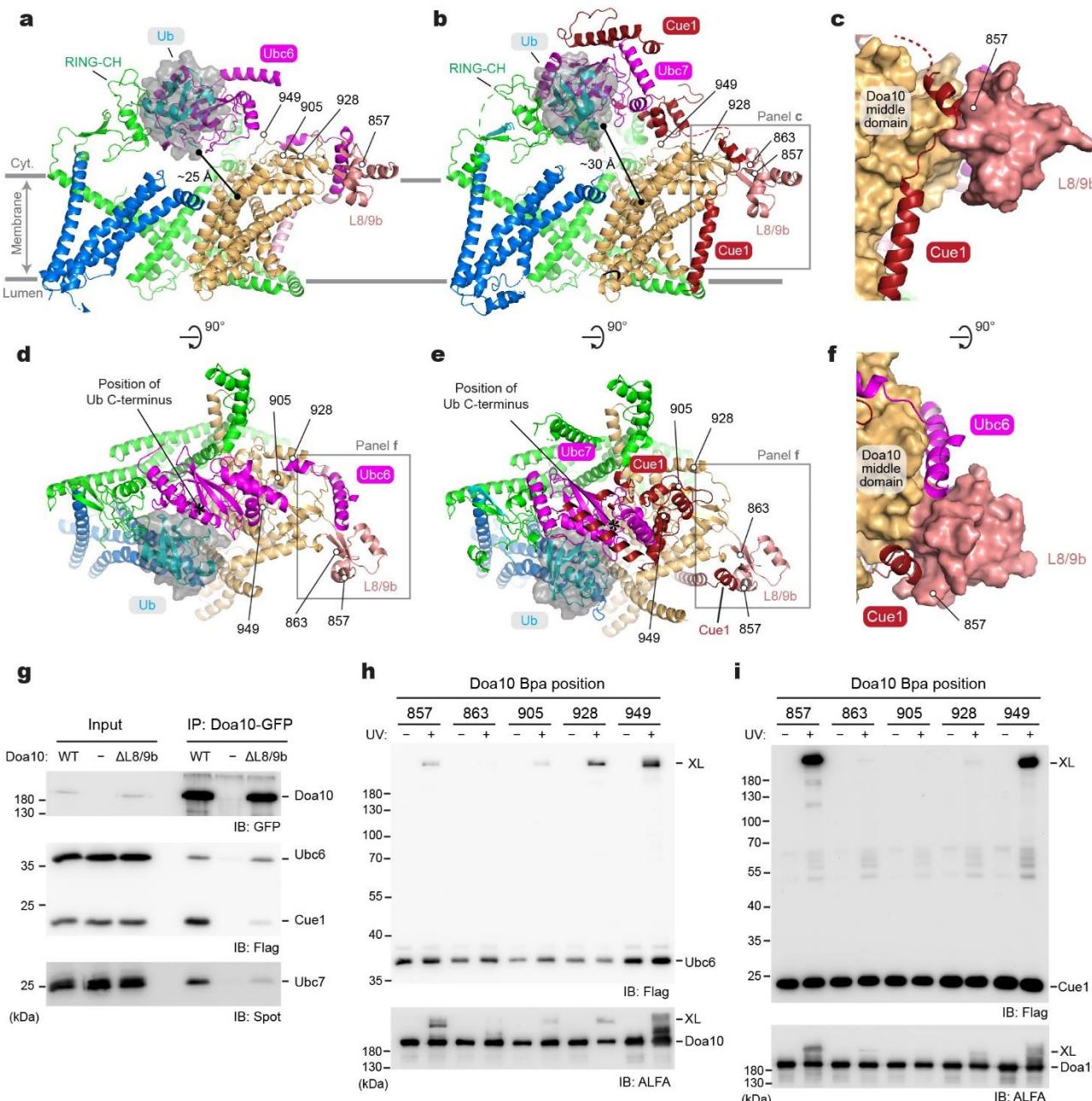
a, Amino acid sequence conservation is mapped on the structure of Doa10. TMs 5 to 7 (referred to as the TD domain is indicated by dashed lines. The view (cytosolic view) is equivalent to that of Fig. 2a. **b**, As in **a**, but a lateral view from the central cavity to the middle domain. The lateral tunnel is highlighted in yellow. **c**, A view into the entrance of the lateral tunnel. Shown in a lowpass-filtered cryo-EM map. The boundary of detergent features in the central cavity is indicated by a dotted line.


771

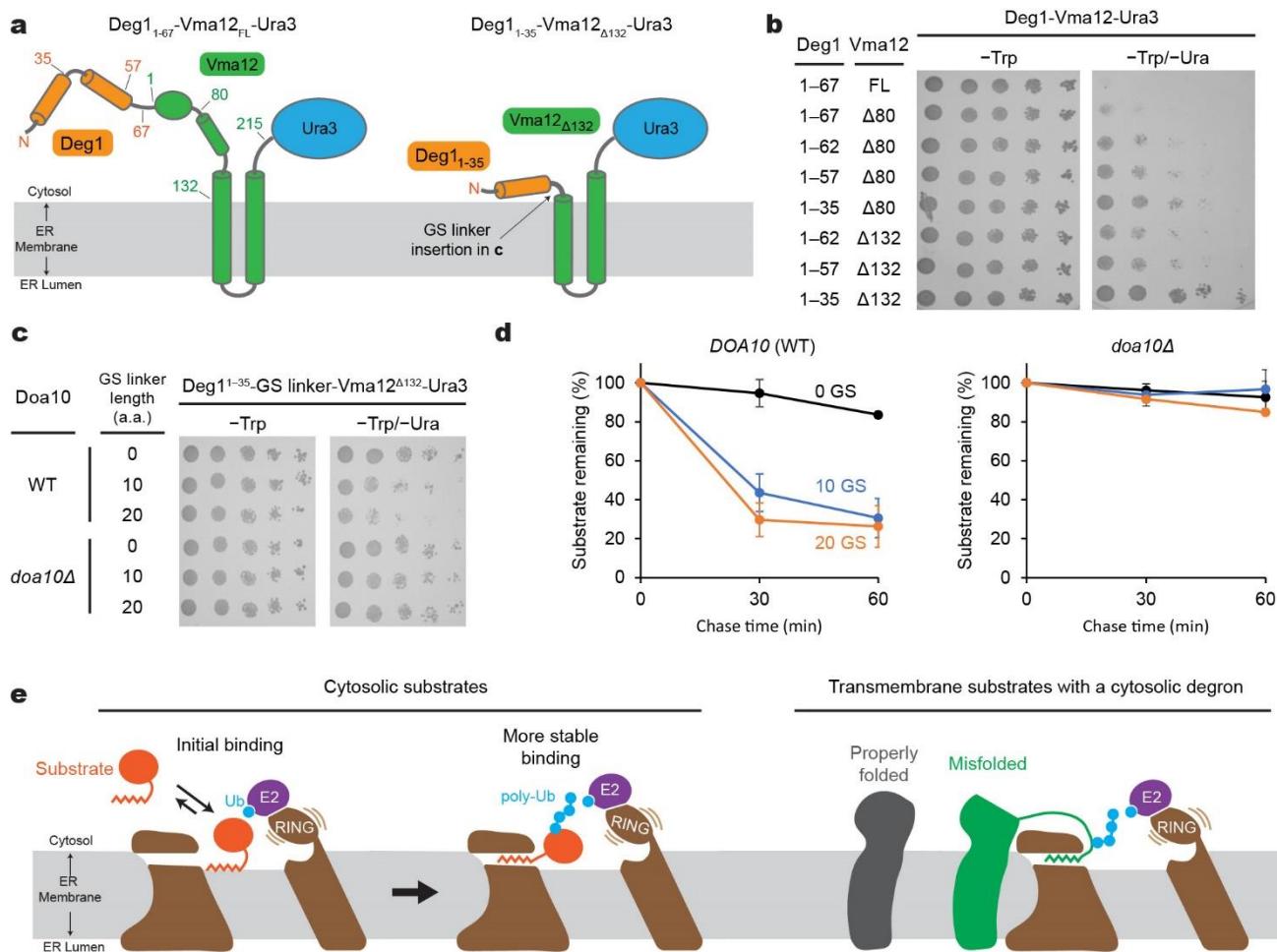
772

773 **Figure 4. Mutational analysis of the lateral tunnel of Doa10.**

774 **a**, Schematic diagram of Doa10-dependent yeast growth inhibition assay using Deg1-Ura3. **b**,
 775 Structure of TMs 5 to 7 (TD domain). The view is similar to Fig. 3b. Positions of amino acid residues
 776 tested for the effects on Deg1-Ura3 degradation are shown with sticks and spheres (magenta: defects
 777 observed; cyan/blue: no substantial defects observed; see **c** and **d**). **c** and **d**, Yeast growth inhibition
 778 assay with indicated Doa10 mutants (GFP-tagged Doa10 was expressed at a relatively low level from
 779 the DOA10 promoter in a single-copy plasmid). **e**, As in **c** and **d**, but testing different mutants of
 780 Doa10 (with an ALFA-tag). Note that a higher expression level of Doa10-ALFA compared to Doa10-
 781 GFP (Supplementary Fig. 6a) produces stronger growth inhibition (compare WT and E633V from **c**). **f**,
 782 Cycloheximide chase experiments on Deg1-Ura3 using indicated Doa10 mutants
 783 ('EV/SV'=E633V/S738V, 'GS'= Δ 710-718::GS, 'GS+3Val'= Δ 710-718::GS+3Val, and
 784 'EV/DV'=E713V/D714V). Means and s.e.m. are of three independent experiments. **g-i**, Example


785 snapshots of MD simulations on WT and indicated Doa10 mutants. Blue licorice, L6/7 (positions 710-
786 718); gray spheres, space-filling representation of the wedge-shaped tunnel-lining amino acids from
787 TMs 5 to 7; red and white spheres, water molecules within the lateral tunnel; yellow, mutated valine
788 residues. See Supplementary Fig. 7 for GS and GS+3Val mutants. **j-I**, The distance distribution was
789 computed between the center of mass of the loop residues (712-715) and the hydrophobic wedge
790 residues (F637, M686, F689, and Y742) for the wild type and mutant systems. The first 150 ns of
791 each trajectory were removed to allow loop relaxation and the 2 replicas were combined. Cyan,
792 residues 710-718; yellow, mutated residues; Gray, van der Waals spheres of wedge-lining residues;
793 red/light gray, water molecules.
794

795


796 **Figure 5. Deg1 inserts into the lateral tunnel of Doa10.**

797 **a**, A schematic diagram of Deg1-Ura and the secondary structure of Deg1 (predicted by AlphaFold2).
 798 **b**, In-vivo photocrosslinking experiment using Bpa-incorporated Deg1-Ura and wild-type Doa10. IP,
 799 immunoprecipitation. **c**, As in **b**, but Bpa was incorporated into a specific position in Doa10 instead of
 800 Deg1. **d** and **e**, Structure of the lateral tunnel (**d**, front view; **e**, side view) with highlighting the
 801 positions tested for crosslinking in panel **c**. Ribbons in yellow and green are TMs 5–7 and L8/9c,
 802 respectively. Residues in magenta crosslink to Deg1-Ura3. **f**, As in **c**, but testing the effects of Trx1
 803 fusion on crosslinking with 734Bpa of Doa10. **g**, As in **c**, but testing the effects of tunnel mutations on
 804 crosslinking with 734Bpa of Doa10.

805

806 Figure 6. Interaction between Doa10 and E2s and putative polyubiquitination site.
 807 **a**, AlphaFold2 model of Doa10 in complex with Ubc6 and Ub (a side view along the membrane plane).
 808 For Doa10, the RING-CH and N-terminal domains are shown in green, the middle domain in light
 809 brown, L8/9b in salmon, and the C-terminal domain in blue. Ubc6 is shown in magenta, and Ub is
 810 represented as cyan ribbon and semitransparent gray surface. **b**, As in a, but showing a model for the
 811 Doa10–Cue1–Ubc7–Ub complex. The area outlined with a gray box is shown in panel c. **c**, A view
 812 highlighting the interaction between Cue1 and L8/9b of Doa10 (Doa10 is in a surface representation).
 813 **d**, As in a, but showing the top (cytosolic) view. The area in a gray box is shown in panel f. **e**, As in b,
 814 but showing the top (cytosolic) view. The area in a gray box is shown in panel f. **f**, A view highlighting
 815 the interaction of Cue1 or Ubc6 with L8/9b of Doa10 (composite of the two models shown in d and e).
 816 **g**, Co-immunoprecipitation of Ubc6, Cue1, and Ubc7 with Doa10-GFP and its L8/9b truncation variant
 817 (Δ L8/9b). **h** and **i**, Bpa was introduced to indicated positions in Doa10, and UV photocrosslink to Ubc6
 818 (panel h) or Cue1 (panel i) was examined by immunoprecipitation and immunoblotting.

Figure 7. Physical constraints in recognition of a membrane-protein-linked Deg1 degron by Doa10 and working model for substrate recognition and polyubiquitination.

a, Schematic diagram of the Deg1-Vma12-Ura3 model substrate. Left, original construct; right, minimal construct. Numbers indicate the amino acid positions. **b**, Doa10-dependent yeast growth inhibition using various truncation variants of Deg1-Vma12-Ura3. **c**, As in **b**, but a Gly/Ser (GS) linker was inserted between the truncated Deg1 (Deg1¹⁻³⁵) and Vma12^{Δ132}. Two different GS linkers were tested: '10 GS' = GGS GGS GGS G and '20 GS' = GGS GGS GGS GGS GGS GGS GG. **d**, Degradation of indicated Deg1¹⁻³⁵-GS-Vma12^{Δ132} variants were measured by cycloheximide chase and immunoblotting (also see Supplementary Fig. 9b). Means and s.e.m. of three independent experiments. **e**, Working model for the substrate-recognition mechanism of Doa10.

References

1 Itskanov, S. & Park, E. Mechanism of Protein Translocation by the Sec61 Translocon Complex. *Cold Spring Harb Perspect Biol* **15**, doi:10.1101/cshperspect.a041250 (2023).

840 2 Hegde, R. S. & Keenan, R. J. The mechanisms of integral membrane protein biogenesis. *Nat Rev Mol Cell Biol* **23**, 107-124, doi:10.1038/s41580-021-00413-2 (2022).

841 3 Olarte, M. J., Swanson, J. M. J., Walther, T. C. & Farese, R. V., Jr. The CYTOLD and ERTOLD pathways for lipid droplet-protein targeting. *Trends Biochem Sci* **47**, 39-51, doi:10.1016/j.tibs.2021.08.007 (2022).

842 4 Koch, C., Schuldiner, M. & Herrmann, J. M. ER-SURF: Riding the Endoplasmic Reticulum Surface to Mitochondria. *Int J Mol Sci* **22**, doi:10.3390/ijms22179655 (2021).

843 5 Mayerhofer, P. U. Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. *Biochim Biophys Acta* **1863**, 870-880, doi:10.1016/j.bbamcr.2015.09.021 (2016).

844 6 Krshnan, L., van de Weijer, M. L. & Carvalho, P. Endoplasmic Reticulum-Associated Protein Degradation. *Cold Spring Harb Perspect Biol* **14**, doi:10.1101/cshperspect.a041247 (2022).

845 7 Christianson, J. C., Jarosch, E. & Sommer, T. Mechanisms of substrate processing during ER-associated protein degradation. *Nat Rev Mol Cell Biol*, doi:10.1038/s41580-023-00633-8 (2023).

846 8 Preston, G. M. & Brodsky, J. L. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. *Biochem J* **474**, 445-469, doi:10.1042/BCJ20160582 (2017).

847 9 Wu, X. & Rapoport, T. A. Mechanistic insights into ER-associated protein degradation. *Curr Opin Cell Biol* **53**, 22-28, doi:10.1016/j.ceb.2018.04.004 (2018).

848 10 Berner, N., Reutter, K. R. & Wolf, D. H. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. *Annu Rev Biochem* **87**, 751-782, doi:10.1146/annurev-biochem-062917-012749 (2018).

849 11 Lemberg, M. K. & Strisovsky, K. Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. *Mol Cell* **81**, 2507-2519, doi:10.1016/j.molcel.2021.05.004 (2021).

850 12 Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. *Nature* **414**, 652-656, doi:10.1038/414652a (2001).

851 13 Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. *Nat Cell Biol* **4**, 134-139, doi:10.1038/ncb746 (2002).

852 14 Neal, S., Mak, R., Bennett, E. J. & Hampton, R. A Cdc48 "Retrochaperone" Function Is Required for the Solubility of Retrotranslocated, Integral Membrane Endoplasmic Reticulum-associated Degradation (ERAD-M) Substrates. *J Biol Chem* **292**, 3112-3128, doi:10.1074/jbc.M116.770610 (2017).

853 15 Twomey, E. C. et al. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. *Science* **365**, doi:10.1126/science.aax1033 (2019).

854 16 Cooney, I. et al. Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. *Science* **365**, 502-505, doi:10.1126/science.aax0486 (2019).

855 17 Ferro-Novick, S., Reggiori, F. & Brodsky, J. L. ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease. *Trends Biochem Sci* **46**, 630-639, doi:10.1016/j.tibs.2020.12.013 (2021).

856 18 Bhattacharya, A. & Qi, L. ER-associated degradation in health and disease - from substrate to organism. *J Cell Sci* **132**, doi:10.1242/jcs.232850 (2019).

857 19 Vashist, S. & Ng, D. T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. *J Cell Biol* **165**, 41-52, doi:10.1083/jcb.200309132 (2004).

858 20 Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. *Cell* **126**, 361-373, doi:10.1016/j.cell.2006.05.043 (2006).

859 21 Christianson, J. C. & Carvalho, P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. *EMBO J* **41**, e109845, doi:10.15252/embj.2021109845 (2022).

891 22 Jakob, C. A., Burda, P., Roth, J. & Aeby, M. Degradation of misfolded endoplasmic reticulum
892 glycoproteins in *Saccharomyces cerevisiae* is determined by a specific oligosaccharide
893 structure. *J Cell Biol* **142**, 1223-1233, doi:10.1083/jcb.142.5.1223 (1998).

894 23 Koren, I. *et al.* The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-
895 Terminal Degrons. *Cell* **173**, 1622-1635 e1614, doi:10.1016/j.cell.2018.04.028 (2018).

896 24 Kats, I. *et al.* Mapping Degradation Signals and Pathways in a Eukaryotic N-terminome. *Mol*
897 *Cell* **70**, 488-501 e485, doi:10.1016/j.molcel.2018.03.033 (2018).

898 25 Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the
899 degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum
900 membrane protein. *Mol Biol Cell* **7**, 2029-2044, doi:10.1091/mbc.7.12.2029 (1996).

901 26 Bordallo, J., Plempner, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic
902 reticulum-associated degradation of misfolded luminal and integral membrane proteins. *Mol*
903 *Biol Cell* **9**, 209-222, doi:10.1091/mbc.9.1.209 (1998).

904 27 Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear
905 envelope/endoplasmic reticulum that functions in both ER-associated and MATA2
906 repressor degradation. *Genes Dev* **15**, 2660-2674, doi:10.1101/gad.933301 (2001).

907 28 Habeck, G., Ebner, F. A., Shimada-Kreft, H. & Kreft, S. G. The yeast ERAD-C ubiquitin ligase
908 Doa10 recognizes an intramembrane degron. *J Cell Biol* **209**, 261-273,
909 doi:10.1083/jcb.201408088 (2015).

910 29 Deng, M. & Hochstrasser, M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane
911 ligase. *Nature* **443**, 827-831, doi:10.1038/nature05170 (2006).

912 30 von Delbruck, M. *et al.* The CUE Domain of Cue1 Aligns Growing Ubiquitin Chains with Ubc7
913 for Rapid Elongation. *Mol Cell* **62**, 918-928, doi:10.1016/j.molcel.2016.04.031 (2016).

914 31 Weber, A. *et al.* Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands
915 the Versatility of a Quality Control Ubiquitin Ligase. *Mol Cell* **63**, 827-839,
916 doi:10.1016/j.molcel.2016.07.020 (2016).

917 32 Neuber, O., Jarosch, E., Volkwein, C., Walter, J. & Sommer, T. Ubx2 links the Cdc48 complex
918 to ER-associated protein degradation. *Nat Cell Biol* **7**, 993-998, doi:10.1038/ncb1298 (2005).

919 33 Ravid, T., Kreft, S. G. & Hochstrasser, M. Membrane and soluble substrates of the Doa10
920 ubiquitin ligase are degraded by distinct pathways. *EMBO J* **25**, 533-543,
921 doi:10.1038/sj.emboj.7600946 (2006).

922 34 Johnson, P. R., Swanson, R., Rakhilina, L. & Hochstrasser, M. Degradation signal masking by
923 heterodimerization of MATA2 and MATA1 blocks their mutual destruction by the ubiquitin-
924 proteasome pathway. *Cell* **94**, 217-227, doi:10.1016/s0092-8674(00)81421-x (1998).

925 35 Zattas, D., Berk, J. M., Kreft, S. G. & Hochstrasser, M. A Conserved C-terminal Element in the
926 Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate
927 Degradation. *J Biol Chem* **291**, 12105-12118, doi:10.1074/jbc.M116.726877 (2016).

928 36 Kreft, S. G. & Hochstrasser, M. An unusual transmembrane helix in the endoplasmic reticulum
929 ubiquitin ligase Doa10 modulates degradation of its cognate E2 enzyme. *J Biol Chem* **286**,
930 20163-20174, doi:10.1074/jbc.M110.196360 (2011).

931 37 Schmidt, C. C., Vasic, V. & Stein, A. Doa10 is a membrane protein retrotranslocase in ER-
932 associated protein degradation. *eLife* **9**, doi:10.7554/eLife.56945 (2020).

933 38 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-
934 589, doi:10.1038/s41586-021-03819-2 (2021).

935 39 Ruggiano, A., Mora, G., Buxo, L. & Carvalho, P. Spatial control of lipid droplet proteins by the
936 ERAD ubiquitin ligase Doa10. *EMBO J* **35**, 1644-1655, doi:10.15252/embj.201593106 (2016).

937 40 Ast, T., Aviram, N., Chuartzman, S. G. & Schuldiner, M. A cytosolic degradation pathway,
938 prERAD, monitors pre-inserted secretory pathway proteins. *J Cell Sci* **127**, 3017-3023,
939 doi:10.1242/jcs.144386 (2014).

940 41 Gilon, T., Chomsky, O. & Kulka, R. G. Degradation signals recognized by the Ubc6p-Ubc7p
941 ubiquitin-conjugating enzyme pair. *Mol Cell Biol* **20**, 7214-7219, doi:10.1128/MCB.20.19.7214-
942 7219.2000 (2000).

943 42 Furth, N. *et al.* Exposure of bipartite hydrophobic signal triggers nuclear quality control of
944 Ndc10 at the endoplasmic reticulum/nuclear envelope. *Mol Biol Cell* **22**, 4726-4739,
945 doi:10.1091/mbc.E11-05-0463 (2011).

946 43 Chua, N. K., Howe, V., Jatana, N., Thukral, L. & Brown, A. J. A conserved degron containing
947 an amphipathic helix regulates the cholesterol-mediated turnover of human squalene
948 monooxygenase, a rate-limiting enzyme in cholesterol synthesis. *J Biol Chem* **292**, 19959-
949 19973, doi:10.1074/jbc.M117.794230 (2017).

950 44 Hasenjager, S., Bologna, A., Essen, L. O., Spadaccini, R. & Taxis, C. C-terminal sequence
951 stability profiling in *Saccharomyces cerevisiae* reveals protective protein quality control
952 pathways. *J Biol Chem*, 105166, doi:10.1016/j.jbc.2023.105166 (2023).

953 45 Dederer, V. *et al.* Cooperation of mitochondrial and ER factors in quality control of tail-
954 anchored proteins. *eLife* **8**, doi:10.7554/eLife.45506 (2019).

955 46 Matsumoto, S. *et al.* Msp1 Clears Mistargeted Proteins by Facilitating Their Transfer from
956 Mitochondria to the ER. *Mol Cell* **76**, 191-205 e110, doi:10.1016/j.molcel.2019.07.006 (2019).

957 47 McKenna, M. J. *et al.* The endoplasmic reticulum P5A-ATPase is a transmembrane helix
958 dislocase. *Science* **369**, doi:10.1126/science.abc5809 (2020).

959 48 Shakya, V. P. *et al.* A nuclear-based quality control pathway for non-imported mitochondrial
960 proteins. *eLife* **10**, doi:10.7554/eLife.61230 (2021).

961 49 Foresti, O., Ruggiano, A., Hannibal-Bach, H. K., Ejsing, C. S. & Carvalho, P. Sterol
962 homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin
963 ligase Doa10/Teb4. *eLife* **2**, e00953, doi:10.7554/eLife.00953 (2013).

964 50 Mehrtash, A. B. & Hochstrasser, M. Elements of the ERAD ubiquitin ligase Doa10 regulating
965 sequential poly-ubiquitylation of its targets. *iScience* **25**, 105351,
966 doi:10.1016/j.isci.2022.105351 (2022).

967 51 Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A Highly Characterized Yeast
968 Toolkit for Modular, Multipart Assembly. *ACS Synth Biol* **4**, 975-986, doi:10.1021/sb500366v
969 (2015).

970 52 Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with
971 high throughput capability. *PLoS One* **3**, e3647, doi:10.1371/journal.pone.0003647 (2008).

972 53 Mandart, E., Dufour, M. E. & Lacroute, F. Inactivation of SSM4, a new *Saccharomyces*
973 *cerevisiae* gene, suppresses mRNA instability due to rna14 mutations. *Mol Gen Genet* **245**,
974 323-333, doi:10.1007/BF00290112 (1994).

975 54 Stuerner, E., Kuraku, S., Hochstrasser, M. & Kreft, S. G. Split-Doa10: a naturally split polytopic
976 eukaryotic membrane protein generated by fission of a nuclear gene. *PLoS One* **7**, e45194,
977 doi:10.1371/journal.pone.0045194 (2012).

978 55 Krishnamurthy, M. *et al.* Caught in the act: covalent cross-linking captures activator-coactivator
979 interactions in vivo. *ACS Chem Biol* **6**, 1321-1326, doi:10.1021/cb200308e (2011).

980 56 Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp.
981 *Nat Methods* **16**, 1146-1152, doi:10.1038/s41592-019-0580-y (2019).

982 57 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
983 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
984 doi:10.1038/nmeth.4169 (2017).

985 58 Sanchez-Garcia, R. *et al.* DeepEMhancer: a deep learning solution for cryo-EM volume post-
986 processing. *Commun Biol* **4**, 874, doi:10.1038/s42003-021-02399-1 (2021).

987 59 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
988 analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

989 60 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and
990 analysis. *Protein Sci* **27**, 14-25, doi:10.1002/pro.3235 (2018).

991 61 Godwin, R. C., Melvin, R. L., Gmeiner, W. H. & Salsbury, F. R., Jr. Binding Site Configurations
992 Probe the Structure and Dynamics of the Zinc Finger of NEMO (NF- κ B Essential
993 Modulator). *Biochemistry* **56**, 623-633, doi:10.1021/acs.biochem.6b00755 (2017).

994 62 Anandakrishnan, R., Aguilar, B. & Onufriev, A. V. H++ 3.0: automating pK prediction and the
995 preparation of biomolecular structures for atomistic molecular modeling and simulations.
996 *Nucleic Acids Res* **40**, W537-541, doi:10.1093/nar/gks375 (2012).
997 63 Sugiura, S. & Mima, J. Physiological lipid composition is vital for homotypic ER membrane
998 fusion mediated by the dynamin-related GTPase Sey1p. *Sci Rep* **6**, 20407,
999 doi:10.1038/srep20407 (2016).
1000 64 Ganeshan, S., Shabits, B. N. & Zaremburg, V. Tracking Diacylglycerol and Phosphatidic Acid
1001 Pools in Budding Yeast. *Lipid Insights* **8**, 75-85, doi:10.4137/LPI.S31781 (2015).
1002 65 Itskanov, S., Kuo, K. M., Gumbart, J. C. & Park, E. Stepwise gating of the Sec61 protein-
1003 conducting channel by Sec63 and Sec62. *Nat Struct Mol Biol* **28**, 162-172,
1004 doi:10.1038/s41594-020-00541-x (2021).
1005 66 Wu, E. L. *et al.* CHARMM-GUI Membrane Builder toward realistic biological membrane
1006 simulations. *J Comput Chem* **35**, 1997-2004, doi:10.1002/jcc.23702 (2014).
1007 67 Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison
1008 of simple potential functions for simulating liquid water. *The Journal of Chemical Physics* **79**,
1009 926-935, doi:10.1063/1.445869 (1983).
1010 68 Huang, J. *et al.* CHARMM36m: an improved force field for folded and intrinsically disordered
1011 proteins. *Nat Methods* **14**, 71-73, doi:10.1038/nmeth.4067 (2017).
1012 69 Klauda, J. B. *et al.* Update of the CHARMM all-atom additive force field for lipids: validation on
1013 six lipid types. *J Phys Chem B* **114**, 7830-7843, doi:10.1021/jp101759q (2010).
1014 70 Phillips, J. C. *et al.* Scalable molecular dynamics on CPU and GPU architectures with NAMD.
1015 *J Chem Phys* **153**, 044130, doi:10.1063/5.0014475 (2020).
1016 71 Balusek, C. *et al.* Accelerating Membrane Simulations with Hydrogen Mass Repartitioning. *J*
1017 *Chem Theory Comput* **15**, 4673-4686, doi:10.1021/acs.jctc.9b00160 (2019).
1018 72 Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums
1019 in large systems. *The Journal of Chemical Physics* **98**, 10089-10092, doi:10.1063/1.464397
1020 (1993).
1021 73 Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *J Mol Graph* **14**, 33-
1022 38, 27-38, doi:10.1016/0263-7855(96)00018-5 (1996).
1023