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Abstract

We conducted a genome-wide association study (GWAS) on income among individuals of
European descent and leveraged the results to investigate the socio-economic health gradient
(N=668,288). We found 162 genomic loci associated with a common genetic factor underlying
various income measures, all with small effect sizes. Our GWAS-derived polygenic index
captures 1 - 4% of income variance, with only one-fourth attributed to direct genetic effects. A
phenome-wide association study using this polygenic index showed reduced risks for a broad
spectrum of diseases, including hypertension, obesity, type 2 diabetes, coronary
atherosclerosis, depression, asthma, and back pain. The income factor showed a substantial
genetic correlation (0.92, s.e. = .006) with educational attainment (EA). Accounting for EA's
genetic overlap with income revealed that the remaining genetic signal for higher income
related to better mental health but reduced physical health benefits and increased participation

in risky behaviours such as drinking and smoking.


mailto:p.d.koellinger@vu.nl
mailto:a.abdellaoui@amsterdamumc.nl
https://doi.org/10.1101/2024.01.09.574865
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574865; this version posted January 10, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

Income is a crucial determinant of individuals' access to resources and overall quality of life.
Extensive evidence shows that higher income is positively correlated with increased subjective
well-being, better health, and longer life expectancy.!™ For instance, the gap in life expectancy
between the richest and poorest 1% of individuals in the US has been estimated to be 14.6 years
for men (95% CI, 14.4 to 14.8 years) and 10.1 years for women (95% CI, 9.9 to 10.3 years).®
Notably, higher income is associated with increased longevity and well-being across the entire
income distribution, highlighting its broad relevance in current society.>5’

Income is a complex phenotype influenced by many factors, including environmental
conditions and education.®® Parents' socio-economic status shapes a child's developmental
trajectory, including their skills, behaviours, educational attainment, career prospects, and
eventual adult income.!®!" Moreover, certain heritable individual characteristics, such as

12714 are well-known predictors of income within

cognitive ability and personality traits,
contemporary Western societies. Twin studies have estimated income heritability in these
societies to be around 40-50%.'>'” However, the heritability of income and its associated genes
are not fixed; rather, they reflect social realities shaped by technological, institutional, and
cultural factors.'® These factors are malleable and exhibit variations across different regions
and historical epochs, which can lead to fluctuations in heritability estimates for socio-

1920 and imperfect genetic correlations across samples.?!

economic status (SES) over time

The results from statistically well-powered GWAS of SES present numerous
opportunities to shed light on these social realities. For example, they allow investigating
questions about sex differences in labour market processes, cross-country comparisons in the
genetic architecture of income, and investigating the processes contributing to intergenerational
social mobility.?? They also facilitate studies investigating the interaction effects between
genetic and environmental factors. Furthermore, they enable the exploration of genetic
correlations between income and health outcomes, potentially unveiling new insights into the
socioeconomic health gradient.

Two previous GWAS have been conducted on household income.?*** The first was in
a sample of 96,900 participants from the initial release of the UK Biobank (UKB)? and found
two loci. The second was carried out in the full release of the UKB with 286,301 individuals
and found 30 approximately uncorrelated loci. A meta-analysis of these results with the

genetically correlated trait educational attainment increased the effective sample size to

505,541 individuals and identified 144 loci. A recent GWAS on occupational status in the UKB
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data identified cognitive skills, scholastic motivation, occupational aspiration, personality
traits, and behavioural disinhibition (proxied by ADHD) as potential mediating factors linking
genetics to occupational status.?®

Building on these earlier contributions, we conducted a GWAS leveraging multiple
income measures. We ran sex-stratified analyses and meta-analyzed results from 32 cohorts
across 12 economically advanced countries and three continents, yielding the largest GWAS
on income to date with an effective sample size of N = 668,288 (Table 1). Due to data
availability and statistical power considerations, our analyses and conclusions are restricted to
individuals carrying genotypes most similar to the EUR panel of the 1000 Genomes dataset, as
compared to individuals sampled elsewhere in the world (1KG-EUR-like individuals).

The greater statistical power of our GWAS enabled us to conduct a series of follow-up
analyses that investigate the socio-economic health gradient from a genetic perspective. In
particular, we leveraged the data to compare the GWAS results for income and EA to
disentangle their unique genetic correlates with health. Furthermore, our multi-sample
approach and sex-specific GWAS results allowed us to test for possible differences in the
genetic architecture of income across samples and sexes.

For a less technical description of the paper and how it should -- and should not -- be

interpreted, see the Frequently Asked Questions document (FAQ) and Box 1.

Results
Multivariate GWAS of income

We used four measures of income (individual, occupational, household, and parental
income) and conducted a GWAS meta-analysis of their shared genetic basis. Supplementary
Information section 2.1 discusses the differences between these measures and their relative
advantages and disadvantages as proxies for individual income. Dropping parental income
from the meta-analysis leads to a slight statistical power decrease but does not qualitatively
change our results.

A sex-stratified GWAS was carried out on each available income measure in each
cohort. We restricted our analyses to 1KG-EUR-like individuals who were not currently
enrolled in an educational program or who were aged above 30 if their current enrollment status
was unknown. The natural log transformation was applied to the income measures. We applied

standardised quality control procedures to each cohort-level result (see Supplementary


https://www.zotero.org/google-docs/?P9FtTW
https://doi.org/10.1101/2024.01.09.574865
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574865; this version posted January 10, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Information section 2.4 for details). For each sex and each income measure, we performed a
sample-size-weighted meta-analysis with METAL.?” We then meta-analyzed the male and
female results of each income measure using MTAG,?® which accounts for any potential
genetic relatedness between the male and female samples.

Across the four GWAS on different income measures, we identified 86 non-
overlapping loci in the genome (see Supplementary Information section 2.6 for the definition
of loci and lead SNPs). Table 1 summarises the results. Occupational and household income
produced the most genetic associations (59 and 41 loci, respectively), as expected based on
sample sizes and SNP-based heritability estimates based on linkage disequilibrium score
regression (LDSC) (#° = 0.08 (s.e. = 0.003) and 0.06 (s.e. = 0.003), respectively). The four
income measures’ pairwise genetic correlation (7) estimates demonstrated substantial shared

genetic  variance, with all  pairwise rs’s at  least 0.8  (Fig. 1a).

Table 1. GWAS summary

Measure N Female % # SNP Mean )2 # Loci h’ (s.e)
Household 497,413  0.55 11,500,222 1.54 41 0.06 (0.003)
Individual 72,601 0.54 5,986,804 1.06 0 0.04 (0.007)
Occupational 443,064  0.57 11,500,419 1.64 59 0.08 (0.003)
Parental 128,724  0.50 6,144,179 1.11 1 0.05 (0.0006)
INC factor 668,288% - 9,131,507 1.94 162 0.07 (0.002)

Note: INC factor is from the meta-analysis across the four income measures: individual, occupational,
household, and parental. * is the estimated effective sample size reported for the INC factor. Some individuals

contributed multiple times to different income measures. The mean y? was computed only with the HapMap 3

SNPs. The number of approximately independent loci (sixth column) was obtained using FUMA. The SNP
heritability (4°) was estimated with LDSC.

Next, we meta-analyzed the association results across the four income measures using
MTAG (see Supplementary Information section 2.5 for details). We observed that the MTAG
procedure yields nearly identical results to genomic SEM’s common factor function.?’ Thus,

we hereafter refer to the meta-analyzed income as ‘the income factor’ (INC factor). Since
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MTAG already applies a bias correction with the intercept from LDSC,** we did not apply
further adjustments for cryptic relatedness and population stratification.

The INC factor GWAS was estimated to have an effective sample size of 668,288,
based on occupational income’s heritability scale (Ney = 1,198,347 based on individual
income). The meta-analysis across the income measures led to a substantial increase in power,
which allowed us to identify 162 loci tagged by 207 lead SNPs (Fig. 1b). 88 of these loci were
newly identified compared to the previously published GWAS household income result
conducted in the UKB.2* The genetic correlation of the previous household income GWAS
result was 0.92 (s.e. = 0.008) with the INC factor and 0.94 (s.e. = 0.006) when we restrict our
analysis to only our household income measure.

The effect sizes of the lead SNPs were small. Adjusting for the statistical winner’s
curse, one additional count in the effect allele of the median lead SNP was associated with an
increase in income of 0.30% (these effect-size calculations require an assumption about the
standard deviation of the dependent variable because MTAG yields standardised effect-size
estimates; we use the standard deviation estimate of log hourly occupational wage from the
UKB, which is 0.35). The estimated effects at the 5™ and 95 percentiles were 0.18 and 0.60%,
respectively (see Supplementary Information section 2.7). To put these estimates into
perspective, the median annual earnings of full-time workers in the US was $56,473 in 2021.%"
A 0.3% increase would equal an additional annual income of $169. In terms of the variance
explained (R?), all of the lead SNPs each had R’ lower than 0.011% after adjustment for the

statistical winner’s curse (Supplementary Fig. 2).
Cross-sex and cross-country heterogeneity

The heritability of income and its genetic associations may vary across different social
environments or different groups within an environment. To investigate the potential
heterogeneity of genetic associations with income, we examined cross-cohort genetic
correlations. We found that the inverse-variance weighted mean genetic correlations across
pairs of cohorts were 0.45 (s.e. = 0.22) for individual income, 0.52 (s.e. = 0.13) for household
income, and 0.90 (s.e. = 0.24) for occupational income (Supplementary Tables 28a-c).

Next, we meta-analyzed cohorts from the same country with the same income measure
available and estimated the genetic correlations across these countries (Estonia, Netherlands,
Norway, United Kingdom, USA - Extended Data Figure 1a). For most country-pairs, the
genetic correlation of the same income measure is >0.8. While meta-analysis increases

statistical power and yields more precise estimates of the average effect size, it also tends to
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mask non-random heterogeneity in effect size estimates across samples. Despite this latter
point, we find that occupational income in Norway displayed lower genetic correlations with
occupational or household income in other countries, ranging from 0.43 (s.e. = 0.23) to 0.82
(s.e. =0.10). Similarly, occupational income’s genetic correlation with educational attainment
(EA) was also lower in Norway (7g = 0.69, s.e. = 0.08) compared to the other countries. These
findings align with phenotypic evidence that ranks Norway lowest among OECD countries in
terms of financial returns for obtaining a college degree.’? Next, we investigated whether the
large number of samples from the United Kingdom in our meta-analysis could have skewed
our results. To address this, we conducted a separate meta-analysis procedure for the British
and non-British cohorts, comprising participants from 10 countries. We obtained two distinct
GWAS results for the INC factor and found a perfect genetic correlation of 1.001 (s.e. = 0.03)
between them. Thus, the average effect sizes of SNPs associated with the INC factor are almost
identical in British and non-British cohorts.

We observed slight between-sex heterogeneity in the genetic associations of income, as
supported by the evidence presented in Extended Data Figure 1b. The estimated between-sex
genetic correlations based on meta-analysed GWAS results for individual, occupational, and
household income were 1.06 (s.e.=0.32),0.91 (s.e.=0.03), and 0.95 (s.e. = 0.03), respectively.
Notably, the latter two estimates were statistically distinguishable from unity but remained
above 0.9. Most cohort-specific cross-sex genetic correlations for income are too noisy to be
interpreted (Supplementary Tables 17b-d). One exception is the UK Biobank sample, which
shows a non-perfect genetic correlation between men and women for occupational income (7
= 0.91, s.e. = 0.03). Another exception is the Danish iPsych cohort, where we estimated a
genetic correlation of 0.76 (s.e. = 0.10) between maternal and paternal income. These findings
are consistent with the hypothesis that men and women face non-identical labour market
conditions. The lower genetic correlation between maternal and paternal income suggests that
differences in labour market conditions were more pronounced in previous generations.

We also conducted the INC factor GWAS for the male and female results separately
and found that their genetic correlation was statistically indistinguishable from one (rg = 0.98,

s.e. =0.02).
Comparison with educational attainment

To compare the GWAS results for the INC factor with those for EA, we first conducted
an auxiliary GWAS on EA to obtain the most-powered GWAS result of EA with the summary
statistics currently available to us: We first carried out a GWAS of EA in the UKB, based on
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the protocol of the latest EA GWAS (EA4).>* We then meta-analyzed these GWAS results with
the EA3 summary statistics®! that did not include the UKB, using the meta-analysis version of
MTAG. While previous GWASs on income found somewhat inconsistent results on the genetic
correlation between educational attainment (EA)?'3? and income (75 = 0.90 (s.e. = 0.04)** and
0.77 (s.e. = 0.02)**), with much greater precision, we found a high genetic correlation that is
very close to the first reported estimate (rg = 0.917, s.e. = 0.006). Among the input income
measures, the genetic correlation with EA was higher for occupational and parental income (7
= 0.95 and 0.92; s.e. = 0.01 and 0.05 respectively) and lower for individual and household
income (rg = 0.81 and 0.82; s.e. = 0.07 and 0.01 respectively). Furthermore, 138 out of 161
loci for the INC factor overlapped with those for EA.

The r, estimate of 0.917 between the INC factor and EA implies that only 1 - 0.917° =
~16% of the genetic variance of the INC factor would remain once the genetic covariance with
EA was statistically removed. We employed the GWAS-by-subtraction approach using
Genomic SEM? to identify this residual genetic signal (referred to as ‘NonEA-INC’). We
identified one locus of genome-wide significance for NonEA-INC, marked by the lead SNP
rs34177108 on chromosome 16 (Extended Data Fig 2¢). This locus was previously found to
be associated with vitamin D levels and hair and skin-related traits such as colour, sun
exposure, and cancer, possibly picking up on uncontrolled population stratification or physical

traits linked to discrimination in the labour market.
Polygenic prediction

We conducted polygenic index (PGI) analyses with individuals of European ancestry
in the Swedish Twin Registry (STR), which was not included in our meta-analysis. We chose
STR as the main prediction cohort because it has twins and administrative data on individual,
occupational, and household income. In addition, we also used the UKB siblings (UKB-sib)
and the Health and Retirement Study (HRS) from the US as prediction cohorts. For the UKB-
sib, occupational and household income measures were available. For the HRS, a self-reported
individual income measure was available. In the STR and the UKB-sib cohorts, except when
examining within-family prediction, we randomly selected only one individual from each
family.

After generating hold-out versions of GWAS on the INC factor and EA to remove the
sample overlap with each prediction sample, we constructed PGIs for the INC factor and EA
using LDpred23*. Before conducting prediction analyses, we residualised the log of income on

demographic covariates, including a third-degree polynomial in age, year of observation, and
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interactions with sex. We measured the prediction accuracy as the incremental R from adding
the PGI to a regression of the phenotype on a set of baseline covariates, which were the top 20
genetic principal components and genotype batch indicators.

A cohort-specific upper bound for the theoretically possible predictive accuracy of PGIs
on income can be obtained by the GREML? estimate of the SNP-based heritability of income,
which is close to 10% for the available income measures in the STR and UKB sibling sample
(SI Table 13).

The actual prediction accuracy of PGIs for income is lower than the theoretical
maximum, primarily due to finite GWAS sample size but also due to imperfect genetic
correlations across meta-analysed cohorts and differences in measurement accuracy of income
across samples.*® In the STR (Fig. 2), the INC factor PGI predicted 4R? = 1.3% (95% CI: 1.0-
1.6) for individual income, 3.7% (95% CI: 3.1-4.2) for occupational income, and 1.0% (95%
CI: 0.6-1.4) for household income. The EA PGI had predictive accuracy results in a similar
range for individual and household income, except for occupational income, for which the
accuracy was larger: AR> = 4.7% (95% CI: 4.0-5.4). In the UKB-sib, the predictive accuracy
of the INC factor PGI was AR’ = 4.7% (95% CI: 4.3-5.2) for occupational income and 3.9%
(95% CI: 3.5-4.3) for household income. The EA PGI achieved a better predictive accuracy for
occupational income (4R = 6.9%, 95% CI: 6.3-7.4), while only slightly higher for household
income (4R’ = 4.4%, 95% CI: 3.9-4.8). In the HRS, INC factor PGI had 4R’ = 2.7% (95% CI:
2.1-3.3) for predicting individual income, which was close to the EA PGI’s result (4R = 3.1%,
95% CI: 2.4-3.8).

In terms of the coefficient estimates in the UKB-sib, one standard deviation increase in
the INC factor PGI was associated with a 7.2% increase in the occupational income (95% CI:
6.7-7.7) and a 12.3% increase in the household income (95% CI: 11.4-13.2). These estimates
were comparable to the effect of one additional year of schooling on income, whose estimates
tend to range from 5 to 15%.5%%7

The predictive power of the INC factor PGI approached zero once EA or the EA PGI
was controlled for. In the UKB-sib, 4R’ decreased below 1% for occupational and household
income, while the estimates were still statistically different from zero (Extended Data Fig. 3
and Supplementary Table 21).

We estimated the share of the direct genetic effect in the overall population effect
captured by the INC factor PGI, following the recent approach that imputes parental genotypes
from first-degree relatives.>*3® Using the UKB-sib sample, we isolated the direct effect of the

PGI from the population effect on occupational and household income by controlling for
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parental PGIs. We found that the ratio of direct-to-population effect estimates is 0.51 (s.e. =
0.05) and 0.49 (s.e. = 0.05) for occupational and household income, respectively
(Supplementary Table 22). These results imply that only 24.0% or 25.7% of the INC factor
PGI’s predictive power was due to direct genetic effects, which was very close to the result for
the EA PGI estimated elsewhere (25.5%).38

We next conducted a phenome-wide association study of the INC factor PGI based on
electronic health records in the UKB siblings holdout sample. We tested 115 diseases with sex-
specific sample prevalence no lower than 1%. In total, 50 diseases from different categories
were associated with the INC factor PGI after Bonferroni correction and 14 after controlling
for parental PGI (Fig. 3, Extended Data Fig. 4 and Supplementary Tables 27a-b). In all
cases, a higher INC factor PGI value was associated with reduced disease risk, including
reduced risk for hypertension, gastroesophageal reflux disease (GERD), type 2 diabetes,
obesity, osteoarthritis, back pain, and depression. The strongest association of a higher INC

factor PGI and a disease was found for essential hypertension.
Genetic correlations

We next explored the genetic correlations of the income (INC) factor, educational
attainment (EA), and NonEA-INC with phenotypes related to behaviours, psychiatric
disorders, and physical health (Fig. 4). LDSC estimates revealed that the genetic correlations
of EA and the INC factor largely align. However, noticeable differences emerged for traits in
the psychiatric and psychological domains. Specifically, NonEA-INC is associated with a
reduced risk for certain psychiatric disorders previously reported to correlate positively with
EA 3%* These discrepancies were observed for schizophrenia (1 = -0.29, s.e. = 0.04), autism
spectrum (rg = -0.27, s.e. = 0.06), and obsessive-compulsive disorder (g = -0.22, s.e. = 0.08).
One possible interpretation of these findings is that these psychiatric disorders have more
severe negative effects on individual performance in the labour market than in the educational
system.

Intriguingly, NonEA-INC exhibits a near-zero genetic correlation with cognitive
performance (rg = 0.03, s.e. = 0.03). At the same time, both EA and the general income (INC)
factor display strong positive genetic correlations with it (g =0.66, s.e. =0.01 and rg=0.63,
s.e. = 0.01, respectively). This may suggest that high cognitive performance primarily
influences income through education. Furthermore, this result is consistent with high income
being attainable through social connections, inherited wealth, entrepreneurial activities, or the

pursuit of well-paying jobs that do not require high cognitive performance.
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While EA and the general INC factor have substantial negative genetic correlations
with health-related behaviours such as age of smoking initiation, smoking persistence,
cigarettes per day, and alcohol dependence, we found that NonEA-INC has near-zero genetic
correlations with these traits (albeit the latter have substantially larger error margins of the
point estimates).

NonEA-INC also displayed genetic correlations with other phenotypes that are similar
to EA. Specifically, NonEA-INC had negative genetic correlations with major depressive
disorder (rg = -0.15, s.e. = 0.04), anxiety disorder (r¢ = -0.19, s.e. = 0.05), and the related trait
of neuroticism (rg = -0.14, s.e. = 0.03), but positive genetic correlations with subjective well-
being (g = 0.32, s.e. = 0.06), general risk tolerance (g = 0.13, s.e. = 0.04), and height (rg =
0.11, s.e. = 0.03). The differences in correlations for neuroticism, subjective well-being, and
risk tolerance were statistically significant when comparing EA and NonEA-INC, with
NonEA-INC showing stronger positive correlations with well-being and risk tolerance and a

less negative correlation with neuroticism.
Implicated genes and tissue-specific enrichments:

We used FUMA* to find genes implicated in INC factor GWAS. FUMA uses four
mapping approaches: positional, chromatin interaction, expression quantitative trait locus
(eQTL) mapping, and MAGMA gene-based association tests. In total, 2,385 protein-coding
genes were implicated by at least one of the methods, out of which 225 genes were implicated
by all four methods (Extended Data Fig. 5a). Only three of these commonly implicated genes
were unique for the INC factor, compared to the genes implicated in EA GWAS by at least one
of the four methods or previously prioritised for EA.?!

We then performed tissue-specific enrichment analyses using LDSC-SEG* and
MAGMA gene-property analyses* (sec Supplementary Information section 7). Both
methods indicated dominant enrichment for tissues of the central nervous system (Extended

Data Fig. 5b), consistent with the previous results for household income and EA 1%
Discussion

We conducted the largest GWAS on income to date, incorporating individual,
household, occupational, and parental income measures. Our study design provided increased
statistical power, identifying more genetic variants and improving the predictive power of the
polygenic index (PGI) compared to previous income GWAS. Additionally, it allowed for

comprehensive additional analyses.
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We observed substantial heterogeneity in the genetic architecture of income across
cohorts and high, but non-perfect genetic correlations of income across sexes. This underlines
that the genetic associations we report here are averages across different groups and
environments that should not be interpreted as fixed or universal.

Furthermore, we found a strong genetic correlation between income and educational
attainment (EA).

Our analyses highlighted numerous associations between better health and higher
income that are influenced by genetic differences among individuals. These better health
outcomes include lower BMI, blood pressure, type-2 diabetes, depression, and reduced stress-
related disorders. We note that the genetic overlap between income and health could be driven
by different causal mechanisms, including pleiotropic effects of genes, limited income
opportunities for individuals with health problems, or health advantages for individuals with
higher income. Investigating these causal mechanisms is outside the scope of this study.

Interestingly, the genetic components of income not shared with EA (NonEA-INC
factor) showed weaker associations with better physical health and health-related behaviour,
such as drinking and smoking. One possible interpretation of this finding is that better health
outcomes of higher socioeconomic status in wealthy countries are more due to their association
with education rather than with income or wealth, consistent with findings from quasi-
experimental studies.*#’

In contrast, we found negative genetic correlations of the NonEA-INC factor with
schizophrenia, bipolar disorder, autism, and obsessive-compulsive disorder, while EA
exhibited positive genetic correlations with these psychiatric outcomes. This may indicate that
the educational system is more accommodating to individuals with these disorders than the
labour market and/or that talents associated with these genetic risks (e.g., higher 1Q with
autism*® or creativity with bipolar disorder and schizophrenia*®) are more advantageous in
school than in the labour market.

While our GWAS results contribute to constructing an income-specific PGI with
improved predictive accuracy, the EA PGI remains a comparable or even better predictor of
income and socio-economic status. This is due to even larger sample sizes in recent GWAS on
EA (N ~ 3 million), lower measurement error in educational attainment compared to measures
of income and the high genetic correlation between income and EA.

It is important to point out that the results of our study reflect the specific social realities
of the analysed samples and are not universal or unchangeable. This is exemplified by the

substantial heterogeneity in the genetic architecture of income that we found across cohorts.
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We emphasise that our results are limited to individuals whose genotypes are genetically most
similar to the EUR panel of the 1000 Genomes reference panel compared to people sampled in
other parts of the world. Our results have limited generalizability and do not warrant
meaningful comparisons across different groups or predictions of income for specific
individuals (FAQ). To increase the representation of individuals from diverse backgrounds,
cohort and longitudinal studies should seek to sample more diverse and representative samples
of the global population.

Studies of genetic analyses of behavioural phenotypes have been prone to
misinterpretation, such as characterising identified associated variants as ‘genes for income.’
Our study illustrates that such characterisation is incorrect for many reasons: The effect of each
individual SNP on income is minimal, capturing less than 0.01% of the overall variance in
income. Furthermore, the genetic loci we identified correlate with many other traits, including
education and a wide range of health outcomes. Finally, the finding that only one-quarter of
the genetic associations we identified are due to direct genetic effects suggests the potential
importance of family-specific factors, including potential resemblance between parents, and

environmental factors as important drivers of income inequality.
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Box 1. Understanding Genetics and Income: A Cautionary Overview

Given the frequent misunderstanding of research on genetics and human behaviour, it is
important to recognize the complexities underlying connections between genes and social
outcomes and to communicate what our findings mean clearly and with appropriate nuance.

What did we do and why?

Several types of 'luck’ help shape an individual's life trajectory, such as their society of birth,
parents, and the genetic variants they inherit. Our study captures elements of this by
examining the relationship between millions of genetic variants and income through a
genome-wide association study (GWAS). GWASs of income can provide valuable insights
into the genetic factors associated with income and how they interact with environmental
factors, enhancing our understanding of intergenerational mobility and socioeconomic
disparities.

GWASs of income can shed light on societal processes that favour certain genetic
predispositions, providing insights into our socioeconomic system, but also into the
relationships between income and health disparities. Recent GWASs have shown that socio-
economic outcomes share genetic overlap with various health outcomes, with a considerable
portion mediated through social environments.*

What did we find?

We identified numerous genetic variants associated with income, each with minor effects
but collectively correlating with education, cognition, behaviour, and health. We found
notable differences between income and educational attainment in their genetic associations
with health outcomes. For several psychiatric disorders - namely autism, schizophrenia, and
OCD - the genetic relationships acted in opposing directions. Shared genetic effects between
income and health may stem from various causes. Genes might affect both income and
health. Alternatively, higher income could lead to better health outcomes, not only directly
but also indirectly through improved living conditions from family-members or
neighbourhoods. Conversely, existing health problems may limit income opportunities,
potentially due to reduced work capacity or increased healthcare costs.

When predicting differences between siblings, the overall predictive strength of these
genetic effects diminishes significantly — by approximately 75%. Possible explanations for
this include that the direct causal effects of the genetic variants are smaller compared to the
causal effects of environmental factors that correlate with these genetic variants (e.g., the
effects of parental nurture on their children) and that the way parents resemble each other
(assortative mating) magnifies the predictive power of genetic effects.
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We observed some variability in the genetic factors influencing income across the Western
countries we analysed and between genders, underscoring that the genetic associations we
report here should not be interpreted as fixed or universal.

Neither genetic nor environmental determinism is warranted

Historically, misinterpreting the role of genetics in shaping social outcomes has
occasionally fueled controversial ideologies with far-reaching consequences. It is important
to mitigate the risk of such misunderstandings, particularly the notions of genetic or
environmental determinism. In this context, we emphasise the following:

One's genetic makeup or the family and societal environment into which they are born does
not dictate their intrinsic value. The genetic variants that matter for income, and their effects,
depend on the environment, i.e., on what skills are valued by the labour market and by
society. As the labour market changes, or as government policies change, so can the variants
and their effects.

It is important to recognize how genetics can impact income through diverse pathways,
affecting one’s own or one’s parents’ health, cognition, skills, and productivity-related
behavioural tendencies, such as creativity, risk taking, or adaptability. Additionally, genetics
can influence characteristics favoured or discriminated against in the labour market due to
societal preferences.

As with previous genetic studies on social outcomes like educational attainment, the
findings of this study have limited generalisability across different populations.
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Methods

This section provides the overall summary of the analysis methods. Further details are available

in the Supplementary Information.
GWAS meta-analysis

We pre-registered our analysis plan for the main income GWAS meta-analysis on August 30

2018 (https://osf.io/rg8sh/). We used four measures of income (individual, occupational,

household, and parental income) and conducted a multivariate GWAS to combine these
different measures. In total, we recruited 32 cohorts. Some of these cohorts contributed to
multiple income measures. Supplementary Tables 1 and 2 summarise the income measures
used for each cohort. Supplementary Section 2.1 provides details on the phenotype definition.
The study was limited to 1KG-EUR-like individuals who were not enrolled in an educational
program at the time of survey or who were above the age of 30 if their current enrollment status
was unknown.

Each cohort conducted the additive association analysis as follows. The log-
transformed income measure was regressed on the count of effect-coded alleles of the given
SNP, controlling for any sources of variation in income that do not reflect individual earning
potential according to the data availability of each cohort. This included hours worked (with
square and cubic terms), year of survey, indicators for employment status (retired,
unemployed), self-employment, and pension benefits (see Supplementary Table 4). In addition,
the covariates included at least the top 15 genetic principal components and cohort-specific
technical covariates related to genotyping (genotyping batches and platforms). This analysis
was performed for male and female samples separately.

We applied a stringent QC protocol based on the EasyQC software package’! to the
GWAS results from each cohort (see Supplementary Information section 2.4 for more
detail). In order to combine multiple GWAS results on different income measures collected
from multiple cohorts, we performed the meta-analysis in several steps. First, for each income
measure and each sex, we meta-analyzed the cohort-level GWAS results with METAL?’ using
sample-size weighting. Second, for each income measure, we meta-analyzed the male and

female results by using the meta-analysis version of MTAG.?® To extract the common genetic
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factor from the four GWAS results with different income measures, we again leveraged

MTAG, allowing for different heritabilities among the input traits.
Cross-sex and cross-country heterogeneity

We investigated the potential environmental heterogeneity in the GWAS of income by
estimating the cross-cohort genetic correlations by sex or by country with LDSC.*° Sex-specific
meta-analysis results for each income measure were available as intermediary outputs from the
meta-analysis procedure. In addition, we conducted INC factor GWAS on the sex-specific
results, which yielded an effective sample size of 360,197 for men and 353,429 for women.

To derive country-specific GWAS meta-analyses, we only used occupational and
household income, for which we were able to obtain a sufficiently large sample size for
multiple countries. We obtained the household income GWAS for the USA (Nes= 30.855), the
UK (Neg=387,579), and the Netherlands (Ney= 40,533); and the occupational income GWAS
for Estonia (Ney = 75,682), Norway (Ney = 42,204), the UK (Ney = 279,883), and the
Netherlands (Nes= 24,425).

Comparative analysis with EA

We compared our INC factor GWAS results with the GWAS of EA by examining genetic
correlation with LDSC and using the GWAS-by-subtraction approach.’? Here, we used a
version of EA summary statistics slightly different from publicly available ones. The latest EA
GWAS study revised the coding of the years of schooling in the UKB* to better reflect the
educational qualification of the participants. Based on the new coding, we conducted a GWAS
of EA in the UKB. Then, by using MTAG with the meta-analysis option, we meta-analyzed
the UKB result with EA3 summary statistics?! that did not include the UKB.

We then statistically decomposed the estimated genetic association of the INC factor
into the indirect effect due to EA and the direct effect unexplained by EA (NonEA-INC),
leveraging the GWAS-by-subtraction approach in genomic SEM.?*? We implemented this

method in the form of a mediation model.
PGI analysis

We conducted three sets of analyses based on the polygenic index (PGI): 1) prediction analysis,
2) direct genetic effect estimation, and 3) phenome-wide association study of common

diseases.

21


https://www.zotero.org/google-docs/?JCBssv
https://www.zotero.org/google-docs/?QVnHkw
https://www.zotero.org/google-docs/?VKknLS
https://www.zotero.org/google-docs/?t7vU0H
https://www.zotero.org/google-docs/?wtFy8O
https://doi.org/10.1101/2024.01.09.574865
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574865; this version posted January 10, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

For the PGI prediction analysis, we used the Swedish Twin Registry (STR),* UKB
siblings (UKB-sib), and the Health and Retirement Study (HRS).>* We constructed PGIs using
the meta-analysis results of income excluding a prediction cohort at a time, as well as a PGI
based on the EA GWAS summary statistics constructed in the same way for comparison. PGIs
were created only with HapMap3 SNPs® as these SNPs have good imputation quality and
provide good coverage for 1KG-EUR-like individuals. We derived PGIs based on a Bayesian
approach implemented in the software LDpred2.3

We measured the prediction accuracy based on incremental R?, which is the difference
between the R? from a regression of the phenotype on the PGI and the baseline covariates and
the R’ from a regression on the baseline covariates only. Because income typically contains
substantial demographic variation, we pre-residualized the log of income for demographic
covariates. Then, as baseline covariates, we only included the top 20 genetic PCs and genotype
batch indicators. Because income data was available for multiple years for the STR and the
HRS, we residualised the log of income for age, age?, age®, sex, and interactions between sex
and the age terms within each year and obtained the mean of residuals for each individual. For
the UKB-sib, which only had cross-sectional data, we residualised the log of income for age,
age’, age’, sex, dummies for survey year, and interactions between sex and the rest. For the EA
measure (years of education), we applied the same procedure with birth year dummies. We
constructed confidence intervals for the incremental R’ by bootstrapping the sample 1,000
times.

To estimate the direct genetic effect of the INC factor PGI, we used snipar®® to impute
missing parental genotypes from sibling and parent-offspring pairs. Parental PGIs were then
created with the imputed SNPs. We estimated the direct genetic effect of the PGI by controlling
for the parental PGI. This analysis was conducted only with the UKB-sib sample. See
Supplementary Information 5.2 for further details.

To explore the clinical relevance of the INC factor PGI for common diseases, we carried
out a phenome-wide association study, using the in-patient electronic health records for 115
diseases with sex-specific sample prevalence no lower than 1% in the UKB-sib sample. We
derived case-control status according to the phecode scheme by mapping the UKB’s ICD-9/10
records to phecodes v1.2.%° We fitted a linear regression of case-control status on the INC factor
PGI while controlling for the parental PGIs to capture the direct genetic effects of income PGI.
As covariates, we also included the year of birth, its square term, and its interactions with sex,

genotype batch dummies, and 20 genetic PCs. Standard errors were clustered by family.
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